1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_msghandler.c
4 *
5 * Incoming and outgoing message routing for an IPMI interface.
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 */
13
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rcupdate.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <linux/workqueue.h>
35 #include <linux/uuid.h>
36 #include <linux/nospec.h>
37 #include <linux/vmalloc.h>
38 #include <linux/delay.h>
39
40 #define IPMI_DRIVER_VERSION "39.2"
41
42 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
43 static int ipmi_init_msghandler(void);
44 static void smi_recv_tasklet(struct tasklet_struct *t);
45 static void handle_new_recv_msgs(struct ipmi_smi *intf);
46 static void need_waiter(struct ipmi_smi *intf);
47 static int handle_one_recv_msg(struct ipmi_smi *intf,
48 struct ipmi_smi_msg *msg);
49
50 static bool initialized;
51 static bool drvregistered;
52
53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
54 enum ipmi_panic_event_op {
55 IPMI_SEND_PANIC_EVENT_NONE,
56 IPMI_SEND_PANIC_EVENT,
57 IPMI_SEND_PANIC_EVENT_STRING,
58 IPMI_SEND_PANIC_EVENT_MAX
59 };
60
61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
63
64 #ifdef CONFIG_IPMI_PANIC_STRING
65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
66 #elif defined(CONFIG_IPMI_PANIC_EVENT)
67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
68 #else
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
70 #endif
71
72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
73
panic_op_write_handler(const char * val,const struct kernel_param * kp)74 static int panic_op_write_handler(const char *val,
75 const struct kernel_param *kp)
76 {
77 char valcp[16];
78 int e;
79
80 strscpy(valcp, val, sizeof(valcp));
81 e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
82 if (e < 0)
83 return e;
84
85 ipmi_send_panic_event = e;
86 return 0;
87 }
88
panic_op_read_handler(char * buffer,const struct kernel_param * kp)89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
90 {
91 const char *event_str;
92
93 if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
94 event_str = "???";
95 else
96 event_str = ipmi_panic_event_str[ipmi_send_panic_event];
97
98 return sprintf(buffer, "%s\n", event_str);
99 }
100
101 static const struct kernel_param_ops panic_op_ops = {
102 .set = panic_op_write_handler,
103 .get = panic_op_read_handler
104 };
105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
107
108
109 #define MAX_EVENTS_IN_QUEUE 25
110
111 /* Remain in auto-maintenance mode for this amount of time (in ms). */
112 static unsigned long maintenance_mode_timeout_ms = 30000;
113 module_param(maintenance_mode_timeout_ms, ulong, 0644);
114 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
115 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
116
117 /*
118 * Don't let a message sit in a queue forever, always time it with at lest
119 * the max message timer. This is in milliseconds.
120 */
121 #define MAX_MSG_TIMEOUT 60000
122
123 /*
124 * Timeout times below are in milliseconds, and are done off a 1
125 * second timer. So setting the value to 1000 would mean anything
126 * between 0 and 1000ms. So really the only reasonable minimum
127 * setting it 2000ms, which is between 1 and 2 seconds.
128 */
129
130 /* The default timeout for message retries. */
131 static unsigned long default_retry_ms = 2000;
132 module_param(default_retry_ms, ulong, 0644);
133 MODULE_PARM_DESC(default_retry_ms,
134 "The time (milliseconds) between retry sends");
135
136 /* The default timeout for maintenance mode message retries. */
137 static unsigned long default_maintenance_retry_ms = 3000;
138 module_param(default_maintenance_retry_ms, ulong, 0644);
139 MODULE_PARM_DESC(default_maintenance_retry_ms,
140 "The time (milliseconds) between retry sends in maintenance mode");
141
142 /* The default maximum number of retries */
143 static unsigned int default_max_retries = 4;
144 module_param(default_max_retries, uint, 0644);
145 MODULE_PARM_DESC(default_max_retries,
146 "The time (milliseconds) between retry sends in maintenance mode");
147
148 /* The default maximum number of users that may register. */
149 static unsigned int max_users = 30;
150 module_param(max_users, uint, 0644);
151 MODULE_PARM_DESC(max_users,
152 "The most users that may use the IPMI stack at one time.");
153
154 /* The default maximum number of message a user may have outstanding. */
155 static unsigned int max_msgs_per_user = 100;
156 module_param(max_msgs_per_user, uint, 0644);
157 MODULE_PARM_DESC(max_msgs_per_user,
158 "The most message a user may have outstanding.");
159
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME 1000
162
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
165
166 /*
167 * Request events from the queue every second (this is the number of
168 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
169 * future, IPMI will add a way to know immediately if an event is in
170 * the queue and this silliness can go away.
171 */
172 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
173
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
176
177 /*
178 * The main "user" data structure.
179 */
180 struct ipmi_user {
181 struct list_head link;
182
183 /*
184 * Set to NULL when the user is destroyed, a pointer to myself
185 * so srcu_dereference can be used on it.
186 */
187 struct ipmi_user *self;
188 struct srcu_struct release_barrier;
189
190 struct kref refcount;
191
192 /* The upper layer that handles receive messages. */
193 const struct ipmi_user_hndl *handler;
194 void *handler_data;
195
196 /* The interface this user is bound to. */
197 struct ipmi_smi *intf;
198
199 /* Does this interface receive IPMI events? */
200 bool gets_events;
201
202 atomic_t nr_msgs;
203
204 /* Free must run in process context for RCU cleanup. */
205 struct work_struct remove_work;
206 };
207
208 static struct workqueue_struct *remove_work_wq;
209
acquire_ipmi_user(struct ipmi_user * user,int * index)210 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
211 __acquires(user->release_barrier)
212 {
213 struct ipmi_user *ruser;
214
215 *index = srcu_read_lock(&user->release_barrier);
216 ruser = srcu_dereference(user->self, &user->release_barrier);
217 if (!ruser)
218 srcu_read_unlock(&user->release_barrier, *index);
219 return ruser;
220 }
221
release_ipmi_user(struct ipmi_user * user,int index)222 static void release_ipmi_user(struct ipmi_user *user, int index)
223 {
224 srcu_read_unlock(&user->release_barrier, index);
225 }
226
227 struct cmd_rcvr {
228 struct list_head link;
229
230 struct ipmi_user *user;
231 unsigned char netfn;
232 unsigned char cmd;
233 unsigned int chans;
234
235 /*
236 * This is used to form a linked lised during mass deletion.
237 * Since this is in an RCU list, we cannot use the link above
238 * or change any data until the RCU period completes. So we
239 * use this next variable during mass deletion so we can have
240 * a list and don't have to wait and restart the search on
241 * every individual deletion of a command.
242 */
243 struct cmd_rcvr *next;
244 };
245
246 struct seq_table {
247 unsigned int inuse : 1;
248 unsigned int broadcast : 1;
249
250 unsigned long timeout;
251 unsigned long orig_timeout;
252 unsigned int retries_left;
253
254 /*
255 * To verify on an incoming send message response that this is
256 * the message that the response is for, we keep a sequence id
257 * and increment it every time we send a message.
258 */
259 long seqid;
260
261 /*
262 * This is held so we can properly respond to the message on a
263 * timeout, and it is used to hold the temporary data for
264 * retransmission, too.
265 */
266 struct ipmi_recv_msg *recv_msg;
267 };
268
269 /*
270 * Store the information in a msgid (long) to allow us to find a
271 * sequence table entry from the msgid.
272 */
273 #define STORE_SEQ_IN_MSGID(seq, seqid) \
274 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
275
276 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
277 do { \
278 seq = (((msgid) >> 26) & 0x3f); \
279 seqid = ((msgid) & 0x3ffffff); \
280 } while (0)
281
282 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
283
284 #define IPMI_MAX_CHANNELS 16
285 struct ipmi_channel {
286 unsigned char medium;
287 unsigned char protocol;
288 };
289
290 struct ipmi_channel_set {
291 struct ipmi_channel c[IPMI_MAX_CHANNELS];
292 };
293
294 struct ipmi_my_addrinfo {
295 /*
296 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
297 * but may be changed by the user.
298 */
299 unsigned char address;
300
301 /*
302 * My LUN. This should generally stay the SMS LUN, but just in
303 * case...
304 */
305 unsigned char lun;
306 };
307
308 /*
309 * Note that the product id, manufacturer id, guid, and device id are
310 * immutable in this structure, so dyn_mutex is not required for
311 * accessing those. If those change on a BMC, a new BMC is allocated.
312 */
313 struct bmc_device {
314 struct platform_device pdev;
315 struct list_head intfs; /* Interfaces on this BMC. */
316 struct ipmi_device_id id;
317 struct ipmi_device_id fetch_id;
318 int dyn_id_set;
319 unsigned long dyn_id_expiry;
320 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
321 guid_t guid;
322 guid_t fetch_guid;
323 int dyn_guid_set;
324 struct kref usecount;
325 struct work_struct remove_work;
326 unsigned char cc; /* completion code */
327 };
328 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
329
330 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
331 struct ipmi_device_id *id,
332 bool *guid_set, guid_t *guid);
333
334 /*
335 * Various statistics for IPMI, these index stats[] in the ipmi_smi
336 * structure.
337 */
338 enum ipmi_stat_indexes {
339 /* Commands we got from the user that were invalid. */
340 IPMI_STAT_sent_invalid_commands = 0,
341
342 /* Commands we sent to the MC. */
343 IPMI_STAT_sent_local_commands,
344
345 /* Responses from the MC that were delivered to a user. */
346 IPMI_STAT_handled_local_responses,
347
348 /* Responses from the MC that were not delivered to a user. */
349 IPMI_STAT_unhandled_local_responses,
350
351 /* Commands we sent out to the IPMB bus. */
352 IPMI_STAT_sent_ipmb_commands,
353
354 /* Commands sent on the IPMB that had errors on the SEND CMD */
355 IPMI_STAT_sent_ipmb_command_errs,
356
357 /* Each retransmit increments this count. */
358 IPMI_STAT_retransmitted_ipmb_commands,
359
360 /*
361 * When a message times out (runs out of retransmits) this is
362 * incremented.
363 */
364 IPMI_STAT_timed_out_ipmb_commands,
365
366 /*
367 * This is like above, but for broadcasts. Broadcasts are
368 * *not* included in the above count (they are expected to
369 * time out).
370 */
371 IPMI_STAT_timed_out_ipmb_broadcasts,
372
373 /* Responses I have sent to the IPMB bus. */
374 IPMI_STAT_sent_ipmb_responses,
375
376 /* The response was delivered to the user. */
377 IPMI_STAT_handled_ipmb_responses,
378
379 /* The response had invalid data in it. */
380 IPMI_STAT_invalid_ipmb_responses,
381
382 /* The response didn't have anyone waiting for it. */
383 IPMI_STAT_unhandled_ipmb_responses,
384
385 /* Commands we sent out to the IPMB bus. */
386 IPMI_STAT_sent_lan_commands,
387
388 /* Commands sent on the IPMB that had errors on the SEND CMD */
389 IPMI_STAT_sent_lan_command_errs,
390
391 /* Each retransmit increments this count. */
392 IPMI_STAT_retransmitted_lan_commands,
393
394 /*
395 * When a message times out (runs out of retransmits) this is
396 * incremented.
397 */
398 IPMI_STAT_timed_out_lan_commands,
399
400 /* Responses I have sent to the IPMB bus. */
401 IPMI_STAT_sent_lan_responses,
402
403 /* The response was delivered to the user. */
404 IPMI_STAT_handled_lan_responses,
405
406 /* The response had invalid data in it. */
407 IPMI_STAT_invalid_lan_responses,
408
409 /* The response didn't have anyone waiting for it. */
410 IPMI_STAT_unhandled_lan_responses,
411
412 /* The command was delivered to the user. */
413 IPMI_STAT_handled_commands,
414
415 /* The command had invalid data in it. */
416 IPMI_STAT_invalid_commands,
417
418 /* The command didn't have anyone waiting for it. */
419 IPMI_STAT_unhandled_commands,
420
421 /* Invalid data in an event. */
422 IPMI_STAT_invalid_events,
423
424 /* Events that were received with the proper format. */
425 IPMI_STAT_events,
426
427 /* Retransmissions on IPMB that failed. */
428 IPMI_STAT_dropped_rexmit_ipmb_commands,
429
430 /* Retransmissions on LAN that failed. */
431 IPMI_STAT_dropped_rexmit_lan_commands,
432
433 /* This *must* remain last, add new values above this. */
434 IPMI_NUM_STATS
435 };
436
437
438 #define IPMI_IPMB_NUM_SEQ 64
439 struct ipmi_smi {
440 struct module *owner;
441
442 /* What interface number are we? */
443 int intf_num;
444
445 struct kref refcount;
446
447 /* Set when the interface is being unregistered. */
448 bool in_shutdown;
449
450 /* Used for a list of interfaces. */
451 struct list_head link;
452
453 /*
454 * The list of upper layers that are using me. seq_lock write
455 * protects this. Read protection is with srcu.
456 */
457 struct list_head users;
458 struct srcu_struct users_srcu;
459 atomic_t nr_users;
460 struct device_attribute nr_users_devattr;
461 struct device_attribute nr_msgs_devattr;
462
463
464 /* Used for wake ups at startup. */
465 wait_queue_head_t waitq;
466
467 /*
468 * Prevents the interface from being unregistered when the
469 * interface is used by being looked up through the BMC
470 * structure.
471 */
472 struct mutex bmc_reg_mutex;
473
474 struct bmc_device tmp_bmc;
475 struct bmc_device *bmc;
476 bool bmc_registered;
477 struct list_head bmc_link;
478 char *my_dev_name;
479 bool in_bmc_register; /* Handle recursive situations. Yuck. */
480 struct work_struct bmc_reg_work;
481
482 const struct ipmi_smi_handlers *handlers;
483 void *send_info;
484
485 /* Driver-model device for the system interface. */
486 struct device *si_dev;
487
488 /*
489 * A table of sequence numbers for this interface. We use the
490 * sequence numbers for IPMB messages that go out of the
491 * interface to match them up with their responses. A routine
492 * is called periodically to time the items in this list.
493 */
494 spinlock_t seq_lock;
495 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
496 int curr_seq;
497
498 /*
499 * Messages queued for delivery. If delivery fails (out of memory
500 * for instance), They will stay in here to be processed later in a
501 * periodic timer interrupt. The tasklet is for handling received
502 * messages directly from the handler.
503 */
504 spinlock_t waiting_rcv_msgs_lock;
505 struct list_head waiting_rcv_msgs;
506 atomic_t watchdog_pretimeouts_to_deliver;
507 struct tasklet_struct recv_tasklet;
508
509 spinlock_t xmit_msgs_lock;
510 struct list_head xmit_msgs;
511 struct ipmi_smi_msg *curr_msg;
512 struct list_head hp_xmit_msgs;
513
514 /*
515 * The list of command receivers that are registered for commands
516 * on this interface.
517 */
518 struct mutex cmd_rcvrs_mutex;
519 struct list_head cmd_rcvrs;
520
521 /*
522 * Events that were queues because no one was there to receive
523 * them.
524 */
525 spinlock_t events_lock; /* For dealing with event stuff. */
526 struct list_head waiting_events;
527 unsigned int waiting_events_count; /* How many events in queue? */
528 char delivering_events;
529 char event_msg_printed;
530
531 /* How many users are waiting for events? */
532 atomic_t event_waiters;
533 unsigned int ticks_to_req_ev;
534
535 spinlock_t watch_lock; /* For dealing with watch stuff below. */
536
537 /* How many users are waiting for commands? */
538 unsigned int command_waiters;
539
540 /* How many users are waiting for watchdogs? */
541 unsigned int watchdog_waiters;
542
543 /* How many users are waiting for message responses? */
544 unsigned int response_waiters;
545
546 /*
547 * Tells what the lower layer has last been asked to watch for,
548 * messages and/or watchdogs. Protected by watch_lock.
549 */
550 unsigned int last_watch_mask;
551
552 /*
553 * The event receiver for my BMC, only really used at panic
554 * shutdown as a place to store this.
555 */
556 unsigned char event_receiver;
557 unsigned char event_receiver_lun;
558 unsigned char local_sel_device;
559 unsigned char local_event_generator;
560
561 /* For handling of maintenance mode. */
562 int maintenance_mode;
563 bool maintenance_mode_enable;
564 int auto_maintenance_timeout;
565 spinlock_t maintenance_mode_lock; /* Used in a timer... */
566
567 /*
568 * If we are doing maintenance on something on IPMB, extend
569 * the timeout time to avoid timeouts writing firmware and
570 * such.
571 */
572 int ipmb_maintenance_mode_timeout;
573
574 /*
575 * A cheap hack, if this is non-null and a message to an
576 * interface comes in with a NULL user, call this routine with
577 * it. Note that the message will still be freed by the
578 * caller. This only works on the system interface.
579 *
580 * Protected by bmc_reg_mutex.
581 */
582 void (*null_user_handler)(struct ipmi_smi *intf,
583 struct ipmi_recv_msg *msg);
584
585 /*
586 * When we are scanning the channels for an SMI, this will
587 * tell which channel we are scanning.
588 */
589 int curr_channel;
590
591 /* Channel information */
592 struct ipmi_channel_set *channel_list;
593 unsigned int curr_working_cset; /* First index into the following. */
594 struct ipmi_channel_set wchannels[2];
595 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
596 bool channels_ready;
597
598 atomic_t stats[IPMI_NUM_STATS];
599
600 /*
601 * run_to_completion duplicate of smb_info, smi_info
602 * and ipmi_serial_info structures. Used to decrease numbers of
603 * parameters passed by "low" level IPMI code.
604 */
605 int run_to_completion;
606 };
607 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
608
609 static void __get_guid(struct ipmi_smi *intf);
610 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
611 static int __ipmi_bmc_register(struct ipmi_smi *intf,
612 struct ipmi_device_id *id,
613 bool guid_set, guid_t *guid, int intf_num);
614 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
615
616
617 /**
618 * The driver model view of the IPMI messaging driver.
619 */
620 static struct platform_driver ipmidriver = {
621 .driver = {
622 .name = "ipmi",
623 .bus = &platform_bus_type
624 }
625 };
626 /*
627 * This mutex keeps us from adding the same BMC twice.
628 */
629 static DEFINE_MUTEX(ipmidriver_mutex);
630
631 static LIST_HEAD(ipmi_interfaces);
632 static DEFINE_MUTEX(ipmi_interfaces_mutex);
633 #define ipmi_interfaces_mutex_held() \
634 lockdep_is_held(&ipmi_interfaces_mutex)
635 static struct srcu_struct ipmi_interfaces_srcu;
636
637 /*
638 * List of watchers that want to know when smi's are added and deleted.
639 */
640 static LIST_HEAD(smi_watchers);
641 static DEFINE_MUTEX(smi_watchers_mutex);
642
643 #define ipmi_inc_stat(intf, stat) \
644 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
645 #define ipmi_get_stat(intf, stat) \
646 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
647
648 static const char * const addr_src_to_str[] = {
649 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
650 "device-tree", "platform"
651 };
652
ipmi_addr_src_to_str(enum ipmi_addr_src src)653 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
654 {
655 if (src >= SI_LAST)
656 src = 0; /* Invalid */
657 return addr_src_to_str[src];
658 }
659 EXPORT_SYMBOL(ipmi_addr_src_to_str);
660
is_lan_addr(struct ipmi_addr * addr)661 static int is_lan_addr(struct ipmi_addr *addr)
662 {
663 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
664 }
665
is_ipmb_addr(struct ipmi_addr * addr)666 static int is_ipmb_addr(struct ipmi_addr *addr)
667 {
668 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
669 }
670
is_ipmb_bcast_addr(struct ipmi_addr * addr)671 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
672 {
673 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
674 }
675
is_ipmb_direct_addr(struct ipmi_addr * addr)676 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
677 {
678 return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
679 }
680
free_recv_msg_list(struct list_head * q)681 static void free_recv_msg_list(struct list_head *q)
682 {
683 struct ipmi_recv_msg *msg, *msg2;
684
685 list_for_each_entry_safe(msg, msg2, q, link) {
686 list_del(&msg->link);
687 ipmi_free_recv_msg(msg);
688 }
689 }
690
free_smi_msg_list(struct list_head * q)691 static void free_smi_msg_list(struct list_head *q)
692 {
693 struct ipmi_smi_msg *msg, *msg2;
694
695 list_for_each_entry_safe(msg, msg2, q, link) {
696 list_del(&msg->link);
697 ipmi_free_smi_msg(msg);
698 }
699 }
700
clean_up_interface_data(struct ipmi_smi * intf)701 static void clean_up_interface_data(struct ipmi_smi *intf)
702 {
703 int i;
704 struct cmd_rcvr *rcvr, *rcvr2;
705 struct list_head list;
706
707 tasklet_kill(&intf->recv_tasklet);
708
709 free_smi_msg_list(&intf->waiting_rcv_msgs);
710 free_recv_msg_list(&intf->waiting_events);
711
712 /*
713 * Wholesale remove all the entries from the list in the
714 * interface and wait for RCU to know that none are in use.
