1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22
23 #include "internals.h"
24
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28
setup_forced_irqthreads(char * arg)29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 force_irqthreads = true;
32 return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
__synchronize_hardirq(struct irq_desc * desc)37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 bool inprogress;
40
41 do {
42 unsigned long flags;
43
44 /*
45 * Wait until we're out of the critical section. This might
46 * give the wrong answer due to the lack of memory barriers.
47 */
48 while (irqd_irq_inprogress(&desc->irq_data))
49 cpu_relax();
50
51 /* Ok, that indicated we're done: double-check carefully. */
52 raw_spin_lock_irqsave(&desc->lock, flags);
53 inprogress = irqd_irq_inprogress(&desc->irq_data);
54 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56 /* Oops, that failed? */
57 } while (inprogress);
58 }
59
60 /**
61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62 * @irq: interrupt number to wait for
63 *
64 * This function waits for any pending hard IRQ handlers for this
65 * interrupt to complete before returning. If you use this
66 * function while holding a resource the IRQ handler may need you
67 * will deadlock. It does not take associated threaded handlers
68 * into account.
69 *
70 * Do not use this for shutdown scenarios where you must be sure
71 * that all parts (hardirq and threaded handler) have completed.
72 *
73 * Returns: false if a threaded handler is active.
74 *
75 * This function may be called - with care - from IRQ context.
76 */
synchronize_hardirq(unsigned int irq)77 bool synchronize_hardirq(unsigned int irq)
78 {
79 struct irq_desc *desc = irq_to_desc(irq);
80
81 if (desc) {
82 __synchronize_hardirq(desc);
83 return !atomic_read(&desc->threads_active);
84 }
85
86 return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92 * @irq: interrupt number to wait for
93 *
94 * This function waits for any pending IRQ handlers for this interrupt
95 * to complete before returning. If you use this function while
96 * holding a resource the IRQ handler may need you will deadlock.
97 *
98 * This function may be called - with care - from IRQ context.
99 */
synchronize_irq(unsigned int irq)100 void synchronize_irq(unsigned int irq)
101 {
102 struct irq_desc *desc = irq_to_desc(irq);
103
104 if (desc) {
105 __synchronize_hardirq(desc);
106 /*
107 * We made sure that no hardirq handler is
108 * running. Now verify that no threaded handlers are
109 * active.
110 */
111 wait_event(desc->wait_for_threads,
112 !atomic_read(&desc->threads_active));
113 }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
__irq_can_set_affinity(struct irq_desc * desc)120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 return false;
125 return true;
126 }
127
128 /**
129 * irq_can_set_affinity - Check if the affinity of a given irq can be set
130 * @irq: Interrupt to check
131 *
132 */
irq_can_set_affinity(unsigned int irq)133 int irq_can_set_affinity(unsigned int irq)
134 {
135 return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140 * @irq: Interrupt to check
141 *
142 * Like irq_can_set_affinity() above, but additionally checks for the
143 * AFFINITY_MANAGED flag.
144 */
irq_can_set_affinity_usr(unsigned int irq)145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 struct irq_desc *desc = irq_to_desc(irq);
148
149 return __irq_can_set_affinity(desc) &&
150 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154 * irq_set_thread_affinity - Notify irq threads to adjust affinity
155 * @desc: irq descriptor which has affitnity changed
156 *
157 * We just set IRQTF_AFFINITY and delegate the affinity setting
158 * to the interrupt thread itself. We can not call
159 * set_cpus_allowed_ptr() here as we hold desc->lock and this
160 * code can be called from hard interrupt context.
161 */
irq_set_thread_affinity(struct irq_desc * desc)162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 struct irqaction *action;
165
166 for_each_action_of_desc(desc, action)
167 if (action->thread)
168 set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
irq_validate_effective_affinity(struct irq_data * data)171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 struct irq_chip *chip = irq_data_get_irq_chip(data);
176
177 if (!cpumask_empty(m))
178 return;
179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 chip->name, data->irq);
181 #endif
182 }
183
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 bool force)
186 {
187 struct irq_desc *desc = irq_data_to_desc(data);
188 struct irq_chip *chip = irq_data_get_irq_chip(data);
189 int ret;
190
191 if (!chip || !chip->irq_set_affinity)
192 return -EINVAL;
193
194 ret = chip->irq_set_affinity(data, mask, force);
195 switch (ret) {
196 case IRQ_SET_MASK_OK:
197 case IRQ_SET_MASK_OK_DONE:
198 cpumask_copy(desc->irq_common_data.affinity, mask);
199 case IRQ_SET_MASK_OK_NOCOPY:
200 irq_validate_effective_affinity(data);
201 irq_set_thread_affinity(desc);
202 ret = 0;
203 }
204
205 return ret;
206 }
207
208 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)209 static inline int irq_set_affinity_pending(struct irq_data *data,
210 const struct cpumask *dest)
211 {
212 struct irq_desc *desc = irq_data_to_desc(data);
213
214 irqd_set_move_pending(data);
215 irq_copy_pending(desc, dest);
216 return 0;
217 }
218 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)219 static inline int irq_set_affinity_pending(struct irq_data *data,
220 const struct cpumask *dest)
221 {
222 return -EBUSY;
223 }
224 #endif
225
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)226 static int irq_try_set_affinity(struct irq_data *data,
227 const struct cpumask *dest, bool force)
228 {
229 int ret = irq_do_set_affinity(data, dest, force);
230
231 /*
232 * In case that the underlying vector management is busy and the
233 * architecture supports the generic pending mechanism then utilize
234 * this to avoid returning an error to user space.
235 */
236 if (ret == -EBUSY && !force)
237 ret = irq_set_affinity_pending(data, dest);
238 return ret;
239 }
240
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
242 bool force)
243 {
244 struct irq_chip *chip = irq_data_get_irq_chip(data);
245 struct irq_desc *desc = irq_data_to_desc(data);
246 int ret = 0;
247
248 if (!chip || !chip->irq_set_affinity)
249 return -EINVAL;
250
251 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
252 ret = irq_try_set_affinity(data, mask, force);
253 } else {
254 irqd_set_move_pending(data);
255 irq_copy_pending(desc, mask);
256 }
257
258 if (desc->affinity_notify) {
259 kref_get(&desc->affinity_notify->kref);
260 schedule_work(&desc->affinity_notify->work);
261 }
262 irqd_set(data, IRQD_AFFINITY_SET);
263
264 return ret;
265 }
266
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
268 {
269 struct irq_desc *desc = irq_to_desc(irq);
270 unsigned long flags;
271 int ret;
272
273 if (!desc)
274 return -EINVAL;
275
276 raw_spin_lock_irqsave(&desc->lock, flags);
277 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
278 raw_spin_unlock_irqrestore(&desc->lock, flags);
279 return ret;
280 }
281
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
283 {
284 unsigned long flags;
285 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
286
287 if (!desc)
288 return -EINVAL;
289 desc->affinity_hint = m;
290 irq_put_desc_unlock(desc, flags);
291 /* set the initial affinity to prevent every interrupt being on CPU0 */
292 if (m)
293 __irq_set_affinity(irq, m, false);
294 return 0;
295 }
296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
297
irq_affinity_notify(struct work_struct * work)298 static void irq_affinity_notify(struct work_struct *work)
299 {
300 struct irq_affinity_notify *notify =
301 container_of(work, struct irq_affinity_notify, work);
302 struct irq_desc *desc = irq_to_desc(notify->irq);
303 cpumask_var_t cpumask;
304 unsigned long flags;
305
306 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
307 goto out;
308
309 raw_spin_lock_irqsave(&desc->lock, flags);
310 if (irq_move_pending(&desc->irq_data))
311 irq_get_pending(cpumask, desc);
312 else
313 cpumask_copy(cpumask, desc->irq_common_data.affinity);
314 raw_spin_unlock_irqrestore(&desc->lock, flags);
315
316 notify->notify(notify, cpumask);
317
318 free_cpumask_var(cpumask);
319 out:
320 kref_put(¬ify->kref, notify->release);
321 }
322
323 /**
324 * irq_set_affinity_notifier - control notification of IRQ affinity changes
325 * @irq: Interrupt for which to enable/disable notification
326 * @notify: Context for notification, or %NULL to disable
327 * notification. Function pointers must be initialised;
328 * the other fields will be initialised by this function.
329 *
330 * Must be called in process context. Notification may only be enabled
331 * after the IRQ is allocated and must be disabled before the IRQ is
332 * freed using free_irq().
