1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21
22 #include "../internal.h"
23
24 /*
25 * Structure allocated for each page or THP when block size < page size
26 * to track sub-page uptodate status and I/O completions.
27 */
28 struct iomap_page {
29 atomic_t read_bytes_pending;
30 atomic_t write_bytes_pending;
31 spinlock_t uptodate_lock;
32 unsigned long uptodate[];
33 };
34
to_iomap_page(struct page * page)35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 /*
38 * per-block data is stored in the head page. Callers should
39 * not be dealing with tail pages (and if they are, they can
40 * call thp_head() first.
41 */
42 VM_BUG_ON_PGFLAGS(PageTail(page), page);
43
44 if (page_has_private(page))
45 return (struct iomap_page *)page_private(page);
46 return NULL;
47 }
48
49 static struct bio_set iomap_ioend_bioset;
50
51 static struct iomap_page *
iomap_page_create(struct inode * inode,struct page * page)52 iomap_page_create(struct inode *inode, struct page *page)
53 {
54 struct iomap_page *iop = to_iomap_page(page);
55 unsigned int nr_blocks = i_blocks_per_page(inode, page);
56
57 if (iop || nr_blocks <= 1)
58 return iop;
59
60 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
61 GFP_NOFS | __GFP_NOFAIL);
62 spin_lock_init(&iop->uptodate_lock);
63 if (PageUptodate(page))
64 bitmap_fill(iop->uptodate, nr_blocks);
65 attach_page_private(page, iop);
66 return iop;
67 }
68
69 static void
iomap_page_release(struct page * page)70 iomap_page_release(struct page *page)
71 {
72 struct iomap_page *iop = detach_page_private(page);
73 unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
74
75 if (!iop)
76 return;
77 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
78 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
79 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
80 PageUptodate(page));
81 kfree(iop);
82 }
83
84 /*
85 * Calculate the range inside the page that we actually need to read.
86 */
87 static void
iomap_adjust_read_range(struct inode * inode,struct iomap_page * iop,loff_t * pos,loff_t length,unsigned * offp,unsigned * lenp)88 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
89 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
90 {
91 loff_t orig_pos = *pos;
92 loff_t isize = i_size_read(inode);
93 unsigned block_bits = inode->i_blkbits;
94 unsigned block_size = (1 << block_bits);
95 unsigned poff = offset_in_page(*pos);
96 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
97 unsigned first = poff >> block_bits;
98 unsigned last = (poff + plen - 1) >> block_bits;
99
100 /*
101 * If the block size is smaller than the page size we need to check the
102 * per-block uptodate status and adjust the offset and length if needed
103 * to avoid reading in already uptodate ranges.
104 */
105 if (iop) {
106 unsigned int i;
107
108 /* move forward for each leading block marked uptodate */
109 for (i = first; i <= last; i++) {
110 if (!test_bit(i, iop->uptodate))
111 break;
112 *pos += block_size;
113 poff += block_size;
114 plen -= block_size;
115 first++;
116 }
117
118 /* truncate len if we find any trailing uptodate block(s) */
119 for ( ; i <= last; i++) {
120 if (test_bit(i, iop->uptodate)) {
121 plen -= (last - i + 1) * block_size;
122 last = i - 1;
123 break;
124 }
125 }
126 }
127
128 /*
129 * If the extent spans the block that contains the i_size we need to
130 * handle both halves separately so that we properly zero data in the
131 * page cache for blocks that are entirely outside of i_size.
