1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4 * Copyright (C) 2015 Broadcom Corporation
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/pci.h>
9 #include <linux/pci-ecam.h>
10 #include <linux/msi.h>
11 #include <linux/clk.h>
12 #include <linux/module.h>
13 #include <linux/mbus.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/irqchip/arm-gic-v3.h>
18 #include <linux/platform_device.h>
19 #include <linux/of_address.h>
20 #include <linux/of_pci.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/phy/phy.h>
24
25 #include "pcie-iproc.h"
26
27 #define EP_PERST_SOURCE_SELECT_SHIFT 2
28 #define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT)
29 #define EP_MODE_SURVIVE_PERST_SHIFT 1
30 #define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT)
31 #define RC_PCIE_RST_OUTPUT_SHIFT 0
32 #define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT)
33 #define PAXC_RESET_MASK 0x7f
34
35 #define GIC_V3_CFG_SHIFT 0
36 #define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT)
37
38 #define MSI_ENABLE_CFG_SHIFT 0
39 #define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT)
40
41 #define CFG_IND_ADDR_MASK 0x00001ffc
42
43 #define CFG_ADDR_REG_NUM_MASK 0x00000ffc
44 #define CFG_ADDR_CFG_TYPE_1 1
45
46 #define SYS_RC_INTX_MASK 0xf
47
48 #define PCIE_PHYLINKUP_SHIFT 3
49 #define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT)
50 #define PCIE_DL_ACTIVE_SHIFT 2
51 #define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT)
52
53 #define APB_ERR_EN_SHIFT 0
54 #define APB_ERR_EN BIT(APB_ERR_EN_SHIFT)
55
56 #define CFG_RD_SUCCESS 0
57 #define CFG_RD_UR 1
58 #define CFG_RD_CRS 2
59 #define CFG_RD_CA 3
60 #define CFG_RETRY_STATUS 0xffff0001
61 #define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */
62
63 /* derive the enum index of the outbound/inbound mapping registers */
64 #define MAP_REG(base_reg, index) ((base_reg) + (index) * 2)
65
66 /*
67 * Maximum number of outbound mapping window sizes that can be supported by any
68 * OARR/OMAP mapping pair
69 */
70 #define MAX_NUM_OB_WINDOW_SIZES 4
71
72 #define OARR_VALID_SHIFT 0
73 #define OARR_VALID BIT(OARR_VALID_SHIFT)
74 #define OARR_SIZE_CFG_SHIFT 1
75
76 /*
77 * Maximum number of inbound mapping region sizes that can be supported by an
78 * IARR
79 */
80 #define MAX_NUM_IB_REGION_SIZES 9
81
82 #define IMAP_VALID_SHIFT 0
83 #define IMAP_VALID BIT(IMAP_VALID_SHIFT)
84
85 #define IPROC_PCI_PM_CAP 0x48
86 #define IPROC_PCI_PM_CAP_MASK 0xffff
87 #define IPROC_PCI_EXP_CAP 0xac
88
89 #define IPROC_PCIE_REG_INVALID 0xffff
90
91 /**
92 * struct iproc_pcie_ob_map - iProc PCIe outbound mapping controller-specific
93 * parameters
94 * @window_sizes: list of supported outbound mapping window sizes in MB
95 * @nr_sizes: number of supported outbound mapping window sizes
96 */
97 struct iproc_pcie_ob_map {
98 resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
99 unsigned int nr_sizes;
100 };
101
102 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
103 {
104 /* OARR0/OMAP0 */
105 .window_sizes = { 128, 256 },
106 .nr_sizes = 2,
107 },
108 {
109 /* OARR1/OMAP1 */
110 .window_sizes = { 128, 256 },
111 .nr_sizes = 2,
112 },
113 };
114
115 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
116 {
117 /* OARR0/OMAP0 */
118 .window_sizes = { 128, 256 },
119 .nr_sizes = 2,
120 },
121 {
122 /* OARR1/OMAP1 */
123 .window_sizes = { 128, 256 },
124 .nr_sizes = 2,
125 },
126 {
127 /* OARR2/OMAP2 */
128 .window_sizes = { 128, 256, 512, 1024 },
129 .nr_sizes = 4,
130 },
131 {
132 /* OARR3/OMAP3 */
133 .window_sizes = { 128, 256, 512, 1024 },
134 .nr_sizes = 4,
135 },
136 };
137
138 /**
139 * enum iproc_pcie_ib_map_type - iProc PCIe inbound mapping type
140 * @IPROC_PCIE_IB_MAP_MEM: DDR memory
141 * @IPROC_PCIE_IB_MAP_IO: device I/O memory
142 * @IPROC_PCIE_IB_MAP_INVALID: invalid or unused
143 */
144 enum iproc_pcie_ib_map_type {
145 IPROC_PCIE_IB_MAP_MEM = 0,
146 IPROC_PCIE_IB_MAP_IO,
147 IPROC_PCIE_IB_MAP_INVALID
148 };
149
150 /**
151 * struct iproc_pcie_ib_map - iProc PCIe inbound mapping controller-specific
152 * parameters
153 * @type: inbound mapping region type
154 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
155 * SZ_1G
156 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
157 * GB, depending on the size unit
158 * @nr_sizes: number of supported inbound mapping region sizes
159 * @nr_windows: number of supported inbound mapping windows for the region
160 * @imap_addr_offset: register offset between the upper and lower 32-bit
161 * IMAP address registers
162 * @imap_window_offset: register offset between each IMAP window
163 */
164 struct iproc_pcie_ib_map {
165 enum iproc_pcie_ib_map_type type;
166 unsigned int size_unit;
167 resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
168 unsigned int nr_sizes;
169 unsigned int nr_windows;
170 u16 imap_addr_offset;
171 u16 imap_window_offset;
172 };
173
174 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
175 {
176 /* IARR0/IMAP0 */
177 .type = IPROC_PCIE_IB_MAP_IO,
178 .size_unit = SZ_1K,
179 .region_sizes = { 32 },
180 .nr_sizes = 1,
181 .nr_windows = 8,
182 .imap_addr_offset = 0x40,
183 .imap_window_offset = 0x4,
184 },
185 {
186 /* IARR1/IMAP1 */
187 .type = IPROC_PCIE_IB_MAP_MEM,
188 .size_unit = SZ_1M,
189 .region_sizes = { 8 },
190 .nr_sizes = 1,
191 .nr_windows = 8,
192 .imap_addr_offset = 0x4,
193 .imap_window_offset = 0x8,
194
195 },
196 {
197 /* IARR2/IMAP2 */
198 .type = IPROC_PCIE_IB_MAP_MEM,
199 .size_unit = SZ_1M,
200 .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
201 16384 },
202 .nr_sizes = 9,
203 .nr_windows = 1,
204 .imap_addr_offset = 0x4,
205 .imap_window_offset = 0x8,
206 },
207 {
208 /* IARR3/IMAP3 */
209 .type = IPROC_PCIE_IB_MAP_MEM,
210 .size_unit = SZ_1G,
211 .region_sizes = { 1, 2, 4, 8, 16, 32 },
212 .nr_sizes = 6,
213 .nr_windows = 8,
214 .imap_addr_offset = 0x4,
215 .imap_window_offset = 0x8,
216 },
217 {
218 /* IARR4/IMAP4 */
219 .type = IPROC_PCIE_IB_MAP_MEM,
220 .size_unit = SZ_1G,
221 .region_sizes = { 32, 64, 128, 256, 512 },
222 .nr_sizes = 5,
223 .nr_windows = 8,
224 .imap_addr_offset = 0x4,
225 .imap_window_offset = 0x8,
226 },
227 };
228
229 /*
230 * iProc PCIe host registers
231 */
232 enum iproc_pcie_reg {
233 /* clock/reset signal control */
234 IPROC_PCIE_CLK_CTRL = 0,
235
236 /*
237 * To allow MSI to be steered to an external MSI controller (e.g., ARM
238 * GICv3 ITS)
239 */
240 IPROC_PCIE_MSI_GIC_MODE,
241
242 /*
243 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
244 * window where the MSI posted writes are written, for the writes to be
245 * interpreted as MSI writes.