715 */
716 mutex_lock(&intf->cmd_rcvrs_mutex);
717 INIT_LIST_HEAD(&list);
718 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
719 mutex_unlock(&intf->cmd_rcvrs_mutex);
720
721 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
722 kfree(rcvr);
723
724 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
725 if ((intf->seq_table[i].inuse)
726 && (intf->seq_table[i].recv_msg))
727 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
728 }
729 }
730
intf_free(struct kref * ref)731 static void intf_free(struct kref *ref)
732 {
733 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
734
735 clean_up_interface_data(intf);
736 kfree(intf);
737 }
738
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)739 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
740 {
741 struct ipmi_smi *intf;
742 int index, rv;
743
744 /*
745 * Make sure the driver is actually initialized, this handles
746 * problems with initialization order.
747 */
748 rv = ipmi_init_msghandler();
749 if (rv)
750 return rv;
751
752 mutex_lock(&smi_watchers_mutex);
753
754 list_add(&watcher->link, &smi_watchers);
755
756 index = srcu_read_lock(&ipmi_interfaces_srcu);
757 list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
758 lockdep_is_held(&smi_watchers_mutex)) {
759 int intf_num = READ_ONCE(intf->intf_num);
760
761 if (intf_num == -1)
762 continue;
763 watcher->new_smi(intf_num, intf->si_dev);
764 }
765 srcu_read_unlock(&ipmi_interfaces_srcu, index);
766
767 mutex_unlock(&smi_watchers_mutex);
768
769 return 0;
770 }
771 EXPORT_SYMBOL(ipmi_smi_watcher_register);
772
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)773 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
774 {
775 mutex_lock(&smi_watchers_mutex);
776 list_del(&watcher->link);
777 mutex_unlock(&smi_watchers_mutex);
778 return 0;
779 }
780 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
781
782 /*
783 * Must be called with smi_watchers_mutex held.
784 */
785 static void
call_smi_watchers(int i,struct device * dev)786 call_smi_watchers(int i, struct device *dev)
787 {
788 struct ipmi_smi_watcher *w;
789
790 mutex_lock(&smi_watchers_mutex);
791 list_for_each_entry(w, &smi_watchers, link) {
792 if (try_module_get(w->owner)) {
793 w->new_smi(i, dev);
794 module_put(w->owner);
795 }
796 }
797 mutex_unlock(&smi_watchers_mutex);
798 }
799
800 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)801 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
802 {
803 if (addr1->addr_type != addr2->addr_type)
804 return 0;
805
806 if (addr1->channel != addr2->channel)
807 return 0;
808
809 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
810 struct ipmi_system_interface_addr *smi_addr1
811 = (struct ipmi_system_interface_addr *) addr1;
812 struct ipmi_system_interface_addr *smi_addr2
813 = (struct ipmi_system_interface_addr *) addr2;
814 return (smi_addr1->lun == smi_addr2->lun);
815 }
816
817 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
818 struct ipmi_ipmb_addr *ipmb_addr1
819 = (struct ipmi_ipmb_addr *) addr1;
820 struct ipmi_ipmb_addr *ipmb_addr2
821 = (struct ipmi_ipmb_addr *) addr2;
822
823 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
824 && (ipmb_addr1->lun == ipmb_addr2->lun));
825 }
826
827 if (is_ipmb_direct_addr(addr1)) {
828 struct ipmi_ipmb_direct_addr *daddr1
829 = (struct ipmi_ipmb_direct_addr *) addr1;
830 struct ipmi_ipmb_direct_addr *daddr2
831 = (struct ipmi_ipmb_direct_addr *) addr2;
832
833 return daddr1->slave_addr == daddr2->slave_addr &&
834 daddr1->rq_lun == daddr2->rq_lun &&
835 daddr1->rs_lun == daddr2->rs_lun;
836 }
837
838 if (is_lan_addr(addr1)) {
839 struct ipmi_lan_addr *lan_addr1
840 = (struct ipmi_lan_addr *) addr1;
841 struct ipmi_lan_addr *lan_addr2
842 = (struct ipmi_lan_addr *) addr2;
843
844 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
845 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
846 && (lan_addr1->session_handle
847 == lan_addr2->session_handle)
848 && (lan_addr1->lun == lan_addr2->lun));
849 }
850
851 return 1;
852 }
853
ipmi_validate_addr(struct ipmi_addr * addr,int len)854 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
855 {
856 if (len < sizeof(struct ipmi_system_interface_addr))
857 return -EINVAL;
858
859 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
860 if (addr->channel != IPMI_BMC_CHANNEL)
861 return -EINVAL;
862 return 0;
863 }
864
865 if ((addr->channel == IPMI_BMC_CHANNEL)
866 || (addr->channel >= IPMI_MAX_CHANNELS)
867 || (addr->channel < 0))
868 return -EINVAL;
869
870 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
871 if (len < sizeof(struct ipmi_ipmb_addr))
872 return -EINVAL;
873 return 0;
874 }
875
876 if (is_ipmb_direct_addr(addr)) {
877 struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
878
879 if (addr->channel != 0)
880 return -EINVAL;
881 if (len < sizeof(struct ipmi_ipmb_direct_addr))
882 return -EINVAL;
883
884 if (daddr->slave_addr & 0x01)
885 return -EINVAL;
886 if (daddr->rq_lun >= 4)
887 return -EINVAL;
888 if (daddr->rs_lun >= 4)
889 return -EINVAL;
890 return 0;
891 }
892
893 if (is_lan_addr(addr)) {
894 if (len < sizeof(struct ipmi_lan_addr))
895 return -EINVAL;
896 return 0;
897 }
898
899 return -EINVAL;
900 }
901 EXPORT_SYMBOL(ipmi_validate_addr);
902
ipmi_addr_length(int addr_type)903 unsigned int ipmi_addr_length(int addr_type)
904 {
905 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
906 return sizeof(struct ipmi_system_interface_addr);
907
908 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
909 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
910 return sizeof(struct ipmi_ipmb_addr);
911
912 if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
913 return sizeof(struct ipmi_ipmb_direct_addr);
914
915 if (addr_type == IPMI_LAN_ADDR_TYPE)
916 return sizeof(struct ipmi_lan_addr);
917
918 return 0;
919 }
920 EXPORT_SYMBOL(ipmi_addr_length);
921
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)922 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
923 {
924 int rv = 0;
925
926 if (!msg->user) {
927 /* Special handling for NULL users. */
928 if (intf->null_user_handler) {
929 intf->null_user_handler(intf, msg);
930 } else {
931 /* No handler, so give up. */
932 rv = -EINVAL;
933 }
934 ipmi_free_recv_msg(msg);
935 } else if (oops_in_progress) {
936 /*
937 * If we are running in the panic context, calling the
938 * receive handler doesn't much meaning and has a deadlock
939 * risk. At this moment, simply skip it in that case.
940 */
941 ipmi_free_recv_msg(msg);
942 atomic_dec(&msg->user->nr_msgs);
943 } else {
944 int index;
945 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
946
947 if (user) {
948 atomic_dec(&user->nr_msgs);
949 user->handler->ipmi_recv_hndl(msg, user->handler_data);
950 release_ipmi_user(user, index);
951 } else {
952 /* User went away, give up. */
953 ipmi_free_recv_msg(msg);
954 rv = -EINVAL;
955 }
956 }
957
958 return rv;
959 }
960
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)961 static void deliver_local_response(struct ipmi_smi *intf,
962 struct ipmi_recv_msg *msg)
963 {
964 if (deliver_response(intf, msg))
965 ipmi_inc_stat(intf, unhandled_local_responses);
966 else
967 ipmi_inc_stat(intf, handled_local_responses);
968 }
969
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)970 static void deliver_err_response(struct ipmi_smi *intf,
971 struct ipmi_recv_msg *msg, int err)
972 {
973 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
974 msg->msg_data[0] = err;
975 msg->msg.netfn |= 1; /* Convert to a response. */
976 msg->msg.data_len = 1;
977 msg->msg.data = msg->msg_data;
978 deliver_local_response(intf, msg);
979 }
980
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)981 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
982 {
983 unsigned long iflags;
984
985 if (!intf->handlers->set_need_watch)
986 return;
987
988 spin_lock_irqsave(&intf->watch_lock, iflags);
989 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
990 intf->response_waiters++;
991
992 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
993 intf->watchdog_waiters++;
994
995 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
996 intf->command_waiters++;
997
998 if ((intf->last_watch_mask & flags) != flags) {
999 intf->last_watch_mask |= flags;
1000 intf->handlers->set_need_watch(intf->send_info,
1001 intf->last_watch_mask);
1002 }
1003 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1004 }
1005
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)1006 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
1007 {
1008 unsigned long iflags;
1009
1010 if (!intf->handlers->set_need_watch)
1011 return;
1012
1013 spin_lock_irqsave(&intf->watch_lock, iflags);
1014 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1015 intf->response_waiters--;
1016
1017 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1018 intf->watchdog_waiters--;
1019
1020 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1021 intf->command_waiters--;
1022
1023 flags = 0;
1024 if (intf->response_waiters)
1025 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1026 if (intf->watchdog_waiters)
1027 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1028 if (intf->command_waiters)
1029 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1030
1031 if (intf->last_watch_mask != flags) {
1032 intf->last_watch_mask = flags;
1033 intf->handlers->set_need_watch(intf->send_info,
1034 intf->last_watch_mask);
1035 }
1036 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1037 }
1038
1039 /*
1040 * Find the next sequence number not being used and add the given
1041 * message with the given timeout to the sequence table. This must be
1042 * called with the interface's seq_lock held.
1043 */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1044 static int intf_next_seq(struct ipmi_smi *intf,
1045 struct ipmi_recv_msg *recv_msg,
1046 unsigned long timeout,
1047 int retries,
1048 int broadcast,
1049 unsigned char *seq,
1050 long *seqid)
1051 {
1052 int rv = 0;
1053 unsigned int i;
1054
1055 if (timeout == 0)
1056 timeout = default_retry_ms;
1057 if (retries < 0)
1058 retries = default_max_retries;
1059
1060 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1061 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1062 if (!intf->seq_table[i].inuse)
1063 break;
1064 }
1065
1066 if (!intf->seq_table[i].inuse) {
1067 intf->seq_table[i].recv_msg = recv_msg;
1068
1069 /*
1070 * Start with the maximum timeout, when the send response
1071 * comes in we will start the real timer.
1072 */
1073 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1074 intf->seq_table[i].orig_timeout = timeout;
1075 intf->seq_table[i].retries_left = retries;
1076 intf->seq_table[i].broadcast = broadcast;
1077 intf->seq_table[i].inuse = 1;
1078 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1079 *seq = i;
1080 *seqid = intf->seq_table[i].seqid;
1081 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1082 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1083 need_waiter(intf);
1084 } else {
1085 rv = -EAGAIN;
1086 }
1087
1088 return rv;
1089 }
1090
1091 /*
1092 * Return the receive message for the given sequence number and
1093 * release the sequence number so it can be reused. Some other data
1094 * is passed in to be sure the message matches up correctly (to help
1095 * guard against message coming in after their timeout and the
1096 * sequence number being reused).
1097 */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1098 static int intf_find_seq(struct ipmi_smi *intf,
1099 unsigned char seq,
1100 short channel,
1101 unsigned char cmd,
1102 unsigned char netfn,
1103 struct ipmi_addr *addr,
1104 struct ipmi_recv_msg **recv_msg)
1105 {
1106 int rv = -ENODEV;
1107 unsigned long flags;
1108
1109 if (seq >= IPMI_IPMB_NUM_SEQ)
1110 return -EINVAL;
1111
1112 spin_lock_irqsave(&intf->seq_lock, flags);
1113 if (intf->seq_table[seq].inuse) {
1114 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1115
1116 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1117 && (msg->msg.netfn == netfn)
1118 && (ipmi_addr_equal(addr, &msg->addr))) {
1119 *recv_msg = msg;
1120 intf->seq_table[seq].inuse = 0;
1121 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1122 rv = 0;
1123 }
1124 }
1125 spin_unlock_irqrestore(&intf->seq_lock, flags);
1126
1127 return rv;
1128 }
1129
1130
1131 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1132 static int intf_start_seq_timer(struct ipmi_smi *intf,
1133 long msgid)
1134 {
1135 int rv = -ENODEV;
1136 unsigned long flags;
1137 unsigned char seq;
1138 unsigned long seqid;
1139
1140
1141 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1142
1143 spin_lock_irqsave(&intf->seq_lock, flags);
1144 /*
1145 * We do this verification because the user can be deleted
1146 * while a message is outstanding.
1147 */
1148 if ((intf->seq_table[seq].inuse)
1149 && (intf->seq_table[seq].seqid == seqid)) {
1150 struct seq_table *ent = &intf->seq_table[seq];
1151 ent->timeout = ent->orig_timeout;
1152 rv = 0;
1153 }
1154 spin_unlock_irqrestore(&intf->seq_lock, flags);
1155
1156 return rv;
1157 }
1158
1159 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1160 static int intf_err_seq(struct ipmi_smi *intf,
1161 long msgid,
1162 unsigned int err)
1163 {
1164 int rv = -ENODEV;
1165 unsigned long flags;
1166 unsigned char seq;
1167 unsigned long seqid;
1168 struct ipmi_recv_msg *msg = NULL;
1169
1170
1171 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1172
1173 spin_lock_irqsave(&intf->seq_lock, flags);
1174 /*
1175 * We do this verification because the user can be deleted
1176 * while a message is outstanding.
1177 */
1178 if ((intf->seq_table[seq].inuse)
1179 && (intf->seq_table[seq].seqid == seqid)) {
1180 struct seq_table *ent = &intf->seq_table[seq];
1181
1182 ent->inuse = 0;
1183 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1184 msg = ent->recv_msg;
1185 rv = 0;
1186 }
1187 spin_unlock_irqrestore(&intf->seq_lock, flags);
1188
1189 if (msg)
1190 deliver_err_response(intf, msg, err);
1191
1192 return rv;
1193 }
1194
free_user_work(struct work_struct * work)1195 static void free_user_work(struct work_struct *work)
1196 {
1197 struct ipmi_user *user = container_of(work, struct ipmi_user,
1198 remove_work);
1199
1200 cleanup_srcu_struct(&user->release_barrier);
1201 vfree(user);
1202 }
1203
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1204 int ipmi_create_user(unsigned int if_num,
1205 const struct ipmi_user_hndl *handler,
1206 void *handler_data,
1207 struct ipmi_user **user)
1208 {
1209 unsigned long flags;
1210 struct ipmi_user *new_user;
1211 int rv, index;
1212 struct ipmi_smi *intf;
1213
1214 /*
1215 * There is no module usecount here, because it's not
1216 * required. Since this can only be used by and called from
1217 * other modules, they will implicitly use this module, and
1218 * thus this can't be removed unless the other modules are
1219 * removed.
1220 */
1221
1222 if (handler == NULL)
1223 return -EINVAL;
1224
1225 /*
1226 * Make sure the driver is actually initialized, this handles
1227 * problems with initialization order.
1228 */
1229 rv = ipmi_init_msghandler();
1230 if (rv)
1231 return rv;
1232
1233 new_user = vzalloc(sizeof(*new_user));
1234 if (!new_user)
1235 return -ENOMEM;
1236
1237 index = srcu_read_lock(&ipmi_interfaces_srcu);
1238 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1239 if (intf->intf_num == if_num)
1240 goto found;
1241 }
1242 /* Not found, return an error */
1243 rv = -EINVAL;
1244 goto out_kfree;
1245
1246 found:
1247 if (atomic_add_return(1, &intf->nr_users) > max_users) {
1248 rv = -EBUSY;
1249 goto out_kfree;
1250 }
1251
1252 INIT_WORK(&new_user->remove_work, free_user_work);
1253
1254 rv = init_srcu_struct(&new_user->release_barrier);
1255 if (rv)
1256 goto out_kfree;
1257
1258 if (!try_module_get(intf->owner)) {
1259 rv = -ENODEV;
1260 goto out_kfree;
1261 }
1262
1263 /* Note that each existing user holds a refcount to the interface. */
1264 kref_get(&intf->refcount);
1265
1266 atomic_set(&new_user->nr_msgs, 0);
1267 kref_init(&new_user->refcount);
1268 new_user->handler = handler;
1269 new_user->handler_data = handler_data;
1270 new_user->intf = intf;
1271 new_user->gets_events = false;
1272
1273 rcu_assign_pointer(new_user->self, new_user);
1274 spin_lock_irqsave(&intf->seq_lock, flags);
1275 list_add_rcu(&new_user->link, &intf->users);
1276 spin_unlock_irqrestore(&intf->seq_lock, flags);
1277 if (handler->ipmi_watchdog_pretimeout)
1278 /* User wants pretimeouts, so make sure to watch for them. */
1279 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1280 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1281 *user = new_user;
1282 return 0;
1283
1284 out_kfree:
1285 atomic_dec(&intf->nr_users);
1286 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1287 vfree(new_user);
1288 return rv;
1289 }
1290 EXPORT_SYMBOL(ipmi_create_user);
1291
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1292 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1293 {
1294 int rv, index;
1295 struct ipmi_smi *intf;
1296
1297 index = srcu_read_lock(&ipmi_interfaces_srcu);
1298 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1299 if (intf->intf_num == if_num)
1300 goto found;
1301 }
1302 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1303
1304 /* Not found, return an error */
1305 return -EINVAL;
1306
1307 found:
1308 if (!intf->handlers->get_smi_info)
1309 rv = -ENOTTY;
1310 else
1311 rv = intf->handlers->get_smi_info(intf->send_info, data);
1312 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1313
1314 return rv;
1315 }
1316 EXPORT_SYMBOL(ipmi_get_smi_info);
1317
free_user(struct kref * ref)1318 static void free_user(struct kref *ref)
1319 {
1320 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1321
1322 /* SRCU cleanup must happen in task context. */
1323 queue_work(remove_work_wq, &user->remove_work);
1324 }
1325
_ipmi_destroy_user(struct ipmi_user * user)1326 static void _ipmi_destroy_user(struct ipmi_user *user)
1327 {
1328 struct ipmi_smi *intf = user->intf;
1329 int i;
1330 unsigned long flags;
1331 struct cmd_rcvr *rcvr;
1332 struct cmd_rcvr *rcvrs = NULL;
1333
1334 if (!acquire_ipmi_user(user, &i)) {
1335 /*
1336 * The user has already been cleaned up, just make sure
1337 * nothing is using it and return.
1338 */
1339 synchronize_srcu(&user->release_barrier);
1340 return;
1341 }
1342
1343 rcu_assign_pointer(user->self, NULL);
1344 release_ipmi_user(user, i);
1345
1346 synchronize_srcu(&user->release_barrier);
1347
1348 if (user->handler->shutdown)
1349 user->handler->shutdown(user->handler_data);
1350
1351 if (user->handler->ipmi_watchdog_pretimeout)
1352 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1353
1354 if (user->gets_events)
1355 atomic_dec(&intf->event_waiters);
1356
1357 /* Remove the user from the interface's sequence table. */
1358 spin_lock_irqsave(&intf->seq_lock, flags);
1359 list_del_rcu(&user->link);
1360 atomic_dec(&intf->nr_users);
1361
1362 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1363 if (intf->seq_table[i].inuse
1364 && (intf->seq_table[i].recv_msg->user == user)) {
1365 intf->seq_table[i].inuse = 0;
1366 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1367 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1368 }
1369 }
1370 spin_unlock_irqrestore(&intf->seq_lock, flags);
1371
1372 /*
1373 * Remove the user from the command receiver's table. First
1374 * we build a list of everything (not using the standard link,
1375 * since other things may be using it till we do
1376 * synchronize_srcu()) then free everything in that list.
