1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The Internet Protocol (IP) output module.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
13 * Richard Underwood
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 *
19 * See ip_input.c for original log
20 *
21 * Fixes:
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
25 * no route is found.
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readability.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * datagrams.
43 * Hirokazu Takahashi: sendfile() on UDP works now.
44 */
45
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/inet_ecn.h>
78 #include <net/lwtunnel.h>
79 #include <linux/bpf-cgroup.h>
80 #include <linux/igmp.h>
81 #include <linux/netfilter_ipv4.h>
82 #include <linux/netfilter_bridge.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
85
86 static int
87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
88 unsigned int mtu,
89 int (*output)(struct net *, struct sock *, struct sk_buff *));
90
91 /* Generate a checksum for an outgoing IP datagram. */
ip_send_check(struct iphdr * iph)92 void ip_send_check(struct iphdr *iph)
93 {
94 iph->check = 0;
95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
96 }
97 EXPORT_SYMBOL(ip_send_check);
98
__ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
100 {
101 struct iphdr *iph = ip_hdr(skb);
102
103 iph->tot_len = htons(skb->len);
104 ip_send_check(iph);
105
106 /* if egress device is enslaved to an L3 master device pass the
107 * skb to its handler for processing
108 */
109 skb = l3mdev_ip_out(sk, skb);
110 if (unlikely(!skb))
111 return 0;
112
113 skb->protocol = htons(ETH_P_IP);
114
115 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
116 net, sk, skb, NULL, skb_dst(skb)->dev,
117 dst_output);
118 }
119
ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
121 {
122 int err;
123
124 err = __ip_local_out(net, sk, skb);
125 if (likely(err == 1))
126 err = dst_output(net, sk, skb);
127
128 return err;
129 }
130 EXPORT_SYMBOL_GPL(ip_local_out);
131
ip_select_ttl(struct inet_sock * inet,struct dst_entry * dst)132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
133 {
134 int ttl = inet->uc_ttl;
135
136 if (ttl < 0)
137 ttl = ip4_dst_hoplimit(dst);
138 return ttl;
139 }
140
141 /*
142 * Add an ip header to a skbuff and send it out.
143 *
144 */
ip_build_and_send_pkt(struct sk_buff * skb,const struct sock * sk,__be32 saddr,__be32 daddr,struct ip_options_rcu * opt,u8 tos)145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
146 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
147 u8 tos)
148 {
149 struct inet_sock *inet = inet_sk(sk);
150 struct rtable *rt = skb_rtable(skb);
151 struct net *net = sock_net(sk);
152 struct iphdr *iph;
153
154 /* Build the IP header. */
155 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
156 skb_reset_network_header(skb);
157 iph = ip_hdr(skb);
158 iph->version = 4;
159 iph->ihl = 5;
160 iph->tos = tos;
161 iph->ttl = ip_select_ttl(inet, &rt->dst);
162 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
163 iph->saddr = saddr;
164 iph->protocol = sk->sk_protocol;
165 /* Do not bother generating IPID for small packets (eg SYNACK) */
166 if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) {
167 iph->frag_off = htons(IP_DF);
168 iph->id = 0;
169 } else {
170 iph->frag_off = 0;
171 /* TCP packets here are SYNACK with fat IPv4/TCP options.
172 * Avoid using the hashed IP ident generator.
173 */
174 if (sk->sk_protocol == IPPROTO_TCP)
175 iph->id = (__force __be16)get_random_u16();
176 else
177 __ip_select_ident(net, iph, 1);
178 }
179
180 if (opt && opt->opt.optlen) {
181 iph->ihl += opt->opt.optlen>>2;
182 ip_options_build(skb, &opt->opt, daddr, rt);
183 }
184
185 skb->priority = sk->sk_priority;
186 if (!skb->mark)
187 skb->mark = sk->sk_mark;
188
189 /* Send it out. */
190 return ip_local_out(net, skb->sk, skb);
191 }
192 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
193
ip_finish_output2(struct net * net,struct sock * sk,struct sk_buff * skb)194 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
195 {
196 struct dst_entry *dst = skb_dst(skb);
197 struct rtable *rt = (struct rtable *)dst;
198 struct net_device *dev = dst->dev;
199 unsigned int hh_len = LL_RESERVED_SPACE(dev);
200 struct neighbour *neigh;
201 bool is_v6gw = false;
202
203 if (rt->rt_type == RTN_MULTICAST) {
204 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
205 } else if (rt->rt_type == RTN_BROADCAST)
206 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
207
208 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
209 skb = skb_expand_head(skb, hh_len);
210 if (!skb)
211 return -ENOMEM;
212 }
213
214 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 int res = lwtunnel_xmit(skb);
216
217 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 return res;
219 }
220
221 rcu_read_lock_bh();
222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 if (!IS_ERR(neigh)) {
224 int res;
225
226 sock_confirm_neigh(skb, neigh);
227 /* if crossing protocols, can not use the cached header */
228 res = neigh_output(neigh, skb, is_v6gw);
229 rcu_read_unlock_bh();
230 return res;
231 }
232 rcu_read_unlock_bh();
233
234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 __func__);
236 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL);
237 return -EINVAL;
238 }
239
ip_finish_output_gso(struct net * net,struct sock * sk,struct sk_buff * skb,unsigned int mtu)240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 struct sk_buff *skb, unsigned int mtu)
242 {
243 struct sk_buff *segs, *nskb;
244 netdev_features_t features;
245 int ret = 0;
246
247 /* common case: seglen is <= mtu
248 */
249 if (skb_gso_validate_network_len(skb, mtu))
250 return ip_finish_output2(net, sk, skb);
251
252 /* Slowpath - GSO segment length exceeds the egress MTU.
253 *
254 * This can happen in several cases:
255 * - Forwarding of a TCP GRO skb, when DF flag is not set.
256 * - Forwarding of an skb that arrived on a virtualization interface
257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 * stack.
259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 * interface with a smaller MTU.
261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 * insufficient MTU.
