1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-direct.h>
23 #include <linux/iommu-helper.h>
24 #include <linux/iommu.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/dma-contiguous.h>
32 #include <linux/irqdomain.h>
33 #include <linux/percpu.h>
34 #include <linux/iova.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
37 #include <asm/apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/msidef.h>
40 #include <asm/proto.h>
41 #include <asm/iommu.h>
42 #include <asm/gart.h>
43 #include <asm/dma.h>
44 
45 #include "amd_iommu_proto.h"
46 #include "amd_iommu_types.h"
47 #include "irq_remapping.h"
48 
49 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
50 
51 #define LOOP_TIMEOUT	100000
52 
53 /* IO virtual address start page frame number */
54 #define IOVA_START_PFN		(1)
55 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
56 
57 /* Reserved IOVA ranges */
58 #define MSI_RANGE_START		(0xfee00000)
59 #define MSI_RANGE_END		(0xfeefffff)
60 #define HT_RANGE_START		(0xfd00000000ULL)
61 #define HT_RANGE_END		(0xffffffffffULL)
62 
63 /*
64  * This bitmap is used to advertise the page sizes our hardware support
65  * to the IOMMU core, which will then use this information to split
66  * physically contiguous memory regions it is mapping into page sizes
67  * that we support.
68  *
69  * 512GB Pages are not supported due to a hardware bug
70  */
71 #define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
72 
73 static DEFINE_SPINLOCK(pd_bitmap_lock);
74 
75 /* List of all available dev_data structures */
76 static LLIST_HEAD(dev_data_list);
77 
78 LIST_HEAD(ioapic_map);
79 LIST_HEAD(hpet_map);
80 LIST_HEAD(acpihid_map);
81 
82 /*
83  * Domain for untranslated devices - only allocated
84  * if iommu=pt passed on kernel cmd line.
85  */
86 const struct iommu_ops amd_iommu_ops;
87 
88 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
89 int amd_iommu_max_glx_val = -1;
90 
91 static const struct dma_map_ops amd_iommu_dma_ops;
92 
93 /*
94  * general struct to manage commands send to an IOMMU
95  */
96 struct iommu_cmd {
97 	u32 data[4];
98 };
99 
100 struct kmem_cache *amd_iommu_irq_cache;
101 
102 static void update_domain(struct protection_domain *domain);
103 static int protection_domain_init(struct protection_domain *domain);
104 static void detach_device(struct device *dev);
105 static void iova_domain_flush_tlb(struct iova_domain *iovad);
106 
107 /*
108  * Data container for a dma_ops specific protection domain
109  */
110 struct dma_ops_domain {
111 	/* generic protection domain information */
112 	struct protection_domain domain;
113 
114 	/* IOVA RB-Tree */
115 	struct iova_domain iovad;
116 };
117 
118 static struct iova_domain reserved_iova_ranges;
119 static struct lock_class_key reserved_rbtree_key;
120 
121 /****************************************************************************
122  *
123  * Helper functions
124  *
125  ****************************************************************************/
126 
match_hid_uid(struct device * dev,struct acpihid_map_entry * entry)127 static inline int match_hid_uid(struct device *dev,
128 				struct acpihid_map_entry *entry)
129 {
130 	struct acpi_device *adev = ACPI_COMPANION(dev);
131 	const char *hid, *uid;
132 
133 	if (!adev)
134 		return -ENODEV;
135 
136 	hid = acpi_device_hid(adev);
137 	uid = acpi_device_uid(adev);
138 
139 	if (!hid || !(*hid))
140 		return -ENODEV;
141 
142 	if (!uid || !(*uid))
143 		return strcmp(hid, entry->hid);
144 
145 	if (!(*entry->uid))
146 		return strcmp(hid, entry->hid);
147 
148 	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
149 }
150 
get_pci_device_id(struct device * dev)151 static inline u16 get_pci_device_id(struct device *dev)
152 {
153 	struct pci_dev *pdev = to_pci_dev(dev);
154 
155 	return pci_dev_id(pdev);
156 }
157 
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)158 static inline int get_acpihid_device_id(struct device *dev,
159 					struct acpihid_map_entry **entry)
160 {
161 	struct acpihid_map_entry *p;
162 
163 	list_for_each_entry(p, &acpihid_map, list) {
164 		if (!match_hid_uid(dev, p)) {
165 			if (entry)
166 				*entry = p;
167 			return p->devid;
168 		}
169 	}
170 	return -EINVAL;
171 }
172 
get_device_id(struct device * dev)173 static inline int get_device_id(struct device *dev)
174 {
175 	int devid;
176 
177 	if (dev_is_pci(dev))
178 		devid = get_pci_device_id(dev);
179 	else
180 		devid = get_acpihid_device_id(dev, NULL);
181 
182 	return devid;
183 }
184 
to_pdomain(struct iommu_domain * dom)185 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
186 {
187 	return container_of(dom, struct protection_domain, domain);
188 }
189 
to_dma_ops_domain(struct protection_domain * domain)190 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
191 {
192 	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
193 	return container_of(domain, struct dma_ops_domain, domain);
194 }
195 
alloc_dev_data(u16 devid)196 static struct iommu_dev_data *alloc_dev_data(u16 devid)
197 {
198 	struct iommu_dev_data *dev_data;
199 
200 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
201 	if (!dev_data)
202 		return NULL;
203 
204 	spin_lock_init(&dev_data->lock);
205 	dev_data->devid = devid;
206 	ratelimit_default_init(&dev_data->rs);
207 
208 	llist_add(&dev_data->dev_data_list, &dev_data_list);
209 	return dev_data;
210 }
211 
search_dev_data(u16 devid)212 static struct iommu_dev_data *search_dev_data(u16 devid)
213 {
214 	struct iommu_dev_data *dev_data;
215 	struct llist_node *node;
216 
217 	if (llist_empty(&dev_data_list))
218 		return NULL;
219 
220 	node = dev_data_list.first;
221 	llist_for_each_entry(dev_data, node, dev_data_list) {
222 		if (dev_data->devid == devid)
223 			return dev_data;
224 	}
225 
226 	return NULL;
227 }
228 
__last_alias(struct pci_dev * pdev,u16 alias,void * data)229 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
230 {
231 	*(u16 *)data = alias;
232 	return 0;
233 }
234 
get_alias(struct device * dev)235 static u16 get_alias(struct device *dev)
236 {
237 	struct pci_dev *pdev = to_pci_dev(dev);
238 	u16 devid, ivrs_alias, pci_alias;
239 
240 	/* The callers make sure that get_device_id() does not fail here */
241 	devid = get_device_id(dev);
242 
243 	/* For ACPI HID devices, we simply return the devid as such */
244 	if (!dev_is_pci(dev))
245 		return devid;
246 
247 	ivrs_alias = amd_iommu_alias_table[devid];
248 
249 	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
250 
251 	if (ivrs_alias == pci_alias)
252 		return ivrs_alias;
253 
254 	/*
255 	 * DMA alias showdown
256 	 *
257 	 * The IVRS is fairly reliable in telling us about aliases, but it
258 	 * can't know about every screwy device.  If we don't have an IVRS
259 	 * reported alias, use the PCI reported alias.  In that case we may
260 	 * still need to initialize the rlookup and dev_table entries if the
261 	 * alias is to a non-existent device.
262 	 */
263 	if (ivrs_alias == devid) {
264 		if (!amd_iommu_rlookup_table[pci_alias]) {
265 			amd_iommu_rlookup_table[pci_alias] =
266 				amd_iommu_rlookup_table[devid];
267 			memcpy(amd_iommu_dev_table[pci_alias].data,
268 			       amd_iommu_dev_table[devid].data,
269 			       sizeof(amd_iommu_dev_table[pci_alias].data));
270 		}
271 
272 		return pci_alias;
273 	}
274 
275 	pci_info(pdev, "Using IVRS reported alias %02x:%02x.%d "
276 		"for device [%04x:%04x], kernel reported alias "
277 		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
278 		PCI_FUNC(ivrs_alias), pdev->vendor, pdev->device,
279 		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
280 		PCI_FUNC(pci_alias));
281 
282 	/*
283 	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
284 	 * bus, then the IVRS table may know about a quirk that we don't.
285 	 */
286 	if (pci_alias == devid &&
287 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
288 		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
289 		pci_info(pdev, "Added PCI DMA alias %02x.%d\n",
290 			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias));
291 	}
292 
293 	return ivrs_alias;
294 }
295 
find_dev_data(u16 devid)296 static struct iommu_dev_data *find_dev_data(u16 devid)
297 {
298 	struct iommu_dev_data *dev_data;
299 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
300 
301 	dev_data = search_dev_data(devid);
302 
303 	if (dev_data == NULL) {
304 		dev_data = alloc_dev_data(devid);
305 		if (!dev_data)
306 			return NULL;
307 
308 		if (translation_pre_enabled(iommu))
309 			dev_data->defer_attach = true;
310 	}
311 
312 	return dev_data;
313 }
314 
get_dev_data(struct device * dev)315 struct iommu_dev_data *get_dev_data(struct device *dev)
316 {
317 	return dev->archdata.iommu;
318 }
319 EXPORT_SYMBOL(get_dev_data);
320 
321 /*
322 * Find or create an IOMMU group for a acpihid device.
323 */
acpihid_device_group(struct device * dev)324 static struct iommu_group *acpihid_device_group(struct device *dev)
325 {
326 	struct acpihid_map_entry *p, *entry = NULL;
327 	int devid;
328 
329 	devid = get_acpihid_device_id(dev, &entry);
330 	if (devid < 0)
331 		return ERR_PTR(devid);
332 
333 	list_for_each_entry(p, &acpihid_map, list) {
334 		if ((devid == p->devid) && p->group)
335 			entry->group = p->group;
336 	}
337 
338 	if (!entry->group)
339 		entry->group = generic_device_group(dev);
340 	else
341 		iommu_group_ref_get(entry->group);
342 
343 	return entry->group;
344 }
345 
pci_iommuv2_capable(struct pci_dev * pdev)346 static bool pci_iommuv2_capable(struct pci_dev *pdev)
347 {
348 	static const int caps[] = {
349 		PCI_EXT_CAP_ID_ATS,
350 		PCI_EXT_CAP_ID_PRI,
351 		PCI_EXT_CAP_ID_PASID,
352 	};
353 	int i, pos;
354 
355 	if (pci_ats_disabled())
356 		return false;
357 
358 	for (i = 0; i < 3; ++i) {
359 		pos = pci_find_ext_capability(pdev, caps[i]);
360 		if (pos == 0)
361 			return false;
362 	}
363 
364 	return true;
365 }
366 
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)367 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
368 {
369 	struct iommu_dev_data *dev_data;
370 
371 	dev_data = get_dev_data(&pdev->dev);
372 
373 	return dev_data->errata & (1 << erratum) ? true : false;
374 }
375 
376 /*
377  * This function checks if the driver got a valid device from the caller to
378  * avoid dereferencing invalid pointers.
379  */
check_device(struct device * dev)380 static bool check_device(struct device *dev)
381 {
382 	int devid;
383 
384 	if (!dev || !dev->dma_mask)
385 		return false;
386 
387 	devid = get_device_id(dev);
388 	if (devid < 0)
389 		return false;
390 
391 	/* Out of our scope? */
392 	if (devid > amd_iommu_last_bdf)
393 		return false;
394 
395 	if (amd_iommu_rlookup_table[devid] == NULL)
396 		return false;
397 
398 	return true;
399 }
400 
init_iommu_group(struct device * dev)401 static void init_iommu_group(struct device *dev)
402 {
403 	struct iommu_group *group;
404 
405 	group = iommu_group_get_for_dev(dev);
406 	if (IS_ERR(group))
407 		return;
408 
409 	iommu_group_put(group);
410 }
411 
iommu_init_device(struct device * dev)412 static int iommu_init_device(struct device *dev)
413 {
414 	struct iommu_dev_data *dev_data;
415 	struct amd_iommu *iommu;
416 	int devid;
417 
418 	if (dev->archdata.iommu)
419 		return 0;
420 
421 	devid = get_device_id(dev);
422 	if (devid < 0)
423 		return devid;
424 
425 	iommu = amd_iommu_rlookup_table[devid];
426 
427 	dev_data = find_dev_data(devid);
428 	if (!dev_data)
429 		return -ENOMEM;
430 
431 	dev_data->alias = get_alias(dev);
432 
433 	/*
434 	 * By default we use passthrough mode for IOMMUv2 capable device.
435 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
436 	 * invalid address), we ignore the capability for the device so
437 	 * it'll be forced to go into translation mode.
438 	 */
439 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
440 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
441 		struct amd_iommu *iommu;
442 
443 		iommu = amd_iommu_rlookup_table[dev_data->devid];
444 		dev_data->iommu_v2 = iommu->is_iommu_v2;
445 	}
446 
447 	dev->archdata.iommu = dev_data;
448 
449 	iommu_device_link(&iommu->iommu, dev);
450 
451 	return 0;
452 }
453 
iommu_ignore_device(struct device * dev)454 static void iommu_ignore_device(struct device *dev)
455 {
456 	u16 alias;
457 	int devid;
458 
459 	devid = get_device_id(dev);
460 	if (devid < 0)
461 		return;
462 
463 	alias = get_alias(dev);
464 
465 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
466 	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
467 
468 	amd_iommu_rlookup_table[devid] = NULL;
469 	amd_iommu_rlookup_table[alias] = NULL;
470 }
471 
iommu_uninit_device(struct device * dev)472 static void iommu_uninit_device(struct device *dev)
473 {
474 	struct iommu_dev_data *dev_data;
475 	struct amd_iommu *iommu;
476 	int devid;
477 
478 	devid = get_device_id(dev);
479 	if (devid < 0)
480 		return;
481 
482 	iommu = amd_iommu_rlookup_table[devid];
483 
484 	dev_data = search_dev_data(devid);
485 	if (!dev_data)
486 		return;
487 
488 	if (dev_data->domain)
489 		detach_device(dev);
490 
491 	iommu_device_unlink(&iommu->iommu, dev);
492 
493 	iommu_group_remove_device(dev);
494 
495 	/* Remove dma-ops */
496 	dev->dma_ops = NULL;
497 
498 	/*
499 	 * We keep dev_data around for unplugged devices and reuse it when the
500 	 * device is re-plugged - not doing so would introduce a ton of races.
501 	 */
502 }
503 
504 /*
505  * Helper function to get the first pte of a large mapping
506  */
first_pte_l7(u64 * pte,unsigned long * page_size,unsigned long * count)507 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
508 			 unsigned long *count)
509 {
510 	unsigned long pte_mask, pg_size, cnt;
511 	u64 *fpte;
512 
513 	pg_size  = PTE_PAGE_SIZE(*pte);
514 	cnt      = PAGE_SIZE_PTE_COUNT(pg_size);
515 	pte_mask = ~((cnt << 3) - 1);
516 	fpte     = (u64 *)(((unsigned long)pte) & pte_mask);
517 
518 	if (page_size)
519 		*page_size = pg_size;
520 
521 	if (count)
522 		*count = cnt;
523 
524 	return fpte;
525 }
526 
527 /****************************************************************************
528  *
529  * Interrupt handling functions
530  *
531  ****************************************************************************/
532 
dump_dte_entry(u16 devid)533 static void dump_dte_entry(u16 devid)
534 {
535 	int i;
536 
537 	for (i = 0; i < 4; ++i)
538 		pr_err("DTE[%d]: %016llx\n", i,
539 			amd_iommu_dev_table[devid].data[i]);
540 }
541 
dump_command(unsigned long phys_addr)542 static void dump_command(unsigned long phys_addr)
543 {
544 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
545 	int i;
546 
547 	for (i = 0; i < 4; ++i)
548 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
549 }
550 
amd_iommu_report_page_fault(u16 devid,u16 domain_id,u64 address,int flags)551 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
552 					u64 address, int flags)
553 {
554 	struct iommu_dev_data *dev_data = NULL;
555 	struct pci_dev *pdev;
556 
557 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
558 					   devid & 0xff);
559 	if (pdev)
560 		dev_data = get_dev_data(&pdev->dev);
561 
562 	if (dev_data && __ratelimit(&dev_data->rs)) {
563 		pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
564 			domain_id, address, flags);
565 	} else if (printk_ratelimit()) {
566 		pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
567 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
568 			domain_id, address, flags);
569 	}
570 
571 	if (pdev)
572 		pci_dev_put(pdev);
573 }
574 
iommu_print_event(struct amd_iommu * iommu,void * __evt)575 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
576 {
577 	struct device *dev = iommu->iommu.dev;
578 	int type, devid, pasid, flags, tag;
579 	volatile u32 *event = __evt;
580 	int count = 0;
581 	u64 address;
582 
583 retry:
584 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
585 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
586 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
587 		  (event[1] & EVENT_DOMID_MASK_LO);
588 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
589 	address = (u64)(((u64)event[3]) << 32) | event[2];
590 
591 	if (type == 0) {
592 		/* Did we hit the erratum? */
593 		if (++count == LOOP_TIMEOUT) {
594 			pr_err("No event written to event log\n");
595 			return;
596 		}
597 		udelay(1);
598 		goto retry;
599 	}
600 
601 	if (type == EVENT_TYPE_IO_FAULT) {
602 		amd_iommu_report_page_fault(devid, pasid, address, flags);
603 		return;
604 	}
605 
606 	switch (type) {
607 	case EVENT_TYPE_ILL_DEV:
608 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
609 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
610 			pasid, address, flags);
611 		dump_dte_entry(devid);
612 		break;
613 	case EVENT_TYPE_DEV_TAB_ERR:
614 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
615 			"address=0x%llx flags=0x%04x]\n",
616 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
617 			address, flags);
618 		break;
619 	case EVENT_TYPE_PAGE_TAB_ERR:
620 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
621 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
622 			pasid, address, flags);
623 		break;
624 	case EVENT_TYPE_ILL_CMD:
625 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
626 		dump_command(address);
627 		break;
628 	case EVENT_TYPE_CMD_HARD_ERR:
629 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
630 			address, flags);
631 		break;
632 	case EVENT_TYPE_IOTLB_INV_TO:
633 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
634 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
635 			address);
636 		break;
637 	case EVENT_TYPE_INV_DEV_REQ:
638 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
639 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
640 			pasid, address, flags);
641 		break;
642 	case EVENT_TYPE_INV_PPR_REQ:
643 		pasid = ((event[0] >> 16) & 0xFFFF)
644 			| ((event[1] << 6) & 0xF0000);
645 		tag = event[1] & 0x03FF;
646 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
647 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
648 			pasid, address, flags, tag);
649 		break;
650 	default:
651 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
652 			event[0], event[1], event[2], event[3]);
653 	}
654 
655 	memset(__evt, 0, 4 * sizeof(u32));
656 }
657 
iommu_poll_events(struct amd_iommu * iommu)658 static void iommu_poll_events(struct amd_iommu *iommu)
659 {
660 	u32 head, tail;
661 
662 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
663 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
664 
665 	while (head != tail) {
666 		iommu_print_event(iommu, iommu->evt_buf + head);
667 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
668 	}
669 
670 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
671 }
672 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)673 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
674 {
675 	struct amd_iommu_fault fault;
676 
677 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
678 		pr_err_ratelimited("Unknown PPR request received\n");
679 		return;
680 	}
681 
682 	fault.address   = raw[1];
683 	fault.pasid     = PPR_PASID(raw[0]);
684 	fault.device_id = PPR_DEVID(raw[0]);
685 	fault.tag       = PPR_TAG(raw[0]);
686 	fault.flags     = PPR_FLAGS(raw[0]);
687 
688 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
689 }
690 
iommu_poll_ppr_log(struct amd_iommu * iommu)691 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
692 {
693 	u32 head, tail;
694 
695 	if (iommu->ppr_log == NULL)
696 		return;
697 
698 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
699 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
700 
701 	while (head != tail) {
702 		volatile u64 *raw;
703 		u64 entry[2];
704 		int i;
705 
706 		raw = (u64 *)(iommu->ppr_log + head);
707 
708 		/*
709 		 * Hardware bug: Interrupt may arrive before the entry is
710 		 * written to memory. If this happens we need to wait for the
711 		 * entry to arrive.