333 */
334 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
336 {
337 struct irq_desc *desc = irq_to_desc(irq);
338 struct irq_affinity_notify *old_notify;
339 unsigned long flags;
340
341 /* The release function is promised process context */
342 might_sleep();
343
344 if (!desc)
345 return -EINVAL;
346
347 /* Complete initialisation of *notify */
348 if (notify) {
349 notify->irq = irq;
350 kref_init(¬ify->kref);
351 INIT_WORK(¬ify->work, irq_affinity_notify);
352 }
353
354 raw_spin_lock_irqsave(&desc->lock, flags);
355 old_notify = desc->affinity_notify;
356 desc->affinity_notify = notify;
357 raw_spin_unlock_irqrestore(&desc->lock, flags);
358
359 if (old_notify)
360 kref_put(&old_notify->kref, old_notify->release);
361
362 return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
365
366 #ifndef CONFIG_AUTO_IRQ_AFFINITY
367 /*
368 * Generic version of the affinity autoselector.
369 */
irq_setup_affinity(struct irq_desc * desc)370 int irq_setup_affinity(struct irq_desc *desc)
371 {
372 struct cpumask *set = irq_default_affinity;
373 int ret, node = irq_desc_get_node(desc);
374 static DEFINE_RAW_SPINLOCK(mask_lock);
375 static struct cpumask mask;
376
377 /* Excludes PER_CPU and NO_BALANCE interrupts */
378 if (!__irq_can_set_affinity(desc))
379 return 0;
380
381 raw_spin_lock(&mask_lock);
382 /*
383 * Preserve the managed affinity setting and a userspace affinity
384 * setup, but make sure that one of the targets is online.
385 */
386 if (irqd_affinity_is_managed(&desc->irq_data) ||
387 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
388 if (cpumask_intersects(desc->irq_common_data.affinity,
389 cpu_online_mask))
390 set = desc->irq_common_data.affinity;
391 else
392 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
393 }
394
395 cpumask_and(&mask, cpu_online_mask, set);
396 if (node != NUMA_NO_NODE) {
397 const struct cpumask *nodemask = cpumask_of_node(node);
398
399 /* make sure at least one of the cpus in nodemask is online */
400 if (cpumask_intersects(&mask, nodemask))
401 cpumask_and(&mask, &mask, nodemask);
402 }
403 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
404 raw_spin_unlock(&mask_lock);
405 return ret;
406 }
407 #else
408 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)409 int irq_setup_affinity(struct irq_desc *desc)
410 {
411 return irq_select_affinity(irq_desc_get_irq(desc));
412 }
413 #endif
414
415 /*
416 * Called when a bogus affinity is set via /proc/irq
417 */
irq_select_affinity_usr(unsigned int irq)418 int irq_select_affinity_usr(unsigned int irq)
419 {
420 struct irq_desc *desc = irq_to_desc(irq);
421 unsigned long flags;
422 int ret;
423
424 raw_spin_lock_irqsave(&desc->lock, flags);
425 ret = irq_setup_affinity(desc);
426 raw_spin_unlock_irqrestore(&desc->lock, flags);
427 return ret;
428 }
429 #endif
430
431 /**
432 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
433 * @irq: interrupt number to set affinity
434 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
435 * specific data for percpu_devid interrupts
436 *
437 * This function uses the vCPU specific data to set the vCPU
438 * affinity for an irq. The vCPU specific data is passed from
439 * outside, such as KVM. One example code path is as below:
440 * KVM -> IOMMU -> irq_set_vcpu_affinity().
441 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)442 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
443 {
444 unsigned long flags;
445 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
446 struct irq_data *data;
447 struct irq_chip *chip;
448 int ret = -ENOSYS;
449
450 if (!desc)
451 return -EINVAL;
452
453 data = irq_desc_get_irq_data(desc);
454 do {
455 chip = irq_data_get_irq_chip(data);
456 if (chip && chip->irq_set_vcpu_affinity)
457 break;
458 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
459 data = data->parent_data;
460 #else
461 data = NULL;
462 #endif
463 } while (data);
464
465 if (data)
466 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
467 irq_put_desc_unlock(desc, flags);
468
469 return ret;
470 }
471 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
472
__disable_irq(struct irq_desc * desc)473 void __disable_irq(struct irq_desc *desc)
474 {
475 if (!desc->depth++)
476 irq_disable(desc);
477 }
478
__disable_irq_nosync(unsigned int irq)479 static int __disable_irq_nosync(unsigned int irq)
480 {
481 unsigned long flags;
482 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
483
484 if (!desc)
485 return -EINVAL;
486 __disable_irq(desc);
487 irq_put_desc_busunlock(desc, flags);
488 return 0;
489 }
490
491 /**
492 * disable_irq_nosync - disable an irq without waiting
493 * @irq: Interrupt to disable
494 *
495 * Disable the selected interrupt line. Disables and Enables are
496 * nested.
497 * Unlike disable_irq(), this function does not ensure existing
498 * instances of the IRQ handler have completed before returning.
499 *
500 * This function may be called from IRQ context.
501 */
disable_irq_nosync(unsigned int irq)502 void disable_irq_nosync(unsigned int irq)
503 {
504 __disable_irq_nosync(irq);
505 }
506 EXPORT_SYMBOL(disable_irq_nosync);
507
508 /**
509 * disable_irq - disable an irq and wait for completion
510 * @irq: Interrupt to disable
511 *
512 * Disable the selected interrupt line. Enables and Disables are
513 * nested.
514 * This function waits for any pending IRQ handlers for this interrupt
515 * to complete before returning. If you use this function while
516 * holding a resource the IRQ handler may need you will deadlock.
517 *
518 * This function may be called - with care - from IRQ context.
519 */
disable_irq(unsigned int irq)520 void disable_irq(unsigned int irq)
521 {
522 if (!__disable_irq_nosync(irq))
523 synchronize_irq(irq);
524 }
525 EXPORT_SYMBOL(disable_irq);
526
527 /**
528 * disable_hardirq - disables an irq and waits for hardirq completion
529 * @irq: Interrupt to disable
530 *
531 * Disable the selected interrupt line. Enables and Disables are
532 * nested.
533 * This function waits for any pending hard IRQ handlers for this
534 * interrupt to complete before returning. If you use this function while
535 * holding a resource the hard IRQ handler may need you will deadlock.
536 *
537 * When used to optimistically disable an interrupt from atomic context
538 * the return value must be checked.
539 *
540 * Returns: false if a threaded handler is active.
541 *
542 * This function may be called - with care - from IRQ context.
543 */
disable_hardirq(unsigned int irq)544 bool disable_hardirq(unsigned int irq)
545 {
546 if (!__disable_irq_nosync(irq))
547 return synchronize_hardirq(irq);
548
549 return false;
550 }
551 EXPORT_SYMBOL_GPL(disable_hardirq);
552
__enable_irq(struct irq_desc * desc)553 void __enable_irq(struct irq_desc *desc)
554 {
555 switch (desc->depth) {
556 case 0:
557 err_out:
558 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
559 irq_desc_get_irq(desc));
560 break;
561 case 1: {
562 if (desc->istate & IRQS_SUSPENDED)
563 goto err_out;
564 /* Prevent probing on this irq: */
565 irq_settings_set_noprobe(desc);
566 /*
567 * Call irq_startup() not irq_enable() here because the
568 * interrupt might be marked NOAUTOEN. So irq_startup()
569 * needs to be invoked when it gets enabled the first
570 * time. If it was already started up, then irq_startup()
571 * will invoke irq_enable() under the hood.
572 */
573 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
574 break;
575 }
576 default:
577 desc->depth--;
578 }
579 }
580
581 /**
582 * enable_irq - enable handling of an irq
583 * @irq: Interrupt to enable
584 *
585 * Undoes the effect of one call to disable_irq(). If this
586 * matches the last disable, processing of interrupts on this
587 * IRQ line is re-enabled.
588 *
589 * This function may be called from IRQ context only when
590 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
591 */
enable_irq(unsigned int irq)592 void enable_irq(unsigned int irq)
593 {
594 unsigned long flags;
595 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
596
597 if (!desc)
598 return;
599 if (WARN(!desc->irq_data.chip,
600 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
601 goto out;
602
603 __enable_irq(desc);
604 out:
605 irq_put_desc_busunlock(desc, flags);
606 }
607 EXPORT_SYMBOL(enable_irq);
608
set_irq_wake_real(unsigned int irq,unsigned int on)609 static int set_irq_wake_real(unsigned int irq, unsigned int on)
610 {
611 struct irq_desc *desc = irq_to_desc(irq);
612 int ret = -ENXIO;
613
614 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
615 return 0;
616
617 if (desc->irq_data.chip->irq_set_wake)
618 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
619
620 return ret;
621 }
622
623 /**
624 * irq_set_irq_wake - control irq power management wakeup
625 * @irq: interrupt to control
626 * @on: enable/disable power management wakeup
627 *
628 * Enable/disable power management wakeup mode, which is
629 * disabled by default. Enables and disables must match,
630 * just as they match for non-wakeup mode support.