264 */
265 features = netif_skb_features(skb);
266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 if (IS_ERR_OR_NULL(segs)) {
269 kfree_skb(skb);
270 return -ENOMEM;
271 }
272
273 consume_skb(skb);
274
275 skb_list_walk_safe(segs, segs, nskb) {
276 int err;
277
278 skb_mark_not_on_list(segs);
279 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
280
281 if (err && ret == 0)
282 ret = err;
283 }
284
285 return ret;
286 }
287
__ip_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)288 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
289 {
290 unsigned int mtu;
291
292 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
293 /* Policy lookup after SNAT yielded a new policy */
294 if (skb_dst(skb)->xfrm) {
295 IPCB(skb)->flags |= IPSKB_REROUTED;
296 return dst_output(net, sk, skb);
297 }
298 #endif
299 mtu = ip_skb_dst_mtu(sk, skb);
300 if (skb_is_gso(skb))
301 return ip_finish_output_gso(net, sk, skb, mtu);
302
303 if (skb->len > mtu || IPCB(skb)->frag_max_size)
304 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
305
306 return ip_finish_output2(net, sk, skb);
307 }
308
ip_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)309 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
310 {
311 int ret;
312
313 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
314 switch (ret) {
315 case NET_XMIT_SUCCESS:
316 return __ip_finish_output(net, sk, skb);
317 case NET_XMIT_CN:
318 return __ip_finish_output(net, sk, skb) ? : ret;
319 default:
320 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
321 return ret;
322 }
323 }
324
ip_mc_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)325 static int ip_mc_finish_output(struct net *net, struct sock *sk,
326 struct sk_buff *skb)
327 {
328 struct rtable *new_rt;
329 bool do_cn = false;
330 int ret, err;
331
332 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
333 switch (ret) {
334 case NET_XMIT_CN:
335 do_cn = true;
336 fallthrough;
337 case NET_XMIT_SUCCESS:
338 break;
339 default:
340 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
341 return ret;
342 }
343
344 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
345 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
346 * see ipv4_pktinfo_prepare().
347 */
348 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
349 if (new_rt) {
350 new_rt->rt_iif = 0;
351 skb_dst_drop(skb);
352 skb_dst_set(skb, &new_rt->dst);
353 }
354
355 err = dev_loopback_xmit(net, sk, skb);
356 return (do_cn && err) ? ret : err;
357 }
358
ip_mc_output(struct net * net,struct sock * sk,struct sk_buff * skb)359 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
360 {
361 struct rtable *rt = skb_rtable(skb);
362 struct net_device *dev = rt->dst.dev;
363
364 /*
365 * If the indicated interface is up and running, send the packet.
366 */
367 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
368
369 skb->dev = dev;
370 skb->protocol = htons(ETH_P_IP);
371
372 /*
373 * Multicasts are looped back for other local users
374 */
375
376 if (rt->rt_flags&RTCF_MULTICAST) {
377 if (sk_mc_loop(sk)
378 #ifdef CONFIG_IP_MROUTE
379 /* Small optimization: do not loopback not local frames,
380 which returned after forwarding; they will be dropped
381 by ip_mr_input in any case.
382 Note, that local frames are looped back to be delivered
383 to local recipients.
384
385 This check is duplicated in ip_mr_input at the moment.
386 */
387 &&
388 ((rt->rt_flags & RTCF_LOCAL) ||
389 !(IPCB(skb)->flags & IPSKB_FORWARDED))
390 #endif
391 ) {
392 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
393 if (newskb)
394 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
395 net, sk, newskb, NULL, newskb->dev,
396 ip_mc_finish_output);
397 }
398
399 /* Multicasts with ttl 0 must not go beyond the host */
400
401 if (ip_hdr(skb)->ttl == 0) {
402 kfree_skb(skb);
403 return 0;
404 }
405 }
406
407 if (rt->rt_flags&RTCF_BROADCAST) {
408 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
409 if (newskb)
410 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
411 net, sk, newskb, NULL, newskb->dev,
412 ip_mc_finish_output);
413 }
414
415 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
416 net, sk, skb, NULL, skb->dev,
417 ip_finish_output,
418 !(IPCB(skb)->flags & IPSKB_REROUTED));
419 }
420
ip_output(struct net * net,struct sock * sk,struct sk_buff * skb)421 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
422 {
423 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
424
425 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
426
427 skb->dev = dev;
428 skb->protocol = htons(ETH_P_IP);
429
430 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
431 net, sk, skb, indev, dev,
432 ip_finish_output,
433 !(IPCB(skb)->flags & IPSKB_REROUTED));
434 }
435 EXPORT_SYMBOL(ip_output);
436
437 /*
438 * copy saddr and daddr, possibly using 64bit load/stores
439 * Equivalent to :
440 * iph->saddr = fl4->saddr;
441 * iph->daddr = fl4->daddr;
442 */
ip_copy_addrs(struct iphdr * iph,const struct flowi4 * fl4)443 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
444 {
445 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
446 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
447
448 iph->saddr = fl4->saddr;
449 iph->daddr = fl4->daddr;
450 }
451
452 /* Note: skb->sk can be different from sk, in case of tunnels */
__ip_queue_xmit(struct sock * sk,struct sk_buff * skb,struct flowi * fl,__u8 tos)453 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
454 __u8 tos)
455 {
456 struct inet_sock *inet = inet_sk(sk);
457 struct net *net = sock_net(sk);
458 struct ip_options_rcu *inet_opt;
459 struct flowi4 *fl4;
460 struct rtable *rt;
461 struct iphdr *iph;
462 int res;
463
464 /* Skip all of this if the packet is already routed,
465 * f.e. by something like SCTP.
466 */
467 rcu_read_lock();
468 inet_opt = rcu_dereference(inet->inet_opt);
469 fl4 = &fl->u.ip4;
470 rt = skb_rtable(skb);
471 if (rt)
472 goto packet_routed;
473
474 /* Make sure we can route this packet. */
475 rt = (struct rtable *)__sk_dst_check(sk, 0);
476 if (!rt) {
477 __be32 daddr;
478
479 /* Use correct destination address if we have options. */
480 daddr = inet->inet_daddr;
481 if (inet_opt && inet_opt->opt.srr)
482 daddr = inet_opt->opt.faddr;
483
484 /* If this fails, retransmit mechanism of transport layer will
485 * keep trying until route appears or the connection times
486 * itself out.