712 		 */
713 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
714 			if (PPR_REQ_TYPE(raw[0]) != 0)
715 				break;
716 			udelay(1);
717 		}
718 
719 		/* Avoid memcpy function-call overhead */
720 		entry[0] = raw[0];
721 		entry[1] = raw[1];
722 
723 		/*
724 		 * To detect the hardware bug we need to clear the entry
725 		 * back to zero.
726 		 */
727 		raw[0] = raw[1] = 0UL;
728 
729 		/* Update head pointer of hardware ring-buffer */
730 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
731 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
732 
733 		/* Handle PPR entry */
734 		iommu_handle_ppr_entry(iommu, entry);
735 
736 		/* Refresh ring-buffer information */
737 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
738 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
739 	}
740 }
741 
742 #ifdef CONFIG_IRQ_REMAP
743 static int (*iommu_ga_log_notifier)(u32);
744 
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))745 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
746 {
747 	iommu_ga_log_notifier = notifier;
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
752 
iommu_poll_ga_log(struct amd_iommu * iommu)753 static void iommu_poll_ga_log(struct amd_iommu *iommu)
754 {
755 	u32 head, tail, cnt = 0;
756 
757 	if (iommu->ga_log == NULL)
758 		return;
759 
760 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
761 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
762 
763 	while (head != tail) {
764 		volatile u64 *raw;
765 		u64 log_entry;
766 
767 		raw = (u64 *)(iommu->ga_log + head);
768 		cnt++;
769 
770 		/* Avoid memcpy function-call overhead */
771 		log_entry = *raw;
772 
773 		/* Update head pointer of hardware ring-buffer */
774 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
775 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
776 
777 		/* Handle GA entry */
778 		switch (GA_REQ_TYPE(log_entry)) {
779 		case GA_GUEST_NR:
780 			if (!iommu_ga_log_notifier)
781 				break;
782 
783 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
784 				 __func__, GA_DEVID(log_entry),
785 				 GA_TAG(log_entry));
786 
787 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
788 				pr_err("GA log notifier failed.\n");
789 			break;
790 		default:
791 			break;
792 		}
793 	}
794 }
795 #endif /* CONFIG_IRQ_REMAP */
796 
797 #define AMD_IOMMU_INT_MASK	\
798 	(MMIO_STATUS_EVT_INT_MASK | \
799 	 MMIO_STATUS_PPR_INT_MASK | \
800 	 MMIO_STATUS_GALOG_INT_MASK)
801 
amd_iommu_int_thread(int irq,void * data)802 irqreturn_t amd_iommu_int_thread(int irq, void *data)
803 {
804 	struct amd_iommu *iommu = (struct amd_iommu *) data;
805 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
806 
807 	while (status & AMD_IOMMU_INT_MASK) {
808 		/* Enable EVT and PPR and GA interrupts again */
809 		writel(AMD_IOMMU_INT_MASK,
810 			iommu->mmio_base + MMIO_STATUS_OFFSET);
811 
812 		if (status & MMIO_STATUS_EVT_INT_MASK) {
813 			pr_devel("Processing IOMMU Event Log\n");
814 			iommu_poll_events(iommu);
815 		}
816 
817 		if (status & MMIO_STATUS_PPR_INT_MASK) {
818 			pr_devel("Processing IOMMU PPR Log\n");
819 			iommu_poll_ppr_log(iommu);
820 		}
821 
822 #ifdef CONFIG_IRQ_REMAP
823 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
824 			pr_devel("Processing IOMMU GA Log\n");
825 			iommu_poll_ga_log(iommu);
826 		}
827 #endif
828 
829 		/*
830 		 * Hardware bug: ERBT1312
831 		 * When re-enabling interrupt (by writing 1
832 		 * to clear the bit), the hardware might also try to set
833 		 * the interrupt bit in the event status register.
834 		 * In this scenario, the bit will be set, and disable
835 		 * subsequent interrupts.
836 		 *
837 		 * Workaround: The IOMMU driver should read back the
838 		 * status register and check if the interrupt bits are cleared.
839 		 * If not, driver will need to go through the interrupt handler
840 		 * again and re-clear the bits
841 		 */
842 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
843 	}
844 	return IRQ_HANDLED;
845 }
846 
amd_iommu_int_handler(int irq,void * data)847 irqreturn_t amd_iommu_int_handler(int irq, void *data)
848 {
849 	return IRQ_WAKE_THREAD;
850 }
851 
852 /****************************************************************************
853  *
854  * IOMMU command queuing functions
855  *
856  ****************************************************************************/
857 
wait_on_sem(volatile u64 * sem)858 static int wait_on_sem(volatile u64 *sem)
859 {
860 	int i = 0;
861 
862 	while (*sem == 0 && i < LOOP_TIMEOUT) {
863 		udelay(1);
864 		i += 1;
865 	}
866 
867 	if (i == LOOP_TIMEOUT) {
868 		pr_alert("Completion-Wait loop timed out\n");
869 		return -EIO;
870 	}
871 
872 	return 0;
873 }
874 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)875 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
876 			       struct iommu_cmd *cmd)
877 {
878 	u8 *target;
879 
880 	target = iommu->cmd_buf + iommu->cmd_buf_tail;
881 
882 	iommu->cmd_buf_tail += sizeof(*cmd);
883 	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
884 
885 	/* Copy command to buffer */
886 	memcpy(target, cmd, sizeof(*cmd));
887 
888 	/* Tell the IOMMU about it */
889 	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
890 }
891 
build_completion_wait(struct iommu_cmd * cmd,u64 address)892 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
893 {
894 	u64 paddr = iommu_virt_to_phys((void *)address);
895 
896 	WARN_ON(address & 0x7ULL);
897 
898 	memset(cmd, 0, sizeof(*cmd));
899 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
900 	cmd->data[1] = upper_32_bits(paddr);
901 	cmd->data[2] = 1;
902 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
903 }
904 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)905 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
906 {
907 	memset(cmd, 0, sizeof(*cmd));
908 	cmd->data[0] = devid;
909 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
910 }
911 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)912 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
913 				  size_t size, u16 domid, int pde)
914 {
915 	u64 pages;
916 	bool s;
917 
918 	pages = iommu_num_pages(address, size, PAGE_SIZE);
919 	s     = false;
920 
921 	if (pages > 1) {
922 		/*
923 		 * If we have to flush more than one page, flush all
924 		 * TLB entries for this domain
925 		 */
926 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
927 		s = true;
928 	}
929 
930 	address &= PAGE_MASK;
931 
932 	memset(cmd, 0, sizeof(*cmd));
933 	cmd->data[1] |= domid;
934 	cmd->data[2]  = lower_32_bits(address);
935 	cmd->data[3]  = upper_32_bits(address);
936 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
937 	if (s) /* size bit - we flush more than one 4kb page */
938 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
939 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
940 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
941 }
942 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)943 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
944 				  u64 address, size_t size)
945 {
946 	u64 pages;
947 	bool s;
948 
949 	pages = iommu_num_pages(address, size, PAGE_SIZE);
950 	s     = false;
951 
952 	if (pages > 1) {
953 		/*
954 		 * If we have to flush more than one page, flush all
955 		 * TLB entries for this domain
956 		 */
957 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
958 		s = true;
959 	}
960 
961 	address &= PAGE_MASK;
962 
963 	memset(cmd, 0, sizeof(*cmd));
964 	cmd->data[0]  = devid;
965 	cmd->data[0] |= (qdep & 0xff) << 24;
966 	cmd->data[1]  = devid;
967 	cmd->data[2]  = lower_32_bits(address);
968 	cmd->data[3]  = upper_32_bits(address);
969 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
970 	if (s)
971 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
972 }
973 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,int pasid,u64 address,bool size)974 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
975 				  u64 address, bool size)
976 {
977 	memset(cmd, 0, sizeof(*cmd));
978 
979 	address &= ~(0xfffULL);
980 
981 	cmd->data[0]  = pasid;
982 	cmd->data[1]  = domid;
983 	cmd->data[2]  = lower_32_bits(address);
984 	cmd->data[3]  = upper_32_bits(address);
985 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
986 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
987 	if (size)
988 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
989 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
990 }
991 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,int pasid,int qdep,u64 address,bool size)992 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
993 				  int qdep, u64 address, bool size)
994 {
995 	memset(cmd, 0, sizeof(*cmd));
996 
997 	address &= ~(0xfffULL);
998 
999 	cmd->data[0]  = devid;
1000 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1001 	cmd->data[0] |= (qdep  & 0xff) << 24;
1002 	cmd->data[1]  = devid;
1003 	cmd->data[1] |= (pasid & 0xff) << 16;
1004 	cmd->data[2]  = lower_32_bits(address);
1005 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1006 	cmd->data[3]  = upper_32_bits(address);
1007 	if (size)
1008 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1009 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1010 }
1011 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,int pasid,int status,int tag,bool gn)1012 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
1013 			       int status, int tag, bool gn)
1014 {
1015 	memset(cmd, 0, sizeof(*cmd));
1016 
1017 	cmd->data[0]  = devid;
1018 	if (gn) {
1019 		cmd->data[1]  = pasid;
1020 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1021 	}
1022 	cmd->data[3]  = tag & 0x1ff;
1023 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1024 
1025 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1026 }
1027 
build_inv_all(struct iommu_cmd * cmd)1028 static void build_inv_all(struct iommu_cmd *cmd)
1029 {
1030 	memset(cmd, 0, sizeof(*cmd));
1031 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1032 }
1033 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1034 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1035 {
1036 	memset(cmd, 0, sizeof(*cmd));
1037 	cmd->data[0] = devid;
1038 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1039 }
1040 
1041 /*
1042  * Writes the command to the IOMMUs command buffer and informs the
1043  * hardware about the new command.
1044  */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1045 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1046 				      struct iommu_cmd *cmd,
1047 				      bool sync)
1048 {
1049 	unsigned int count = 0;
1050 	u32 left, next_tail;
1051 
1052 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1053 again:
1054 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1055 
1056 	if (left <= 0x20) {
1057 		/* Skip udelay() the first time around */
1058 		if (count++) {
1059 			if (count == LOOP_TIMEOUT) {
1060 				pr_err("Command buffer timeout\n");
1061 				return -EIO;
1062 			}
1063 
1064 			udelay(1);
1065 		}
1066 
1067 		/* Update head and recheck remaining space */
1068 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1069 					    MMIO_CMD_HEAD_OFFSET);
1070 
1071 		goto again;
1072 	}
1073 
1074 	copy_cmd_to_buffer(iommu, cmd);
1075 
1076 	/* Do we need to make sure all commands are processed? */
1077 	iommu->need_sync = sync;
1078 
1079 	return 0;
1080 }
1081 
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1082 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1083 				    struct iommu_cmd *cmd,
1084 				    bool sync)
1085 {
1086 	unsigned long flags;
1087 	int ret;
1088 
1089 	raw_spin_lock_irqsave(&iommu->lock, flags);
1090 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1091 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1092 
1093 	return ret;
1094 }
1095 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1096 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1097 {
1098 	return iommu_queue_command_sync(iommu, cmd, true);
1099 }
1100 
1101 /*
1102  * This function queues a completion wait command into the command
1103  * buffer of an IOMMU
1104  */
iommu_completion_wait(struct amd_iommu * iommu)1105 static int iommu_completion_wait(struct amd_iommu *iommu)
1106 {
1107 	struct iommu_cmd cmd;
1108 	unsigned long flags;
1109 	int ret;
1110 
1111 	if (!iommu->need_sync)
1112 		return 0;
1113 
1114 
1115 	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1116 
1117 	raw_spin_lock_irqsave(&iommu->lock, flags);
1118 
1119 	iommu->cmd_sem = 0;
1120 
1121 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1122 	if (ret)
1123 		goto out_unlock;
1124 
1125 	ret = wait_on_sem(&iommu->cmd_sem);
1126 
1127 out_unlock:
1128 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1129 
1130 	return ret;
1131 }
1132 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1133 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1134 {
1135 	struct iommu_cmd cmd;
1136 
1137 	build_inv_dte(&cmd, devid);
1138 
1139 	return iommu_queue_command(iommu, &cmd);
1140 }
1141 
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1142 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1143 {
1144 	u32 devid;
1145 
1146 	for (devid = 0; devid <= 0xffff; ++devid)
1147 		iommu_flush_dte(iommu, devid);
1148 
1149 	iommu_completion_wait(iommu);
1150 }
1151 
1152 /*
1153  * This function uses heavy locking and may disable irqs for some time. But
1154  * this is no issue because it is only called during resume.
1155  */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1156 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1157 {
1158 	u32 dom_id;
1159 
1160 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1161 		struct iommu_cmd cmd;
1162 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1163 				      dom_id, 1);
1164 		iommu_queue_command(iommu, &cmd);
1165 	}
1166 
1167 	iommu_completion_wait(iommu);
1168 }
1169 
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1170 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1171 {
1172 	struct iommu_cmd cmd;
1173 
1174 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1175 			      dom_id, 1);
1176 	iommu_queue_command(iommu, &cmd);
1177 
1178 	iommu_completion_wait(iommu);
1179 }
1180 
amd_iommu_flush_all(struct amd_iommu * iommu)1181 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1182 {
1183 	struct iommu_cmd cmd;
1184 
1185 	build_inv_all(&cmd);
1186 
1187 	iommu_queue_command(iommu, &cmd);
1188 	iommu_completion_wait(iommu);
1189 }
1190 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1191 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1192 {
1193 	struct iommu_cmd cmd;
1194 
1195 	build_inv_irt(&cmd, devid);
1196 
1197 	iommu_queue_command(iommu, &cmd);
1198 }
1199 
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1200 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1201 {
1202 	u32 devid;
1203 
1204 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1205 		iommu_flush_irt(iommu, devid);
1206 
1207 	iommu_completion_wait(iommu);
1208 }
1209 
iommu_flush_all_caches(struct amd_iommu * iommu)1210 void iommu_flush_all_caches(struct amd_iommu *iommu)
1211 {
1212 	if (iommu_feature(iommu, FEATURE_IA)) {
1213 		amd_iommu_flush_all(iommu);
1214 	} else {
1215 		amd_iommu_flush_dte_all(iommu);
1216 		amd_iommu_flush_irt_all(iommu);
1217 		amd_iommu_flush_tlb_all(iommu);
1218 	}
1219 }
1220 
1221 /*
1222  * Command send function for flushing on-device TLB
1223  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1224 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1225 			      u64 address, size_t size)
1226 {
1227 	struct amd_iommu *iommu;
1228 	struct iommu_cmd cmd;
1229 	int qdep;
1230 
1231 	qdep     = dev_data->ats.qdep;
1232 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1233 
1234 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1235 
1236 	return iommu_queue_command(iommu, &cmd);
1237 }
1238 
1239 /*
1240  * Command send function for invalidating a device table entry
1241  */
device_flush_dte(struct iommu_dev_data * dev_data)1242 static int device_flush_dte(struct iommu_dev_data *dev_data)
1243 {
1244 	struct amd_iommu *iommu;
1245 	u16 alias;
1246 	int ret;
1247 
1248 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1249 	alias = dev_data->alias;
1250 
1251 	ret = iommu_flush_dte(iommu, dev_data->devid);
1252 	if (!ret && alias != dev_data->devid)
1253 		ret = iommu_flush_dte(iommu, alias);
1254 	if (ret)
1255 		return ret;
1256 
1257 	if (dev_data->ats.enabled)
1258 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1259 
1260 	return ret;
1261 }
1262 
1263 /*
1264  * TLB invalidation function which is called from the mapping functions.
1265  * It invalidates a single PTE if the range to flush is within a single
1266  * page. Otherwise it flushes the whole TLB of the IOMMU.