132 */
133 if (orig_pos <= isize && orig_pos + length > isize) {
134 unsigned end = offset_in_page(isize - 1) >> block_bits;
135
136 if (first <= end && last > end)
137 plen -= (last - end) * block_size;
138 }
139
140 *offp = poff;
141 *lenp = plen;
142 }
143
144 static void
iomap_iop_set_range_uptodate(struct page * page,unsigned off,unsigned len)145 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
146 {
147 struct iomap_page *iop = to_iomap_page(page);
148 struct inode *inode = page->mapping->host;
149 unsigned first = off >> inode->i_blkbits;
150 unsigned last = (off + len - 1) >> inode->i_blkbits;
151 unsigned long flags;
152
153 spin_lock_irqsave(&iop->uptodate_lock, flags);
154 bitmap_set(iop->uptodate, first, last - first + 1);
155 if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
156 SetPageUptodate(page);
157 spin_unlock_irqrestore(&iop->uptodate_lock, flags);
158 }
159
160 static void
iomap_set_range_uptodate(struct page * page,unsigned off,unsigned len)161 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
162 {
163 if (PageError(page))
164 return;
165
166 if (page_has_private(page))
167 iomap_iop_set_range_uptodate(page, off, len);
168 else
169 SetPageUptodate(page);
170 }
171
172 static void
iomap_read_page_end_io(struct bio_vec * bvec,int error)173 iomap_read_page_end_io(struct bio_vec *bvec, int error)
174 {
175 struct page *page = bvec->bv_page;
176 struct iomap_page *iop = to_iomap_page(page);
177
178 if (unlikely(error)) {
179 ClearPageUptodate(page);
180 SetPageError(page);
181 } else {
182 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
183 }
184
185 if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
186 unlock_page(page);
187 }
188
189 static void
iomap_read_end_io(struct bio * bio)190 iomap_read_end_io(struct bio *bio)
191 {
192 int error = blk_status_to_errno(bio->bi_status);
193 struct bio_vec *bvec;
194 struct bvec_iter_all iter_all;
195
196 bio_for_each_segment_all(bvec, bio, iter_all)
197 iomap_read_page_end_io(bvec, error);
198 bio_put(bio);
199 }
200
201 struct iomap_readpage_ctx {
202 struct page *cur_page;
203 bool cur_page_in_bio;
204 struct bio *bio;
205 struct readahead_control *rac;
206 };
207
208 static void
iomap_read_inline_data(struct inode * inode,struct page * page,struct iomap * iomap)209 iomap_read_inline_data(struct inode *inode, struct page *page,
210 struct iomap *iomap)
211 {
212 size_t size = i_size_read(inode);
213 void *addr;
214
215 if (PageUptodate(page))
216 return;
217
218 BUG_ON(page->index);
219 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
220
221 addr = kmap_atomic(page);
222 memcpy(addr, iomap->inline_data, size);
223 memset(addr + size, 0, PAGE_SIZE - size);
224 kunmap_atomic(addr);
225 SetPageUptodate(page);
226 }
227
iomap_block_needs_zeroing(struct inode * inode,struct iomap * iomap,loff_t pos)228 static inline bool iomap_block_needs_zeroing(struct inode *inode,
229 struct iomap *iomap, loff_t pos)
230 {
231 return iomap->type != IOMAP_MAPPED ||
232 (iomap->flags & IOMAP_F_NEW) ||
233 pos >= i_size_read(inode);
234 }
235
236 static loff_t
iomap_readpage_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)237 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
238 struct iomap *iomap, struct iomap *srcmap)
239 {
240 struct iomap_readpage_ctx *ctx = data;
241 struct page *page = ctx->cur_page;
242 struct iomap_page *iop = iomap_page_create(inode, page);
243 bool same_page = false, is_contig = false;
244 loff_t orig_pos = pos;
245 unsigned poff, plen;
246 sector_t sector;
247
248 if (iomap->type == IOMAP_INLINE) {
249 WARN_ON_ONCE(pos);
250 iomap_read_inline_data(inode, page, iomap);
251 return PAGE_SIZE;
252 }
253
254 /* zero post-eof blocks as the page may be mapped */
255 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
256 if (plen == 0)
257 goto done;
258
259 if (iomap_block_needs_zeroing(inode, iomap, pos)) {
260 zero_user(page, poff, plen);
261 iomap_set_range_uptodate(page, poff, plen);
262 goto done;
263 }
264
265 ctx->cur_page_in_bio = true;
266 if (iop)
267 atomic_add(plen, &iop->read_bytes_pending);
268
269 /* Try to merge into a previous segment if we can */
270 sector = iomap_sector(iomap, pos);
271 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
272 if (__bio_try_merge_page(ctx->bio, page, plen, poff,
273 &same_page))
274 goto done;
275 is_contig = true;
276 }
277
278 if (!is_contig || bio_full(ctx->bio, plen)) {
279 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
280 gfp_t orig_gfp = gfp;
281 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
282
283 if (ctx->bio)
284 submit_bio(ctx->bio);
285
286 if (ctx->rac) /* same as readahead_gfp_mask */
287 gfp |= __GFP_NORETRY | __GFP_NOWARN;
288 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
289 /*
290 * If the bio_alloc fails, try it again for a single page to
291 * avoid having to deal with partial page reads. This emulates
292 * what do_mpage_readpage does.