487 */
488 rt = ip_route_output_ports(net, fl4, sk,
489 daddr, inet->inet_saddr,
490 inet->inet_dport,
491 inet->inet_sport,
492 sk->sk_protocol,
493 RT_CONN_FLAGS_TOS(sk, tos),
494 sk->sk_bound_dev_if);
495 if (IS_ERR(rt))
496 goto no_route;
497 sk_setup_caps(sk, &rt->dst);
498 }
499 skb_dst_set_noref(skb, &rt->dst);
500
501 packet_routed:
502 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
503 goto no_route;
504
505 /* OK, we know where to send it, allocate and build IP header. */
506 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
507 skb_reset_network_header(skb);
508 iph = ip_hdr(skb);
509 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
510 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
511 iph->frag_off = htons(IP_DF);
512 else
513 iph->frag_off = 0;
514 iph->ttl = ip_select_ttl(inet, &rt->dst);
515 iph->protocol = sk->sk_protocol;
516 ip_copy_addrs(iph, fl4);
517
518 /* Transport layer set skb->h.foo itself. */
519
520 if (inet_opt && inet_opt->opt.optlen) {
521 iph->ihl += inet_opt->opt.optlen >> 2;
522 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt);
523 }
524
525 ip_select_ident_segs(net, skb, sk,
526 skb_shinfo(skb)->gso_segs ?: 1);
527
528 /* TODO : should we use skb->sk here instead of sk ? */
529 skb->priority = sk->sk_priority;
530 skb->mark = sk->sk_mark;
531
532 res = ip_local_out(net, sk, skb);
533 rcu_read_unlock();
534 return res;
535
536 no_route:
537 rcu_read_unlock();
538 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
539 kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES);
540 return -EHOSTUNREACH;
541 }
542 EXPORT_SYMBOL(__ip_queue_xmit);
543
ip_queue_xmit(struct sock * sk,struct sk_buff * skb,struct flowi * fl)544 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
545 {
546 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
547 }
548 EXPORT_SYMBOL(ip_queue_xmit);
549
ip_copy_metadata(struct sk_buff * to,struct sk_buff * from)550 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
551 {
552 to->pkt_type = from->pkt_type;
553 to->priority = from->priority;
554 to->protocol = from->protocol;
555 to->skb_iif = from->skb_iif;
556 skb_dst_drop(to);
557 skb_dst_copy(to, from);
558 to->dev = from->dev;
559 to->mark = from->mark;
560
561 skb_copy_hash(to, from);
562
563 #ifdef CONFIG_NET_SCHED
564 to->tc_index = from->tc_index;
565 #endif
566 nf_copy(to, from);
567 skb_ext_copy(to, from);
568 #if IS_ENABLED(CONFIG_IP_VS)
569 to->ipvs_property = from->ipvs_property;
570 #endif
571 skb_copy_secmark(to, from);
572 }
573
ip_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,unsigned int mtu,int (* output)(struct net *,struct sock *,struct sk_buff *))574 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
575 unsigned int mtu,
576 int (*output)(struct net *, struct sock *, struct sk_buff *))
577 {
578 struct iphdr *iph = ip_hdr(skb);
579
580 if ((iph->frag_off & htons(IP_DF)) == 0)
581 return ip_do_fragment(net, sk, skb, output);
582
583 if (unlikely(!skb->ignore_df ||
584 (IPCB(skb)->frag_max_size &&
585 IPCB(skb)->frag_max_size > mtu))) {
586 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
587 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
588 htonl(mtu));
589 kfree_skb(skb);
590 return -EMSGSIZE;
591 }
592
593 return ip_do_fragment(net, sk, skb, output);
594 }
595
ip_fraglist_init(struct sk_buff * skb,struct iphdr * iph,unsigned int hlen,struct ip_fraglist_iter * iter)596 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
597 unsigned int hlen, struct ip_fraglist_iter *iter)
598 {
599 unsigned int first_len = skb_pagelen(skb);
600
601 iter->frag = skb_shinfo(skb)->frag_list;
602 skb_frag_list_init(skb);
603
604 iter->offset = 0;
605 iter->iph = iph;
606 iter->hlen = hlen;
607
608 skb->data_len = first_len - skb_headlen(skb);
609 skb->len = first_len;
610 iph->tot_len = htons(first_len);
611 iph->frag_off = htons(IP_MF);
612 ip_send_check(iph);
613 }
614 EXPORT_SYMBOL(ip_fraglist_init);
615
ip_fraglist_prepare(struct sk_buff * skb,struct ip_fraglist_iter * iter)616 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
617 {
618 unsigned int hlen = iter->hlen;
619 struct iphdr *iph = iter->iph;
620 struct sk_buff *frag;
621
622 frag = iter->frag;
623 frag->ip_summed = CHECKSUM_NONE;
624 skb_reset_transport_header(frag);
625 __skb_push(frag, hlen);
626 skb_reset_network_header(frag);
627 memcpy(skb_network_header(frag), iph, hlen);
628 iter->iph = ip_hdr(frag);
629 iph = iter->iph;
630 iph->tot_len = htons(frag->len);
631 ip_copy_metadata(frag, skb);
632 iter->offset += skb->len - hlen;
633 iph->frag_off = htons(iter->offset >> 3);
634 if (frag->next)
635 iph->frag_off |= htons(IP_MF);
636 /* Ready, complete checksum */
637 ip_send_check(iph);
638 }
639 EXPORT_SYMBOL(ip_fraglist_prepare);
640
ip_frag_init(struct sk_buff * skb,unsigned int hlen,unsigned int ll_rs,unsigned int mtu,bool DF,struct ip_frag_state * state)641 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
642 unsigned int ll_rs, unsigned int mtu, bool DF,
643 struct ip_frag_state *state)
644 {
645 struct iphdr *iph = ip_hdr(skb);
646
647 state->DF = DF;
648 state->hlen = hlen;
649 state->ll_rs = ll_rs;
650 state->mtu = mtu;
651
652 state->left = skb->len - hlen; /* Space per frame */
653 state->ptr = hlen; /* Where to start from */
654
655 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
656 state->not_last_frag = iph->frag_off & htons(IP_MF);
657 }
658 EXPORT_SYMBOL(ip_frag_init);
659
ip_frag_ipcb(struct sk_buff * from,struct sk_buff * to,bool first_frag)660 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
661 bool first_frag)
662 {
663 /* Copy the flags to each fragment. */
664 IPCB(to)->flags = IPCB(from)->flags;
665
666 /* ANK: dirty, but effective trick. Upgrade options only if
667 * the segment to be fragmented was THE FIRST (otherwise,
668 * options are already fixed) and make it ONCE
669 * on the initial skb, so that all the following fragments
670 * will inherit fixed options.
671 */
672 if (first_frag)
673 ip_options_fragment(from);
674 }
675
ip_frag_next(struct sk_buff * skb,struct ip_frag_state * state)676 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
677 {
678 unsigned int len = state->left;
679 struct sk_buff *skb2;
680 struct iphdr *iph;
681
682 /* IF: it doesn't fit, use 'mtu' - the data space left */
683 if (len > state->mtu)
684 len = state->mtu;
685 /* IF: we are not sending up to and including the packet end
686 then align the next start on an eight byte boundary */
687 if (len < state->left) {
688 len &= ~7;
689 }
690
691 /* Allocate buffer */
692 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
693 if (!skb2)
694 return ERR_PTR(-ENOMEM);
695
696 /*
697 * Set up data on packet
698 */
699
700 ip_copy_metadata(skb2, skb);
701 skb_reserve(skb2, state->ll_rs);
702 skb_put(skb2, len + state->hlen);
703 skb_reset_network_header(skb2);
704 skb2->transport_header = skb2->network_header + state->hlen;
705
706 /*
707 * Charge the memory for the fragment to any owner
708 * it might possess
709 */
710
711 if (skb->sk)
712 skb_set_owner_w(skb2, skb->sk);
713
714 /*
715 * Copy the packet header into the new buffer.