246 */
247 IPROC_PCIE_MSI_BASE_ADDR,
248 IPROC_PCIE_MSI_WINDOW_SIZE,
249
250 /*
251 * To hold the address of the register where the MSI writes are
252 * programmed. When ARM GICv3 ITS is used, this should be programmed
253 * with the address of the GITS_TRANSLATER register.
254 */
255 IPROC_PCIE_MSI_ADDR_LO,
256 IPROC_PCIE_MSI_ADDR_HI,
257
258 /* enable MSI */
259 IPROC_PCIE_MSI_EN_CFG,
260
261 /* allow access to root complex configuration space */
262 IPROC_PCIE_CFG_IND_ADDR,
263 IPROC_PCIE_CFG_IND_DATA,
264
265 /* allow access to device configuration space */
266 IPROC_PCIE_CFG_ADDR,
267 IPROC_PCIE_CFG_DATA,
268
269 /* enable INTx */
270 IPROC_PCIE_INTX_EN,
271
272 /* outbound address mapping */
273 IPROC_PCIE_OARR0,
274 IPROC_PCIE_OMAP0,
275 IPROC_PCIE_OARR1,
276 IPROC_PCIE_OMAP1,
277 IPROC_PCIE_OARR2,
278 IPROC_PCIE_OMAP2,
279 IPROC_PCIE_OARR3,
280 IPROC_PCIE_OMAP3,
281
282 /* inbound address mapping */
283 IPROC_PCIE_IARR0,
284 IPROC_PCIE_IMAP0,
285 IPROC_PCIE_IARR1,
286 IPROC_PCIE_IMAP1,
287 IPROC_PCIE_IARR2,
288 IPROC_PCIE_IMAP2,
289 IPROC_PCIE_IARR3,
290 IPROC_PCIE_IMAP3,
291 IPROC_PCIE_IARR4,
292 IPROC_PCIE_IMAP4,
293
294 /* config read status */
295 IPROC_PCIE_CFG_RD_STATUS,
296
297 /* link status */
298 IPROC_PCIE_LINK_STATUS,
299
300 /* enable APB error for unsupported requests */
301 IPROC_PCIE_APB_ERR_EN,
302
303 /* total number of core registers */
304 IPROC_PCIE_MAX_NUM_REG,
305 };
306
307 /* iProc PCIe PAXB BCMA registers */
308 static const u16 iproc_pcie_reg_paxb_bcma[IPROC_PCIE_MAX_NUM_REG] = {
309 [IPROC_PCIE_CLK_CTRL] = 0x000,
310 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
311 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
312 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
313 [IPROC_PCIE_CFG_DATA] = 0x1fc,
314 [IPROC_PCIE_INTX_EN] = 0x330,
315 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
316 };
317
318 /* iProc PCIe PAXB registers */
319 static const u16 iproc_pcie_reg_paxb[IPROC_PCIE_MAX_NUM_REG] = {
320 [IPROC_PCIE_CLK_CTRL] = 0x000,
321 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
322 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
323 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
324 [IPROC_PCIE_CFG_DATA] = 0x1fc,
325 [IPROC_PCIE_INTX_EN] = 0x330,
326 [IPROC_PCIE_OARR0] = 0xd20,
327 [IPROC_PCIE_OMAP0] = 0xd40,
328 [IPROC_PCIE_OARR1] = 0xd28,
329 [IPROC_PCIE_OMAP1] = 0xd48,
330 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
331 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
332 };
333
334 /* iProc PCIe PAXB v2 registers */
335 static const u16 iproc_pcie_reg_paxb_v2[IPROC_PCIE_MAX_NUM_REG] = {
336 [IPROC_PCIE_CLK_CTRL] = 0x000,
337 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
338 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
339 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
340 [IPROC_PCIE_CFG_DATA] = 0x1fc,
341 [IPROC_PCIE_INTX_EN] = 0x330,
342 [IPROC_PCIE_OARR0] = 0xd20,
343 [IPROC_PCIE_OMAP0] = 0xd40,
344 [IPROC_PCIE_OARR1] = 0xd28,
345 [IPROC_PCIE_OMAP1] = 0xd48,
346 [IPROC_PCIE_OARR2] = 0xd60,
347 [IPROC_PCIE_OMAP2] = 0xd68,
348 [IPROC_PCIE_OARR3] = 0xdf0,
349 [IPROC_PCIE_OMAP3] = 0xdf8,
350 [IPROC_PCIE_IARR0] = 0xd00,
351 [IPROC_PCIE_IMAP0] = 0xc00,
352 [IPROC_PCIE_IARR1] = 0xd08,
353 [IPROC_PCIE_IMAP1] = 0xd70,
354 [IPROC_PCIE_IARR2] = 0xd10,
355 [IPROC_PCIE_IMAP2] = 0xcc0,
356 [IPROC_PCIE_IARR3] = 0xe00,
357 [IPROC_PCIE_IMAP3] = 0xe08,
358 [IPROC_PCIE_IARR4] = 0xe68,
359 [IPROC_PCIE_IMAP4] = 0xe70,
360 [IPROC_PCIE_CFG_RD_STATUS] = 0xee0,
361 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
362 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
363 };
364
365 /* iProc PCIe PAXC v1 registers */
366 static const u16 iproc_pcie_reg_paxc[IPROC_PCIE_MAX_NUM_REG] = {
367 [IPROC_PCIE_CLK_CTRL] = 0x000,
368 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
369 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
370 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
371 [IPROC_PCIE_CFG_DATA] = 0x1fc,
372 };
373
374 /* iProc PCIe PAXC v2 registers */
375 static const u16 iproc_pcie_reg_paxc_v2[IPROC_PCIE_MAX_NUM_REG] = {
376 [IPROC_PCIE_MSI_GIC_MODE] = 0x050,
377 [IPROC_PCIE_MSI_BASE_ADDR] = 0x074,
378 [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078,
379 [IPROC_PCIE_MSI_ADDR_LO] = 0x07c,
380 [IPROC_PCIE_MSI_ADDR_HI] = 0x080,