631 *
632 * Wakeup mode lets this IRQ wake the system from sleep
633 * states like "suspend to RAM".
634 */
irq_set_irq_wake(unsigned int irq,unsigned int on)635 int irq_set_irq_wake(unsigned int irq, unsigned int on)
636 {
637 unsigned long flags;
638 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
639 int ret = 0;
640
641 if (!desc)
642 return -EINVAL;
643
644 /* wakeup-capable irqs can be shared between drivers that
645 * don't need to have the same sleep mode behaviors.
646 */
647 if (on) {
648 if (desc->wake_depth++ == 0) {
649 ret = set_irq_wake_real(irq, on);
650 if (ret)
651 desc->wake_depth = 0;
652 else
653 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
654 }
655 } else {
656 if (desc->wake_depth == 0) {
657 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
658 } else if (--desc->wake_depth == 0) {
659 ret = set_irq_wake_real(irq, on);
660 if (ret)
661 desc->wake_depth = 1;
662 else
663 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
664 }
665 }
666 irq_put_desc_busunlock(desc, flags);
667 return ret;
668 }
669 EXPORT_SYMBOL(irq_set_irq_wake);
670
671 /*
672 * Internal function that tells the architecture code whether a
673 * particular irq has been exclusively allocated or is available
674 * for driver use.
675 */
can_request_irq(unsigned int irq,unsigned long irqflags)676 int can_request_irq(unsigned int irq, unsigned long irqflags)
677 {
678 unsigned long flags;
679 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
680 int canrequest = 0;
681
682 if (!desc)
683 return 0;
684
685 if (irq_settings_can_request(desc)) {
686 if (!desc->action ||
687 irqflags & desc->action->flags & IRQF_SHARED)
688 canrequest = 1;
689 }
690 irq_put_desc_unlock(desc, flags);
691 return canrequest;
692 }
693
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)694 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
695 {
696 struct irq_chip *chip = desc->irq_data.chip;
697 int ret, unmask = 0;
698
699 if (!chip || !chip->irq_set_type) {
700 /*
701 * IRQF_TRIGGER_* but the PIC does not support multiple
702 * flow-types?
703 */
704 pr_debug("No set_type function for IRQ %d (%s)\n",
705 irq_desc_get_irq(desc),
706 chip ? (chip->name ? : "unknown") : "unknown");
707 return 0;
708 }
709
710 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
711 if (!irqd_irq_masked(&desc->irq_data))
712 mask_irq(desc);
713 if (!irqd_irq_disabled(&desc->irq_data))
714 unmask = 1;
715 }
716
717 /* Mask all flags except trigger mode */
718 flags &= IRQ_TYPE_SENSE_MASK;
719 ret = chip->irq_set_type(&desc->irq_data, flags);
720
721 switch (ret) {
722 case IRQ_SET_MASK_OK:
723 case IRQ_SET_MASK_OK_DONE:
724 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
725 irqd_set(&desc->irq_data, flags);
726
727 case IRQ_SET_MASK_OK_NOCOPY:
728 flags = irqd_get_trigger_type(&desc->irq_data);
729 irq_settings_set_trigger_mask(desc, flags);
730 irqd_clear(&desc->irq_data, IRQD_LEVEL);
731 irq_settings_clr_level(desc);
732 if (flags & IRQ_TYPE_LEVEL_MASK) {
733 irq_settings_set_level(desc);
734 irqd_set(&desc->irq_data, IRQD_LEVEL);
735 }
736
737 ret = 0;
738 break;
739 default:
740 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
741 flags, irq_desc_get_irq(desc), chip->irq_set_type);
742 }
743 if (unmask)
744 unmask_irq(desc);
745 return ret;
746 }
747
748 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)749 int irq_set_parent(int irq, int parent_irq)
750 {
751 unsigned long flags;
752 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
753
754 if (!desc)
755 return -EINVAL;
756
757 desc->parent_irq = parent_irq;
758
759 irq_put_desc_unlock(desc, flags);
760 return 0;
761 }
762 EXPORT_SYMBOL_GPL(irq_set_parent);
763 #endif
764
765 /*
766 * Default primary interrupt handler for threaded interrupts. Is
767 * assigned as primary handler when request_threaded_irq is called
768 * with handler == NULL. Useful for oneshot interrupts.
769 */
irq_default_primary_handler(int irq,void * dev_id)770 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
771 {
772 return IRQ_WAKE_THREAD;
773 }
774
775 /*
776 * Primary handler for nested threaded interrupts. Should never be
777 * called.
778 */
irq_nested_primary_handler(int irq,void * dev_id)779 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
780 {
781 WARN(1, "Primary handler called for nested irq %d\n", irq);
782 return IRQ_NONE;
783 }
784
irq_forced_secondary_handler(int irq,void * dev_id)785 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
786 {
787 WARN(1, "Secondary action handler called for irq %d\n", irq);
788 return IRQ_NONE;
789 }
790
irq_wait_for_interrupt(struct irqaction * action)791 static int irq_wait_for_interrupt(struct irqaction *action)
792 {
793 for (;;) {
794 set_current_state(TASK_INTERRUPTIBLE);
795
796 if (kthread_should_stop()) {
797 /* may need to run one last time */
798 if (test_and_clear_bit(IRQTF_RUNTHREAD,
799 &action->thread_flags)) {
800 __set_current_state(TASK_RUNNING);
801 return 0;
802 }
803 __set_current_state(TASK_RUNNING);
804 return -1;
805 }
806
807 if (test_and_clear_bit(IRQTF_RUNTHREAD,
808 &action->thread_flags)) {
809 __set_current_state(TASK_RUNNING);
810 return 0;
811 }
812 schedule();
813 }
814 }
815
816 /*
817 * Oneshot interrupts keep the irq line masked until the threaded
818 * handler finished. unmask if the interrupt has not been disabled and
819 * is marked MASKED.
820 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)821 static void irq_finalize_oneshot(struct irq_desc *desc,
822 struct irqaction *action)
823 {
824 if (!(desc->istate & IRQS_ONESHOT) ||
825 action->handler == irq_forced_secondary_handler)
826 return;
827 again:
828 chip_bus_lock(desc);
829 raw_spin_lock_irq(&desc->lock);
830
831 /*
832 * Implausible though it may be we need to protect us against
833 * the following scenario:
834 *
835 * The thread is faster done than the hard interrupt handler
836 * on the other CPU. If we unmask the irq line then the
837 * interrupt can come in again and masks the line, leaves due
838 * to IRQS_INPROGRESS and the irq line is masked forever.
839 *
840 * This also serializes the state of shared oneshot handlers
841 * versus "desc->threads_onehsot |= action->thread_mask;" in
842 * irq_wake_thread(). See the comment there which explains the
843 * serialization.
844 */
845 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
846 raw_spin_unlock_irq(&desc->lock);
847 chip_bus_sync_unlock(desc);
848 cpu_relax();
849 goto again;
850 }
851
852 /*
853 * Now check again, whether the thread should run. Otherwise
854 * we would clear the threads_oneshot bit of this thread which
855 * was just set.
856 */
857 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
858 goto out_unlock;
859
860 desc->threads_oneshot &= ~action->thread_mask;
861
862 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
863 irqd_irq_masked(&desc->irq_data))
864 unmask_threaded_irq(desc);
865
866 out_unlock:
867 raw_spin_unlock_irq(&desc->lock);
868 chip_bus_sync_unlock(desc);
869 }
870
871 #ifdef CONFIG_SMP
872 /*
873 * Check whether we need to change the affinity of the interrupt thread.
874 */
875 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)876 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
877 {
878 cpumask_var_t mask;
879 bool valid = true;
880
881 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
882 return;
883
884 /*
885 * In case we are out of memory we set IRQTF_AFFINITY again and
886 * try again next time
887 */
888 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
889 set_bit(IRQTF_AFFINITY, &action->thread_flags);
890 return;
891 }
892
893 raw_spin_lock_irq(&desc->lock);
894 /*
895 * This code is triggered unconditionally. Check the affinity
896 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
897 */
898 if (cpumask_available(desc->irq_common_data.affinity)) {
899 const struct cpumask *m;
900
901 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
902 cpumask_copy(mask, m);
903 } else {
904 valid = false;
905 }
906 raw_spin_unlock_irq(&desc->lock);
907
908 if (valid)
909 set_cpus_allowed_ptr(current, mask);
910 free_cpumask_var(mask);
911 }
912 #else
913 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)914 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
915 #endif
916
917 /*
918 * Interrupts which are not explicitely requested as threaded
919 * interrupts rely on the implicit bh/preempt disable of the hard irq
920 * context. So we need to disable bh here to avoid deadlocks and other
921 * side effects.