716 */
717
718 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
719
720 /*
721 * Copy a block of the IP datagram.
722 */
723 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
724 BUG();
725 state->left -= len;
726
727 /*
728 * Fill in the new header fields.
729 */
730 iph = ip_hdr(skb2);
731 iph->frag_off = htons((state->offset >> 3));
732 if (state->DF)
733 iph->frag_off |= htons(IP_DF);
734
735 /*
736 * Added AC : If we are fragmenting a fragment that's not the
737 * last fragment then keep MF on each bit
738 */
739 if (state->left > 0 || state->not_last_frag)
740 iph->frag_off |= htons(IP_MF);
741 state->ptr += len;
742 state->offset += len;
743
744 iph->tot_len = htons(len + state->hlen);
745
746 ip_send_check(iph);
747
748 return skb2;
749 }
750 EXPORT_SYMBOL(ip_frag_next);
751
752 /*
753 * This IP datagram is too large to be sent in one piece. Break it up into
754 * smaller pieces (each of size equal to IP header plus
755 * a block of the data of the original IP data part) that will yet fit in a
756 * single device frame, and queue such a frame for sending.
757 */
758
ip_do_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,int (* output)(struct net *,struct sock *,struct sk_buff *))759 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
760 int (*output)(struct net *, struct sock *, struct sk_buff *))
761 {
762 struct iphdr *iph;
763 struct sk_buff *skb2;
764 bool mono_delivery_time = skb->mono_delivery_time;
765 struct rtable *rt = skb_rtable(skb);
766 unsigned int mtu, hlen, ll_rs;
767 struct ip_fraglist_iter iter;
768 ktime_t tstamp = skb->tstamp;
769 struct ip_frag_state state;
770 int err = 0;
771
772 /* for offloaded checksums cleanup checksum before fragmentation */
773 if (skb->ip_summed == CHECKSUM_PARTIAL &&
774 (err = skb_checksum_help(skb)))
775 goto fail;
776
777 /*
778 * Point into the IP datagram header.
779 */
780
781 iph = ip_hdr(skb);
782
783 mtu = ip_skb_dst_mtu(sk, skb);
784 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
785 mtu = IPCB(skb)->frag_max_size;
786
787 /*
788 * Setup starting values.
789 */
790
791 hlen = iph->ihl * 4;
792 mtu = mtu - hlen; /* Size of data space */
793 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
794 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
795
796 /* When frag_list is given, use it. First, check its validity:
797 * some transformers could create wrong frag_list or break existing
798 * one, it is not prohibited. In this case fall back to copying.
799 *
800 * LATER: this step can be merged to real generation of fragments,
801 * we can switch to copy when see the first bad fragment.
802 */
803 if (skb_has_frag_list(skb)) {
804 struct sk_buff *frag, *frag2;
805 unsigned int first_len = skb_pagelen(skb);
806
807 if (first_len - hlen > mtu ||
808 ((first_len - hlen) & 7) ||
809 ip_is_fragment(iph) ||
810 skb_cloned(skb) ||
811 skb_headroom(skb) < ll_rs)
812 goto slow_path;
813
814 skb_walk_frags(skb, frag) {
815 /* Correct geometry. */
816 if (frag->len > mtu ||
817 ((frag->len & 7) && frag->next) ||
818 skb_headroom(frag) < hlen + ll_rs)
819 goto slow_path_clean;
820
821 /* Partially cloned skb? */
822 if (skb_shared(frag))
823 goto slow_path_clean;
824
825 BUG_ON(frag->sk);
826 if (skb->sk) {
827 frag->sk = skb->sk;
828 frag->destructor = sock_wfree;
829 }
830 skb->truesize -= frag->truesize;
831 }
832
833 /* Everything is OK. Generate! */
834 ip_fraglist_init(skb, iph, hlen, &iter);
835
836 for (;;) {
837 /* Prepare header of the next frame,
838 * before previous one went down. */
839 if (iter.frag) {
840 bool first_frag = (iter.offset == 0);
841
842 IPCB(iter.frag)->flags = IPCB(skb)->flags;
843 ip_fraglist_prepare(skb, &iter);
844 if (first_frag && IPCB(skb)->opt.optlen) {
845 /* ipcb->opt is not populated for frags
846 * coming from __ip_make_skb(),
847 * ip_options_fragment() needs optlen
848 */
849 IPCB(iter.frag)->opt.optlen =
850 IPCB(skb)->opt.optlen;
851 ip_options_fragment(iter.frag);
852 ip_send_check(iter.iph);
853 }
854 }
855
856 skb_set_delivery_time(skb, tstamp, mono_delivery_time);
857 err = output(net, sk, skb);
858
859 if (!err)
860 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
861 if (err || !iter.frag)
862 break;
863
864 skb = ip_fraglist_next(&iter);
865 }
866
867 if (err == 0) {
868 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
869 return 0;
870 }
871
872 kfree_skb_list(iter.frag);
873
874 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
875 return err;
876
877 slow_path_clean:
878 skb_walk_frags(skb, frag2) {
879 if (frag2 == frag)
880 break;
881 frag2->sk = NULL;
882 frag2->destructor = NULL;
883 skb->truesize += frag2->truesize;
884 }
885 }
886
887 slow_path:
888 /*
889 * Fragment the datagram.
890 */
891
892 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
893 &state);
894
895 /*
896 * Keep copying data until we run out.
897 */
898
899 while (state.left > 0) {
900 bool first_frag = (state.offset == 0);
901
902 skb2 = ip_frag_next(skb, &state);
903 if (IS_ERR(skb2)) {
904 err = PTR_ERR(skb2);
905 goto fail;
906 }
907 ip_frag_ipcb(skb, skb2, first_frag);
908
909 /*
910 * Put this fragment into the sending queue.