381 [IPROC_PCIE_MSI_EN_CFG] = 0x09c,
382 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
383 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
384 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
385 [IPROC_PCIE_CFG_DATA] = 0x1fc,
386 };
387
388 /*
389 * List of device IDs of controllers that have corrupted capability list that
390 * require SW fixup
391 */
392 static const u16 iproc_pcie_corrupt_cap_did[] = {
393 0x16cd,
394 0x16f0,
395 0xd802,
396 0xd804
397 };
398
iproc_data(struct pci_bus * bus)399 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
400 {
401 struct iproc_pcie *pcie = bus->sysdata;
402 return pcie;
403 }
404
iproc_pcie_reg_is_invalid(u16 reg_offset)405 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
406 {
407 return !!(reg_offset == IPROC_PCIE_REG_INVALID);
408 }
409
iproc_pcie_reg_offset(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)410 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
411 enum iproc_pcie_reg reg)
412 {
413 return pcie->reg_offsets[reg];
414 }
415
iproc_pcie_read_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)416 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
417 enum iproc_pcie_reg reg)
418 {
419 u16 offset = iproc_pcie_reg_offset(pcie, reg);
420
421 if (iproc_pcie_reg_is_invalid(offset))
422 return 0;
423
424 return readl(pcie->base + offset);
425 }
426
iproc_pcie_write_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg,u32 val)427 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
428 enum iproc_pcie_reg reg, u32 val)
429 {
430 u16 offset = iproc_pcie_reg_offset(pcie, reg);
431
432 if (iproc_pcie_reg_is_invalid(offset))
433 return;
434
435 writel(val, pcie->base + offset);
436 }
437
438 /*
439 * APB error forwarding can be disabled during access of configuration
440 * registers of the endpoint device, to prevent unsupported requests
441 * (typically seen during enumeration with multi-function devices) from
442 * triggering a system exception.
443 */
iproc_pcie_apb_err_disable(struct pci_bus * bus,bool disable)444 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
445 bool disable)
446 {
447 struct iproc_pcie *pcie = iproc_data(bus);
448 u32 val;
449
450 if (bus->number && pcie->has_apb_err_disable) {
451 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
452 if (disable)
453 val &= ~APB_ERR_EN;
454 else
455 val |= APB_ERR_EN;
456 iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
457 }
458 }
459
iproc_pcie_map_ep_cfg_reg(struct iproc_pcie * pcie,unsigned int busno,unsigned int devfn,int where)460 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
461 unsigned int busno,
462 unsigned int devfn,
463 int where)
464 {
465 u16 offset;
466 u32 val;
467
468 /* EP device access */
469 val = ALIGN_DOWN(PCIE_ECAM_OFFSET(busno, devfn, where), 4) |
470 CFG_ADDR_CFG_TYPE_1;
471
472 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
473 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
474
475 if (iproc_pcie_reg_is_invalid(offset))
476 return NULL;
477
478 return (pcie->base + offset);
479 }
480
iproc_pcie_cfg_retry(struct iproc_pcie * pcie,void __iomem * cfg_data_p)481 static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
482 void __iomem *cfg_data_p)
483 {
484 int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
485 unsigned int data;
486 u32 status;
487
488 /*
489 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
490 * affects config reads of the Vendor ID. For config writes or any
491 * other config reads, the Root may automatically reissue the
492 * configuration request again as a new request.
493 *
494 * For config reads, this hardware returns CFG_RETRY_STATUS data
495 * when it receives a CRS completion, regardless of the address of
496 * the read or the CRS Software Visibility Enable bit. As a
497 * partial workaround for this, we retry in software any read that
498 * returns CFG_RETRY_STATUS.
499 *
500 * Note that a non-Vendor ID config register may have a value of
501 * CFG_RETRY_STATUS. If we read that, we can't distinguish it from
502 * a CRS completion, so we will incorrectly retry the read and
503 * eventually return the wrong data (0xffffffff).
504 */
505 data = readl(cfg_data_p);
506 while (data == CFG_RETRY_STATUS && timeout--) {
507 /*
508 * CRS state is set in CFG_RD status register
509 * This will handle the case where CFG_RETRY_STATUS is
510 * valid config data.
