1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Local APIC related interfaces to support IOAPIC, MSI, etc.
4 *
5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6 * Moved from arch/x86/kernel/apic/io_apic.c.
7 * Jiang Liu <jiang.liu@linux.intel.com>
8 * Enable support of hierarchical irqdomains
9 */
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/seq_file.h>
13 #include <linux/init.h>
14 #include <linux/compiler.h>
15 #include <linux/slab.h>
16 #include <asm/irqdomain.h>
17 #include <asm/hw_irq.h>
18 #include <asm/traps.h>
19 #include <asm/apic.h>
20 #include <asm/i8259.h>
21 #include <asm/desc.h>
22 #include <asm/irq_remapping.h>
23
24 #include <asm/trace/irq_vectors.h>
25
26 struct apic_chip_data {
27 struct irq_cfg hw_irq_cfg;
28 unsigned int vector;
29 unsigned int prev_vector;
30 unsigned int cpu;
31 unsigned int prev_cpu;
32 unsigned int irq;
33 struct hlist_node clist;
34 unsigned int move_in_progress : 1,
35 is_managed : 1,
36 can_reserve : 1,
37 has_reserved : 1;
38 };
39
40 struct irq_domain *x86_vector_domain;
41 EXPORT_SYMBOL_GPL(x86_vector_domain);
42 static DEFINE_RAW_SPINLOCK(vector_lock);
43 static cpumask_var_t vector_searchmask;
44 static struct irq_chip lapic_controller;
45 static struct irq_matrix *vector_matrix;
46 #ifdef CONFIG_SMP
47 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
48 #endif
49
lock_vector_lock(void)50 void lock_vector_lock(void)
51 {
52 /* Used to the online set of cpus does not change
53 * during assign_irq_vector.
54 */
55 raw_spin_lock(&vector_lock);
56 }
57
unlock_vector_lock(void)58 void unlock_vector_lock(void)
59 {
60 raw_spin_unlock(&vector_lock);
61 }
62
init_irq_alloc_info(struct irq_alloc_info * info,const struct cpumask * mask)63 void init_irq_alloc_info(struct irq_alloc_info *info,
64 const struct cpumask *mask)
65 {
66 memset(info, 0, sizeof(*info));
67 info->mask = mask;
68 }
69
copy_irq_alloc_info(struct irq_alloc_info * dst,struct irq_alloc_info * src)70 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
71 {
72 if (src)
73 *dst = *src;
74 else
75 memset(dst, 0, sizeof(*dst));
76 }
77
apic_chip_data(struct irq_data * irqd)78 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
79 {
80 if (!irqd)
81 return NULL;
82
83 while (irqd->parent_data)
84 irqd = irqd->parent_data;
85
86 return irqd->chip_data;
87 }
88
irqd_cfg(struct irq_data * irqd)89 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
90 {
91 struct apic_chip_data *apicd = apic_chip_data(irqd);
92
93 return apicd ? &apicd->hw_irq_cfg : NULL;
94 }
95 EXPORT_SYMBOL_GPL(irqd_cfg);
96
irq_cfg(unsigned int irq)97 struct irq_cfg *irq_cfg(unsigned int irq)
98 {
99 return irqd_cfg(irq_get_irq_data(irq));
100 }
101
alloc_apic_chip_data(int node)102 static struct apic_chip_data *alloc_apic_chip_data(int node)
103 {
104 struct apic_chip_data *apicd;
105
106 apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
107 if (apicd)
108 INIT_HLIST_NODE(&apicd->clist);
109 return apicd;
110 }
111
free_apic_chip_data(struct apic_chip_data * apicd)112 static void free_apic_chip_data(struct apic_chip_data *apicd)
113 {
114 kfree(apicd);
115 }
116
apic_update_irq_cfg(struct irq_data * irqd,unsigned int vector,unsigned int cpu)117 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
118 unsigned int cpu)
119 {
120 struct apic_chip_data *apicd = apic_chip_data(irqd);
121
122 lockdep_assert_held(&vector_lock);
123
124 apicd->hw_irq_cfg.vector = vector;
125 apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
126 irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
127 trace_vector_config(irqd->irq, vector, cpu,
128 apicd->hw_irq_cfg.dest_apicid);
129 }
130
apic_update_vector(struct irq_data * irqd,unsigned int newvec,unsigned int newcpu)131 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
132 unsigned int newcpu)
133 {
134 struct apic_chip_data *apicd = apic_chip_data(irqd);
135 struct irq_desc *desc = irq_data_to_desc(irqd);
136 bool managed = irqd_affinity_is_managed(irqd);
137
138 lockdep_assert_held(&vector_lock);
139
140 trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
141 apicd->cpu);
142
143 /*
144 * If there is no vector associated or if the associated vector is
145 * the shutdown vector, which is associated to make PCI/MSI
146 * shutdown mode work, then there is nothing to release. Clear out
147 * prev_vector for this and the offlined target case.
148 */
149 apicd->prev_vector = 0;
150 if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
151 goto setnew;
152 /*
153 * If the target CPU of the previous vector is online, then mark
154 * the vector as move in progress and store it for cleanup when the
155 * first interrupt on the new vector arrives. If the target CPU is
156 * offline then the regular release mechanism via the cleanup
157 * vector is not possible and the vector can be immediately freed
158 * in the underlying matrix allocator.
