1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
19
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
23
24 static const struct {
25 const char *name;
26 unsigned int repeat_period;
27 unsigned int scancode_bits;
28 } protocols[] = {
29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31 [RC_PROTO_RC5] = { .name = "rc-5",
32 .scancode_bits = 0x1f7f, .repeat_period = 114 },
33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 .scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 .scancode_bits = 0x2fff, .repeat_period = 114 },
37 [RC_PROTO_JVC] = { .name = "jvc",
38 .scancode_bits = 0xffff, .repeat_period = 125 },
39 [RC_PROTO_SONY12] = { .name = "sony-12",
40 .scancode_bits = 0x1f007f, .repeat_period = 100 },
41 [RC_PROTO_SONY15] = { .name = "sony-15",
42 .scancode_bits = 0xff007f, .repeat_period = 100 },
43 [RC_PROTO_SONY20] = { .name = "sony-20",
44 .scancode_bits = 0x1fff7f, .repeat_period = 100 },
45 [RC_PROTO_NEC] = { .name = "nec",
46 .scancode_bits = 0xffff, .repeat_period = 110 },
47 [RC_PROTO_NECX] = { .name = "nec-x",
48 .scancode_bits = 0xffffff, .repeat_period = 110 },
49 [RC_PROTO_NEC32] = { .name = "nec-32",
50 .scancode_bits = 0xffffffff, .repeat_period = 110 },
51 [RC_PROTO_SANYO] = { .name = "sanyo",
52 .scancode_bits = 0x1fffff, .repeat_period = 125 },
53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 .scancode_bits = 0xffffff, .repeat_period = 100 },
55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 .scancode_bits = 0x1fffff, .repeat_period = 100 },
57 [RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 .scancode_bits = 0xffff, .repeat_period = 114 },
59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 .scancode_bits = 0xfffff, .repeat_period = 114 },
61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 .scancode_bits = 0xffffff, .repeat_period = 114 },
63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 .scancode_bits = 0xffffffff, .repeat_period = 114 },
65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 .scancode_bits = 0xffff7fff, .repeat_period = 114 },
67 [RC_PROTO_SHARP] = { .name = "sharp",
68 .scancode_bits = 0x1fff, .repeat_period = 125 },
69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71 [RC_PROTO_IMON] = { .name = "imon",
72 .scancode_bits = 0x7fffffff, .repeat_period = 114 },
73 [RC_PROTO_RCMM12] = { .name = "rc-mm-12",
74 .scancode_bits = 0x00000fff, .repeat_period = 114 },
75 [RC_PROTO_RCMM24] = { .name = "rc-mm-24",
76 .scancode_bits = 0x00ffffff, .repeat_period = 114 },
77 [RC_PROTO_RCMM32] = { .name = "rc-mm-32",
78 .scancode_bits = 0xffffffff, .repeat_period = 114 },
79 [RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
80 };
81
82 /* Used to keep track of known keymaps */
83 static LIST_HEAD(rc_map_list);
84 static DEFINE_SPINLOCK(rc_map_lock);
85 static struct led_trigger *led_feedback;
86
87 /* Used to keep track of rc devices */
88 static DEFINE_IDA(rc_ida);
89
seek_rc_map(const char * name)90 static struct rc_map_list *seek_rc_map(const char *name)
91 {
92 struct rc_map_list *map = NULL;
93
94 spin_lock(&rc_map_lock);
95 list_for_each_entry(map, &rc_map_list, list) {
96 if (!strcmp(name, map->map.name)) {
97 spin_unlock(&rc_map_lock);
98 return map;
99 }
100 }
101 spin_unlock(&rc_map_lock);
102
103 return NULL;
104 }
105
rc_map_get(const char * name)106 struct rc_map *rc_map_get(const char *name)
107 {
108
109 struct rc_map_list *map;
110
111 map = seek_rc_map(name);
112 #ifdef CONFIG_MODULES
113 if (!map) {
114 int rc = request_module("%s", name);
115 if (rc < 0) {
116 pr_err("Couldn't load IR keymap %s\n", name);
117 return NULL;
118 }
119 msleep(20); /* Give some time for IR to register */
120
121 map = seek_rc_map(name);
122 }
123 #endif
124 if (!map) {
125 pr_err("IR keymap %s not found\n", name);
126 return NULL;
127 }
128
129 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
130
131 return &map->map;
132 }
133 EXPORT_SYMBOL_GPL(rc_map_get);
134
rc_map_register(struct rc_map_list * map)135 int rc_map_register(struct rc_map_list *map)
136 {
137 spin_lock(&rc_map_lock);
138 list_add_tail(&map->list, &rc_map_list);
139 spin_unlock(&rc_map_lock);
140 return 0;
141 }
142 EXPORT_SYMBOL_GPL(rc_map_register);
143
rc_map_unregister(struct rc_map_list * map)144 void rc_map_unregister(struct rc_map_list *map)
145 {
146 spin_lock(&rc_map_lock);
147 list_del(&map->list);
148 spin_unlock(&rc_map_lock);
149 }
150 EXPORT_SYMBOL_GPL(rc_map_unregister);
151
152
153 static struct rc_map_table empty[] = {
154 { 0x2a, KEY_COFFEE },
155 };
156
157 static struct rc_map_list empty_map = {
158 .map = {
159 .scan = empty,
160 .size = ARRAY_SIZE(empty),
161 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
162 .name = RC_MAP_EMPTY,
163 }
164 };
165
166 /**
167 * ir_create_table() - initializes a scancode table
168 * @dev: the rc_dev device
169 * @rc_map: the rc_map to initialize
170 * @name: name to assign to the table
171 * @rc_proto: ir type to assign to the new table
172 * @size: initial size of the table
173 *
174 * This routine will initialize the rc_map and will allocate
175 * memory to hold at least the specified number of elements.
176 *
177 * return: zero on success or a negative error code
178 */
ir_create_table(struct rc_dev * dev,struct rc_map * rc_map,const char * name,u64 rc_proto,size_t size)179 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
180 const char *name, u64 rc_proto, size_t size)
181 {
182 rc_map->name = kstrdup(name, GFP_KERNEL);
183 if (!rc_map->name)
184 return -ENOMEM;
185 rc_map->rc_proto = rc_proto;
186 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
187 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
188 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
189 if (!rc_map->scan) {
190 kfree(rc_map->name);
191 rc_map->name = NULL;
192 return -ENOMEM;
193 }
194
195 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
196 rc_map->size, rc_map->alloc);
197 return 0;
198 }
199
200 /**
201 * ir_free_table() - frees memory allocated by a scancode table
202 * @rc_map: the table whose mappings need to be freed
203 *
204 * This routine will free memory alloctaed for key mappings used by given
205 * scancode table.
206 */
ir_free_table(struct rc_map * rc_map)207 static void ir_free_table(struct rc_map *rc_map)
208 {
209 rc_map->size = 0;
210 kfree(rc_map->name);
211 rc_map->name = NULL;
212 kfree(rc_map->scan);
213 rc_map->scan = NULL;
214 }
215
216 /**
217 * ir_resize_table() - resizes a scancode table if necessary
218 * @dev: the rc_dev device
219 * @rc_map: the rc_map to resize
220 * @gfp_flags: gfp flags to use when allocating memory
221 *
222 * This routine will shrink the rc_map if it has lots of
223 * unused entries and grow it if it is full.
224 *
225 * return: zero on success or a negative error code
226 */
ir_resize_table(struct rc_dev * dev,struct rc_map * rc_map,gfp_t gfp_flags)227 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
228 gfp_t gfp_flags)
229 {
230 unsigned int oldalloc = rc_map->alloc;
231 unsigned int newalloc = oldalloc;
232 struct rc_map_table *oldscan = rc_map->scan;
233 struct rc_map_table *newscan;
234
235 if (rc_map->size == rc_map->len) {
236 /* All entries in use -> grow keytable */
237 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
238 return -ENOMEM;
239
240 newalloc *= 2;
241 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
242 }
243
244 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
245 /* Less than 1/3 of entries in use -> shrink keytable */
246 newalloc /= 2;
247 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
248 }
249
250 if (newalloc == oldalloc)
251 return 0;
252
253 newscan = kmalloc(newalloc, gfp_flags);
254 if (!newscan)
255 return -ENOMEM;
256
257 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
258 rc_map->scan = newscan;
259 rc_map->alloc = newalloc;
260 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
261 kfree(oldscan);
262 return 0;
263 }
264
265 /**
266 * ir_update_mapping() - set a keycode in the scancode->keycode table
267 * @dev: the struct rc_dev device descriptor
268 * @rc_map: scancode table to be adjusted
269 * @index: index of the mapping that needs to be updated
270 * @new_keycode: the desired keycode
271 *
272 * This routine is used to update scancode->keycode mapping at given
273 * position.