1267  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1268 static void __domain_flush_pages(struct protection_domain *domain,
1269 				 u64 address, size_t size, int pde)
1270 {
1271 	struct iommu_dev_data *dev_data;
1272 	struct iommu_cmd cmd;
1273 	int ret = 0, i;
1274 
1275 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1276 
1277 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1278 		if (!domain->dev_iommu[i])
1279 			continue;
1280 
1281 		/*
1282 		 * Devices of this domain are behind this IOMMU
1283 		 * We need a TLB flush
1284 		 */
1285 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1286 	}
1287 
1288 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1289 
1290 		if (!dev_data->ats.enabled)
1291 			continue;
1292 
1293 		ret |= device_flush_iotlb(dev_data, address, size);
1294 	}
1295 
1296 	WARN_ON(ret);
1297 }
1298 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1299 static void domain_flush_pages(struct protection_domain *domain,
1300 			       u64 address, size_t size)
1301 {
1302 	__domain_flush_pages(domain, address, size, 0);
1303 }
1304 
1305 /* Flush the whole IO/TLB for a given protection domain */
domain_flush_tlb(struct protection_domain * domain)1306 static void domain_flush_tlb(struct protection_domain *domain)
1307 {
1308 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1309 }
1310 
1311 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1312 static void domain_flush_tlb_pde(struct protection_domain *domain)
1313 {
1314 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1315 }
1316 
domain_flush_complete(struct protection_domain * domain)1317 static void domain_flush_complete(struct protection_domain *domain)
1318 {
1319 	int i;
1320 
1321 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1322 		if (domain && !domain->dev_iommu[i])
1323 			continue;
1324 
1325 		/*
1326 		 * Devices of this domain are behind this IOMMU
1327 		 * We need to wait for completion of all commands.
1328 		 */
1329 		iommu_completion_wait(amd_iommus[i]);
1330 	}
1331 }
1332 
1333 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1334 static void domain_flush_np_cache(struct protection_domain *domain,
1335 		dma_addr_t iova, size_t size)
1336 {
1337 	if (unlikely(amd_iommu_np_cache)) {
1338 		unsigned long flags;
1339 
1340 		spin_lock_irqsave(&domain->lock, flags);
1341 		domain_flush_pages(domain, iova, size);
1342 		domain_flush_complete(domain);
1343 		spin_unlock_irqrestore(&domain->lock, flags);
1344 	}
1345 }
1346 
1347 
1348 /*
1349  * This function flushes the DTEs for all devices in domain
1350  */
domain_flush_devices(struct protection_domain * domain)1351 static void domain_flush_devices(struct protection_domain *domain)
1352 {
1353 	struct iommu_dev_data *dev_data;
1354 
1355 	list_for_each_entry(dev_data, &domain->dev_list, list)
1356 		device_flush_dte(dev_data);
1357 }
1358 
1359 /****************************************************************************
1360  *
1361  * The functions below are used the create the page table mappings for
1362  * unity mapped regions.
1363  *
1364  ****************************************************************************/
1365 
free_page_list(struct page * freelist)1366 static void free_page_list(struct page *freelist)
1367 {
1368 	while (freelist != NULL) {
1369 		unsigned long p = (unsigned long)page_address(freelist);
1370 		freelist = freelist->freelist;
1371 		free_page(p);
1372 	}
1373 }
1374 
free_pt_page(unsigned long pt,struct page * freelist)1375 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1376 {
1377 	struct page *p = virt_to_page((void *)pt);
1378 
1379 	p->freelist = freelist;
1380 
1381 	return p;
1382 }
1383 
1384 #define DEFINE_FREE_PT_FN(LVL, FN)						\
1385 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)	\
1386 {										\
1387 	unsigned long p;							\
1388 	u64 *pt;								\
1389 	int i;									\
1390 										\
1391 	pt = (u64 *)__pt;							\
1392 										\
1393 	for (i = 0; i < 512; ++i) {						\
1394 		/* PTE present? */						\
1395 		if (!IOMMU_PTE_PRESENT(pt[i]))					\
1396 			continue;						\
1397 										\
1398 		/* Large PTE? */						\
1399 		if (PM_PTE_LEVEL(pt[i]) == 0 ||					\
1400 		    PM_PTE_LEVEL(pt[i]) == 7)					\
1401 			continue;						\
1402 										\
1403 		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);			\
1404 		freelist = FN(p, freelist);					\
1405 	}									\
1406 										\
1407 	return free_pt_page((unsigned long)pt, freelist);			\
1408 }
1409 
DEFINE_FREE_PT_FN(l2,free_pt_page)1410 DEFINE_FREE_PT_FN(l2, free_pt_page)
1411 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1412 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1413 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1414 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1415 
1416 static struct page *free_sub_pt(unsigned long root, int mode,
1417 				struct page *freelist)
1418 {
1419 	switch (mode) {
1420 	case PAGE_MODE_NONE:
1421 	case PAGE_MODE_7_LEVEL:
1422 		break;
1423 	case PAGE_MODE_1_LEVEL:
1424 		freelist = free_pt_page(root, freelist);
1425 		break;
1426 	case PAGE_MODE_2_LEVEL:
1427 		freelist = free_pt_l2(root, freelist);
1428 		break;
1429 	case PAGE_MODE_3_LEVEL:
1430 		freelist = free_pt_l3(root, freelist);
1431 		break;
1432 	case PAGE_MODE_4_LEVEL:
1433 		freelist = free_pt_l4(root, freelist);
1434 		break;
1435 	case PAGE_MODE_5_LEVEL:
1436 		freelist = free_pt_l5(root, freelist);
1437 		break;
1438 	case PAGE_MODE_6_LEVEL:
1439 		freelist = free_pt_l6(root, freelist);
1440 		break;
1441 	default:
1442 		BUG();
1443 	}
1444 
1445 	return freelist;
1446 }
1447 
free_pagetable(struct protection_domain * domain)1448 static void free_pagetable(struct protection_domain *domain)
1449 {
1450 	unsigned long root = (unsigned long)domain->pt_root;
1451 	struct page *freelist = NULL;
1452 
1453 	BUG_ON(domain->mode < PAGE_MODE_NONE ||
1454 	       domain->mode > PAGE_MODE_6_LEVEL);
1455 
1456 	freelist = free_sub_pt(root, domain->mode, freelist);
1457 
1458 	free_page_list(freelist);
1459 }
1460 
1461 /*
1462  * This function is used to add another level to an IO page table. Adding
1463  * another level increases the size of the address space by 9 bits to a size up
1464  * to 64 bits.
1465  */
increase_address_space(struct protection_domain * domain,unsigned long address,gfp_t gfp)1466 static bool increase_address_space(struct protection_domain *domain,
1467 				   unsigned long address,
1468 				   gfp_t gfp)
1469 {
1470 	unsigned long flags;
1471 	bool ret = false;
1472 	u64 *pte;
1473 
1474 	spin_lock_irqsave(&domain->lock, flags);
1475 
1476 	if (address <= PM_LEVEL_SIZE(domain->mode) ||
1477 	    WARN_ON_ONCE(domain->mode == PAGE_MODE_6_LEVEL))
1478 		goto out;
1479 
1480 	pte = (void *)get_zeroed_page(gfp);
1481 	if (!pte)
1482 		goto out;
1483 
1484 	*pte             = PM_LEVEL_PDE(domain->mode,
1485 					iommu_virt_to_phys(domain->pt_root));
1486 	domain->pt_root  = pte;
1487 	domain->mode    += 1;
1488 
1489 	ret = true;
1490 
1491 out:
1492 	spin_unlock_irqrestore(&domain->lock, flags);
1493 
1494 	return ret;
1495 }
1496 
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp,bool * updated)1497 static u64 *alloc_pte(struct protection_domain *domain,
1498 		      unsigned long address,
1499 		      unsigned long page_size,
1500 		      u64 **pte_page,
1501 		      gfp_t gfp,
1502 		      bool *updated)
1503 {
1504 	int level, end_lvl;
1505 	u64 *pte, *page;
1506 
1507 	BUG_ON(!is_power_of_2(page_size));
1508 
1509 	while (address > PM_LEVEL_SIZE(domain->mode))
1510 		*updated = increase_address_space(domain, address, gfp) || *updated;
1511 
1512 	level   = domain->mode - 1;
1513 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1514 	address = PAGE_SIZE_ALIGN(address, page_size);
1515 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1516 
1517 	while (level > end_lvl) {
1518 		u64 __pte, __npte;
1519 		int pte_level;
1520 
1521 		__pte     = *pte;
1522 		pte_level = PM_PTE_LEVEL(__pte);
1523 
1524 		/*
1525 		 * If we replace a series of large PTEs, we need
1526 		 * to tear down all of them.
1527 		 */
1528 		if (IOMMU_PTE_PRESENT(__pte) &&
1529 		    pte_level == PAGE_MODE_7_LEVEL) {
1530 			unsigned long count, i;
1531 			u64 *lpte;
1532 
1533 			lpte = first_pte_l7(pte, NULL, &count);
1534 
1535 			/*
1536 			 * Unmap the replicated PTEs that still match the
1537 			 * original large mapping
1538 			 */
1539 			for (i = 0; i < count; ++i)
1540 				cmpxchg64(&lpte[i], __pte, 0ULL);
1541 
1542 			*updated = true;
1543 			continue;
1544 		}
1545 
1546 		if (!IOMMU_PTE_PRESENT(__pte) ||
1547 		    pte_level == PAGE_MODE_NONE) {
1548 			page = (u64 *)get_zeroed_page(gfp);
1549 
1550 			if (!page)
1551 				return NULL;
1552 
1553 			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1554 
1555 			/* pte could have been changed somewhere. */
1556 			if (cmpxchg64(pte, __pte, __npte) != __pte)
1557 				free_page((unsigned long)page);
1558 			else if (IOMMU_PTE_PRESENT(__pte))
1559 				*updated = true;
1560 
1561 			continue;
1562 		}
1563 
1564 		/* No level skipping support yet */
1565 		if (pte_level != level)
1566 			return NULL;
1567 
1568 		level -= 1;
1569 
1570 		pte = IOMMU_PTE_PAGE(__pte);
1571 
1572 		if (pte_page && level == end_lvl)
1573 			*pte_page = pte;
1574 
1575 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1576 	}
1577 
1578 	return pte;
1579 }
1580 
1581 /*
1582  * This function checks if there is a PTE for a given dma address. If
1583  * there is one, it returns the pointer to it.
1584  */
fetch_pte(struct protection_domain * domain,unsigned long address,unsigned long * page_size)1585 static u64 *fetch_pte(struct protection_domain *domain,
1586 		      unsigned long address,
1587 		      unsigned long *page_size)
1588 {
1589 	int level;
1590 	u64 *pte;
1591 
1592 	*page_size = 0;
1593 
1594 	if (address > PM_LEVEL_SIZE(domain->mode))
1595 		return NULL;
1596 
1597 	level	   =  domain->mode - 1;
1598 	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1599 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1600 
1601 	while (level > 0) {
1602 
1603 		/* Not Present */
1604 		if (!IOMMU_PTE_PRESENT(*pte))
1605 			return NULL;
1606 
1607 		/* Large PTE */
1608 		if (PM_PTE_LEVEL(*pte) == 7 ||
1609 		    PM_PTE_LEVEL(*pte) == 0)
1610 			break;
1611 
1612 		/* No level skipping support yet */
1613 		if (PM_PTE_LEVEL(*pte) != level)
1614 			return NULL;
1615 
1616 		level -= 1;
1617 
1618 		/* Walk to the next level */
1619 		pte	   = IOMMU_PTE_PAGE(*pte);
1620 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
1621 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
1622 	}
1623 
1624 	/*
1625 	 * If we have a series of large PTEs, make
1626 	 * sure to return a pointer to the first one.
1627 	 */
1628 	if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1629 		pte = first_pte_l7(pte, page_size, NULL);
1630 
1631 	return pte;
1632 }
1633 
free_clear_pte(u64 * pte,u64 pteval,struct page * freelist)1634 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1635 {
1636 	unsigned long pt;
1637 	int mode;
1638 
1639 	while (cmpxchg64(pte, pteval, 0) != pteval) {
1640 		pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1641 		pteval = *pte;
1642 	}
1643 
1644 	if (!IOMMU_PTE_PRESENT(pteval))
1645 		return freelist;
1646 
1647 	pt   = (unsigned long)IOMMU_PTE_PAGE(pteval);
1648 	mode = IOMMU_PTE_MODE(pteval);
1649 
1650 	return free_sub_pt(pt, mode, freelist);
1651 }
1652 
1653 /*
1654  * Generic mapping functions. It maps a physical address into a DMA
1655  * address space. It allocates the page table pages if necessary.
1656  * In the future it can be extended to a generic mapping function
1657  * supporting all features of AMD IOMMU page tables like level skipping
1658  * and full 64 bit address spaces.
1659  */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,unsigned long page_size,int prot,gfp_t gfp)1660 static int iommu_map_page(struct protection_domain *dom,
1661 			  unsigned long bus_addr,
1662 			  unsigned long phys_addr,
1663 			  unsigned long page_size,
1664 			  int prot,
1665 			  gfp_t gfp)
1666 {
1667 	struct page *freelist = NULL;
1668 	bool updated = false;
1669 	u64 __pte, *pte;
1670 	int ret, i, count;
1671 
1672 	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1673 	BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1674 
1675 	ret = -EINVAL;
1676 	if (!(prot & IOMMU_PROT_MASK))
1677 		goto out;
1678 
1679 	count = PAGE_SIZE_PTE_COUNT(page_size);
1680 	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1681 
1682 	ret = -ENOMEM;
1683 	if (!pte)
1684 		goto out;
1685 
1686 	for (i = 0; i < count; ++i)
1687 		freelist = free_clear_pte(&pte[i], pte[i], freelist);
1688 
1689 	if (freelist != NULL)
1690 		updated = true;
1691 
1692 	if (count > 1) {
1693 		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1694 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1695 	} else
1696 		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1697 
1698 	if (prot & IOMMU_PROT_IR)
1699 		__pte |= IOMMU_PTE_IR;
1700 	if (prot & IOMMU_PROT_IW)
1701 		__pte |= IOMMU_PTE_IW;
1702 
1703 	for (i = 0; i < count; ++i)
1704 		pte[i] = __pte;
1705 
1706 	ret = 0;
1707 
1708 out:
1709 	if (updated) {
1710 		unsigned long flags;
1711 
1712 		spin_lock_irqsave(&dom->lock, flags);
1713 		update_domain(dom);
1714 		spin_unlock_irqrestore(&dom->lock, flags);
1715 	}
1716 
1717 	/* Everything flushed out, free pages now */
1718 	free_page_list(freelist);
1719 
1720 	return ret;
1721 }
1722 
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1723 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1724 				      unsigned long bus_addr,
1725 				      unsigned long page_size)
1726 {
1727 	unsigned long long unmapped;
1728 	unsigned long unmap_size;
1729 	u64 *pte;
1730 
1731 	BUG_ON(!is_power_of_2(page_size));
1732 
1733 	unmapped = 0;
1734 
1735 	while (unmapped < page_size) {
1736 
1737 		pte = fetch_pte(dom, bus_addr, &unmap_size);
1738 
1739 		if (pte) {
1740 			int i, count;
1741 
1742 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1743 			for (i = 0; i < count; i++)
1744 				pte[i] = 0ULL;
1745 		}
1746 
1747 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1748 		unmapped += unmap_size;
1749 	}
1750 
1751 	BUG_ON(unmapped && !is_power_of_2(unmapped));
1752 
1753 	return unmapped;
1754 }
1755 
1756 /****************************************************************************
1757  *
1758  * The next functions belong to the address allocator for the dma_ops
1759  * interface functions.
1760  *
1761  ****************************************************************************/
1762 
1763 
dma_ops_alloc_iova(struct device * dev,struct dma_ops_domain * dma_dom,unsigned int pages,u64 dma_mask)1764 static unsigned long dma_ops_alloc_iova(struct device *dev,
1765 					struct dma_ops_domain *dma_dom,
1766 					unsigned int pages, u64 dma_mask)
1767 {
1768 	unsigned long pfn = 0;
1769 
1770 	pages = __roundup_pow_of_two(pages);
1771 
1772 	if (dma_mask > DMA_BIT_MASK(32))
1773 		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1774 				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1775 
1776 	if (!pfn)
1777 		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1778 				      IOVA_PFN(dma_mask), true);
1779 
1780 	return (pfn << PAGE_SHIFT);
1781 }
1782 
dma_ops_free_iova(struct dma_ops_domain * dma_dom,unsigned long address,unsigned int pages)1783 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1784 			      unsigned long address,
1785 			      unsigned int pages)
1786 {
1787 	pages = __roundup_pow_of_two(pages);
1788 	address >>= PAGE_SHIFT;
1789 
1790 	free_iova_fast(&dma_dom->iovad, address, pages);
1791 }
1792 
1793 /****************************************************************************
1794  *
1795  * The next functions belong to the domain allocation. A domain is
1796  * allocated for every IOMMU as the default domain. If device isolation
1797  * is enabled, every device get its own domain. The most important thing
1798  * about domains is the page table mapping the DMA address space they
1799  * contain.
