1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2020 Linaro Ltd.
5 */
6
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/of_address.h>
18 #include <linux/remoteproc.h>
19 #include <linux/qcom_scm.h>
20 #include <linux/soc/qcom/mdt_loader.h>
21
22 #include "ipa.h"
23 #include "ipa_clock.h"
24 #include "ipa_data.h"
25 #include "ipa_endpoint.h"
26 #include "ipa_cmd.h"
27 #include "ipa_reg.h"
28 #include "ipa_mem.h"
29 #include "ipa_table.h"
30 #include "ipa_modem.h"
31 #include "ipa_uc.h"
32 #include "ipa_interrupt.h"
33 #include "gsi_trans.h"
34
35 /**
36 * DOC: The IP Accelerator
37 *
38 * This driver supports the Qualcomm IP Accelerator (IPA), which is a
39 * networking component found in many Qualcomm SoCs. The IPA is connected
40 * to the application processor (AP), but is also connected (and partially
41 * controlled by) other "execution environments" (EEs), such as a modem.
42 *
43 * The IPA is the conduit between the AP and the modem that carries network
44 * traffic. This driver presents a network interface representing the
45 * connection of the modem to external (e.g. LTE) networks.
46 *
47 * The IPA provides protocol checksum calculation, offloading this work
48 * from the AP. The IPA offers additional functionality, including routing,
49 * filtering, and NAT support, but that more advanced functionality is not
50 * currently supported. Despite that, some resources--including routing
51 * tables and filter tables--are defined in this driver because they must
52 * be initialized even when the advanced hardware features are not used.
53 *
54 * There are two distinct layers that implement the IPA hardware, and this
55 * is reflected in the organization of the driver. The generic software
56 * interface (GSI) is an integral component of the IPA, providing a
57 * well-defined communication layer between the AP subsystem and the IPA
58 * core. The GSI implements a set of "channels" used for communication
59 * between the AP and the IPA.
60 *
61 * The IPA layer uses GSI channels to implement its "endpoints". And while
62 * a GSI channel carries data between the AP and the IPA, a pair of IPA
63 * endpoints is used to carry traffic between two EEs. Specifically, the main
64 * modem network interface is implemented by two pairs of endpoints: a TX
65 * endpoint on the AP coupled with an RX endpoint on the modem; and another
66 * RX endpoint on the AP receiving data from a TX endpoint on the modem.
67 */
68
69 /* The name of the GSI firmware file relative to /lib/firmware */
70 #define IPA_FWS_PATH "ipa_fws.mdt"
71 #define IPA_PAS_ID 15
72
73 /**
74 * ipa_suspend_handler() - Handle the suspend IPA interrupt
75 * @ipa: IPA pointer
76 * @irq_id: IPA interrupt type (unused)
77 *
78 * If an RX endpoint is in suspend state, and the IPA has a packet
79 * destined for that endpoint, the IPA generates a SUSPEND interrupt
80 * to inform the AP that it should resume the endpoint. If we get
81 * one of these interrupts we just resume everything.
82 */
ipa_suspend_handler(struct ipa * ipa,enum ipa_irq_id irq_id)83 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
84 {
85 /* Just report the event, and let system resume handle the rest.
86 * More than one endpoint could signal this; if so, ignore
87 * all but the first.
88 */
89 if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags))
90 pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);
91
92 /* Acknowledge/clear the suspend interrupt on all endpoints */
93 ipa_interrupt_suspend_clear_all(ipa->interrupt);
94 }
95
96 /**
97 * ipa_setup() - Set up IPA hardware
98 * @ipa: IPA pointer
99 *
100 * Perform initialization that requires issuing immediate commands on
101 * the command TX endpoint. If the modem is doing GSI firmware load
102 * and initialization, this function will be called when an SMP2P
103 * interrupt has been signaled by the modem. Otherwise it will be
104 * called from ipa_probe() after GSI firmware has been successfully
105 * loaded, authenticated, and started by Trust Zone.