274 *
275 * return: previous keycode assigned to the mapping
276 *
277 */
ir_update_mapping(struct rc_dev * dev,struct rc_map * rc_map,unsigned int index,unsigned int new_keycode)278 static unsigned int ir_update_mapping(struct rc_dev *dev,
279 struct rc_map *rc_map,
280 unsigned int index,
281 unsigned int new_keycode)
282 {
283 int old_keycode = rc_map->scan[index].keycode;
284 int i;
285
286 /* Did the user wish to remove the mapping? */
287 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
288 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
289 index, rc_map->scan[index].scancode);
290 rc_map->len--;
291 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
292 (rc_map->len - index) * sizeof(struct rc_map_table));
293 } else {
294 dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
295 index,
296 old_keycode == KEY_RESERVED ? "New" : "Replacing",
297 rc_map->scan[index].scancode, new_keycode);
298 rc_map->scan[index].keycode = new_keycode;
299 __set_bit(new_keycode, dev->input_dev->keybit);
300 }
301
302 if (old_keycode != KEY_RESERVED) {
303 /* A previous mapping was updated... */
304 __clear_bit(old_keycode, dev->input_dev->keybit);
305 /* ... but another scancode might use the same keycode */
306 for (i = 0; i < rc_map->len; i++) {
307 if (rc_map->scan[i].keycode == old_keycode) {
308 __set_bit(old_keycode, dev->input_dev->keybit);
309 break;
310 }
311 }
312
313 /* Possibly shrink the keytable, failure is not a problem */
314 ir_resize_table(dev, rc_map, GFP_ATOMIC);
315 }
316
317 return old_keycode;
318 }
319
320 /**
321 * ir_establish_scancode() - set a keycode in the scancode->keycode table
322 * @dev: the struct rc_dev device descriptor
323 * @rc_map: scancode table to be searched
324 * @scancode: the desired scancode
325 * @resize: controls whether we allowed to resize the table to
326 * accommodate not yet present scancodes
327 *
328 * This routine is used to locate given scancode in rc_map.
329 * If scancode is not yet present the routine will allocate a new slot
330 * for it.
331 *
332 * return: index of the mapping containing scancode in question
333 * or -1U in case of failure.
334 */
ir_establish_scancode(struct rc_dev * dev,struct rc_map * rc_map,unsigned int scancode,bool resize)335 static unsigned int ir_establish_scancode(struct rc_dev *dev,
336 struct rc_map *rc_map,
337 unsigned int scancode,
338 bool resize)
339 {
340 unsigned int i;
341
342 /*
343 * Unfortunately, some hardware-based IR decoders don't provide
344 * all bits for the complete IR code. In general, they provide only
345 * the command part of the IR code. Yet, as it is possible to replace
346 * the provided IR with another one, it is needed to allow loading
347 * IR tables from other remotes. So, we support specifying a mask to
348 * indicate the valid bits of the scancodes.
349 */
350 if (dev->scancode_mask)
351 scancode &= dev->scancode_mask;
352
353 /* First check if we already have a mapping for this ir command */
354 for (i = 0; i < rc_map->len; i++) {
355 if (rc_map->scan[i].scancode == scancode)
356 return i;
357
358 /* Keytable is sorted from lowest to highest scancode */
359 if (rc_map->scan[i].scancode >= scancode)
360 break;
361 }
362
363 /* No previous mapping found, we might need to grow the table */
364 if (rc_map->size == rc_map->len) {
365 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
366 return -1U;
367 }
368
369 /* i is the proper index to insert our new keycode */
370 if (i < rc_map->len)
371 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
372 (rc_map->len - i) * sizeof(struct rc_map_table));
373 rc_map->scan[i].scancode = scancode;
374 rc_map->scan[i].keycode = KEY_RESERVED;
375 rc_map->len++;
376
377 return i;
378 }
379
380 /**
381 * ir_setkeycode() - set a keycode in the scancode->keycode table
382 * @idev: the struct input_dev device descriptor
383 * @ke: Input keymap entry
384 * @old_keycode: result
385 *
386 * This routine is used to handle evdev EVIOCSKEY ioctl.
387 *
388 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
389 */
ir_setkeycode(struct input_dev * idev,const struct input_keymap_entry * ke,unsigned int * old_keycode)390 static int ir_setkeycode(struct input_dev *idev,
391 const struct input_keymap_entry *ke,
392 unsigned int *old_keycode)
393 {
394 struct rc_dev *rdev = input_get_drvdata(idev);
395 struct rc_map *rc_map = &rdev->rc_map;
396 unsigned int index;
397 unsigned int scancode;
398 int retval = 0;
399 unsigned long flags;
400
401 spin_lock_irqsave(&rc_map->lock, flags);
402
403 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
404 index = ke->index;
405 if (index >= rc_map->len) {
406 retval = -EINVAL;
407 goto out;
408 }
409 } else {
410 retval = input_scancode_to_scalar(ke, &scancode);
411 if (retval)
412 goto out;
413
414 index = ir_establish_scancode(rdev, rc_map, scancode, true);
415 if (index >= rc_map->len) {
416 retval = -ENOMEM;
417 goto out;
418 }
419 }
420
421 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
422
423 out:
424 spin_unlock_irqrestore(&rc_map->lock, flags);
425 return retval;
426 }
427
428 /**
429 * ir_setkeytable() - sets several entries in the scancode->keycode table
430 * @dev: the struct rc_dev device descriptor
431 * @from: the struct rc_map to copy entries from
432 *
433 * This routine is used to handle table initialization.
434 *
435 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
436 */
ir_setkeytable(struct rc_dev * dev,const struct rc_map * from)437 static int ir_setkeytable(struct rc_dev *dev,
438 const struct rc_map *from)
439 {
440 struct rc_map *rc_map = &dev->rc_map;
441 unsigned int i, index;
442 int rc;
443
444 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
445 from->size);
446 if (rc)
447 return rc;
448
449 for (i = 0; i < from->size; i++) {
450 index = ir_establish_scancode(dev, rc_map,
451 from->scan[i].scancode, false);
452 if (index >= rc_map->len) {
453 rc = -ENOMEM;
454 break;
455 }
456
457 ir_update_mapping(dev, rc_map, index,
458 from->scan[i].keycode);
459 }
460
461 if (rc)
462 ir_free_table(rc_map);
463
464 return rc;
465 }
466
rc_map_cmp(const void * key,const void * elt)467 static int rc_map_cmp(const void *key, const void *elt)
468 {
469 const unsigned int *scancode = key;
470 const struct rc_map_table *e = elt;
471
472 if (*scancode < e->scancode)
473 return -1;
474 else if (*scancode > e->scancode)
475 return 1;
476 return 0;
477 }
478
479 /**
480 * ir_lookup_by_scancode() - locate mapping by scancode
481 * @rc_map: the struct rc_map to search
482 * @scancode: scancode to look for in the table
483 *
484 * This routine performs binary search in RC keykeymap table for
485 * given scancode.
486 *
487 * return: index in the table, -1U if not found
488 */
ir_lookup_by_scancode(const struct rc_map * rc_map,unsigned int scancode)489 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
490 unsigned int scancode)
491 {
492 struct rc_map_table *res;
493
494 res = bsearch(&scancode, rc_map->scan, rc_map->len,
495 sizeof(struct rc_map_table), rc_map_cmp);
496 if (!res)
497 return -1U;
498 else
499 return res - rc_map->scan;
500 }
501
502 /**
503 * ir_getkeycode() - get a keycode from the scancode->keycode table
504 * @idev: the struct input_dev device descriptor
505 * @ke: Input keymap entry
506 *
507 * This routine is used to handle evdev EVIOCGKEY ioctl.