159 */
160 if (cpu_online(apicd->cpu)) {
161 apicd->move_in_progress = true;
162 apicd->prev_vector = apicd->vector;
163 apicd->prev_cpu = apicd->cpu;
164 } else {
165 irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
166 managed);
167 }
168
169 setnew:
170 apicd->vector = newvec;
171 apicd->cpu = newcpu;
172 BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
173 per_cpu(vector_irq, newcpu)[newvec] = desc;
174 }
175
vector_assign_managed_shutdown(struct irq_data * irqd)176 static void vector_assign_managed_shutdown(struct irq_data *irqd)
177 {
178 unsigned int cpu = cpumask_first(cpu_online_mask);
179
180 apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
181 }
182
reserve_managed_vector(struct irq_data * irqd)183 static int reserve_managed_vector(struct irq_data *irqd)
184 {
185 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
186 struct apic_chip_data *apicd = apic_chip_data(irqd);
187 unsigned long flags;
188 int ret;
189
190 raw_spin_lock_irqsave(&vector_lock, flags);
191 apicd->is_managed = true;
192 ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
193 raw_spin_unlock_irqrestore(&vector_lock, flags);
194 trace_vector_reserve_managed(irqd->irq, ret);
195 return ret;
196 }
197
reserve_irq_vector_locked(struct irq_data * irqd)198 static void reserve_irq_vector_locked(struct irq_data *irqd)
199 {
200 struct apic_chip_data *apicd = apic_chip_data(irqd);
201
202 irq_matrix_reserve(vector_matrix);
203 apicd->can_reserve = true;
204 apicd->has_reserved = true;
205 irqd_set_can_reserve(irqd);
206 trace_vector_reserve(irqd->irq, 0);
207 vector_assign_managed_shutdown(irqd);
208 }
209
reserve_irq_vector(struct irq_data * irqd)210 static int reserve_irq_vector(struct irq_data *irqd)
211 {
212 unsigned long flags;
213
214 raw_spin_lock_irqsave(&vector_lock, flags);
215 reserve_irq_vector_locked(irqd);
216 raw_spin_unlock_irqrestore(&vector_lock, flags);
217 return 0;
218 }
219
220 static int
assign_vector_locked(struct irq_data * irqd,const struct cpumask * dest)221 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
222 {
223 struct apic_chip_data *apicd = apic_chip_data(irqd);
224 bool resvd = apicd->has_reserved;
225 unsigned int cpu = apicd->cpu;
226 int vector = apicd->vector;
227
228 lockdep_assert_held(&vector_lock);
229
230 /*
231 * If the current target CPU is online and in the new requested
232 * affinity mask, there is no point in moving the interrupt from
233 * one CPU to another.
234 */
235 if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
236 return 0;
237
238 /*
239 * Careful here. @apicd might either have move_in_progress set or
240 * be enqueued for cleanup. Assigning a new vector would either
241 * leave a stale vector on some CPU around or in case of a pending
242 * cleanup corrupt the hlist.
243 */
244 if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
245 return -EBUSY;
246
247 vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
248 trace_vector_alloc(irqd->irq, vector, resvd, vector);
249 if (vector < 0)
250 return vector;
251 apic_update_vector(irqd, vector, cpu);
252 apic_update_irq_cfg(irqd, vector, cpu);
253
254 return 0;
255 }
256
assign_irq_vector(struct irq_data * irqd,const struct cpumask * dest)257 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
258 {
259 unsigned long flags;
260 int ret;
261
262 raw_spin_lock_irqsave(&vector_lock, flags);
263 cpumask_and(vector_searchmask, dest, cpu_online_mask);
264 ret = assign_vector_locked(irqd, vector_searchmask);
265 raw_spin_unlock_irqrestore(&vector_lock, flags);
266 return ret;
267 }
268
assign_irq_vector_any_locked(struct irq_data * irqd)269 static int assign_irq_vector_any_locked(struct irq_data *irqd)
270 {
271 /* Get the affinity mask - either irq_default_affinity or (user) set */
272 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
273 int node = irq_data_get_node(irqd);
274
275 if (node == NUMA_NO_NODE)
276 goto all;
277 /* Try the intersection of @affmsk and node mask */
278 cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
279 if (!assign_vector_locked(irqd, vector_searchmask))
280 return 0;
281 /* Try the node mask */
282 if (!assign_vector_locked(irqd, cpumask_of_node(node)))
283 return 0;
284 all:
285 /* Try the full affinity mask */
286 cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
287 if (!assign_vector_locked(irqd, vector_searchmask))
288 return 0;
289 /* Try the full online mask */
290 return assign_vector_locked(irqd, cpu_online_mask);
291 }
292
293 static int
assign_irq_vector_policy(struct irq_data * irqd,struct irq_alloc_info * info)294 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
295 {
296 if (irqd_affinity_is_managed(irqd))
297 return reserve_managed_vector(irqd);
298 if (info->mask)
299 return assign_irq_vector(irqd, info->mask);
300 /*
301 * Make only a global reservation with no guarantee. A real vector
302 * is associated at activation time.