106 */
ipa_setup(struct ipa * ipa)107 int ipa_setup(struct ipa *ipa)
108 {
109 struct ipa_endpoint *exception_endpoint;
110 struct ipa_endpoint *command_endpoint;
111 struct device *dev = &ipa->pdev->dev;
112 int ret;
113
114 /* Setup for IPA v3.5.1 has some slight differences */
115 ret = gsi_setup(&ipa->gsi, ipa->version == IPA_VERSION_3_5_1);
116 if (ret)
117 return ret;
118
119 ipa->interrupt = ipa_interrupt_setup(ipa);
120 if (IS_ERR(ipa->interrupt)) {
121 ret = PTR_ERR(ipa->interrupt);
122 goto err_gsi_teardown;
123 }
124 ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND,
125 ipa_suspend_handler);
126
127 ipa_uc_setup(ipa);
128
129 ret = device_init_wakeup(dev, true);
130 if (ret)
131 goto err_uc_teardown;
132
133 ipa_endpoint_setup(ipa);
134
135 /* We need to use the AP command TX endpoint to perform other
136 * initialization, so we enable first.
137 */
138 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
139 ret = ipa_endpoint_enable_one(command_endpoint);
140 if (ret)
141 goto err_endpoint_teardown;
142
143 ret = ipa_mem_setup(ipa);
144 if (ret)
145 goto err_command_disable;
146
147 ret = ipa_table_setup(ipa);
148 if (ret)
149 goto err_mem_teardown;
150
151 /* Enable the exception handling endpoint, and tell the hardware
152 * to use it by default.
153 */
154 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
155 ret = ipa_endpoint_enable_one(exception_endpoint);
156 if (ret)
157 goto err_table_teardown;
158
159 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
160
161 /* We're all set. Now prepare for communication with the modem */
162 ret = ipa_modem_setup(ipa);
163 if (ret)
164 goto err_default_route_clear;
165
166 ipa->setup_complete = true;
167
168 dev_info(dev, "IPA driver setup completed successfully\n");
169
170 return 0;
171
172 err_default_route_clear:
173 ipa_endpoint_default_route_clear(ipa);
174 ipa_endpoint_disable_one(exception_endpoint);
175 err_table_teardown:
176 ipa_table_teardown(ipa);
177 err_mem_teardown:
178 ipa_mem_teardown(ipa);
179 err_command_disable:
180 ipa_endpoint_disable_one(command_endpoint);
181 err_endpoint_teardown:
182 ipa_endpoint_teardown(ipa);
183 (void)device_init_wakeup(dev, false);
184 err_uc_teardown:
185 ipa_uc_teardown(ipa);
186 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
187 ipa_interrupt_teardown(ipa->interrupt);
188 err_gsi_teardown:
189 gsi_teardown(&ipa->gsi);
190
191 return ret;
192 }
193
194 /**
195 * ipa_teardown() - Inverse of ipa_setup()
196 * @ipa: IPA pointer
197 */
ipa_teardown(struct ipa * ipa)198 static void ipa_teardown(struct ipa *ipa)
199 {
200 struct ipa_endpoint *exception_endpoint;
201 struct ipa_endpoint *command_endpoint;
202
203 ipa_modem_teardown(ipa);
204 ipa_endpoint_default_route_clear(ipa);
205 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
206 ipa_endpoint_disable_one(exception_endpoint);
207 ipa_table_teardown(ipa);
208 ipa_mem_teardown(ipa);
209 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
210 ipa_endpoint_disable_one(command_endpoint);
211 ipa_endpoint_teardown(ipa);
212 (void)device_init_wakeup(&ipa->pdev->dev, false);
213 ipa_uc_teardown(ipa);
214 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
215 ipa_interrupt_teardown(ipa->interrupt);
216 gsi_teardown(&ipa->gsi);
217 }
218
219 /* Configure QMB Core Master Port selection */
ipa_hardware_config_comp(struct ipa * ipa)220 static void ipa_hardware_config_comp(struct ipa *ipa)
221 {
222 u32 val;
223
224 /* Nothing to configure for IPA v3.5.1 */
225 if (ipa->version == IPA_VERSION_3_5_1)
226 return;
227
228 val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
229
230 if (ipa->version == IPA_VERSION_4_0) {
231 val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
232 val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
233 val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
234 } else {