922 */
923 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)924 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
925 {
926 irqreturn_t ret;
927
928 local_bh_disable();
929 ret = action->thread_fn(action->irq, action->dev_id);
930 irq_finalize_oneshot(desc, action);
931 local_bh_enable();
932 return ret;
933 }
934
935 /*
936 * Interrupts explicitly requested as threaded interrupts want to be
937 * preemtible - many of them need to sleep and wait for slow busses to
938 * complete.
939 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)940 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
941 struct irqaction *action)
942 {
943 irqreturn_t ret;
944
945 ret = action->thread_fn(action->irq, action->dev_id);
946 irq_finalize_oneshot(desc, action);
947 return ret;
948 }
949
wake_threads_waitq(struct irq_desc * desc)950 static void wake_threads_waitq(struct irq_desc *desc)
951 {
952 if (atomic_dec_and_test(&desc->threads_active))
953 wake_up(&desc->wait_for_threads);
954 }
955
irq_thread_dtor(struct callback_head * unused)956 static void irq_thread_dtor(struct callback_head *unused)
957 {
958 struct task_struct *tsk = current;
959 struct irq_desc *desc;
960 struct irqaction *action;
961
962 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
963 return;
964
965 action = kthread_data(tsk);
966
967 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
968 tsk->comm, tsk->pid, action->irq);
969
970
971 desc = irq_to_desc(action->irq);
972 /*
973 * If IRQTF_RUNTHREAD is set, we need to decrement
974 * desc->threads_active and wake possible waiters.
975 */
976 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
977 wake_threads_waitq(desc);
978
979 /* Prevent a stale desc->threads_oneshot */
980 irq_finalize_oneshot(desc, action);
981 }
982
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)983 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
984 {
985 struct irqaction *secondary = action->secondary;
986
987 if (WARN_ON_ONCE(!secondary))
988 return;
989
990 raw_spin_lock_irq(&desc->lock);
991 __irq_wake_thread(desc, secondary);
992 raw_spin_unlock_irq(&desc->lock);
993 }
994
995 /*
996 * Interrupt handler thread
997 */
irq_thread(void * data)998 static int irq_thread(void *data)
999 {
1000 struct callback_head on_exit_work;
1001 struct irqaction *action = data;
1002 struct irq_desc *desc = irq_to_desc(action->irq);
1003 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1004 struct irqaction *action);
1005
1006 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1007 &action->thread_flags))
1008 handler_fn = irq_forced_thread_fn;
1009 else
1010 handler_fn = irq_thread_fn;
1011
1012 init_task_work(&on_exit_work, irq_thread_dtor);
1013 task_work_add(current, &on_exit_work, false);
1014
1015 irq_thread_check_affinity(desc, action);
1016
1017 while (!irq_wait_for_interrupt(action)) {
1018 irqreturn_t action_ret;
1019
1020 irq_thread_check_affinity(desc, action);
1021
1022 action_ret = handler_fn(desc, action);
1023 if (action_ret == IRQ_HANDLED)
1024 atomic_inc(&desc->threads_handled);
1025 if (action_ret == IRQ_WAKE_THREAD)
1026 irq_wake_secondary(desc, action);
1027
1028 wake_threads_waitq(desc);
1029 }
1030
1031 /*
1032 * This is the regular exit path. __free_irq() is stopping the
1033 * thread via kthread_stop() after calling
1034 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1035 * oneshot mask bit can be set.
1036 */
1037 task_work_cancel(current, irq_thread_dtor);
1038 return 0;
1039 }
1040
1041 /**
1042 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1043 * @irq: Interrupt line
1044 * @dev_id: Device identity for which the thread should be woken
1045 *
1046 */
irq_wake_thread(unsigned int irq,void * dev_id)1047 void irq_wake_thread(unsigned int irq, void *dev_id)
1048 {
1049 struct irq_desc *desc = irq_to_desc(irq);
1050 struct irqaction *action;
1051 unsigned long flags;
1052
1053 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1054 return;
1055
1056 raw_spin_lock_irqsave(&desc->lock, flags);
1057 for_each_action_of_desc(desc, action) {
1058 if (action->dev_id == dev_id) {
1059 if (action->thread)
1060 __irq_wake_thread(desc, action);
1061 break;
1062 }
1063 }
1064 raw_spin_unlock_irqrestore(&desc->lock, flags);
1065 }
1066 EXPORT_SYMBOL_GPL(irq_wake_thread);
1067
irq_setup_forced_threading(struct irqaction * new)1068 static int irq_setup_forced_threading(struct irqaction *new)
1069 {
1070 if (!force_irqthreads)
1071 return 0;
1072 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1073 return 0;
1074
1075 /*
1076 * No further action required for interrupts which are requested as
1077 * threaded interrupts already
1078 */
1079 if (new->handler == irq_default_primary_handler)
1080 return 0;
1081
1082 new->flags |= IRQF_ONESHOT;
1083
1084 /*
1085 * Handle the case where we have a real primary handler and a
1086 * thread handler. We force thread them as well by creating a
1087 * secondary action.
1088 */
1089 if (new->handler && new->thread_fn) {
1090 /* Allocate the secondary action */
1091 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1092 if (!new->secondary)
1093 return -ENOMEM;
1094 new->secondary->handler = irq_forced_secondary_handler;
1095 new->secondary->thread_fn = new->thread_fn;
1096 new->secondary->dev_id = new->dev_id;
1097 new->secondary->irq = new->irq;
1098 new->secondary->name = new->name;
1099 }
1100 /* Deal with the primary handler */
1101 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1102 new->thread_fn = new->handler;
1103 new->handler = irq_default_primary_handler;
1104 return 0;
1105 }
1106
irq_request_resources(struct irq_desc * desc)1107 static int irq_request_resources(struct irq_desc *desc)
1108 {
1109 struct irq_data *d = &desc->irq_data;
1110 struct irq_chip *c = d->chip;
1111
1112 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1113 }
1114
irq_release_resources(struct irq_desc * desc)1115 static void irq_release_resources(struct irq_desc *desc)
1116 {
1117 struct irq_data *d = &desc->irq_data;
1118 struct irq_chip *c = d->chip;
1119
1120 if (c->irq_release_resources)
1121 c->irq_release_resources(d);
1122 }
1123
1124 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1125 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1126 {
1127 struct task_struct *t;
1128 struct sched_param param = {
1129 .sched_priority = MAX_USER_RT_PRIO/2,
1130 };
1131
1132 if (!secondary) {
1133 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1134 new->name);
1135 } else {
1136 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1137 new->name);
1138 param.sched_priority -= 1;
1139 }
1140
1141 if (IS_ERR(t))
1142 return PTR_ERR(t);
1143
1144 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m);
1145
1146 /*
1147 * We keep the reference to the task struct even if
1148 * the thread dies to avoid that the interrupt code
1149 * references an already freed task_struct.
1150 */
1151 get_task_struct(t);
1152 new->thread = t;
1153 /*
1154 * Tell the thread to set its affinity. This is
1155 * important for shared interrupt handlers as we do
1156 * not invoke setup_affinity() for the secondary
1157 * handlers as everything is already set up. Even for
1158 * interrupts marked with IRQF_NO_BALANCE this is
1159 * correct as we want the thread to move to the cpu(s)
1160 * on which the requesting code placed the interrupt.
1161 */
1162 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1163 return 0;
1164 }
1165
1166 /*
1167 * Internal function to register an irqaction - typically used to
1168 * allocate special interrupts that are part of the architecture.
1169 *
1170 * Locking rules:
1171 *
1172 * desc->request_mutex Provides serialization against a concurrent free_irq()
1173 * chip_bus_lock Provides serialization for slow bus operations
1174 * desc->lock Provides serialization against hard interrupts
1175 *
1176 * chip_bus_lock and desc->lock are sufficient for all other management and
1177 * interrupt related functions. desc->request_mutex solely serializes
1178 * request/free_irq().