508 *
509 * return: always returns zero.
510 */
ir_getkeycode(struct input_dev * idev,struct input_keymap_entry * ke)511 static int ir_getkeycode(struct input_dev *idev,
512 struct input_keymap_entry *ke)
513 {
514 struct rc_dev *rdev = input_get_drvdata(idev);
515 struct rc_map *rc_map = &rdev->rc_map;
516 struct rc_map_table *entry;
517 unsigned long flags;
518 unsigned int index;
519 unsigned int scancode;
520 int retval;
521
522 spin_lock_irqsave(&rc_map->lock, flags);
523
524 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
525 index = ke->index;
526 } else {
527 retval = input_scancode_to_scalar(ke, &scancode);
528 if (retval)
529 goto out;
530
531 index = ir_lookup_by_scancode(rc_map, scancode);
532 }
533
534 if (index < rc_map->len) {
535 entry = &rc_map->scan[index];
536
537 ke->index = index;
538 ke->keycode = entry->keycode;
539 ke->len = sizeof(entry->scancode);
540 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
541
542 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
543 /*
544 * We do not really know the valid range of scancodes
545 * so let's respond with KEY_RESERVED to anything we
546 * do not have mapping for [yet].
547 */
548 ke->index = index;
549 ke->keycode = KEY_RESERVED;
550 } else {
551 retval = -EINVAL;
552 goto out;
553 }
554
555 retval = 0;
556
557 out:
558 spin_unlock_irqrestore(&rc_map->lock, flags);
559 return retval;
560 }
561
562 /**
563 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
564 * @dev: the struct rc_dev descriptor of the device
565 * @scancode: the scancode to look for
566 *
567 * This routine is used by drivers which need to convert a scancode to a
568 * keycode. Normally it should not be used since drivers should have no
569 * interest in keycodes.
570 *
571 * return: the corresponding keycode, or KEY_RESERVED
572 */
rc_g_keycode_from_table(struct rc_dev * dev,u32 scancode)573 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
574 {
575 struct rc_map *rc_map = &dev->rc_map;
576 unsigned int keycode;
577 unsigned int index;
578 unsigned long flags;
579
580 spin_lock_irqsave(&rc_map->lock, flags);
581
582 index = ir_lookup_by_scancode(rc_map, scancode);
583 keycode = index < rc_map->len ?
584 rc_map->scan[index].keycode : KEY_RESERVED;
585
586 spin_unlock_irqrestore(&rc_map->lock, flags);
587
588 if (keycode != KEY_RESERVED)
589 dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
590 dev->device_name, scancode, keycode);
591
592 return keycode;
593 }
594 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
595
596 /**
597 * ir_do_keyup() - internal function to signal the release of a keypress
598 * @dev: the struct rc_dev descriptor of the device
599 * @sync: whether or not to call input_sync
600 *
601 * This function is used internally to release a keypress, it must be
602 * called with keylock held.
603 */
ir_do_keyup(struct rc_dev * dev,bool sync)604 static void ir_do_keyup(struct rc_dev *dev, bool sync)
605 {
606 if (!dev->keypressed)
607 return;
608
609 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
610 del_timer(&dev->timer_repeat);
611 input_report_key(dev->input_dev, dev->last_keycode, 0);
612 led_trigger_event(led_feedback, LED_OFF);
613 if (sync)
614 input_sync(dev->input_dev);
615 dev->keypressed = false;
616 }
617
618 /**
619 * rc_keyup() - signals the release of a keypress
620 * @dev: the struct rc_dev descriptor of the device
621 *
622 * This routine is used to signal that a key has been released on the
623 * remote control.
624 */
rc_keyup(struct rc_dev * dev)625 void rc_keyup(struct rc_dev *dev)
626 {
627 unsigned long flags;
628
629 spin_lock_irqsave(&dev->keylock, flags);
630 ir_do_keyup(dev, true);
631 spin_unlock_irqrestore(&dev->keylock, flags);
632 }
633 EXPORT_SYMBOL_GPL(rc_keyup);
634
635 /**
636 * ir_timer_keyup() - generates a keyup event after a timeout
637 *
638 * @t: a pointer to the struct timer_list
639 *
640 * This routine will generate a keyup event some time after a keydown event
641 * is generated when no further activity has been detected.
642 */
ir_timer_keyup(struct timer_list * t)643 static void ir_timer_keyup(struct timer_list *t)
644 {
645 struct rc_dev *dev = from_timer(dev, t, timer_keyup);
646 unsigned long flags;
647
648 /*
649 * ir->keyup_jiffies is used to prevent a race condition if a
650 * hardware interrupt occurs at this point and the keyup timer
651 * event is moved further into the future as a result.
652 *
653 * The timer will then be reactivated and this function called
654 * again in the future. We need to exit gracefully in that case
655 * to allow the input subsystem to do its auto-repeat magic or
656 * a keyup event might follow immediately after the keydown.
657 */
658 spin_lock_irqsave(&dev->keylock, flags);
659 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
660 ir_do_keyup(dev, true);
661 spin_unlock_irqrestore(&dev->keylock, flags);
662 }
663
664 /**
665 * ir_timer_repeat() - generates a repeat event after a timeout
666 *
667 * @t: a pointer to the struct timer_list
668 *
669 * This routine will generate a soft repeat event every REP_PERIOD
670 * milliseconds.
671 */
ir_timer_repeat(struct timer_list * t)672 static void ir_timer_repeat(struct timer_list *t)
673 {
674 struct rc_dev *dev = from_timer(dev, t, timer_repeat);
675 struct input_dev *input = dev->input_dev;
676 unsigned long flags;
677
678 spin_lock_irqsave(&dev->keylock, flags);
679 if (dev->keypressed) {
680 input_event(input, EV_KEY, dev->last_keycode, 2);
681 input_sync(input);
682 if (input->rep[REP_PERIOD])
683 mod_timer(&dev->timer_repeat, jiffies +
684 msecs_to_jiffies(input->rep[REP_PERIOD]));
685 }
686 spin_unlock_irqrestore(&dev->keylock, flags);
687 }
688
repeat_period(int protocol)689 static unsigned int repeat_period(int protocol)
690 {
691 if (protocol >= ARRAY_SIZE(protocols))
692 return 100;
693
694 return protocols[protocol].repeat_period;
695 }
696
697 /**
698 * rc_repeat() - signals that a key is still pressed
699 * @dev: the struct rc_dev descriptor of the device
700 *
701 * This routine is used by IR decoders when a repeat message which does
702 * not include the necessary bits to reproduce the scancode has been
703 * received.
704 */
rc_repeat(struct rc_dev * dev)705 void rc_repeat(struct rc_dev *dev)
706 {
707 unsigned long flags;
708 unsigned int timeout = nsecs_to_jiffies(dev->timeout) +
709 msecs_to_jiffies(repeat_period(dev->last_protocol));
710 struct lirc_scancode sc = {
711 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
712 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
713 .flags = LIRC_SCANCODE_FLAG_REPEAT |
714 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
715 };
716
717 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
718 ir_lirc_scancode_event(dev, &sc);
719
720 spin_lock_irqsave(&dev->keylock, flags);
721
722 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
723 input_sync(dev->input_dev);
724
725 if (dev->keypressed) {
726 dev->keyup_jiffies = jiffies + timeout;
727 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
728 }
729
730 spin_unlock_irqrestore(&dev->keylock, flags);
731 }
732 EXPORT_SYMBOL_GPL(rc_repeat);
733
734 /**
735 * ir_do_keydown() - internal function to process a keypress
736 * @dev: the struct rc_dev descriptor of the device
737 * @protocol: the protocol of the keypress
738 * @scancode: the scancode of the keypress
739 * @keycode: the keycode of the keypress
740 * @toggle: the toggle value of the keypress
741 *
742 * This function is used internally to register a keypress, it must be
743 * called with keylock held.