235 val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
236 }
237
238 val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
239 val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
240
241 iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
242 }
243
244 /* Configure DDR and PCIe max read/write QSB values */
ipa_hardware_config_qsb(struct ipa * ipa)245 static void ipa_hardware_config_qsb(struct ipa *ipa)
246 {
247 u32 val;
248
249 /* QMB_0 represents DDR; QMB_1 represents PCIe (not present in 4.2) */
250 val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK);
251 if (ipa->version == IPA_VERSION_4_2)
252 val |= u32_encode_bits(0, GEN_QMB_1_MAX_WRITES_FMASK);
253 else
254 val |= u32_encode_bits(4, GEN_QMB_1_MAX_WRITES_FMASK);
255 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
256
257 if (ipa->version == IPA_VERSION_3_5_1) {
258 val = u32_encode_bits(8, GEN_QMB_0_MAX_READS_FMASK);
259 val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK);
260 } else {
261 val = u32_encode_bits(12, GEN_QMB_0_MAX_READS_FMASK);
262 if (ipa->version == IPA_VERSION_4_2)
263 val |= u32_encode_bits(0, GEN_QMB_1_MAX_READS_FMASK);
264 else
265 val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK);
266 /* GEN_QMB_0_MAX_READS_BEATS is 0 */
267 /* GEN_QMB_1_MAX_READS_BEATS is 0 */
268 }
269 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
270 }
271
ipa_idle_indication_cfg(struct ipa * ipa,u32 enter_idle_debounce_thresh,bool const_non_idle_enable)272 static void ipa_idle_indication_cfg(struct ipa *ipa,
273 u32 enter_idle_debounce_thresh,
274 bool const_non_idle_enable)
275 {
276 u32 offset;
277 u32 val;
278
279 val = u32_encode_bits(enter_idle_debounce_thresh,
280 ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
281 if (const_non_idle_enable)
282 val |= CONST_NON_IDLE_ENABLE_FMASK;
283
284 offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
285 iowrite32(val, ipa->reg_virt + offset);
286 }
287
288 /**
289 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
290 * @ipa: IPA pointer
291 *
292 * Configures when the IPA signals it is idle to the global clock
293 * controller, which can respond by scalling down the clock to
294 * save power.
295 */
ipa_hardware_dcd_config(struct ipa * ipa)296 static void ipa_hardware_dcd_config(struct ipa *ipa)
297 {
298 /* Recommended values for IPA 3.5 according to IPA HPG */
299 ipa_idle_indication_cfg(ipa, 256, false);
300 }
301
ipa_hardware_dcd_deconfig(struct ipa * ipa)302 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
303 {
304 /* Power-on reset values */
305 ipa_idle_indication_cfg(ipa, 0, true);
306 }
307
308 /**
309 * ipa_hardware_config() - Primitive hardware initialization
310 * @ipa: IPA pointer
311 */
ipa_hardware_config(struct ipa * ipa)312 static void ipa_hardware_config(struct ipa *ipa)
313 {
314 u32 granularity;
315 u32 val;
316
317 /* Fill in backward-compatibility register, based on version */
318 val = ipa_reg_bcr_val(ipa->version);
319 iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
320
321 if (ipa->version != IPA_VERSION_3_5_1) {
322 /* Enable open global clocks (hardware workaround) */
323 val = GLOBAL_FMASK;
324 val |= GLOBAL_2X_CLK_FMASK;
325 iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
326
327 /* Disable PA mask to allow HOLB drop (hardware workaround) */
328 val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
329 val &= ~PA_MASK_EN;
330 iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
331 }
332
333 ipa_hardware_config_comp(ipa);
334
335 /* Configure system bus limits */
336 ipa_hardware_config_qsb(ipa);
337
338 /* Configure aggregation granularity */
339 val = ioread32(ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
340 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
341 val = u32_encode_bits(granularity, AGGR_GRANULARITY);
342 iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
