1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2019-2020 Linaro Ltd.
5 */
6
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_clock.h"
25
26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0)
27
28 #define IPA_REPLENISH_BATCH 16
29
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */
32
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */
38
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3
40 #define IPA_AGGR_TIME_LIMIT_DEFAULT 500 /* microseconds */
41
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 IPA_STATUS_OPCODE_PACKET = 0x01,
45 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04,
46 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08,
47 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40,
48 };
49
50 /** enum ipa_status_exception - status element exception type */
51 enum ipa_status_exception {
52 /* 0 means no exception */
53 IPA_STATUS_EXCEPTION_DEAGGR = 0x01,
54 };
55
56 /* Status element provided by hardware */
57 struct ipa_status {
58 u8 opcode; /* enum ipa_status_opcode */
59 u8 exception; /* enum ipa_status_exception */
60 __le16 mask;
61 __le16 pkt_len;
62 u8 endp_src_idx;
63 u8 endp_dst_idx;
64 __le32 metadata;
65 __le32 flags1;
66 __le64 flags2;
67 __le32 flags3;
68 __le32 flags4;
69 };
70
71 /* Field masks for struct ipa_status structure fields */
72 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0)
73 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22)
74
75 #ifdef IPA_VALIDATE
76
ipa_endpoint_validate_build(void)77 static void ipa_endpoint_validate_build(void)
78 {
79 /* The aggregation byte limit defines the point at which an
80 * aggregation window will close. It is programmed into the
81 * IPA hardware as a number of KB. We don't use "hard byte
82 * limit" aggregation, which means that we need to supply
83 * enough space in a receive buffer to hold a complete MTU
84 * plus normal skb overhead *after* that aggregation byte
85 * limit has been crossed.
86 *
87 * This check just ensures we don't define a receive buffer
88 * size that would exceed what we can represent in the field
89 * that is used to program its size.
90 */
91 BUILD_BUG_ON(IPA_RX_BUFFER_SIZE >
92 field_max(AGGR_BYTE_LIMIT_FMASK) * SZ_1K +
93 IPA_MTU + IPA_RX_BUFFER_OVERHEAD);
94
95 /* I honestly don't know where this requirement comes from. But
96 * it holds, and if we someday need to loosen the constraint we
97 * can try to track it down.
98 */
99 BUILD_BUG_ON(sizeof(struct ipa_status) % 4);
100 }
101
ipa_endpoint_data_valid_one(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * all_data,const struct ipa_gsi_endpoint_data * data)102 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
103 const struct ipa_gsi_endpoint_data *all_data,
104 const struct ipa_gsi_endpoint_data *data)
105 {
106 const struct ipa_gsi_endpoint_data *other_data;
107 struct device *dev = &ipa->pdev->dev;
108 enum ipa_endpoint_name other_name;
109
110 if (ipa_gsi_endpoint_data_empty(data))
111 return true;
112
113 if (!data->toward_ipa) {
114 if (data->endpoint.filter_support) {
115 dev_err(dev, "filtering not supported for "
116 "RX endpoint %u\n",
117 data->endpoint_id);
118 return false;
119 }
120
121 return true; /* Nothing more to check for RX */
122 }
123
124 if (data->endpoint.config.status_enable) {
125 other_name = data->endpoint.config.tx.status_endpoint;
126 if (other_name >= count) {
127 dev_err(dev, "status endpoint name %u out of range "
128 "for endpoint %u\n",
129 other_name, data->endpoint_id);
130 return false;
131 }
132
133 /* Status endpoint must be defined... */
134 other_data = &all_data[other_name];
135 if (ipa_gsi_endpoint_data_empty(other_data)) {
136 dev_err(dev, "DMA endpoint name %u undefined "
137 "for endpoint %u\n",
138 other_name, data->endpoint_id);
139 return false;
140 }
141
142 /* ...and has to be an RX endpoint... */
143 if (other_data->toward_ipa) {
144 dev_err(dev,
145 "status endpoint for endpoint %u not RX\n",
146 data->endpoint_id);
147 return false;
148 }
149
150 /* ...and if it's to be an AP endpoint... */
151 if (other_data->ee_id == GSI_EE_AP) {
152 /* ...make sure it has status enabled. */
153 if (!other_data->endpoint.config.status_enable) {
154 dev_err(dev,
155 "status not enabled for endpoint %u\n",
156 other_data->endpoint_id);
157 return false;
158 }
159 }
160 }
161
162 if (data->endpoint.config.dma_mode) {
163 other_name = data->endpoint.config.dma_endpoint;
164 if (other_name >= count) {
165 dev_err(dev, "DMA endpoint name %u out of range "
166 "for endpoint %u\n",
167 other_name, data->endpoint_id);
168 return false;
169 }
170
171 other_data = &all_data[other_name];
172 if (ipa_gsi_endpoint_data_empty(other_data)) {
173 dev_err(dev, "DMA endpoint name %u undefined "
174 "for endpoint %u\n",
175 other_name, data->endpoint_id);
176 return false;
177 }
178 }
179
180 return true;
181 }
182
ipa_endpoint_data_valid(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * data)183 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
184 const struct ipa_gsi_endpoint_data *data)
185 {
186 const struct ipa_gsi_endpoint_data *dp = data;
187 struct device *dev = &ipa->pdev->dev;
188 enum ipa_endpoint_name name;
189
190 ipa_endpoint_validate_build();
191
192 if (count > IPA_ENDPOINT_COUNT) {
193 dev_err(dev, "too many endpoints specified (%u > %u)\n",
194 count, IPA_ENDPOINT_COUNT);
195 return false;
196 }
197
198 /* Make sure needed endpoints have defined data */
199 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
200 dev_err(dev, "command TX endpoint not defined\n");
201 return false;
202 }
203 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
204 dev_err(dev, "LAN RX endpoint not defined\n");
205 return false;
206 }
207 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
208 dev_err(dev, "AP->modem TX endpoint not defined\n");
209 return false;
210 }
211 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
212 dev_err(dev, "AP<-modem RX endpoint not defined\n");
213 return false;
214 }
215
216 for (name = 0; name < count; name++, dp++)
217 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
218 return false;
219
220 return true;
221 }
222
223 #else /* !IPA_VALIDATE */
224
ipa_endpoint_data_valid(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * data)225 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
226 const struct ipa_gsi_endpoint_data *data)
227 {
228 return true;
229 }
230
231 #endif /* !IPA_VALIDATE */
232
233 /* Allocate a transaction to use on a non-command endpoint */
ipa_endpoint_trans_alloc(struct ipa_endpoint * endpoint,u32 tre_count)234 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
235 u32 tre_count)
236 {
237 struct gsi *gsi = &endpoint->ipa->gsi;
238 u32 channel_id = endpoint->channel_id;
239 enum dma_data_direction direction;
240
241 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
242
243 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
244 }
245
246 /* suspend_delay represents suspend for RX, delay for TX endpoints.