303 */
304 return reserve_irq_vector(irqd);
305 }
306
307 static int
assign_managed_vector(struct irq_data * irqd,const struct cpumask * dest)308 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
309 {
310 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
311 struct apic_chip_data *apicd = apic_chip_data(irqd);
312 int vector, cpu;
313
314 cpumask_and(vector_searchmask, dest, affmsk);
315
316 /* set_affinity might call here for nothing */
317 if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
318 return 0;
319 vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
320 &cpu);
321 trace_vector_alloc_managed(irqd->irq, vector, vector);
322 if (vector < 0)
323 return vector;
324 apic_update_vector(irqd, vector, cpu);
325 apic_update_irq_cfg(irqd, vector, cpu);
326 return 0;
327 }
328
clear_irq_vector(struct irq_data * irqd)329 static void clear_irq_vector(struct irq_data *irqd)
330 {
331 struct apic_chip_data *apicd = apic_chip_data(irqd);
332 bool managed = irqd_affinity_is_managed(irqd);
333 unsigned int vector = apicd->vector;
334
335 lockdep_assert_held(&vector_lock);
336
337 if (!vector)
338 return;
339
340 trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
341 apicd->prev_cpu);
342
343 per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
344 irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
345 apicd->vector = 0;
346
347 /* Clean up move in progress */
348 vector = apicd->prev_vector;
349 if (!vector)
350 return;
351
352 per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
353 irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
354 apicd->prev_vector = 0;
355 apicd->move_in_progress = 0;
356 hlist_del_init(&apicd->clist);
357 }
358
x86_vector_deactivate(struct irq_domain * dom,struct irq_data * irqd)359 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
360 {
361 struct apic_chip_data *apicd = apic_chip_data(irqd);
362 unsigned long flags;
363
364 trace_vector_deactivate(irqd->irq, apicd->is_managed,
365 apicd->can_reserve, false);
366
367 /* Regular fixed assigned interrupt */
368 if (!apicd->is_managed && !apicd->can_reserve)
369 return;
370 /* If the interrupt has a global reservation, nothing to do */
371 if (apicd->has_reserved)
372 return;
373
374 raw_spin_lock_irqsave(&vector_lock, flags);
375 clear_irq_vector(irqd);
376 if (apicd->can_reserve)
377 reserve_irq_vector_locked(irqd);
378 else
379 vector_assign_managed_shutdown(irqd);
380 raw_spin_unlock_irqrestore(&vector_lock, flags);
381 }
382
activate_reserved(struct irq_data * irqd)383 static int activate_reserved(struct irq_data *irqd)
384 {
385 struct apic_chip_data *apicd = apic_chip_data(irqd);
386 int ret;
387
388 ret = assign_irq_vector_any_locked(irqd);
389 if (!ret) {
390 apicd->has_reserved = false;
391 /*
392 * Core might have disabled reservation mode after
393 * allocating the irq descriptor. Ideally this should
394 * happen before allocation time, but that would require
395 * completely convoluted ways of transporting that
396 * information.
397 */
398 if (!irqd_can_reserve(irqd))
399 apicd->can_reserve = false;
400 }
401
402 /*
403 * Check to ensure that the effective affinity mask is a subset
404 * the user supplied affinity mask, and warn the user if it is not
405 */
406 if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
407 irq_data_get_affinity_mask(irqd))) {
408 pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
409 irqd->irq);
410 }
411
412 return ret;
413 }
414
activate_managed(struct irq_data * irqd)415 static int activate_managed(struct irq_data *irqd)
416 {
417 const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
418 int ret;
419
420 cpumask_and(vector_searchmask, dest, cpu_online_mask);
421 if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
422 /* Something in the core code broke! Survive gracefully */
423 pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
424 return -EINVAL;
425 }
426
427 ret = assign_managed_vector(irqd, vector_searchmask);
428 /*
429 * This should not happen. The vector reservation got buggered. Handle
430 * it gracefully.