343
344 /* Disable hashed IPv4 and IPv6 routing and filtering for IPA v4.2 */
345 if (ipa->version == IPA_VERSION_4_2)
346 iowrite32(0, ipa->reg_virt + IPA_REG_FILT_ROUT_HASH_EN_OFFSET);
347
348 /* Enable dynamic clock division */
349 ipa_hardware_dcd_config(ipa);
350 }
351
352 /**
353 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
354 * @ipa: IPA pointer
355 *
356 * This restores the power-on reset values (even if they aren't different)
357 */
ipa_hardware_deconfig(struct ipa * ipa)358 static void ipa_hardware_deconfig(struct ipa *ipa)
359 {
360 /* Mostly we just leave things as we set them. */
361 ipa_hardware_dcd_deconfig(ipa);
362 }
363
364 #ifdef IPA_VALIDATION
365
366 /* # IPA resources used based on version (see IPA_RESOURCE_GROUP_COUNT) */
ipa_resource_group_count(struct ipa * ipa)367 static int ipa_resource_group_count(struct ipa *ipa)
368 {
369 switch (ipa->version) {
370 case IPA_VERSION_3_5_1:
371 return 3;
372
373 case IPA_VERSION_4_0:
374 case IPA_VERSION_4_1:
375 return 4;
376
377 case IPA_VERSION_4_2:
378 return 1;
379
380 default:
381 return 0;
382 }
383 }
384
ipa_resource_limits_valid(struct ipa * ipa,const struct ipa_resource_data * data)385 static bool ipa_resource_limits_valid(struct ipa *ipa,
386 const struct ipa_resource_data *data)
387 {
388 u32 group_count = ipa_resource_group_count(ipa);
389 u32 i;
390 u32 j;
391
392 if (!group_count)
393 return false;
394
395 /* Return an error if a non-zero resource group limit is specified
396 * for a resource not supported by hardware.
397 */
398 for (i = 0; i < data->resource_src_count; i++) {
399 const struct ipa_resource_src *resource;
400
401 resource = &data->resource_src[i];
402 for (j = group_count; j < IPA_RESOURCE_GROUP_COUNT; j++)
403 if (resource->limits[j].min || resource->limits[j].max)
404 return false;
405 }
406
407 for (i = 0; i < data->resource_dst_count; i++) {
408 const struct ipa_resource_dst *resource;
409
410 resource = &data->resource_dst[i];
411 for (j = group_count; j < IPA_RESOURCE_GROUP_COUNT; j++)
412 if (resource->limits[j].min || resource->limits[j].max)
413 return false;
414 }
415
416 return true;
417 }
418
419 #else /* !IPA_VALIDATION */
420
ipa_resource_limits_valid(struct ipa * ipa,const struct ipa_resource_data * data)421 static bool ipa_resource_limits_valid(struct ipa *ipa,
422 const struct ipa_resource_data *data)
423 {
424 return true;
425 }
426
427 #endif /* !IPA_VALIDATION */
428
429 static void
ipa_resource_config_common(struct ipa * ipa,u32 offset,const struct ipa_resource_limits * xlimits,const struct ipa_resource_limits * ylimits)430 ipa_resource_config_common(struct ipa *ipa, u32 offset,
431 const struct ipa_resource_limits *xlimits,
432 const struct ipa_resource_limits *ylimits)
433 {
434 u32 val;
435
436 val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK);
437 val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK);
438 val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK);
439 val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK);
440
441 iowrite32(val, ipa->reg_virt + offset);
442 }
443
ipa_resource_config_src_01(struct ipa * ipa,const struct ipa_resource_src * resource)444 static void ipa_resource_config_src_01(struct ipa *ipa,
445 const struct ipa_resource_src *resource)
446 {
447 u32 offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type);
448
449 ipa_resource_config_common(ipa, offset,
450 &resource->limits[0], &resource->limits[1]);
451 }
452
ipa_resource_config_src_23(struct ipa * ipa,const struct ipa_resource_src * resource)453 static void ipa_resource_config_src_23(struct ipa *ipa,
454 const struct ipa_resource_src *resource)
455 {
456 u32 offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type);
457
458 ipa_resource_config_common(ipa, offset,
459 &resource->limits[2], &resource->limits[3]);
460 }