744 */
ir_do_keydown(struct rc_dev * dev,enum rc_proto protocol,u32 scancode,u32 keycode,u8 toggle)745 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
746 u32 scancode, u32 keycode, u8 toggle)
747 {
748 bool new_event = (!dev->keypressed ||
749 dev->last_protocol != protocol ||
750 dev->last_scancode != scancode ||
751 dev->last_toggle != toggle);
752 struct lirc_scancode sc = {
753 .scancode = scancode, .rc_proto = protocol,
754 .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
755 .keycode = keycode
756 };
757
758 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
759 ir_lirc_scancode_event(dev, &sc);
760
761 if (new_event && dev->keypressed)
762 ir_do_keyup(dev, false);
763
764 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
765
766 dev->last_protocol = protocol;
767 dev->last_scancode = scancode;
768 dev->last_toggle = toggle;
769 dev->last_keycode = keycode;
770
771 if (new_event && keycode != KEY_RESERVED) {
772 /* Register a keypress */
773 dev->keypressed = true;
774
775 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
776 dev->device_name, keycode, protocol, scancode);
777 input_report_key(dev->input_dev, keycode, 1);
778
779 led_trigger_event(led_feedback, LED_FULL);
780 }
781
782 /*
783 * For CEC, start sending repeat messages as soon as the first
784 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
785 * is non-zero. Otherwise, the input layer will generate repeat
786 * messages.
787 */
788 if (!new_event && keycode != KEY_RESERVED &&
789 dev->allowed_protocols == RC_PROTO_BIT_CEC &&
790 !timer_pending(&dev->timer_repeat) &&
791 dev->input_dev->rep[REP_PERIOD] &&
792 !dev->input_dev->rep[REP_DELAY]) {
793 input_event(dev->input_dev, EV_KEY, keycode, 2);
794 mod_timer(&dev->timer_repeat, jiffies +
795 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
796 }
797
798 input_sync(dev->input_dev);
799 }
800
801 /**
802 * rc_keydown() - generates input event for a key press
803 * @dev: the struct rc_dev descriptor of the device
804 * @protocol: the protocol for the keypress
805 * @scancode: the scancode for the keypress
806 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
807 * support toggle values, this should be set to zero)
808 *
809 * This routine is used to signal that a key has been pressed on the
810 * remote control.
811 */
rc_keydown(struct rc_dev * dev,enum rc_proto protocol,u32 scancode,u8 toggle)812 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
813 u8 toggle)
814 {
815 unsigned long flags;
816 u32 keycode = rc_g_keycode_from_table(dev, scancode);
817
818 spin_lock_irqsave(&dev->keylock, flags);
819 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
820
821 if (dev->keypressed) {
822 dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) +
823 msecs_to_jiffies(repeat_period(protocol));
824 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
825 }
826 spin_unlock_irqrestore(&dev->keylock, flags);
827 }
828 EXPORT_SYMBOL_GPL(rc_keydown);
829
830 /**
831 * rc_keydown_notimeout() - generates input event for a key press without
832 * an automatic keyup event at a later time
833 * @dev: the struct rc_dev descriptor of the device
834 * @protocol: the protocol for the keypress
835 * @scancode: the scancode for the keypress
836 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
837 * support toggle values, this should be set to zero)
838 *
839 * This routine is used to signal that a key has been pressed on the
840 * remote control. The driver must manually call rc_keyup() at a later stage.
841 */
rc_keydown_notimeout(struct rc_dev * dev,enum rc_proto protocol,u32 scancode,u8 toggle)842 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
843 u32 scancode, u8 toggle)
844 {
845 unsigned long flags;
846 u32 keycode = rc_g_keycode_from_table(dev, scancode);
847
848 spin_lock_irqsave(&dev->keylock, flags);
849 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
850 spin_unlock_irqrestore(&dev->keylock, flags);
851 }
852 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
853
854 /**
855 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
856 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
857 * @proto: protocol
858 * @scancode: scancode
859 */
rc_validate_scancode(enum rc_proto proto,u32 scancode)860 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
861 {
862 switch (proto) {
863 /*
864 * NECX has a 16-bit address; if the lower 8 bits match the upper
865 * 8 bits inverted, then the address would match regular nec.
866 */
867 case RC_PROTO_NECX:
868 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
869 return false;
870 break;
871 /*
872 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
873 * of the command match the upper 8 bits inverted, then it would
874 * be either NEC or NECX.
875 */
876 case RC_PROTO_NEC32:
877 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
878 return false;
879 break;
880 /*
881 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
882 * is regular mode-6a 32 bit
883 */
884 case RC_PROTO_RC6_MCE:
885 if ((scancode & 0xffff0000) != 0x800f0000)
886 return false;
887 break;
888 case RC_PROTO_RC6_6A_32:
889 if ((scancode & 0xffff0000) == 0x800f0000)
890 return false;
891 break;
892 default:
893 break;
894 }
895
896 return true;
897 }
898
899 /**
900 * rc_validate_filter() - checks that the scancode and mask are valid and
901 * provides sensible defaults
902 * @dev: the struct rc_dev descriptor of the device
903 * @filter: the scancode and mask
904 *
905 * return: 0 or -EINVAL if the filter is not valid
906 */
rc_validate_filter(struct rc_dev * dev,struct rc_scancode_filter * filter)907 static int rc_validate_filter(struct rc_dev *dev,
908 struct rc_scancode_filter *filter)
909 {
910 u32 mask, s = filter->data;
911 enum rc_proto protocol = dev->wakeup_protocol;
912
913 if (protocol >= ARRAY_SIZE(protocols))
914 return -EINVAL;
915
916 mask = protocols[protocol].scancode_bits;
917
918 if (!rc_validate_scancode(protocol, s))
919 return -EINVAL;
920
921 filter->data &= mask;
922 filter->mask &= mask;
923
924 /*
925 * If we have to raw encode the IR for wakeup, we cannot have a mask
926 */
927 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
928 return -EINVAL;
929
930 return 0;
931 }
932
rc_open(struct rc_dev * rdev)933 int rc_open(struct rc_dev *rdev)
934 {
935 int rval = 0;
936
937 if (!rdev)
938 return -EINVAL;
939
940 mutex_lock(&rdev->lock);
941
942 if (!rdev->registered) {
943 rval = -ENODEV;
944 } else {
945 if (!rdev->users++ && rdev->open)
946 rval = rdev->open(rdev);
947
948 if (rval)
949 rdev->users--;
950 }
951
952 mutex_unlock(&rdev->lock);
953
954 return rval;
955 }
956
ir_open(struct input_dev * idev)957 static int ir_open(struct input_dev *idev)
958 {
959 struct rc_dev *rdev = input_get_drvdata(idev);
960
961 return rc_open(rdev);
962 }
963
rc_close(struct rc_dev * rdev)964 void rc_close(struct rc_dev *rdev)
965 {
966 if (rdev) {
967 mutex_lock(&rdev->lock);
968
969 if (!--rdev->users && rdev->close && rdev->registered)
970 rdev->close(rdev);
971
972 mutex_unlock(&rdev->lock);
973 }
974 }
975
ir_close(struct input_dev * idev)976 static void ir_close(struct input_dev *idev)
977 {
978 struct rc_dev *rdev = input_get_drvdata(idev);
979 rc_close(rdev);
980 }
981
982 /* class for /sys/class/rc */
rc_devnode(struct device * dev,umode_t * mode)983 static char *rc_devnode(struct device *dev, umode_t *mode)
984 {
985 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
986 }
987
988 static struct class rc_class = {
989 .name = "rc",
990 .devnode = rc_devnode,
991 };
992
993 /*
994 * These are the protocol textual descriptions that are
995 * used by the sysfs protocols file. Note that the order
996 * of the entries is relevant.