431 */
432 if (WARN_ON_ONCE(ret < 0)) {
433 pr_err("Managed startup irq %u, no vector available\n",
434 irqd->irq);
435 }
436 return ret;
437 }
438
x86_vector_activate(struct irq_domain * dom,struct irq_data * irqd,bool reserve)439 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
440 bool reserve)
441 {
442 struct apic_chip_data *apicd = apic_chip_data(irqd);
443 unsigned long flags;
444 int ret = 0;
445
446 trace_vector_activate(irqd->irq, apicd->is_managed,
447 apicd->can_reserve, reserve);
448
449 /* Nothing to do for fixed assigned vectors */
450 if (!apicd->can_reserve && !apicd->is_managed)
451 return 0;
452
453 raw_spin_lock_irqsave(&vector_lock, flags);
454 if (reserve || irqd_is_managed_and_shutdown(irqd))
455 vector_assign_managed_shutdown(irqd);
456 else if (apicd->is_managed)
457 ret = activate_managed(irqd);
458 else if (apicd->has_reserved)
459 ret = activate_reserved(irqd);
460 raw_spin_unlock_irqrestore(&vector_lock, flags);
461 return ret;
462 }
463
vector_free_reserved_and_managed(struct irq_data * irqd)464 static void vector_free_reserved_and_managed(struct irq_data *irqd)
465 {
466 const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
467 struct apic_chip_data *apicd = apic_chip_data(irqd);
468
469 trace_vector_teardown(irqd->irq, apicd->is_managed,
470 apicd->has_reserved);
471
472 if (apicd->has_reserved)
473 irq_matrix_remove_reserved(vector_matrix);
474 if (apicd->is_managed)
475 irq_matrix_remove_managed(vector_matrix, dest);
476 }
477
x86_vector_free_irqs(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)478 static void x86_vector_free_irqs(struct irq_domain *domain,
479 unsigned int virq, unsigned int nr_irqs)
480 {
481 struct apic_chip_data *apicd;
482 struct irq_data *irqd;
483 unsigned long flags;
484 int i;
485
486 for (i = 0; i < nr_irqs; i++) {
487 irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
488 if (irqd && irqd->chip_data) {
489 raw_spin_lock_irqsave(&vector_lock, flags);
490 clear_irq_vector(irqd);
491 vector_free_reserved_and_managed(irqd);
492 apicd = irqd->chip_data;
493 irq_domain_reset_irq_data(irqd);
494 raw_spin_unlock_irqrestore(&vector_lock, flags);
495 free_apic_chip_data(apicd);
496 }
497 }
498 }
499
vector_configure_legacy(unsigned int virq,struct irq_data * irqd,struct apic_chip_data * apicd)500 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
501 struct apic_chip_data *apicd)
502 {
503 unsigned long flags;
504 bool realloc = false;
505
506 apicd->vector = ISA_IRQ_VECTOR(virq);
507 apicd->cpu = 0;
508
509 raw_spin_lock_irqsave(&vector_lock, flags);
510 /*
511 * If the interrupt is activated, then it must stay at this vector
512 * position. That's usually the timer interrupt (0).
513 */
514 if (irqd_is_activated(irqd)) {
515 trace_vector_setup(virq, true, 0);
516 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
517 } else {
518 /* Release the vector */
519 apicd->can_reserve = true;
520 irqd_set_can_reserve(irqd);
521 clear_irq_vector(irqd);
522 realloc = true;
523 }
524 raw_spin_unlock_irqrestore(&vector_lock, flags);
525 return realloc;
526 }
527
x86_vector_alloc_irqs(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)528 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
529 unsigned int nr_irqs, void *arg)
530 {
531 struct irq_alloc_info *info = arg;
532 struct apic_chip_data *apicd;
533 struct irq_data *irqd;
534 int i, err, node;
535
536 if (disable_apic)
537 return -ENXIO;
538
539 /* Currently vector allocator can't guarantee contiguous allocations */
540 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
541 return -ENOSYS;
542
543 for (i = 0; i < nr_irqs; i++) {
544 irqd = irq_domain_get_irq_data(domain, virq + i);
545 BUG_ON(!irqd);
546 node = irq_data_get_node(irqd);
547 WARN_ON_ONCE(irqd->chip_data);
548 apicd = alloc_apic_chip_data(node);
549 if (!apicd) {
550 err = -ENOMEM;
551 goto error;
552 }
553
554 apicd->irq = virq + i;
555 irqd->chip = &lapic_controller;
556 irqd->chip_data = apicd;
557 irqd->hwirq = virq + i;
558 irqd_set_single_target(irqd);
559 /*
560 * Legacy vectors are already assigned when the IOAPIC
561 * takes them over. They stay on the same vector. This is
562 * required for check_timer() to work correctly as it might
563 * switch back to legacy mode. Only update the hardware
564 * config.
565 */
566 if (info->flags & X86_IRQ_ALLOC_LEGACY) {
567 if (!vector_configure_legacy(virq + i, irqd, apicd))
568 continue;
569 }
570
571 err = assign_irq_vector_policy(irqd, info);
572 trace_vector_setup(virq + i, false, err);
573 if (err) {
574 irqd->chip_data = NULL;
575 free_apic_chip_data(apicd);
576 goto error;
577 }
578 }
579
580 return 0;
581
582 error:
583 x86_vector_free_irqs(domain, virq, i);
584 return err;
585 }
586
587 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
x86_vector_debug_show(struct seq_file * m,struct irq_domain * d,struct irq_data * irqd,int ind)588 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
589 struct irq_data *irqd, int ind)
590 {
591 struct apic_chip_data apicd;
592 unsigned long flags;
593 int irq;
594
595 if (!irqd) {
596 irq_matrix_debug_show(m, vector_matrix, ind);
597 return;
598 }
599
600 irq = irqd->irq;
601 if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
602 seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
603 seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
604 return;
605 }
606
607 if (!irqd->chip_data) {
608 seq_printf(m, "%*sVector: Not assigned\n", ind, "");
609 return;
610 }
611
612 raw_spin_lock_irqsave(&vector_lock, flags);
613 memcpy(&apicd, irqd->chip_data, sizeof(apicd));
614 raw_spin_unlock_irqrestore(&vector_lock, flags);
615
616 seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
617 seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
618 if (apicd.prev_vector) {
619 seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
620 seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
621 }
622 seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
623 seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0);
624 seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0);
625 seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0);
626 seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist));
627 }
628 #endif
629
630 static const struct irq_domain_ops x86_vector_domain_ops = {
631 .alloc = x86_vector_alloc_irqs,
632 .free = x86_vector_free_irqs,
633 .activate = x86_vector_activate,
634 .deactivate = x86_vector_deactivate,
635 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
636 .debug_show = x86_vector_debug_show,
637 #endif
638 };
639
arch_probe_nr_irqs(void)640 int __init arch_probe_nr_irqs(void)
641 {
642 int nr;
643
644 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
645 nr_irqs = NR_VECTORS * nr_cpu_ids;
646
647 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
648 #if defined(CONFIG_PCI_MSI)
649 /*
650 * for MSI and HT dyn irq
651 */
652 if (gsi_top <= NR_IRQS_LEGACY)
653 nr += 8 * nr_cpu_ids;
654 else
655 nr += gsi_top * 16;
656 #endif
657 if (nr < nr_irqs)
658 nr_irqs = nr;
659
660 /*
661 * We don't know if PIC is present at this point so we need to do
662 * probe() to get the right number of legacy IRQs.