1179 */
1180 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1181 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1182 {
1183 struct irqaction *old, **old_ptr;
1184 unsigned long flags, thread_mask = 0;
1185 int ret, nested, shared = 0;
1186
1187 if (!desc)
1188 return -EINVAL;
1189
1190 if (desc->irq_data.chip == &no_irq_chip)
1191 return -ENOSYS;
1192 if (!try_module_get(desc->owner))
1193 return -ENODEV;
1194
1195 new->irq = irq;
1196
1197 /*
1198 * If the trigger type is not specified by the caller,
1199 * then use the default for this interrupt.
1200 */
1201 if (!(new->flags & IRQF_TRIGGER_MASK))
1202 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1203
1204 /*
1205 * Check whether the interrupt nests into another interrupt
1206 * thread.
1207 */
1208 nested = irq_settings_is_nested_thread(desc);
1209 if (nested) {
1210 if (!new->thread_fn) {
1211 ret = -EINVAL;
1212 goto out_mput;
1213 }
1214 /*
1215 * Replace the primary handler which was provided from
1216 * the driver for non nested interrupt handling by the
1217 * dummy function which warns when called.
1218 */
1219 new->handler = irq_nested_primary_handler;
1220 } else {
1221 if (irq_settings_can_thread(desc)) {
1222 ret = irq_setup_forced_threading(new);
1223 if (ret)
1224 goto out_mput;
1225 }
1226 }
1227
1228 /*
1229 * Create a handler thread when a thread function is supplied
1230 * and the interrupt does not nest into another interrupt
1231 * thread.
1232 */
1233 if (new->thread_fn && !nested) {
1234 ret = setup_irq_thread(new, irq, false);
1235 if (ret)
1236 goto out_mput;
1237 if (new->secondary) {
1238 ret = setup_irq_thread(new->secondary, irq, true);
1239 if (ret)
1240 goto out_thread;
1241 }
1242 }
1243
1244 /*
1245 * Drivers are often written to work w/o knowledge about the
1246 * underlying irq chip implementation, so a request for a
1247 * threaded irq without a primary hard irq context handler
1248 * requires the ONESHOT flag to be set. Some irq chips like
1249 * MSI based interrupts are per se one shot safe. Check the
1250 * chip flags, so we can avoid the unmask dance at the end of
1251 * the threaded handler for those.
1252 */
1253 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1254 new->flags &= ~IRQF_ONESHOT;
1255
1256 /*
1257 * Protects against a concurrent __free_irq() call which might wait
1258 * for synchronize_hardirq() to complete without holding the optional
1259 * chip bus lock and desc->lock. Also protects against handing out
1260 * a recycled oneshot thread_mask bit while it's still in use by
1261 * its previous owner.
1262 */
1263 mutex_lock(&desc->request_mutex);
1264
1265 /*
1266 * Acquire bus lock as the irq_request_resources() callback below
1267 * might rely on the serialization or the magic power management
1268 * functions which are abusing the irq_bus_lock() callback,
1269 */
1270 chip_bus_lock(desc);
1271
1272 /* First installed action requests resources. */
1273 if (!desc->action) {
1274 ret = irq_request_resources(desc);
1275 if (ret) {
1276 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1277 new->name, irq, desc->irq_data.chip->name);
1278 goto out_bus_unlock;
1279 }
1280 }
1281
1282 /*
1283 * The following block of code has to be executed atomically
1284 * protected against a concurrent interrupt and any of the other
1285 * management calls which are not serialized via
1286 * desc->request_mutex or the optional bus lock.
1287 */
1288 raw_spin_lock_irqsave(&desc->lock, flags);
1289 old_ptr = &desc->action;
1290 old = *old_ptr;
1291 if (old) {
1292 /*
1293 * Can't share interrupts unless both agree to and are
1294 * the same type (level, edge, polarity). So both flag
1295 * fields must have IRQF_SHARED set and the bits which
1296 * set the trigger type must match. Also all must
1297 * agree on ONESHOT.
1298 */
1299 unsigned int oldtype;
1300
1301 /*
1302 * If nobody did set the configuration before, inherit
1303 * the one provided by the requester.
1304 */
1305 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1306 oldtype = irqd_get_trigger_type(&desc->irq_data);
1307 } else {
1308 oldtype = new->flags & IRQF_TRIGGER_MASK;
1309 irqd_set_trigger_type(&desc->irq_data, oldtype);
1310 }
1311
1312 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1313 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1314 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1315 goto mismatch;
1316
1317 /* All handlers must agree on per-cpuness */
1318 if ((old->flags & IRQF_PERCPU) !=
1319 (new->flags & IRQF_PERCPU))
1320 goto mismatch;
1321
1322 /* add new interrupt at end of irq queue */
1323 do {
1324 /*
1325 * Or all existing action->thread_mask bits,
1326 * so we can find the next zero bit for this
1327 * new action.
1328 */
1329 thread_mask |= old->thread_mask;
1330 old_ptr = &old->next;
1331 old = *old_ptr;
1332 } while (old);
1333 shared = 1;
1334 }
1335
1336 /*
1337 * Setup the thread mask for this irqaction for ONESHOT. For
1338 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1339 * conditional in irq_wake_thread().
1340 */
1341 if (new->flags & IRQF_ONESHOT) {
1342 /*
1343 * Unlikely to have 32 resp 64 irqs sharing one line,
1344 * but who knows.
1345 */
1346 if (thread_mask == ~0UL) {
1347 ret = -EBUSY;
1348 goto out_unlock;
1349 }
1350 /*
1351 * The thread_mask for the action is or'ed to
1352 * desc->thread_active to indicate that the
1353 * IRQF_ONESHOT thread handler has been woken, but not
1354 * yet finished. The bit is cleared when a thread
1355 * completes. When all threads of a shared interrupt
1356 * line have completed desc->threads_active becomes
1357 * zero and the interrupt line is unmasked. See
1358 * handle.c:irq_wake_thread() for further information.
1359 *
1360 * If no thread is woken by primary (hard irq context)
1361 * interrupt handlers, then desc->threads_active is
1362 * also checked for zero to unmask the irq line in the
1363 * affected hard irq flow handlers
1364 * (handle_[fasteoi|level]_irq).
1365 *
1366 * The new action gets the first zero bit of
1367 * thread_mask assigned. See the loop above which or's
1368 * all existing action->thread_mask bits.
1369 */
1370 new->thread_mask = 1UL << ffz(thread_mask);
1371
1372 } else if (new->handler == irq_default_primary_handler &&
1373 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1374 /*
1375 * The interrupt was requested with handler = NULL, so
1376 * we use the default primary handler for it. But it
1377 * does not have the oneshot flag set. In combination
1378 * with level interrupts this is deadly, because the
1379 * default primary handler just wakes the thread, then
1380 * the irq lines is reenabled, but the device still
1381 * has the level irq asserted. Rinse and repeat....
1382 *
1383 * While this works for edge type interrupts, we play
1384 * it safe and reject unconditionally because we can't
1385 * say for sure which type this interrupt really
1386 * has. The type flags are unreliable as the
1387 * underlying chip implementation can override them.
1388 */
1389 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1390 irq);
1391 ret = -EINVAL;
1392 goto out_unlock;
1393 }
1394
1395 if (!shared) {
1396 init_waitqueue_head(&desc->wait_for_threads);
1397
1398 /* Setup the type (level, edge polarity) if configured: */
1399 if (new->flags & IRQF_TRIGGER_MASK) {
1400 ret = __irq_set_trigger(desc,
1401 new->flags & IRQF_TRIGGER_MASK);
1402
1403 if (ret)
1404 goto out_unlock;
1405 }
1406
1407 /*
1408 * Activate the interrupt. That activation must happen
1409 * independently of IRQ_NOAUTOEN. request_irq() can fail
1410 * and the callers are supposed to handle
1411 * that. enable_irq() of an interrupt requested with
1412 * IRQ_NOAUTOEN is not supposed to fail. The activation
1413 * keeps it in shutdown mode, it merily associates
1414 * resources if necessary and if that's not possible it
1415 * fails. Interrupts which are in managed shutdown mode
1416 * will simply ignore that activation request.
1417 */
1418 ret = irq_activate(desc);
1419 if (ret)
1420 goto out_unlock;
1421
1422 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1423 IRQS_ONESHOT | IRQS_WAITING);
1424 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1425
1426 if (new->flags & IRQF_PERCPU) {
1427 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1428 irq_settings_set_per_cpu(desc);
1429 }
1430
1431 if (new->flags & IRQF_ONESHOT)
1432 desc->istate |= IRQS_ONESHOT;
1433
1434 /* Exclude IRQ from balancing if requested */
1435 if (new->flags & IRQF_NOBALANCING) {
1436 irq_settings_set_no_balancing(desc);
1437 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1438 }
1439
1440 if (irq_settings_can_autoenable(desc)) {
1441 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1442 } else {
1443 /*
1444 * Shared interrupts do not go well with disabling
1445 * auto enable. The sharing interrupt might request
1446 * it while it's still disabled and then wait for
1447 * interrupts forever.