997 */
998 static const struct {
999 u64 type;
1000 const char *name;
1001 const char *module_name;
1002 } proto_names[] = {
1003 { RC_PROTO_BIT_NONE, "none", NULL },
1004 { RC_PROTO_BIT_OTHER, "other", NULL },
1005 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
1006 { RC_PROTO_BIT_RC5 |
1007 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
1008 { RC_PROTO_BIT_NEC |
1009 RC_PROTO_BIT_NECX |
1010 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
1011 { RC_PROTO_BIT_RC6_0 |
1012 RC_PROTO_BIT_RC6_6A_20 |
1013 RC_PROTO_BIT_RC6_6A_24 |
1014 RC_PROTO_BIT_RC6_6A_32 |
1015 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
1016 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
1017 { RC_PROTO_BIT_SONY12 |
1018 RC_PROTO_BIT_SONY15 |
1019 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
1020 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
1021 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
1022 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
1023 { RC_PROTO_BIT_MCIR2_KBD |
1024 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
1025 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
1026 { RC_PROTO_BIT_CEC, "cec", NULL },
1027 { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" },
1028 { RC_PROTO_BIT_RCMM12 |
1029 RC_PROTO_BIT_RCMM24 |
1030 RC_PROTO_BIT_RCMM32, "rc-mm", "ir-rcmm-decoder" },
1031 { RC_PROTO_BIT_XBOX_DVD, "xbox-dvd", NULL },
1032 };
1033
1034 /**
1035 * struct rc_filter_attribute - Device attribute relating to a filter type.
1036 * @attr: Device attribute.
1037 * @type: Filter type.
1038 * @mask: false for filter value, true for filter mask.
1039 */
1040 struct rc_filter_attribute {
1041 struct device_attribute attr;
1042 enum rc_filter_type type;
1043 bool mask;
1044 };
1045 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1046
1047 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1048 struct rc_filter_attribute dev_attr_##_name = { \
1049 .attr = __ATTR(_name, _mode, _show, _store), \
1050 .type = (_type), \
1051 .mask = (_mask), \
1052 }
1053
1054 /**
1055 * show_protocols() - shows the current IR protocol(s)
1056 * @device: the device descriptor
1057 * @mattr: the device attribute struct
1058 * @buf: a pointer to the output buffer
1059 *
1060 * This routine is a callback routine for input read the IR protocol type(s).
1061 * it is triggered by reading /sys/class/rc/rc?/protocols.
1062 * It returns the protocol names of supported protocols.
1063 * Enabled protocols are printed in brackets.
1064 *
1065 * dev->lock is taken to guard against races between
1066 * store_protocols and show_protocols.
1067 */
show_protocols(struct device * device,struct device_attribute * mattr,char * buf)1068 static ssize_t show_protocols(struct device *device,
1069 struct device_attribute *mattr, char *buf)
1070 {
1071 struct rc_dev *dev = to_rc_dev(device);
1072 u64 allowed, enabled;
1073 char *tmp = buf;
1074 int i;
1075
1076 mutex_lock(&dev->lock);
1077
1078 enabled = dev->enabled_protocols;
1079 allowed = dev->allowed_protocols;
1080 if (dev->raw && !allowed)
1081 allowed = ir_raw_get_allowed_protocols();
1082
1083 mutex_unlock(&dev->lock);
1084
1085 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1086 __func__, (long long)allowed, (long long)enabled);
1087
1088 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1089 if (allowed & enabled & proto_names[i].type)
1090 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1091 else if (allowed & proto_names[i].type)
1092 tmp += sprintf(tmp, "%s ", proto_names[i].name);
1093
1094 if (allowed & proto_names[i].type)
1095 allowed &= ~proto_names[i].type;
1096 }
1097
1098 #ifdef CONFIG_LIRC
1099 if (dev->driver_type == RC_DRIVER_IR_RAW)
1100 tmp += sprintf(tmp, "[lirc] ");
1101 #endif
1102
1103 if (tmp != buf)
1104 tmp--;
1105 *tmp = '\n';
1106
1107 return tmp + 1 - buf;
1108 }
1109
1110 /**
1111 * parse_protocol_change() - parses a protocol change request
1112 * @dev: rc_dev device
1113 * @protocols: pointer to the bitmask of current protocols
1114 * @buf: pointer to the buffer with a list of changes
1115 *
1116 * Writing "+proto" will add a protocol to the protocol mask.
1117 * Writing "-proto" will remove a protocol from protocol mask.
1118 * Writing "proto" will enable only "proto".
1119 * Writing "none" will disable all protocols.
1120 * Returns the number of changes performed or a negative error code.
1121 */
parse_protocol_change(struct rc_dev * dev,u64 * protocols,const char * buf)1122 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1123 const char *buf)
1124 {
1125 const char *tmp;
1126 unsigned count = 0;
1127 bool enable, disable;
1128 u64 mask;
1129 int i;
1130
1131 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1132 if (!*tmp)
1133 break;
1134
1135 if (*tmp == '+') {
1136 enable = true;
1137 disable = false;
1138 tmp++;
1139 } else if (*tmp == '-') {
1140 enable = false;
1141 disable = true;
1142 tmp++;
1143 } else {
1144 enable = false;
1145 disable = false;
1146 }
1147
1148 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1149 if (!strcasecmp(tmp, proto_names[i].name)) {
1150 mask = proto_names[i].type;
1151 break;
1152 }
1153 }
1154
1155 if (i == ARRAY_SIZE(proto_names)) {
1156 if (!strcasecmp(tmp, "lirc"))
1157 mask = 0;
1158 else {
1159 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1160 tmp);
1161 return -EINVAL;
1162 }
1163 }
1164
1165 count++;
1166
1167 if (enable)
1168 *protocols |= mask;
1169 else if (disable)
1170 *protocols &= ~mask;
1171 else
1172 *protocols = mask;
1173 }
1174
1175 if (!count) {
1176 dev_dbg(&dev->dev, "Protocol not specified\n");
1177 return -EINVAL;
1178 }
1179
1180 return count;
1181 }
1182
ir_raw_load_modules(u64 * protocols)1183 void ir_raw_load_modules(u64 *protocols)
1184 {
1185 u64 available;
1186 int i, ret;
1187
1188 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1189 if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1190 proto_names[i].type & (RC_PROTO_BIT_OTHER |
1191 RC_PROTO_BIT_UNKNOWN))
1192 continue;
1193
1194 available = ir_raw_get_allowed_protocols();
1195 if (!(*protocols & proto_names[i].type & ~available))
1196 continue;
1197
1198 if (!proto_names[i].module_name) {
1199 pr_err("Can't enable IR protocol %s\n",
1200 proto_names[i].name);
1201 *protocols &= ~proto_names[i].type;
1202 continue;
1203 }
1204
1205 ret = request_module("%s", proto_names[i].module_name);
1206 if (ret < 0) {
1207 pr_err("Couldn't load IR protocol module %s\n",
1208 proto_names[i].module_name);
1209 *protocols &= ~proto_names[i].type;
1210 continue;
1211 }
1212 msleep(20);
1213 available = ir_raw_get_allowed_protocols();
1214 if (!(*protocols & proto_names[i].type & ~available))
1215 continue;
1216
1217 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1218 proto_names[i].module_name,
1219 proto_names[i].name);
1220 *protocols &= ~proto_names[i].type;
1221 }
1222 }
1223
1224 /**
1225 * store_protocols() - changes the current/wakeup IR protocol(s)
1226 * @device: the device descriptor
1227 * @mattr: the device attribute struct
1228 * @buf: a pointer to the input buffer
1229 * @len: length of the input buffer
1230 *
1231 * This routine is for changing the IR protocol type.
1232 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1233 * See parse_protocol_change() for the valid commands.
1234 * Returns @len on success or a negative error code.
1235 *
1236 * dev->lock is taken to guard against races between
1237 * store_protocols and show_protocols.