911 */
912 skb_set_delivery_time(skb2, tstamp, mono_delivery_time);
913 err = output(net, sk, skb2);
914 if (err)
915 goto fail;
916
917 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
918 }
919 consume_skb(skb);
920 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
921 return err;
922
923 fail:
924 kfree_skb(skb);
925 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
926 return err;
927 }
928 EXPORT_SYMBOL(ip_do_fragment);
929
930 int
ip_generic_getfrag(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb)931 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
932 {
933 struct msghdr *msg = from;
934
935 if (skb->ip_summed == CHECKSUM_PARTIAL) {
936 if (!copy_from_iter_full(to, len, &msg->msg_iter))
937 return -EFAULT;
938 } else {
939 __wsum csum = 0;
940 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
941 return -EFAULT;
942 skb->csum = csum_block_add(skb->csum, csum, odd);
943 }
944 return 0;
945 }
946 EXPORT_SYMBOL(ip_generic_getfrag);
947
948 static inline __wsum
csum_page(struct page * page,int offset,int copy)949 csum_page(struct page *page, int offset, int copy)
950 {
951 char *kaddr;
952 __wsum csum;
953 kaddr = kmap(page);
954 csum = csum_partial(kaddr + offset, copy, 0);
955 kunmap(page);
956 return csum;
957 }
958
__ip_append_data(struct sock * sk,struct flowi4 * fl4,struct sk_buff_head * queue,struct inet_cork * cork,struct page_frag * pfrag,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,unsigned int flags)959 static int __ip_append_data(struct sock *sk,
960 struct flowi4 *fl4,
961 struct sk_buff_head *queue,
962 struct inet_cork *cork,
963 struct page_frag *pfrag,
964 int getfrag(void *from, char *to, int offset,
965 int len, int odd, struct sk_buff *skb),
966 void *from, int length, int transhdrlen,
967 unsigned int flags)
968 {
969 struct inet_sock *inet = inet_sk(sk);
970 struct ubuf_info *uarg = NULL;
971 struct sk_buff *skb;
972 struct ip_options *opt = cork->opt;
973 int hh_len;
974 int exthdrlen;
975 int mtu;
976 int copy;
977 int err;
978 int offset = 0;
979 bool zc = false;
980 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
981 int csummode = CHECKSUM_NONE;
982 struct rtable *rt = (struct rtable *)cork->dst;
983 unsigned int wmem_alloc_delta = 0;
984 bool paged, extra_uref = false;
985 u32 tskey = 0;
986
987 skb = skb_peek_tail(queue);
988
989 exthdrlen = !skb ? rt->dst.header_len : 0;
990 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
991 paged = !!cork->gso_size;
992
993 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
994 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
995 tskey = atomic_inc_return(&sk->sk_tskey) - 1;
996
997 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
998
999 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1000 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1001 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
1002
1003 if (cork->length + length > maxnonfragsize - fragheaderlen) {
1004 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1005 mtu - (opt ? opt->optlen : 0));
1006 return -EMSGSIZE;
1007 }
1008
1009 /*
1010 * transhdrlen > 0 means that this is the first fragment and we wish
1011 * it won't be fragmented in the future.
1012 */
1013 if (transhdrlen &&
1014 length + fragheaderlen <= mtu &&
1015 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1016 (!(flags & MSG_MORE) || cork->gso_size) &&
1017 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1018 csummode = CHECKSUM_PARTIAL;
1019
1020 if ((flags & MSG_ZEROCOPY) && length) {
1021 struct msghdr *msg = from;
1022
1023 if (getfrag == ip_generic_getfrag && msg->msg_ubuf) {
1024 if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb))
1025 return -EINVAL;
1026
1027 /* Leave uarg NULL if can't zerocopy, callers should
1028 * be able to handle it.
1029 */
1030 if ((rt->dst.dev->features & NETIF_F_SG) &&
1031 csummode == CHECKSUM_PARTIAL) {
1032 paged = true;
1033 zc = true;
1034 uarg = msg->msg_ubuf;
1035 }
1036 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1037 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb));
1038 if (!uarg)
1039 return -ENOBUFS;
1040 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1041 if (rt->dst.dev->features & NETIF_F_SG &&
1042 csummode == CHECKSUM_PARTIAL) {
1043 paged = true;
1044 zc = true;
1045 } else {
1046 uarg_to_msgzc(uarg)->zerocopy = 0;
1047 skb_zcopy_set(skb, uarg, &extra_uref);
1048 }
1049 }
1050 }
1051
1052 cork->length += length;
1053
1054 /* So, what's going on in the loop below?
1055 *
1056 * We use calculated fragment length to generate chained skb,
1057 * each of segments is IP fragment ready for sending to network after
1058 * adding appropriate IP header.
1059 */
1060
1061 if (!skb)
1062 goto alloc_new_skb;
1063
1064 while (length > 0) {
1065 /* Check if the remaining data fits into current packet. */
1066 copy = mtu - skb->len;
1067 if (copy < length)
1068 copy = maxfraglen - skb->len;
1069 if (copy <= 0) {
1070 char *data;
1071 unsigned int datalen;
1072 unsigned int fraglen;
1073 unsigned int fraggap;
1074 unsigned int alloclen, alloc_extra;
1075 unsigned int pagedlen;
1076 struct sk_buff *skb_prev;
1077 alloc_new_skb:
1078 skb_prev = skb;
1079 if (skb_prev)
1080 fraggap = skb_prev->len - maxfraglen;
1081 else
1082 fraggap = 0;
1083
1084 /*
1085 * If remaining data exceeds the mtu,
1086 * we know we need more fragment(s).
1087 */
1088 datalen = length + fraggap;
1089 if (datalen > mtu - fragheaderlen)
1090 datalen = maxfraglen - fragheaderlen;
1091 fraglen = datalen + fragheaderlen;
1092 pagedlen = 0;
1093
1094 alloc_extra = hh_len + 15;
1095 alloc_extra += exthdrlen;
1096
1097 /* The last fragment gets additional space at tail.
1098 * Note, with MSG_MORE we overallocate on fragments,
1099 * because we have no idea what fragment will be
1100 * the last.
1101 */
1102 if (datalen == length + fraggap)
1103 alloc_extra += rt->dst.trailer_len;
1104
1105 if ((flags & MSG_MORE) &&
1106 !(rt->dst.dev->features&NETIF_F_SG))
1107 alloclen = mtu;
1108 else if (!paged &&
1109 (fraglen + alloc_extra < SKB_MAX_ALLOC ||
1110 !(rt->dst.dev->features & NETIF_F_SG)))
1111 alloclen = fraglen;
1112 else {
1113 alloclen = fragheaderlen + transhdrlen;
1114 pagedlen = datalen - transhdrlen;
1115 }
1116
1117 alloclen += alloc_extra;
1118
1119 if (transhdrlen) {
1120 skb = sock_alloc_send_skb(sk, alloclen,
1121 (flags & MSG_DONTWAIT), &err);
1122 } else {
1123 skb = NULL;
1124 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1125 2 * sk->sk_sndbuf)
1126 skb = alloc_skb(alloclen,
1127 sk->sk_allocation);
1128 if (unlikely(!skb))
1129 err = -ENOBUFS;
1130 }
1131 if (!skb)
1132 goto error;
1133
1134 /*
1135 * Fill in the control structures
1136 */
1137 skb->ip_summed = csummode;
1138 skb->csum = 0;
1139 skb_reserve(skb, hh_len);
1140
1141 /*
1142 * Find where to start putting bytes.