247 * Note that suspend is not supported starting with IPA v4.0.
248 */
249 static bool
ipa_endpoint_init_ctrl(struct ipa_endpoint * endpoint,bool suspend_delay)250 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
251 {
252 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
253 struct ipa *ipa = endpoint->ipa;
254 bool state;
255 u32 mask;
256 u32 val;
257
258 /* Suspend is not supported for IPA v4.0+. Delay doesn't work
259 * correctly on IPA v4.2.
260 *
261 * if (endpoint->toward_ipa)
262 * assert(ipa->version != IPA_VERSION_4.2);
263 * else
264 * assert(ipa->version == IPA_VERSION_3_5_1);
265 */
266 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
267
268 val = ioread32(ipa->reg_virt + offset);
269 /* Don't bother if it's already in the requested state */
270 state = !!(val & mask);
271 if (suspend_delay != state) {
272 val ^= mask;
273 iowrite32(val, ipa->reg_virt + offset);
274 }
275
276 return state;
277 }
278
279 /* We currently don't care what the previous state was for delay mode */
280 static void
ipa_endpoint_program_delay(struct ipa_endpoint * endpoint,bool enable)281 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
282 {
283 /* assert(endpoint->toward_ipa); */
284
285 /* Delay mode doesn't work properly for IPA v4.2 */
286 if (endpoint->ipa->version != IPA_VERSION_4_2)
287 (void)ipa_endpoint_init_ctrl(endpoint, enable);
288 }
289
ipa_endpoint_aggr_active(struct ipa_endpoint * endpoint)290 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
291 {
292 u32 mask = BIT(endpoint->endpoint_id);
293 struct ipa *ipa = endpoint->ipa;
294 u32 offset;
295 u32 val;
296
297 /* assert(mask & ipa->available); */
298 offset = ipa_reg_state_aggr_active_offset(ipa->version);
299 val = ioread32(ipa->reg_virt + offset);
300
301 return !!(val & mask);
302 }
303
ipa_endpoint_force_close(struct ipa_endpoint * endpoint)304 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
305 {
306 u32 mask = BIT(endpoint->endpoint_id);
307 struct ipa *ipa = endpoint->ipa;
308
309 /* assert(mask & ipa->available); */
310 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
311 }
312
313 /**
314 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
315 * @endpoint: Endpoint on which to emulate a suspend
316 *
317 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended
318 * with an open aggregation frame. This is to work around a hardware
319 * issue in IPA version 3.5.1 where the suspend interrupt will not be
320 * generated when it should be.
321 */
ipa_endpoint_suspend_aggr(struct ipa_endpoint * endpoint)322 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
323 {
324 struct ipa *ipa = endpoint->ipa;
325
326 if (!endpoint->data->aggregation)
327 return;
328
329 /* Nothing to do if the endpoint doesn't have aggregation open */
330 if (!ipa_endpoint_aggr_active(endpoint))
331 return;
332
333 /* Force close aggregation */
334 ipa_endpoint_force_close(endpoint);
335
336 ipa_interrupt_simulate_suspend(ipa->interrupt);
337 }
338
339 /* Returns previous suspend state (true means suspend was enabled) */
340 static bool
ipa_endpoint_program_suspend(struct ipa_endpoint * endpoint,bool enable)341 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
342 {
343 bool suspended;
344
345 if (endpoint->ipa->version != IPA_VERSION_3_5_1)
346 return enable; /* For IPA v4.0+, no change made */
347
348 /* assert(!endpoint->toward_ipa); */
349
350 suspended = ipa_endpoint_init_ctrl(endpoint, enable);
351
352 /* A client suspended with an open aggregation frame will not
353 * generate a SUSPEND IPA interrupt. If enabling suspend, have
354 * ipa_endpoint_suspend_aggr() handle this.
355 */
356 if (enable && !suspended)
357 ipa_endpoint_suspend_aggr(endpoint);
358
359 return suspended;
360 }
361
362 /* Enable or disable delay or suspend mode on all modem endpoints */
ipa_endpoint_modem_pause_all(struct ipa * ipa,bool enable)363 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
364 {
365 u32 endpoint_id;
366
367 /* DELAY mode doesn't work correctly on IPA v4.2 */
368 if (ipa->version == IPA_VERSION_4_2)
369 return;
370
371 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
372 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
373
374 if (endpoint->ee_id != GSI_EE_MODEM)
375 continue;
376
377 /* Set TX delay mode or RX suspend mode */
378 if (endpoint->toward_ipa)
379 ipa_endpoint_program_delay(endpoint, enable);
380 else
381 (void)ipa_endpoint_program_suspend(endpoint, enable);
382 }
383 }
384
385 /* Reset all modem endpoints to use the default exception endpoint */
ipa_endpoint_modem_exception_reset_all(struct ipa * ipa)386 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
387 {
388 u32 initialized = ipa->initialized;
389 struct gsi_trans *trans;
390 u32 count;
391
392 /* We need one command per modem TX endpoint. We can get an upper
393 * bound on that by assuming all initialized endpoints are modem->IPA.
394 * That won't happen, and we could be more precise, but this is fine
395 * for now. We need to end the transaction with a "tag process."
396 */
397 count = hweight32(initialized) + ipa_cmd_tag_process_count();
398 trans = ipa_cmd_trans_alloc(ipa, count);
399 if (!trans) {
400 dev_err(&ipa->pdev->dev,
401 "no transaction to reset modem exception endpoints\n");
402 return -EBUSY;
403 }
404
405 while (initialized) {
406 u32 endpoint_id = __ffs(initialized);
407 struct ipa_endpoint *endpoint;
408 u32 offset;
409
410 initialized ^= BIT(endpoint_id);
411
412 /* We only reset modem TX endpoints */
413 endpoint = &ipa->endpoint[endpoint_id];
414 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
415 continue;
416
417 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
418
419 /* Value written is 0, and all bits are updated. That
420 * means status is disabled on the endpoint, and as a
421 * result all other fields in the register are ignored.
422 */
423 ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
424 }
425
426 ipa_cmd_tag_process_add(trans);
427
428 /* XXX This should have a 1 second timeout */
429 gsi_trans_commit_wait(trans);
430
431 return 0;
432 }
433
ipa_endpoint_init_cfg(struct ipa_endpoint * endpoint)434 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
435 {
436 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
437 u32 val = 0;
438
439 /* FRAG_OFFLOAD_EN is 0 */
440 if (endpoint->data->checksum) {
441 if (endpoint->toward_ipa) {
442 u32 checksum_offset;
443
444 val |= u32_encode_bits(IPA_CS_OFFLOAD_UL,
445 CS_OFFLOAD_EN_FMASK);
446 /* Checksum header offset is in 4-byte units */
447 checksum_offset = sizeof(struct rmnet_map_header);
448 checksum_offset /= sizeof(u32);
449 val |= u32_encode_bits(checksum_offset,
450 CS_METADATA_HDR_OFFSET_FMASK);
451 } else {
452 val |= u32_encode_bits(IPA_CS_OFFLOAD_DL,
453 CS_OFFLOAD_EN_FMASK);
454 }
455 } else {
456 val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE,
457 CS_OFFLOAD_EN_FMASK);
458 }
459 /* CS_GEN_QMB_MASTER_SEL is 0 */
460
461 iowrite32(val, endpoint->ipa->reg_virt + offset);
462 }
463
464 /**
465 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
466 * @endpoint: Endpoint pointer
467 *
468 * We program QMAP endpoints so each packet received is preceded by a QMAP
469 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte
470 * packet size field, and we have the IPA hardware populate both for each
471 * received packet. The header is configured (in the HDR_EXT register)
472 * to use big endian format.