461
ipa_resource_config_dst_01(struct ipa * ipa,const struct ipa_resource_dst * resource)462 static void ipa_resource_config_dst_01(struct ipa *ipa,
463 const struct ipa_resource_dst *resource)
464 {
465 u32 offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type);
466
467 ipa_resource_config_common(ipa, offset,
468 &resource->limits[0], &resource->limits[1]);
469 }
470
ipa_resource_config_dst_23(struct ipa * ipa,const struct ipa_resource_dst * resource)471 static void ipa_resource_config_dst_23(struct ipa *ipa,
472 const struct ipa_resource_dst *resource)
473 {
474 u32 offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type);
475
476 ipa_resource_config_common(ipa, offset,
477 &resource->limits[2], &resource->limits[3]);
478 }
479
480 static int
ipa_resource_config(struct ipa * ipa,const struct ipa_resource_data * data)481 ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data)
482 {
483 u32 i;
484
485 if (!ipa_resource_limits_valid(ipa, data))
486 return -EINVAL;
487
488 for (i = 0; i < data->resource_src_count; i++) {
489 ipa_resource_config_src_01(ipa, &data->resource_src[i]);
490 ipa_resource_config_src_23(ipa, &data->resource_src[i]);
491 }
492
493 for (i = 0; i < data->resource_dst_count; i++) {
494 ipa_resource_config_dst_01(ipa, &data->resource_dst[i]);
495 ipa_resource_config_dst_23(ipa, &data->resource_dst[i]);
496 }
497
498 return 0;
499 }
500
ipa_resource_deconfig(struct ipa * ipa)501 static void ipa_resource_deconfig(struct ipa *ipa)
502 {
503 /* Nothing to do */
504 }
505
506 /**
507 * ipa_config() - Configure IPA hardware
508 * @ipa: IPA pointer
509 * @data: IPA configuration data
510 *
511 * Perform initialization requiring IPA clock to be enabled.
512 */
ipa_config(struct ipa * ipa,const struct ipa_data * data)513 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
514 {
515 int ret;
516
517 /* Get a clock reference to allow initialization. This reference
518 * is held after initialization completes, and won't get dropped
519 * unless/until a system suspend request arrives.
520 */
521 ipa_clock_get(ipa);
522
523 ipa_hardware_config(ipa);
524
525 ret = ipa_endpoint_config(ipa);
526 if (ret)
527 goto err_hardware_deconfig;
528
529 ret = ipa_mem_config(ipa);
530 if (ret)
531 goto err_endpoint_deconfig;
532
533 ipa_table_config(ipa);
534
535 /* Assign resource limitation to each group */
536 ret = ipa_resource_config(ipa, data->resource_data);
537 if (ret)
538 goto err_table_deconfig;
539
540 ret = ipa_modem_config(ipa);
541 if (ret)
542 goto err_resource_deconfig;
543
544 return 0;
545
546 err_resource_deconfig:
547 ipa_resource_deconfig(ipa);
548 err_table_deconfig:
549 ipa_table_deconfig(ipa);
550 ipa_mem_deconfig(ipa);
551 err_endpoint_deconfig:
552 ipa_endpoint_deconfig(ipa);
553 err_hardware_deconfig:
554 ipa_hardware_deconfig(ipa);
555 ipa_clock_put(ipa);
556
557 return ret;
558 }
559
560 /**
561 * ipa_deconfig() - Inverse of ipa_config()
562 * @ipa: IPA pointer
563 */
ipa_deconfig(struct ipa * ipa)564 static void ipa_deconfig(struct ipa *ipa)
565 {
566 ipa_modem_deconfig(ipa);
567 ipa_resource_deconfig(ipa);
568 ipa_table_deconfig(ipa);
569 ipa_mem_deconfig(ipa);
570 ipa_endpoint_deconfig(ipa);
571 ipa_hardware_deconfig(ipa);
572 ipa_clock_put(ipa);
573 }
574
ipa_firmware_load(struct device * dev)575 static int ipa_firmware_load(struct device *dev)
576 {
577 const struct firmware *fw;
578 struct device_node *node;
579 struct resource res;
580 phys_addr_t phys;
581 ssize_t size;
582 void *virt;
583 int ret;
584
585 node = of_parse_phandle(dev->of_node, "memory-region", 0);
586 if (!node) {
587 dev_err(dev, "DT error getting \"memory-region\" property\n");
588 return -EINVAL;
589 }
590
591 ret = of_address_to_resource(node, 0, &res);
592 if (ret) {
593 dev_err(dev, "error %d getting \"memory-region\" resource\n",
594 ret);
595 return ret;
596 }