1377 */
1378 mutex_lock(&intf->cmd_rcvrs_mutex);
1379 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1380 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1381 if (rcvr->user == user) {
1382 list_del_rcu(&rcvr->link);
1383 rcvr->next = rcvrs;
1384 rcvrs = rcvr;
1385 }
1386 }
1387 mutex_unlock(&intf->cmd_rcvrs_mutex);
1388 synchronize_rcu();
1389 while (rcvrs) {
1390 rcvr = rcvrs;
1391 rcvrs = rcvr->next;
1392 kfree(rcvr);
1393 }
1394
1395 kref_put(&intf->refcount, intf_free);
1396 module_put(intf->owner);
1397 }
1398
ipmi_destroy_user(struct ipmi_user * user)1399 int ipmi_destroy_user(struct ipmi_user *user)
1400 {
1401 _ipmi_destroy_user(user);
1402
1403 kref_put(&user->refcount, free_user);
1404
1405 return 0;
1406 }
1407 EXPORT_SYMBOL(ipmi_destroy_user);
1408
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1409 int ipmi_get_version(struct ipmi_user *user,
1410 unsigned char *major,
1411 unsigned char *minor)
1412 {
1413 struct ipmi_device_id id;
1414 int rv, index;
1415
1416 user = acquire_ipmi_user(user, &index);
1417 if (!user)
1418 return -ENODEV;
1419
1420 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1421 if (!rv) {
1422 *major = ipmi_version_major(&id);
1423 *minor = ipmi_version_minor(&id);
1424 }
1425 release_ipmi_user(user, index);
1426
1427 return rv;
1428 }
1429 EXPORT_SYMBOL(ipmi_get_version);
1430
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1431 int ipmi_set_my_address(struct ipmi_user *user,
1432 unsigned int channel,
1433 unsigned char address)
1434 {
1435 int index, rv = 0;
1436
1437 user = acquire_ipmi_user(user, &index);
1438 if (!user)
1439 return -ENODEV;
1440
1441 if (channel >= IPMI_MAX_CHANNELS) {
1442 rv = -EINVAL;
1443 } else {
1444 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1445 user->intf->addrinfo[channel].address = address;
1446 }
1447 release_ipmi_user(user, index);
1448
1449 return rv;
1450 }
1451 EXPORT_SYMBOL(ipmi_set_my_address);
1452
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1453 int ipmi_get_my_address(struct ipmi_user *user,
1454 unsigned int channel,
1455 unsigned char *address)
1456 {
1457 int index, rv = 0;
1458
1459 user = acquire_ipmi_user(user, &index);
1460 if (!user)
1461 return -ENODEV;
1462
1463 if (channel >= IPMI_MAX_CHANNELS) {
1464 rv = -EINVAL;
1465 } else {
1466 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1467 *address = user->intf->addrinfo[channel].address;
1468 }
1469 release_ipmi_user(user, index);
1470
1471 return rv;
1472 }
1473 EXPORT_SYMBOL(ipmi_get_my_address);
1474
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1475 int ipmi_set_my_LUN(struct ipmi_user *user,
1476 unsigned int channel,
1477 unsigned char LUN)
1478 {
1479 int index, rv = 0;
1480
1481 user = acquire_ipmi_user(user, &index);
1482 if (!user)
1483 return -ENODEV;
1484
1485 if (channel >= IPMI_MAX_CHANNELS) {
1486 rv = -EINVAL;
1487 } else {
1488 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1489 user->intf->addrinfo[channel].lun = LUN & 0x3;
1490 }
1491 release_ipmi_user(user, index);
1492
1493 return rv;
1494 }
1495 EXPORT_SYMBOL(ipmi_set_my_LUN);
1496
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1497 int ipmi_get_my_LUN(struct ipmi_user *user,
1498 unsigned int channel,
1499 unsigned char *address)
1500 {
1501 int index, rv = 0;
1502
1503 user = acquire_ipmi_user(user, &index);
1504 if (!user)
1505 return -ENODEV;
1506
1507 if (channel >= IPMI_MAX_CHANNELS) {
1508 rv = -EINVAL;
1509 } else {
1510 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1511 *address = user->intf->addrinfo[channel].lun;
1512 }
1513 release_ipmi_user(user, index);
1514
1515 return rv;
1516 }
1517 EXPORT_SYMBOL(ipmi_get_my_LUN);
1518
ipmi_get_maintenance_mode(struct ipmi_user * user)1519 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1520 {
1521 int mode, index;
1522 unsigned long flags;
1523
1524 user = acquire_ipmi_user(user, &index);
1525 if (!user)
1526 return -ENODEV;
1527
1528 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1529 mode = user->intf->maintenance_mode;
1530 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1531 release_ipmi_user(user, index);
1532
1533 return mode;
1534 }
1535 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1536
maintenance_mode_update(struct ipmi_smi * intf)1537 static void maintenance_mode_update(struct ipmi_smi *intf)
1538 {
1539 if (intf->handlers->set_maintenance_mode)
1540 intf->handlers->set_maintenance_mode(
1541 intf->send_info, intf->maintenance_mode_enable);
1542 }
1543
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1544 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1545 {
1546 int rv = 0, index;
1547 unsigned long flags;
1548 struct ipmi_smi *intf = user->intf;
1549
1550 user = acquire_ipmi_user(user, &index);
1551 if (!user)
1552 return -ENODEV;
1553
1554 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1555 if (intf->maintenance_mode != mode) {
1556 switch (mode) {
1557 case IPMI_MAINTENANCE_MODE_AUTO:
1558 intf->maintenance_mode_enable
1559 = (intf->auto_maintenance_timeout > 0);
1560 break;
1561
1562 case IPMI_MAINTENANCE_MODE_OFF:
1563 intf->maintenance_mode_enable = false;
1564 break;
1565
1566 case IPMI_MAINTENANCE_MODE_ON:
1567 intf->maintenance_mode_enable = true;
1568 break;
1569
1570 default:
1571 rv = -EINVAL;
1572 goto out_unlock;
1573 }
1574 intf->maintenance_mode = mode;
1575
1576 maintenance_mode_update(intf);
1577 }
1578 out_unlock:
1579 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1580 release_ipmi_user(user, index);
1581
1582 return rv;
1583 }
1584 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1585
ipmi_set_gets_events(struct ipmi_user * user,bool val)1586 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1587 {
1588 unsigned long flags;
1589 struct ipmi_smi *intf = user->intf;
1590 struct ipmi_recv_msg *msg, *msg2;
1591 struct list_head msgs;
1592 int index;
1593
1594 user = acquire_ipmi_user(user, &index);
1595 if (!user)
1596 return -ENODEV;
1597
1598 INIT_LIST_HEAD(&msgs);
1599
1600 spin_lock_irqsave(&intf->events_lock, flags);
1601 if (user->gets_events == val)
1602 goto out;
1603
1604 user->gets_events = val;
1605
1606 if (val) {
1607 if (atomic_inc_return(&intf->event_waiters) == 1)
1608 need_waiter(intf);
1609 } else {
1610 atomic_dec(&intf->event_waiters);
1611 }
1612
1613 if (intf->delivering_events)
1614 /*
1615 * Another thread is delivering events for this, so
1616 * let it handle any new events.
1617 */
1618 goto out;
1619
1620 /* Deliver any queued events. */
1621 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1622 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1623 list_move_tail(&msg->link, &msgs);
1624 intf->waiting_events_count = 0;
1625 if (intf->event_msg_printed) {
1626 dev_warn(intf->si_dev, "Event queue no longer full\n");
1627 intf->event_msg_printed = 0;
1628 }
1629
1630 intf->delivering_events = 1;
1631 spin_unlock_irqrestore(&intf->events_lock, flags);
1632
1633 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1634 msg->user = user;
1635 kref_get(&user->refcount);
1636 deliver_local_response(intf, msg);
1637 }
1638
1639 spin_lock_irqsave(&intf->events_lock, flags);
1640 intf->delivering_events = 0;
1641 }
1642
1643 out:
1644 spin_unlock_irqrestore(&intf->events_lock, flags);
1645 release_ipmi_user(user, index);
1646
1647 return 0;
1648 }
1649 EXPORT_SYMBOL(ipmi_set_gets_events);
1650
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1651 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1652 unsigned char netfn,
1653 unsigned char cmd,
1654 unsigned char chan)
1655 {
1656 struct cmd_rcvr *rcvr;
1657
1658 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1659 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1660 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1661 && (rcvr->chans & (1 << chan)))
1662 return rcvr;
1663 }
1664 return NULL;
1665 }
1666
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1667 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1668 unsigned char netfn,
1669 unsigned char cmd,
1670 unsigned int chans)
1671 {
1672 struct cmd_rcvr *rcvr;
1673
1674 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1675 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1676 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1677 && (rcvr->chans & chans))
1678 return 0;
1679 }
1680 return 1;
1681 }
1682
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1683 int ipmi_register_for_cmd(struct ipmi_user *user,
1684 unsigned char netfn,
1685 unsigned char cmd,
1686 unsigned int chans)
1687 {
1688 struct ipmi_smi *intf = user->intf;
1689 struct cmd_rcvr *rcvr;
1690 int rv = 0, index;
1691
1692 user = acquire_ipmi_user(user, &index);
1693 if (!user)
1694 return -ENODEV;
1695
1696 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1697 if (!rcvr) {
1698 rv = -ENOMEM;
1699 goto out_release;
1700 }
1701 rcvr->cmd = cmd;
1702 rcvr->netfn = netfn;
1703 rcvr->chans = chans;
1704 rcvr->user = user;
1705
1706 mutex_lock(&intf->cmd_rcvrs_mutex);
1707 /* Make sure the command/netfn is not already registered. */
1708 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1709 rv = -EBUSY;
1710 goto out_unlock;
1711 }
1712
1713 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1714
1715 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1716
1717 out_unlock:
1718 mutex_unlock(&intf->cmd_rcvrs_mutex);
1719 if (rv)
1720 kfree(rcvr);
1721 out_release:
1722 release_ipmi_user(user, index);
1723
1724 return rv;
1725 }
1726 EXPORT_SYMBOL(ipmi_register_for_cmd);
1727
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1728 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1729 unsigned char netfn,
1730 unsigned char cmd,
1731 unsigned int chans)
1732 {
1733 struct ipmi_smi *intf = user->intf;
1734 struct cmd_rcvr *rcvr;
1735 struct cmd_rcvr *rcvrs = NULL;
1736 int i, rv = -ENOENT, index;
1737
1738 user = acquire_ipmi_user(user, &index);
1739 if (!user)
1740 return -ENODEV;
1741
1742 mutex_lock(&intf->cmd_rcvrs_mutex);
1743 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1744 if (((1 << i) & chans) == 0)
1745 continue;
1746 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1747 if (rcvr == NULL)
1748 continue;
1749 if (rcvr->user == user) {
1750 rv = 0;
1751 rcvr->chans &= ~chans;
1752 if (rcvr->chans == 0) {
1753 list_del_rcu(&rcvr->link);
1754 rcvr->next = rcvrs;
1755 rcvrs = rcvr;
1756 }
1757 }
1758 }
1759 mutex_unlock(&intf->cmd_rcvrs_mutex);
1760 synchronize_rcu();
1761 release_ipmi_user(user, index);
1762 while (rcvrs) {
1763 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1764 rcvr = rcvrs;
1765 rcvrs = rcvr->next;
1766 kfree(rcvr);
1767 }
1768
1769 return rv;
1770 }
1771 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1772
1773 unsigned char
ipmb_checksum(unsigned char * data,int size)1774 ipmb_checksum(unsigned char *data, int size)
1775 {
1776 unsigned char csum = 0;
1777
1778 for (; size > 0; size--, data++)
1779 csum += *data;
1780
1781 return -csum;
1782 }
1783 EXPORT_SYMBOL(ipmb_checksum);
1784
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1785 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1786 struct kernel_ipmi_msg *msg,
1787 struct ipmi_ipmb_addr *ipmb_addr,
1788 long msgid,
1789 unsigned char ipmb_seq,
1790 int broadcast,
1791 unsigned char source_address,
1792 unsigned char source_lun)
1793 {
1794 int i = broadcast;
1795
1796 /* Format the IPMB header data. */
1797 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1798 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1799 smi_msg->data[2] = ipmb_addr->channel;
1800 if (broadcast)
1801 smi_msg->data[3] = 0;
1802 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1803 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1804 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1805 smi_msg->data[i+6] = source_address;
1806 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1807 smi_msg->data[i+8] = msg->cmd;
1808
1809 /* Now tack on the data to the message. */
1810 if (msg->data_len > 0)
1811 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1812 smi_msg->data_size = msg->data_len + 9;
1813
1814 /* Now calculate the checksum and tack it on. */
1815 smi_msg->data[i+smi_msg->data_size]
1816 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1817
1818 /*
1819 * Add on the checksum size and the offset from the
1820 * broadcast.
1821 */
1822 smi_msg->data_size += 1 + i;
1823
1824 smi_msg->msgid = msgid;
1825 }
1826
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1827 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1828 struct kernel_ipmi_msg *msg,
1829 struct ipmi_lan_addr *lan_addr,
1830 long msgid,
1831 unsigned char ipmb_seq,
1832 unsigned char source_lun)
1833 {
1834 /* Format the IPMB header data. */
1835 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1836 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1837 smi_msg->data[2] = lan_addr->channel;
1838 smi_msg->data[3] = lan_addr->session_handle;
1839 smi_msg->data[4] = lan_addr->remote_SWID;
1840 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1841 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1842 smi_msg->data[7] = lan_addr->local_SWID;
1843 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1844 smi_msg->data[9] = msg->cmd;
1845
1846 /* Now tack on the data to the message. */
1847 if (msg->data_len > 0)
1848 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1849 smi_msg->data_size = msg->data_len + 10;
1850
1851 /* Now calculate the checksum and tack it on. */
1852 smi_msg->data[smi_msg->data_size]
1853 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1854
1855 /*
1856 * Add on the checksum size and the offset from the
1857 * broadcast.
1858 */
1859 smi_msg->data_size += 1;
1860
1861 smi_msg->msgid = msgid;
1862 }
1863
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1864 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1865 struct ipmi_smi_msg *smi_msg,
1866 int priority)
1867 {
1868 if (intf->curr_msg) {
1869 if (priority > 0)
1870 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1871 else
1872 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1873 smi_msg = NULL;
1874 } else {
1875 intf->curr_msg = smi_msg;
1876 }
1877
1878 return smi_msg;
1879 }
1880
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1881 static void smi_send(struct ipmi_smi *intf,
1882 const struct ipmi_smi_handlers *handlers,
1883 struct ipmi_smi_msg *smi_msg, int priority)
1884 {
1885 int run_to_completion = intf->run_to_completion;
1886 unsigned long flags = 0;
1887
1888 if (!run_to_completion)
1889 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1890 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1891
1892 if (!run_to_completion)
1893 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1894
1895 if (smi_msg)
1896 handlers->sender(intf->send_info, smi_msg);
1897 }
1898
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1899 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1900 {
1901 return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1902 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1903 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1904 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1905 }
1906
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1907 static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
1908 struct ipmi_addr *addr,
1909 long msgid,
1910 struct kernel_ipmi_msg *msg,
1911 struct ipmi_smi_msg *smi_msg,
1912 struct ipmi_recv_msg *recv_msg,
1913 int retries,
1914 unsigned int retry_time_ms)
1915 {
1916 struct ipmi_system_interface_addr *smi_addr;
1917
1918 if (msg->netfn & 1)
1919 /* Responses are not allowed to the SMI. */
1920 return -EINVAL;
1921
1922 smi_addr = (struct ipmi_system_interface_addr *) addr;
1923 if (smi_addr->lun > 3) {
1924 ipmi_inc_stat(intf, sent_invalid_commands);
1925 return -EINVAL;
1926 }
1927
1928 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1929
1930 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1931 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1932 || (msg->cmd == IPMI_GET_MSG_CMD)
1933 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1934 /*
1935 * We don't let the user do these, since we manage
1936 * the sequence numbers.
1937 */
1938 ipmi_inc_stat(intf, sent_invalid_commands);
1939 return -EINVAL;
1940 }
1941
1942 if (is_maintenance_mode_cmd(msg)) {
1943 unsigned long flags;
1944
1945 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1946 intf->auto_maintenance_timeout
1947 = maintenance_mode_timeout_ms;
1948 if (!intf->maintenance_mode
1949 && !intf->maintenance_mode_enable) {
1950 intf->maintenance_mode_enable = true;
1951 maintenance_mode_update(intf);
1952 }
1953 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1954 flags);
1955 }
1956
1957 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1958 ipmi_inc_stat(intf, sent_invalid_commands);
1959 return -EMSGSIZE;
1960 }
1961
1962 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1963 smi_msg->data[1] = msg->cmd;
1964 smi_msg->msgid = msgid;
1965 smi_msg->user_data = recv_msg;
1966 if (msg->data_len > 0)
1967 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1968 smi_msg->data_size = msg->data_len + 2;
1969 ipmi_inc_stat(intf, sent_local_commands);
1970
1971 return 0;
1972 }
1973
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1974 static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
1975 struct ipmi_addr *addr,
1976 long msgid,
1977 struct kernel_ipmi_msg *msg,
1978 struct ipmi_smi_msg *smi_msg,
1979 struct ipmi_recv_msg *recv_msg,
1980 unsigned char source_address,
1981 unsigned char source_lun,
1982 int retries,
1983 unsigned int retry_time_ms)
1984 {
1985 struct ipmi_ipmb_addr *ipmb_addr;
1986 unsigned char ipmb_seq;
1987 long seqid;
1988 int broadcast = 0;
1989 struct ipmi_channel *chans;
1990 int rv = 0;
1991
1992 if (addr->channel >= IPMI_MAX_CHANNELS) {
1993 ipmi_inc_stat(intf, sent_invalid_commands);
1994 return -EINVAL;
1995 }
1996
1997 chans = READ_ONCE(intf->channel_list)->c;
1998
1999 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
2000 ipmi_inc_stat(intf, sent_invalid_commands);
2001 return -EINVAL;
2002 }
2003
2004 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
2005 /*
2006 * Broadcasts add a zero at the beginning of the
2007 * message, but otherwise is the same as an IPMB
2008 * address.
2009 */
2010 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2011 broadcast = 1;
2012 retries = 0; /* Don't retry broadcasts. */
2013 }
2014
2015 /*
2016 * 9 for the header and 1 for the checksum, plus
2017 * possibly one for the broadcast.
2018 */
2019 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
2020 ipmi_inc_stat(intf, sent_invalid_commands);
2021 return -EMSGSIZE;
2022 }
2023
2024 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2025 if (ipmb_addr->lun > 3) {
2026 ipmi_inc_stat(intf, sent_invalid_commands);
2027 return -EINVAL;
2028 }
2029
2030 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2031
2032 if (recv_msg->msg.netfn & 0x1) {
2033 /*
2034 * It's a response, so use the user's sequence
2035 * from msgid.
2036 */
2037 ipmi_inc_stat(intf, sent_ipmb_responses);
2038 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2039 msgid, broadcast,
2040 source_address, source_lun);
2041
2042 /*
2043 * Save the receive message so we can use it
2044 * to deliver the response.
2045 */
2046 smi_msg->user_data = recv_msg;
2047 } else {
2048 /* It's a command, so get a sequence for it. */
2049 unsigned long flags;
2050
2051 spin_lock_irqsave(&intf->seq_lock, flags);
2052
2053 if (is_maintenance_mode_cmd(msg))
2054 intf->ipmb_maintenance_mode_timeout =
2055 maintenance_mode_timeout_ms;
2056
2057 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2058 /* Different default in maintenance mode */
2059 retry_time_ms = default_maintenance_retry_ms;
2060
2061 /*
2062 * Create a sequence number with a 1 second
2063 * timeout and 4 retries.
2064 */
2065 rv = intf_next_seq(intf,
2066 recv_msg,
2067 retry_time_ms,
2068 retries,
2069 broadcast,
2070 &ipmb_seq,
2071 &seqid);
2072 if (rv)
2073 /*
2074 * We have used up all the sequence numbers,
2075 * probably, so abort.
2076 */
2077 goto out_err;
2078
2079 ipmi_inc_stat(intf, sent_ipmb_commands);
2080
2081 /*
2082 * Store the sequence number in the message,
2083 * so that when the send message response
2084 * comes back we can start the timer.
2085 */
2086 format_ipmb_msg(smi_msg, msg, ipmb_addr,
2087 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2088 ipmb_seq, broadcast,
2089 source_address, source_lun);
2090
2091 /*
2092 * Copy the message into the recv message data, so we
2093 * can retransmit it later if necessary.
2094 */
2095 memcpy(recv_msg->msg_data, smi_msg->data,
2096 smi_msg->data_size);
2097 recv_msg->msg.data = recv_msg->msg_data;
2098 recv_msg->msg.data_len = smi_msg->data_size;
2099
2100 /*
2101 * We don't unlock until here, because we need
2102 * to copy the completed message into the
2103 * recv_msg before we release the lock.
2104 * Otherwise, race conditions may bite us. I
2105 * know that's pretty paranoid, but I prefer
2106 * to be correct.