473 *
474 * The packet size is written into the QMAP header's pkt_len field. That
475 * location is defined here using the HDR_OFST_PKT_SIZE field.
476 *
477 * The mux_id comes from a 4-byte metadata value supplied with each packet
478 * by the modem. It is *not* a QMAP header, but it does contain the mux_id
479 * value that we want, in its low-order byte. A bitmask defined in the
480 * endpoint's METADATA_MASK register defines which byte within the modem
481 * metadata contains the mux_id. And the OFST_METADATA field programmed
482 * here indicates where the extracted byte should be placed within the QMAP
483 * header.
484 */
ipa_endpoint_init_hdr(struct ipa_endpoint * endpoint)485 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
486 {
487 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
488 u32 val = 0;
489
490 if (endpoint->data->qmap) {
491 size_t header_size = sizeof(struct rmnet_map_header);
492
493 /* We might supply a checksum header after the QMAP header */
494 if (endpoint->toward_ipa && endpoint->data->checksum)
495 header_size += sizeof(struct rmnet_map_ul_csum_header);
496 val |= u32_encode_bits(header_size, HDR_LEN_FMASK);
497
498 /* Define how to fill fields in a received QMAP header */
499 if (!endpoint->toward_ipa) {
500 u32 off; /* Field offset within header */
501
502 /* Where IPA will write the metadata value */
503 off = offsetof(struct rmnet_map_header, mux_id);
504 val |= u32_encode_bits(off, HDR_OFST_METADATA_FMASK);
505
506 /* Where IPA will write the length */
507 off = offsetof(struct rmnet_map_header, pkt_len);
508 val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
509 val |= u32_encode_bits(off, HDR_OFST_PKT_SIZE_FMASK);
510 }
511 /* For QMAP TX, metadata offset is 0 (modem assumes this) */
512 val |= HDR_OFST_METADATA_VALID_FMASK;
513
514 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
515 /* HDR_A5_MUX is 0 */
516 /* HDR_LEN_INC_DEAGG_HDR is 0 */
517 /* HDR_METADATA_REG_VALID is 0 (TX only) */
518 }
519
520 iowrite32(val, endpoint->ipa->reg_virt + offset);
521 }
522
ipa_endpoint_init_hdr_ext(struct ipa_endpoint * endpoint)523 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
524 {
525 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
526 u32 pad_align = endpoint->data->rx.pad_align;
527 u32 val = 0;
528
529 val |= HDR_ENDIANNESS_FMASK; /* big endian */
530
531 /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet
532 * driver assumes this field is meaningful in packets it receives,
533 * and assumes the header's payload length includes that padding.
534 * The RMNet driver does *not* pad packets it sends, however, so
535 * the pad field (although 0) should be ignored.
536 */
537 if (endpoint->data->qmap && !endpoint->toward_ipa) {
538 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
539 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
540 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
541 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
542 }
543
544 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
545 if (!endpoint->toward_ipa)
546 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
547
548 iowrite32(val, endpoint->ipa->reg_virt + offset);
549 }
550
551
ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint * endpoint)552 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
553 {
554 u32 endpoint_id = endpoint->endpoint_id;
555 u32 val = 0;
556 u32 offset;
557
558 if (endpoint->toward_ipa)
559 return; /* Register not valid for TX endpoints */
560
561 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
562
563 /* Note that HDR_ENDIANNESS indicates big endian header fields */
564 if (endpoint->data->qmap)
565 val = cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
566
567 iowrite32(val, endpoint->ipa->reg_virt + offset);
568 }
569
ipa_endpoint_init_mode(struct ipa_endpoint * endpoint)570 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
571 {
572 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
573 u32 val;
574
575 if (!endpoint->toward_ipa)
576 return; /* Register not valid for RX endpoints */
577
578 if (endpoint->data->dma_mode) {
579 enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
580 u32 dma_endpoint_id;
581
582 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
583
584 val = u32_encode_bits(IPA_DMA, MODE_FMASK);
585 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
586 } else {
587 val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
588 }
589 /* All other bits unspecified (and 0) */
590
591 iowrite32(val, endpoint->ipa->reg_virt + offset);
592 }
593
594 /* Compute the aggregation size value to use for a given buffer size */
ipa_aggr_size_kb(u32 rx_buffer_size)595 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
596 {
597 /* We don't use "hard byte limit" aggregation, so we define the
598 * aggregation limit such that our buffer has enough space *after*
599 * that limit to receive a full MTU of data, plus overhead.
600 */
601 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
602
603 return rx_buffer_size / SZ_1K;
604 }
605
ipa_endpoint_init_aggr(struct ipa_endpoint * endpoint)606 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
607 {
608 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
609 u32 val = 0;
610
611 if (endpoint->data->aggregation) {
612 if (!endpoint->toward_ipa) {
613 u32 limit;
614
615 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
616 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
617
618 limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
619 val |= u32_encode_bits(limit, AGGR_BYTE_LIMIT_FMASK);
620
621 limit = IPA_AGGR_TIME_LIMIT_DEFAULT;
622 limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
623 val |= u32_encode_bits(limit, AGGR_TIME_LIMIT_FMASK);
624
625 /* AGGR_PKT_LIMIT is 0 (unlimited) */
626
627 if (endpoint->data->rx.aggr_close_eof)
628 val |= AGGR_SW_EOF_ACTIVE_FMASK;
629 /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
630 } else {
631 val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
632 AGGR_EN_FMASK);
633 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
634 /* other fields ignored */
635 }
636 /* AGGR_FORCE_CLOSE is 0 */
637 } else {
638 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
639 /* other fields ignored */
640 }
641
642 iowrite32(val, endpoint->ipa->reg_virt + offset);
643 }
644
645 /* The head-of-line blocking timer is defined as a tick count, where each
646 * tick represents 128 cycles of the IPA core clock. Return the value
647 * that should be written to that register that represents the timeout
648 * period provided.