597
598 ret = request_firmware(&fw, IPA_FWS_PATH, dev);
599 if (ret) {
600 dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH);
601 return ret;
602 }
603
604 phys = res.start;
605 size = (size_t)resource_size(&res);
606 virt = memremap(phys, size, MEMREMAP_WC);
607 if (!virt) {
608 dev_err(dev, "unable to remap firmware memory\n");
609 ret = -ENOMEM;
610 goto out_release_firmware;
611 }
612
613 ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID,
614 virt, phys, size, NULL);
615 if (ret)
616 dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH);
617 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
618 dev_err(dev, "error %d authenticating \"%s\"\n", ret,
619 IPA_FWS_PATH);
620
621 memunmap(virt);
622 out_release_firmware:
623 release_firmware(fw);
624
625 return ret;
626 }
627
628 static const struct of_device_id ipa_match[] = {
629 {
630 .compatible = "qcom,sdm845-ipa",
631 .data = &ipa_data_sdm845,
632 },
633 {
634 .compatible = "qcom,sc7180-ipa",
635 .data = &ipa_data_sc7180,
636 },
637 { },
638 };
639 MODULE_DEVICE_TABLE(of, ipa_match);
640
of_property_read_phandle(const struct device_node * np,const char * name)641 static phandle of_property_read_phandle(const struct device_node *np,
642 const char *name)
643 {
644 struct property *prop;
645 int len = 0;
646
647 prop = of_find_property(np, name, &len);
648 if (!prop || len != sizeof(__be32))
649 return 0;
650
651 return be32_to_cpup(prop->value);
652 }
653
654 /* Check things that can be validated at build time. This just
655 * groups these things BUILD_BUG_ON() calls don't clutter the rest
656 * of the code.
657 * */
ipa_validate_build(void)658 static void ipa_validate_build(void)
659 {
660 #ifdef IPA_VALIDATE
661 /* We assume we're working on 64-bit hardware */
662 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT));
663
664 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
665 BUILD_BUG_ON(GSI_EE_AP != 0);
666
667 /* There's no point if we have no channels or event rings */
668 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
669 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
670
671 /* GSI hardware design limits */
672 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
673 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
674
675 /* The number of TREs in a transaction is limited by the channel's
676 * TLV FIFO size. A transaction structure uses 8-bit fields
677 * to represents the number of TREs it has allocated and used.
678 */
679 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
680
681 /* Exceeding 128 bytes makes the transaction pool *much* larger */
682 BUILD_BUG_ON(sizeof(struct gsi_trans) > 128);
683
684 /* This is used as a divisor */
685 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
686
687 /* Aggregation granularity value can't be 0, and must fit */
688 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
689 BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
690 field_max(AGGR_GRANULARITY));
691 #endif /* IPA_VALIDATE */
692 }
693
694 /**
695 * ipa_probe() - IPA platform driver probe function
696 * @pdev: Platform device pointer
697 *
698 * Return: 0 if successful, or a negative error code (possibly
699 * EPROBE_DEFER)
700 *
701 * This is the main entry point for the IPA driver. Initialization proceeds
702 * in several stages:
703 * - The "init" stage involves activities that can be initialized without
704 * access to the IPA hardware.
705 * - The "config" stage requires the IPA clock to be active so IPA registers
706 * can be accessed, but does not require the use of IPA immediate commands.
707 * - The "setup" stage uses IPA immediate commands, and so requires the GSI
708 * layer to be initialized.
709 *
710 * A Boolean Device Tree "modem-init" property determines whether GSI
711 * initialization will be performed by the AP (Trust Zone) or the modem.