1238 */
store_protocols(struct device * device,struct device_attribute * mattr,const char * buf,size_t len)1239 static ssize_t store_protocols(struct device *device,
1240 struct device_attribute *mattr,
1241 const char *buf, size_t len)
1242 {
1243 struct rc_dev *dev = to_rc_dev(device);
1244 u64 *current_protocols;
1245 struct rc_scancode_filter *filter;
1246 u64 old_protocols, new_protocols;
1247 ssize_t rc;
1248
1249 dev_dbg(&dev->dev, "Normal protocol change requested\n");
1250 current_protocols = &dev->enabled_protocols;
1251 filter = &dev->scancode_filter;
1252
1253 if (!dev->change_protocol) {
1254 dev_dbg(&dev->dev, "Protocol switching not supported\n");
1255 return -EINVAL;
1256 }
1257
1258 mutex_lock(&dev->lock);
1259
1260 old_protocols = *current_protocols;
1261 new_protocols = old_protocols;
1262 rc = parse_protocol_change(dev, &new_protocols, buf);
1263 if (rc < 0)
1264 goto out;
1265
1266 if (dev->driver_type == RC_DRIVER_IR_RAW)
1267 ir_raw_load_modules(&new_protocols);
1268
1269 rc = dev->change_protocol(dev, &new_protocols);
1270 if (rc < 0) {
1271 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1272 (long long)new_protocols);
1273 goto out;
1274 }
1275
1276 if (new_protocols != old_protocols) {
1277 *current_protocols = new_protocols;
1278 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1279 (long long)new_protocols);
1280 }
1281
1282 /*
1283 * If a protocol change was attempted the filter may need updating, even
1284 * if the actual protocol mask hasn't changed (since the driver may have
1285 * cleared the filter).
1286 * Try setting the same filter with the new protocol (if any).
1287 * Fall back to clearing the filter.
1288 */
1289 if (dev->s_filter && filter->mask) {
1290 if (new_protocols)
1291 rc = dev->s_filter(dev, filter);
1292 else
1293 rc = -1;
1294
1295 if (rc < 0) {
1296 filter->data = 0;
1297 filter->mask = 0;
1298 dev->s_filter(dev, filter);
1299 }
1300 }
1301
1302 rc = len;
1303
1304 out:
1305 mutex_unlock(&dev->lock);
1306 return rc;
1307 }
1308
1309 /**
1310 * show_filter() - shows the current scancode filter value or mask
1311 * @device: the device descriptor
1312 * @attr: the device attribute struct
1313 * @buf: a pointer to the output buffer
1314 *
1315 * This routine is a callback routine to read a scancode filter value or mask.
1316 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1317 * It prints the current scancode filter value or mask of the appropriate filter
1318 * type in hexadecimal into @buf and returns the size of the buffer.
1319 *
1320 * Bits of the filter value corresponding to set bits in the filter mask are
1321 * compared against input scancodes and non-matching scancodes are discarded.
1322 *
1323 * dev->lock is taken to guard against races between
1324 * store_filter and show_filter.
1325 */
show_filter(struct device * device,struct device_attribute * attr,char * buf)1326 static ssize_t show_filter(struct device *device,
1327 struct device_attribute *attr,
1328 char *buf)
1329 {
1330 struct rc_dev *dev = to_rc_dev(device);
1331 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1332 struct rc_scancode_filter *filter;
1333 u32 val;
1334
1335 mutex_lock(&dev->lock);
1336
1337 if (fattr->type == RC_FILTER_NORMAL)
1338 filter = &dev->scancode_filter;
1339 else
1340 filter = &dev->scancode_wakeup_filter;
1341
1342 if (fattr->mask)
1343 val = filter->mask;
1344 else
1345 val = filter->data;
1346 mutex_unlock(&dev->lock);
1347
1348 return sprintf(buf, "%#x\n", val);
1349 }
1350
1351 /**
1352 * store_filter() - changes the scancode filter value
1353 * @device: the device descriptor
1354 * @attr: the device attribute struct
1355 * @buf: a pointer to the input buffer
1356 * @len: length of the input buffer
1357 *
1358 * This routine is for changing a scancode filter value or mask.
1359 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1360 * Returns -EINVAL if an invalid filter value for the current protocol was
1361 * specified or if scancode filtering is not supported by the driver, otherwise
1362 * returns @len.
1363 *
1364 * Bits of the filter value corresponding to set bits in the filter mask are
1365 * compared against input scancodes and non-matching scancodes are discarded.
1366 *
1367 * dev->lock is taken to guard against races between
1368 * store_filter and show_filter.
1369 */
store_filter(struct device * device,struct device_attribute * attr,const char * buf,size_t len)1370 static ssize_t store_filter(struct device *device,
1371 struct device_attribute *attr,
1372 const char *buf, size_t len)
1373 {
1374 struct rc_dev *dev = to_rc_dev(device);
1375 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1376 struct rc_scancode_filter new_filter, *filter;
1377 int ret;
1378 unsigned long val;
1379 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1380
1381 ret = kstrtoul(buf, 0, &val);
1382 if (ret < 0)
1383 return ret;
1384
1385 if (fattr->type == RC_FILTER_NORMAL) {
1386 set_filter = dev->s_filter;
1387 filter = &dev->scancode_filter;
1388 } else {
1389 set_filter = dev->s_wakeup_filter;
1390 filter = &dev->scancode_wakeup_filter;
1391 }
1392
1393 if (!set_filter)
1394 return -EINVAL;
1395
1396 mutex_lock(&dev->lock);
1397
1398 new_filter = *filter;
1399 if (fattr->mask)
1400 new_filter.mask = val;
1401 else
1402 new_filter.data = val;
1403
1404 if (fattr->type == RC_FILTER_WAKEUP) {
1405 /*
1406 * Refuse to set a filter unless a protocol is enabled
1407 * and the filter is valid for that protocol
1408 */
1409 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1410 ret = rc_validate_filter(dev, &new_filter);
1411 else
1412 ret = -EINVAL;
1413
1414 if (ret != 0)
1415 goto unlock;
1416 }
1417
1418 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1419 val) {
1420 /* refuse to set a filter unless a protocol is enabled */
1421 ret = -EINVAL;
1422 goto unlock;
1423 }
1424
1425 ret = set_filter(dev, &new_filter);
1426 if (ret < 0)
1427 goto unlock;
1428
1429 *filter = new_filter;
1430
1431 unlock:
1432 mutex_unlock(&dev->lock);
1433 return (ret < 0) ? ret : len;
1434 }
1435
1436 /**
1437 * show_wakeup_protocols() - shows the wakeup IR protocol
1438 * @device: the device descriptor
1439 * @mattr: the device attribute struct
1440 * @buf: a pointer to the output buffer
1441 *
1442 * This routine is a callback routine for input read the IR protocol type(s).
1443 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1444 * It returns the protocol names of supported protocols.
1445 * The enabled protocols are printed in brackets.
1446 *
1447 * dev->lock is taken to guard against races between
1448 * store_wakeup_protocols and show_wakeup_protocols.
1449 */
show_wakeup_protocols(struct device * device,struct device_attribute * mattr,char * buf)1450 static ssize_t show_wakeup_protocols(struct device *device,
1451 struct device_attribute *mattr,
1452 char *buf)
1453 {
1454 struct rc_dev *dev = to_rc_dev(device);
1455 u64 allowed;
1456 enum rc_proto enabled;
1457 char *tmp = buf;
1458 int i;
1459
1460 mutex_lock(&dev->lock);
1461
1462 allowed = dev->allowed_wakeup_protocols;
1463 enabled = dev->wakeup_protocol;
1464
1465 mutex_unlock(&dev->lock);
1466
1467 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1468 __func__, (long long)allowed, enabled);
1469
1470 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1471 if (allowed & (1ULL << i)) {
1472 if (i == enabled)
1473 tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1474 else
1475 tmp += sprintf(tmp, "%s ", protocols[i].name);
1476 }
1477 }
1478
1479 if (tmp != buf)
1480 tmp--;
1481 *tmp = '\n';
1482
1483 return tmp + 1 - buf;
1484 }
1485
1486 /**
1487 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1488 * @device: the device descriptor
1489 * @mattr: the device attribute struct
1490 * @buf: a pointer to the input buffer
1491 * @len: length of the input buffer
1492 *
1493 * This routine is for changing the IR protocol type.
1494 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1495 * Returns @len on success or a negative error code.
1496 *
1497 * dev->lock is taken to guard against races between
1498 * store_wakeup_protocols and show_wakeup_protocols.