1800  *
1801  ****************************************************************************/
1802 
domain_id_alloc(void)1803 static u16 domain_id_alloc(void)
1804 {
1805 	int id;
1806 
1807 	spin_lock(&pd_bitmap_lock);
1808 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1809 	BUG_ON(id == 0);
1810 	if (id > 0 && id < MAX_DOMAIN_ID)
1811 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1812 	else
1813 		id = 0;
1814 	spin_unlock(&pd_bitmap_lock);
1815 
1816 	return id;
1817 }
1818 
domain_id_free(int id)1819 static void domain_id_free(int id)
1820 {
1821 	spin_lock(&pd_bitmap_lock);
1822 	if (id > 0 && id < MAX_DOMAIN_ID)
1823 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1824 	spin_unlock(&pd_bitmap_lock);
1825 }
1826 
free_gcr3_tbl_level1(u64 * tbl)1827 static void free_gcr3_tbl_level1(u64 *tbl)
1828 {
1829 	u64 *ptr;
1830 	int i;
1831 
1832 	for (i = 0; i < 512; ++i) {
1833 		if (!(tbl[i] & GCR3_VALID))
1834 			continue;
1835 
1836 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1837 
1838 		free_page((unsigned long)ptr);
1839 	}
1840 }
1841 
free_gcr3_tbl_level2(u64 * tbl)1842 static void free_gcr3_tbl_level2(u64 *tbl)
1843 {
1844 	u64 *ptr;
1845 	int i;
1846 
1847 	for (i = 0; i < 512; ++i) {
1848 		if (!(tbl[i] & GCR3_VALID))
1849 			continue;
1850 
1851 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1852 
1853 		free_gcr3_tbl_level1(ptr);
1854 	}
1855 }
1856 
free_gcr3_table(struct protection_domain * domain)1857 static void free_gcr3_table(struct protection_domain *domain)
1858 {
1859 	if (domain->glx == 2)
1860 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1861 	else if (domain->glx == 1)
1862 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1863 	else
1864 		BUG_ON(domain->glx != 0);
1865 
1866 	free_page((unsigned long)domain->gcr3_tbl);
1867 }
1868 
dma_ops_domain_flush_tlb(struct dma_ops_domain * dom)1869 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1870 {
1871 	unsigned long flags;
1872 
1873 	spin_lock_irqsave(&dom->domain.lock, flags);
1874 	domain_flush_tlb(&dom->domain);
1875 	domain_flush_complete(&dom->domain);
1876 	spin_unlock_irqrestore(&dom->domain.lock, flags);
1877 }
1878 
iova_domain_flush_tlb(struct iova_domain * iovad)1879 static void iova_domain_flush_tlb(struct iova_domain *iovad)
1880 {
1881 	struct dma_ops_domain *dom;
1882 
1883 	dom = container_of(iovad, struct dma_ops_domain, iovad);
1884 
1885 	dma_ops_domain_flush_tlb(dom);
1886 }
1887 
1888 /*
1889  * Free a domain, only used if something went wrong in the
1890  * allocation path and we need to free an already allocated page table
1891  */
dma_ops_domain_free(struct dma_ops_domain * dom)1892 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1893 {
1894 	if (!dom)
1895 		return;
1896 
1897 	put_iova_domain(&dom->iovad);
1898 
1899 	free_pagetable(&dom->domain);
1900 
1901 	if (dom->domain.id)
1902 		domain_id_free(dom->domain.id);
1903 
1904 	kfree(dom);
1905 }
1906 
1907 /*
1908  * Allocates a new protection domain usable for the dma_ops functions.
1909  * It also initializes the page table and the address allocator data
1910  * structures required for the dma_ops interface
1911  */
dma_ops_domain_alloc(void)1912 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1913 {
1914 	struct dma_ops_domain *dma_dom;
1915 
1916 	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1917 	if (!dma_dom)
1918 		return NULL;
1919 
1920 	if (protection_domain_init(&dma_dom->domain))
1921 		goto free_dma_dom;
1922 
1923 	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1924 	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1925 	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1926 	if (!dma_dom->domain.pt_root)
1927 		goto free_dma_dom;
1928 
1929 	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1930 
1931 	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1932 		goto free_dma_dom;
1933 
1934 	/* Initialize reserved ranges */
1935 	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1936 
1937 	return dma_dom;
1938 
1939 free_dma_dom:
1940 	dma_ops_domain_free(dma_dom);
1941 
1942 	return NULL;
1943 }
1944 
1945 /*
1946  * little helper function to check whether a given protection domain is a
1947  * dma_ops domain
1948  */
dma_ops_domain(struct protection_domain * domain)1949 static bool dma_ops_domain(struct protection_domain *domain)
1950 {
1951 	return domain->flags & PD_DMA_OPS_MASK;
1952 }
1953 
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats,bool ppr)1954 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1955 			  bool ats, bool ppr)
1956 {
1957 	u64 pte_root = 0;
1958 	u64 flags = 0;
1959 	u32 old_domid;
1960 
1961 	if (domain->mode != PAGE_MODE_NONE)
1962 		pte_root = iommu_virt_to_phys(domain->pt_root);
1963 
1964 	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1965 		    << DEV_ENTRY_MODE_SHIFT;
1966 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1967 
1968 	flags = amd_iommu_dev_table[devid].data[1];
1969 
1970 	if (ats)
1971 		flags |= DTE_FLAG_IOTLB;
1972 
1973 	if (ppr) {
1974 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1975 
1976 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1977 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1978 	}
1979 
1980 	if (domain->flags & PD_IOMMUV2_MASK) {
1981 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1982 		u64 glx  = domain->glx;
1983 		u64 tmp;
1984 
1985 		pte_root |= DTE_FLAG_GV;
1986 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1987 
1988 		/* First mask out possible old values for GCR3 table */
1989 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1990 		flags    &= ~tmp;
1991 
1992 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1993 		flags    &= ~tmp;
1994 
1995 		/* Encode GCR3 table into DTE */
1996 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1997 		pte_root |= tmp;
1998 
1999 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2000 		flags    |= tmp;
2001 
2002 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2003 		flags    |= tmp;
2004 	}
2005 
2006 	flags &= ~DEV_DOMID_MASK;
2007 	flags |= domain->id;
2008 
2009 	old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
2010 	amd_iommu_dev_table[devid].data[1]  = flags;
2011 	amd_iommu_dev_table[devid].data[0]  = pte_root;
2012 
2013 	/*
2014 	 * A kdump kernel might be replacing a domain ID that was copied from
2015 	 * the previous kernel--if so, it needs to flush the translation cache
2016 	 * entries for the old domain ID that is being overwritten
2017 	 */
2018 	if (old_domid) {
2019 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
2020 
2021 		amd_iommu_flush_tlb_domid(iommu, old_domid);
2022 	}
2023 }
2024 
clear_dte_entry(u16 devid)2025 static void clear_dte_entry(u16 devid)
2026 {
2027 	/* remove entry from the device table seen by the hardware */
2028 	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
2029 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2030 
2031 	amd_iommu_apply_erratum_63(devid);
2032 }
2033 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)2034 static void do_attach(struct iommu_dev_data *dev_data,
2035 		      struct protection_domain *domain)
2036 {
2037 	struct amd_iommu *iommu;
2038 	u16 alias;
2039 	bool ats;
2040 
2041 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2042 	alias = dev_data->alias;
2043 	ats   = dev_data->ats.enabled;
2044 
2045 	/* Update data structures */
2046 	dev_data->domain = domain;
2047 	list_add(&dev_data->list, &domain->dev_list);
2048 
2049 	/* Do reference counting */
2050 	domain->dev_iommu[iommu->index] += 1;
2051 	domain->dev_cnt                 += 1;
2052 
2053 	/* Update device table */
2054 	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
2055 	if (alias != dev_data->devid)
2056 		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
2057 
2058 	device_flush_dte(dev_data);
2059 }
2060 
do_detach(struct iommu_dev_data * dev_data)2061 static void do_detach(struct iommu_dev_data *dev_data)
2062 {
2063 	struct protection_domain *domain = dev_data->domain;
2064 	struct amd_iommu *iommu;
2065 	u16 alias;
2066 
2067 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2068 	alias = dev_data->alias;
2069 
2070 	/* Update data structures */
2071 	dev_data->domain = NULL;
2072 	list_del(&dev_data->list);
2073 	clear_dte_entry(dev_data->devid);
2074 	if (alias != dev_data->devid)
2075 		clear_dte_entry(alias);
2076 
2077 	/* Flush the DTE entry */
2078 	device_flush_dte(dev_data);
2079 
2080 	/* Flush IOTLB */
2081 	domain_flush_tlb_pde(domain);
2082 
2083 	/* Wait for the flushes to finish */
2084 	domain_flush_complete(domain);
2085 
2086 	/* decrease reference counters - needs to happen after the flushes */
2087 	domain->dev_iommu[iommu->index] -= 1;
2088 	domain->dev_cnt                 -= 1;
2089 }
2090 
pdev_iommuv2_disable(struct pci_dev * pdev)2091 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2092 {
2093 	pci_disable_ats(pdev);
2094 	pci_disable_pri(pdev);
2095 	pci_disable_pasid(pdev);
2096 }
2097 
2098 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)2099 static int pri_reset_while_enabled(struct pci_dev *pdev)
2100 {
2101 	u16 control;
2102 	int pos;
2103 
2104 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2105 	if (!pos)
2106 		return -EINVAL;
2107 
2108 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2109 	control |= PCI_PRI_CTRL_RESET;
2110 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2111 
2112 	return 0;
2113 }
2114 
pdev_iommuv2_enable(struct pci_dev * pdev)2115 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2116 {
2117 	bool reset_enable;
2118 	int reqs, ret;
2119 
2120 	/* FIXME: Hardcode number of outstanding requests for now */
2121 	reqs = 32;
2122 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2123 		reqs = 1;
2124 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2125 
2126 	/* Only allow access to user-accessible pages */
2127 	ret = pci_enable_pasid(pdev, 0);
2128 	if (ret)
2129 		goto out_err;
2130 
2131 	/* First reset the PRI state of the device */
2132 	ret = pci_reset_pri(pdev);
2133 	if (ret)
2134 		goto out_err;
2135 
2136 	/* Enable PRI */
2137 	ret = pci_enable_pri(pdev, reqs);
2138 	if (ret)
2139 		goto out_err;
2140 
2141 	if (reset_enable) {
2142 		ret = pri_reset_while_enabled(pdev);
2143 		if (ret)
2144 			goto out_err;
2145 	}
2146 
2147 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2148 	if (ret)
2149 		goto out_err;
2150 
2151 	return 0;
2152 
2153 out_err:
2154 	pci_disable_pri(pdev);
2155 	pci_disable_pasid(pdev);
2156 
2157 	return ret;
2158 }
2159 
2160 /*
2161  * If a device is not yet associated with a domain, this function makes the
2162  * device visible in the domain
2163  */
attach_device(struct device * dev,struct protection_domain * domain)2164 static int attach_device(struct device *dev,
2165 			 struct protection_domain *domain)
2166 {
2167 	struct pci_dev *pdev;
2168 	struct iommu_dev_data *dev_data;
2169 	unsigned long flags;
2170 	int ret;
2171 
2172 	spin_lock_irqsave(&domain->lock, flags);
2173 
2174 	dev_data = get_dev_data(dev);
2175 
2176 	spin_lock(&dev_data->lock);
2177 
2178 	ret = -EBUSY;
2179 	if (dev_data->domain != NULL)
2180 		goto out;
2181 
2182 	if (!dev_is_pci(dev))
2183 		goto skip_ats_check;
2184 
2185 	pdev = to_pci_dev(dev);
2186 	if (domain->flags & PD_IOMMUV2_MASK) {
2187 		ret = -EINVAL;
2188 		if (!dev_data->passthrough)
2189 			goto out;
2190 
2191 		if (dev_data->iommu_v2) {
2192 			if (pdev_iommuv2_enable(pdev) != 0)
2193 				goto out;
2194 
2195 			dev_data->ats.enabled = true;
2196 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2197 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
2198 		}
2199 	} else if (amd_iommu_iotlb_sup &&
2200 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2201 		dev_data->ats.enabled = true;
2202 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2203 	}
2204 
2205 skip_ats_check:
2206 	ret = 0;
2207 
2208 	do_attach(dev_data, domain);
2209 
2210 	/*
2211 	 * We might boot into a crash-kernel here. The crashed kernel
2212 	 * left the caches in the IOMMU dirty. So we have to flush
2213 	 * here to evict all dirty stuff.
2214 	 */
2215 	domain_flush_tlb_pde(domain);
2216 
2217 	domain_flush_complete(domain);
2218 
2219 out:
2220 	spin_unlock(&dev_data->lock);
2221 
2222 	spin_unlock_irqrestore(&domain->lock, flags);
2223 
2224 	return ret;
2225 }
2226 
2227 /*
2228  * Removes a device from a protection domain (with devtable_lock held)
2229  */
detach_device(struct device * dev)2230 static void detach_device(struct device *dev)
2231 {
2232 	struct protection_domain *domain;
2233 	struct iommu_dev_data *dev_data;
2234 	unsigned long flags;
2235 
2236 	dev_data = get_dev_data(dev);
2237 	domain   = dev_data->domain;
2238 
2239 	spin_lock_irqsave(&domain->lock, flags);
2240 
2241 	spin_lock(&dev_data->lock);
2242 
2243 	/*
2244 	 * First check if the device is still attached. It might already
2245 	 * be detached from its domain because the generic
2246 	 * iommu_detach_group code detached it and we try again here in
2247 	 * our alias handling.
2248 	 */
2249 	if (WARN_ON(!dev_data->domain))
2250 		goto out;
2251 
2252 	do_detach(dev_data);
2253 
2254 	if (!dev_is_pci(dev))
2255 		goto out;
2256 
2257 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2258 		pdev_iommuv2_disable(to_pci_dev(dev));
2259 	else if (dev_data->ats.enabled)
2260 		pci_disable_ats(to_pci_dev(dev));
2261 
2262 	dev_data->ats.enabled = false;
2263 
2264 out:
2265 	spin_unlock(&dev_data->lock);
2266 
2267 	spin_unlock_irqrestore(&domain->lock, flags);
2268 }
2269 
amd_iommu_add_device(struct device * dev)2270 static int amd_iommu_add_device(struct device *dev)
2271 {
2272 	struct iommu_dev_data *dev_data;
2273 	struct iommu_domain *domain;
2274 	struct amd_iommu *iommu;
2275 	int ret, devid;
2276 
2277 	if (!check_device(dev) || get_dev_data(dev))
2278 		return 0;
2279 
2280 	devid = get_device_id(dev);
2281 	if (devid < 0)
2282 		return devid;
2283 
2284 	iommu = amd_iommu_rlookup_table[devid];
2285 
2286 	ret = iommu_init_device(dev);
2287 	if (ret) {
2288 		if (ret != -ENOTSUPP)
2289 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2290 
2291 		iommu_ignore_device(dev);
2292 		dev->dma_ops = NULL;
2293 		goto out;
2294 	}
2295 	init_iommu_group(dev);
2296 
2297 	dev_data = get_dev_data(dev);
2298 
2299 	BUG_ON(!dev_data);
2300 
2301 	if (dev_data->iommu_v2)
2302 		iommu_request_dm_for_dev(dev);
2303 
2304 	/* Domains are initialized for this device - have a look what we ended up with */
2305 	domain = iommu_get_domain_for_dev(dev);
2306 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2307 		dev_data->passthrough = true;
2308 	else
2309 		dev->dma_ops = &amd_iommu_dma_ops;
2310 
2311 out:
2312 	iommu_completion_wait(iommu);
2313 
2314 	return 0;
2315 }
2316 
amd_iommu_remove_device(struct device * dev)2317 static void amd_iommu_remove_device(struct device *dev)
2318 {
2319 	struct amd_iommu *iommu;
2320 	int devid;
2321 
2322 	if (!check_device(dev))
2323 		return;
2324 
2325 	devid = get_device_id(dev);
2326 	if (devid < 0)
2327 		return;
2328 
2329 	iommu = amd_iommu_rlookup_table[devid];
2330 
2331 	iommu_uninit_device(dev);
2332 	iommu_completion_wait(iommu);
2333 }
2334 
amd_iommu_device_group(struct device * dev)2335 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2336 {
2337 	if (dev_is_pci(dev))
2338 		return pci_device_group(dev);
2339 
2340 	return acpihid_device_group(dev);
2341 }
2342 
2343 /*****************************************************************************
2344  *
2345  * The next functions belong to the dma_ops mapping/unmapping code.
2346  *
2347  *****************************************************************************/
2348 
2349 /*
2350  * In the dma_ops path we only have the struct device. This function
2351  * finds the corresponding IOMMU, the protection domain and the
2352  * requestor id for a given device.
2353  * If the device is not yet associated with a domain this is also done
2354  * in this function.
2355  */
get_domain(struct device * dev)2356 static struct protection_domain *get_domain(struct device *dev)
2357 {
2358 	struct protection_domain *domain;
2359 	struct iommu_domain *io_domain;
2360 
2361 	if (!check_device(dev))
2362 		return ERR_PTR(-EINVAL);
2363 
2364 	domain = get_dev_data(dev)->domain;
2365 	if (domain == NULL && get_dev_data(dev)->defer_attach) {
2366 		get_dev_data(dev)->defer_attach = false;
2367 		io_domain = iommu_get_domain_for_dev(dev);
2368 		domain = to_pdomain(io_domain);
2369 		attach_device(dev, domain);
2370 	}
2371 	if (domain == NULL)
2372 		return ERR_PTR(-EBUSY);
2373 
2374 	if (!dma_ops_domain(domain))
2375 		return ERR_PTR(-EBUSY);
2376 
2377 	return domain;
2378 }
2379 
update_device_table(struct protection_domain * domain)2380 static void update_device_table(struct protection_domain *domain)
2381 {
2382 	struct iommu_dev_data *dev_data;
2383 
2384 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2385 		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2386 			      dev_data->iommu_v2);
2387 
2388 		if (dev_data->devid == dev_data->alias)
2389 			continue;
2390 
2391 		/* There is an alias, update device table entry for it */
2392 		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2393 			      dev_data->iommu_v2);
2394 	}
2395 }
2396 
update_domain(struct protection_domain * domain)2397 static void update_domain(struct protection_domain *domain)
2398 {
2399 	update_device_table(domain);
2400 
2401 	domain_flush_devices(domain);
2402 	domain_flush_tlb_pde(domain);
2403 }
2404 
dir2prot(enum dma_data_direction direction)2405 static int dir2prot(enum dma_data_direction direction)
2406 {
2407 	if (direction == DMA_TO_DEVICE)
2408 		return IOMMU_PROT_IR;
2409 	else if (direction == DMA_FROM_DEVICE)
2410 		return IOMMU_PROT_IW;
2411 	else if (direction == DMA_BIDIRECTIONAL)
2412 		return IOMMU_PROT_IW | IOMMU_PROT_IR;
2413 	else
2414 		return 0;
2415 }
2416 
2417 /*
2418  * This function contains common code for mapping of a physically
2419  * contiguous memory region into DMA address space. It is used by all
2420  * mapping functions provided with this IOMMU driver.