2107 */
2108 out_err:
2109 spin_unlock_irqrestore(&intf->seq_lock, flags);
2110 }
2111
2112 return rv;
2113 }
2114
i_ipmi_req_ipmb_direct(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun)2115 static int i_ipmi_req_ipmb_direct(struct ipmi_smi *intf,
2116 struct ipmi_addr *addr,
2117 long msgid,
2118 struct kernel_ipmi_msg *msg,
2119 struct ipmi_smi_msg *smi_msg,
2120 struct ipmi_recv_msg *recv_msg,
2121 unsigned char source_lun)
2122 {
2123 struct ipmi_ipmb_direct_addr *daddr;
2124 bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2125
2126 if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2127 return -EAFNOSUPPORT;
2128
2129 /* Responses must have a completion code. */
2130 if (!is_cmd && msg->data_len < 1) {
2131 ipmi_inc_stat(intf, sent_invalid_commands);
2132 return -EINVAL;
2133 }
2134
2135 if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2136 ipmi_inc_stat(intf, sent_invalid_commands);
2137 return -EMSGSIZE;
2138 }
2139
2140 daddr = (struct ipmi_ipmb_direct_addr *) addr;
2141 if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2142 ipmi_inc_stat(intf, sent_invalid_commands);
2143 return -EINVAL;
2144 }
2145
2146 smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2147 smi_msg->msgid = msgid;
2148
2149 if (is_cmd) {
2150 smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2151 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2152 } else {
2153 smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2154 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2155 }
2156 smi_msg->data[1] = daddr->slave_addr;
2157 smi_msg->data[3] = msg->cmd;
2158
2159 memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2160 smi_msg->data_size = msg->data_len + 4;
2161
2162 smi_msg->user_data = recv_msg;
2163
2164 return 0;
2165 }
2166
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2167 static int i_ipmi_req_lan(struct ipmi_smi *intf,
2168 struct ipmi_addr *addr,
2169 long msgid,
2170 struct kernel_ipmi_msg *msg,
2171 struct ipmi_smi_msg *smi_msg,
2172 struct ipmi_recv_msg *recv_msg,
2173 unsigned char source_lun,
2174 int retries,
2175 unsigned int retry_time_ms)
2176 {
2177 struct ipmi_lan_addr *lan_addr;
2178 unsigned char ipmb_seq;
2179 long seqid;
2180 struct ipmi_channel *chans;
2181 int rv = 0;
2182
2183 if (addr->channel >= IPMI_MAX_CHANNELS) {
2184 ipmi_inc_stat(intf, sent_invalid_commands);
2185 return -EINVAL;
2186 }
2187
2188 chans = READ_ONCE(intf->channel_list)->c;
2189
2190 if ((chans[addr->channel].medium
2191 != IPMI_CHANNEL_MEDIUM_8023LAN)
2192 && (chans[addr->channel].medium
2193 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2194 ipmi_inc_stat(intf, sent_invalid_commands);
2195 return -EINVAL;
2196 }
2197
2198 /* 11 for the header and 1 for the checksum. */
2199 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2200 ipmi_inc_stat(intf, sent_invalid_commands);
2201 return -EMSGSIZE;
2202 }
2203
2204 lan_addr = (struct ipmi_lan_addr *) addr;
2205 if (lan_addr->lun > 3) {
2206 ipmi_inc_stat(intf, sent_invalid_commands);
2207 return -EINVAL;
2208 }
2209
2210 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2211
2212 if (recv_msg->msg.netfn & 0x1) {
2213 /*
2214 * It's a response, so use the user's sequence
2215 * from msgid.
2216 */
2217 ipmi_inc_stat(intf, sent_lan_responses);
2218 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2219 msgid, source_lun);
2220
2221 /*
2222 * Save the receive message so we can use it
2223 * to deliver the response.
2224 */
2225 smi_msg->user_data = recv_msg;
2226 } else {
2227 /* It's a command, so get a sequence for it. */
2228 unsigned long flags;
2229
2230 spin_lock_irqsave(&intf->seq_lock, flags);
2231
2232 /*
2233 * Create a sequence number with a 1 second
2234 * timeout and 4 retries.
2235 */
2236 rv = intf_next_seq(intf,
2237 recv_msg,
2238 retry_time_ms,
2239 retries,
2240 0,
2241 &ipmb_seq,
2242 &seqid);
2243 if (rv)
2244 /*
2245 * We have used up all the sequence numbers,
2246 * probably, so abort.
2247 */
2248 goto out_err;
2249
2250 ipmi_inc_stat(intf, sent_lan_commands);
2251
2252 /*
2253 * Store the sequence number in the message,
2254 * so that when the send message response
2255 * comes back we can start the timer.
2256 */
2257 format_lan_msg(smi_msg, msg, lan_addr,
2258 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2259 ipmb_seq, source_lun);
2260
2261 /*
2262 * Copy the message into the recv message data, so we
2263 * can retransmit it later if necessary.
2264 */
2265 memcpy(recv_msg->msg_data, smi_msg->data,
2266 smi_msg->data_size);
2267 recv_msg->msg.data = recv_msg->msg_data;
2268 recv_msg->msg.data_len = smi_msg->data_size;
2269
2270 /*
2271 * We don't unlock until here, because we need
2272 * to copy the completed message into the
2273 * recv_msg before we release the lock.
2274 * Otherwise, race conditions may bite us. I
2275 * know that's pretty paranoid, but I prefer
2276 * to be correct.
2277 */
2278 out_err:
2279 spin_unlock_irqrestore(&intf->seq_lock, flags);
2280 }
2281
2282 return rv;
2283 }
2284
2285 /*
2286 * Separate from ipmi_request so that the user does not have to be
2287 * supplied in certain circumstances (mainly at panic time). If
2288 * messages are supplied, they will be freed, even if an error
2289 * occurs.
2290 */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2291 static int i_ipmi_request(struct ipmi_user *user,
2292 struct ipmi_smi *intf,
2293 struct ipmi_addr *addr,
2294 long msgid,
2295 struct kernel_ipmi_msg *msg,
2296 void *user_msg_data,
2297 void *supplied_smi,
2298 struct ipmi_recv_msg *supplied_recv,
2299 int priority,
2300 unsigned char source_address,
2301 unsigned char source_lun,
2302 int retries,
2303 unsigned int retry_time_ms)
2304 {
2305 struct ipmi_smi_msg *smi_msg;
2306 struct ipmi_recv_msg *recv_msg;
2307 int rv = 0;
2308
2309 if (user) {
2310 if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
2311 /* Decrement will happen at the end of the routine. */
2312 rv = -EBUSY;
2313 goto out;
2314 }
2315 }
2316
2317 if (supplied_recv)
2318 recv_msg = supplied_recv;
2319 else {
2320 recv_msg = ipmi_alloc_recv_msg();
2321 if (recv_msg == NULL) {
2322 rv = -ENOMEM;
2323 goto out;
2324 }
2325 }
2326 recv_msg->user_msg_data = user_msg_data;
2327
2328 if (supplied_smi)
2329 smi_msg = supplied_smi;
2330 else {
2331 smi_msg = ipmi_alloc_smi_msg();
2332 if (smi_msg == NULL) {
2333 if (!supplied_recv)
2334 ipmi_free_recv_msg(recv_msg);
2335 rv = -ENOMEM;
2336 goto out;
2337 }
2338 }
2339
2340 rcu_read_lock();
2341 if (intf->in_shutdown) {
2342 rv = -ENODEV;
2343 goto out_err;
2344 }
2345
2346 recv_msg->user = user;
2347 if (user)
2348 /* The put happens when the message is freed. */
2349 kref_get(&user->refcount);
2350 recv_msg->msgid = msgid;
2351 /*
2352 * Store the message to send in the receive message so timeout
2353 * responses can get the proper response data.
2354 */
2355 recv_msg->msg = *msg;
2356
2357 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2358 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2359 recv_msg, retries, retry_time_ms);
2360 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2361 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2362 source_address, source_lun,
2363 retries, retry_time_ms);
2364 } else if (is_ipmb_direct_addr(addr)) {
2365 rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2366 recv_msg, source_lun);
2367 } else if (is_lan_addr(addr)) {
2368 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2369 source_lun, retries, retry_time_ms);
2370 } else {
2371 /* Unknown address type. */
2372 ipmi_inc_stat(intf, sent_invalid_commands);
2373 rv = -EINVAL;
2374 }
2375
2376 if (rv) {
2377 out_err:
2378 ipmi_free_smi_msg(smi_msg);
2379 ipmi_free_recv_msg(recv_msg);
2380 } else {
2381 dev_dbg(intf->si_dev, "Send: %*ph\n",
2382 smi_msg->data_size, smi_msg->data);
2383
2384 smi_send(intf, intf->handlers, smi_msg, priority);
2385 }
2386 rcu_read_unlock();
2387
2388 out:
2389 if (rv && user)
2390 atomic_dec(&user->nr_msgs);
2391 return rv;
2392 }
2393
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2394 static int check_addr(struct ipmi_smi *intf,
2395 struct ipmi_addr *addr,
2396 unsigned char *saddr,
2397 unsigned char *lun)
2398 {
2399 if (addr->channel >= IPMI_MAX_CHANNELS)
2400 return -EINVAL;
2401 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2402 *lun = intf->addrinfo[addr->channel].lun;
2403 *saddr = intf->addrinfo[addr->channel].address;
2404 return 0;
2405 }
2406
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2407 int ipmi_request_settime(struct ipmi_user *user,
2408 struct ipmi_addr *addr,
2409 long msgid,
2410 struct kernel_ipmi_msg *msg,
2411 void *user_msg_data,
2412 int priority,
2413 int retries,
2414 unsigned int retry_time_ms)
2415 {
2416 unsigned char saddr = 0, lun = 0;
2417 int rv, index;
2418
2419 if (!user)
2420 return -EINVAL;
2421
2422 user = acquire_ipmi_user(user, &index);
2423 if (!user)
2424 return -ENODEV;
2425
2426 rv = check_addr(user->intf, addr, &saddr, &lun);
2427 if (!rv)
2428 rv = i_ipmi_request(user,
2429 user->intf,
2430 addr,
2431 msgid,
2432 msg,
2433 user_msg_data,
2434 NULL, NULL,
2435 priority,
2436 saddr,
2437 lun,
2438 retries,
2439 retry_time_ms);
2440
2441 release_ipmi_user(user, index);
2442 return rv;
2443 }
2444 EXPORT_SYMBOL(ipmi_request_settime);
2445
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2446 int ipmi_request_supply_msgs(struct ipmi_user *user,
2447 struct ipmi_addr *addr,
2448 long msgid,
2449 struct kernel_ipmi_msg *msg,
2450 void *user_msg_data,
2451 void *supplied_smi,
2452 struct ipmi_recv_msg *supplied_recv,
2453 int priority)
2454 {
2455 unsigned char saddr = 0, lun = 0;
2456 int rv, index;
2457
2458 if (!user)
2459 return -EINVAL;
2460
2461 user = acquire_ipmi_user(user, &index);
2462 if (!user)
2463 return -ENODEV;
2464
2465 rv = check_addr(user->intf, addr, &saddr, &lun);
2466 if (!rv)
2467 rv = i_ipmi_request(user,
2468 user->intf,
2469 addr,
2470 msgid,
2471 msg,
2472 user_msg_data,
2473 supplied_smi,
2474 supplied_recv,
2475 priority,
2476 saddr,
2477 lun,
2478 -1, 0);
2479
2480 release_ipmi_user(user, index);
2481 return rv;
2482 }
2483 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2484
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2485 static void bmc_device_id_handler(struct ipmi_smi *intf,
2486 struct ipmi_recv_msg *msg)
2487 {
2488 int rv;
2489
2490 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2491 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2492 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2493 dev_warn(intf->si_dev,
2494 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2495 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2496 return;
2497 }
2498
2499 if (msg->msg.data[0]) {
2500 dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2501 msg->msg.data[0]);
2502 intf->bmc->dyn_id_set = 0;
2503 goto out;
2504 }
2505
2506 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2507 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2508 if (rv) {
2509 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2510 /* record completion code when error */
2511 intf->bmc->cc = msg->msg.data[0];
2512 intf->bmc->dyn_id_set = 0;
2513 } else {
2514 /*
2515 * Make sure the id data is available before setting
2516 * dyn_id_set.
2517 */
2518 smp_wmb();
2519 intf->bmc->dyn_id_set = 1;
2520 }
2521 out:
2522 wake_up(&intf->waitq);
2523 }
2524
2525 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2526 send_get_device_id_cmd(struct ipmi_smi *intf)
2527 {
2528 struct ipmi_system_interface_addr si;
2529 struct kernel_ipmi_msg msg;
2530
2531 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2532 si.channel = IPMI_BMC_CHANNEL;
2533 si.lun = 0;
2534
2535 msg.netfn = IPMI_NETFN_APP_REQUEST;
2536 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2537 msg.data = NULL;
2538 msg.data_len = 0;
2539
2540 return i_ipmi_request(NULL,
2541 intf,
2542 (struct ipmi_addr *) &si,
2543 0,
2544 &msg,
2545 intf,
2546 NULL,
2547 NULL,
2548 0,
2549 intf->addrinfo[0].address,
2550 intf->addrinfo[0].lun,
2551 -1, 0);
2552 }
2553
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2554 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2555 {
2556 int rv;
2557 unsigned int retry_count = 0;
2558
2559 intf->null_user_handler = bmc_device_id_handler;
2560
2561 retry:
2562 bmc->cc = 0;
2563 bmc->dyn_id_set = 2;
2564
2565 rv = send_get_device_id_cmd(intf);
2566 if (rv)
2567 goto out_reset_handler;
2568
2569 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2570
2571 if (!bmc->dyn_id_set) {
2572 if (bmc->cc != IPMI_CC_NO_ERROR &&
2573 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2574 msleep(500);
2575 dev_warn(intf->si_dev,
2576 "BMC returned 0x%2.2x, retry get bmc device id\n",
2577 bmc->cc);
2578 goto retry;
2579 }
2580
2581 rv = -EIO; /* Something went wrong in the fetch. */
2582 }
2583
2584 /* dyn_id_set makes the id data available. */
2585 smp_rmb();
2586
2587 out_reset_handler:
2588 intf->null_user_handler = NULL;
2589
2590 return rv;
2591 }
2592
2593 /*
2594 * Fetch the device id for the bmc/interface. You must pass in either
2595 * bmc or intf, this code will get the other one. If the data has
2596 * been recently fetched, this will just use the cached data. Otherwise
2597 * it will run a new fetch.
2598 *
2599 * Except for the first time this is called (in ipmi_add_smi()),
2600 * this will always return good data;
2601 */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2602 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2603 struct ipmi_device_id *id,
2604 bool *guid_set, guid_t *guid, int intf_num)
2605 {
2606 int rv = 0;
2607 int prev_dyn_id_set, prev_guid_set;
2608 bool intf_set = intf != NULL;
2609
2610 if (!intf) {
2611 mutex_lock(&bmc->dyn_mutex);
2612 retry_bmc_lock:
2613 if (list_empty(&bmc->intfs)) {
2614 mutex_unlock(&bmc->dyn_mutex);
2615 return -ENOENT;
2616 }
2617 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2618 bmc_link);
2619 kref_get(&intf->refcount);
2620 mutex_unlock(&bmc->dyn_mutex);
2621 mutex_lock(&intf->bmc_reg_mutex);
2622 mutex_lock(&bmc->dyn_mutex);
2623 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2624 bmc_link)) {
2625 mutex_unlock(&intf->bmc_reg_mutex);
2626 kref_put(&intf->refcount, intf_free);
2627 goto retry_bmc_lock;
2628 }
2629 } else {
2630 mutex_lock(&intf->bmc_reg_mutex);
2631 bmc = intf->bmc;
2632 mutex_lock(&bmc->dyn_mutex);
2633 kref_get(&intf->refcount);
2634 }
2635
2636 /* If we have a valid and current ID, just return that. */
2637 if (intf->in_bmc_register ||
2638 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2639 goto out_noprocessing;
2640
2641 prev_guid_set = bmc->dyn_guid_set;
2642 __get_guid(intf);
2643
2644 prev_dyn_id_set = bmc->dyn_id_set;
2645 rv = __get_device_id(intf, bmc);
2646 if (rv)
2647 goto out;
2648
2649 /*
2650 * The guid, device id, manufacturer id, and product id should
2651 * not change on a BMC. If it does we have to do some dancing.
2652 */
2653 if (!intf->bmc_registered
2654 || (!prev_guid_set && bmc->dyn_guid_set)
2655 || (!prev_dyn_id_set && bmc->dyn_id_set)
2656 || (prev_guid_set && bmc->dyn_guid_set
2657 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2658 || bmc->id.device_id != bmc->fetch_id.device_id
2659 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2660 || bmc->id.product_id != bmc->fetch_id.product_id) {
2661 struct ipmi_device_id id = bmc->fetch_id;
2662 int guid_set = bmc->dyn_guid_set;
2663 guid_t guid;
2664
2665 guid = bmc->fetch_guid;
2666 mutex_unlock(&bmc->dyn_mutex);
2667
2668 __ipmi_bmc_unregister(intf);
2669 /* Fill in the temporary BMC for good measure. */
2670 intf->bmc->id = id;
2671 intf->bmc->dyn_guid_set = guid_set;
2672 intf->bmc->guid = guid;
2673 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2674 need_waiter(intf); /* Retry later on an error. */
2675 else
2676 __scan_channels(intf, &id);
2677
2678
2679 if (!intf_set) {
2680 /*
2681 * We weren't given the interface on the
2682 * command line, so restart the operation on
2683 * the next interface for the BMC.
2684 */
2685 mutex_unlock(&intf->bmc_reg_mutex);
2686 mutex_lock(&bmc->dyn_mutex);
2687 goto retry_bmc_lock;
2688 }
2689
2690 /* We have a new BMC, set it up. */
2691 bmc = intf->bmc;
2692 mutex_lock(&bmc->dyn_mutex);
2693 goto out_noprocessing;
2694 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2695 /* Version info changes, scan the channels again. */
2696 __scan_channels(intf, &bmc->fetch_id);
2697
2698 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2699
2700 out:
2701 if (rv && prev_dyn_id_set) {
2702 rv = 0; /* Ignore failures if we have previous data. */
2703 bmc->dyn_id_set = prev_dyn_id_set;
2704 }
2705 if (!rv) {
2706 bmc->id = bmc->fetch_id;
2707 if (bmc->dyn_guid_set)
2708 bmc->guid = bmc->fetch_guid;
2709 else if (prev_guid_set)
2710 /*
2711 * The guid used to be valid and it failed to fetch,
2712 * just use the cached value.
2713 */
2714 bmc->dyn_guid_set = prev_guid_set;
2715 }
2716 out_noprocessing:
2717 if (!rv) {
2718 if (id)
2719 *id = bmc->id;
2720
2721 if (guid_set)
2722 *guid_set = bmc->dyn_guid_set;
2723
2724 if (guid && bmc->dyn_guid_set)
2725 *guid = bmc->guid;
2726 }
2727
2728 mutex_unlock(&bmc->dyn_mutex);
2729 mutex_unlock(&intf->bmc_reg_mutex);
2730
2731 kref_put(&intf->refcount, intf_free);
2732 return rv;
2733 }
2734
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2735 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2736 struct ipmi_device_id *id,
2737 bool *guid_set, guid_t *guid)
2738 {
2739 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2740 }
2741
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2742 static ssize_t device_id_show(struct device *dev,
2743 struct device_attribute *attr,
2744 char *buf)
2745 {
2746 struct bmc_device *bmc = to_bmc_device(dev);
2747 struct ipmi_device_id id;
2748 int rv;
2749
2750 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2751 if (rv)
2752 return rv;
2753
2754 return sysfs_emit(buf, "%u\n", id.device_id);
2755 }
2756 static DEVICE_ATTR_RO(device_id);
2757
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2758 static ssize_t provides_device_sdrs_show(struct device *dev,
2759 struct device_attribute *attr,
2760 char *buf)
2761 {
2762 struct bmc_device *bmc = to_bmc_device(dev);
2763 struct ipmi_device_id id;
2764 int rv;
2765
2766 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2767 if (rv)
2768 return rv;
2769
2770 return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2771 }
2772 static DEVICE_ATTR_RO(provides_device_sdrs);
2773
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2774 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2775 char *buf)
2776 {
2777 struct bmc_device *bmc = to_bmc_device(dev);
2778 struct ipmi_device_id id;
2779 int rv;
2780
2781 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2782 if (rv)
2783 return rv;
2784
2785 return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2786 }
2787 static DEVICE_ATTR_RO(revision);
2788
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2789 static ssize_t firmware_revision_show(struct device *dev,
2790 struct device_attribute *attr,
2791 char *buf)
2792 {
2793 struct bmc_device *bmc = to_bmc_device(dev);
2794 struct ipmi_device_id id;
2795 int rv;
2796
2797 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2798 if (rv)
2799 return rv;
2800
2801 return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2802 id.firmware_revision_2);
2803 }
2804 static DEVICE_ATTR_RO(firmware_revision);
2805
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2806 static ssize_t ipmi_version_show(struct device *dev,
2807 struct device_attribute *attr,
2808 char *buf)
2809 {
2810 struct bmc_device *bmc = to_bmc_device(dev);
2811 struct ipmi_device_id id;
2812 int rv;
2813
2814 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2815 if (rv)
2816 return rv;
2817
2818 return sysfs_emit(buf, "%u.%u\n",
2819 ipmi_version_major(&id),
2820 ipmi_version_minor(&id));
2821 }
2822 static DEVICE_ATTR_RO(ipmi_version);
2823
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2824 static ssize_t add_dev_support_show(struct device *dev,
2825 struct device_attribute *attr,
2826 char *buf)
2827 {
2828 struct bmc_device *bmc = to_bmc_device(dev);
2829 struct ipmi_device_id id;
2830 int rv;
2831
2832 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2833 if (rv)
2834 return rv;
2835
2836 return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2837 }
2838 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2839 NULL);
2840
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2841 static ssize_t manufacturer_id_show(struct device *dev,
2842 struct device_attribute *attr,
2843 char *buf)
2844 {
2845 struct bmc_device *bmc = to_bmc_device(dev);
2846 struct ipmi_device_id id;
2847 int rv;
2848
2849 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2850 if (rv)
2851 return rv;
2852
2853 return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2854 }
2855 static DEVICE_ATTR_RO(manufacturer_id);
2856
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2857 static ssize_t product_id_show(struct device *dev,
2858 struct device_attribute *attr,
2859 char *buf)
2860 {
2861 struct bmc_device *bmc = to_bmc_device(dev);
2862 struct ipmi_device_id id;
2863 int rv;
2864
2865 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2866 if (rv)
2867 return rv;
2868
2869 return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2870 }
2871 static DEVICE_ATTR_RO(product_id);
2872
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2873 static ssize_t aux_firmware_rev_show(struct device *dev,
2874 struct device_attribute *attr,
2875 char *buf)
2876 {
2877 struct bmc_device *bmc = to_bmc_device(dev);
2878 struct ipmi_device_id id;
2879 int rv;
2880
2881 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2882 if (rv)
2883 return rv;
2884
2885 return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2886 id.aux_firmware_revision[3],
2887 id.aux_firmware_revision[2],
2888 id.aux_firmware_revision[1],
2889 id.aux_firmware_revision[0]);
2890 }
2891 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2892
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2893 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2894 char *buf)
2895 {
2896 struct bmc_device *bmc = to_bmc_device(dev);
2897 bool guid_set;
2898 guid_t guid;
2899 int rv;
2900
2901 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2902 if (rv)
2903 return rv;
2904 if (!guid_set)
2905 return -ENOENT;
2906
2907 return sysfs_emit(buf, "%pUl\n", &guid);
2908 }
2909 static DEVICE_ATTR_RO(guid);
2910
2911 static struct attribute *bmc_dev_attrs[] = {
2912 &dev_attr_device_id.attr,
2913 &dev_attr_provides_device_sdrs.attr,
2914 &dev_attr_revision.attr,
2915 &dev_attr_firmware_revision.attr,
2916 &dev_attr_ipmi_version.attr,
2917 &dev_attr_additional_device_support.attr,
2918 &dev_attr_manufacturer_id.attr,
2919 &dev_attr_product_id.attr,
2920 &dev_attr_aux_firmware_revision.attr,
2921 &dev_attr_guid.attr,
2922 NULL
2923 };
2924
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2925 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2926 struct attribute *attr, int idx)
2927 {
2928 struct device *dev = kobj_to_dev(kobj);
2929 struct bmc_device *bmc = to_bmc_device(dev);
2930 umode_t mode = attr->mode;
2931 int rv;
2932
2933 if (attr == &dev_attr_aux_firmware_revision.attr) {
2934 struct ipmi_device_id id;
2935
2936 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2937 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2938 }
2939 if (attr == &dev_attr_guid.attr) {
2940 bool guid_set;
2941
2942 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2943 return (!rv && guid_set) ? mode : 0;
2944 }
2945 return mode;
2946 }
2947
2948 static const struct attribute_group bmc_dev_attr_group = {
2949 .attrs = bmc_dev_attrs,
2950 .is_visible = bmc_dev_attr_is_visible,
2951 };
2952
2953 static const struct attribute_group *bmc_dev_attr_groups[] = {
2954 &bmc_dev_attr_group,
2955 NULL
2956 };
2957
2958 static const struct device_type bmc_device_type = {
2959 .groups = bmc_dev_attr_groups,
2960 };
2961
__find_bmc_guid(struct device * dev,const void * data)2962 static int __find_bmc_guid(struct device *dev, const void *data)
2963 {
2964 const guid_t *guid = data;
2965 struct bmc_device *bmc;
2966 int rv;
2967
2968 if (dev->type != &bmc_device_type)
2969 return 0;
2970
2971 bmc = to_bmc_device(dev);
2972 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2973 if (rv)
2974 rv = kref_get_unless_zero(&bmc->usecount);
2975 return rv;
2976 }
2977
2978 /*
2979 * Returns with the bmc's usecount incremented, if it is non-NULL.