511 */
512 status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
513 if (status != CFG_RD_CRS)
514 return data;
515
516 udelay(1);
517 data = readl(cfg_data_p);
518 }
519
520 if (data == CFG_RETRY_STATUS)
521 data = 0xffffffff;
522
523 return data;
524 }
525
iproc_pcie_fix_cap(struct iproc_pcie * pcie,int where,u32 * val)526 static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
527 {
528 u32 i, dev_id;
529
530 switch (where & ~0x3) {
531 case PCI_VENDOR_ID:
532 dev_id = *val >> 16;
533
534 /*
535 * Activate fixup for those controllers that have corrupted
536 * capability list registers
537 */
538 for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
539 if (dev_id == iproc_pcie_corrupt_cap_did[i])
540 pcie->fix_paxc_cap = true;
541 break;
542
543 case IPROC_PCI_PM_CAP:
544 if (pcie->fix_paxc_cap) {
545 /* advertise PM, force next capability to PCIe */
546 *val &= ~IPROC_PCI_PM_CAP_MASK;
547 *val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
548 }
549 break;
550
551 case IPROC_PCI_EXP_CAP:
552 if (pcie->fix_paxc_cap) {
553 /* advertise root port, version 2, terminate here */
554 *val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
555 PCI_CAP_ID_EXP;
556 }
557 break;
558
559 case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
560 /* Don't advertise CRS SV support */
561 *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
562 break;
563
564 default:
565 break;
566 }
567 }
568
iproc_pcie_config_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)569 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
570 int where, int size, u32 *val)
571 {
572 struct iproc_pcie *pcie = iproc_data(bus);
573 unsigned int busno = bus->number;
574 void __iomem *cfg_data_p;
575 unsigned int data;
576 int ret;
577
578 /* root complex access */
579 if (busno == 0) {
580 ret = pci_generic_config_read32(bus, devfn, where, size, val);
581 if (ret == PCIBIOS_SUCCESSFUL)
582 iproc_pcie_fix_cap(pcie, where, val);
583
584 return ret;
585 }
586
587 cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
588
589 if (!cfg_data_p)
590 return PCIBIOS_DEVICE_NOT_FOUND;
591
592 data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
593
594 *val = data;
595 if (size <= 2)
596 *val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
597
598 /*
599 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
600 * depends on the firmware configuration. Unfortunately, due to an ASIC
601 * bug, unconfigured PFs cannot be properly hidden from the root
602 * complex. As a result, write access to these PFs will cause bus lock
603 * up on the embedded processor
604 *
605 * Since all unconfigured PFs are left with an incorrect, staled device
606 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
607 * early here and reject them all
608 */
609 #define DEVICE_ID_MASK 0xffff0000
610 #define DEVICE_ID_SHIFT 16
611 if (pcie->rej_unconfig_pf &&
612 (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
613 if ((*val & DEVICE_ID_MASK) ==
614 (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
615 return PCIBIOS_FUNC_NOT_SUPPORTED;
616
617 return PCIBIOS_SUCCESSFUL;
618 }
619
620 /*
621 * Note access to the configuration registers are protected at the higher layer
622 * by 'pci_lock' in drivers/pci/access.c
623 */
iproc_pcie_map_cfg_bus(struct iproc_pcie * pcie,int busno,unsigned int devfn,int where)624 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
625 int busno, unsigned int devfn,
626 int where)
627 {
628 u16 offset;
629
630 /* root complex access */
631 if (busno == 0) {
632 if (PCIE_ECAM_DEVFN(devfn) > 0)
633 return NULL;
634
635 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
636 where & CFG_IND_ADDR_MASK);
637 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
638 if (iproc_pcie_reg_is_invalid(offset))
639 return NULL;
640 else
641 return (pcie->base + offset);
642 }
643
644 return iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
645 }
646
iproc_pcie_bus_map_cfg_bus(struct pci_bus * bus,unsigned int devfn,int where)647 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
648 unsigned int devfn,
649 int where)
650 {
651 return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
652 where);
653 }
654
iproc_pci_raw_config_read32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 * val)655 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
656 unsigned int devfn, int where,
657 int size, u32 *val)
658 {
659 void __iomem *addr;
660
661 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
662 if (!addr)
663 return PCIBIOS_DEVICE_NOT_FOUND;
664
665 *val = readl(addr);
666
667 if (size <= 2)
668 *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
669
670 return PCIBIOS_SUCCESSFUL;
671 }
672
iproc_pci_raw_config_write32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 val)673 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
674 unsigned int devfn, int where,
675 int size, u32 val)
676 {
677 void __iomem *addr;
678 u32 mask, tmp;
679
680 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
681 if (!addr)
682 return PCIBIOS_DEVICE_NOT_FOUND;
683
684 if (size == 4) {
685 writel(val, addr);
686 return PCIBIOS_SUCCESSFUL;
687 }
688
689 mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
690 tmp = readl(addr) & mask;
691 tmp |= val << ((where & 0x3) * 8);
692 writel(tmp, addr);
693
694 return PCIBIOS_SUCCESSFUL;
695 }
696
iproc_pcie_config_read32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)697 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
698 int where, int size, u32 *val)
699 {
700 int ret;
701 struct iproc_pcie *pcie = iproc_data(bus);
702
703 iproc_pcie_apb_err_disable(bus, true);
704 if (pcie->iproc_cfg_read)
705 ret = iproc_pcie_config_read(bus, devfn, where, size, val);
706 else
707 ret = pci_generic_config_read32(bus, devfn, where, size, val);
708 iproc_pcie_apb_err_disable(bus, false);
709
710 return ret;
711 }
712
iproc_pcie_config_write32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)713 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
714 int where, int size, u32 val)
715 {
716 int ret;
717
718 iproc_pcie_apb_err_disable(bus, true);
719 ret = pci_generic_config_write32(bus, devfn, where, size, val);
720 iproc_pcie_apb_err_disable(bus, false);
721
722 return ret;
723 }
724
725 static struct pci_ops iproc_pcie_ops = {
726 .map_bus = iproc_pcie_bus_map_cfg_bus,
727 .read = iproc_pcie_config_read32,
728 .write = iproc_pcie_config_write32,
729 };
730
iproc_pcie_perst_ctrl(struct iproc_pcie * pcie,bool assert)731 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
732 {
733 u32 val;
734
735 /*
736 * PAXC and the internal emulated endpoint device downstream should not
737 * be reset. If firmware has been loaded on the endpoint device at an
738 * earlier boot stage, reset here causes issues.
739 */
740 if (pcie->ep_is_internal)
741 return;
742
743 if (assert) {
744 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
745 val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
746 ~RC_PCIE_RST_OUTPUT;
747 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
748 udelay(250);
749 } else {
750 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
751 val |= RC_PCIE_RST_OUTPUT;
752 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
753 msleep(100);
754 }
755 }
756
iproc_pcie_shutdown(struct iproc_pcie * pcie)757 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
758 {
759 iproc_pcie_perst_ctrl(pcie, true);
760 msleep(500);
761
762 return 0;
763 }
764 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
765
iproc_pcie_check_link(struct iproc_pcie * pcie)766 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
767 {
768 struct device *dev = pcie->dev;
769 u32 hdr_type, link_ctrl, link_status, class, val;
770 bool link_is_active = false;
771
772 /*
773 * PAXC connects to emulated endpoint devices directly and does not
774 * have a Serdes. Therefore skip the link detection logic here.