1448 */
1449 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1450 /* Undo nested disables: */
1451 desc->depth = 1;
1452 }
1453
1454 } else if (new->flags & IRQF_TRIGGER_MASK) {
1455 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1456 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1457
1458 if (nmsk != omsk)
1459 /* hope the handler works with current trigger mode */
1460 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1461 irq, omsk, nmsk);
1462 }
1463
1464 *old_ptr = new;
1465
1466 irq_pm_install_action(desc, new);
1467
1468 /* Reset broken irq detection when installing new handler */
1469 desc->irq_count = 0;
1470 desc->irqs_unhandled = 0;
1471
1472 /*
1473 * Check whether we disabled the irq via the spurious handler
1474 * before. Reenable it and give it another chance.
1475 */
1476 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1477 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1478 __enable_irq(desc);
1479 }
1480
1481 raw_spin_unlock_irqrestore(&desc->lock, flags);
1482 chip_bus_sync_unlock(desc);
1483 mutex_unlock(&desc->request_mutex);
1484
1485 irq_setup_timings(desc, new);
1486
1487 /*
1488 * Strictly no need to wake it up, but hung_task complains
1489 * when no hard interrupt wakes the thread up.
1490 */
1491 if (new->thread)
1492 wake_up_process(new->thread);
1493 if (new->secondary)
1494 wake_up_process(new->secondary->thread);
1495
1496 register_irq_proc(irq, desc);
1497 new->dir = NULL;
1498 register_handler_proc(irq, new);
1499 return 0;
1500
1501 mismatch:
1502 if (!(new->flags & IRQF_PROBE_SHARED)) {
1503 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1504 irq, new->flags, new->name, old->flags, old->name);
1505 #ifdef CONFIG_DEBUG_SHIRQ
1506 dump_stack();
1507 #endif
1508 }
1509 ret = -EBUSY;
1510
1511 out_unlock:
1512 raw_spin_unlock_irqrestore(&desc->lock, flags);
1513
1514 if (!desc->action)
1515 irq_release_resources(desc);
1516 out_bus_unlock:
1517 chip_bus_sync_unlock(desc);
1518 mutex_unlock(&desc->request_mutex);
1519
1520 out_thread:
1521 if (new->thread) {
1522 struct task_struct *t = new->thread;
1523
1524 new->thread = NULL;
1525 kthread_stop(t);
1526 put_task_struct(t);
1527 }
1528 if (new->secondary && new->secondary->thread) {
1529 struct task_struct *t = new->secondary->thread;
1530
1531 new->secondary->thread = NULL;
1532 kthread_stop(t);
1533 put_task_struct(t);
1534 }
1535 out_mput:
1536 module_put(desc->owner);
1537 return ret;
1538 }
1539
1540 /**
1541 * setup_irq - setup an interrupt
1542 * @irq: Interrupt line to setup
1543 * @act: irqaction for the interrupt
1544 *
1545 * Used to statically setup interrupts in the early boot process.
1546 */
setup_irq(unsigned int irq,struct irqaction * act)1547 int setup_irq(unsigned int irq, struct irqaction *act)
1548 {
1549 int retval;
1550 struct irq_desc *desc = irq_to_desc(irq);
1551
1552 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1553 return -EINVAL;
1554
1555 retval = irq_chip_pm_get(&desc->irq_data);
1556 if (retval < 0)
1557 return retval;
1558
1559 retval = __setup_irq(irq, desc, act);
1560
1561 if (retval)
1562 irq_chip_pm_put(&desc->irq_data);
1563
1564 return retval;
1565 }
1566 EXPORT_SYMBOL_GPL(setup_irq);
1567
1568 /*
1569 * Internal function to unregister an irqaction - used to free
1570 * regular and special interrupts that are part of the architecture.
1571 */
__free_irq(struct irq_desc * desc,void * dev_id)1572 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1573 {
1574 unsigned irq = desc->irq_data.irq;
1575 struct irqaction *action, **action_ptr;
1576 unsigned long flags;
1577
1578 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1579
1580 mutex_lock(&desc->request_mutex);
1581 chip_bus_lock(desc);
1582 raw_spin_lock_irqsave(&desc->lock, flags);
1583
1584 /*
1585 * There can be multiple actions per IRQ descriptor, find the right
1586 * one based on the dev_id:
1587 */
1588 action_ptr = &desc->action;
1589 for (;;) {
1590 action = *action_ptr;
1591
1592 if (!action) {
1593 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1594 raw_spin_unlock_irqrestore(&desc->lock, flags);
1595 chip_bus_sync_unlock(desc);
1596 mutex_unlock(&desc->request_mutex);
1597 return NULL;
1598 }
1599
1600 if (action->dev_id == dev_id)
1601 break;
1602 action_ptr = &action->next;
1603 }
1604
1605 /* Found it - now remove it from the list of entries: */
1606 *action_ptr = action->next;
1607
1608 irq_pm_remove_action(desc, action);
1609
1610 /* If this was the last handler, shut down the IRQ line: */
1611 if (!desc->action) {
1612 irq_settings_clr_disable_unlazy(desc);
1613 irq_shutdown(desc);
1614 }
1615
1616 #ifdef CONFIG_SMP
1617 /* make sure affinity_hint is cleaned up */
1618 if (WARN_ON_ONCE(desc->affinity_hint))
1619 desc->affinity_hint = NULL;
1620 #endif
1621
1622 raw_spin_unlock_irqrestore(&desc->lock, flags);
1623 /*
1624 * Drop bus_lock here so the changes which were done in the chip
1625 * callbacks above are synced out to the irq chips which hang
1626 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1627 *
1628 * Aside of that the bus_lock can also be taken from the threaded
1629 * handler in irq_finalize_oneshot() which results in a deadlock
1630 * because kthread_stop() would wait forever for the thread to
1631 * complete, which is blocked on the bus lock.
1632 *
1633 * The still held desc->request_mutex() protects against a
1634 * concurrent request_irq() of this irq so the release of resources
1635 * and timing data is properly serialized.
1636 */
1637 chip_bus_sync_unlock(desc);
1638
1639 unregister_handler_proc(irq, action);
1640
1641 /* Make sure it's not being used on another CPU: */
1642 synchronize_hardirq(irq);
1643
1644 #ifdef CONFIG_DEBUG_SHIRQ
1645 /*
1646 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1647 * event to happen even now it's being freed, so let's make sure that
1648 * is so by doing an extra call to the handler ....
1649 *
1650 * ( We do this after actually deregistering it, to make sure that a
1651 * 'real' IRQ doesn't run in parallel with our fake. )
1652 */
1653 if (action->flags & IRQF_SHARED) {
1654 local_irq_save(flags);
1655 action->handler(irq, dev_id);
1656 local_irq_restore(flags);
1657 }
1658 #endif
1659
1660 /*
1661 * The action has already been removed above, but the thread writes
1662 * its oneshot mask bit when it completes. Though request_mutex is
1663 * held across this which prevents __setup_irq() from handing out
1664 * the same bit to a newly requested action.
1665 */
1666 if (action->thread) {
1667 kthread_stop(action->thread);
1668 put_task_struct(action->thread);
1669 if (action->secondary && action->secondary->thread) {
1670 kthread_stop(action->secondary->thread);
1671 put_task_struct(action->secondary->thread);
1672 }
1673 }
1674
1675 /* Last action releases resources */
1676 if (!desc->action) {
1677 /*
1678 * Reaquire bus lock as irq_release_resources() might
1679 * require it to deallocate resources over the slow bus.
1680 */
1681 chip_bus_lock(desc);
1682 irq_release_resources(desc);
1683 chip_bus_sync_unlock(desc);
1684 irq_remove_timings(desc);
1685 }
1686
1687 mutex_unlock(&desc->request_mutex);
1688
1689 irq_chip_pm_put(&desc->irq_data);
1690 module_put(desc->owner);
1691 kfree(action->secondary);
1692 return action;
1693 }
1694
1695 /**
1696 * remove_irq - free an interrupt
1697 * @irq: Interrupt line to free
1698 * @act: irqaction for the interrupt
1699 *
1700 * Used to remove interrupts statically setup by the early boot process.