2421  * Must be called with the domain lock held.
2422  */
__map_single(struct device * dev,struct dma_ops_domain * dma_dom,phys_addr_t paddr,size_t size,enum dma_data_direction direction,u64 dma_mask)2423 static dma_addr_t __map_single(struct device *dev,
2424 			       struct dma_ops_domain *dma_dom,
2425 			       phys_addr_t paddr,
2426 			       size_t size,
2427 			       enum dma_data_direction direction,
2428 			       u64 dma_mask)
2429 {
2430 	dma_addr_t offset = paddr & ~PAGE_MASK;
2431 	dma_addr_t address, start, ret;
2432 	unsigned long flags;
2433 	unsigned int pages;
2434 	int prot = 0;
2435 	int i;
2436 
2437 	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2438 	paddr &= PAGE_MASK;
2439 
2440 	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2441 	if (!address)
2442 		goto out;
2443 
2444 	prot = dir2prot(direction);
2445 
2446 	start = address;
2447 	for (i = 0; i < pages; ++i) {
2448 		ret = iommu_map_page(&dma_dom->domain, start, paddr,
2449 				     PAGE_SIZE, prot, GFP_ATOMIC);
2450 		if (ret)
2451 			goto out_unmap;
2452 
2453 		paddr += PAGE_SIZE;
2454 		start += PAGE_SIZE;
2455 	}
2456 	address += offset;
2457 
2458 	domain_flush_np_cache(&dma_dom->domain, address, size);
2459 
2460 out:
2461 	return address;
2462 
2463 out_unmap:
2464 
2465 	for (--i; i >= 0; --i) {
2466 		start -= PAGE_SIZE;
2467 		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2468 	}
2469 
2470 	spin_lock_irqsave(&dma_dom->domain.lock, flags);
2471 	domain_flush_tlb(&dma_dom->domain);
2472 	domain_flush_complete(&dma_dom->domain);
2473 	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
2474 
2475 	dma_ops_free_iova(dma_dom, address, pages);
2476 
2477 	return DMA_MAPPING_ERROR;
2478 }
2479 
2480 /*
2481  * Does the reverse of the __map_single function. Must be called with
2482  * the domain lock held too
2483  */
__unmap_single(struct dma_ops_domain * dma_dom,dma_addr_t dma_addr,size_t size,int dir)2484 static void __unmap_single(struct dma_ops_domain *dma_dom,
2485 			   dma_addr_t dma_addr,
2486 			   size_t size,
2487 			   int dir)
2488 {
2489 	dma_addr_t i, start;
2490 	unsigned int pages;
2491 
2492 	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2493 	dma_addr &= PAGE_MASK;
2494 	start = dma_addr;
2495 
2496 	for (i = 0; i < pages; ++i) {
2497 		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2498 		start += PAGE_SIZE;
2499 	}
2500 
2501 	if (amd_iommu_unmap_flush) {
2502 		unsigned long flags;
2503 
2504 		spin_lock_irqsave(&dma_dom->domain.lock, flags);
2505 		domain_flush_tlb(&dma_dom->domain);
2506 		domain_flush_complete(&dma_dom->domain);
2507 		spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
2508 		dma_ops_free_iova(dma_dom, dma_addr, pages);
2509 	} else {
2510 		pages = __roundup_pow_of_two(pages);
2511 		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2512 	}
2513 }
2514 
2515 /*
2516  * The exported map_single function for dma_ops.
2517  */
map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)2518 static dma_addr_t map_page(struct device *dev, struct page *page,
2519 			   unsigned long offset, size_t size,
2520 			   enum dma_data_direction dir,
2521 			   unsigned long attrs)
2522 {
2523 	phys_addr_t paddr = page_to_phys(page) + offset;
2524 	struct protection_domain *domain;
2525 	struct dma_ops_domain *dma_dom;
2526 	u64 dma_mask;
2527 
2528 	domain = get_domain(dev);
2529 	if (PTR_ERR(domain) == -EINVAL)
2530 		return (dma_addr_t)paddr;
2531 	else if (IS_ERR(domain))
2532 		return DMA_MAPPING_ERROR;
2533 
2534 	dma_mask = *dev->dma_mask;
2535 	dma_dom = to_dma_ops_domain(domain);
2536 
2537 	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2538 }
2539 
2540 /*
2541  * The exported unmap_single function for dma_ops.
2542  */
unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)2543 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2544 		       enum dma_data_direction dir, unsigned long attrs)
2545 {
2546 	struct protection_domain *domain;
2547 	struct dma_ops_domain *dma_dom;
2548 
2549 	domain = get_domain(dev);
2550 	if (IS_ERR(domain))
2551 		return;
2552 
2553 	dma_dom = to_dma_ops_domain(domain);
2554 
2555 	__unmap_single(dma_dom, dma_addr, size, dir);
2556 }
2557 
sg_num_pages(struct device * dev,struct scatterlist * sglist,int nelems)2558 static int sg_num_pages(struct device *dev,
2559 			struct scatterlist *sglist,
2560 			int nelems)
2561 {
2562 	unsigned long mask, boundary_size;
2563 	struct scatterlist *s;
2564 	int i, npages = 0;
2565 
2566 	mask          = dma_get_seg_boundary(dev);
2567 	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2568 				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2569 
2570 	for_each_sg(sglist, s, nelems, i) {
2571 		int p, n;
2572 
2573 		s->dma_address = npages << PAGE_SHIFT;
2574 		p = npages % boundary_size;
2575 		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2576 		if (p + n > boundary_size)
2577 			npages += boundary_size - p;
2578 		npages += n;
2579 	}
2580 
2581 	return npages;
2582 }
2583 
2584 /*
2585  * The exported map_sg function for dma_ops (handles scatter-gather
2586  * lists).
2587  */
map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction,unsigned long attrs)2588 static int map_sg(struct device *dev, struct scatterlist *sglist,
2589 		  int nelems, enum dma_data_direction direction,
2590 		  unsigned long attrs)
2591 {
2592 	int mapped_pages = 0, npages = 0, prot = 0, i;
2593 	struct protection_domain *domain;
2594 	struct dma_ops_domain *dma_dom;
2595 	struct scatterlist *s;
2596 	unsigned long address;
2597 	u64 dma_mask;
2598 	int ret;
2599 
2600 	domain = get_domain(dev);
2601 	if (IS_ERR(domain))
2602 		return 0;
2603 
2604 	dma_dom  = to_dma_ops_domain(domain);
2605 	dma_mask = *dev->dma_mask;
2606 
2607 	npages = sg_num_pages(dev, sglist, nelems);
2608 
2609 	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2610 	if (!address)
2611 		goto out_err;
2612 
2613 	prot = dir2prot(direction);
2614 
2615 	/* Map all sg entries */
2616 	for_each_sg(sglist, s, nelems, i) {
2617 		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2618 
2619 		for (j = 0; j < pages; ++j) {
2620 			unsigned long bus_addr, phys_addr;
2621 
2622 			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2623 			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2624 			ret = iommu_map_page(domain, bus_addr, phys_addr,
2625 					     PAGE_SIZE, prot,
2626 					     GFP_ATOMIC | __GFP_NOWARN);
2627 			if (ret)
2628 				goto out_unmap;
2629 
2630 			mapped_pages += 1;
2631 		}
2632 	}
2633 
2634 	/* Everything is mapped - write the right values into s->dma_address */
2635 	for_each_sg(sglist, s, nelems, i) {
2636 		/*
2637 		 * Add in the remaining piece of the scatter-gather offset that
2638 		 * was masked out when we were determining the physical address
2639 		 * via (sg_phys(s) & PAGE_MASK) earlier.
2640 		 */
2641 		s->dma_address += address + (s->offset & ~PAGE_MASK);
2642 		s->dma_length   = s->length;
2643 	}
2644 
2645 	if (s)
2646 		domain_flush_np_cache(domain, s->dma_address, s->dma_length);
2647 
2648 	return nelems;
2649 
2650 out_unmap:
2651 	dev_err(dev, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
2652 		npages, ret);
2653 
2654 	for_each_sg(sglist, s, nelems, i) {
2655 		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2656 
2657 		for (j = 0; j < pages; ++j) {
2658 			unsigned long bus_addr;
2659 
2660 			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2661 			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2662 
2663 			if (--mapped_pages == 0)
2664 				goto out_free_iova;
2665 		}
2666 	}
2667 
2668 out_free_iova:
2669 	free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2670 
2671 out_err:
2672 	return 0;
2673 }
2674 
2675 /*
2676  * The exported map_sg function for dma_ops (handles scatter-gather
2677  * lists).
2678  */
unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)2679 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2680 		     int nelems, enum dma_data_direction dir,
2681 		     unsigned long attrs)
2682 {
2683 	struct protection_domain *domain;
2684 	struct dma_ops_domain *dma_dom;
2685 	unsigned long startaddr;
2686 	int npages;
2687 
2688 	domain = get_domain(dev);
2689 	if (IS_ERR(domain))
2690 		return;
2691 
2692 	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2693 	dma_dom   = to_dma_ops_domain(domain);
2694 	npages    = sg_num_pages(dev, sglist, nelems);
2695 
2696 	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2697 }
2698 
2699 /*
2700  * The exported alloc_coherent function for dma_ops.
2701  */
alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag,unsigned long attrs)2702 static void *alloc_coherent(struct device *dev, size_t size,
2703 			    dma_addr_t *dma_addr, gfp_t flag,
2704 			    unsigned long attrs)
2705 {
2706 	u64 dma_mask = dev->coherent_dma_mask;
2707 	struct protection_domain *domain;
2708 	struct dma_ops_domain *dma_dom;
2709 	struct page *page;
2710 
2711 	domain = get_domain(dev);
2712 	if (PTR_ERR(domain) == -EINVAL) {
2713 		page = alloc_pages(flag, get_order(size));
2714 		*dma_addr = page_to_phys(page);
2715 		return page_address(page);
2716 	} else if (IS_ERR(domain))
2717 		return NULL;
2718 
2719 	dma_dom   = to_dma_ops_domain(domain);
2720 	size	  = PAGE_ALIGN(size);
2721 	dma_mask  = dev->coherent_dma_mask;
2722 	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2723 	flag     |= __GFP_ZERO;
2724 
2725 	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2726 	if (!page) {
2727 		if (!gfpflags_allow_blocking(flag))
2728 			return NULL;
2729 
2730 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2731 					get_order(size), flag & __GFP_NOWARN);
2732 		if (!page)
2733 			return NULL;
2734 	}
2735 
2736 	if (!dma_mask)
2737 		dma_mask = *dev->dma_mask;
2738 
2739 	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2740 				 size, DMA_BIDIRECTIONAL, dma_mask);
2741 
2742 	if (*dma_addr == DMA_MAPPING_ERROR)
2743 		goto out_free;
2744 
2745 	return page_address(page);
2746 
2747 out_free:
2748 
2749 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2750 		__free_pages(page, get_order(size));
2751 
2752 	return NULL;
2753 }
2754 
2755 /*
2756  * The exported free_coherent function for dma_ops.
2757  */
free_coherent(struct device * dev,size_t size,void * virt_addr,dma_addr_t dma_addr,unsigned long attrs)2758 static void free_coherent(struct device *dev, size_t size,
2759 			  void *virt_addr, dma_addr_t dma_addr,
2760 			  unsigned long attrs)
2761 {
2762 	struct protection_domain *domain;
2763 	struct dma_ops_domain *dma_dom;
2764 	struct page *page;
2765 
2766 	page = virt_to_page(virt_addr);
2767 	size = PAGE_ALIGN(size);
2768 
2769 	domain = get_domain(dev);
2770 	if (IS_ERR(domain))
2771 		goto free_mem;
2772 
2773 	dma_dom = to_dma_ops_domain(domain);
2774 
2775 	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2776 
2777 free_mem:
2778 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2779 		__free_pages(page, get_order(size));
2780 }
2781 
2782 /*
2783  * This function is called by the DMA layer to find out if we can handle a
2784  * particular device. It is part of the dma_ops.
2785  */
amd_iommu_dma_supported(struct device * dev,u64 mask)2786 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2787 {
2788 	if (!dma_direct_supported(dev, mask))
2789 		return 0;
2790 	return check_device(dev);
2791 }
2792 
2793 static const struct dma_map_ops amd_iommu_dma_ops = {
2794 	.alloc		= alloc_coherent,
2795 	.free		= free_coherent,
2796 	.map_page	= map_page,
2797 	.unmap_page	= unmap_page,
2798 	.map_sg		= map_sg,
2799 	.unmap_sg	= unmap_sg,
2800 	.dma_supported	= amd_iommu_dma_supported,
2801 	.mmap		= dma_common_mmap,
2802 	.get_sgtable	= dma_common_get_sgtable,
2803 };
2804 
init_reserved_iova_ranges(void)2805 static int init_reserved_iova_ranges(void)
2806 {
2807 	struct pci_dev *pdev = NULL;
2808 	struct iova *val;
2809 
2810 	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2811 
2812 	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2813 			  &reserved_rbtree_key);
2814 
2815 	/* MSI memory range */
2816 	val = reserve_iova(&reserved_iova_ranges,
2817 			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2818 	if (!val) {
2819 		pr_err("Reserving MSI range failed\n");
2820 		return -ENOMEM;
2821 	}
2822 
2823 	/* HT memory range */
2824 	val = reserve_iova(&reserved_iova_ranges,
2825 			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2826 	if (!val) {
2827 		pr_err("Reserving HT range failed\n");
2828 		return -ENOMEM;
2829 	}
2830 
2831 	/*
2832 	 * Memory used for PCI resources
2833 	 * FIXME: Check whether we can reserve the PCI-hole completly
2834 	 */
2835 	for_each_pci_dev(pdev) {
2836 		int i;
2837 
2838 		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2839 			struct resource *r = &pdev->resource[i];
2840 
2841 			if (!(r->flags & IORESOURCE_MEM))
2842 				continue;
2843 
2844 			val = reserve_iova(&reserved_iova_ranges,
2845 					   IOVA_PFN(r->start),
2846 					   IOVA_PFN(r->end));
2847 			if (!val) {
2848 				pci_err(pdev, "Reserve pci-resource range %pR failed\n", r);
2849 				return -ENOMEM;
2850 			}
2851 		}
2852 	}
2853 
2854 	return 0;
2855 }
2856 
amd_iommu_init_api(void)2857 int __init amd_iommu_init_api(void)
2858 {
2859 	int ret, err = 0;
2860 
2861 	ret = iova_cache_get();
2862 	if (ret)
2863 		return ret;
2864 
2865 	ret = init_reserved_iova_ranges();
2866 	if (ret)
2867 		return ret;
2868 
2869 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2870 	if (err)
2871 		return err;
2872 #ifdef CONFIG_ARM_AMBA
2873 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2874 	if (err)
2875 		return err;
2876 #endif
2877 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2878 	if (err)
2879 		return err;
2880 
2881 	return 0;
2882 }
2883 
amd_iommu_init_dma_ops(void)2884 int __init amd_iommu_init_dma_ops(void)
2885 {
2886 	swiotlb        = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
2887 	iommu_detected = 1;
2888 
2889 	if (amd_iommu_unmap_flush)
2890 		pr_info("IO/TLB flush on unmap enabled\n");
2891 	else
2892 		pr_info("Lazy IO/TLB flushing enabled\n");
2893 
2894 	return 0;
2895 
2896 }
2897 
2898 /*****************************************************************************
2899  *
2900  * The following functions belong to the exported interface of AMD IOMMU
2901  *
2902  * This interface allows access to lower level functions of the IOMMU
2903  * like protection domain handling and assignement of devices to domains
2904  * which is not possible with the dma_ops interface.