712 * If the AP does GSI initialization, the setup phase is entered after
713 * this has completed successfully. Otherwise the modem initializes
714 * the GSI layer and signals it has finished by sending an SMP2P interrupt
715 * to the AP; this triggers the start if IPA setup.
716 */
ipa_probe(struct platform_device * pdev)717 static int ipa_probe(struct platform_device *pdev)
718 {
719 struct device *dev = &pdev->dev;
720 const struct ipa_data *data;
721 struct ipa_clock *clock;
722 struct rproc *rproc;
723 bool modem_alloc;
724 bool modem_init;
725 struct ipa *ipa;
726 bool prefetch;
727 phandle ph;
728 int ret;
729
730 ipa_validate_build();
731
732 /* If we need Trust Zone, make sure it's available */
733 modem_init = of_property_read_bool(dev->of_node, "modem-init");
734 if (!modem_init)
735 if (!qcom_scm_is_available())
736 return -EPROBE_DEFER;
737
738 /* We rely on remoteproc to tell us about modem state changes */
739 ph = of_property_read_phandle(dev->of_node, "modem-remoteproc");
740 if (!ph) {
741 dev_err(dev, "DT missing \"modem-remoteproc\" property\n");
742 return -EINVAL;
743 }
744
745 rproc = rproc_get_by_phandle(ph);
746 if (!rproc)
747 return -EPROBE_DEFER;
748
749 /* The clock and interconnects might not be ready when we're
750 * probed, so might return -EPROBE_DEFER.
751 */
752 clock = ipa_clock_init(dev);
753 if (IS_ERR(clock)) {
754 ret = PTR_ERR(clock);
755 goto err_rproc_put;
756 }
757
758 /* No more EPROBE_DEFER. Get our configuration data */
759 data = of_device_get_match_data(dev);
760 if (!data) {
761 /* This is really IPA_VALIDATE (should never happen) */
762 dev_err(dev, "matched hardware not supported\n");
763 ret = -ENOTSUPP;
764 goto err_clock_exit;
765 }
766
767 /* Allocate and initialize the IPA structure */
768 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
769 if (!ipa) {
770 ret = -ENOMEM;
771 goto err_clock_exit;
772 }
773
774 ipa->pdev = pdev;
775 dev_set_drvdata(dev, ipa);
776 ipa->modem_rproc = rproc;
777 ipa->clock = clock;
778 ipa->version = data->version;
779
780 ret = ipa_reg_init(ipa);
781 if (ret)
782 goto err_kfree_ipa;
783
784 ret = ipa_mem_init(ipa, data->mem_data);
785 if (ret)
786 goto err_reg_exit;
787
788 /* GSI v2.0+ (IPA v4.0+) uses prefetch for the command channel */
789 prefetch = ipa->version != IPA_VERSION_3_5_1;
790 /* IPA v4.2 requires the AP to allocate channels for the modem */
791 modem_alloc = ipa->version == IPA_VERSION_4_2;
792
793 ret = gsi_init(&ipa->gsi, pdev, prefetch, data->endpoint_count,
794 data->endpoint_data, modem_alloc);
795 if (ret)
796 goto err_mem_exit;
797
798 /* Result is a non-zero mask endpoints that support filtering */
799 ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
800 data->endpoint_data);
801 if (!ipa->filter_map) {
802 ret = -EINVAL;
803 goto err_gsi_exit;
804 }
805
806 ret = ipa_table_init(ipa);
807 if (ret)
808 goto err_endpoint_exit;
809
810 ret = ipa_modem_init(ipa, modem_init);
811 if (ret)
812 goto err_table_exit;
813
814 ret = ipa_config(ipa, data);
815 if (ret)
816 goto err_modem_exit;
817
818 dev_info(dev, "IPA driver initialized");
819
820 /* If the modem is doing early initialization, it will trigger a
821 * call to ipa_setup() call when it has finished. In that case
822 * we're done here.
823 */
824 if (modem_init)
825 return 0;
826
827 /* Otherwise we need to load the firmware and have Trust Zone validate
828 * and install it. If that succeeds we can proceed with setup.