775 */
776 if (pcie->ep_is_internal)
777 return 0;
778
779 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
780 if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
781 dev_err(dev, "PHY or data link is INACTIVE!\n");
782 return -ENODEV;
783 }
784
785 /* make sure we are not in EP mode */
786 iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
787 if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
788 dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
789 return -EFAULT;
790 }
791
792 /* force class to PCI_CLASS_BRIDGE_PCI_NORMAL (0x060400) */
793 #define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c
794 #define PCI_BRIDGE_CTRL_REG_CLASS_MASK 0xffffff
795 iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
796 4, &class);
797 class &= ~PCI_BRIDGE_CTRL_REG_CLASS_MASK;
798 class |= PCI_CLASS_BRIDGE_PCI_NORMAL;
799 iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
800 4, class);
801
802 /* check link status to see if link is active */
803 iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
804 2, &link_status);
805 if (link_status & PCI_EXP_LNKSTA_NLW)
806 link_is_active = true;
807
808 if (!link_is_active) {
809 /* try GEN 1 link speed */
810 #define PCI_TARGET_LINK_SPEED_MASK 0xf
811 #define PCI_TARGET_LINK_SPEED_GEN2 0x2
812 #define PCI_TARGET_LINK_SPEED_GEN1 0x1
813 iproc_pci_raw_config_read32(pcie, 0,
814 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
815 4, &link_ctrl);
816 if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
817 PCI_TARGET_LINK_SPEED_GEN2) {
818 link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
819 link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
820 iproc_pci_raw_config_write32(pcie, 0,
821 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
822 4, link_ctrl);
823 msleep(100);
824
825 iproc_pci_raw_config_read32(pcie, 0,
826 IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
827 2, &link_status);
828 if (link_status & PCI_EXP_LNKSTA_NLW)
829 link_is_active = true;
830 }
831 }
832
833 dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
834
835 return link_is_active ? 0 : -ENODEV;
836 }
837
iproc_pcie_enable(struct iproc_pcie * pcie)838 static void iproc_pcie_enable(struct iproc_pcie *pcie)
839 {
840 iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
841 }
842
iproc_pcie_ob_is_valid(struct iproc_pcie * pcie,int window_idx)843 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
844 int window_idx)
845 {
846 u32 val;
847
848 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
849
850 return !!(val & OARR_VALID);
851 }
852
iproc_pcie_ob_write(struct iproc_pcie * pcie,int window_idx,int size_idx,u64 axi_addr,u64 pci_addr)853 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
854 int size_idx, u64 axi_addr, u64 pci_addr)
855 {
856 struct device *dev = pcie->dev;
857 u16 oarr_offset, omap_offset;
858
859 /*
860 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
861 * on window index.
862 */
863 oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
864 window_idx));
865 omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
866 window_idx));
867 if (iproc_pcie_reg_is_invalid(oarr_offset) ||
868 iproc_pcie_reg_is_invalid(omap_offset))
869 return -EINVAL;
870
871 /*
872 * Program the OARR registers. The upper 32-bit OARR register is
873 * always right after the lower 32-bit OARR register.
874 */
875 writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
876 OARR_VALID, pcie->base + oarr_offset);
877 writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
878
879 /* now program the OMAP registers */
880 writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
881 writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
882
883 dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
884 window_idx, oarr_offset, &axi_addr, &pci_addr);
885 dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
886 readl(pcie->base + oarr_offset),
887 readl(pcie->base + oarr_offset + 4));
888 dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
889 readl(pcie->base + omap_offset),
890 readl(pcie->base + omap_offset + 4));
891
892 return 0;
893 }
894
895 /*
896 * Some iProc SoCs require the SW to configure the outbound address mapping
897 *
898 * Outbound address translation:
899 *
900 * iproc_pcie_address = axi_address - axi_offset
901 * OARR = iproc_pcie_address
902 * OMAP = pci_addr
903 *
904 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
905 */
iproc_pcie_setup_ob(struct iproc_pcie * pcie,u64 axi_addr,u64 pci_addr,resource_size_t size)906 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
907 u64 pci_addr, resource_size_t size)
908 {
909 struct iproc_pcie_ob *ob = &pcie->ob;
910 struct device *dev = pcie->dev;
911 int ret = -EINVAL, window_idx, size_idx;
912
913 if (axi_addr < ob->axi_offset) {
914 dev_err(dev, "axi address %pap less than offset %pap\n",
915 &axi_addr, &ob->axi_offset);
916 return -EINVAL;
917 }
918
919 /*
920 * Translate the AXI address to the internal address used by the iProc
921 * PCIe core before programming the OARR
922 */
923 axi_addr -= ob->axi_offset;
924
925 /* iterate through all OARR/OMAP mapping windows */
926 for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
927 const struct iproc_pcie_ob_map *ob_map =
928 &pcie->ob_map[window_idx];
929
930 /*
931 * If current outbound window is already in use, move on to the
932 * next one.
933 */
934 if (iproc_pcie_ob_is_valid(pcie, window_idx))
935 continue;
936
937 /*
938 * Iterate through all supported window sizes within the
939 * OARR/OMAP pair to find a match. Go through the window sizes
940 * in a descending order.
941 */
942 for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
943 size_idx--) {
944 resource_size_t window_size =
945 ob_map->window_sizes[size_idx] * SZ_1M;
946
947 /*
948 * Keep iterating until we reach the last window and
949 * with the minimal window size at index zero. In this
950 * case, we take a compromise by mapping it using the
951 * minimum window size that can be supported
952 */
953 if (size < window_size) {
954 if (size_idx > 0 || window_idx > 0)
955 continue;
956
957 /*
958 * For the corner case of reaching the minimal
959 * window size that can be supported on the
960 * last window
961 */
962 axi_addr = ALIGN_DOWN(axi_addr, window_size);
963 pci_addr = ALIGN_DOWN(pci_addr, window_size);
964 size = window_size;
965 }
966
967 if (!IS_ALIGNED(axi_addr, window_size) ||
968 !IS_ALIGNED(pci_addr, window_size)) {
969 dev_err(dev,
970 "axi %pap or pci %pap not aligned\n",
971 &axi_addr, &pci_addr);
972 return -EINVAL;
973 }
974
975 /*
976 * Match found! Program both OARR and OMAP and mark
977 * them as a valid entry.
978 */
979 ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
980 axi_addr, pci_addr);
981 if (ret)
982 goto err_ob;
983
984 size -= window_size;
985 if (size == 0)
986 return 0;
987
988 /*
989 * If we are here, we are done with the current window,
990 * but not yet finished all mappings. Need to move on
991 * to the next window.