2905  *
2906  *****************************************************************************/
2907 
cleanup_domain(struct protection_domain * domain)2908 static void cleanup_domain(struct protection_domain *domain)
2909 {
2910 	struct iommu_dev_data *entry;
2911 	unsigned long flags;
2912 
2913 	spin_lock_irqsave(&domain->lock, flags);
2914 
2915 	while (!list_empty(&domain->dev_list)) {
2916 		entry = list_first_entry(&domain->dev_list,
2917 					 struct iommu_dev_data, list);
2918 		BUG_ON(!entry->domain);
2919 		do_detach(entry);
2920 	}
2921 
2922 	spin_unlock_irqrestore(&domain->lock, flags);
2923 }
2924 
protection_domain_free(struct protection_domain * domain)2925 static void protection_domain_free(struct protection_domain *domain)
2926 {
2927 	if (!domain)
2928 		return;
2929 
2930 	if (domain->id)
2931 		domain_id_free(domain->id);
2932 
2933 	kfree(domain);
2934 }
2935 
protection_domain_init(struct protection_domain * domain)2936 static int protection_domain_init(struct protection_domain *domain)
2937 {
2938 	spin_lock_init(&domain->lock);
2939 	mutex_init(&domain->api_lock);
2940 	domain->id = domain_id_alloc();
2941 	if (!domain->id)
2942 		return -ENOMEM;
2943 	INIT_LIST_HEAD(&domain->dev_list);
2944 
2945 	return 0;
2946 }
2947 
protection_domain_alloc(void)2948 static struct protection_domain *protection_domain_alloc(void)
2949 {
2950 	struct protection_domain *domain;
2951 
2952 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2953 	if (!domain)
2954 		return NULL;
2955 
2956 	if (protection_domain_init(domain))
2957 		goto out_err;
2958 
2959 	return domain;
2960 
2961 out_err:
2962 	kfree(domain);
2963 
2964 	return NULL;
2965 }
2966 
amd_iommu_domain_alloc(unsigned type)2967 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2968 {
2969 	struct protection_domain *pdomain;
2970 	struct dma_ops_domain *dma_domain;
2971 
2972 	switch (type) {
2973 	case IOMMU_DOMAIN_UNMANAGED:
2974 		pdomain = protection_domain_alloc();
2975 		if (!pdomain)
2976 			return NULL;
2977 
2978 		pdomain->mode    = PAGE_MODE_3_LEVEL;
2979 		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2980 		if (!pdomain->pt_root) {
2981 			protection_domain_free(pdomain);
2982 			return NULL;
2983 		}
2984 
2985 		pdomain->domain.geometry.aperture_start = 0;
2986 		pdomain->domain.geometry.aperture_end   = ~0ULL;
2987 		pdomain->domain.geometry.force_aperture = true;
2988 
2989 		break;
2990 	case IOMMU_DOMAIN_DMA:
2991 		dma_domain = dma_ops_domain_alloc();
2992 		if (!dma_domain) {
2993 			pr_err("Failed to allocate\n");
2994 			return NULL;
2995 		}
2996 		pdomain = &dma_domain->domain;
2997 		break;
2998 	case IOMMU_DOMAIN_IDENTITY:
2999 		pdomain = protection_domain_alloc();
3000 		if (!pdomain)
3001 			return NULL;
3002 
3003 		pdomain->mode = PAGE_MODE_NONE;
3004 		break;
3005 	default:
3006 		return NULL;
3007 	}
3008 
3009 	return &pdomain->domain;
3010 }
3011 
amd_iommu_domain_free(struct iommu_domain * dom)3012 static void amd_iommu_domain_free(struct iommu_domain *dom)
3013 {
3014 	struct protection_domain *domain;
3015 	struct dma_ops_domain *dma_dom;
3016 
3017 	domain = to_pdomain(dom);
3018 
3019 	if (domain->dev_cnt > 0)
3020 		cleanup_domain(domain);
3021 
3022 	BUG_ON(domain->dev_cnt != 0);
3023 
3024 	if (!dom)
3025 		return;
3026 
3027 	switch (dom->type) {
3028 	case IOMMU_DOMAIN_DMA:
3029 		/* Now release the domain */
3030 		dma_dom = to_dma_ops_domain(domain);
3031 		dma_ops_domain_free(dma_dom);
3032 		break;
3033 	default:
3034 		if (domain->mode != PAGE_MODE_NONE)
3035 			free_pagetable(domain);
3036 
3037 		if (domain->flags & PD_IOMMUV2_MASK)
3038 			free_gcr3_table(domain);
3039 
3040 		protection_domain_free(domain);
3041 		break;
3042 	}
3043 }
3044 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)3045 static void amd_iommu_detach_device(struct iommu_domain *dom,
3046 				    struct device *dev)
3047 {
3048 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3049 	struct amd_iommu *iommu;
3050 	int devid;
3051 
3052 	if (!check_device(dev))
3053 		return;
3054 
3055 	devid = get_device_id(dev);
3056 	if (devid < 0)
3057 		return;
3058 
3059 	if (dev_data->domain != NULL)
3060 		detach_device(dev);
3061 
3062 	iommu = amd_iommu_rlookup_table[devid];
3063 	if (!iommu)
3064 		return;
3065 
3066 #ifdef CONFIG_IRQ_REMAP
3067 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3068 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
3069 		dev_data->use_vapic = 0;
3070 #endif
3071 
3072 	iommu_completion_wait(iommu);
3073 }
3074 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)3075 static int amd_iommu_attach_device(struct iommu_domain *dom,
3076 				   struct device *dev)
3077 {
3078 	struct protection_domain *domain = to_pdomain(dom);
3079 	struct iommu_dev_data *dev_data;
3080 	struct amd_iommu *iommu;
3081 	int ret;
3082 
3083 	if (!check_device(dev))
3084 		return -EINVAL;
3085 
3086 	dev_data = dev->archdata.iommu;
3087 
3088 	iommu = amd_iommu_rlookup_table[dev_data->devid];
3089 	if (!iommu)
3090 		return -EINVAL;
3091 
3092 	if (dev_data->domain)
3093 		detach_device(dev);
3094 
3095 	ret = attach_device(dev, domain);
3096 
3097 #ifdef CONFIG_IRQ_REMAP
3098 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3099 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3100 			dev_data->use_vapic = 1;
3101 		else
3102 			dev_data->use_vapic = 0;
3103 	}
3104 #endif
3105 
3106 	iommu_completion_wait(iommu);
3107 
3108 	return ret;
3109 }
3110 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot)3111 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3112 			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3113 {
3114 	struct protection_domain *domain = to_pdomain(dom);
3115 	int prot = 0;
3116 	int ret;
3117 
3118 	if (domain->mode == PAGE_MODE_NONE)
3119 		return -EINVAL;
3120 
3121 	if (iommu_prot & IOMMU_READ)
3122 		prot |= IOMMU_PROT_IR;
3123 	if (iommu_prot & IOMMU_WRITE)
3124 		prot |= IOMMU_PROT_IW;
3125 
3126 	mutex_lock(&domain->api_lock);
3127 	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3128 	mutex_unlock(&domain->api_lock);
3129 
3130 	domain_flush_np_cache(domain, iova, page_size);
3131 
3132 	return ret;
3133 }
3134 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size,struct iommu_iotlb_gather * gather)3135 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3136 			      size_t page_size,
3137 			      struct iommu_iotlb_gather *gather)
3138 {
3139 	struct protection_domain *domain = to_pdomain(dom);
3140 	size_t unmap_size;
3141 
3142 	if (domain->mode == PAGE_MODE_NONE)
3143 		return 0;
3144 
3145 	mutex_lock(&domain->api_lock);
3146 	unmap_size = iommu_unmap_page(domain, iova, page_size);
3147 	mutex_unlock(&domain->api_lock);
3148 
3149 	return unmap_size;
3150 }
3151 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)3152 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3153 					  dma_addr_t iova)
3154 {
3155 	struct protection_domain *domain = to_pdomain(dom);
3156 	unsigned long offset_mask, pte_pgsize;
3157 	u64 *pte, __pte;
3158 
3159 	if (domain->mode == PAGE_MODE_NONE)
3160 		return iova;
3161 
3162 	pte = fetch_pte(domain, iova, &pte_pgsize);
3163 
3164 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3165 		return 0;
3166 
3167 	offset_mask = pte_pgsize - 1;
3168 	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
3169 
3170 	return (__pte & ~offset_mask) | (iova & offset_mask);
3171 }
3172 
amd_iommu_capable(enum iommu_cap cap)3173 static bool amd_iommu_capable(enum iommu_cap cap)
3174 {
3175 	switch (cap) {
3176 	case IOMMU_CAP_CACHE_COHERENCY:
3177 		return true;
3178 	case IOMMU_CAP_INTR_REMAP:
3179 		return (irq_remapping_enabled == 1);
3180 	case IOMMU_CAP_NOEXEC:
3181 		return false;
3182 	default:
3183 		break;
3184 	}
3185 
3186 	return false;
3187 }
3188 
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)3189 static void amd_iommu_get_resv_regions(struct device *dev,
3190 				       struct list_head *head)
3191 {
3192 	struct iommu_resv_region *region;
3193 	struct unity_map_entry *entry;
3194 	int devid;
3195 
3196 	devid = get_device_id(dev);
3197 	if (devid < 0)
3198 		return;
3199 
3200 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3201 		int type, prot = 0;
3202 		size_t length;
3203 
3204 		if (devid < entry->devid_start || devid > entry->devid_end)
3205 			continue;
3206 
3207 		type   = IOMMU_RESV_DIRECT;
3208 		length = entry->address_end - entry->address_start;
3209 		if (entry->prot & IOMMU_PROT_IR)
3210 			prot |= IOMMU_READ;
3211 		if (entry->prot & IOMMU_PROT_IW)
3212 			prot |= IOMMU_WRITE;
3213 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3214 			/* Exclusion range */
3215 			type = IOMMU_RESV_RESERVED;
3216 
3217 		region = iommu_alloc_resv_region(entry->address_start,
3218 						 length, prot, type);
3219 		if (!region) {
3220 			dev_err(dev, "Out of memory allocating dm-regions\n");
3221 			return;
3222 		}
3223 		list_add_tail(&region->list, head);
3224 	}
3225 
3226 	region = iommu_alloc_resv_region(MSI_RANGE_START,
3227 					 MSI_RANGE_END - MSI_RANGE_START + 1,
3228 					 0, IOMMU_RESV_MSI);
3229 	if (!region)
3230 		return;
3231 	list_add_tail(&region->list, head);
3232 
3233 	region = iommu_alloc_resv_region(HT_RANGE_START,
3234 					 HT_RANGE_END - HT_RANGE_START + 1,
3235 					 0, IOMMU_RESV_RESERVED);
3236 	if (!region)
3237 		return;
3238 	list_add_tail(&region->list, head);
3239 }
3240 
amd_iommu_put_resv_regions(struct device * dev,struct list_head * head)3241 static void amd_iommu_put_resv_regions(struct device *dev,
3242 				     struct list_head *head)
3243 {
3244 	struct iommu_resv_region *entry, *next;
3245 
3246 	list_for_each_entry_safe(entry, next, head, list)
3247 		kfree(entry);
3248 }
3249 
amd_iommu_apply_resv_region(struct device * dev,struct iommu_domain * domain,struct iommu_resv_region * region)3250 static void amd_iommu_apply_resv_region(struct device *dev,
3251 				      struct iommu_domain *domain,
3252 				      struct iommu_resv_region *region)
3253 {
3254 	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3255 	unsigned long start, end;
3256 
3257 	start = IOVA_PFN(region->start);
3258 	end   = IOVA_PFN(region->start + region->length - 1);
3259 
3260 	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3261 }
3262 
amd_iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)3263 static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3264 					 struct device *dev)
3265 {
3266 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3267 	return dev_data->defer_attach;
3268 }
3269 
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)3270 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3271 {
3272 	struct protection_domain *dom = to_pdomain(domain);
3273 	unsigned long flags;
3274 
3275 	spin_lock_irqsave(&dom->lock, flags);
3276 	domain_flush_tlb_pde(dom);
3277 	domain_flush_complete(dom);
3278 	spin_unlock_irqrestore(&dom->lock, flags);
3279 }
3280 
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)3281 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
3282 				 struct iommu_iotlb_gather *gather)
3283 {
3284 	amd_iommu_flush_iotlb_all(domain);
3285 }
3286 
3287 const struct iommu_ops amd_iommu_ops = {
3288 	.capable = amd_iommu_capable,
3289 	.domain_alloc = amd_iommu_domain_alloc,
3290 	.domain_free  = amd_iommu_domain_free,
3291 	.attach_dev = amd_iommu_attach_device,
3292 	.detach_dev = amd_iommu_detach_device,
3293 	.map = amd_iommu_map,
3294 	.unmap = amd_iommu_unmap,
3295 	.iova_to_phys = amd_iommu_iova_to_phys,
3296 	.add_device = amd_iommu_add_device,
3297 	.remove_device = amd_iommu_remove_device,
3298 	.device_group = amd_iommu_device_group,
3299 	.get_resv_regions = amd_iommu_get_resv_regions,
3300 	.put_resv_regions = amd_iommu_put_resv_regions,
3301 	.apply_resv_region = amd_iommu_apply_resv_region,
3302 	.is_attach_deferred = amd_iommu_is_attach_deferred,
3303 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3304 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
3305 	.iotlb_sync = amd_iommu_iotlb_sync,
3306 };
3307 
3308 /*****************************************************************************
3309  *
3310  * The next functions do a basic initialization of IOMMU for pass through
3311  * mode
3312  *
3313  * In passthrough mode the IOMMU is initialized and enabled but not used for
3314  * DMA-API translation.
3315  *
3316  *****************************************************************************/
3317 
3318 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)3319 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3320 {
3321 	return atomic_notifier_chain_register(&ppr_notifier, nb);
3322 }
3323 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3324 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)3325 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3326 {
3327 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3328 }
3329 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3330 
amd_iommu_domain_direct_map(struct iommu_domain * dom)3331 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3332 {
3333 	struct protection_domain *domain = to_pdomain(dom);
3334 	unsigned long flags;
3335 
3336 	spin_lock_irqsave(&domain->lock, flags);
3337 
3338 	/* Update data structure */
3339 	domain->mode    = PAGE_MODE_NONE;
3340 
3341 	/* Make changes visible to IOMMUs */
3342 	update_domain(domain);
3343 
3344 	/* Page-table is not visible to IOMMU anymore, so free it */
3345 	free_pagetable(domain);
3346 
3347 	spin_unlock_irqrestore(&domain->lock, flags);
3348 }
3349 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3350 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)3351 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3352 {
3353 	struct protection_domain *domain = to_pdomain(dom);
3354 	unsigned long flags;
3355 	int levels, ret;
3356 
3357 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3358 		return -EINVAL;
3359 
3360 	/* Number of GCR3 table levels required */
3361 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3362 		levels += 1;
3363 
3364 	if (levels > amd_iommu_max_glx_val)
3365 		return -EINVAL;
3366 
3367 	spin_lock_irqsave(&domain->lock, flags);
3368 
3369 	/*
3370 	 * Save us all sanity checks whether devices already in the
3371 	 * domain support IOMMUv2. Just force that the domain has no
3372 	 * devices attached when it is switched into IOMMUv2 mode.
3373 	 */
3374 	ret = -EBUSY;
3375 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3376 		goto out;
3377 
3378 	ret = -ENOMEM;
3379 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3380 	if (domain->gcr3_tbl == NULL)
3381 		goto out;
3382 
3383 	domain->glx      = levels;
3384 	domain->flags   |= PD_IOMMUV2_MASK;
3385 
3386 	update_domain(domain);
3387 
3388 	ret = 0;
3389 
3390 out:
3391 	spin_unlock_irqrestore(&domain->lock, flags);
3392 
3393 	return ret;
3394 }
3395 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3396 
__flush_pasid(struct protection_domain * domain,int pasid,u64 address,bool size)3397 static int __flush_pasid(struct protection_domain *domain, int pasid,
3398 			 u64 address, bool size)
3399 {
3400 	struct iommu_dev_data *dev_data;
3401 	struct iommu_cmd cmd;
3402 	int i, ret;
3403 
3404 	if (!(domain->flags & PD_IOMMUV2_MASK))
3405 		return -EINVAL;
3406 
3407 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3408 
3409 	/*
3410 	 * IOMMU TLB needs to be flushed before Device TLB to
3411 	 * prevent device TLB refill from IOMMU TLB
3412 	 */
3413 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3414 		if (domain->dev_iommu[i] == 0)
3415 			continue;
3416 
3417 		ret = iommu_queue_command(amd_iommus[i], &cmd);
3418 		if (ret != 0)
3419 			goto out;
3420 	}
3421 
3422 	/* Wait until IOMMU TLB flushes are complete */
3423 	domain_flush_complete(domain);
3424 
3425 	/* Now flush device TLBs */
3426 	list_for_each_entry(dev_data, &domain->dev_list, list) {
3427 		struct amd_iommu *iommu;
3428 		int qdep;
3429 
3430 		/*
3431 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
3432 		 * domain.