649 */
ipa_reg_init_hol_block_timer_val(struct ipa * ipa,u32 microseconds)650 static u32 ipa_reg_init_hol_block_timer_val(struct ipa *ipa, u32 microseconds)
651 {
652 u32 width;
653 u32 scale;
654 u64 ticks;
655 u64 rate;
656 u32 high;
657 u32 val;
658
659 if (!microseconds)
660 return 0; /* Nothing to compute if timer period is 0 */
661
662 /* Use 64 bit arithmetic to avoid overflow... */
663 rate = ipa_clock_rate(ipa);
664 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
665 /* ...but we still need to fit into a 32-bit register */
666 WARN_ON(ticks > U32_MAX);
667
668 /* IPA v3.5.1 just records the tick count */
669 if (ipa->version == IPA_VERSION_3_5_1)
670 return (u32)ticks;
671
672 /* For IPA v4.2, the tick count is represented by base and
673 * scale fields within the 32-bit timer register, where:
674 * ticks = base << scale;
675 * The best precision is achieved when the base value is as
676 * large as possible. Find the highest set bit in the tick
677 * count, and extract the number of bits in the base field
678 * such that that high bit is included.
679 */
680 high = fls(ticks); /* 1..32 */
681 width = HWEIGHT32(BASE_VALUE_FMASK);
682 scale = high > width ? high - width : 0;
683 if (scale) {
684 /* If we're scaling, round up to get a closer result */
685 ticks += 1 << (scale - 1);
686 /* High bit was set, so rounding might have affected it */
687 if (fls(ticks) != high)
688 scale++;
689 }
690
691 val = u32_encode_bits(scale, SCALE_FMASK);
692 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
693
694 return val;
695 }
696
697 /* If microseconds is 0, timeout is immediate */
ipa_endpoint_init_hol_block_timer(struct ipa_endpoint * endpoint,u32 microseconds)698 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
699 u32 microseconds)
700 {
701 u32 endpoint_id = endpoint->endpoint_id;
702 struct ipa *ipa = endpoint->ipa;
703 u32 offset;
704 u32 val;
705
706 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
707 val = ipa_reg_init_hol_block_timer_val(ipa, microseconds);
708 iowrite32(val, ipa->reg_virt + offset);
709 }
710
711 static void
ipa_endpoint_init_hol_block_enable(struct ipa_endpoint * endpoint,bool enable)712 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
713 {
714 u32 endpoint_id = endpoint->endpoint_id;
715 u32 offset;
716 u32 val;
717
718 val = enable ? HOL_BLOCK_EN_FMASK : 0;
719 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
720 iowrite32(val, endpoint->ipa->reg_virt + offset);
721 }
722
ipa_endpoint_modem_hol_block_clear_all(struct ipa * ipa)723 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
724 {
725 u32 i;
726
727 for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
728 struct ipa_endpoint *endpoint = &ipa->endpoint[i];
729
730 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
731 continue;
732
733 ipa_endpoint_init_hol_block_timer(endpoint, 0);
734 ipa_endpoint_init_hol_block_enable(endpoint, true);
735 }
736 }
737
ipa_endpoint_init_deaggr(struct ipa_endpoint * endpoint)738 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
739 {
740 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
741 u32 val = 0;
742
743 if (!endpoint->toward_ipa)
744 return; /* Register not valid for RX endpoints */
745
746 /* DEAGGR_HDR_LEN is 0 */
747 /* PACKET_OFFSET_VALID is 0 */
748 /* PACKET_OFFSET_LOCATION is ignored (not valid) */
749 /* MAX_PACKET_LEN is 0 (not enforced) */
750
751 iowrite32(val, endpoint->ipa->reg_virt + offset);
752 }
753
ipa_endpoint_init_seq(struct ipa_endpoint * endpoint)754 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
755 {
756 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
757 u32 seq_type = endpoint->seq_type;
758 u32 val = 0;
759
760 if (!endpoint->toward_ipa)
761 return; /* Register not valid for RX endpoints */
762
763 /* Sequencer type is made up of four nibbles */
764 val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK);
765 val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK);
766 /* The second two apply to replicated packets */
767 val |= u32_encode_bits((seq_type >> 8) & 0xf, HPS_REP_SEQ_TYPE_FMASK);
768 val |= u32_encode_bits((seq_type >> 12) & 0xf, DPS_REP_SEQ_TYPE_FMASK);
769
770 iowrite32(val, endpoint->ipa->reg_virt + offset);
771 }
772
773 /**
774 * ipa_endpoint_skb_tx() - Transmit a socket buffer
775 * @endpoint: Endpoint pointer
776 * @skb: Socket buffer to send
777 *
778 * Returns: 0 if successful, or a negative error code
779 */
ipa_endpoint_skb_tx(struct ipa_endpoint * endpoint,struct sk_buff * skb)780 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
781 {
782 struct gsi_trans *trans;
783 u32 nr_frags;
784 int ret;
785
786 /* Make sure source endpoint's TLV FIFO has enough entries to
787 * hold the linear portion of the skb and all its fragments.
788 * If not, see if we can linearize it before giving up.
789 */
790 nr_frags = skb_shinfo(skb)->nr_frags;
791 if (1 + nr_frags > endpoint->trans_tre_max) {
792 if (skb_linearize(skb))
793 return -E2BIG;
794 nr_frags = 0;
795 }
796
797 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
798 if (!trans)
799 return -EBUSY;
800
801 ret = gsi_trans_skb_add(trans, skb);
802 if (ret)
803 goto err_trans_free;
804 trans->data = skb; /* transaction owns skb now */
805
806 gsi_trans_commit(trans, !netdev_xmit_more());
807
808 return 0;
809
810 err_trans_free:
811 gsi_trans_free(trans);
812
813 return -ENOMEM;
814 }
815
ipa_endpoint_status(struct ipa_endpoint * endpoint)816 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
817 {
818 u32 endpoint_id = endpoint->endpoint_id;
819 struct ipa *ipa = endpoint->ipa;
820 u32 val = 0;
821 u32 offset;
822
823 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
824
825 if (endpoint->data->status_enable) {
826 val |= STATUS_EN_FMASK;
827 if (endpoint->toward_ipa) {
828 enum ipa_endpoint_name name;
829 u32 status_endpoint_id;
830
831 name = endpoint->data->tx.status_endpoint;
832 status_endpoint_id = ipa->name_map[name]->endpoint_id;
833
834 val |= u32_encode_bits(status_endpoint_id,
835 STATUS_ENDP_FMASK);
836 }
837 /* STATUS_LOCATION is 0 (status element precedes packet) */
838 /* The next field is present for IPA v4.0 and above */
839 /* STATUS_PKT_SUPPRESS_FMASK is 0 */
840 }
841
842 iowrite32(val, ipa->reg_virt + offset);
843 }
844
ipa_endpoint_replenish_one(struct ipa_endpoint * endpoint)845 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
846 {
847 struct gsi_trans *trans;
848 bool doorbell = false;
849 struct page *page;
850 u32 offset;
851 u32 len;
852 int ret;
853
854 page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
855 if (!page)
856 return -ENOMEM;
857
858 trans = ipa_endpoint_trans_alloc(endpoint, 1);
859 if (!trans)
860 goto err_free_pages;
861
862 /* Offset the buffer to make space for skb headroom */
863 offset = NET_SKB_PAD;
864 len = IPA_RX_BUFFER_SIZE - offset;
865
866 ret = gsi_trans_page_add(trans, page, len, offset);
867 if (ret)
868 goto err_trans_free;
869 trans->data = page; /* transaction owns page now */
870
871 if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
872 doorbell = true;
873 endpoint->replenish_ready = 0;
874 }
875
876 gsi_trans_commit(trans, doorbell);
877
878 return 0;
879
880 err_trans_free:
881 gsi_trans_free(trans);
882 err_free_pages:
883 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
884
885 return -ENOMEM;
886 }
887
888 /**
889 * ipa_endpoint_replenish() - Replenish the Rx packets cache.