992 */
993 axi_addr += window_size;
994 pci_addr += window_size;
995 break;
996 }
997 }
998
999 err_ob:
1000 dev_err(dev, "unable to configure outbound mapping\n");
1001 dev_err(dev,
1002 "axi %pap, axi offset %pap, pci %pap, res size %pap\n",
1003 &axi_addr, &ob->axi_offset, &pci_addr, &size);
1004
1005 return ret;
1006 }
1007
iproc_pcie_map_ranges(struct iproc_pcie * pcie,struct list_head * resources)1008 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
1009 struct list_head *resources)
1010 {
1011 struct device *dev = pcie->dev;
1012 struct resource_entry *window;
1013 int ret;
1014
1015 resource_list_for_each_entry(window, resources) {
1016 struct resource *res = window->res;
1017 u64 res_type = resource_type(res);
1018
1019 switch (res_type) {
1020 case IORESOURCE_IO:
1021 case IORESOURCE_BUS:
1022 break;
1023 case IORESOURCE_MEM:
1024 ret = iproc_pcie_setup_ob(pcie, res->start,
1025 res->start - window->offset,
1026 resource_size(res));
1027 if (ret)
1028 return ret;
1029 break;
1030 default:
1031 dev_err(dev, "invalid resource %pR\n", res);
1032 return -EINVAL;
1033 }
1034 }
1035
1036 return 0;
1037 }
1038
iproc_pcie_ib_is_in_use(struct iproc_pcie * pcie,int region_idx)1039 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1040 int region_idx)
1041 {
1042 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1043 u32 val;
1044
1045 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1046
1047 return !!(val & (BIT(ib_map->nr_sizes) - 1));
1048 }
1049
iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map * ib_map,enum iproc_pcie_ib_map_type type)1050 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1051 enum iproc_pcie_ib_map_type type)
1052 {
1053 return !!(ib_map->type == type);
1054 }
1055
iproc_pcie_ib_write(struct iproc_pcie * pcie,int region_idx,int size_idx,int nr_windows,u64 axi_addr,u64 pci_addr,resource_size_t size)1056 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1057 int size_idx, int nr_windows, u64 axi_addr,
1058 u64 pci_addr, resource_size_t size)
1059 {
1060 struct device *dev = pcie->dev;
1061 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1062 u16 iarr_offset, imap_offset;
1063 u32 val;
1064 int window_idx;
1065
1066 iarr_offset = iproc_pcie_reg_offset(pcie,
1067 MAP_REG(IPROC_PCIE_IARR0, region_idx));
1068 imap_offset = iproc_pcie_reg_offset(pcie,
1069 MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1070 if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1071 iproc_pcie_reg_is_invalid(imap_offset))
1072 return -EINVAL;
1073
1074 dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1075 region_idx, iarr_offset, &axi_addr, &pci_addr);
1076
1077 /*
1078 * Program the IARR registers. The upper 32-bit IARR register is
1079 * always right after the lower 32-bit IARR register.
1080 */
1081 writel(lower_32_bits(pci_addr) | BIT(size_idx),
1082 pcie->base + iarr_offset);
1083 writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1084
1085 dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1086 readl(pcie->base + iarr_offset),
1087 readl(pcie->base + iarr_offset + 4));
1088
1089 /*
1090 * Now program the IMAP registers. Each IARR region may have one or
1091 * more IMAP windows.
1092 */
1093 size >>= ilog2(nr_windows);
1094 for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1095 val = readl(pcie->base + imap_offset);
1096 val |= lower_32_bits(axi_addr) | IMAP_VALID;
1097 writel(val, pcie->base + imap_offset);
1098 writel(upper_32_bits(axi_addr),
1099 pcie->base + imap_offset + ib_map->imap_addr_offset);
1100
1101 dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1102 window_idx, readl(pcie->base + imap_offset),
1103 readl(pcie->base + imap_offset +
1104 ib_map->imap_addr_offset));
1105
1106 imap_offset += ib_map->imap_window_offset;
1107 axi_addr += size;
1108 }
1109
1110 return 0;
1111 }
1112
iproc_pcie_setup_ib(struct iproc_pcie * pcie,struct resource_entry * entry,enum iproc_pcie_ib_map_type type)1113 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1114 struct resource_entry *entry,
1115 enum iproc_pcie_ib_map_type type)
1116 {
1117 struct device *dev = pcie->dev;
1118 struct iproc_pcie_ib *ib = &pcie->ib;
1119 int ret;
1120 unsigned int region_idx, size_idx;
1121 u64 axi_addr = entry->res->start;
1122 u64 pci_addr = entry->res->start - entry->offset;
1123 resource_size_t size = resource_size(entry->res);
1124
1125 /* iterate through all IARR mapping regions */
1126 for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1127 const struct iproc_pcie_ib_map *ib_map =
1128 &pcie->ib_map[region_idx];
1129
1130 /*
1131 * If current inbound region is already in use or not a
1132 * compatible type, move on to the next.
1133 */
1134 if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1135 !iproc_pcie_ib_check_type(ib_map, type))
1136 continue;
1137
1138 /* iterate through all supported region sizes to find a match */
1139 for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1140 resource_size_t region_size =
1141 ib_map->region_sizes[size_idx] * ib_map->size_unit;
1142
1143 if (size != region_size)
1144 continue;
1145
1146 if (!IS_ALIGNED(axi_addr, region_size) ||
1147 !IS_ALIGNED(pci_addr, region_size)) {
1148 dev_err(dev,
1149 "axi %pap or pci %pap not aligned\n",
1150 &axi_addr, &pci_addr);
1151 return -EINVAL;
1152 }
1153
1154 /* Match found! Program IARR and all IMAP windows. */
1155 ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1156 ib_map->nr_windows, axi_addr,
1157 pci_addr, size);
1158 if (ret)
1159 goto err_ib;
1160 else
1161 return 0;
1162
1163 }
1164 }
1165 ret = -EINVAL;
1166
1167 err_ib:
1168 dev_err(dev, "unable to configure inbound mapping\n");
1169 dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1170 &axi_addr, &pci_addr, &size);
1171
1172 return ret;
1173 }
1174
iproc_pcie_map_dma_ranges(struct iproc_pcie * pcie)1175 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1176 {
1177 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1178 struct resource_entry *entry;
1179 int ret = 0;
1180
1181 resource_list_for_each_entry(entry, &host->dma_ranges) {
1182 /* Each range entry corresponds to an inbound mapping region */
1183 ret = iproc_pcie_setup_ib(pcie, entry, IPROC_PCIE_IB_MAP_MEM);
1184 if (ret)
1185 break;
1186 }
1187
1188 return ret;
1189 }
1190
iproc_pcie_invalidate_mapping(struct iproc_pcie * pcie)1191 static void iproc_pcie_invalidate_mapping(struct iproc_pcie *pcie)
1192 {
1193 struct iproc_pcie_ib *ib = &pcie->ib;
1194 struct iproc_pcie_ob *ob = &pcie->ob;
1195 int idx;
1196
1197 if (pcie->ep_is_internal)
1198 return;
1199
1200 if (pcie->need_ob_cfg) {
1201 /* iterate through all OARR mapping regions */
1202 for (idx = ob->nr_windows - 1; idx >= 0; idx--) {
1203 iproc_pcie_write_reg(pcie,
1204 MAP_REG(IPROC_PCIE_OARR0, idx), 0);
1205 }
1206 }
1207
1208 if (pcie->need_ib_cfg) {
1209 /* iterate through all IARR mapping regions */
1210 for (idx = 0; idx < ib->nr_regions; idx++) {
1211 iproc_pcie_write_reg(pcie,
1212 MAP_REG(IPROC_PCIE_IARR0, idx), 0);
1213 }
1214 }
1215 }
1216
iproce_pcie_get_msi(struct iproc_pcie * pcie,struct device_node * msi_node,u64 * msi_addr)1217 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1218 struct device_node *msi_node,
1219 u64 *msi_addr)
1220 {
1221 struct device *dev = pcie->dev;
1222 int ret;
1223 struct resource res;
1224
1225 /*
1226 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1227 * supported external MSI controller that requires steering.