3433 		 */
3434 		if (!dev_data->ats.enabled)
3435 			continue;
3436 
3437 		qdep  = dev_data->ats.qdep;
3438 		iommu = amd_iommu_rlookup_table[dev_data->devid];
3439 
3440 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3441 				      qdep, address, size);
3442 
3443 		ret = iommu_queue_command(iommu, &cmd);
3444 		if (ret != 0)
3445 			goto out;
3446 	}
3447 
3448 	/* Wait until all device TLBs are flushed */
3449 	domain_flush_complete(domain);
3450 
3451 	ret = 0;
3452 
3453 out:
3454 
3455 	return ret;
3456 }
3457 
__amd_iommu_flush_page(struct protection_domain * domain,int pasid,u64 address)3458 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3459 				  u64 address)
3460 {
3461 	return __flush_pasid(domain, pasid, address, false);
3462 }
3463 
amd_iommu_flush_page(struct iommu_domain * dom,int pasid,u64 address)3464 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3465 			 u64 address)
3466 {
3467 	struct protection_domain *domain = to_pdomain(dom);
3468 	unsigned long flags;
3469 	int ret;
3470 
3471 	spin_lock_irqsave(&domain->lock, flags);
3472 	ret = __amd_iommu_flush_page(domain, pasid, address);
3473 	spin_unlock_irqrestore(&domain->lock, flags);
3474 
3475 	return ret;
3476 }
3477 EXPORT_SYMBOL(amd_iommu_flush_page);
3478 
__amd_iommu_flush_tlb(struct protection_domain * domain,int pasid)3479 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3480 {
3481 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3482 			     true);
3483 }
3484 
amd_iommu_flush_tlb(struct iommu_domain * dom,int pasid)3485 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3486 {
3487 	struct protection_domain *domain = to_pdomain(dom);
3488 	unsigned long flags;
3489 	int ret;
3490 
3491 	spin_lock_irqsave(&domain->lock, flags);
3492 	ret = __amd_iommu_flush_tlb(domain, pasid);
3493 	spin_unlock_irqrestore(&domain->lock, flags);
3494 
3495 	return ret;
3496 }
3497 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3498 
__get_gcr3_pte(u64 * root,int level,int pasid,bool alloc)3499 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3500 {
3501 	int index;
3502 	u64 *pte;
3503 
3504 	while (true) {
3505 
3506 		index = (pasid >> (9 * level)) & 0x1ff;
3507 		pte   = &root[index];
3508 
3509 		if (level == 0)
3510 			break;
3511 
3512 		if (!(*pte & GCR3_VALID)) {
3513 			if (!alloc)
3514 				return NULL;
3515 
3516 			root = (void *)get_zeroed_page(GFP_ATOMIC);
3517 			if (root == NULL)
3518 				return NULL;
3519 
3520 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3521 		}
3522 
3523 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3524 
3525 		level -= 1;
3526 	}
3527 
3528 	return pte;
3529 }
3530 
__set_gcr3(struct protection_domain * domain,int pasid,unsigned long cr3)3531 static int __set_gcr3(struct protection_domain *domain, int pasid,
3532 		      unsigned long cr3)
3533 {
3534 	u64 *pte;
3535 
3536 	if (domain->mode != PAGE_MODE_NONE)
3537 		return -EINVAL;
3538 
3539 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3540 	if (pte == NULL)
3541 		return -ENOMEM;
3542 
3543 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3544 
3545 	return __amd_iommu_flush_tlb(domain, pasid);
3546 }
3547 
__clear_gcr3(struct protection_domain * domain,int pasid)3548 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3549 {
3550 	u64 *pte;
3551 
3552 	if (domain->mode != PAGE_MODE_NONE)
3553 		return -EINVAL;
3554 
3555 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3556 	if (pte == NULL)
3557 		return 0;
3558 
3559 	*pte = 0;
3560 
3561 	return __amd_iommu_flush_tlb(domain, pasid);
3562 }
3563 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,int pasid,unsigned long cr3)3564 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3565 			      unsigned long cr3)
3566 {
3567 	struct protection_domain *domain = to_pdomain(dom);
3568 	unsigned long flags;
3569 	int ret;
3570 
3571 	spin_lock_irqsave(&domain->lock, flags);
3572 	ret = __set_gcr3(domain, pasid, cr3);
3573 	spin_unlock_irqrestore(&domain->lock, flags);
3574 
3575 	return ret;
3576 }
3577 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3578 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,int pasid)3579 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3580 {
3581 	struct protection_domain *domain = to_pdomain(dom);
3582 	unsigned long flags;
3583 	int ret;
3584 
3585 	spin_lock_irqsave(&domain->lock, flags);
3586 	ret = __clear_gcr3(domain, pasid);
3587 	spin_unlock_irqrestore(&domain->lock, flags);
3588 
3589 	return ret;
3590 }
3591 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3592 
amd_iommu_complete_ppr(struct pci_dev * pdev,int pasid,int status,int tag)3593 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3594 			   int status, int tag)
3595 {
3596 	struct iommu_dev_data *dev_data;
3597 	struct amd_iommu *iommu;
3598 	struct iommu_cmd cmd;
3599 
3600 	dev_data = get_dev_data(&pdev->dev);
3601 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3602 
3603 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3604 			   tag, dev_data->pri_tlp);
3605 
3606 	return iommu_queue_command(iommu, &cmd);
3607 }
3608 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3609 
amd_iommu_get_v2_domain(struct pci_dev * pdev)3610 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3611 {
3612 	struct protection_domain *pdomain;
3613 
3614 	pdomain = get_domain(&pdev->dev);
3615 	if (IS_ERR(pdomain))
3616 		return NULL;
3617 
3618 	/* Only return IOMMUv2 domains */
3619 	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3620 		return NULL;
3621 
3622 	return &pdomain->domain;
3623 }
3624 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3625 
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3626 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3627 {
3628 	struct iommu_dev_data *dev_data;
3629 
3630 	if (!amd_iommu_v2_supported())
3631 		return;
3632 
3633 	dev_data = get_dev_data(&pdev->dev);
3634 	dev_data->errata |= (1 << erratum);
3635 }
3636 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3637 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3638 int amd_iommu_device_info(struct pci_dev *pdev,
3639                           struct amd_iommu_device_info *info)
3640 {
3641 	int max_pasids;
3642 	int pos;
3643 
3644 	if (pdev == NULL || info == NULL)
3645 		return -EINVAL;
3646 
3647 	if (!amd_iommu_v2_supported())
3648 		return -EINVAL;
3649 
3650 	memset(info, 0, sizeof(*info));
3651 
3652 	if (!pci_ats_disabled()) {
3653 		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3654 		if (pos)
3655 			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3656 	}
3657 
3658 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3659 	if (pos)
3660 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3661 
3662 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3663 	if (pos) {
3664 		int features;
3665 
3666 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3667 		max_pasids = min(max_pasids, (1 << 20));
3668 
3669 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3670 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3671 
3672 		features = pci_pasid_features(pdev);
3673 		if (features & PCI_PASID_CAP_EXEC)
3674 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3675 		if (features & PCI_PASID_CAP_PRIV)
3676 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3677 	}
3678 
3679 	return 0;
3680 }
3681 EXPORT_SYMBOL(amd_iommu_device_info);
3682 
3683 #ifdef CONFIG_IRQ_REMAP
3684 
3685 /*****************************************************************************
3686  *
3687  * Interrupt Remapping Implementation
3688  *
3689  *****************************************************************************/
3690 
3691 static struct irq_chip amd_ir_chip;
3692 static DEFINE_SPINLOCK(iommu_table_lock);
3693 
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)3694 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3695 {
3696 	u64 dte;
3697 
3698 	dte	= amd_iommu_dev_table[devid].data[2];
3699 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3700 	dte	|= iommu_virt_to_phys(table->table);
3701 	dte	|= DTE_IRQ_REMAP_INTCTL;
3702 	dte	|= DTE_IRQ_TABLE_LEN;
3703 	dte	|= DTE_IRQ_REMAP_ENABLE;
3704 
3705 	amd_iommu_dev_table[devid].data[2] = dte;
3706 }
3707 
get_irq_table(u16 devid)3708 static struct irq_remap_table *get_irq_table(u16 devid)
3709 {
3710 	struct irq_remap_table *table;
3711 
3712 	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3713 		      "%s: no iommu for devid %x\n", __func__, devid))
3714 		return NULL;
3715 
3716 	table = irq_lookup_table[devid];
3717 	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3718 		return NULL;
3719 
3720 	return table;
3721 }
3722 
__alloc_irq_table(void)3723 static struct irq_remap_table *__alloc_irq_table(void)
3724 {
3725 	struct irq_remap_table *table;
3726 
3727 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3728 	if (!table)
3729 		return NULL;
3730 
3731 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3732 	if (!table->table) {
3733 		kfree(table);
3734 		return NULL;
3735 	}
3736 	raw_spin_lock_init(&table->lock);
3737 
3738 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3739 		memset(table->table, 0,
3740 		       MAX_IRQS_PER_TABLE * sizeof(u32));
3741 	else
3742 		memset(table->table, 0,
3743 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3744 	return table;
3745 }
3746 
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3747 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3748 				  struct irq_remap_table *table)
3749 {
3750 	irq_lookup_table[devid] = table;
3751 	set_dte_irq_entry(devid, table);
3752 	iommu_flush_dte(iommu, devid);
3753 }
3754 
alloc_irq_table(u16 devid)3755 static struct irq_remap_table *alloc_irq_table(u16 devid)
3756 {
3757 	struct irq_remap_table *table = NULL;
3758 	struct irq_remap_table *new_table = NULL;
3759 	struct amd_iommu *iommu;
3760 	unsigned long flags;
3761 	u16 alias;
3762 
3763 	spin_lock_irqsave(&iommu_table_lock, flags);
3764 
3765 	iommu = amd_iommu_rlookup_table[devid];
3766 	if (!iommu)
3767 		goto out_unlock;
3768 
3769 	table = irq_lookup_table[devid];
3770 	if (table)
3771 		goto out_unlock;
3772 
3773 	alias = amd_iommu_alias_table[devid];
3774 	table = irq_lookup_table[alias];
3775 	if (table) {
3776 		set_remap_table_entry(iommu, devid, table);
3777 		goto out_wait;
3778 	}
3779 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3780 
3781 	/* Nothing there yet, allocate new irq remapping table */
3782 	new_table = __alloc_irq_table();
3783 	if (!new_table)
3784 		return NULL;
3785 
3786 	spin_lock_irqsave(&iommu_table_lock, flags);
3787 
3788 	table = irq_lookup_table[devid];
3789 	if (table)
3790 		goto out_unlock;
3791 
3792 	table = irq_lookup_table[alias];
3793 	if (table) {
3794 		set_remap_table_entry(iommu, devid, table);
3795 		goto out_wait;
3796 	}
3797 
3798 	table = new_table;
3799 	new_table = NULL;
3800 
3801 	set_remap_table_entry(iommu, devid, table);
3802 	if (devid != alias)
3803 		set_remap_table_entry(iommu, alias, table);
3804 
3805 out_wait:
3806 	iommu_completion_wait(iommu);
3807 
3808 out_unlock:
3809 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3810 
3811 	if (new_table) {
3812 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3813 		kfree(new_table);
3814 	}
3815 	return table;
3816 }
3817 
alloc_irq_index(u16 devid,int count,bool align)3818 static int alloc_irq_index(u16 devid, int count, bool align)
3819 {
3820 	struct irq_remap_table *table;
3821 	int index, c, alignment = 1;
3822 	unsigned long flags;
3823 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3824 
3825 	if (!iommu)
3826 		return -ENODEV;
3827 
3828 	table = alloc_irq_table(devid);
3829 	if (!table)
3830 		return -ENODEV;
3831 
3832 	if (align)
3833 		alignment = roundup_pow_of_two(count);
3834 
3835 	raw_spin_lock_irqsave(&table->lock, flags);
3836 
3837 	/* Scan table for free entries */
3838 	for (index = ALIGN(table->min_index, alignment), c = 0;
3839 	     index < MAX_IRQS_PER_TABLE;) {
3840 		if (!iommu->irte_ops->is_allocated(table, index)) {
3841 			c += 1;
3842 		} else {
3843 			c     = 0;
3844 			index = ALIGN(index + 1, alignment);
3845 			continue;
3846 		}
3847 
3848 		if (c == count)	{
3849 			for (; c != 0; --c)
3850 				iommu->irte_ops->set_allocated(table, index - c + 1);
3851 
3852 			index -= count - 1;
3853 			goto out;
3854 		}
3855 
3856 		index++;
3857 	}
3858 
3859 	index = -ENOSPC;
3860 
3861 out:
3862 	raw_spin_unlock_irqrestore(&table->lock, flags);
3863 
3864 	return index;
3865 }
3866 
modify_irte_ga(u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)3867 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3868 			  struct amd_ir_data *data)
3869 {
3870 	struct irq_remap_table *table;
3871 	struct amd_iommu *iommu;
3872 	unsigned long flags;
3873 	struct irte_ga *entry;
3874 
3875 	iommu = amd_iommu_rlookup_table[devid];
3876 	if (iommu == NULL)
3877 		return -EINVAL;
3878 
3879 	table = get_irq_table(devid);
3880 	if (!table)
3881 		return -ENOMEM;
3882 
3883 	raw_spin_lock_irqsave(&table->lock, flags);
3884 
3885 	entry = (struct irte_ga *)table->table;
3886 	entry = &entry[index];
3887 	entry->lo.fields_remap.valid = 0;
3888 	entry->hi.val = irte->hi.val;
3889 	entry->lo.val = irte->lo.val;
3890 	entry->lo.fields_remap.valid = 1;
3891 	if (data)
3892 		data->ref = entry;
3893 
3894 	raw_spin_unlock_irqrestore(&table->lock, flags);
3895 
3896 	iommu_flush_irt(iommu, devid);
3897 	iommu_completion_wait(iommu);
3898 
3899 	return 0;
3900 }
3901 
modify_irte(u16 devid,int index,union irte * irte)3902 static int modify_irte(u16 devid, int index, union irte *irte)
3903 {
3904 	struct irq_remap_table *table;
3905 	struct amd_iommu *iommu;
3906 	unsigned long flags;
3907 
3908 	iommu = amd_iommu_rlookup_table[devid];
3909 	if (iommu == NULL)
3910 		return -EINVAL;
3911 
3912 	table = get_irq_table(devid);
3913 	if (!table)
3914 		return -ENOMEM;
3915 
3916 	raw_spin_lock_irqsave(&table->lock, flags);
3917 	table->table[index] = irte->val;
3918 	raw_spin_unlock_irqrestore(&table->lock, flags);
3919 
3920 	iommu_flush_irt(iommu, devid);
3921 	iommu_completion_wait(iommu);
3922 
3923 	return 0;
3924 }
3925 
free_irte(u16 devid,int index)3926 static void free_irte(u16 devid, int index)
3927 {
3928 	struct irq_remap_table *table;
3929 	struct amd_iommu *iommu;
3930 	unsigned long flags;
3931 
3932 	iommu = amd_iommu_rlookup_table[devid];
3933 	if (iommu == NULL)
3934 		return;
3935 
3936 	table = get_irq_table(devid);
3937 	if (!table)
3938 		return;
3939 
3940 	raw_spin_lock_irqsave(&table->lock, flags);
3941 	iommu->irte_ops->clear_allocated(table, index);
3942 	raw_spin_unlock_irqrestore(&table->lock, flags);
3943 
3944 	iommu_flush_irt(iommu, devid);
3945 	iommu_completion_wait(iommu);
3946 }
3947 
irte_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3948 static void irte_prepare(void *entry,
3949 			 u32 delivery_mode, u32 dest_mode,
3950 			 u8 vector, u32 dest_apicid, int devid)
3951 {
3952 	union irte *irte = (union irte *) entry;
3953 
3954 	irte->val                = 0;
3955 	irte->fields.vector      = vector;
3956 	irte->fields.int_type    = delivery_mode;
3957 	irte->fields.destination = dest_apicid;
3958 	irte->fields.dm          = dest_mode;
3959 	irte->fields.valid       = 1;
3960 }
3961 
irte_ga_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3962 static void irte_ga_prepare(void *entry,
3963 			    u32 delivery_mode, u32 dest_mode,
3964 			    u8 vector, u32 dest_apicid, int devid)
3965 {
3966 	struct irte_ga *irte = (struct irte_ga *) entry;
3967 
3968 	irte->lo.val                      = 0;
3969 	irte->hi.val                      = 0;
3970 	irte->lo.fields_remap.int_type    = delivery_mode;
3971 	irte->lo.fields_remap.dm          = dest_mode;
3972 	irte->hi.fields.vector            = vector;
3973 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3974 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3975 	irte->lo.fields_remap.valid       = 1;
3976 }
3977 
irte_activate(void * entry,u16 devid,u16 index)3978 static void irte_activate(void *entry, u16 devid, u16 index)
3979 {
3980 	union irte *irte = (union irte *) entry;
3981 
3982 	irte->fields.valid = 1;
3983 	modify_irte(devid, index, irte);
3984 }
3985 
irte_ga_activate(void * entry,u16 devid,u16 index)3986 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3987 {
3988 	struct irte_ga *irte = (struct irte_ga *) entry;
3989 
3990 	irte->lo.fields_remap.valid = 1;
3991 	modify_irte_ga(devid, index, irte, NULL);
3992 }
3993 
irte_deactivate(void * entry,u16 devid,u16 index)3994 static void irte_deactivate(void *entry, u16 devid, u16 index)
3995 {
3996 	union irte *irte = (union irte *) entry;
3997 
3998 	irte->fields.valid = 0;
3999 	modify_irte(devid, index, irte);
4000 }
4001 
irte_ga_deactivate(void * entry,u16 devid,u16 index)4002 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
4003 {
4004 	struct irte_ga *irte = (struct irte_ga *) entry;
4005 
4006 	irte->lo.fields_remap.valid = 0;
4007 	modify_irte_ga(devid, index, irte, NULL);
4008 }
4009 
irte_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)4010 static void irte_set_affinity(void *entry, u16 devid, u16 index,
4011 			      u8 vector, u32 dest_apicid)
4012 {
4013 	union irte *irte = (union irte *) entry;
4014 
4015 	irte->fields.vector = vector;
4016 	irte->fields.destination = dest_apicid;
4017 	modify_irte(devid, index, irte);
4018 }
4019 
irte_ga_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)4020 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
4021 				 u8 vector, u32 dest_apicid)
4022 {
4023 	struct irte_ga *irte = (struct irte_ga *) entry;
4024 
4025 	if (!irte->lo.fields_remap.guest_mode) {
4026 		irte->hi.fields.vector = vector;
4027 		irte->lo.fields_remap.destination =
4028 					APICID_TO_IRTE_DEST_LO(dest_apicid);
4029 		irte->hi.fields.destination =
4030 					APICID_TO_IRTE_DEST_HI(dest_apicid);
4031 		modify_irte_ga(devid, index, irte, NULL);
4032 	}
4033 }
4034 
4035 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)4036 static void irte_set_allocated(struct irq_remap_table *table, int index)
4037 {
4038 	table->table[index] = IRTE_ALLOCATED;
4039 }
4040 
irte_ga_set_allocated(struct irq_remap_table * table,int index)4041 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
4042 {
4043 	struct irte_ga *ptr = (struct irte_ga *)table->table;
4044 	struct irte_ga *irte = &ptr[index];
4045 
4046 	memset(&irte->lo.val, 0, sizeof(u64));