890 * @endpoint: Endpoint to be replenished
891 * @count: Number of buffers to send to hardware
892 *
893 * Allocate RX packet wrapper structures with maximal socket buffers
894 * for an endpoint. These are supplied to the hardware, which fills
895 * them with incoming data.
896 */
ipa_endpoint_replenish(struct ipa_endpoint * endpoint,u32 count)897 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, u32 count)
898 {
899 struct gsi *gsi;
900 u32 backlog;
901
902 if (!endpoint->replenish_enabled) {
903 if (count)
904 atomic_add(count, &endpoint->replenish_saved);
905 return;
906 }
907
908
909 while (atomic_dec_not_zero(&endpoint->replenish_backlog))
910 if (ipa_endpoint_replenish_one(endpoint))
911 goto try_again_later;
912 if (count)
913 atomic_add(count, &endpoint->replenish_backlog);
914
915 return;
916
917 try_again_later:
918 /* The last one didn't succeed, so fix the backlog */
919 backlog = atomic_inc_return(&endpoint->replenish_backlog);
920
921 if (count)
922 atomic_add(count, &endpoint->replenish_backlog);
923
924 /* Whenever a receive buffer transaction completes we'll try to
925 * replenish again. It's unlikely, but if we fail to supply even
926 * one buffer, nothing will trigger another replenish attempt.
927 * Receive buffer transactions use one TRE, so schedule work to
928 * try replenishing again if our backlog is *all* available TREs.
929 */
930 gsi = &endpoint->ipa->gsi;
931 if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
932 schedule_delayed_work(&endpoint->replenish_work,
933 msecs_to_jiffies(1));
934 }
935
ipa_endpoint_replenish_enable(struct ipa_endpoint * endpoint)936 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
937 {
938 struct gsi *gsi = &endpoint->ipa->gsi;
939 u32 max_backlog;
940 u32 saved;
941
942 endpoint->replenish_enabled = true;
943 while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
944 atomic_add(saved, &endpoint->replenish_backlog);
945
946 /* Start replenishing if hardware currently has no buffers */
947 max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
948 if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
949 ipa_endpoint_replenish(endpoint, 0);
950 }
951
ipa_endpoint_replenish_disable(struct ipa_endpoint * endpoint)952 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
953 {
954 u32 backlog;
955
956 endpoint->replenish_enabled = false;
957 while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
958 atomic_add(backlog, &endpoint->replenish_saved);
959 }
960
ipa_endpoint_replenish_work(struct work_struct * work)961 static void ipa_endpoint_replenish_work(struct work_struct *work)
962 {
963 struct delayed_work *dwork = to_delayed_work(work);
964 struct ipa_endpoint *endpoint;
965
966 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
967
968 ipa_endpoint_replenish(endpoint, 0);
969 }
970
ipa_endpoint_skb_copy(struct ipa_endpoint * endpoint,void * data,u32 len,u32 extra)971 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
972 void *data, u32 len, u32 extra)
973 {
974 struct sk_buff *skb;
975
976 skb = __dev_alloc_skb(len, GFP_ATOMIC);
977 if (skb) {
978 skb_put(skb, len);
979 memcpy(skb->data, data, len);
980 skb->truesize += extra;
981 }
982
983 /* Now receive it, or drop it if there's no netdev */
984 if (endpoint->netdev)
985 ipa_modem_skb_rx(endpoint->netdev, skb);
986 else if (skb)
987 dev_kfree_skb_any(skb);
988 }
989
ipa_endpoint_skb_build(struct ipa_endpoint * endpoint,struct page * page,u32 len)990 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
991 struct page *page, u32 len)
992 {
993 struct sk_buff *skb;
994
995 /* Nothing to do if there's no netdev */
996 if (!endpoint->netdev)
997 return false;
998
999 /* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */
1000 skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1001 if (skb) {
1002 /* Reserve the headroom and account for the data */
1003 skb_reserve(skb, NET_SKB_PAD);
1004 skb_put(skb, len);
1005 }
1006
1007 /* Receive the buffer (or record drop if unable to build it) */
1008 ipa_modem_skb_rx(endpoint->netdev, skb);
1009
1010 return skb != NULL;
1011 }
1012
1013 /* The format of a packet status element is the same for several status
1014 * types (opcodes). Other types aren't currently supported.
1015 */
ipa_status_format_packet(enum ipa_status_opcode opcode)1016 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1017 {
1018 switch (opcode) {
1019 case IPA_STATUS_OPCODE_PACKET:
1020 case IPA_STATUS_OPCODE_DROPPED_PACKET:
1021 case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1022 case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1023 return true;
1024 default:
1025 return false;
1026 }
1027 }
1028
ipa_endpoint_status_skip(struct ipa_endpoint * endpoint,const struct ipa_status * status)1029 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1030 const struct ipa_status *status)
1031 {
1032 u32 endpoint_id;
1033
1034 if (!ipa_status_format_packet(status->opcode))
1035 return true;
1036 if (!status->pkt_len)
1037 return true;
1038 endpoint_id = u32_get_bits(status->endp_dst_idx,
1039 IPA_STATUS_DST_IDX_FMASK);
1040 if (endpoint_id != endpoint->endpoint_id)
1041 return true;
1042
1043 return false; /* Don't skip this packet, process it */
1044 }
1045
1046 /* Return whether the status indicates the packet should be dropped */
ipa_status_drop_packet(const struct ipa_status * status)1047 static bool ipa_status_drop_packet(const struct ipa_status *status)
1048 {
1049 u32 val;
1050
1051 /* Deaggregation exceptions we drop; all other types we consume */
1052 if (status->exception)
1053 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1054
1055 /* Drop the packet if it fails to match a routing rule; otherwise no */
1056 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1057
1058 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1059 }
1060
ipa_endpoint_status_parse(struct ipa_endpoint * endpoint,struct page * page,u32 total_len)1061 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1062 struct page *page, u32 total_len)
1063 {
1064 void *data = page_address(page) + NET_SKB_PAD;
1065 u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1066 u32 resid = total_len;
1067
1068 while (resid) {
1069 const struct ipa_status *status = data;
1070 u32 align;
1071 u32 len;
1072
1073 if (resid < sizeof(*status)) {
1074 dev_err(&endpoint->ipa->pdev->dev,
1075 "short message (%u bytes < %zu byte status)\n",
1076 resid, sizeof(*status));
1077 break;
1078 }
1079
1080 /* Skip over status packets that lack packet data */
1081 if (ipa_endpoint_status_skip(endpoint, status)) {
1082 data += sizeof(*status);
1083 resid -= sizeof(*status);
1084 continue;
1085 }
1086
1087 /* Compute the amount of buffer space consumed by the
1088 * packet, including the status element. If the hardware
1089 * is configured to pad packet data to an aligned boundary,
1090 * account for that. And if checksum offload is is enabled
1091 * a trailer containing computed checksum information will
1092 * be appended.