663 */
664 return legacy_pic->probe();
665 }
666
lapic_assign_legacy_vector(unsigned int irq,bool replace)667 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
668 {
669 /*
670 * Use assign system here so it wont get accounted as allocated
671 * and moveable in the cpu hotplug check and it prevents managed
672 * irq reservation from touching it.
673 */
674 irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
675 }
676
lapic_assign_system_vectors(void)677 void __init lapic_assign_system_vectors(void)
678 {
679 unsigned int i, vector = 0;
680
681 for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
682 irq_matrix_assign_system(vector_matrix, vector, false);
683
684 if (nr_legacy_irqs() > 1)
685 lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
686
687 /* System vectors are reserved, online it */
688 irq_matrix_online(vector_matrix);
689
690 /* Mark the preallocated legacy interrupts */
691 for (i = 0; i < nr_legacy_irqs(); i++) {
692 if (i != PIC_CASCADE_IR)
693 irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
694 }
695 }
696
arch_early_irq_init(void)697 int __init arch_early_irq_init(void)
698 {
699 struct fwnode_handle *fn;
700
701 fn = irq_domain_alloc_named_fwnode("VECTOR");
702 BUG_ON(!fn);
703 x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
704 NULL);
705 BUG_ON(x86_vector_domain == NULL);
706 irq_domain_free_fwnode(fn);
707 irq_set_default_host(x86_vector_domain);
708
709 arch_init_msi_domain(x86_vector_domain);
710
711 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
712
713 /*
714 * Allocate the vector matrix allocator data structure and limit the
715 * search area.
716 */
717 vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
718 FIRST_SYSTEM_VECTOR);
719 BUG_ON(!vector_matrix);
720
721 return arch_early_ioapic_init();
722 }
723
724 #ifdef CONFIG_SMP
725
__setup_vector_irq(int vector)726 static struct irq_desc *__setup_vector_irq(int vector)
727 {
728 int isairq = vector - ISA_IRQ_VECTOR(0);
729
730 /* Check whether the irq is in the legacy space */
731 if (isairq < 0 || isairq >= nr_legacy_irqs())
732 return VECTOR_UNUSED;
733 /* Check whether the irq is handled by the IOAPIC */
734 if (test_bit(isairq, &io_apic_irqs))
735 return VECTOR_UNUSED;
736 return irq_to_desc(isairq);
737 }
738
739 /* Online the local APIC infrastructure and initialize the vectors */
lapic_online(void)740 void lapic_online(void)
741 {
742 unsigned int vector;
743
744 lockdep_assert_held(&vector_lock);
745
746 /* Online the vector matrix array for this CPU */
747 irq_matrix_online(vector_matrix);
748
749 /*
750 * The interrupt affinity logic never targets interrupts to offline
751 * CPUs. The exception are the legacy PIC interrupts. In general
752 * they are only targeted to CPU0, but depending on the platform
753 * they can be distributed to any online CPU in hardware. The
754 * kernel has no influence on that. So all active legacy vectors
755 * must be installed on all CPUs. All non legacy interrupts can be
756 * cleared.
757 */
758 for (vector = 0; vector < NR_VECTORS; vector++)
759 this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
760 }
761
lapic_offline(void)762 void lapic_offline(void)
763 {
764 lock_vector_lock();
765 irq_matrix_offline(vector_matrix);
766 unlock_vector_lock();
767 }
768
apic_set_affinity(struct irq_data * irqd,const struct cpumask * dest,bool force)769 static int apic_set_affinity(struct irq_data *irqd,
770 const struct cpumask *dest, bool force)
771 {
772 struct apic_chip_data *apicd = apic_chip_data(irqd);
773 int err;
774
775 /*
776 * Core code can call here for inactive interrupts. For inactive
777 * interrupts which use managed or reservation mode there is no
778 * point in going through the vector assignment right now as the
779 * activation will assign a vector which fits the destination
780 * cpumask. Let the core code store the destination mask and be
781 * done with it.