4047 	memset(&irte->hi.val, 0, sizeof(u64));
4048 	irte->hi.fields.vector = 0xff;
4049 }
4050 
irte_is_allocated(struct irq_remap_table * table,int index)4051 static bool irte_is_allocated(struct irq_remap_table *table, int index)
4052 {
4053 	union irte *ptr = (union irte *)table->table;
4054 	union irte *irte = &ptr[index];
4055 
4056 	return irte->val != 0;
4057 }
4058 
irte_ga_is_allocated(struct irq_remap_table * table,int index)4059 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4060 {
4061 	struct irte_ga *ptr = (struct irte_ga *)table->table;
4062 	struct irte_ga *irte = &ptr[index];
4063 
4064 	return irte->hi.fields.vector != 0;
4065 }
4066 
irte_clear_allocated(struct irq_remap_table * table,int index)4067 static void irte_clear_allocated(struct irq_remap_table *table, int index)
4068 {
4069 	table->table[index] = 0;
4070 }
4071 
irte_ga_clear_allocated(struct irq_remap_table * table,int index)4072 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4073 {
4074 	struct irte_ga *ptr = (struct irte_ga *)table->table;
4075 	struct irte_ga *irte = &ptr[index];
4076 
4077 	memset(&irte->lo.val, 0, sizeof(u64));
4078 	memset(&irte->hi.val, 0, sizeof(u64));
4079 }
4080 
get_devid(struct irq_alloc_info * info)4081 static int get_devid(struct irq_alloc_info *info)
4082 {
4083 	int devid = -1;
4084 
4085 	switch (info->type) {
4086 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
4087 		devid     = get_ioapic_devid(info->ioapic_id);
4088 		break;
4089 	case X86_IRQ_ALLOC_TYPE_HPET:
4090 		devid     = get_hpet_devid(info->hpet_id);
4091 		break;
4092 	case X86_IRQ_ALLOC_TYPE_MSI:
4093 	case X86_IRQ_ALLOC_TYPE_MSIX:
4094 		devid = get_device_id(&info->msi_dev->dev);
4095 		break;
4096 	default:
4097 		BUG_ON(1);
4098 		break;
4099 	}
4100 
4101 	return devid;
4102 }
4103 
get_ir_irq_domain(struct irq_alloc_info * info)4104 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4105 {
4106 	struct amd_iommu *iommu;
4107 	int devid;
4108 
4109 	if (!info)
4110 		return NULL;
4111 
4112 	devid = get_devid(info);
4113 	if (devid >= 0) {
4114 		iommu = amd_iommu_rlookup_table[devid];
4115 		if (iommu)
4116 			return iommu->ir_domain;
4117 	}
4118 
4119 	return NULL;
4120 }
4121 
get_irq_domain(struct irq_alloc_info * info)4122 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4123 {
4124 	struct amd_iommu *iommu;
4125 	int devid;
4126 
4127 	if (!info)
4128 		return NULL;
4129 
4130 	switch (info->type) {
4131 	case X86_IRQ_ALLOC_TYPE_MSI:
4132 	case X86_IRQ_ALLOC_TYPE_MSIX:
4133 		devid = get_device_id(&info->msi_dev->dev);
4134 		if (devid < 0)
4135 			return NULL;
4136 
4137 		iommu = amd_iommu_rlookup_table[devid];
4138 		if (iommu)
4139 			return iommu->msi_domain;
4140 		break;
4141 	default:
4142 		break;
4143 	}
4144 
4145 	return NULL;
4146 }
4147 
4148 struct irq_remap_ops amd_iommu_irq_ops = {
4149 	.prepare		= amd_iommu_prepare,
4150 	.enable			= amd_iommu_enable,
4151 	.disable		= amd_iommu_disable,
4152 	.reenable		= amd_iommu_reenable,
4153 	.enable_faulting	= amd_iommu_enable_faulting,
4154 	.get_ir_irq_domain	= get_ir_irq_domain,
4155 	.get_irq_domain		= get_irq_domain,
4156 };
4157 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)4158 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4159 				       struct irq_cfg *irq_cfg,
4160 				       struct irq_alloc_info *info,
4161 				       int devid, int index, int sub_handle)
4162 {
4163 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4164 	struct msi_msg *msg = &data->msi_entry;
4165 	struct IO_APIC_route_entry *entry;
4166 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4167 
4168 	if (!iommu)
4169 		return;
4170 
4171 	data->irq_2_irte.devid = devid;
4172 	data->irq_2_irte.index = index + sub_handle;
4173 	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4174 				 apic->irq_dest_mode, irq_cfg->vector,
4175 				 irq_cfg->dest_apicid, devid);
4176 
4177 	switch (info->type) {
4178 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
4179 		/* Setup IOAPIC entry */
4180 		entry = info->ioapic_entry;
4181 		info->ioapic_entry = NULL;
4182 		memset(entry, 0, sizeof(*entry));
4183 		entry->vector        = index;
4184 		entry->mask          = 0;
4185 		entry->trigger       = info->ioapic_trigger;
4186 		entry->polarity      = info->ioapic_polarity;
4187 		/* Mask level triggered irqs. */
4188 		if (info->ioapic_trigger)
4189 			entry->mask = 1;
4190 		break;
4191 
4192 	case X86_IRQ_ALLOC_TYPE_HPET:
4193 	case X86_IRQ_ALLOC_TYPE_MSI:
4194 	case X86_IRQ_ALLOC_TYPE_MSIX:
4195 		msg->address_hi = MSI_ADDR_BASE_HI;
4196 		msg->address_lo = MSI_ADDR_BASE_LO;
4197 		msg->data = irte_info->index;
4198 		break;
4199 
4200 	default:
4201 		BUG_ON(1);
4202 		break;
4203 	}
4204 }
4205 
4206 struct amd_irte_ops irte_32_ops = {
4207 	.prepare = irte_prepare,
4208 	.activate = irte_activate,
4209 	.deactivate = irte_deactivate,
4210 	.set_affinity = irte_set_affinity,
4211 	.set_allocated = irte_set_allocated,
4212 	.is_allocated = irte_is_allocated,
4213 	.clear_allocated = irte_clear_allocated,
4214 };
4215 
4216 struct amd_irte_ops irte_128_ops = {
4217 	.prepare = irte_ga_prepare,
4218 	.activate = irte_ga_activate,
4219 	.deactivate = irte_ga_deactivate,
4220 	.set_affinity = irte_ga_set_affinity,
4221 	.set_allocated = irte_ga_set_allocated,
4222 	.is_allocated = irte_ga_is_allocated,
4223 	.clear_allocated = irte_ga_clear_allocated,
4224 };
4225 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)4226 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4227 			       unsigned int nr_irqs, void *arg)
4228 {
4229 	struct irq_alloc_info *info = arg;
4230 	struct irq_data *irq_data;
4231 	struct amd_ir_data *data = NULL;
4232 	struct irq_cfg *cfg;
4233 	int i, ret, devid;
4234 	int index;
4235 
4236 	if (!info)
4237 		return -EINVAL;
4238 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4239 	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4240 		return -EINVAL;
4241 
4242 	/*
4243 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
4244 	 * to support multiple MSI interrupts.
4245 	 */
4246 	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4247 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4248 
4249 	devid = get_devid(info);
4250 	if (devid < 0)
4251 		return -EINVAL;
4252 
4253 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4254 	if (ret < 0)
4255 		return ret;
4256 
4257 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4258 		struct irq_remap_table *table;
4259 		struct amd_iommu *iommu;
4260 
4261 		table = alloc_irq_table(devid);
4262 		if (table) {
4263 			if (!table->min_index) {
4264 				/*
4265 				 * Keep the first 32 indexes free for IOAPIC
4266 				 * interrupts.
4267 				 */
4268 				table->min_index = 32;
4269 				iommu = amd_iommu_rlookup_table[devid];
4270 				for (i = 0; i < 32; ++i)
4271 					iommu->irte_ops->set_allocated(table, i);
4272 			}
4273 			WARN_ON(table->min_index != 32);
4274 			index = info->ioapic_pin;
4275 		} else {
4276 			index = -ENOMEM;
4277 		}
4278 	} else {
4279 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4280 
4281 		index = alloc_irq_index(devid, nr_irqs, align);
4282 	}
4283 	if (index < 0) {
4284 		pr_warn("Failed to allocate IRTE\n");
4285 		ret = index;
4286 		goto out_free_parent;
4287 	}
4288 
4289 	for (i = 0; i < nr_irqs; i++) {
4290 		irq_data = irq_domain_get_irq_data(domain, virq + i);
4291 		cfg = irqd_cfg(irq_data);
4292 		if (!irq_data || !cfg) {
4293 			ret = -EINVAL;
4294 			goto out_free_data;
4295 		}
4296 
4297 		ret = -ENOMEM;
4298 		data = kzalloc(sizeof(*data), GFP_KERNEL);
4299 		if (!data)
4300 			goto out_free_data;
4301 
4302 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4303 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4304 		else
4305 			data->entry = kzalloc(sizeof(struct irte_ga),
4306 						     GFP_KERNEL);
4307 		if (!data->entry) {
4308 			kfree(data);
4309 			goto out_free_data;
4310 		}
4311 
4312 		irq_data->hwirq = (devid << 16) + i;
4313 		irq_data->chip_data = data;
4314 		irq_data->chip = &amd_ir_chip;
4315 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4316 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4317 	}
4318 
4319 	return 0;
4320 
4321 out_free_data:
4322 	for (i--; i >= 0; i--) {
4323 		irq_data = irq_domain_get_irq_data(domain, virq + i);
4324 		if (irq_data)
4325 			kfree(irq_data->chip_data);
4326 	}
4327 	for (i = 0; i < nr_irqs; i++)
4328 		free_irte(devid, index + i);
4329 out_free_parent:
4330 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
4331 	return ret;
4332 }
4333 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4334 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4335 			       unsigned int nr_irqs)
4336 {
4337 	struct irq_2_irte *irte_info;
4338 	struct irq_data *irq_data;
4339 	struct amd_ir_data *data;
4340 	int i;
4341 
4342 	for (i = 0; i < nr_irqs; i++) {
4343 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
4344 		if (irq_data && irq_data->chip_data) {
4345 			data = irq_data->chip_data;
4346 			irte_info = &data->irq_2_irte;
4347 			free_irte(irte_info->devid, irte_info->index);
4348 			kfree(data->entry);
4349 			kfree(data);
4350 		}
4351 	}
4352 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
4353 }
4354 
4355 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4356 			       struct amd_ir_data *ir_data,
4357 			       struct irq_2_irte *irte_info,
4358 			       struct irq_cfg *cfg);
4359 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)4360 static int irq_remapping_activate(struct irq_domain *domain,
4361 				  struct irq_data *irq_data, bool reserve)
4362 {
4363 	struct amd_ir_data *data = irq_data->chip_data;
4364 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4365 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4366 	struct irq_cfg *cfg = irqd_cfg(irq_data);
4367 
4368 	if (!iommu)
4369 		return 0;
4370 
4371 	iommu->irte_ops->activate(data->entry, irte_info->devid,
4372 				  irte_info->index);
4373 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4374 	return 0;
4375 }
4376 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)4377 static void irq_remapping_deactivate(struct irq_domain *domain,
4378 				     struct irq_data *irq_data)
4379 {
4380 	struct amd_ir_data *data = irq_data->chip_data;
4381 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4382 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4383 
4384 	if (iommu)
4385 		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4386 					    irte_info->index);
4387 }
4388 
4389 static const struct irq_domain_ops amd_ir_domain_ops = {
4390 	.alloc = irq_remapping_alloc,
4391 	.free = irq_remapping_free,
4392 	.activate = irq_remapping_activate,
4393 	.deactivate = irq_remapping_deactivate,
4394 };
4395 
amd_iommu_activate_guest_mode(void * data)4396 int amd_iommu_activate_guest_mode(void *data)
4397 {
4398 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4399 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4400 
4401 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4402 	    !entry || entry->lo.fields_vapic.guest_mode)
4403 		return 0;
4404 
4405 	entry->lo.val = 0;
4406 	entry->hi.val = 0;
4407 
4408 	entry->lo.fields_vapic.guest_mode  = 1;
4409 	entry->lo.fields_vapic.ga_log_intr = 1;
4410 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
4411 	entry->hi.fields.vector            = ir_data->ga_vector;
4412 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
4413 
4414 	return modify_irte_ga(ir_data->irq_2_irte.devid,
4415 			      ir_data->irq_2_irte.index, entry, NULL);
4416 }
4417 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
4418 
amd_iommu_deactivate_guest_mode(void * data)4419 int amd_iommu_deactivate_guest_mode(void *data)
4420 {
4421 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4422 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4423 	struct irq_cfg *cfg = ir_data->cfg;
4424 
4425 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4426 	    !entry || !entry->lo.fields_vapic.guest_mode)
4427 		return 0;
4428 
4429 	entry->lo.val = 0;
4430 	entry->hi.val = 0;
4431 
4432 	entry->lo.fields_remap.dm          = apic->irq_dest_mode;
4433 	entry->lo.fields_remap.int_type    = apic->irq_delivery_mode;
4434 	entry->hi.fields.vector            = cfg->vector;
4435 	entry->lo.fields_remap.destination =
4436 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4437 	entry->hi.fields.destination =
4438 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4439 
4440 	return modify_irte_ga(ir_data->irq_2_irte.devid,
4441 			      ir_data->irq_2_irte.index, entry, NULL);
4442 }
4443 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
4444 
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)4445 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4446 {
4447 	int ret;
4448 	struct amd_iommu *iommu;
4449 	struct amd_iommu_pi_data *pi_data = vcpu_info;
4450 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4451 	struct amd_ir_data *ir_data = data->chip_data;
4452 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4453 	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4454 
4455 	/* Note:
4456 	 * This device has never been set up for guest mode.
4457 	 * we should not modify the IRTE
4458 	 */
4459 	if (!dev_data || !dev_data->use_vapic)
4460 		return 0;
4461 
4462 	ir_data->cfg = irqd_cfg(data);
4463 	pi_data->ir_data = ir_data;
4464 
4465 	/* Note:
4466 	 * SVM tries to set up for VAPIC mode, but we are in
4467 	 * legacy mode. So, we force legacy mode instead.
4468 	 */
4469 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4470 		pr_debug("%s: Fall back to using intr legacy remap\n",
4471 			 __func__);
4472 		pi_data->is_guest_mode = false;
4473 	}
4474 
4475 	iommu = amd_iommu_rlookup_table[irte_info->devid];
4476 	if (iommu == NULL)
4477 		return -EINVAL;
4478 
4479 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4480 	if (pi_data->is_guest_mode) {
4481 		ir_data->ga_root_ptr = (pi_data->base >> 12);
4482 		ir_data->ga_vector = vcpu_pi_info->vector;
4483 		ir_data->ga_tag = pi_data->ga_tag;
4484 		ret = amd_iommu_activate_guest_mode(ir_data);
4485 		if (!ret)
4486 			ir_data->cached_ga_tag = pi_data->ga_tag;
4487 	} else {
4488 		ret = amd_iommu_deactivate_guest_mode(ir_data);
4489 
4490 		/*
4491 		 * This communicates the ga_tag back to the caller
4492 		 * so that it can do all the necessary clean up.
4493 		 */
4494 		if (!ret)
4495 			ir_data->cached_ga_tag = 0;
4496 	}
4497 
4498 	return ret;
4499 }
4500 
4501 
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)4502 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4503 			       struct amd_ir_data *ir_data,
4504 			       struct irq_2_irte *irte_info,
4505 			       struct irq_cfg *cfg)
4506 {
4507 
4508 	/*
4509 	 * Atomically updates the IRTE with the new destination, vector
4510 	 * and flushes the interrupt entry cache.
4511 	 */
4512 	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4513 				      irte_info->index, cfg->vector,
4514 				      cfg->dest_apicid);
4515 }
4516 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4517 static int amd_ir_set_affinity(struct irq_data *data,
4518 			       const struct cpumask *mask, bool force)
4519 {
4520 	struct amd_ir_data *ir_data = data->chip_data;
4521 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4522 	struct irq_cfg *cfg = irqd_cfg(data);
4523 	struct irq_data *parent = data->parent_data;
4524 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4525 	int ret;
4526 
4527 	if (!iommu)
4528 		return -ENODEV;
4529 
4530 	ret = parent->chip->irq_set_affinity(parent, mask, force);
4531 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4532 		return ret;
4533 
4534 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4535 	/*
4536 	 * After this point, all the interrupts will start arriving
4537 	 * at the new destination. So, time to cleanup the previous
4538 	 * vector allocation.
4539 	 */
4540 	send_cleanup_vector(cfg);
4541 
4542 	return IRQ_SET_MASK_OK_DONE;
4543 }
4544 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4545 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4546 {
4547 	struct amd_ir_data *ir_data = irq_data->chip_data;
4548 
4549 	*msg = ir_data->msi_entry;
4550 }
4551 
4552 static struct irq_chip amd_ir_chip = {
4553 	.name			= "AMD-IR",
4554 	.irq_ack		= apic_ack_irq,
4555 	.irq_set_affinity	= amd_ir_set_affinity,
4556 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
4557 	.irq_compose_msi_msg	= ir_compose_msi_msg,
4558 };
4559 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4560 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4561 {
4562 	struct fwnode_handle *fn;
4563 
4564 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4565 	if (!fn)
4566 		return -ENOMEM;
4567 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4568 	irq_domain_free_fwnode(fn);
4569 	if (!iommu->ir_domain)
4570 		return -ENOMEM;
4571 
4572 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4573 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4574 							     "AMD-IR-MSI",
4575 							     iommu->index);
4576 	return 0;
4577 }
4578 
amd_iommu_update_ga(int cpu,bool is_run,void * data)4579 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4580 {
4581 	unsigned long flags;
4582 	struct amd_iommu *iommu;
4583 	struct irq_remap_table *table;
4584 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4585 	int devid = ir_data->irq_2_irte.devid;
4586 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4587 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4588 
4589 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4590 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4591 		return 0;
4592 
4593 	iommu = amd_iommu_rlookup_table[devid];
4594 	if (!iommu)
4595 		return -ENODEV;
4596 
4597 	table = get_irq_table(devid);
4598 	if (!table)
4599 		return -ENODEV;
4600 
4601 	raw_spin_lock_irqsave(&table->lock, flags);
4602 
4603 	if (ref->lo.fields_vapic.guest_mode) {
4604 		if (cpu >= 0) {
4605 			ref->lo.fields_vapic.destination =
4606 						APICID_TO_IRTE_DEST_LO(cpu);
4607 			ref->hi.fields.destination =
4608 						APICID_TO_IRTE_DEST_HI(cpu);
4609 		}
4610 		ref->lo.fields_vapic.is_run = is_run;
4611 		barrier();
4612 	}
4613 
4614 	raw_spin_unlock_irqrestore(&table->lock, flags);
4615 
4616 	iommu_flush_irt(iommu, devid);
4617 	iommu_completion_wait(iommu);
4618 	return 0;
4619 }
4620 EXPORT_SYMBOL(amd_iommu_update_ga);
4621 #endif
4622