2980 */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2981 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2982 guid_t *guid)
2983 {
2984 struct device *dev;
2985 struct bmc_device *bmc = NULL;
2986
2987 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2988 if (dev) {
2989 bmc = to_bmc_device(dev);
2990 put_device(dev);
2991 }
2992 return bmc;
2993 }
2994
2995 struct prod_dev_id {
2996 unsigned int product_id;
2997 unsigned char device_id;
2998 };
2999
__find_bmc_prod_dev_id(struct device * dev,const void * data)3000 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
3001 {
3002 const struct prod_dev_id *cid = data;
3003 struct bmc_device *bmc;
3004 int rv;
3005
3006 if (dev->type != &bmc_device_type)
3007 return 0;
3008
3009 bmc = to_bmc_device(dev);
3010 rv = (bmc->id.product_id == cid->product_id
3011 && bmc->id.device_id == cid->device_id);
3012 if (rv)
3013 rv = kref_get_unless_zero(&bmc->usecount);
3014 return rv;
3015 }
3016
3017 /*
3018 * Returns with the bmc's usecount incremented, if it is non-NULL.
3019 */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)3020 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
3021 struct device_driver *drv,
3022 unsigned int product_id, unsigned char device_id)
3023 {
3024 struct prod_dev_id id = {
3025 .product_id = product_id,
3026 .device_id = device_id,
3027 };
3028 struct device *dev;
3029 struct bmc_device *bmc = NULL;
3030
3031 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
3032 if (dev) {
3033 bmc = to_bmc_device(dev);
3034 put_device(dev);
3035 }
3036 return bmc;
3037 }
3038
3039 static DEFINE_IDA(ipmi_bmc_ida);
3040
3041 static void
release_bmc_device(struct device * dev)3042 release_bmc_device(struct device *dev)
3043 {
3044 kfree(to_bmc_device(dev));
3045 }
3046
cleanup_bmc_work(struct work_struct * work)3047 static void cleanup_bmc_work(struct work_struct *work)
3048 {
3049 struct bmc_device *bmc = container_of(work, struct bmc_device,
3050 remove_work);
3051 int id = bmc->pdev.id; /* Unregister overwrites id */
3052
3053 platform_device_unregister(&bmc->pdev);
3054 ida_simple_remove(&ipmi_bmc_ida, id);
3055 }
3056
3057 static void
cleanup_bmc_device(struct kref * ref)3058 cleanup_bmc_device(struct kref *ref)
3059 {
3060 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3061
3062 /*
3063 * Remove the platform device in a work queue to avoid issues
3064 * with removing the device attributes while reading a device
3065 * attribute.
3066 */
3067 queue_work(remove_work_wq, &bmc->remove_work);
3068 }
3069
3070 /*
3071 * Must be called with intf->bmc_reg_mutex held.
3072 */
__ipmi_bmc_unregister(struct ipmi_smi * intf)3073 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3074 {
3075 struct bmc_device *bmc = intf->bmc;
3076
3077 if (!intf->bmc_registered)
3078 return;
3079
3080 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3081 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3082 kfree(intf->my_dev_name);
3083 intf->my_dev_name = NULL;
3084
3085 mutex_lock(&bmc->dyn_mutex);
3086 list_del(&intf->bmc_link);
3087 mutex_unlock(&bmc->dyn_mutex);
3088 intf->bmc = &intf->tmp_bmc;
3089 kref_put(&bmc->usecount, cleanup_bmc_device);
3090 intf->bmc_registered = false;
3091 }
3092
ipmi_bmc_unregister(struct ipmi_smi * intf)3093 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3094 {
3095 mutex_lock(&intf->bmc_reg_mutex);
3096 __ipmi_bmc_unregister(intf);
3097 mutex_unlock(&intf->bmc_reg_mutex);
3098 }
3099
3100 /*
3101 * Must be called with intf->bmc_reg_mutex held.
3102 */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)3103 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3104 struct ipmi_device_id *id,
3105 bool guid_set, guid_t *guid, int intf_num)
3106 {
3107 int rv;
3108 struct bmc_device *bmc;
3109 struct bmc_device *old_bmc;
3110
3111 /*
3112 * platform_device_register() can cause bmc_reg_mutex to
3113 * be claimed because of the is_visible functions of
3114 * the attributes. Eliminate possible recursion and
3115 * release the lock.
3116 */
3117 intf->in_bmc_register = true;
3118 mutex_unlock(&intf->bmc_reg_mutex);
3119
3120 /*
3121 * Try to find if there is an bmc_device struct
3122 * representing the interfaced BMC already
3123 */
3124 mutex_lock(&ipmidriver_mutex);
3125 if (guid_set)
3126 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3127 else
3128 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3129 id->product_id,
3130 id->device_id);
3131
3132 /*
3133 * If there is already an bmc_device, free the new one,
3134 * otherwise register the new BMC device
3135 */
3136 if (old_bmc) {
3137 bmc = old_bmc;
3138 /*
3139 * Note: old_bmc already has usecount incremented by
3140 * the BMC find functions.
3141 */
3142 intf->bmc = old_bmc;
3143 mutex_lock(&bmc->dyn_mutex);
3144 list_add_tail(&intf->bmc_link, &bmc->intfs);
3145 mutex_unlock(&bmc->dyn_mutex);
3146
3147 dev_info(intf->si_dev,
3148 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3149 bmc->id.manufacturer_id,
3150 bmc->id.product_id,
3151 bmc->id.device_id);
3152 } else {
3153 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3154 if (!bmc) {
3155 rv = -ENOMEM;
3156 goto out;
3157 }
3158 INIT_LIST_HEAD(&bmc->intfs);
3159 mutex_init(&bmc->dyn_mutex);
3160 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3161
3162 bmc->id = *id;
3163 bmc->dyn_id_set = 1;
3164 bmc->dyn_guid_set = guid_set;
3165 bmc->guid = *guid;
3166 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3167
3168 bmc->pdev.name = "ipmi_bmc";
3169
3170 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3171 if (rv < 0) {
3172 kfree(bmc);
3173 goto out;
3174 }
3175
3176 bmc->pdev.dev.driver = &ipmidriver.driver;
3177 bmc->pdev.id = rv;
3178 bmc->pdev.dev.release = release_bmc_device;
3179 bmc->pdev.dev.type = &bmc_device_type;
3180 kref_init(&bmc->usecount);
3181
3182 intf->bmc = bmc;
3183 mutex_lock(&bmc->dyn_mutex);
3184 list_add_tail(&intf->bmc_link, &bmc->intfs);
3185 mutex_unlock(&bmc->dyn_mutex);
3186
3187 rv = platform_device_register(&bmc->pdev);
3188 if (rv) {
3189 dev_err(intf->si_dev,
3190 "Unable to register bmc device: %d\n",
3191 rv);
3192 goto out_list_del;
3193 }
3194
3195 dev_info(intf->si_dev,
3196 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3197 bmc->id.manufacturer_id,
3198 bmc->id.product_id,
3199 bmc->id.device_id);
3200 }
3201
3202 /*
3203 * create symlink from system interface device to bmc device
3204 * and back.
3205 */
3206 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3207 if (rv) {
3208 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3209 goto out_put_bmc;
3210 }
3211
3212 if (intf_num == -1)
3213 intf_num = intf->intf_num;
3214 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3215 if (!intf->my_dev_name) {
3216 rv = -ENOMEM;
3217 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3218 rv);
3219 goto out_unlink1;
3220 }
3221
3222 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3223 intf->my_dev_name);
3224 if (rv) {
3225 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3226 rv);
3227 goto out_free_my_dev_name;
3228 }
3229
3230 intf->bmc_registered = true;
3231
3232 out:
3233 mutex_unlock(&ipmidriver_mutex);
3234 mutex_lock(&intf->bmc_reg_mutex);
3235 intf->in_bmc_register = false;
3236 return rv;
3237
3238
3239 out_free_my_dev_name:
3240 kfree(intf->my_dev_name);
3241 intf->my_dev_name = NULL;
3242
3243 out_unlink1:
3244 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3245
3246 out_put_bmc:
3247 mutex_lock(&bmc->dyn_mutex);
3248 list_del(&intf->bmc_link);
3249 mutex_unlock(&bmc->dyn_mutex);
3250 intf->bmc = &intf->tmp_bmc;
3251 kref_put(&bmc->usecount, cleanup_bmc_device);
3252 goto out;
3253
3254 out_list_del:
3255 mutex_lock(&bmc->dyn_mutex);
3256 list_del(&intf->bmc_link);
3257 mutex_unlock(&bmc->dyn_mutex);
3258 intf->bmc = &intf->tmp_bmc;
3259 put_device(&bmc->pdev.dev);
3260 goto out;
3261 }
3262
3263 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3264 send_guid_cmd(struct ipmi_smi *intf, int chan)
3265 {
3266 struct kernel_ipmi_msg msg;
3267 struct ipmi_system_interface_addr si;
3268
3269 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3270 si.channel = IPMI_BMC_CHANNEL;
3271 si.lun = 0;
3272
3273 msg.netfn = IPMI_NETFN_APP_REQUEST;
3274 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3275 msg.data = NULL;
3276 msg.data_len = 0;
3277 return i_ipmi_request(NULL,
3278 intf,
3279 (struct ipmi_addr *) &si,
3280 0,
3281 &msg,
3282 intf,
3283 NULL,
3284 NULL,
3285 0,
3286 intf->addrinfo[0].address,
3287 intf->addrinfo[0].lun,
3288 -1, 0);
3289 }
3290
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3291 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3292 {
3293 struct bmc_device *bmc = intf->bmc;
3294
3295 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3296 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3297 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3298 /* Not for me */
3299 return;
3300
3301 if (msg->msg.data[0] != 0) {
3302 /* Error from getting the GUID, the BMC doesn't have one. */
3303 bmc->dyn_guid_set = 0;
3304 goto out;
3305 }
3306
3307 if (msg->msg.data_len < UUID_SIZE + 1) {
3308 bmc->dyn_guid_set = 0;
3309 dev_warn(intf->si_dev,
3310 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n",
3311 msg->msg.data_len, UUID_SIZE + 1);
3312 goto out;
3313 }
3314
3315 import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3316 /*
3317 * Make sure the guid data is available before setting
3318 * dyn_guid_set.
3319 */
3320 smp_wmb();
3321 bmc->dyn_guid_set = 1;
3322 out:
3323 wake_up(&intf->waitq);
3324 }
3325
__get_guid(struct ipmi_smi * intf)3326 static void __get_guid(struct ipmi_smi *intf)
3327 {
3328 int rv;
3329 struct bmc_device *bmc = intf->bmc;
3330
3331 bmc->dyn_guid_set = 2;
3332 intf->null_user_handler = guid_handler;
3333 rv = send_guid_cmd(intf, 0);
3334 if (rv)
3335 /* Send failed, no GUID available. */
3336 bmc->dyn_guid_set = 0;
3337 else
3338 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3339
3340 /* dyn_guid_set makes the guid data available. */
3341 smp_rmb();
3342
3343 intf->null_user_handler = NULL;
3344 }
3345
3346 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3347 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3348 {
3349 struct kernel_ipmi_msg msg;
3350 unsigned char data[1];
3351 struct ipmi_system_interface_addr si;
3352
3353 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3354 si.channel = IPMI_BMC_CHANNEL;
3355 si.lun = 0;
3356
3357 msg.netfn = IPMI_NETFN_APP_REQUEST;
3358 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3359 msg.data = data;
3360 msg.data_len = 1;
3361 data[0] = chan;
3362 return i_ipmi_request(NULL,
3363 intf,
3364 (struct ipmi_addr *) &si,
3365 0,
3366 &msg,
3367 intf,
3368 NULL,
3369 NULL,
3370 0,
3371 intf->addrinfo[0].address,
3372 intf->addrinfo[0].lun,
3373 -1, 0);
3374 }
3375
3376 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3377 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3378 {
3379 int rv = 0;
3380 int ch;
3381 unsigned int set = intf->curr_working_cset;
3382 struct ipmi_channel *chans;
3383
3384 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3385 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3386 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3387 /* It's the one we want */
3388 if (msg->msg.data[0] != 0) {
3389 /* Got an error from the channel, just go on. */
3390 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3391 /*
3392 * If the MC does not support this
3393 * command, that is legal. We just
3394 * assume it has one IPMB at channel
3395 * zero.
3396 */
3397 intf->wchannels[set].c[0].medium
3398 = IPMI_CHANNEL_MEDIUM_IPMB;
3399 intf->wchannels[set].c[0].protocol
3400 = IPMI_CHANNEL_PROTOCOL_IPMB;
3401
3402 intf->channel_list = intf->wchannels + set;
3403 intf->channels_ready = true;
3404 wake_up(&intf->waitq);
3405 goto out;
3406 }
3407 goto next_channel;
3408 }
3409 if (msg->msg.data_len < 4) {
3410 /* Message not big enough, just go on. */
3411 goto next_channel;
3412 }
3413 ch = intf->curr_channel;
3414 chans = intf->wchannels[set].c;
3415 chans[ch].medium = msg->msg.data[2] & 0x7f;
3416 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3417
3418 next_channel:
3419 intf->curr_channel++;
3420 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3421 intf->channel_list = intf->wchannels + set;
3422 intf->channels_ready = true;
3423 wake_up(&intf->waitq);
3424 } else {
3425 intf->channel_list = intf->wchannels + set;
3426 intf->channels_ready = true;
3427 rv = send_channel_info_cmd(intf, intf->curr_channel);
3428 }
3429
3430 if (rv) {
3431 /* Got an error somehow, just give up. */
3432 dev_warn(intf->si_dev,
3433 "Error sending channel information for channel %d: %d\n",
3434 intf->curr_channel, rv);
3435
3436 intf->channel_list = intf->wchannels + set;
3437 intf->channels_ready = true;
3438 wake_up(&intf->waitq);
3439 }
3440 }
3441 out:
3442 return;
3443 }
3444
3445 /*
3446 * Must be holding intf->bmc_reg_mutex to call this.
3447 */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id)3448 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3449 {
3450 int rv;
3451
3452 if (ipmi_version_major(id) > 1
3453 || (ipmi_version_major(id) == 1
3454 && ipmi_version_minor(id) >= 5)) {
3455 unsigned int set;
3456
3457 /*
3458 * Start scanning the channels to see what is
3459 * available.
3460 */
3461 set = !intf->curr_working_cset;
3462 intf->curr_working_cset = set;
3463 memset(&intf->wchannels[set], 0,
3464 sizeof(struct ipmi_channel_set));
3465
3466 intf->null_user_handler = channel_handler;
3467 intf->curr_channel = 0;
3468 rv = send_channel_info_cmd(intf, 0);
3469 if (rv) {
3470 dev_warn(intf->si_dev,
3471 "Error sending channel information for channel 0, %d\n",
3472 rv);
3473 intf->null_user_handler = NULL;
3474 return -EIO;
3475 }
3476
3477 /* Wait for the channel info to be read. */
3478 wait_event(intf->waitq, intf->channels_ready);
3479 intf->null_user_handler = NULL;
3480 } else {
3481 unsigned int set = intf->curr_working_cset;
3482
3483 /* Assume a single IPMB channel at zero. */
3484 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3485 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3486 intf->channel_list = intf->wchannels + set;
3487 intf->channels_ready = true;
3488 }
3489
3490 return 0;
3491 }
3492
ipmi_poll(struct ipmi_smi * intf)3493 static void ipmi_poll(struct ipmi_smi *intf)
3494 {
3495 if (intf->handlers->poll)
3496 intf->handlers->poll(intf->send_info);
3497 /* In case something came in */
3498 handle_new_recv_msgs(intf);
3499 }
3500
ipmi_poll_interface(struct ipmi_user * user)3501 void ipmi_poll_interface(struct ipmi_user *user)
3502 {
3503 ipmi_poll(user->intf);
3504 }
3505 EXPORT_SYMBOL(ipmi_poll_interface);
3506
nr_users_show(struct device * dev,struct device_attribute * attr,char * buf)3507 static ssize_t nr_users_show(struct device *dev,
3508 struct device_attribute *attr,
3509 char *buf)
3510 {
3511 struct ipmi_smi *intf = container_of(attr,
3512 struct ipmi_smi, nr_users_devattr);
3513
3514 return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
3515 }
3516 static DEVICE_ATTR_RO(nr_users);
3517
nr_msgs_show(struct device * dev,struct device_attribute * attr,char * buf)3518 static ssize_t nr_msgs_show(struct device *dev,
3519 struct device_attribute *attr,
3520 char *buf)
3521 {
3522 struct ipmi_smi *intf = container_of(attr,
3523 struct ipmi_smi, nr_msgs_devattr);
3524 struct ipmi_user *user;
3525 int index;
3526 unsigned int count = 0;
3527
3528 index = srcu_read_lock(&intf->users_srcu);
3529 list_for_each_entry_rcu(user, &intf->users, link)
3530 count += atomic_read(&user->nr_msgs);
3531 srcu_read_unlock(&intf->users_srcu, index);
3532
3533 return sysfs_emit(buf, "%u\n", count);
3534 }
3535 static DEVICE_ATTR_RO(nr_msgs);
3536
redo_bmc_reg(struct work_struct * work)3537 static void redo_bmc_reg(struct work_struct *work)
3538 {
3539 struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3540 bmc_reg_work);
3541
3542 if (!intf->in_shutdown)
3543 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3544
3545 kref_put(&intf->refcount, intf_free);
3546 }
3547
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3548 int ipmi_add_smi(struct module *owner,
3549 const struct ipmi_smi_handlers *handlers,
3550 void *send_info,
3551 struct device *si_dev,
3552 unsigned char slave_addr)
3553 {
3554 int i, j;
3555 int rv;
3556 struct ipmi_smi *intf, *tintf;
3557 struct list_head *link;
3558 struct ipmi_device_id id;
3559
3560 /*
3561 * Make sure the driver is actually initialized, this handles
3562 * problems with initialization order.