782 */
783 if (!irqd_is_activated(irqd) &&
784 (apicd->is_managed || apicd->can_reserve))
785 return IRQ_SET_MASK_OK;
786
787 raw_spin_lock(&vector_lock);
788 cpumask_and(vector_searchmask, dest, cpu_online_mask);
789 if (irqd_affinity_is_managed(irqd))
790 err = assign_managed_vector(irqd, vector_searchmask);
791 else
792 err = assign_vector_locked(irqd, vector_searchmask);
793 raw_spin_unlock(&vector_lock);
794 return err ? err : IRQ_SET_MASK_OK;
795 }
796
797 #else
798 # define apic_set_affinity NULL
799 #endif
800
apic_retrigger_irq(struct irq_data * irqd)801 static int apic_retrigger_irq(struct irq_data *irqd)
802 {
803 struct apic_chip_data *apicd = apic_chip_data(irqd);
804 unsigned long flags;
805
806 raw_spin_lock_irqsave(&vector_lock, flags);
807 apic->send_IPI(apicd->cpu, apicd->vector);
808 raw_spin_unlock_irqrestore(&vector_lock, flags);
809
810 return 1;
811 }
812
apic_ack_irq(struct irq_data * irqd)813 void apic_ack_irq(struct irq_data *irqd)
814 {
815 irq_move_irq(irqd);
816 ack_APIC_irq();
817 }
818
apic_ack_edge(struct irq_data * irqd)819 void apic_ack_edge(struct irq_data *irqd)
820 {
821 irq_complete_move(irqd_cfg(irqd));
822 apic_ack_irq(irqd);
823 }
824
825 static struct irq_chip lapic_controller = {
826 .name = "APIC",
827 .irq_ack = apic_ack_edge,
828 .irq_set_affinity = apic_set_affinity,
829 .irq_retrigger = apic_retrigger_irq,
830 };
831
832 #ifdef CONFIG_SMP
833
free_moved_vector(struct apic_chip_data * apicd)834 static void free_moved_vector(struct apic_chip_data *apicd)
835 {
836 unsigned int vector = apicd->prev_vector;
837 unsigned int cpu = apicd->prev_cpu;
838 bool managed = apicd->is_managed;
839
840 /*
841 * This should never happen. Managed interrupts are not
842 * migrated except on CPU down, which does not involve the
843 * cleanup vector. But try to keep the accounting correct
844 * nevertheless.
845 */
846 WARN_ON_ONCE(managed);
847
848 trace_vector_free_moved(apicd->irq, cpu, vector, managed);
849 irq_matrix_free(vector_matrix, cpu, vector, managed);
850 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
851 hlist_del_init(&apicd->clist);
852 apicd->prev_vector = 0;
853 apicd->move_in_progress = 0;
854 }
855
smp_irq_move_cleanup_interrupt(void)856 asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
857 {
858 struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
859 struct apic_chip_data *apicd;
860 struct hlist_node *tmp;
861
862 entering_ack_irq();
863 /* Prevent vectors vanishing under us */
864 raw_spin_lock(&vector_lock);
865
866 hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
867 unsigned int irr, vector = apicd->prev_vector;
868
869 /*
870 * Paranoia: Check if the vector that needs to be cleaned
871 * up is registered at the APICs IRR. If so, then this is
872 * not the best time to clean it up. Clean it up in the
873 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
874 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
875 * priority external vector, so on return from this
876 * interrupt the device interrupt will happen first.
877 */
878 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
879 if (irr & (1U << (vector % 32))) {
880 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
881 continue;
882 }
883 free_moved_vector(apicd);
884 }
885
886 raw_spin_unlock(&vector_lock);
887 exiting_irq();
888 }
889
__send_cleanup_vector(struct apic_chip_data * apicd)890 static void __send_cleanup_vector(struct apic_chip_data *apicd)
891 {
892 unsigned int cpu;
893
894 raw_spin_lock(&vector_lock);
895 apicd->move_in_progress = 0;
896 cpu = apicd->prev_cpu;
897 if (cpu_online(cpu)) {
898 hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
899 apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
900 } else {
901 apicd->prev_vector = 0;
902 }
903 raw_spin_unlock(&vector_lock);
904 }
905
send_cleanup_vector(struct irq_cfg * cfg)906 void send_cleanup_vector(struct irq_cfg *cfg)
907 {
908 struct apic_chip_data *apicd;
909
910 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
911 if (apicd->move_in_progress)
912 __send_cleanup_vector(apicd);
913 }
914
__irq_complete_move(struct irq_cfg * cfg,unsigned vector)915 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
916 {
917 struct apic_chip_data *apicd;
918
919 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
920 if (likely(!apicd->move_in_progress))
921 return;
922
923 if (vector == apicd->vector && apicd->cpu == smp_processor_id())
924 __send_cleanup_vector(apicd);
925 }
926
irq_complete_move(struct irq_cfg * cfg)927 void irq_complete_move(struct irq_cfg *cfg)
928 {
929 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
930 }
931
932 /*
933 * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
934 */
irq_force_complete_move(struct irq_desc * desc)935 void irq_force_complete_move(struct irq_desc *desc)
936 {
937 struct apic_chip_data *apicd;
938 struct irq_data *irqd;
939 unsigned int vector;
940
941 /*
942 * The function is called for all descriptors regardless of which
943 * irqdomain they belong to. For example if an IRQ is provided by
944 * an irq_chip as part of a GPIO driver, the chip data for that
945 * descriptor is specific to the irq_chip in question.
946 *
947 * Check first that the chip_data is what we expect
948 * (apic_chip_data) before touching it any further.
949 */
950 irqd = irq_domain_get_irq_data(x86_vector_domain,
951 irq_desc_get_irq(desc));
952 if (!irqd)
953 return;
954
955 raw_spin_lock(&vector_lock);
956 apicd = apic_chip_data(irqd);
957 if (!apicd)
958 goto unlock;
959
960 /*
961 * If prev_vector is empty, no action required.