1701 */
remove_irq(unsigned int irq,struct irqaction * act)1702 void remove_irq(unsigned int irq, struct irqaction *act)
1703 {
1704 struct irq_desc *desc = irq_to_desc(irq);
1705
1706 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1707 __free_irq(desc, act->dev_id);
1708 }
1709 EXPORT_SYMBOL_GPL(remove_irq);
1710
1711 /**
1712 * free_irq - free an interrupt allocated with request_irq
1713 * @irq: Interrupt line to free
1714 * @dev_id: Device identity to free
1715 *
1716 * Remove an interrupt handler. The handler is removed and if the
1717 * interrupt line is no longer in use by any driver it is disabled.
1718 * On a shared IRQ the caller must ensure the interrupt is disabled
1719 * on the card it drives before calling this function. The function
1720 * does not return until any executing interrupts for this IRQ
1721 * have completed.
1722 *
1723 * This function must not be called from interrupt context.
1724 *
1725 * Returns the devname argument passed to request_irq.
1726 */
free_irq(unsigned int irq,void * dev_id)1727 const void *free_irq(unsigned int irq, void *dev_id)
1728 {
1729 struct irq_desc *desc = irq_to_desc(irq);
1730 struct irqaction *action;
1731 const char *devname;
1732
1733 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1734 return NULL;
1735
1736 #ifdef CONFIG_SMP
1737 if (WARN_ON(desc->affinity_notify))
1738 desc->affinity_notify = NULL;
1739 #endif
1740
1741 action = __free_irq(desc, dev_id);
1742
1743 if (!action)
1744 return NULL;
1745
1746 devname = action->name;
1747 kfree(action);
1748 return devname;
1749 }
1750 EXPORT_SYMBOL(free_irq);
1751
1752 /**
1753 * request_threaded_irq - allocate an interrupt line
1754 * @irq: Interrupt line to allocate
1755 * @handler: Function to be called when the IRQ occurs.
1756 * Primary handler for threaded interrupts
1757 * If NULL and thread_fn != NULL the default
1758 * primary handler is installed
1759 * @thread_fn: Function called from the irq handler thread
1760 * If NULL, no irq thread is created
1761 * @irqflags: Interrupt type flags
1762 * @devname: An ascii name for the claiming device
1763 * @dev_id: A cookie passed back to the handler function
1764 *
1765 * This call allocates interrupt resources and enables the
1766 * interrupt line and IRQ handling. From the point this
1767 * call is made your handler function may be invoked. Since
1768 * your handler function must clear any interrupt the board
1769 * raises, you must take care both to initialise your hardware
1770 * and to set up the interrupt handler in the right order.
1771 *
1772 * If you want to set up a threaded irq handler for your device
1773 * then you need to supply @handler and @thread_fn. @handler is
1774 * still called in hard interrupt context and has to check
1775 * whether the interrupt originates from the device. If yes it
1776 * needs to disable the interrupt on the device and return
1777 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1778 * @thread_fn. This split handler design is necessary to support
1779 * shared interrupts.
1780 *
1781 * Dev_id must be globally unique. Normally the address of the
1782 * device data structure is used as the cookie. Since the handler
1783 * receives this value it makes sense to use it.
1784 *
1785 * If your interrupt is shared you must pass a non NULL dev_id
1786 * as this is required when freeing the interrupt.
1787 *
1788 * Flags:
1789 *
1790 * IRQF_SHARED Interrupt is shared
1791 * IRQF_TRIGGER_* Specify active edge(s) or level
1792 *
1793 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)1794 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1795 irq_handler_t thread_fn, unsigned long irqflags,
1796 const char *devname, void *dev_id)
1797 {
1798 struct irqaction *action;
1799 struct irq_desc *desc;
1800 int retval;
1801
1802 if (irq == IRQ_NOTCONNECTED)
1803 return -ENOTCONN;
1804
1805 /*
1806 * Sanity-check: shared interrupts must pass in a real dev-ID,
1807 * otherwise we'll have trouble later trying to figure out
1808 * which interrupt is which (messes up the interrupt freeing
1809 * logic etc).
1810 *
1811 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1812 * it cannot be set along with IRQF_NO_SUSPEND.
1813 */
1814 if (((irqflags & IRQF_SHARED) && !dev_id) ||
1815 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1816 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1817 return -EINVAL;
1818
1819 desc = irq_to_desc(irq);
1820 if (!desc)
1821 return -EINVAL;
1822
1823 if (!irq_settings_can_request(desc) ||
1824 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1825 return -EINVAL;
1826
1827 if (!handler) {
1828 if (!thread_fn)
1829 return -EINVAL;
1830 handler = irq_default_primary_handler;
1831 }
1832
1833 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1834 if (!action)
1835 return -ENOMEM;
1836
1837 action->handler = handler;
1838 action->thread_fn = thread_fn;
1839 action->flags = irqflags;
1840 action->name = devname;
1841 action->dev_id = dev_id;
1842
1843 retval = irq_chip_pm_get(&desc->irq_data);
1844 if (retval < 0) {
1845 kfree(action);
1846 return retval;
1847 }
1848
1849 retval = __setup_irq(irq, desc, action);
1850
1851 if (retval) {
1852 irq_chip_pm_put(&desc->irq_data);
1853 kfree(action->secondary);
1854 kfree(action);
1855 }
1856
1857 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1858 if (!retval && (irqflags & IRQF_SHARED)) {
1859 /*
1860 * It's a shared IRQ -- the driver ought to be prepared for it
1861 * to happen immediately, so let's make sure....
1862 * We disable the irq to make sure that a 'real' IRQ doesn't
1863 * run in parallel with our fake.
1864 */
1865 unsigned long flags;
1866
1867 disable_irq(irq);
1868 local_irq_save(flags);
1869
1870 handler(irq, dev_id);
1871
1872 local_irq_restore(flags);
1873 enable_irq(irq);
1874 }
1875 #endif
1876 return retval;
1877 }
1878 EXPORT_SYMBOL(request_threaded_irq);
1879
1880 /**
1881 * request_any_context_irq - allocate an interrupt line
1882 * @irq: Interrupt line to allocate
1883 * @handler: Function to be called when the IRQ occurs.
1884 * Threaded handler for threaded interrupts.
1885 * @flags: Interrupt type flags
1886 * @name: An ascii name for the claiming device
1887 * @dev_id: A cookie passed back to the handler function
1888 *
1889 * This call allocates interrupt resources and enables the
1890 * interrupt line and IRQ handling. It selects either a
1891 * hardirq or threaded handling method depending on the
1892 * context.
1893 *
1894 * On failure, it returns a negative value. On success,
1895 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1896 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)1897 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1898 unsigned long flags, const char *name, void *dev_id)
1899 {
1900 struct irq_desc *desc;
1901 int ret;
1902
1903 if (irq == IRQ_NOTCONNECTED)
1904 return -ENOTCONN;
1905
1906 desc = irq_to_desc(irq);
1907 if (!desc)
1908 return -EINVAL;
1909
1910 if (irq_settings_is_nested_thread(desc)) {
1911 ret = request_threaded_irq(irq, NULL, handler,
1912 flags, name, dev_id);
1913 return !ret ? IRQC_IS_NESTED : ret;
1914 }
1915
1916 ret = request_irq(irq, handler, flags, name, dev_id);
1917 return !ret ? IRQC_IS_HARDIRQ : ret;
1918 }
1919 EXPORT_SYMBOL_GPL(request_any_context_irq);
1920
enable_percpu_irq(unsigned int irq,unsigned int type)1921 void enable_percpu_irq(unsigned int irq, unsigned int type)
1922 {
1923 unsigned int cpu = smp_processor_id();
1924 unsigned long flags;
1925 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1926
1927 if (!desc)
1928 return;
1929
1930 /*
1931 * If the trigger type is not specified by the caller, then
1932 * use the default for this interrupt.
1933 */
1934 type &= IRQ_TYPE_SENSE_MASK;
1935 if (type == IRQ_TYPE_NONE)
1936 type = irqd_get_trigger_type(&desc->irq_data);
1937
1938 if (type != IRQ_TYPE_NONE) {
1939 int ret;
1940
1941 ret = __irq_set_trigger(desc, type);
1942
1943 if (ret) {
1944 WARN(1, "failed to set type for IRQ%d\n", irq);
1945 goto out;
1946 }
1947 }
1948
1949 irq_percpu_enable(desc, cpu);
1950 out:
1951 irq_put_desc_unlock(desc, flags);
1952 }
1953 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1954
1955 /**
1956 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1957 * @irq: Linux irq number to check for
1958 *
1959 * Must be called from a non migratable context. Returns the enable
1960 * state of a per cpu interrupt on the current cpu.