3563 */
3564 rv = ipmi_init_msghandler();
3565 if (rv)
3566 return rv;
3567
3568 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3569 if (!intf)
3570 return -ENOMEM;
3571
3572 rv = init_srcu_struct(&intf->users_srcu);
3573 if (rv) {
3574 kfree(intf);
3575 return rv;
3576 }
3577
3578 intf->owner = owner;
3579 intf->bmc = &intf->tmp_bmc;
3580 INIT_LIST_HEAD(&intf->bmc->intfs);
3581 mutex_init(&intf->bmc->dyn_mutex);
3582 INIT_LIST_HEAD(&intf->bmc_link);
3583 mutex_init(&intf->bmc_reg_mutex);
3584 intf->intf_num = -1; /* Mark it invalid for now. */
3585 kref_init(&intf->refcount);
3586 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3587 intf->si_dev = si_dev;
3588 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3589 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3590 intf->addrinfo[j].lun = 2;
3591 }
3592 if (slave_addr != 0)
3593 intf->addrinfo[0].address = slave_addr;
3594 INIT_LIST_HEAD(&intf->users);
3595 atomic_set(&intf->nr_users, 0);
3596 intf->handlers = handlers;
3597 intf->send_info = send_info;
3598 spin_lock_init(&intf->seq_lock);
3599 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3600 intf->seq_table[j].inuse = 0;
3601 intf->seq_table[j].seqid = 0;
3602 }
3603 intf->curr_seq = 0;
3604 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3605 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3606 tasklet_setup(&intf->recv_tasklet,
3607 smi_recv_tasklet);
3608 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3609 spin_lock_init(&intf->xmit_msgs_lock);
3610 INIT_LIST_HEAD(&intf->xmit_msgs);
3611 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3612 spin_lock_init(&intf->events_lock);
3613 spin_lock_init(&intf->watch_lock);
3614 atomic_set(&intf->event_waiters, 0);
3615 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3616 INIT_LIST_HEAD(&intf->waiting_events);
3617 intf->waiting_events_count = 0;
3618 mutex_init(&intf->cmd_rcvrs_mutex);
3619 spin_lock_init(&intf->maintenance_mode_lock);
3620 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3621 init_waitqueue_head(&intf->waitq);
3622 for (i = 0; i < IPMI_NUM_STATS; i++)
3623 atomic_set(&intf->stats[i], 0);
3624
3625 mutex_lock(&ipmi_interfaces_mutex);
3626 /* Look for a hole in the numbers. */
3627 i = 0;
3628 link = &ipmi_interfaces;
3629 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3630 ipmi_interfaces_mutex_held()) {
3631 if (tintf->intf_num != i) {
3632 link = &tintf->link;
3633 break;
3634 }
3635 i++;
3636 }
3637 /* Add the new interface in numeric order. */
3638 if (i == 0)
3639 list_add_rcu(&intf->link, &ipmi_interfaces);
3640 else
3641 list_add_tail_rcu(&intf->link, link);
3642
3643 rv = handlers->start_processing(send_info, intf);
3644 if (rv)
3645 goto out_err;
3646
3647 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3648 if (rv) {
3649 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3650 goto out_err_started;
3651 }
3652
3653 mutex_lock(&intf->bmc_reg_mutex);
3654 rv = __scan_channels(intf, &id);
3655 mutex_unlock(&intf->bmc_reg_mutex);
3656 if (rv)
3657 goto out_err_bmc_reg;
3658
3659 intf->nr_users_devattr = dev_attr_nr_users;
3660 sysfs_attr_init(&intf->nr_users_devattr.attr);
3661 rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
3662 if (rv)
3663 goto out_err_bmc_reg;
3664
3665 intf->nr_msgs_devattr = dev_attr_nr_msgs;
3666 sysfs_attr_init(&intf->nr_msgs_devattr.attr);
3667 rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
3668 if (rv) {
3669 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3670 goto out_err_bmc_reg;
3671 }
3672
3673 /*
3674 * Keep memory order straight for RCU readers. Make
3675 * sure everything else is committed to memory before
3676 * setting intf_num to mark the interface valid.
3677 */
3678 smp_wmb();
3679 intf->intf_num = i;
3680 mutex_unlock(&ipmi_interfaces_mutex);
3681
3682 /* After this point the interface is legal to use. */
3683 call_smi_watchers(i, intf->si_dev);
3684
3685 return 0;
3686
3687 out_err_bmc_reg:
3688 ipmi_bmc_unregister(intf);
3689 out_err_started:
3690 if (intf->handlers->shutdown)
3691 intf->handlers->shutdown(intf->send_info);
3692 out_err:
3693 list_del_rcu(&intf->link);
3694 mutex_unlock(&ipmi_interfaces_mutex);
3695 synchronize_srcu(&ipmi_interfaces_srcu);
3696 cleanup_srcu_struct(&intf->users_srcu);
3697 kref_put(&intf->refcount, intf_free);
3698
3699 return rv;
3700 }
3701 EXPORT_SYMBOL(ipmi_add_smi);
3702
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3703 static void deliver_smi_err_response(struct ipmi_smi *intf,
3704 struct ipmi_smi_msg *msg,
3705 unsigned char err)
3706 {
3707 msg->rsp[0] = msg->data[0] | 4;
3708 msg->rsp[1] = msg->data[1];
3709 msg->rsp[2] = err;
3710 msg->rsp_size = 3;
3711 /* It's an error, so it will never requeue, no need to check return. */
3712 handle_one_recv_msg(intf, msg);
3713 }
3714
cleanup_smi_msgs(struct ipmi_smi * intf)3715 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3716 {
3717 int i;
3718 struct seq_table *ent;
3719 struct ipmi_smi_msg *msg;
3720 struct list_head *entry;
3721 struct list_head tmplist;
3722
3723 /* Clear out our transmit queues and hold the messages. */
3724 INIT_LIST_HEAD(&tmplist);
3725 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3726 list_splice_tail(&intf->xmit_msgs, &tmplist);
3727
3728 /* Current message first, to preserve order */
3729 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3730 /* Wait for the message to clear out. */
3731 schedule_timeout(1);
3732 }
3733
3734 /* No need for locks, the interface is down. */
3735
3736 /*
3737 * Return errors for all pending messages in queue and in the
3738 * tables waiting for remote responses.
3739 */
3740 while (!list_empty(&tmplist)) {
3741 entry = tmplist.next;
3742 list_del(entry);
3743 msg = list_entry(entry, struct ipmi_smi_msg, link);
3744 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3745 }
3746
3747 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3748 ent = &intf->seq_table[i];
3749 if (!ent->inuse)
3750 continue;
3751 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3752 }
3753 }
3754
ipmi_unregister_smi(struct ipmi_smi * intf)3755 void ipmi_unregister_smi(struct ipmi_smi *intf)
3756 {
3757 struct ipmi_smi_watcher *w;
3758 int intf_num, index;
3759
3760 if (!intf)
3761 return;
3762 intf_num = intf->intf_num;
3763 mutex_lock(&ipmi_interfaces_mutex);
3764 intf->intf_num = -1;
3765 intf->in_shutdown = true;
3766 list_del_rcu(&intf->link);
3767 mutex_unlock(&ipmi_interfaces_mutex);
3768 synchronize_srcu(&ipmi_interfaces_srcu);
3769
3770 /* At this point no users can be added to the interface. */
3771
3772 device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
3773 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3774
3775 /*
3776 * Call all the watcher interfaces to tell them that
3777 * an interface is going away.
3778 */
3779 mutex_lock(&smi_watchers_mutex);
3780 list_for_each_entry(w, &smi_watchers, link)
3781 w->smi_gone(intf_num);
3782 mutex_unlock(&smi_watchers_mutex);
3783
3784 index = srcu_read_lock(&intf->users_srcu);
3785 while (!list_empty(&intf->users)) {
3786 struct ipmi_user *user =
3787 container_of(list_next_rcu(&intf->users),
3788 struct ipmi_user, link);
3789
3790 _ipmi_destroy_user(user);
3791 }
3792 srcu_read_unlock(&intf->users_srcu, index);
3793
3794 if (intf->handlers->shutdown)
3795 intf->handlers->shutdown(intf->send_info);
3796
3797 cleanup_smi_msgs(intf);
3798
3799 ipmi_bmc_unregister(intf);
3800
3801 cleanup_srcu_struct(&intf->users_srcu);
3802 kref_put(&intf->refcount, intf_free);
3803 }
3804 EXPORT_SYMBOL(ipmi_unregister_smi);
3805
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3806 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3807 struct ipmi_smi_msg *msg)
3808 {
3809 struct ipmi_ipmb_addr ipmb_addr;
3810 struct ipmi_recv_msg *recv_msg;
3811
3812 /*
3813 * This is 11, not 10, because the response must contain a
3814 * completion code.
3815 */
3816 if (msg->rsp_size < 11) {
3817 /* Message not big enough, just ignore it. */
3818 ipmi_inc_stat(intf, invalid_ipmb_responses);
3819 return 0;
3820 }
3821
3822 if (msg->rsp[2] != 0) {
3823 /* An error getting the response, just ignore it. */
3824 return 0;
3825 }
3826
3827 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3828 ipmb_addr.slave_addr = msg->rsp[6];
3829 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3830 ipmb_addr.lun = msg->rsp[7] & 3;
3831
3832 /*
3833 * It's a response from a remote entity. Look up the sequence
3834 * number and handle the response.
3835 */
3836 if (intf_find_seq(intf,
3837 msg->rsp[7] >> 2,
3838 msg->rsp[3] & 0x0f,
3839 msg->rsp[8],
3840 (msg->rsp[4] >> 2) & (~1),
3841 (struct ipmi_addr *) &ipmb_addr,
3842 &recv_msg)) {
3843 /*
3844 * We were unable to find the sequence number,
3845 * so just nuke the message.
3846 */
3847 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3848 return 0;
3849 }
3850
3851 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3852 /*
3853 * The other fields matched, so no need to set them, except
3854 * for netfn, which needs to be the response that was
3855 * returned, not the request value.
3856 */
3857 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3858 recv_msg->msg.data = recv_msg->msg_data;
3859 recv_msg->msg.data_len = msg->rsp_size - 10;
3860 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3861 if (deliver_response(intf, recv_msg))
3862 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3863 else
3864 ipmi_inc_stat(intf, handled_ipmb_responses);
3865
3866 return 0;
3867 }
3868
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3869 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3870 struct ipmi_smi_msg *msg)
3871 {
3872 struct cmd_rcvr *rcvr;
3873 int rv = 0;
3874 unsigned char netfn;
3875 unsigned char cmd;
3876 unsigned char chan;
3877 struct ipmi_user *user = NULL;
3878 struct ipmi_ipmb_addr *ipmb_addr;
3879 struct ipmi_recv_msg *recv_msg;
3880
3881 if (msg->rsp_size < 10) {
3882 /* Message not big enough, just ignore it. */
3883 ipmi_inc_stat(intf, invalid_commands);
3884 return 0;
3885 }
3886
3887 if (msg->rsp[2] != 0) {
3888 /* An error getting the response, just ignore it. */
3889 return 0;
3890 }
3891
3892 netfn = msg->rsp[4] >> 2;
3893 cmd = msg->rsp[8];
3894 chan = msg->rsp[3] & 0xf;
3895
3896 rcu_read_lock();
3897 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3898 if (rcvr) {
3899 user = rcvr->user;
3900 kref_get(&user->refcount);
3901 } else
3902 user = NULL;
3903 rcu_read_unlock();
3904
3905 if (user == NULL) {
3906 /* We didn't find a user, deliver an error response. */
3907 ipmi_inc_stat(intf, unhandled_commands);
3908
3909 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3910 msg->data[1] = IPMI_SEND_MSG_CMD;
3911 msg->data[2] = msg->rsp[3];
3912 msg->data[3] = msg->rsp[6];
3913 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3914 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3915 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3916 /* rqseq/lun */
3917 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3918 msg->data[8] = msg->rsp[8]; /* cmd */
3919 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3920 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3921 msg->data_size = 11;
3922
3923 dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
3924 msg->data_size, msg->data);
3925
3926 rcu_read_lock();
3927 if (!intf->in_shutdown) {
3928 smi_send(intf, intf->handlers, msg, 0);
3929 /*
3930 * We used the message, so return the value
3931 * that causes it to not be freed or
3932 * queued.
3933 */
3934 rv = -1;
3935 }
3936 rcu_read_unlock();
3937 } else {
3938 recv_msg = ipmi_alloc_recv_msg();
3939 if (!recv_msg) {
3940 /*
3941 * We couldn't allocate memory for the
3942 * message, so requeue it for handling
3943 * later.
3944 */
3945 rv = 1;
3946 kref_put(&user->refcount, free_user);
3947 } else {
3948 /* Extract the source address from the data. */
3949 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3950 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3951 ipmb_addr->slave_addr = msg->rsp[6];
3952 ipmb_addr->lun = msg->rsp[7] & 3;
3953 ipmb_addr->channel = msg->rsp[3] & 0xf;
3954
3955 /*
3956 * Extract the rest of the message information
3957 * from the IPMB header.
3958 */
3959 recv_msg->user = user;
3960 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3961 recv_msg->msgid = msg->rsp[7] >> 2;
3962 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3963 recv_msg->msg.cmd = msg->rsp[8];
3964 recv_msg->msg.data = recv_msg->msg_data;
3965
3966 /*
3967 * We chop off 10, not 9 bytes because the checksum
3968 * at the end also needs to be removed.
3969 */
3970 recv_msg->msg.data_len = msg->rsp_size - 10;
3971 memcpy(recv_msg->msg_data, &msg->rsp[9],
3972 msg->rsp_size - 10);
3973 if (deliver_response(intf, recv_msg))
3974 ipmi_inc_stat(intf, unhandled_commands);
3975 else
3976 ipmi_inc_stat(intf, handled_commands);
3977 }
3978 }
3979
3980 return rv;
3981 }
3982
handle_ipmb_direct_rcv_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3983 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
3984 struct ipmi_smi_msg *msg)
3985 {
3986 struct cmd_rcvr *rcvr;
3987 int rv = 0;
3988 struct ipmi_user *user = NULL;
3989 struct ipmi_ipmb_direct_addr *daddr;
3990 struct ipmi_recv_msg *recv_msg;
3991 unsigned char netfn = msg->rsp[0] >> 2;
3992 unsigned char cmd = msg->rsp[3];
3993
3994 rcu_read_lock();
3995 /* We always use channel 0 for direct messages. */
3996 rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
3997 if (rcvr) {
3998 user = rcvr->user;
3999 kref_get(&user->refcount);
4000 } else
4001 user = NULL;
4002 rcu_read_unlock();
4003
4004 if (user == NULL) {
4005 /* We didn't find a user, deliver an error response. */
4006 ipmi_inc_stat(intf, unhandled_commands);
4007
4008 msg->data[0] = (netfn + 1) << 2;
4009 msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
4010 msg->data[1] = msg->rsp[1]; /* Addr */
4011 msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
4012 msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
4013 msg->data[3] = cmd;
4014 msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
4015 msg->data_size = 5;
4016
4017 rcu_read_lock();
4018 if (!intf->in_shutdown) {
4019 smi_send(intf, intf->handlers, msg, 0);
4020 /*
4021 * We used the message, so return the value
4022 * that causes it to not be freed or
4023 * queued.
4024 */
4025 rv = -1;
4026 }
4027 rcu_read_unlock();
4028 } else {
4029 recv_msg = ipmi_alloc_recv_msg();
4030 if (!recv_msg) {
4031 /*
4032 * We couldn't allocate memory for the
4033 * message, so requeue it for handling
4034 * later.
4035 */
4036 rv = 1;
4037 kref_put(&user->refcount, free_user);
4038 } else {
4039 /* Extract the source address from the data. */
4040 daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
4041 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4042 daddr->channel = 0;
4043 daddr->slave_addr = msg->rsp[1];
4044 daddr->rs_lun = msg->rsp[0] & 3;
4045 daddr->rq_lun = msg->rsp[2] & 3;
4046
4047 /*
4048 * Extract the rest of the message information
4049 * from the IPMB header.
4050 */
4051 recv_msg->user = user;
4052 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4053 recv_msg->msgid = (msg->rsp[2] >> 2);
4054 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4055 recv_msg->msg.cmd = msg->rsp[3];
4056 recv_msg->msg.data = recv_msg->msg_data;
4057
4058 recv_msg->msg.data_len = msg->rsp_size - 4;
4059 memcpy(recv_msg->msg_data, msg->rsp + 4,
4060 msg->rsp_size - 4);
4061 if (deliver_response(intf, recv_msg))
4062 ipmi_inc_stat(intf, unhandled_commands);
4063 else
4064 ipmi_inc_stat(intf, handled_commands);
4065 }
4066 }
4067
4068 return rv;
4069 }
4070
handle_ipmb_direct_rcv_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4071 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
4072 struct ipmi_smi_msg *msg)
4073 {
4074 struct ipmi_recv_msg *recv_msg;
4075 struct ipmi_ipmb_direct_addr *daddr;
4076
4077 recv_msg = msg->user_data;
4078 if (recv_msg == NULL) {
4079 dev_warn(intf->si_dev,
4080 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4081 return 0;
4082 }
4083
4084 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4085 recv_msg->msgid = msg->msgid;
4086 daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4087 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4088 daddr->channel = 0;
4089 daddr->slave_addr = msg->rsp[1];
4090 daddr->rq_lun = msg->rsp[0] & 3;
4091 daddr->rs_lun = msg->rsp[2] & 3;
4092 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4093 recv_msg->msg.cmd = msg->rsp[3];
4094 memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4095 recv_msg->msg.data = recv_msg->msg_data;
4096 recv_msg->msg.data_len = msg->rsp_size - 4;
4097 deliver_local_response(intf, recv_msg);
4098
4099 return 0;
4100 }
4101
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4102 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4103 struct ipmi_smi_msg *msg)
4104 {
4105 struct ipmi_lan_addr lan_addr;
4106 struct ipmi_recv_msg *recv_msg;
4107
4108
4109 /*
4110 * This is 13, not 12, because the response must contain a
4111 * completion code.
4112 */
4113 if (msg->rsp_size < 13) {
4114 /* Message not big enough, just ignore it. */
4115 ipmi_inc_stat(intf, invalid_lan_responses);
4116 return 0;
4117 }
4118
4119 if (msg->rsp[2] != 0) {
4120 /* An error getting the response, just ignore it. */
4121 return 0;
4122 }
4123
4124 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4125 lan_addr.session_handle = msg->rsp[4];
4126 lan_addr.remote_SWID = msg->rsp[8];
4127 lan_addr.local_SWID = msg->rsp[5];
4128 lan_addr.channel = msg->rsp[3] & 0x0f;
4129 lan_addr.privilege = msg->rsp[3] >> 4;
4130 lan_addr.lun = msg->rsp[9] & 3;
4131
4132 /*
4133 * It's a response from a remote entity. Look up the sequence
4134 * number and handle the response.
4135 */
4136 if (intf_find_seq(intf,
4137 msg->rsp[9] >> 2,
4138 msg->rsp[3] & 0x0f,
4139 msg->rsp[10],
4140 (msg->rsp[6] >> 2) & (~1),
4141 (struct ipmi_addr *) &lan_addr,
4142 &recv_msg)) {
4143 /*
4144 * We were unable to find the sequence number,
4145 * so just nuke the message.
4146 */
4147 ipmi_inc_stat(intf, unhandled_lan_responses);
4148 return 0;
4149 }
4150
4151 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4152 /*
4153 * The other fields matched, so no need to set them, except
4154 * for netfn, which needs to be the response that was
4155 * returned, not the request value.
4156 */
4157 recv_msg->msg.netfn = msg->rsp[6] >> 2;
4158 recv_msg->msg.data = recv_msg->msg_data;
4159 recv_msg->msg.data_len = msg->rsp_size - 12;
4160 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4161 if (deliver_response(intf, recv_msg))
4162 ipmi_inc_stat(intf, unhandled_lan_responses);
4163 else
4164 ipmi_inc_stat(intf, handled_lan_responses);
4165
4166 return 0;
4167 }
4168
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4169 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4170 struct ipmi_smi_msg *msg)
4171 {
4172 struct cmd_rcvr *rcvr;
4173 int rv = 0;
4174 unsigned char netfn;
4175 unsigned char cmd;
4176 unsigned char chan;
4177 struct ipmi_user *user = NULL;
4178 struct ipmi_lan_addr *lan_addr;
4179 struct ipmi_recv_msg *recv_msg;
4180
4181 if (msg->rsp_size < 12) {
4182 /* Message not big enough, just ignore it. */
4183 ipmi_inc_stat(intf, invalid_commands);
4184 return 0;
4185 }
4186
4187 if (msg->rsp[2] != 0) {
4188 /* An error getting the response, just ignore it. */
4189 return 0;
4190 }
4191
4192 netfn = msg->rsp[6] >> 2;
4193 cmd = msg->rsp[10];
4194 chan = msg->rsp[3] & 0xf;
4195
4196 rcu_read_lock();
4197 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4198 if (rcvr) {
4199 user = rcvr->user;
4200 kref_get(&user->refcount);
4201 } else
4202 user = NULL;
4203 rcu_read_unlock();
4204
4205 if (user == NULL) {
4206 /* We didn't find a user, just give up. */
4207 ipmi_inc_stat(intf, unhandled_commands);
4208
4209 /*
4210 * Don't do anything with these messages, just allow
4211 * them to be freed.