1228 */
1229 if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1230 dev_err(dev, "unable to find compatible MSI controller\n");
1231 return -ENODEV;
1232 }
1233
1234 /* derive GITS_TRANSLATER address from GICv3 */
1235 ret = of_address_to_resource(msi_node, 0, &res);
1236 if (ret < 0) {
1237 dev_err(dev, "unable to obtain MSI controller resources\n");
1238 return ret;
1239 }
1240
1241 *msi_addr = res.start + GITS_TRANSLATER;
1242 return 0;
1243 }
1244
iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr)1245 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1246 {
1247 int ret;
1248 struct resource_entry entry;
1249
1250 memset(&entry, 0, sizeof(entry));
1251 entry.res = &entry.__res;
1252
1253 msi_addr &= ~(SZ_32K - 1);
1254 entry.res->start = msi_addr;
1255 entry.res->end = msi_addr + SZ_32K - 1;
1256
1257 ret = iproc_pcie_setup_ib(pcie, &entry, IPROC_PCIE_IB_MAP_IO);
1258 return ret;
1259 }
1260
iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr,bool enable)1261 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1262 bool enable)
1263 {
1264 u32 val;
1265
1266 if (!enable) {
1267 /*
1268 * Disable PAXC MSI steering. All write transfers will be
1269 * treated as non-MSI transfers
1270 */
1271 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1272 val &= ~MSI_ENABLE_CFG;
1273 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1274 return;
1275 }
1276
1277 /*
1278 * Program bits [43:13] of address of GITS_TRANSLATER register into
1279 * bits [30:0] of the MSI base address register. In fact, in all iProc
1280 * based SoCs, all I/O register bases are well below the 32-bit
1281 * boundary, so we can safely assume bits [43:32] are always zeros.
1282 */
1283 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1284 (u32)(msi_addr >> 13));
1285
1286 /* use a default 8K window size */
1287 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1288
1289 /* steering MSI to GICv3 ITS */
1290 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1291 val |= GIC_V3_CFG;
1292 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1293
1294 /*
1295 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1296 * iProc MSI address registers.
1297 */
1298 msi_addr >>= 2;
1299 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1300 upper_32_bits(msi_addr));
1301 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1302 lower_32_bits(msi_addr));
1303
1304 /* enable MSI */
1305 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1306 val |= MSI_ENABLE_CFG;
1307 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1308 }
1309
iproc_pcie_msi_steer(struct iproc_pcie * pcie,struct device_node * msi_node)1310 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1311 struct device_node *msi_node)
1312 {
1313 struct device *dev = pcie->dev;
1314 int ret;
1315 u64 msi_addr;
1316
1317 ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1318 if (ret < 0) {
1319 dev_err(dev, "msi steering failed\n");
1320 return ret;
1321 }
1322
1323 switch (pcie->type) {
1324 case IPROC_PCIE_PAXB_V2:
1325 ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1326 if (ret)
1327 return ret;
1328 break;
1329 case IPROC_PCIE_PAXC_V2:
1330 iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1331 break;
1332 default:
1333 return -EINVAL;
1334 }
1335
1336 return 0;
1337 }
1338
iproc_pcie_msi_enable(struct iproc_pcie * pcie)1339 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1340 {
1341 struct device_node *msi_node;
1342 int ret;
1343
1344 /*
1345 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1346 * for us to obtain the MSI node.
1347 */
1348
1349 msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1350 if (!msi_node) {
1351 const __be32 *msi_map = NULL;
1352 int len;
1353 u32 phandle;
1354
1355 msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1356 if (!msi_map)
1357 return -ENODEV;
1358
1359 phandle = be32_to_cpup(msi_map + 1);
1360 msi_node = of_find_node_by_phandle(phandle);
1361 if (!msi_node)
1362 return -ENODEV;
1363 }
1364
1365 /*
1366 * Certain revisions of the iProc PCIe controller require additional
1367 * configurations to steer the MSI writes towards an external MSI
1368 * controller.