1961 */
irq_percpu_is_enabled(unsigned int irq)1962 bool irq_percpu_is_enabled(unsigned int irq)
1963 {
1964 unsigned int cpu = smp_processor_id();
1965 struct irq_desc *desc;
1966 unsigned long flags;
1967 bool is_enabled;
1968
1969 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1970 if (!desc)
1971 return false;
1972
1973 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1974 irq_put_desc_unlock(desc, flags);
1975
1976 return is_enabled;
1977 }
1978 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1979
disable_percpu_irq(unsigned int irq)1980 void disable_percpu_irq(unsigned int irq)
1981 {
1982 unsigned int cpu = smp_processor_id();
1983 unsigned long flags;
1984 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1985
1986 if (!desc)
1987 return;
1988
1989 irq_percpu_disable(desc, cpu);
1990 irq_put_desc_unlock(desc, flags);
1991 }
1992 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1993
1994 /*
1995 * Internal function to unregister a percpu irqaction.
1996 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)1997 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1998 {
1999 struct irq_desc *desc = irq_to_desc(irq);
2000 struct irqaction *action;
2001 unsigned long flags;
2002
2003 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2004
2005 if (!desc)
2006 return NULL;
2007
2008 raw_spin_lock_irqsave(&desc->lock, flags);
2009
2010 action = desc->action;
2011 if (!action || action->percpu_dev_id != dev_id) {
2012 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2013 goto bad;
2014 }
2015
2016 if (!cpumask_empty(desc->percpu_enabled)) {
2017 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2018 irq, cpumask_first(desc->percpu_enabled));
2019 goto bad;
2020 }
2021
2022 /* Found it - now remove it from the list of entries: */
2023 desc->action = NULL;
2024
2025 raw_spin_unlock_irqrestore(&desc->lock, flags);
2026
2027 unregister_handler_proc(irq, action);
2028
2029 irq_chip_pm_put(&desc->irq_data);
2030 module_put(desc->owner);
2031 return action;
2032
2033 bad:
2034 raw_spin_unlock_irqrestore(&desc->lock, flags);
2035 return NULL;
2036 }
2037
2038 /**
2039 * remove_percpu_irq - free a per-cpu interrupt
2040 * @irq: Interrupt line to free
2041 * @act: irqaction for the interrupt
2042 *
2043 * Used to remove interrupts statically setup by the early boot process.
2044 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2045 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2046 {
2047 struct irq_desc *desc = irq_to_desc(irq);
2048
2049 if (desc && irq_settings_is_per_cpu_devid(desc))
2050 __free_percpu_irq(irq, act->percpu_dev_id);
2051 }
2052
2053 /**
2054 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2055 * @irq: Interrupt line to free
2056 * @dev_id: Device identity to free
2057 *
2058 * Remove a percpu interrupt handler. The handler is removed, but
2059 * the interrupt line is not disabled. This must be done on each
2060 * CPU before calling this function. The function does not return
2061 * until any executing interrupts for this IRQ have completed.
2062 *
2063 * This function must not be called from interrupt context.
2064 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2065 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2066 {
2067 struct irq_desc *desc = irq_to_desc(irq);
2068
2069 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2070 return;
2071
2072 chip_bus_lock(desc);
2073 kfree(__free_percpu_irq(irq, dev_id));
2074 chip_bus_sync_unlock(desc);
2075 }
2076 EXPORT_SYMBOL_GPL(free_percpu_irq);
2077
2078 /**
2079 * setup_percpu_irq - setup a per-cpu interrupt
2080 * @irq: Interrupt line to setup
2081 * @act: irqaction for the interrupt
2082 *
2083 * Used to statically setup per-cpu interrupts in the early boot process.
2084 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2085 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2086 {
2087 struct irq_desc *desc = irq_to_desc(irq);
2088 int retval;
2089
2090 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2091 return -EINVAL;
2092
2093 retval = irq_chip_pm_get(&desc->irq_data);
2094 if (retval < 0)
2095 return retval;
2096
2097 retval = __setup_irq(irq, desc, act);
2098
2099 if (retval)
2100 irq_chip_pm_put(&desc->irq_data);
2101
2102 return retval;
2103 }
2104
2105 /**
2106 * __request_percpu_irq - allocate a percpu interrupt line
2107 * @irq: Interrupt line to allocate
2108 * @handler: Function to be called when the IRQ occurs.
2109 * @flags: Interrupt type flags (IRQF_TIMER only)
2110 * @devname: An ascii name for the claiming device
2111 * @dev_id: A percpu cookie passed back to the handler function
2112 *
2113 * This call allocates interrupt resources and enables the
2114 * interrupt on the local CPU. If the interrupt is supposed to be
2115 * enabled on other CPUs, it has to be done on each CPU using
2116 * enable_percpu_irq().
2117 *
2118 * Dev_id must be globally unique. It is a per-cpu variable, and
2119 * the handler gets called with the interrupted CPU's instance of
2120 * that variable.
2121 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2122 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2123 unsigned long flags, const char *devname,
2124 void __percpu *dev_id)
2125 {
2126 struct irqaction *action;
2127 struct irq_desc *desc;
2128 int retval;
2129
2130 if (!dev_id)
2131 return -EINVAL;
2132
2133 desc = irq_to_desc(irq);
2134 if (!desc || !irq_settings_can_request(desc) ||
2135 !irq_settings_is_per_cpu_devid(desc))
2136 return -EINVAL;
2137
2138 if (flags && flags != IRQF_TIMER)
2139 return -EINVAL;
2140
2141 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2142 if (!action)
2143 return -ENOMEM;
2144
2145 action->handler = handler;
2146 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2147 action->name = devname;
2148 action->percpu_dev_id = dev_id;
2149
2150 retval = irq_chip_pm_get(&desc->irq_data);
2151 if (retval < 0) {
2152 kfree(action);
2153 return retval;
2154 }
2155
2156 retval = __setup_irq(irq, desc, action);
2157
2158 if (retval) {
2159 irq_chip_pm_put(&desc->irq_data);
2160 kfree(action);
2161 }
2162
2163 return retval;
2164 }
2165 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2166
2167 /**
2168 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2169 * @irq: Interrupt line that is forwarded to a VM
2170 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2171 * @state: a pointer to a boolean where the state is to be storeed
2172 *
2173 * This call snapshots the internal irqchip state of an
2174 * interrupt, returning into @state the bit corresponding to
2175 * stage @which
2176 *
2177 * This function should be called with preemption disabled if the
2178 * interrupt controller has per-cpu registers.
2179 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2180 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2181 bool *state)
2182 {
2183 struct irq_desc *desc;
2184 struct irq_data *data;
2185 struct irq_chip *chip;
2186 unsigned long flags;
2187 int err = -EINVAL;
2188
2189 desc = irq_get_desc_buslock(irq, &flags, 0);
2190 if (!desc)
2191 return err;
2192
2193 data = irq_desc_get_irq_data(desc);
2194
2195 do {
2196 chip = irq_data_get_irq_chip(data);
2197 if (chip->irq_get_irqchip_state)
2198 break;
2199 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2200 data = data->parent_data;
2201 #else
2202 data = NULL;
2203 #endif
2204 } while (data);
2205
2206 if (data)
2207 err = chip->irq_get_irqchip_state(data, which, state);
2208
2209 irq_put_desc_busunlock(desc, flags);
2210 return err;
2211 }
2212 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2213
2214 /**
2215 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2216 * @irq: Interrupt line that is forwarded to a VM
2217 * @which: State to be restored (one of IRQCHIP_STATE_*)
2218 * @val: Value corresponding to @which
2219 *
2220 * This call sets the internal irqchip state of an interrupt,
2221 * depending on the value of @which.
2222 *
2223 * This function should be called with preemption disabled if the
2224 * interrupt controller has per-cpu registers.
2225 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2226 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2227 bool val)
2228 {
2229 struct irq_desc *desc;
2230 struct irq_data *data;
2231 struct irq_chip *chip;
2232 unsigned long flags;
2233 int err = -EINVAL;
2234
2235 desc = irq_get_desc_buslock(irq, &flags, 0);
2236 if (!desc)
2237 return err;
2238
2239 data = irq_desc_get_irq_data(desc);
2240
2241 do {
2242 chip = irq_data_get_irq_chip(data);
2243 if (chip->irq_set_irqchip_state)
2244 break;
2245 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2246 data = data->parent_data;
2247 #else
2248 data = NULL;
2249 #endif
2250 } while (data);
2251
2252 if (data)
2253 err = chip->irq_set_irqchip_state(data, which, val);
2254
2255 irq_put_desc_busunlock(desc, flags);
2256 return err;
2257 }
2258 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2259