1499 */
store_wakeup_protocols(struct device * device,struct device_attribute * mattr,const char * buf,size_t len)1500 static ssize_t store_wakeup_protocols(struct device *device,
1501 struct device_attribute *mattr,
1502 const char *buf, size_t len)
1503 {
1504 struct rc_dev *dev = to_rc_dev(device);
1505 enum rc_proto protocol = RC_PROTO_UNKNOWN;
1506 ssize_t rc;
1507 u64 allowed;
1508 int i;
1509
1510 mutex_lock(&dev->lock);
1511
1512 allowed = dev->allowed_wakeup_protocols;
1513
1514 if (!sysfs_streq(buf, "none")) {
1515 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1516 if ((allowed & (1ULL << i)) &&
1517 sysfs_streq(buf, protocols[i].name)) {
1518 protocol = i;
1519 break;
1520 }
1521 }
1522
1523 if (i == ARRAY_SIZE(protocols)) {
1524 rc = -EINVAL;
1525 goto out;
1526 }
1527
1528 if (dev->encode_wakeup) {
1529 u64 mask = 1ULL << protocol;
1530
1531 ir_raw_load_modules(&mask);
1532 if (!mask) {
1533 rc = -EINVAL;
1534 goto out;
1535 }
1536 }
1537 }
1538
1539 if (dev->wakeup_protocol != protocol) {
1540 dev->wakeup_protocol = protocol;
1541 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1542
1543 if (protocol == RC_PROTO_RC6_MCE)
1544 dev->scancode_wakeup_filter.data = 0x800f0000;
1545 else
1546 dev->scancode_wakeup_filter.data = 0;
1547 dev->scancode_wakeup_filter.mask = 0;
1548
1549 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1550 if (rc == 0)
1551 rc = len;
1552 } else {
1553 rc = len;
1554 }
1555
1556 out:
1557 mutex_unlock(&dev->lock);
1558 return rc;
1559 }
1560
rc_dev_release(struct device * device)1561 static void rc_dev_release(struct device *device)
1562 {
1563 struct rc_dev *dev = to_rc_dev(device);
1564
1565 kfree(dev);
1566 }
1567
1568 #define ADD_HOTPLUG_VAR(fmt, val...) \
1569 do { \
1570 int err = add_uevent_var(env, fmt, val); \
1571 if (err) \
1572 return err; \
1573 } while (0)
1574
rc_dev_uevent(struct device * device,struct kobj_uevent_env * env)1575 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1576 {
1577 struct rc_dev *dev = to_rc_dev(device);
1578
1579 if (dev->rc_map.name)
1580 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1581 if (dev->driver_name)
1582 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1583 if (dev->device_name)
1584 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1585
1586 return 0;
1587 }
1588
1589 /*
1590 * Static device attribute struct with the sysfs attributes for IR's
1591 */
1592 static struct device_attribute dev_attr_ro_protocols =
1593 __ATTR(protocols, 0444, show_protocols, NULL);
1594 static struct device_attribute dev_attr_rw_protocols =
1595 __ATTR(protocols, 0644, show_protocols, store_protocols);
1596 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1597 store_wakeup_protocols);
1598 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1599 show_filter, store_filter, RC_FILTER_NORMAL, false);
1600 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1601 show_filter, store_filter, RC_FILTER_NORMAL, true);
1602 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1603 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1604 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1605 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1606
1607 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1608 &dev_attr_rw_protocols.attr,
1609 NULL,
1610 };
1611
1612 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1613 .attrs = rc_dev_rw_protocol_attrs,
1614 };
1615
1616 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1617 &dev_attr_ro_protocols.attr,
1618 NULL,
1619 };
1620
1621 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1622 .attrs = rc_dev_ro_protocol_attrs,
1623 };
1624
1625 static struct attribute *rc_dev_filter_attrs[] = {
1626 &dev_attr_filter.attr.attr,
1627 &dev_attr_filter_mask.attr.attr,
1628 NULL,
1629 };
1630
1631 static const struct attribute_group rc_dev_filter_attr_grp = {
1632 .attrs = rc_dev_filter_attrs,
1633 };
1634
1635 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1636 &dev_attr_wakeup_filter.attr.attr,
1637 &dev_attr_wakeup_filter_mask.attr.attr,
1638 &dev_attr_wakeup_protocols.attr,
1639 NULL,
1640 };
1641
1642 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1643 .attrs = rc_dev_wakeup_filter_attrs,
1644 };
1645
1646 static const struct device_type rc_dev_type = {
1647 .release = rc_dev_release,
1648 .uevent = rc_dev_uevent,
1649 };
1650
rc_allocate_device(enum rc_driver_type type)1651 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1652 {
1653 struct rc_dev *dev;
1654
1655 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1656 if (!dev)
1657 return NULL;
1658
1659 if (type != RC_DRIVER_IR_RAW_TX) {
1660 dev->input_dev = input_allocate_device();
1661 if (!dev->input_dev) {
1662 kfree(dev);
1663 return NULL;
1664 }
1665
1666 dev->input_dev->getkeycode = ir_getkeycode;
1667 dev->input_dev->setkeycode = ir_setkeycode;
1668 input_set_drvdata(dev->input_dev, dev);
1669
1670 dev->timeout = IR_DEFAULT_TIMEOUT;
1671 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1672 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1673
1674 spin_lock_init(&dev->rc_map.lock);
1675 spin_lock_init(&dev->keylock);
1676 }
1677 mutex_init(&dev->lock);
1678
1679 dev->dev.type = &rc_dev_type;
1680 dev->dev.class = &rc_class;
1681 device_initialize(&dev->dev);
1682
1683 dev->driver_type = type;
1684
1685 __module_get(THIS_MODULE);
1686 return dev;
1687 }
1688 EXPORT_SYMBOL_GPL(rc_allocate_device);
1689
rc_free_device(struct rc_dev * dev)1690 void rc_free_device(struct rc_dev *dev)
1691 {
1692 if (!dev)
1693 return;
1694
1695 input_free_device(dev->input_dev);
1696
1697 put_device(&dev->dev);
1698
1699 /* kfree(dev) will be called by the callback function
1700 rc_dev_release() */
1701
1702 module_put(THIS_MODULE);
1703 }
1704 EXPORT_SYMBOL_GPL(rc_free_device);
1705
devm_rc_alloc_release(struct device * dev,void * res)1706 static void devm_rc_alloc_release(struct device *dev, void *res)
1707 {
1708 rc_free_device(*(struct rc_dev **)res);
1709 }
1710
devm_rc_allocate_device(struct device * dev,enum rc_driver_type type)1711 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1712 enum rc_driver_type type)
1713 {
1714 struct rc_dev **dr, *rc;
1715
1716 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1717 if (!dr)
1718 return NULL;
1719
1720 rc = rc_allocate_device(type);
1721 if (!rc) {
1722 devres_free(dr);
1723 return NULL;
1724 }
1725
1726 rc->dev.parent = dev;
1727 rc->managed_alloc = true;
1728 *dr = rc;
1729 devres_add(dev, dr);
1730
1731 return rc;
1732 }
1733 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1734
rc_prepare_rx_device(struct rc_dev * dev)1735 static int rc_prepare_rx_device(struct rc_dev *dev)
1736 {
1737 int rc;
1738 struct rc_map *rc_map;
1739 u64 rc_proto;
1740
1741 if (!dev->map_name)
1742 return -EINVAL;
1743
1744 rc_map = rc_map_get(dev->map_name);
1745 if (!rc_map)
1746 rc_map = rc_map_get(RC_MAP_EMPTY);
1747 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1748 return -EINVAL;
1749
1750 rc = ir_setkeytable(dev, rc_map);
1751 if (rc)
1752 return rc;
1753
1754 rc_proto = BIT_ULL(rc_map->rc_proto);
1755
1756 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1757 dev->enabled_protocols = dev->allowed_protocols;
1758
1759 if (dev->driver_type == RC_DRIVER_IR_RAW)
1760 ir_raw_load_modules(&rc_proto);
1761
1762 if (dev->change_protocol) {
1763 rc = dev->change_protocol(dev, &rc_proto);
1764 if (rc < 0)
1765 goto out_table;
1766 dev->enabled_protocols = rc_proto;
1767 }
1768
1769 /* Keyboard events */
1770 set_bit(EV_KEY, dev->input_dev->evbit);
1771 set_bit(EV_REP, dev->input_dev->evbit);
1772 set_bit(EV_MSC, dev->input_dev->evbit);
1773 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1774
1775 /* Pointer/mouse events */
1776 set_bit(EV_REL, dev->input_dev->evbit);
1777 set_bit(REL_X, dev->input_dev->relbit);
1778 set_bit(REL_Y, dev->input_dev->relbit);
1779
1780 if (dev->open)
1781 dev->input_dev->open = ir_open;
1782 if (dev->close)
1783 dev->input_dev->close = ir_close;
1784
1785 dev->input_dev->dev.parent = &dev->dev;
1786 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1787 dev->input_dev->phys = dev->input_phys;
1788 dev->input_dev->name = dev->device_name;
1789
1790 return 0;
1791
1792 out_table:
1793 ir_free_table(&dev->rc_map);
1794
1795 return rc;
1796 }
1797
rc_setup_rx_device(struct rc_dev * dev)1798 static int rc_setup_rx_device(struct rc_dev *dev)
1799 {
1800 int rc;
1801
1802 /* rc_open will be called here */
1803 rc = input_register_device(dev->input_dev);
1804 if (rc)
1805 return rc;
1806
1807 /*
1808 * Default delay of 250ms is too short for some protocols, especially
1809 * since the timeout is currently set to 250ms. Increase it to 500ms,
1810 * to avoid wrong repetition of the keycodes. Note that this must be
1811 * set after the call to input_register_device().