1143 */
1144 data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1145 skb_set_network_header(skb, exthdrlen);
1146 skb->transport_header = (skb->network_header +
1147 fragheaderlen);
1148 data += fragheaderlen + exthdrlen;
1149
1150 if (fraggap) {
1151 skb->csum = skb_copy_and_csum_bits(
1152 skb_prev, maxfraglen,
1153 data + transhdrlen, fraggap);
1154 skb_prev->csum = csum_sub(skb_prev->csum,
1155 skb->csum);
1156 data += fraggap;
1157 pskb_trim_unique(skb_prev, maxfraglen);
1158 }
1159
1160 copy = datalen - transhdrlen - fraggap - pagedlen;
1161 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1162 err = -EFAULT;
1163 kfree_skb(skb);
1164 goto error;
1165 }
1166
1167 offset += copy;
1168 length -= copy + transhdrlen;
1169 transhdrlen = 0;
1170 exthdrlen = 0;
1171 csummode = CHECKSUM_NONE;
1172
1173 /* only the initial fragment is time stamped */
1174 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1175 cork->tx_flags = 0;
1176 skb_shinfo(skb)->tskey = tskey;
1177 tskey = 0;
1178 skb_zcopy_set(skb, uarg, &extra_uref);
1179
1180 if ((flags & MSG_CONFIRM) && !skb_prev)
1181 skb_set_dst_pending_confirm(skb, 1);
1182
1183 /*
1184 * Put the packet on the pending queue.
1185 */
1186 if (!skb->destructor) {
1187 skb->destructor = sock_wfree;
1188 skb->sk = sk;
1189 wmem_alloc_delta += skb->truesize;
1190 }
1191 __skb_queue_tail(queue, skb);
1192 continue;
1193 }
1194
1195 if (copy > length)
1196 copy = length;
1197
1198 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1199 skb_tailroom(skb) >= copy) {
1200 unsigned int off;
1201
1202 off = skb->len;
1203 if (getfrag(from, skb_put(skb, copy),
1204 offset, copy, off, skb) < 0) {
1205 __skb_trim(skb, off);
1206 err = -EFAULT;
1207 goto error;
1208 }
1209 } else if (!zc) {
1210 int i = skb_shinfo(skb)->nr_frags;
1211
1212 err = -ENOMEM;
1213 if (!sk_page_frag_refill(sk, pfrag))
1214 goto error;
1215
1216 skb_zcopy_downgrade_managed(skb);
1217 if (!skb_can_coalesce(skb, i, pfrag->page,
1218 pfrag->offset)) {
1219 err = -EMSGSIZE;
1220 if (i == MAX_SKB_FRAGS)
1221 goto error;
1222
1223 __skb_fill_page_desc(skb, i, pfrag->page,
1224 pfrag->offset, 0);
1225 skb_shinfo(skb)->nr_frags = ++i;
1226 get_page(pfrag->page);
1227 }
1228 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1229 if (getfrag(from,
1230 page_address(pfrag->page) + pfrag->offset,
1231 offset, copy, skb->len, skb) < 0)
1232 goto error_efault;
1233
1234 pfrag->offset += copy;
1235 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1236 skb_len_add(skb, copy);
1237 wmem_alloc_delta += copy;
1238 } else {
1239 err = skb_zerocopy_iter_dgram(skb, from, copy);
1240 if (err < 0)
1241 goto error;
1242 }
1243 offset += copy;
1244 length -= copy;
1245 }
1246
1247 if (wmem_alloc_delta)
1248 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1249 return 0;
1250
1251 error_efault:
1252 err = -EFAULT;
1253 error:
1254 net_zcopy_put_abort(uarg, extra_uref);
1255 cork->length -= length;
1256 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1257 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1258 return err;
1259 }
1260
ip_setup_cork(struct sock * sk,struct inet_cork * cork,struct ipcm_cookie * ipc,struct rtable ** rtp)1261 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1262 struct ipcm_cookie *ipc, struct rtable **rtp)
1263 {
1264 struct ip_options_rcu *opt;
1265 struct rtable *rt;
1266
1267 rt = *rtp;
1268 if (unlikely(!rt))
1269 return -EFAULT;
1270
1271 /*
1272 * setup for corking.
1273 */
1274 opt = ipc->opt;
1275 if (opt) {
1276 if (!cork->opt) {
1277 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1278 sk->sk_allocation);
1279 if (unlikely(!cork->opt))
1280 return -ENOBUFS;
1281 }
1282 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1283 cork->flags |= IPCORK_OPT;
1284 cork->addr = ipc->addr;
1285 }
1286
1287 cork->fragsize = ip_sk_use_pmtu(sk) ?
1288 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1289
1290 if (!inetdev_valid_mtu(cork->fragsize))
1291 return -ENETUNREACH;
1292
1293 cork->gso_size = ipc->gso_size;
1294
1295 cork->dst = &rt->dst;
1296 /* We stole this route, caller should not release it. */
1297 *rtp = NULL;
1298
1299 cork->length = 0;
1300 cork->ttl = ipc->ttl;
1301 cork->tos = ipc->tos;
1302 cork->mark = ipc->sockc.mark;
1303 cork->priority = ipc->priority;
1304 cork->transmit_time = ipc->sockc.transmit_time;
1305 cork->tx_flags = 0;
1306 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1307
1308 return 0;
1309 }
1310
1311 /*
1312 * ip_append_data() and ip_append_page() can make one large IP datagram
1313 * from many pieces of data. Each pieces will be holded on the socket
1314 * until ip_push_pending_frames() is called. Each piece can be a page
1315 * or non-page data.
1316 *
1317 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1318 * this interface potentially.
1319 *
1320 * LATER: length must be adjusted by pad at tail, when it is required.