829 */
830 ret = ipa_firmware_load(dev);
831 if (ret)
832 goto err_deconfig;
833
834 ret = ipa_setup(ipa);
835 if (ret)
836 goto err_deconfig;
837
838 return 0;
839
840 err_deconfig:
841 ipa_deconfig(ipa);
842 err_modem_exit:
843 ipa_modem_exit(ipa);
844 err_table_exit:
845 ipa_table_exit(ipa);
846 err_endpoint_exit:
847 ipa_endpoint_exit(ipa);
848 err_gsi_exit:
849 gsi_exit(&ipa->gsi);
850 err_mem_exit:
851 ipa_mem_exit(ipa);
852 err_reg_exit:
853 ipa_reg_exit(ipa);
854 err_kfree_ipa:
855 kfree(ipa);
856 err_clock_exit:
857 ipa_clock_exit(clock);
858 err_rproc_put:
859 rproc_put(rproc);
860
861 return ret;
862 }
863
ipa_remove(struct platform_device * pdev)864 static int ipa_remove(struct platform_device *pdev)
865 {
866 struct ipa *ipa = dev_get_drvdata(&pdev->dev);
867 struct rproc *rproc = ipa->modem_rproc;
868 struct ipa_clock *clock = ipa->clock;
869 int ret;
870
871 if (ipa->setup_complete) {
872 ret = ipa_modem_stop(ipa);
873 if (ret)
874 return ret;
875
876 ipa_teardown(ipa);
877 }
878
879 ipa_deconfig(ipa);
880 ipa_modem_exit(ipa);
881 ipa_table_exit(ipa);
882 ipa_endpoint_exit(ipa);
883 gsi_exit(&ipa->gsi);
884 ipa_mem_exit(ipa);
885 ipa_reg_exit(ipa);
886 kfree(ipa);
887 ipa_clock_exit(clock);
888 rproc_put(rproc);
889
890 return 0;
891 }
892
893 /**
894 * ipa_suspend() - Power management system suspend callback
895 * @dev: IPA device structure
896 *
897 * Return: Always returns zero
898 *
899 * Called by the PM framework when a system suspend operation is invoked.
900 * Suspends endpoints and releases the clock reference held to keep
901 * the IPA clock running until this point.
902 */
ipa_suspend(struct device * dev)903 static int ipa_suspend(struct device *dev)
904 {
905 struct ipa *ipa = dev_get_drvdata(dev);
906
907 /* When a suspended RX endpoint has a packet ready to receive, we
908 * get an IPA SUSPEND interrupt. We trigger a system resume in
909 * that case, but only on the first such interrupt since suspend.
910 */
911 __clear_bit(IPA_FLAG_RESUMED, ipa->flags);
912
913 ipa_endpoint_suspend(ipa);
914
915 ipa_clock_put(ipa);
916
917 return 0;
918 }
919
920 /**
921 * ipa_resume() - Power management system resume callback
922 * @dev: IPA device structure
923 *
924 * Return: Always returns 0
925 *
926 * Called by the PM framework when a system resume operation is invoked.
927 * Takes an IPA clock reference to keep the clock running until suspend,
928 * and resumes endpoints.
929 */
ipa_resume(struct device * dev)930 static int ipa_resume(struct device *dev)
931 {
932 struct ipa *ipa = dev_get_drvdata(dev);
933
934 /* This clock reference will keep the IPA out of suspend
935 * until we get a power management suspend request.
936 */
937 ipa_clock_get(ipa);
938
939 ipa_endpoint_resume(ipa);
940
941 return 0;
942 }
943
944 static const struct dev_pm_ops ipa_pm_ops = {
945 .suspend = ipa_suspend,
946 .resume = ipa_resume,
947 };
948
949 static struct platform_driver ipa_driver = {
950 .probe = ipa_probe,
951 .remove = ipa_remove,
952 .driver = {
953 .name = "ipa",
954 .pm = &ipa_pm_ops,
955 .of_match_table = ipa_match,
956 },
957 };
958
959 module_platform_driver(ipa_driver);
960
961 MODULE_LICENSE("GPL v2");
962 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
963