962 */
963 vector = apicd->prev_vector;
964 if (!vector)
965 goto unlock;
966
967 /*
968 * This is tricky. If the cleanup of the old vector has not been
969 * done yet, then the following setaffinity call will fail with
970 * -EBUSY. This can leave the interrupt in a stale state.
971 *
972 * All CPUs are stuck in stop machine with interrupts disabled so
973 * calling __irq_complete_move() would be completely pointless.
974 *
975 * 1) The interrupt is in move_in_progress state. That means that we
976 * have not seen an interrupt since the io_apic was reprogrammed to
977 * the new vector.
978 *
979 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
980 * have not been processed yet.
981 */
982 if (apicd->move_in_progress) {
983 /*
984 * In theory there is a race:
985 *
986 * set_ioapic(new_vector) <-- Interrupt is raised before update
987 * is effective, i.e. it's raised on
988 * the old vector.
989 *
990 * So if the target cpu cannot handle that interrupt before
991 * the old vector is cleaned up, we get a spurious interrupt
992 * and in the worst case the ioapic irq line becomes stale.
993 *
994 * But in case of cpu hotplug this should be a non issue
995 * because if the affinity update happens right before all
996 * cpus rendevouz in stop machine, there is no way that the
997 * interrupt can be blocked on the target cpu because all cpus
998 * loops first with interrupts enabled in stop machine, so the
999 * old vector is not yet cleaned up when the interrupt fires.
1000 *
1001 * So the only way to run into this issue is if the delivery
1002 * of the interrupt on the apic/system bus would be delayed
1003 * beyond the point where the target cpu disables interrupts
1004 * in stop machine. I doubt that it can happen, but at least
1005 * there is a theroretical chance. Virtualization might be
1006 * able to expose this, but AFAICT the IOAPIC emulation is not
1007 * as stupid as the real hardware.
1008 *
1009 * Anyway, there is nothing we can do about that at this point
1010 * w/o refactoring the whole fixup_irq() business completely.
1011 * We print at least the irq number and the old vector number,
1012 * so we have the necessary information when a problem in that
1013 * area arises.
1014 */
1015 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1016 irqd->irq, vector);
1017 }
1018 free_moved_vector(apicd);
1019 unlock:
1020 raw_spin_unlock(&vector_lock);
1021 }
1022
1023 #ifdef CONFIG_HOTPLUG_CPU
1024 /*
1025 * Note, this is not accurate accounting, but at least good enough to
1026 * prevent that the actual interrupt move will run out of vectors.
1027 */
lapic_can_unplug_cpu(void)1028 int lapic_can_unplug_cpu(void)
1029 {
1030 unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1031 int ret = 0;
1032
1033 raw_spin_lock(&vector_lock);
1034 tomove = irq_matrix_allocated(vector_matrix);
1035 avl = irq_matrix_available(vector_matrix, true);
1036 if (avl < tomove) {
1037 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1038 cpu, tomove, avl);
1039 ret = -ENOSPC;
1040 goto out;
1041 }
1042 rsvd = irq_matrix_reserved(vector_matrix);
1043 if (avl < rsvd) {
1044 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1045 rsvd, avl);
1046 }
1047 out:
1048 raw_spin_unlock(&vector_lock);
1049 return ret;
1050 }
1051 #endif /* HOTPLUG_CPU */
1052 #endif /* SMP */
1053
print_APIC_field(int base)1054 static void __init print_APIC_field(int base)
1055 {
1056 int i;
1057
1058 printk(KERN_DEBUG);
1059
1060 for (i = 0; i < 8; i++)
1061 pr_cont("%08x", apic_read(base + i*0x10));
1062
1063 pr_cont("\n");
1064 }
1065
print_local_APIC(void * dummy)1066 static void __init print_local_APIC(void *dummy)
1067 {
1068 unsigned int i, v, ver, maxlvt;
1069 u64 icr;
1070
1071 pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1072 smp_processor_id(), hard_smp_processor_id());
1073 v = apic_read(APIC_ID);
1074 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id());
1075 v = apic_read(APIC_LVR);
1076 pr_info("... APIC VERSION: %08x\n", v);
1077 ver = GET_APIC_VERSION(v);
1078 maxlvt = lapic_get_maxlvt();
1079
1080 v = apic_read(APIC_TASKPRI);
1081 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1082
1083 /* !82489DX */
1084 if (APIC_INTEGRATED(ver)) {
1085 if (!APIC_XAPIC(ver)) {
1086 v = apic_read(APIC_ARBPRI);
1087 pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1088 v, v & APIC_ARBPRI_MASK);
1089 }
1090 v = apic_read(APIC_PROCPRI);
1091 pr_debug("... APIC PROCPRI: %08x\n", v);
1092 }
1093
1094 /*
1095 * Remote read supported only in the 82489DX and local APIC for
1096 * Pentium processors.