1321 */
ip_append_data(struct sock * sk,struct flowi4 * fl4,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,unsigned int flags)1322 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1323 int getfrag(void *from, char *to, int offset, int len,
1324 int odd, struct sk_buff *skb),
1325 void *from, int length, int transhdrlen,
1326 struct ipcm_cookie *ipc, struct rtable **rtp,
1327 unsigned int flags)
1328 {
1329 struct inet_sock *inet = inet_sk(sk);
1330 int err;
1331
1332 if (flags&MSG_PROBE)
1333 return 0;
1334
1335 if (skb_queue_empty(&sk->sk_write_queue)) {
1336 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1337 if (err)
1338 return err;
1339 } else {
1340 transhdrlen = 0;
1341 }
1342
1343 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1344 sk_page_frag(sk), getfrag,
1345 from, length, transhdrlen, flags);
1346 }
1347
ip_append_page(struct sock * sk,struct flowi4 * fl4,struct page * page,int offset,size_t size,int flags)1348 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1349 int offset, size_t size, int flags)
1350 {
1351 struct inet_sock *inet = inet_sk(sk);
1352 struct sk_buff *skb;
1353 struct rtable *rt;
1354 struct ip_options *opt = NULL;
1355 struct inet_cork *cork;
1356 int hh_len;
1357 int mtu;
1358 int len;
1359 int err;
1360 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1361
1362 if (inet->hdrincl)
1363 return -EPERM;
1364
1365 if (flags&MSG_PROBE)
1366 return 0;
1367
1368 if (skb_queue_empty(&sk->sk_write_queue))
1369 return -EINVAL;
1370
1371 cork = &inet->cork.base;
1372 rt = (struct rtable *)cork->dst;
1373 if (cork->flags & IPCORK_OPT)
1374 opt = cork->opt;
1375
1376 if (!(rt->dst.dev->features & NETIF_F_SG))
1377 return -EOPNOTSUPP;
1378
1379 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1380 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1381
1382 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1383 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1384 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1385
1386 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1387 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1388 mtu - (opt ? opt->optlen : 0));
1389 return -EMSGSIZE;
1390 }
1391
1392 skb = skb_peek_tail(&sk->sk_write_queue);
1393 if (!skb)
1394 return -EINVAL;
1395
1396 cork->length += size;
1397
1398 while (size > 0) {
1399 /* Check if the remaining data fits into current packet. */
1400 len = mtu - skb->len;
1401 if (len < size)
1402 len = maxfraglen - skb->len;
1403
1404 if (len <= 0) {
1405 struct sk_buff *skb_prev;
1406 int alloclen;
1407
1408 skb_prev = skb;
1409 fraggap = skb_prev->len - maxfraglen;
1410
1411 alloclen = fragheaderlen + hh_len + fraggap + 15;
1412 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1413 if (unlikely(!skb)) {
1414 err = -ENOBUFS;
1415 goto error;
1416 }
1417
1418 /*
1419 * Fill in the control structures
1420 */
1421 skb->ip_summed = CHECKSUM_NONE;
1422 skb->csum = 0;
1423 skb_reserve(skb, hh_len);
1424
1425 /*
1426 * Find where to start putting bytes.
1427 */
1428 skb_put(skb, fragheaderlen + fraggap);
1429 skb_reset_network_header(skb);
1430 skb->transport_header = (skb->network_header +
1431 fragheaderlen);
1432 if (fraggap) {
1433 skb->csum = skb_copy_and_csum_bits(skb_prev,
1434 maxfraglen,
1435 skb_transport_header(skb),
1436 fraggap);
1437 skb_prev->csum = csum_sub(skb_prev->csum,
1438 skb->csum);
1439 pskb_trim_unique(skb_prev, maxfraglen);
1440 }
1441
1442 /*
1443 * Put the packet on the pending queue.
1444 */
1445 __skb_queue_tail(&sk->sk_write_queue, skb);
1446 continue;
1447 }
1448
1449 if (len > size)
1450 len = size;
1451
1452 if (skb_append_pagefrags(skb, page, offset, len)) {
1453 err = -EMSGSIZE;
1454 goto error;
1455 }
1456
1457 if (skb->ip_summed == CHECKSUM_NONE) {
1458 __wsum csum;
1459 csum = csum_page(page, offset, len);
1460 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1461 }
1462
1463 skb_len_add(skb, len);
1464 refcount_add(len, &sk->sk_wmem_alloc);
1465 offset += len;
1466 size -= len;
1467 }
1468 return 0;
1469
1470 error:
1471 cork->length -= size;
1472 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1473 return err;
1474 }
1475
ip_cork_release(struct inet_cork * cork)1476 static void ip_cork_release(struct inet_cork *cork)
1477 {
1478 cork->flags &= ~IPCORK_OPT;
1479 kfree(cork->opt);
1480 cork->opt = NULL;
1481 dst_release(cork->dst);
1482 cork->dst = NULL;
1483 }
1484
1485 /*
1486 * Combined all pending IP fragments on the socket as one IP datagram
1487 * and push them out.
1488 */
__ip_make_skb(struct sock * sk,struct flowi4 * fl4,struct sk_buff_head * queue,struct inet_cork * cork)1489 struct sk_buff *__ip_make_skb(struct sock *sk,
1490 struct flowi4 *fl4,
1491 struct sk_buff_head *queue,
1492 struct inet_cork *cork)
1493 {
1494 struct sk_buff *skb, *tmp_skb;
1495 struct sk_buff **tail_skb;
1496 struct inet_sock *inet = inet_sk(sk);
1497 struct net *net = sock_net(sk);
1498 struct ip_options *opt = NULL;
1499 struct rtable *rt = (struct rtable *)cork->dst;
1500 struct iphdr *iph;
1501 __be16 df = 0;
1502 __u8 ttl;
1503
1504 skb = __skb_dequeue(queue);
1505 if (!skb)
1506 goto out;
1507 tail_skb = &(skb_shinfo(skb)->frag_list);
1508
1509 /* move skb->data to ip header from ext header */
1510 if (skb->data < skb_network_header(skb))
1511 __skb_pull(skb, skb_network_offset(skb));
1512 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1513 __skb_pull(tmp_skb, skb_network_header_len(skb));
1514 *tail_skb = tmp_skb;
1515 tail_skb = &(tmp_skb->next);
1516 skb->len += tmp_skb->len;
1517 skb->data_len += tmp_skb->len;
1518 skb->truesize += tmp_skb->truesize;
1519 tmp_skb->destructor = NULL;
1520 tmp_skb->sk = NULL;
1521 }
1522
1523 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1524 * to fragment the frame generated here. No matter, what transforms
1525 * how transforms change size of the packet, it will come out.
1526 */
1527 skb->ignore_df = ip_sk_ignore_df(sk);
1528
1529 /* DF bit is set when we want to see DF on outgoing frames.