4212 */
4213 rv = 0;
4214 } else {
4215 recv_msg = ipmi_alloc_recv_msg();
4216 if (!recv_msg) {
4217 /*
4218 * We couldn't allocate memory for the
4219 * message, so requeue it for handling later.
4220 */
4221 rv = 1;
4222 kref_put(&user->refcount, free_user);
4223 } else {
4224 /* Extract the source address from the data. */
4225 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4226 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4227 lan_addr->session_handle = msg->rsp[4];
4228 lan_addr->remote_SWID = msg->rsp[8];
4229 lan_addr->local_SWID = msg->rsp[5];
4230 lan_addr->lun = msg->rsp[9] & 3;
4231 lan_addr->channel = msg->rsp[3] & 0xf;
4232 lan_addr->privilege = msg->rsp[3] >> 4;
4233
4234 /*
4235 * Extract the rest of the message information
4236 * from the IPMB header.
4237 */
4238 recv_msg->user = user;
4239 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4240 recv_msg->msgid = msg->rsp[9] >> 2;
4241 recv_msg->msg.netfn = msg->rsp[6] >> 2;
4242 recv_msg->msg.cmd = msg->rsp[10];
4243 recv_msg->msg.data = recv_msg->msg_data;
4244
4245 /*
4246 * We chop off 12, not 11 bytes because the checksum
4247 * at the end also needs to be removed.
4248 */
4249 recv_msg->msg.data_len = msg->rsp_size - 12;
4250 memcpy(recv_msg->msg_data, &msg->rsp[11],
4251 msg->rsp_size - 12);
4252 if (deliver_response(intf, recv_msg))
4253 ipmi_inc_stat(intf, unhandled_commands);
4254 else
4255 ipmi_inc_stat(intf, handled_commands);
4256 }
4257 }
4258
4259 return rv;
4260 }
4261
4262 /*
4263 * This routine will handle "Get Message" command responses with
4264 * channels that use an OEM Medium. The message format belongs to
4265 * the OEM. See IPMI 2.0 specification, Chapter 6 and
4266 * Chapter 22, sections 22.6 and 22.24 for more details.
4267 */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4268 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4269 struct ipmi_smi_msg *msg)
4270 {
4271 struct cmd_rcvr *rcvr;
4272 int rv = 0;
4273 unsigned char netfn;
4274 unsigned char cmd;
4275 unsigned char chan;
4276 struct ipmi_user *user = NULL;
4277 struct ipmi_system_interface_addr *smi_addr;
4278 struct ipmi_recv_msg *recv_msg;
4279
4280 /*
4281 * We expect the OEM SW to perform error checking
4282 * so we just do some basic sanity checks
4283 */
4284 if (msg->rsp_size < 4) {
4285 /* Message not big enough, just ignore it. */
4286 ipmi_inc_stat(intf, invalid_commands);
4287 return 0;
4288 }
4289
4290 if (msg->rsp[2] != 0) {
4291 /* An error getting the response, just ignore it. */
4292 return 0;
4293 }
4294
4295 /*
4296 * This is an OEM Message so the OEM needs to know how
4297 * handle the message. We do no interpretation.
4298 */
4299 netfn = msg->rsp[0] >> 2;
4300 cmd = msg->rsp[1];
4301 chan = msg->rsp[3] & 0xf;
4302
4303 rcu_read_lock();
4304 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4305 if (rcvr) {
4306 user = rcvr->user;
4307 kref_get(&user->refcount);
4308 } else
4309 user = NULL;
4310 rcu_read_unlock();
4311
4312 if (user == NULL) {
4313 /* We didn't find a user, just give up. */
4314 ipmi_inc_stat(intf, unhandled_commands);
4315
4316 /*
4317 * Don't do anything with these messages, just allow
4318 * them to be freed.
4319 */
4320
4321 rv = 0;
4322 } else {
4323 recv_msg = ipmi_alloc_recv_msg();
4324 if (!recv_msg) {
4325 /*
4326 * We couldn't allocate memory for the
4327 * message, so requeue it for handling
4328 * later.
4329 */
4330 rv = 1;
4331 kref_put(&user->refcount, free_user);
4332 } else {
4333 /*
4334 * OEM Messages are expected to be delivered via
4335 * the system interface to SMS software. We might
4336 * need to visit this again depending on OEM
4337 * requirements
4338 */
4339 smi_addr = ((struct ipmi_system_interface_addr *)
4340 &recv_msg->addr);
4341 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4342 smi_addr->channel = IPMI_BMC_CHANNEL;
4343 smi_addr->lun = msg->rsp[0] & 3;
4344
4345 recv_msg->user = user;
4346 recv_msg->user_msg_data = NULL;
4347 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4348 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4349 recv_msg->msg.cmd = msg->rsp[1];
4350 recv_msg->msg.data = recv_msg->msg_data;
4351
4352 /*
4353 * The message starts at byte 4 which follows the
4354 * Channel Byte in the "GET MESSAGE" command
4355 */
4356 recv_msg->msg.data_len = msg->rsp_size - 4;
4357 memcpy(recv_msg->msg_data, &msg->rsp[4],
4358 msg->rsp_size - 4);
4359 if (deliver_response(intf, recv_msg))
4360 ipmi_inc_stat(intf, unhandled_commands);
4361 else
4362 ipmi_inc_stat(intf, handled_commands);
4363 }
4364 }
4365
4366 return rv;
4367 }
4368
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4369 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4370 struct ipmi_smi_msg *msg)
4371 {
4372 struct ipmi_system_interface_addr *smi_addr;
4373
4374 recv_msg->msgid = 0;
4375 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4376 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4377 smi_addr->channel = IPMI_BMC_CHANNEL;
4378 smi_addr->lun = msg->rsp[0] & 3;
4379 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4380 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4381 recv_msg->msg.cmd = msg->rsp[1];
4382 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4383 recv_msg->msg.data = recv_msg->msg_data;
4384 recv_msg->msg.data_len = msg->rsp_size - 3;
4385 }
4386
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4387 static int handle_read_event_rsp(struct ipmi_smi *intf,
4388 struct ipmi_smi_msg *msg)
4389 {
4390 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4391 struct list_head msgs;
4392 struct ipmi_user *user;
4393 int rv = 0, deliver_count = 0, index;
4394 unsigned long flags;
4395
4396 if (msg->rsp_size < 19) {
4397 /* Message is too small to be an IPMB event. */
4398 ipmi_inc_stat(intf, invalid_events);
4399 return 0;
4400 }
4401
4402 if (msg->rsp[2] != 0) {
4403 /* An error getting the event, just ignore it. */
4404 return 0;
4405 }
4406
4407 INIT_LIST_HEAD(&msgs);
4408
4409 spin_lock_irqsave(&intf->events_lock, flags);
4410
4411 ipmi_inc_stat(intf, events);
4412
4413 /*
4414 * Allocate and fill in one message for every user that is
4415 * getting events.
4416 */
4417 index = srcu_read_lock(&intf->users_srcu);
4418 list_for_each_entry_rcu(user, &intf->users, link) {
4419 if (!user->gets_events)
4420 continue;
4421
4422 recv_msg = ipmi_alloc_recv_msg();
4423 if (!recv_msg) {
4424 rcu_read_unlock();
4425 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4426 link) {
4427 list_del(&recv_msg->link);
4428 ipmi_free_recv_msg(recv_msg);
4429 }
4430 /*
4431 * We couldn't allocate memory for the
4432 * message, so requeue it for handling
4433 * later.
4434 */
4435 rv = 1;
4436 goto out;
4437 }
4438
4439 deliver_count++;
4440
4441 copy_event_into_recv_msg(recv_msg, msg);
4442 recv_msg->user = user;
4443 kref_get(&user->refcount);
4444 list_add_tail(&recv_msg->link, &msgs);
4445 }
4446 srcu_read_unlock(&intf->users_srcu, index);
4447
4448 if (deliver_count) {
4449 /* Now deliver all the messages. */
4450 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4451 list_del(&recv_msg->link);
4452 deliver_local_response(intf, recv_msg);
4453 }
4454 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4455 /*
4456 * No one to receive the message, put it in queue if there's
4457 * not already too many things in the queue.
4458 */
4459 recv_msg = ipmi_alloc_recv_msg();
4460 if (!recv_msg) {
4461 /*
4462 * We couldn't allocate memory for the
4463 * message, so requeue it for handling
4464 * later.
4465 */
4466 rv = 1;
4467 goto out;
4468 }
4469
4470 copy_event_into_recv_msg(recv_msg, msg);
4471 list_add_tail(&recv_msg->link, &intf->waiting_events);
4472 intf->waiting_events_count++;
4473 } else if (!intf->event_msg_printed) {
4474 /*
4475 * There's too many things in the queue, discard this
4476 * message.
4477 */
4478 dev_warn(intf->si_dev,
4479 "Event queue full, discarding incoming events\n");
4480 intf->event_msg_printed = 1;
4481 }
4482
4483 out:
4484 spin_unlock_irqrestore(&intf->events_lock, flags);
4485
4486 return rv;
4487 }
4488
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4489 static int handle_bmc_rsp(struct ipmi_smi *intf,
4490 struct ipmi_smi_msg *msg)
4491 {
4492 struct ipmi_recv_msg *recv_msg;
4493 struct ipmi_system_interface_addr *smi_addr;
4494
4495 recv_msg = msg->user_data;
4496 if (recv_msg == NULL) {
4497 dev_warn(intf->si_dev,
4498 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4499 return 0;
4500 }
4501
4502 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4503 recv_msg->msgid = msg->msgid;
4504 smi_addr = ((struct ipmi_system_interface_addr *)
4505 &recv_msg->addr);
4506 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4507 smi_addr->channel = IPMI_BMC_CHANNEL;
4508 smi_addr->lun = msg->rsp[0] & 3;
4509 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4510 recv_msg->msg.cmd = msg->rsp[1];
4511 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4512 recv_msg->msg.data = recv_msg->msg_data;
4513 recv_msg->msg.data_len = msg->rsp_size - 2;
4514 deliver_local_response(intf, recv_msg);
4515
4516 return 0;
4517 }
4518
4519 /*
4520 * Handle a received message. Return 1 if the message should be requeued,
4521 * 0 if the message should be freed, or -1 if the message should not
4522 * be freed or requeued.
4523 */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4524 static int handle_one_recv_msg(struct ipmi_smi *intf,
4525 struct ipmi_smi_msg *msg)
4526 {
4527 int requeue = 0;
4528 int chan;
4529 unsigned char cc;
4530 bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4531
4532 dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
4533
4534 if (msg->rsp_size < 2) {
4535 /* Message is too small to be correct. */
4536 dev_warn(intf->si_dev,
4537 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4538 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4539
4540 return_unspecified:
4541 /* Generate an error response for the message. */
4542 msg->rsp[0] = msg->data[0] | (1 << 2);
4543 msg->rsp[1] = msg->data[1];
4544 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4545 msg->rsp_size = 3;
4546 } else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4547 /* commands must have at least 4 bytes, responses 5. */
4548 if (is_cmd && (msg->rsp_size < 4)) {
4549 ipmi_inc_stat(intf, invalid_commands);
4550 goto out;
4551 }
4552 if (!is_cmd && (msg->rsp_size < 5)) {
4553 ipmi_inc_stat(intf, invalid_ipmb_responses);
4554 /* Construct a valid error response. */
4555 msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4556 msg->rsp[0] |= (1 << 2); /* Make it a response */
4557 msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4558 msg->rsp[1] = msg->data[1]; /* Addr */
4559 msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4560 msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4561 msg->rsp[3] = msg->data[3]; /* Cmd */
4562 msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4563 msg->rsp_size = 5;
4564 }
4565 } else if ((msg->data_size >= 2)
4566 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4567 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4568 && (msg->user_data == NULL)) {
4569
4570 if (intf->in_shutdown)
4571 goto out;
4572
4573 /*
4574 * This is the local response to a command send, start
4575 * the timer for these. The user_data will not be
4576 * NULL if this is a response send, and we will let
4577 * response sends just go through.
4578 */
4579
4580 /*
4581 * Check for errors, if we get certain errors (ones
4582 * that mean basically we can try again later), we
4583 * ignore them and start the timer. Otherwise we
4584 * report the error immediately.
4585 */
4586 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4587 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4588 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4589 && (msg->rsp[2] != IPMI_BUS_ERR)
4590 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4591 int ch = msg->rsp[3] & 0xf;
4592 struct ipmi_channel *chans;
4593
4594 /* Got an error sending the message, handle it. */
4595
4596 chans = READ_ONCE(intf->channel_list)->c;
4597 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4598 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4599 ipmi_inc_stat(intf, sent_lan_command_errs);
4600 else
4601 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4602 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4603 } else
4604 /* The message was sent, start the timer. */
4605 intf_start_seq_timer(intf, msg->msgid);
4606 requeue = 0;
4607 goto out;
4608 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4609 || (msg->rsp[1] != msg->data[1])) {
4610 /*
4611 * The NetFN and Command in the response is not even
4612 * marginally correct.
4613 */
4614 dev_warn(intf->si_dev,
4615 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4616 (msg->data[0] >> 2) | 1, msg->data[1],
4617 msg->rsp[0] >> 2, msg->rsp[1]);
4618
4619 goto return_unspecified;
4620 }
4621
4622 if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4623 if ((msg->data[0] >> 2) & 1) {
4624 /* It's a response to a sent response. */
4625 chan = 0;
4626 cc = msg->rsp[4];
4627 goto process_response_response;
4628 }
4629 if (is_cmd)
4630 requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4631 else
4632 requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4633 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4634 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4635 && (msg->user_data != NULL)) {
4636 /*
4637 * It's a response to a response we sent. For this we
4638 * deliver a send message response to the user.
4639 */
4640 struct ipmi_recv_msg *recv_msg;
4641
4642 chan = msg->data[2] & 0x0f;
4643 if (chan >= IPMI_MAX_CHANNELS)
4644 /* Invalid channel number */
4645 goto out;
4646 cc = msg->rsp[2];
4647
4648 process_response_response:
4649 recv_msg = msg->user_data;
4650
4651 requeue = 0;
4652 if (!recv_msg)
4653 goto out;
4654
4655 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4656 recv_msg->msg.data = recv_msg->msg_data;
4657 recv_msg->msg_data[0] = cc;
4658 recv_msg->msg.data_len = 1;
4659 deliver_local_response(intf, recv_msg);
4660 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4661 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4662 struct ipmi_channel *chans;
4663
4664 /* It's from the receive queue. */
4665 chan = msg->rsp[3] & 0xf;
4666 if (chan >= IPMI_MAX_CHANNELS) {
4667 /* Invalid channel number */
4668 requeue = 0;
4669 goto out;
4670 }
4671
4672 /*
4673 * We need to make sure the channels have been initialized.
4674 * The channel_handler routine will set the "curr_channel"
4675 * equal to or greater than IPMI_MAX_CHANNELS when all the
4676 * channels for this interface have been initialized.
4677 */
4678 if (!intf->channels_ready) {
4679 requeue = 0; /* Throw the message away */
4680 goto out;
4681 }
4682
4683 chans = READ_ONCE(intf->channel_list)->c;
4684
4685 switch (chans[chan].medium) {
4686 case IPMI_CHANNEL_MEDIUM_IPMB:
4687 if (msg->rsp[4] & 0x04) {
4688 /*
4689 * It's a response, so find the
4690 * requesting message and send it up.
4691 */
4692 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4693 } else {
4694 /*
4695 * It's a command to the SMS from some other
4696 * entity. Handle that.
4697 */
4698 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4699 }
4700 break;
4701
4702 case IPMI_CHANNEL_MEDIUM_8023LAN:
4703 case IPMI_CHANNEL_MEDIUM_ASYNC:
4704 if (msg->rsp[6] & 0x04) {
4705 /*
4706 * It's a response, so find the
4707 * requesting message and send it up.
4708 */
4709 requeue = handle_lan_get_msg_rsp(intf, msg);
4710 } else {
4711 /*
4712 * It's a command to the SMS from some other
4713 * entity. Handle that.
4714 */
4715 requeue = handle_lan_get_msg_cmd(intf, msg);
4716 }
4717 break;
4718
4719 default:
4720 /* Check for OEM Channels. Clients had better
4721 register for these commands. */
4722 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4723 && (chans[chan].medium
4724 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4725 requeue = handle_oem_get_msg_cmd(intf, msg);
4726 } else {
4727 /*
4728 * We don't handle the channel type, so just
4729 * free the message.
4730 */
4731 requeue = 0;
4732 }
4733 }
4734
4735 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4736 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4737 /* It's an asynchronous event. */
4738 requeue = handle_read_event_rsp(intf, msg);
4739 } else {
4740 /* It's a response from the local BMC. */
4741 requeue = handle_bmc_rsp(intf, msg);
4742 }
4743
4744 out:
4745 return requeue;
4746 }
4747
4748 /*
4749 * If there are messages in the queue or pretimeouts, handle them.
4750 */
handle_new_recv_msgs(struct ipmi_smi * intf)4751 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4752 {
4753 struct ipmi_smi_msg *smi_msg;
4754 unsigned long flags = 0;
4755 int rv;
4756 int run_to_completion = intf->run_to_completion;
4757
4758 /* See if any waiting messages need to be processed. */
4759 if (!run_to_completion)
4760 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4761 while (!list_empty(&intf->waiting_rcv_msgs)) {
4762 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4763 struct ipmi_smi_msg, link);
4764 list_del(&smi_msg->link);
4765 if (!run_to_completion)
4766 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4767 flags);
4768 rv = handle_one_recv_msg(intf, smi_msg);
4769 if (!run_to_completion)
4770 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4771 if (rv > 0) {
4772 /*
4773 * To preserve message order, quit if we
4774 * can't handle a message. Add the message
4775 * back at the head, this is safe because this
4776 * tasklet is the only thing that pulls the
4777 * messages.
4778 */
4779 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4780 break;
4781 } else {
4782 if (rv == 0)
4783 /* Message handled */
4784 ipmi_free_smi_msg(smi_msg);
4785 /* If rv < 0, fatal error, del but don't free. */
4786 }
4787 }
4788 if (!run_to_completion)
4789 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4790
4791 /*
4792 * If the pretimout count is non-zero, decrement one from it and
4793 * deliver pretimeouts to all the users.
4794 */
4795 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4796 struct ipmi_user *user;
4797 int index;
4798
4799 index = srcu_read_lock(&intf->users_srcu);
4800 list_for_each_entry_rcu(user, &intf->users, link) {
4801 if (user->handler->ipmi_watchdog_pretimeout)
4802 user->handler->ipmi_watchdog_pretimeout(
4803 user->handler_data);
4804 }
4805 srcu_read_unlock(&intf->users_srcu, index);
4806 }
4807 }
4808
smi_recv_tasklet(struct tasklet_struct * t)4809 static void smi_recv_tasklet(struct tasklet_struct *t)
4810 {
4811 unsigned long flags = 0; /* keep us warning-free. */
4812 struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4813 int run_to_completion = intf->run_to_completion;
4814 struct ipmi_smi_msg *newmsg = NULL;
4815
4816 /*
4817 * Start the next message if available.
4818 *
4819 * Do this here, not in the actual receiver, because we may deadlock
4820 * because the lower layer is allowed to hold locks while calling
4821 * message delivery.
4822 */
4823
4824 rcu_read_lock();
4825
4826 if (!run_to_completion)
4827 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4828 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4829 struct list_head *entry = NULL;
4830
4831 /* Pick the high priority queue first. */
4832 if (!list_empty(&intf->hp_xmit_msgs))
4833 entry = intf->hp_xmit_msgs.next;
4834 else if (!list_empty(&intf->xmit_msgs))
4835 entry = intf->xmit_msgs.next;
4836
4837 if (entry) {
4838 list_del(entry);
4839 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4840 intf->curr_msg = newmsg;
4841 }
4842 }
4843
4844 if (!run_to_completion)
4845 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4846 if (newmsg)
4847 intf->handlers->sender(intf->send_info, newmsg);
4848
4849 rcu_read_unlock();
4850
4851 handle_new_recv_msgs(intf);
4852 }
4853
4854 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4855 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4856 struct ipmi_smi_msg *msg)
4857 {
4858 unsigned long flags = 0; /* keep us warning-free. */
4859 int run_to_completion = intf->run_to_completion;
4860
4861 /*
4862 * To preserve message order, we keep a queue and deliver from
4863 * a tasklet.