1369 */
1370 if (pcie->need_msi_steer) {
1371 ret = iproc_pcie_msi_steer(pcie, msi_node);
1372 if (ret)
1373 goto out_put_node;
1374 }
1375
1376 /*
1377 * If another MSI controller is being used, the call below should fail
1378 * but that is okay
1379 */
1380 ret = iproc_msi_init(pcie, msi_node);
1381
1382 out_put_node:
1383 of_node_put(msi_node);
1384 return ret;
1385 }
1386
iproc_pcie_msi_disable(struct iproc_pcie * pcie)1387 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1388 {
1389 iproc_msi_exit(pcie);
1390 }
1391
iproc_pcie_rev_init(struct iproc_pcie * pcie)1392 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1393 {
1394 struct device *dev = pcie->dev;
1395 unsigned int reg_idx;
1396 const u16 *regs;
1397
1398 switch (pcie->type) {
1399 case IPROC_PCIE_PAXB_BCMA:
1400 regs = iproc_pcie_reg_paxb_bcma;
1401 break;
1402 case IPROC_PCIE_PAXB:
1403 regs = iproc_pcie_reg_paxb;
1404 pcie->has_apb_err_disable = true;
1405 if (pcie->need_ob_cfg) {
1406 pcie->ob_map = paxb_ob_map;
1407 pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1408 }
1409 break;
1410 case IPROC_PCIE_PAXB_V2:
1411 regs = iproc_pcie_reg_paxb_v2;
1412 pcie->iproc_cfg_read = true;
1413 pcie->has_apb_err_disable = true;
1414 if (pcie->need_ob_cfg) {
1415 pcie->ob_map = paxb_v2_ob_map;
1416 pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1417 }
1418 pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1419 pcie->ib_map = paxb_v2_ib_map;
1420 pcie->need_msi_steer = true;
1421 dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1422 CFG_RETRY_STATUS);
1423 break;
1424 case IPROC_PCIE_PAXC:
1425 regs = iproc_pcie_reg_paxc;
1426 pcie->ep_is_internal = true;
1427 pcie->iproc_cfg_read = true;
1428 pcie->rej_unconfig_pf = true;
1429 break;
1430 case IPROC_PCIE_PAXC_V2:
1431 regs = iproc_pcie_reg_paxc_v2;
1432 pcie->ep_is_internal = true;
1433 pcie->iproc_cfg_read = true;
1434 pcie->rej_unconfig_pf = true;
1435 pcie->need_msi_steer = true;
1436 break;
1437 default:
1438 dev_err(dev, "incompatible iProc PCIe interface\n");
1439 return -EINVAL;
1440 }
1441
1442 pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1443 sizeof(*pcie->reg_offsets),
1444 GFP_KERNEL);
1445 if (!pcie->reg_offsets)
1446 return -ENOMEM;
1447
1448 /* go through the register table and populate all valid registers */
1449 pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1450 IPROC_PCIE_REG_INVALID : regs[0];
1451 for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1452 pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1453 regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1454
1455 return 0;
1456 }
1457
iproc_pcie_setup(struct iproc_pcie * pcie,struct list_head * res)1458 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1459 {
1460 struct device *dev;
1461 int ret;
1462 struct pci_dev *pdev;
1463 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1464
1465 dev = pcie->dev;
1466
1467 ret = iproc_pcie_rev_init(pcie);
1468 if (ret) {
1469 dev_err(dev, "unable to initialize controller parameters\n");
1470 return ret;
1471 }
1472
1473 ret = phy_init(pcie->phy);
1474 if (ret) {
1475 dev_err(dev, "unable to initialize PCIe PHY\n");
1476 return ret;
1477 }
1478
1479 ret = phy_power_on(pcie->phy);
1480 if (ret) {
1481 dev_err(dev, "unable to power on PCIe PHY\n");
1482 goto err_exit_phy;
1483 }
1484
1485 iproc_pcie_perst_ctrl(pcie, true);
1486 iproc_pcie_perst_ctrl(pcie, false);
1487
1488 iproc_pcie_invalidate_mapping(pcie);
1489
1490 if (pcie->need_ob_cfg) {
1491 ret = iproc_pcie_map_ranges(pcie, res);
1492 if (ret) {
1493 dev_err(dev, "map failed\n");
1494 goto err_power_off_phy;
1495 }
1496 }
1497
1498 if (pcie->need_ib_cfg) {
1499 ret = iproc_pcie_map_dma_ranges(pcie);
1500 if (ret && ret != -ENOENT)
1501 goto err_power_off_phy;
1502 }
1503
1504 ret = iproc_pcie_check_link(pcie);
1505 if (ret) {
1506 dev_err(dev, "no PCIe EP device detected\n");
1507 goto err_power_off_phy;
1508 }
1509
1510 iproc_pcie_enable(pcie);
1511
1512 if (IS_ENABLED(CONFIG_PCI_MSI))
1513 if (iproc_pcie_msi_enable(pcie))
1514 dev_info(dev, "not using iProc MSI\n");
1515
1516 host->ops = &iproc_pcie_ops;
1517 host->sysdata = pcie;
1518 host->map_irq = pcie->map_irq;
1519
1520 ret = pci_host_probe(host);
1521 if (ret < 0) {
1522 dev_err(dev, "failed to scan host: %d\n", ret);
1523 goto err_power_off_phy;
1524 }
1525
1526 for_each_pci_bridge(pdev, host->bus) {
1527 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT)
1528 pcie_print_link_status(pdev);
1529 }
1530
1531 return 0;
1532
1533 err_power_off_phy:
1534 phy_power_off(pcie->phy);
1535 err_exit_phy:
1536 phy_exit(pcie->phy);
1537 return ret;
1538 }
1539 EXPORT_SYMBOL(iproc_pcie_setup);
1540
iproc_pcie_remove(struct iproc_pcie * pcie)1541 int iproc_pcie_remove(struct iproc_pcie *pcie)
1542 {
1543 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1544
1545 pci_stop_root_bus(host->bus);
1546 pci_remove_root_bus(host->bus);
1547
1548 iproc_pcie_msi_disable(pcie);
1549
1550 phy_power_off(pcie->phy);
1551 phy_exit(pcie->phy);
1552
1553 return 0;
1554 }
1555 EXPORT_SYMBOL(iproc_pcie_remove);
1556
1557 /*
1558 * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1559 * complex does not work and needs to be disabled
1560 */
quirk_paxc_disable_msi_parsing(struct pci_dev * pdev)1561 static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1562 {
1563 struct iproc_pcie *pcie = iproc_data(pdev->bus);
1564
1565 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1566 iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1567 }
1568 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1569 quirk_paxc_disable_msi_parsing);
1570 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1571 quirk_paxc_disable_msi_parsing);
1572 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1573 quirk_paxc_disable_msi_parsing);
1574
quirk_paxc_bridge(struct pci_dev * pdev)1575 static void quirk_paxc_bridge(struct pci_dev *pdev)
1576 {
1577 /*
1578 * The PCI config space is shared with the PAXC root port and the first
1579 * Ethernet device. So, we need to workaround this by telling the PCI
1580 * code that the bridge is not an Ethernet device.
1581 */
1582 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1583 pdev->class = PCI_CLASS_BRIDGE_PCI_NORMAL;
1584
1585 /*
1586 * MPSS is not being set properly (as it is currently 0). This is
1587 * because that area of the PCI config space is hard coded to zero, and
1588 * is not modifiable by firmware. Set this to 2 (e.g., 512 byte MPS)
1589 * so that the MPS can be set to the real max value.
1590 */
1591 pdev->pcie_mpss = 2;
1592 }
1593 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16cd, quirk_paxc_bridge);
1594 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_bridge);
1595 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd750, quirk_paxc_bridge);
1596 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_bridge);
1597 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_bridge);
1598
1599 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1600 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1601 MODULE_LICENSE("GPL v2");
1602