1812 */
1813 if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1814 dev->input_dev->rep[REP_DELAY] = 0;
1815 else
1816 dev->input_dev->rep[REP_DELAY] = 500;
1817
1818 /*
1819 * As a repeat event on protocols like RC-5 and NEC take as long as
1820 * 110/114ms, using 33ms as a repeat period is not the right thing
1821 * to do.
1822 */
1823 dev->input_dev->rep[REP_PERIOD] = 125;
1824
1825 return 0;
1826 }
1827
rc_free_rx_device(struct rc_dev * dev)1828 static void rc_free_rx_device(struct rc_dev *dev)
1829 {
1830 if (!dev)
1831 return;
1832
1833 if (dev->input_dev) {
1834 input_unregister_device(dev->input_dev);
1835 dev->input_dev = NULL;
1836 }
1837
1838 ir_free_table(&dev->rc_map);
1839 }
1840
rc_register_device(struct rc_dev * dev)1841 int rc_register_device(struct rc_dev *dev)
1842 {
1843 const char *path;
1844 int attr = 0;
1845 int minor;
1846 int rc;
1847
1848 if (!dev)
1849 return -EINVAL;
1850
1851 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1852 if (minor < 0)
1853 return minor;
1854
1855 dev->minor = minor;
1856 dev_set_name(&dev->dev, "rc%u", dev->minor);
1857 dev_set_drvdata(&dev->dev, dev);
1858
1859 dev->dev.groups = dev->sysfs_groups;
1860 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1861 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1862 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1863 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1864 if (dev->s_filter)
1865 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1866 if (dev->s_wakeup_filter)
1867 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1868 dev->sysfs_groups[attr++] = NULL;
1869
1870 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1871 rc = ir_raw_event_prepare(dev);
1872 if (rc < 0)
1873 goto out_minor;
1874 }
1875
1876 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1877 rc = rc_prepare_rx_device(dev);
1878 if (rc)
1879 goto out_raw;
1880 }
1881
1882 rc = device_add(&dev->dev);
1883 if (rc)
1884 goto out_rx_free;
1885
1886 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1887 dev_info(&dev->dev, "%s as %s\n",
1888 dev->device_name ?: "Unspecified device", path ?: "N/A");
1889 kfree(path);
1890
1891 dev->registered = true;
1892
1893 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1894 rc = rc_setup_rx_device(dev);
1895 if (rc)
1896 goto out_dev;
1897 }
1898
1899 /* Ensure that the lirc kfifo is setup before we start the thread */
1900 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1901 rc = ir_lirc_register(dev);
1902 if (rc < 0)
1903 goto out_rx;
1904 }
1905
1906 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1907 rc = ir_raw_event_register(dev);
1908 if (rc < 0)
1909 goto out_lirc;
1910 }
1911
1912 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1913 dev->driver_name ? dev->driver_name : "unknown");
1914
1915 return 0;
1916
1917 out_lirc:
1918 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1919 ir_lirc_unregister(dev);
1920 out_rx:
1921 rc_free_rx_device(dev);
1922 out_dev:
1923 device_del(&dev->dev);
1924 out_rx_free:
1925 ir_free_table(&dev->rc_map);
1926 out_raw:
1927 ir_raw_event_free(dev);
1928 out_minor:
1929 ida_simple_remove(&rc_ida, minor);
1930 return rc;
1931 }
1932 EXPORT_SYMBOL_GPL(rc_register_device);
1933
devm_rc_release(struct device * dev,void * res)1934 static void devm_rc_release(struct device *dev, void *res)
1935 {
1936 rc_unregister_device(*(struct rc_dev **)res);
1937 }
1938
devm_rc_register_device(struct device * parent,struct rc_dev * dev)1939 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1940 {
1941 struct rc_dev **dr;
1942 int ret;
1943
1944 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1945 if (!dr)
1946 return -ENOMEM;
1947
1948 ret = rc_register_device(dev);
1949 if (ret) {
1950 devres_free(dr);
1951 return ret;
1952 }
1953
1954 *dr = dev;
1955 devres_add(parent, dr);
1956
1957 return 0;
1958 }
1959 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1960
rc_unregister_device(struct rc_dev * dev)1961 void rc_unregister_device(struct rc_dev *dev)
1962 {
1963 if (!dev)
1964 return;
1965
1966 if (dev->driver_type == RC_DRIVER_IR_RAW)
1967 ir_raw_event_unregister(dev);
1968
1969 del_timer_sync(&dev->timer_keyup);
1970 del_timer_sync(&dev->timer_repeat);
1971
1972 rc_free_rx_device(dev);
1973
1974 mutex_lock(&dev->lock);
1975 if (dev->users && dev->close)
1976 dev->close(dev);
1977 dev->registered = false;
1978 mutex_unlock(&dev->lock);
1979
1980 /*
1981 * lirc device should be freed with dev->registered = false, so
1982 * that userspace polling will get notified.
1983 */
1984 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1985 ir_lirc_unregister(dev);
1986
1987 device_del(&dev->dev);
1988
1989 ida_simple_remove(&rc_ida, dev->minor);
1990
1991 if (!dev->managed_alloc)
1992 rc_free_device(dev);
1993 }
1994
1995 EXPORT_SYMBOL_GPL(rc_unregister_device);
1996
1997 /*
1998 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1999 */
2000
rc_core_init(void)2001 static int __init rc_core_init(void)
2002 {
2003 int rc = class_register(&rc_class);
2004 if (rc) {
2005 pr_err("rc_core: unable to register rc class\n");
2006 return rc;
2007 }
2008
2009 rc = lirc_dev_init();
2010 if (rc) {
2011 pr_err("rc_core: unable to init lirc\n");
2012 class_unregister(&rc_class);
2013 return 0;
2014 }
2015
2016 led_trigger_register_simple("rc-feedback", &led_feedback);
2017 rc_map_register(&empty_map);
2018
2019 return 0;
2020 }
2021
rc_core_exit(void)2022 static void __exit rc_core_exit(void)
2023 {
2024 lirc_dev_exit();
2025 class_unregister(&rc_class);
2026 led_trigger_unregister_simple(led_feedback);
2027 rc_map_unregister(&empty_map);
2028 }
2029
2030 subsys_initcall(rc_core_init);
2031 module_exit(rc_core_exit);
2032
2033 MODULE_AUTHOR("Mauro Carvalho Chehab");
2034 MODULE_LICENSE("GPL v2");
2035