4864 */
4865 if (!run_to_completion)
4866 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4867 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4868 if (!run_to_completion)
4869 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4870 flags);
4871
4872 if (!run_to_completion)
4873 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4874 /*
4875 * We can get an asynchronous event or receive message in addition
4876 * to commands we send.
4877 */
4878 if (msg == intf->curr_msg)
4879 intf->curr_msg = NULL;
4880 if (!run_to_completion)
4881 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4882
4883 if (run_to_completion)
4884 smi_recv_tasklet(&intf->recv_tasklet);
4885 else
4886 tasklet_schedule(&intf->recv_tasklet);
4887 }
4888 EXPORT_SYMBOL(ipmi_smi_msg_received);
4889
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4890 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4891 {
4892 if (intf->in_shutdown)
4893 return;
4894
4895 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4896 tasklet_schedule(&intf->recv_tasklet);
4897 }
4898 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4899
4900 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4901 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4902 unsigned char seq, long seqid)
4903 {
4904 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4905 if (!smi_msg)
4906 /*
4907 * If we can't allocate the message, then just return, we
4908 * get 4 retries, so this should be ok.
4909 */
4910 return NULL;
4911
4912 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4913 smi_msg->data_size = recv_msg->msg.data_len;
4914 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4915
4916 dev_dbg(intf->si_dev, "Resend: %*ph\n",
4917 smi_msg->data_size, smi_msg->data);
4918
4919 return smi_msg;
4920 }
4921
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,unsigned long * flags,bool * need_timer)4922 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4923 struct list_head *timeouts,
4924 unsigned long timeout_period,
4925 int slot, unsigned long *flags,
4926 bool *need_timer)
4927 {
4928 struct ipmi_recv_msg *msg;
4929
4930 if (intf->in_shutdown)
4931 return;
4932
4933 if (!ent->inuse)
4934 return;
4935
4936 if (timeout_period < ent->timeout) {
4937 ent->timeout -= timeout_period;
4938 *need_timer = true;
4939 return;
4940 }
4941
4942 if (ent->retries_left == 0) {
4943 /* The message has used all its retries. */
4944 ent->inuse = 0;
4945 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4946 msg = ent->recv_msg;
4947 list_add_tail(&msg->link, timeouts);
4948 if (ent->broadcast)
4949 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4950 else if (is_lan_addr(&ent->recv_msg->addr))
4951 ipmi_inc_stat(intf, timed_out_lan_commands);
4952 else
4953 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4954 } else {
4955 struct ipmi_smi_msg *smi_msg;
4956 /* More retries, send again. */
4957
4958 *need_timer = true;
4959
4960 /*
4961 * Start with the max timer, set to normal timer after
4962 * the message is sent.
4963 */
4964 ent->timeout = MAX_MSG_TIMEOUT;
4965 ent->retries_left--;
4966 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4967 ent->seqid);
4968 if (!smi_msg) {
4969 if (is_lan_addr(&ent->recv_msg->addr))
4970 ipmi_inc_stat(intf,
4971 dropped_rexmit_lan_commands);
4972 else
4973 ipmi_inc_stat(intf,
4974 dropped_rexmit_ipmb_commands);
4975 return;
4976 }
4977
4978 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4979
4980 /*
4981 * Send the new message. We send with a zero
4982 * priority. It timed out, I doubt time is that
4983 * critical now, and high priority messages are really
4984 * only for messages to the local MC, which don't get
4985 * resent.
4986 */
4987 if (intf->handlers) {
4988 if (is_lan_addr(&ent->recv_msg->addr))
4989 ipmi_inc_stat(intf,
4990 retransmitted_lan_commands);
4991 else
4992 ipmi_inc_stat(intf,
4993 retransmitted_ipmb_commands);
4994
4995 smi_send(intf, intf->handlers, smi_msg, 0);
4996 } else
4997 ipmi_free_smi_msg(smi_msg);
4998
4999 spin_lock_irqsave(&intf->seq_lock, *flags);
5000 }
5001 }
5002
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)5003 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
5004 unsigned long timeout_period)
5005 {
5006 struct list_head timeouts;
5007 struct ipmi_recv_msg *msg, *msg2;
5008 unsigned long flags;
5009 int i;
5010 bool need_timer = false;
5011
5012 if (!intf->bmc_registered) {
5013 kref_get(&intf->refcount);
5014 if (!schedule_work(&intf->bmc_reg_work)) {
5015 kref_put(&intf->refcount, intf_free);
5016 need_timer = true;
5017 }
5018 }
5019
5020 /*
5021 * Go through the seq table and find any messages that
5022 * have timed out, putting them in the timeouts
5023 * list.
5024 */
5025 INIT_LIST_HEAD(&timeouts);
5026 spin_lock_irqsave(&intf->seq_lock, flags);
5027 if (intf->ipmb_maintenance_mode_timeout) {
5028 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
5029 intf->ipmb_maintenance_mode_timeout = 0;
5030 else
5031 intf->ipmb_maintenance_mode_timeout -= timeout_period;
5032 }
5033 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
5034 check_msg_timeout(intf, &intf->seq_table[i],
5035 &timeouts, timeout_period, i,
5036 &flags, &need_timer);
5037 spin_unlock_irqrestore(&intf->seq_lock, flags);
5038
5039 list_for_each_entry_safe(msg, msg2, &timeouts, link)
5040 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
5041
5042 /*
5043 * Maintenance mode handling. Check the timeout
5044 * optimistically before we claim the lock. It may
5045 * mean a timeout gets missed occasionally, but that
5046 * only means the timeout gets extended by one period
5047 * in that case. No big deal, and it avoids the lock
5048 * most of the time.
5049 */
5050 if (intf->auto_maintenance_timeout > 0) {
5051 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
5052 if (intf->auto_maintenance_timeout > 0) {
5053 intf->auto_maintenance_timeout
5054 -= timeout_period;
5055 if (!intf->maintenance_mode
5056 && (intf->auto_maintenance_timeout <= 0)) {
5057 intf->maintenance_mode_enable = false;
5058 maintenance_mode_update(intf);
5059 }
5060 }
5061 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
5062 flags);
5063 }
5064
5065 tasklet_schedule(&intf->recv_tasklet);
5066
5067 return need_timer;
5068 }
5069
ipmi_request_event(struct ipmi_smi * intf)5070 static void ipmi_request_event(struct ipmi_smi *intf)
5071 {
5072 /* No event requests when in maintenance mode. */
5073 if (intf->maintenance_mode_enable)
5074 return;
5075
5076 if (!intf->in_shutdown)
5077 intf->handlers->request_events(intf->send_info);
5078 }
5079
5080 static struct timer_list ipmi_timer;
5081
5082 static atomic_t stop_operation;
5083
ipmi_timeout(struct timer_list * unused)5084 static void ipmi_timeout(struct timer_list *unused)
5085 {
5086 struct ipmi_smi *intf;
5087 bool need_timer = false;
5088 int index;
5089
5090 if (atomic_read(&stop_operation))
5091 return;
5092
5093 index = srcu_read_lock(&ipmi_interfaces_srcu);
5094 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5095 if (atomic_read(&intf->event_waiters)) {
5096 intf->ticks_to_req_ev--;
5097 if (intf->ticks_to_req_ev == 0) {
5098 ipmi_request_event(intf);
5099 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5100 }
5101 need_timer = true;
5102 }
5103
5104 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5105 }
5106 srcu_read_unlock(&ipmi_interfaces_srcu, index);
5107
5108 if (need_timer)
5109 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5110 }
5111
need_waiter(struct ipmi_smi * intf)5112 static void need_waiter(struct ipmi_smi *intf)
5113 {
5114 /* Racy, but worst case we start the timer twice. */
5115 if (!timer_pending(&ipmi_timer))
5116 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5117 }
5118
5119 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5120 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5121
free_smi_msg(struct ipmi_smi_msg * msg)5122 static void free_smi_msg(struct ipmi_smi_msg *msg)
5123 {
5124 atomic_dec(&smi_msg_inuse_count);
5125 /* Try to keep as much stuff out of the panic path as possible. */
5126 if (!oops_in_progress)
5127 kfree(msg);
5128 }
5129
ipmi_alloc_smi_msg(void)5130 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5131 {
5132 struct ipmi_smi_msg *rv;
5133 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5134 if (rv) {
5135 rv->done = free_smi_msg;
5136 rv->user_data = NULL;
5137 rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5138 atomic_inc(&smi_msg_inuse_count);
5139 }
5140 return rv;
5141 }
5142 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5143
free_recv_msg(struct ipmi_recv_msg * msg)5144 static void free_recv_msg(struct ipmi_recv_msg *msg)
5145 {
5146 atomic_dec(&recv_msg_inuse_count);
5147 /* Try to keep as much stuff out of the panic path as possible. */
5148 if (!oops_in_progress)
5149 kfree(msg);
5150 }
5151
ipmi_alloc_recv_msg(void)5152 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
5153 {
5154 struct ipmi_recv_msg *rv;
5155
5156 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5157 if (rv) {
5158 rv->user = NULL;
5159 rv->done = free_recv_msg;
5160 atomic_inc(&recv_msg_inuse_count);
5161 }
5162 return rv;
5163 }
5164
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)5165 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5166 {
5167 if (msg->user && !oops_in_progress)
5168 kref_put(&msg->user->refcount, free_user);
5169 msg->done(msg);
5170 }
5171 EXPORT_SYMBOL(ipmi_free_recv_msg);
5172
5173 static atomic_t panic_done_count = ATOMIC_INIT(0);
5174
dummy_smi_done_handler(struct ipmi_smi_msg * msg)5175 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5176 {
5177 atomic_dec(&panic_done_count);
5178 }
5179
dummy_recv_done_handler(struct ipmi_recv_msg * msg)5180 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5181 {
5182 atomic_dec(&panic_done_count);
5183 }
5184
5185 /*
5186 * Inside a panic, send a message and wait for a response.
5187 */
ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5188 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5189 struct ipmi_addr *addr,
5190 struct kernel_ipmi_msg *msg)
5191 {
5192 struct ipmi_smi_msg smi_msg;
5193 struct ipmi_recv_msg recv_msg;
5194 int rv;
5195
5196 smi_msg.done = dummy_smi_done_handler;
5197 recv_msg.done = dummy_recv_done_handler;
5198 atomic_add(2, &panic_done_count);
5199 rv = i_ipmi_request(NULL,
5200 intf,
5201 addr,
5202 0,
5203 msg,
5204 intf,
5205 &smi_msg,
5206 &recv_msg,
5207 0,
5208 intf->addrinfo[0].address,
5209 intf->addrinfo[0].lun,
5210 0, 1); /* Don't retry, and don't wait. */
5211 if (rv)
5212 atomic_sub(2, &panic_done_count);
5213 else if (intf->handlers->flush_messages)
5214 intf->handlers->flush_messages(intf->send_info);
5215
5216 while (atomic_read(&panic_done_count) != 0)
5217 ipmi_poll(intf);
5218 }
5219
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5220 static void event_receiver_fetcher(struct ipmi_smi *intf,
5221 struct ipmi_recv_msg *msg)
5222 {
5223 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5224 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5225 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5226 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5227 /* A get event receiver command, save it. */
5228 intf->event_receiver = msg->msg.data[1];
5229 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5230 }
5231 }
5232
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5233 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5234 {
5235 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5236 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5237 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5238 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5239 /*
5240 * A get device id command, save if we are an event
5241 * receiver or generator.
5242 */
5243 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5244 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5245 }
5246 }
5247
send_panic_events(struct ipmi_smi * intf,char * str)5248 static void send_panic_events(struct ipmi_smi *intf, char *str)
5249 {
5250 struct kernel_ipmi_msg msg;
5251 unsigned char data[16];
5252 struct ipmi_system_interface_addr *si;
5253 struct ipmi_addr addr;
5254 char *p = str;
5255 struct ipmi_ipmb_addr *ipmb;
5256 int j;
5257
5258 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5259 return;
5260
5261 si = (struct ipmi_system_interface_addr *) &addr;
5262 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5263 si->channel = IPMI_BMC_CHANNEL;
5264 si->lun = 0;
5265
5266 /* Fill in an event telling that we have failed. */
5267 msg.netfn = 0x04; /* Sensor or Event. */
5268 msg.cmd = 2; /* Platform event command. */
5269 msg.data = data;
5270 msg.data_len = 8;
5271 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5272 data[1] = 0x03; /* This is for IPMI 1.0. */
5273 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5274 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5275 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5276
5277 /*
5278 * Put a few breadcrumbs in. Hopefully later we can add more things
5279 * to make the panic events more useful.
5280 */
5281 if (str) {
5282 data[3] = str[0];
5283 data[6] = str[1];
5284 data[7] = str[2];
5285 }
5286
5287 /* Send the event announcing the panic. */
5288 ipmi_panic_request_and_wait(intf, &addr, &msg);
5289
5290 /*
5291 * On every interface, dump a bunch of OEM event holding the
5292 * string.
5293 */
5294 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5295 return;
5296
5297 /*
5298 * intf_num is used as an marker to tell if the
5299 * interface is valid. Thus we need a read barrier to
5300 * make sure data fetched before checking intf_num
5301 * won't be used.
5302 */
5303 smp_rmb();
5304
5305 /*
5306 * First job here is to figure out where to send the
5307 * OEM events. There's no way in IPMI to send OEM
5308 * events using an event send command, so we have to
5309 * find the SEL to put them in and stick them in
5310 * there.
5311 */
5312
5313 /* Get capabilities from the get device id. */
5314 intf->local_sel_device = 0;
5315 intf->local_event_generator = 0;
5316 intf->event_receiver = 0;
5317
5318 /* Request the device info from the local MC. */
5319 msg.netfn = IPMI_NETFN_APP_REQUEST;
5320 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5321 msg.data = NULL;
5322 msg.data_len = 0;
5323 intf->null_user_handler = device_id_fetcher;
5324 ipmi_panic_request_and_wait(intf, &addr, &msg);
5325
5326 if (intf->local_event_generator) {
5327 /* Request the event receiver from the local MC. */
5328 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5329 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5330 msg.data = NULL;
5331 msg.data_len = 0;
5332 intf->null_user_handler = event_receiver_fetcher;
5333 ipmi_panic_request_and_wait(intf, &addr, &msg);
5334 }
5335 intf->null_user_handler = NULL;
5336
5337 /*
5338 * Validate the event receiver. The low bit must not
5339 * be 1 (it must be a valid IPMB address), it cannot
5340 * be zero, and it must not be my address.
5341 */
5342 if (((intf->event_receiver & 1) == 0)
5343 && (intf->event_receiver != 0)
5344 && (intf->event_receiver != intf->addrinfo[0].address)) {
5345 /*
5346 * The event receiver is valid, send an IPMB
5347 * message.
5348 */
5349 ipmb = (struct ipmi_ipmb_addr *) &addr;
5350 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5351 ipmb->channel = 0; /* FIXME - is this right? */
5352 ipmb->lun = intf->event_receiver_lun;
5353 ipmb->slave_addr = intf->event_receiver;
5354 } else if (intf->local_sel_device) {
5355 /*
5356 * The event receiver was not valid (or was
5357 * me), but I am an SEL device, just dump it
5358 * in my SEL.
5359 */
5360 si = (struct ipmi_system_interface_addr *) &addr;
5361 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5362 si->channel = IPMI_BMC_CHANNEL;
5363 si->lun = 0;
5364 } else
5365 return; /* No where to send the event. */
5366
5367 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5368 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5369 msg.data = data;
5370 msg.data_len = 16;
5371
5372 j = 0;
5373 while (*p) {
5374 int size = strlen(p);
5375
5376 if (size > 11)
5377 size = 11;
5378 data[0] = 0;
5379 data[1] = 0;
5380 data[2] = 0xf0; /* OEM event without timestamp. */
5381 data[3] = intf->addrinfo[0].address;
5382 data[4] = j++; /* sequence # */
5383 /*
5384 * Always give 11 bytes, so strncpy will fill
5385 * it with zeroes for me.
5386 */
5387 strncpy(data+5, p, 11);
5388 p += size;
5389
5390 ipmi_panic_request_and_wait(intf, &addr, &msg);
5391 }
5392 }
5393
5394 static int has_panicked;
5395
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5396 static int panic_event(struct notifier_block *this,
5397 unsigned long event,
5398 void *ptr)
5399 {
5400 struct ipmi_smi *intf;
5401 struct ipmi_user *user;
5402
5403 if (has_panicked)
5404 return NOTIFY_DONE;
5405 has_panicked = 1;
5406
5407 /* For every registered interface, set it to run to completion. */
5408 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5409 if (!intf->handlers || intf->intf_num == -1)
5410 /* Interface is not ready. */
5411 continue;
5412
5413 if (!intf->handlers->poll)
5414 continue;
5415
5416 /*
5417 * If we were interrupted while locking xmit_msgs_lock or
5418 * waiting_rcv_msgs_lock, the corresponding list may be
5419 * corrupted. In this case, drop items on the list for
5420 * the safety.
5421 */
5422 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5423 INIT_LIST_HEAD(&intf->xmit_msgs);
5424 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5425 } else
5426 spin_unlock(&intf->xmit_msgs_lock);
5427
5428 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5429 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5430 else
5431 spin_unlock(&intf->waiting_rcv_msgs_lock);
5432
5433 intf->run_to_completion = 1;
5434 if (intf->handlers->set_run_to_completion)
5435 intf->handlers->set_run_to_completion(intf->send_info,
5436 1);
5437
5438 list_for_each_entry_rcu(user, &intf->users, link) {
5439 if (user->handler->ipmi_panic_handler)
5440 user->handler->ipmi_panic_handler(
5441 user->handler_data);
5442 }
5443
5444 send_panic_events(intf, ptr);
5445 }
5446
5447 return NOTIFY_DONE;
5448 }
5449
5450 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5451 static int ipmi_register_driver(void)
5452 {
5453 int rv;
5454
5455 if (drvregistered)
5456 return 0;
5457
5458 rv = driver_register(&ipmidriver.driver);
5459 if (rv)
5460 pr_err("Could not register IPMI driver\n");
5461 else
5462 drvregistered = true;
5463 return rv;
5464 }
5465
5466 static struct notifier_block panic_block = {
5467 .notifier_call = panic_event,
5468 .next = NULL,
5469 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5470 };
5471
ipmi_init_msghandler(void)5472 static int ipmi_init_msghandler(void)
5473 {
5474 int rv;
5475
5476 mutex_lock(&ipmi_interfaces_mutex);
5477 rv = ipmi_register_driver();
5478 if (rv)
5479 goto out;
5480 if (initialized)
5481 goto out;
5482
5483 rv = init_srcu_struct(&ipmi_interfaces_srcu);
5484 if (rv)
5485 goto out;
5486
5487 remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5488 if (!remove_work_wq) {
5489 pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5490 rv = -ENOMEM;
5491 goto out_wq;
5492 }
5493
5494 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5495 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5496
5497 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5498
5499 initialized = true;
5500
5501 out_wq:
5502 if (rv)
5503 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5504 out:
5505 mutex_unlock(&ipmi_interfaces_mutex);
5506 return rv;
5507 }
5508
ipmi_init_msghandler_mod(void)5509 static int __init ipmi_init_msghandler_mod(void)
5510 {
5511 int rv;
5512
5513 pr_info("version " IPMI_DRIVER_VERSION "\n");
5514
5515 mutex_lock(&ipmi_interfaces_mutex);
5516 rv = ipmi_register_driver();
5517 mutex_unlock(&ipmi_interfaces_mutex);
5518
5519 return rv;
5520 }
5521
cleanup_ipmi(void)5522 static void __exit cleanup_ipmi(void)
5523 {
5524 int count;
5525
5526 if (initialized) {
5527 destroy_workqueue(remove_work_wq);
5528
5529 atomic_notifier_chain_unregister(&panic_notifier_list,
5530 &panic_block);
5531
5532 /*
5533 * This can't be called if any interfaces exist, so no worry
5534 * about shutting down the interfaces.
5535 */
5536
5537 /*
5538 * Tell the timer to stop, then wait for it to stop. This
5539 * avoids problems with race conditions removing the timer
5540 * here.
5541 */
5542 atomic_set(&stop_operation, 1);
5543 del_timer_sync(&ipmi_timer);
5544
5545 initialized = false;
5546
5547 /* Check for buffer leaks. */
5548 count = atomic_read(&smi_msg_inuse_count);
5549 if (count != 0)
5550 pr_warn("SMI message count %d at exit\n", count);
5551 count = atomic_read(&recv_msg_inuse_count);
5552 if (count != 0)
5553 pr_warn("recv message count %d at exit\n", count);
5554
5555 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5556 }
5557 if (drvregistered)
5558 driver_unregister(&ipmidriver.driver);
5559 }
5560 module_exit(cleanup_ipmi);
5561
5562 module_init(ipmi_init_msghandler_mod);
5563 MODULE_LICENSE("GPL");
5564 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5565 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5566 MODULE_VERSION(IPMI_DRIVER_VERSION);
5567 MODULE_SOFTDEP("post: ipmi_devintf");
5568