1097 */
1098 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1099 v = apic_read(APIC_RRR);
1100 pr_debug("... APIC RRR: %08x\n", v);
1101 }
1102
1103 v = apic_read(APIC_LDR);
1104 pr_debug("... APIC LDR: %08x\n", v);
1105 if (!x2apic_enabled()) {
1106 v = apic_read(APIC_DFR);
1107 pr_debug("... APIC DFR: %08x\n", v);
1108 }
1109 v = apic_read(APIC_SPIV);
1110 pr_debug("... APIC SPIV: %08x\n", v);
1111
1112 pr_debug("... APIC ISR field:\n");
1113 print_APIC_field(APIC_ISR);
1114 pr_debug("... APIC TMR field:\n");
1115 print_APIC_field(APIC_TMR);
1116 pr_debug("... APIC IRR field:\n");
1117 print_APIC_field(APIC_IRR);
1118
1119 /* !82489DX */
1120 if (APIC_INTEGRATED(ver)) {
1121 /* Due to the Pentium erratum 3AP. */
1122 if (maxlvt > 3)
1123 apic_write(APIC_ESR, 0);
1124
1125 v = apic_read(APIC_ESR);
1126 pr_debug("... APIC ESR: %08x\n", v);
1127 }
1128
1129 icr = apic_icr_read();
1130 pr_debug("... APIC ICR: %08x\n", (u32)icr);
1131 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1132
1133 v = apic_read(APIC_LVTT);
1134 pr_debug("... APIC LVTT: %08x\n", v);
1135
1136 if (maxlvt > 3) {
1137 /* PC is LVT#4. */
1138 v = apic_read(APIC_LVTPC);
1139 pr_debug("... APIC LVTPC: %08x\n", v);
1140 }
1141 v = apic_read(APIC_LVT0);
1142 pr_debug("... APIC LVT0: %08x\n", v);
1143 v = apic_read(APIC_LVT1);
1144 pr_debug("... APIC LVT1: %08x\n", v);
1145
1146 if (maxlvt > 2) {
1147 /* ERR is LVT#3. */
1148 v = apic_read(APIC_LVTERR);
1149 pr_debug("... APIC LVTERR: %08x\n", v);
1150 }
1151
1152 v = apic_read(APIC_TMICT);
1153 pr_debug("... APIC TMICT: %08x\n", v);
1154 v = apic_read(APIC_TMCCT);
1155 pr_debug("... APIC TMCCT: %08x\n", v);
1156 v = apic_read(APIC_TDCR);
1157 pr_debug("... APIC TDCR: %08x\n", v);
1158
1159 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1160 v = apic_read(APIC_EFEAT);
1161 maxlvt = (v >> 16) & 0xff;
1162 pr_debug("... APIC EFEAT: %08x\n", v);
1163 v = apic_read(APIC_ECTRL);
1164 pr_debug("... APIC ECTRL: %08x\n", v);
1165 for (i = 0; i < maxlvt; i++) {
1166 v = apic_read(APIC_EILVTn(i));
1167 pr_debug("... APIC EILVT%d: %08x\n", i, v);
1168 }
1169 }
1170 pr_cont("\n");
1171 }
1172
print_local_APICs(int maxcpu)1173 static void __init print_local_APICs(int maxcpu)
1174 {
1175 int cpu;
1176
1177 if (!maxcpu)
1178 return;
1179
1180 preempt_disable();
1181 for_each_online_cpu(cpu) {
1182 if (cpu >= maxcpu)
1183 break;
1184 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1185 }
1186 preempt_enable();
1187 }
1188
print_PIC(void)1189 static void __init print_PIC(void)
1190 {
1191 unsigned int v;
1192 unsigned long flags;
1193
1194 if (!nr_legacy_irqs())
1195 return;
1196
1197 pr_debug("\nprinting PIC contents\n");
1198
1199 raw_spin_lock_irqsave(&i8259A_lock, flags);
1200
1201 v = inb(0xa1) << 8 | inb(0x21);
1202 pr_debug("... PIC IMR: %04x\n", v);
1203
1204 v = inb(0xa0) << 8 | inb(0x20);
1205 pr_debug("... PIC IRR: %04x\n", v);
1206
1207 outb(0x0b, 0xa0);
1208 outb(0x0b, 0x20);
1209 v = inb(0xa0) << 8 | inb(0x20);
1210 outb(0x0a, 0xa0);
1211 outb(0x0a, 0x20);
1212
1213 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1214
1215 pr_debug("... PIC ISR: %04x\n", v);
1216
1217 v = inb(0x4d1) << 8 | inb(0x4d0);
1218 pr_debug("... PIC ELCR: %04x\n", v);
1219 }
1220
1221 static int show_lapic __initdata = 1;
setup_show_lapic(char * arg)1222 static __init int setup_show_lapic(char *arg)
1223 {
1224 int num = -1;
1225
1226 if (strcmp(arg, "all") == 0) {
1227 show_lapic = CONFIG_NR_CPUS;
1228 } else {
1229 get_option(&arg, &num);
1230 if (num >= 0)
1231 show_lapic = num;
1232 }
1233
1234 return 1;
1235 }
1236 __setup("show_lapic=", setup_show_lapic);
1237
print_ICs(void)1238 static int __init print_ICs(void)
1239 {
1240 if (apic_verbosity == APIC_QUIET)
1241 return 0;
1242
1243 print_PIC();
1244
1245 /* don't print out if apic is not there */
1246 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1247 return 0;
1248
1249 print_local_APICs(show_lapic);
1250 print_IO_APICs();
1251
1252 return 0;
1253 }
1254
1255 late_initcall(print_ICs);
1256