1093 */
1094 align = endpoint->data->rx.pad_align ? : 1;
1095 len = le16_to_cpu(status->pkt_len);
1096 len = sizeof(*status) + ALIGN(len, align);
1097 if (endpoint->data->checksum)
1098 len += sizeof(struct rmnet_map_dl_csum_trailer);
1099
1100 /* Charge the new packet with a proportional fraction of
1101 * the unused space in the original receive buffer.
1102 * XXX Charge a proportion of the *whole* receive buffer?
1103 */
1104 if (!ipa_status_drop_packet(status)) {
1105 u32 extra = unused * len / total_len;
1106 void *data2 = data + sizeof(*status);
1107 u32 len2 = le16_to_cpu(status->pkt_len);
1108
1109 /* Client receives only packet data (no status) */
1110 ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1111 }
1112
1113 /* Consume status and the full packet it describes */
1114 data += len;
1115 resid -= len;
1116 }
1117 }
1118
1119 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
ipa_endpoint_tx_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1120 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1121 struct gsi_trans *trans)
1122 {
1123 }
1124
1125 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
ipa_endpoint_rx_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1126 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1127 struct gsi_trans *trans)
1128 {
1129 struct page *page;
1130
1131 ipa_endpoint_replenish(endpoint, 1);
1132
1133 if (trans->cancelled)
1134 return;
1135
1136 /* Parse or build a socket buffer using the actual received length */
1137 page = trans->data;
1138 if (endpoint->data->status_enable)
1139 ipa_endpoint_status_parse(endpoint, page, trans->len);
1140 else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1141 trans->data = NULL; /* Pages have been consumed */
1142 }
1143
ipa_endpoint_trans_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1144 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1145 struct gsi_trans *trans)
1146 {
1147 if (endpoint->toward_ipa)
1148 ipa_endpoint_tx_complete(endpoint, trans);
1149 else
1150 ipa_endpoint_rx_complete(endpoint, trans);
1151 }
1152
ipa_endpoint_trans_release(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1153 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1154 struct gsi_trans *trans)
1155 {
1156 if (endpoint->toward_ipa) {
1157 struct ipa *ipa = endpoint->ipa;
1158
1159 /* Nothing to do for command transactions */
1160 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1161 struct sk_buff *skb = trans->data;
1162
1163 if (skb)
1164 dev_kfree_skb_any(skb);
1165 }
1166 } else {
1167 struct page *page = trans->data;
1168
1169 if (page)
1170 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1171 }
1172 }
1173
ipa_endpoint_default_route_set(struct ipa * ipa,u32 endpoint_id)1174 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1175 {
1176 u32 val;
1177
1178 /* ROUTE_DIS is 0 */
1179 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1180 val |= ROUTE_DEF_HDR_TABLE_FMASK;
1181 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1182 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1183 val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1184
1185 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1186 }
1187
ipa_endpoint_default_route_clear(struct ipa * ipa)1188 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1189 {
1190 ipa_endpoint_default_route_set(ipa, 0);
1191 }
1192
1193 /**
1194 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1195 * @endpoint: Endpoint to be reset
1196 *
1197 * If aggregation is active on an RX endpoint when a reset is performed
1198 * on its underlying GSI channel, a special sequence of actions must be
1199 * taken to ensure the IPA pipeline is properly cleared.
1200 *
1201 * Return: 0 if successful, or a negative error code
1202 */
ipa_endpoint_reset_rx_aggr(struct ipa_endpoint * endpoint)1203 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1204 {
1205 struct device *dev = &endpoint->ipa->pdev->dev;
1206 struct ipa *ipa = endpoint->ipa;
1207 struct gsi *gsi = &ipa->gsi;
1208 bool suspended = false;
1209 dma_addr_t addr;
1210 bool legacy;
1211 u32 retries;
1212 u32 len = 1;
1213 void *virt;
1214 int ret;
1215
1216 virt = kzalloc(len, GFP_KERNEL);
1217 if (!virt)
1218 return -ENOMEM;
1219
1220 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1221 if (dma_mapping_error(dev, addr)) {
1222 ret = -ENOMEM;
1223 goto out_kfree;
1224 }
1225
1226 /* Force close aggregation before issuing the reset */
1227 ipa_endpoint_force_close(endpoint);
1228
1229 /* Reset and reconfigure the channel with the doorbell engine
1230 * disabled. Then poll until we know aggregation is no longer
1231 * active. We'll re-enable the doorbell (if appropriate) when
1232 * we reset again below.
1233 */
1234 gsi_channel_reset(gsi, endpoint->channel_id, false);
1235
1236 /* Make sure the channel isn't suspended */
1237 suspended = ipa_endpoint_program_suspend(endpoint, false);
1238
1239 /* Start channel and do a 1 byte read */
1240 ret = gsi_channel_start(gsi, endpoint->channel_id);
1241 if (ret)
1242 goto out_suspend_again;
1243
1244 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1245 if (ret)
1246 goto err_endpoint_stop;
1247
1248 /* Wait for aggregation to be closed on the channel */
1249 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1250 do {
1251 if (!ipa_endpoint_aggr_active(endpoint))
1252 break;
1253 msleep(1);
1254 } while (retries--);
1255
1256 /* Check one last time */
1257 if (ipa_endpoint_aggr_active(endpoint))
1258 dev_err(dev, "endpoint %u still active during reset\n",
1259 endpoint->endpoint_id);
1260
1261 gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1262
1263 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1264 if (ret)
1265 goto out_suspend_again;
1266
1267 /* Finally, reset and reconfigure the channel again (re-enabling the
1268 * the doorbell engine if appropriate). Sleep for 1 millisecond to
1269 * complete the channel reset sequence. Finish by suspending the
1270 * channel again (if necessary).