1530 * If ignore_df is set too, we still allow to fragment this frame
1531 * locally. */
1532 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1533 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1534 (skb->len <= dst_mtu(&rt->dst) &&
1535 ip_dont_fragment(sk, &rt->dst)))
1536 df = htons(IP_DF);
1537
1538 if (cork->flags & IPCORK_OPT)
1539 opt = cork->opt;
1540
1541 if (cork->ttl != 0)
1542 ttl = cork->ttl;
1543 else if (rt->rt_type == RTN_MULTICAST)
1544 ttl = inet->mc_ttl;
1545 else
1546 ttl = ip_select_ttl(inet, &rt->dst);
1547
1548 iph = ip_hdr(skb);
1549 iph->version = 4;
1550 iph->ihl = 5;
1551 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1552 iph->frag_off = df;
1553 iph->ttl = ttl;
1554 iph->protocol = sk->sk_protocol;
1555 ip_copy_addrs(iph, fl4);
1556 ip_select_ident(net, skb, sk);
1557
1558 if (opt) {
1559 iph->ihl += opt->optlen >> 2;
1560 ip_options_build(skb, opt, cork->addr, rt);
1561 }
1562
1563 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1564 skb->mark = cork->mark;
1565 skb->tstamp = cork->transmit_time;
1566 /*
1567 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1568 * on dst refcount
1569 */
1570 cork->dst = NULL;
1571 skb_dst_set(skb, &rt->dst);
1572
1573 if (iph->protocol == IPPROTO_ICMP)
1574 icmp_out_count(net, ((struct icmphdr *)
1575 skb_transport_header(skb))->type);
1576
1577 ip_cork_release(cork);
1578 out:
1579 return skb;
1580 }
1581
ip_send_skb(struct net * net,struct sk_buff * skb)1582 int ip_send_skb(struct net *net, struct sk_buff *skb)
1583 {
1584 int err;
1585
1586 err = ip_local_out(net, skb->sk, skb);
1587 if (err) {
1588 if (err > 0)
1589 err = net_xmit_errno(err);
1590 if (err)
1591 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1592 }
1593
1594 return err;
1595 }
1596
ip_push_pending_frames(struct sock * sk,struct flowi4 * fl4)1597 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1598 {
1599 struct sk_buff *skb;
1600
1601 skb = ip_finish_skb(sk, fl4);
1602 if (!skb)
1603 return 0;
1604
1605 /* Netfilter gets whole the not fragmented skb. */
1606 return ip_send_skb(sock_net(sk), skb);
1607 }
1608
1609 /*
1610 * Throw away all pending data on the socket.
1611 */
__ip_flush_pending_frames(struct sock * sk,struct sk_buff_head * queue,struct inet_cork * cork)1612 static void __ip_flush_pending_frames(struct sock *sk,
1613 struct sk_buff_head *queue,
1614 struct inet_cork *cork)
1615 {
1616 struct sk_buff *skb;
1617
1618 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1619 kfree_skb(skb);
1620
1621 ip_cork_release(cork);
1622 }
1623
ip_flush_pending_frames(struct sock * sk)1624 void ip_flush_pending_frames(struct sock *sk)
1625 {
1626 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1627 }
1628
ip_make_skb(struct sock * sk,struct flowi4 * fl4,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,struct inet_cork * cork,unsigned int flags)1629 struct sk_buff *ip_make_skb(struct sock *sk,
1630 struct flowi4 *fl4,
1631 int getfrag(void *from, char *to, int offset,
1632 int len, int odd, struct sk_buff *skb),
1633 void *from, int length, int transhdrlen,
1634 struct ipcm_cookie *ipc, struct rtable **rtp,
1635 struct inet_cork *cork, unsigned int flags)
1636 {
1637 struct sk_buff_head queue;
1638 int err;
1639
1640 if (flags & MSG_PROBE)
1641 return NULL;
1642
1643 __skb_queue_head_init(&queue);
1644
1645 cork->flags = 0;
1646 cork->addr = 0;
1647 cork->opt = NULL;
1648 err = ip_setup_cork(sk, cork, ipc, rtp);
1649 if (err)
1650 return ERR_PTR(err);
1651
1652 err = __ip_append_data(sk, fl4, &queue, cork,
1653 ¤t->task_frag, getfrag,
1654 from, length, transhdrlen, flags);
1655 if (err) {
1656 __ip_flush_pending_frames(sk, &queue, cork);
1657 return ERR_PTR(err);
1658 }
1659
1660 return __ip_make_skb(sk, fl4, &queue, cork);
1661 }
1662
1663 /*
1664 * Fetch data from kernel space and fill in checksum if needed.
1665 */
ip_reply_glue_bits(void * dptr,char * to,int offset,int len,int odd,struct sk_buff * skb)1666 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1667 int len, int odd, struct sk_buff *skb)
1668 {
1669 __wsum csum;
1670
1671 csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1672 skb->csum = csum_block_add(skb->csum, csum, odd);
1673 return 0;
1674 }
1675
1676 /*
1677 * Generic function to send a packet as reply to another packet.
1678 * Used to send some TCP resets/acks so far.
1679 */
ip_send_unicast_reply(struct sock * sk,struct sk_buff * skb,const struct ip_options * sopt,__be32 daddr,__be32 saddr,const struct ip_reply_arg * arg,unsigned int len,u64 transmit_time)1680 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1681 const struct ip_options *sopt,
1682 __be32 daddr, __be32 saddr,
1683 const struct ip_reply_arg *arg,
1684 unsigned int len, u64 transmit_time)
1685 {
1686 struct ip_options_data replyopts;
1687 struct ipcm_cookie ipc;
1688 struct flowi4 fl4;
1689 struct rtable *rt = skb_rtable(skb);
1690 struct net *net = sock_net(sk);
1691 struct sk_buff *nskb;
1692 int err;
1693 int oif;
1694
1695 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1696 return;
1697
1698 ipcm_init(&ipc);
1699 ipc.addr = daddr;
1700 ipc.sockc.transmit_time = transmit_time;
1701
1702 if (replyopts.opt.opt.optlen) {
1703 ipc.opt = &replyopts.opt;
1704
1705 if (replyopts.opt.opt.srr)
1706 daddr = replyopts.opt.opt.faddr;
1707 }
1708
1709 oif = arg->bound_dev_if;
1710 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1711 oif = skb->skb_iif;
1712
1713 flowi4_init_output(&fl4, oif,
1714 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1715 RT_TOS(arg->tos),
1716 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1717 ip_reply_arg_flowi_flags(arg),
1718 daddr, saddr,
1719 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1720 arg->uid);
1721 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
1722 rt = ip_route_output_flow(net, &fl4, sk);
1723 if (IS_ERR(rt))
1724 return;
1725
1726 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK;
1727
1728 sk->sk_protocol = ip_hdr(skb)->protocol;
1729 sk->sk_bound_dev_if = arg->bound_dev_if;
1730 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
1731 ipc.sockc.mark = fl4.flowi4_mark;
1732 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1733 len, 0, &ipc, &rt, MSG_DONTWAIT);
1734 if (unlikely(err)) {
1735 ip_flush_pending_frames(sk);
1736 goto out;
1737 }
1738
1739 nskb = skb_peek(&sk->sk_write_queue);
1740 if (nskb) {
1741 if (arg->csumoffset >= 0)
1742 *((__sum16 *)skb_transport_header(nskb) +
1743 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1744 arg->csum));
1745 nskb->ip_summed = CHECKSUM_NONE;
1746 nskb->mono_delivery_time = !!transmit_time;
1747 ip_push_pending_frames(sk, &fl4);
1748 }
1749 out:
1750 ip_rt_put(rt);
1751 }
1752
ip_init(void)1753 void __init ip_init(void)
1754 {
1755 ip_rt_init();
1756 inet_initpeers();
1757
1758 #if defined(CONFIG_IP_MULTICAST)
1759 igmp_mc_init();
1760 #endif
1761 }
1762