1271 */
1272 legacy = ipa->version == IPA_VERSION_3_5_1;
1273 gsi_channel_reset(gsi, endpoint->channel_id, legacy);
1274
1275 msleep(1);
1276
1277 goto out_suspend_again;
1278
1279 err_endpoint_stop:
1280 (void)gsi_channel_stop(gsi, endpoint->channel_id);
1281 out_suspend_again:
1282 if (suspended)
1283 (void)ipa_endpoint_program_suspend(endpoint, true);
1284 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1285 out_kfree:
1286 kfree(virt);
1287
1288 return ret;
1289 }
1290
ipa_endpoint_reset(struct ipa_endpoint * endpoint)1291 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1292 {
1293 u32 channel_id = endpoint->channel_id;
1294 struct ipa *ipa = endpoint->ipa;
1295 bool special;
1296 bool legacy;
1297 int ret = 0;
1298
1299 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1300 * is active, we need to handle things specially to recover.
1301 * All other cases just need to reset the underlying GSI channel.
1302 *
1303 * IPA v3.5.1 enables the doorbell engine. Newer versions do not.
1304 */
1305 legacy = ipa->version == IPA_VERSION_3_5_1;
1306 special = !endpoint->toward_ipa && endpoint->data->aggregation;
1307 if (special && ipa_endpoint_aggr_active(endpoint))
1308 ret = ipa_endpoint_reset_rx_aggr(endpoint);
1309 else
1310 gsi_channel_reset(&ipa->gsi, channel_id, legacy);
1311
1312 if (ret)
1313 dev_err(&ipa->pdev->dev,
1314 "error %d resetting channel %u for endpoint %u\n",
1315 ret, endpoint->channel_id, endpoint->endpoint_id);
1316 }
1317
ipa_endpoint_program(struct ipa_endpoint * endpoint)1318 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1319 {
1320 if (endpoint->toward_ipa)
1321 ipa_endpoint_program_delay(endpoint, false);
1322 else
1323 (void)ipa_endpoint_program_suspend(endpoint, false);
1324 ipa_endpoint_init_cfg(endpoint);
1325 ipa_endpoint_init_hdr(endpoint);
1326 ipa_endpoint_init_hdr_ext(endpoint);
1327 ipa_endpoint_init_hdr_metadata_mask(endpoint);
1328 ipa_endpoint_init_mode(endpoint);
1329 ipa_endpoint_init_aggr(endpoint);
1330 ipa_endpoint_init_deaggr(endpoint);
1331 ipa_endpoint_init_seq(endpoint);
1332 ipa_endpoint_status(endpoint);
1333 }
1334
ipa_endpoint_enable_one(struct ipa_endpoint * endpoint)1335 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1336 {
1337 struct ipa *ipa = endpoint->ipa;
1338 struct gsi *gsi = &ipa->gsi;
1339 int ret;
1340
1341 ret = gsi_channel_start(gsi, endpoint->channel_id);
1342 if (ret) {
1343 dev_err(&ipa->pdev->dev,
1344 "error %d starting %cX channel %u for endpoint %u\n",
1345 ret, endpoint->toward_ipa ? 'T' : 'R',
1346 endpoint->channel_id, endpoint->endpoint_id);
1347 return ret;
1348 }
1349
1350 if (!endpoint->toward_ipa) {
1351 ipa_interrupt_suspend_enable(ipa->interrupt,
1352 endpoint->endpoint_id);
1353 ipa_endpoint_replenish_enable(endpoint);
1354 }
1355
1356 ipa->enabled |= BIT(endpoint->endpoint_id);
1357
1358 return 0;
1359 }
1360
ipa_endpoint_disable_one(struct ipa_endpoint * endpoint)1361 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1362 {
1363 u32 mask = BIT(endpoint->endpoint_id);
1364 struct ipa *ipa = endpoint->ipa;
1365 struct gsi *gsi = &ipa->gsi;
1366 int ret;
1367
1368 if (!(ipa->enabled & mask))
1369 return;
1370
1371 ipa->enabled ^= mask;
1372
1373 if (!endpoint->toward_ipa) {
1374 ipa_endpoint_replenish_disable(endpoint);
1375 ipa_interrupt_suspend_disable(ipa->interrupt,
1376 endpoint->endpoint_id);
1377 }
1378
1379 /* Note that if stop fails, the channel's state is not well-defined */
1380 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1381 if (ret)
1382 dev_err(&ipa->pdev->dev,
1383 "error %d attempting to stop endpoint %u\n", ret,
1384 endpoint->endpoint_id);
1385 }
1386
ipa_endpoint_suspend_one(struct ipa_endpoint * endpoint)1387 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1388 {
1389 struct device *dev = &endpoint->ipa->pdev->dev;
1390 struct gsi *gsi = &endpoint->ipa->gsi;
1391 bool stop_channel;
1392 int ret;
1393
1394 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1395 return;
1396
1397 if (!endpoint->toward_ipa) {
1398 ipa_endpoint_replenish_disable(endpoint);
1399 (void)ipa_endpoint_program_suspend(endpoint, true);
1400 }
1401
1402 /* IPA v3.5.1 doesn't use channel stop for suspend */
1403 stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1404 ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel);
1405 if (ret)
1406 dev_err(dev, "error %d suspending channel %u\n", ret,
1407 endpoint->channel_id);
1408 }
1409
ipa_endpoint_resume_one(struct ipa_endpoint * endpoint)1410 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1411 {
1412 struct device *dev = &endpoint->ipa->pdev->dev;
1413 struct gsi *gsi = &endpoint->ipa->gsi;
1414 bool start_channel;
1415 int ret;
1416
1417 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1418 return;
1419
1420 if (!endpoint->toward_ipa)
1421 (void)ipa_endpoint_program_suspend(endpoint, false);
1422
1423 /* IPA v3.5.1 doesn't use channel start for resume */
1424 start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
1425 ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel);
1426 if (ret)
1427 dev_err(dev, "error %d resuming channel %u\n", ret,
1428 endpoint->channel_id);
1429 else if (!endpoint->toward_ipa)
1430 ipa_endpoint_replenish_enable(endpoint);
1431 }
1432
ipa_endpoint_suspend(struct ipa * ipa)1433 void ipa_endpoint_suspend(struct ipa *ipa)
1434 {
1435 if (!ipa->setup_complete)
1436 return;
1437
1438 if (ipa->modem_netdev)
1439 ipa_modem_suspend(ipa->modem_netdev);
1440
1441 ipa_cmd_tag_process(ipa);
1442
1443 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1444 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1445 }
1446
ipa_endpoint_resume(struct ipa * ipa)1447 void ipa_endpoint_resume(struct ipa *ipa)
1448 {
1449 if (!ipa->setup_complete)
1450 return;
1451
1452 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1453 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1454
1455 if (ipa->modem_netdev)
1456 ipa_modem_resume(ipa->modem_netdev);
1457 }
1458
ipa_endpoint_setup_one(struct ipa_endpoint * endpoint)1459 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1460 {
1461 struct gsi *gsi = &endpoint->ipa->gsi;
1462 u32 channel_id = endpoint->channel_id;
1463
1464 /* Only AP endpoints get set up */
1465 if (endpoint->ee_id != GSI_EE_AP)
1466 return;
1467
1468 endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1469 if (!endpoint->toward_ipa) {
1470 /* RX transactions require a single TRE, so the maximum
1471 * backlog is the same as the maximum outstanding TREs.
1472 */
1473 endpoint->replenish_enabled = false;
1474 atomic_set(&endpoint->replenish_saved,
1475 gsi_channel_tre_max(gsi, endpoint->channel_id));
1476 atomic_set(&endpoint->replenish_backlog, 0);
1477 INIT_DELAYED_WORK(&endpoint->replenish_work,
1478 ipa_endpoint_replenish_work);
1479 }
1480
1481 ipa_endpoint_program(endpoint);
1482
1483 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1484 }
1485
ipa_endpoint_teardown_one(struct ipa_endpoint * endpoint)1486 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1487 {
1488 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1489
1490 if (!endpoint->toward_ipa)
1491 cancel_delayed_work_sync(&endpoint->replenish_work);
1492
1493 ipa_endpoint_reset(endpoint);
1494 }
1495
ipa_endpoint_setup(struct ipa * ipa)1496 void ipa_endpoint_setup(struct ipa *ipa)
1497 {
1498 u32 initialized = ipa->initialized;
1499
1500 ipa->set_up = 0;
1501 while (initialized) {
1502 u32 endpoint_id = __ffs(initialized);
1503
1504 initialized ^= BIT(endpoint_id);
1505
1506 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1507 }
1508 }
1509
ipa_endpoint_teardown(struct ipa * ipa)1510 void ipa_endpoint_teardown(struct ipa *ipa)
1511 {
1512 u32 set_up = ipa->set_up;
1513
1514 while (set_up) {
1515 u32 endpoint_id = __fls(set_up);
1516
1517 set_up ^= BIT(endpoint_id);
1518
1519 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1520 }
1521 ipa->set_up = 0;
1522 }
1523
ipa_endpoint_config(struct ipa * ipa)1524 int ipa_endpoint_config(struct ipa *ipa)
1525 {
1526 struct device *dev = &ipa->pdev->dev;
1527 u32 initialized;
1528 u32 rx_base;
1529 u32 rx_mask;
1530 u32 tx_mask;
1531 int ret = 0;
1532 u32 max;
1533 u32 val;
1534
1535 /* Find out about the endpoints supplied by the hardware, and ensure
1536 * the highest one doesn't exceed the number we support.
1537 */
1538 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1539
1540 /* Our RX is an IPA producer */
1541 rx_base = u32_get_bits(val, BAM_PROD_LOWEST_FMASK);
1542 max = rx_base + u32_get_bits(val, BAM_MAX_PROD_PIPES_FMASK);
1543 if (max > IPA_ENDPOINT_MAX) {
1544 dev_err(dev, "too many endpoints (%u > %u)\n",
1545 max, IPA_ENDPOINT_MAX);
1546 return -EINVAL;
1547 }
1548 rx_mask = GENMASK(max - 1, rx_base);
1549
1550 /* Our TX is an IPA consumer */
1551 max = u32_get_bits(val, BAM_MAX_CONS_PIPES_FMASK);
1552 tx_mask = GENMASK(max - 1, 0);
1553
1554 ipa->available = rx_mask | tx_mask;
1555
1556 /* Check for initialized endpoints not supported by the hardware */
1557 if (ipa->initialized & ~ipa->available) {
1558 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1559 ipa->initialized & ~ipa->available);
1560 ret = -EINVAL; /* Report other errors too */
1561 }
1562
1563 initialized = ipa->initialized;
1564 while (initialized) {
1565 u32 endpoint_id = __ffs(initialized);
1566 struct ipa_endpoint *endpoint;
1567
1568 initialized ^= BIT(endpoint_id);
1569
1570 /* Make sure it's pointing in the right direction */
1571 endpoint = &ipa->endpoint[endpoint_id];
1572 if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) {
1573 dev_err(dev, "endpoint id %u wrong direction\n",
1574 endpoint_id);
1575 ret = -EINVAL;
1576 }
1577 }
1578
1579 return ret;
1580 }
1581
ipa_endpoint_deconfig(struct ipa * ipa)1582 void ipa_endpoint_deconfig(struct ipa *ipa)
1583 {
1584 ipa->available = 0; /* Nothing more to do */
1585 }
1586
ipa_endpoint_init_one(struct ipa * ipa,enum ipa_endpoint_name name,const struct ipa_gsi_endpoint_data * data)1587 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1588 const struct ipa_gsi_endpoint_data *data)
1589 {
1590 struct ipa_endpoint *endpoint;
1591
1592 endpoint = &ipa->endpoint[data->endpoint_id];
1593
1594 if (data->ee_id == GSI_EE_AP)
1595 ipa->channel_map[data->channel_id] = endpoint;
1596 ipa->name_map[name] = endpoint;
1597
1598 endpoint->ipa = ipa;
1599 endpoint->ee_id = data->ee_id;
1600 endpoint->seq_type = data->endpoint.seq_type;
1601 endpoint->channel_id = data->channel_id;
1602 endpoint->endpoint_id = data->endpoint_id;
1603 endpoint->toward_ipa = data->toward_ipa;
1604 endpoint->data = &data->endpoint.config;
1605
1606 ipa->initialized |= BIT(endpoint->endpoint_id);
1607 }
1608
ipa_endpoint_exit_one(struct ipa_endpoint * endpoint)1609 void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1610 {
1611 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1612
1613 memset(endpoint, 0, sizeof(*endpoint));
1614 }
1615
ipa_endpoint_exit(struct ipa * ipa)1616 void ipa_endpoint_exit(struct ipa *ipa)
1617 {
1618 u32 initialized = ipa->initialized;
1619
1620 while (initialized) {
1621 u32 endpoint_id = __fls(initialized);
1622
1623 initialized ^= BIT(endpoint_id);
1624
1625 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1626 }
1627 memset(ipa->name_map, 0, sizeof(ipa->name_map));
1628 memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1629 }
1630
1631 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
ipa_endpoint_init(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * data)1632 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1633 const struct ipa_gsi_endpoint_data *data)
1634 {
1635 enum ipa_endpoint_name name;
1636 u32 filter_map;
1637
1638 if (!ipa_endpoint_data_valid(ipa, count, data))
1639 return 0; /* Error */
1640
1641 ipa->initialized = 0;
1642
1643 filter_map = 0;
1644 for (name = 0; name < count; name++, data++) {
1645 if (ipa_gsi_endpoint_data_empty(data))
1646 continue; /* Skip over empty slots */
1647
1648 ipa_endpoint_init_one(ipa, name, data);
1649
1650 if (data->endpoint.filter_support)
1651 filter_map |= BIT(data->endpoint_id);
1652 }
1653
1654 if (!ipa_filter_map_valid(ipa, filter_map))
1655 goto err_endpoint_exit;
1656
1657 return filter_map; /* Non-zero bitmask */
1658
1659 err_endpoint_exit:
1660 ipa_endpoint_exit(ipa);
1661
1662 return 0; /* Error */
1663 }
1664