293 */
294 if (!ctx->bio)
295 ctx->bio = bio_alloc(orig_gfp, 1);
296 ctx->bio->bi_opf = REQ_OP_READ;
297 if (ctx->rac)
298 ctx->bio->bi_opf |= REQ_RAHEAD;
299 ctx->bio->bi_iter.bi_sector = sector;
300 bio_set_dev(ctx->bio, iomap->bdev);
301 ctx->bio->bi_end_io = iomap_read_end_io;
302 }
303
304 bio_add_page(ctx->bio, page, plen, poff);
305 done:
306 /*
307 * Move the caller beyond our range so that it keeps making progress.
308 * For that we have to include any leading non-uptodate ranges, but
309 * we can skip trailing ones as they will be handled in the next
310 * iteration.
311 */
312 return pos - orig_pos + plen;
313 }
314
315 int
iomap_readpage(struct page * page,const struct iomap_ops * ops)316 iomap_readpage(struct page *page, const struct iomap_ops *ops)
317 {
318 struct iomap_readpage_ctx ctx = { .cur_page = page };
319 struct inode *inode = page->mapping->host;
320 unsigned poff;
321 loff_t ret;
322
323 trace_iomap_readpage(page->mapping->host, 1);
324
325 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
326 ret = iomap_apply(inode, page_offset(page) + poff,
327 PAGE_SIZE - poff, 0, ops, &ctx,
328 iomap_readpage_actor);
329 if (ret <= 0) {
330 WARN_ON_ONCE(ret == 0);
331 SetPageError(page);
332 break;
333 }
334 }
335
336 if (ctx.bio) {
337 submit_bio(ctx.bio);
338 WARN_ON_ONCE(!ctx.cur_page_in_bio);
339 } else {
340 WARN_ON_ONCE(ctx.cur_page_in_bio);
341 unlock_page(page);
342 }
343
344 /*
345 * Just like mpage_readahead and block_read_full_page we always
346 * return 0 and just mark the page as PageError on errors. This
347 * should be cleaned up all through the stack eventually.
348 */
349 return 0;
350 }
351 EXPORT_SYMBOL_GPL(iomap_readpage);
352
353 static loff_t
iomap_readahead_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)354 iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length,
355 void *data, struct iomap *iomap, struct iomap *srcmap)
356 {
357 struct iomap_readpage_ctx *ctx = data;
358 loff_t done, ret;
359
360 for (done = 0; done < length; done += ret) {
361 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
362 if (!ctx->cur_page_in_bio)
363 unlock_page(ctx->cur_page);
364 put_page(ctx->cur_page);
365 ctx->cur_page = NULL;
366 }
367 if (!ctx->cur_page) {
368 ctx->cur_page = readahead_page(ctx->rac);
369 ctx->cur_page_in_bio = false;
370 }
371 ret = iomap_readpage_actor(inode, pos + done, length - done,
372 ctx, iomap, srcmap);
373 }
374
375 return done;
376 }
377
378 /**
379 * iomap_readahead - Attempt to read pages from a file.
380 * @rac: Describes the pages to be read.
381 * @ops: The operations vector for the filesystem.
382 *
383 * This function is for filesystems to call to implement their readahead
384 * address_space operation.
385 *
386 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
387 * blocks from disc), and may wait for it. The caller may be trying to
388 * access a different page, and so sleeping excessively should be avoided.
389 * It may allocate memory, but should avoid costly allocations. This
390 * function is called with memalloc_nofs set, so allocations will not cause
391 * the filesystem to be reentered.
392 */
iomap_readahead(struct readahead_control * rac,const struct iomap_ops * ops)393 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
394 {
395 struct inode *inode = rac->mapping->host;
396 loff_t pos = readahead_pos(rac);
397 loff_t length = readahead_length(rac);
398 struct iomap_readpage_ctx ctx = {
399 .rac = rac,
400 };
401
402 trace_iomap_readahead(inode, readahead_count(rac));
403
404 while (length > 0) {
405 loff_t ret = iomap_apply(inode, pos, length, 0, ops,
406 &ctx, iomap_readahead_actor);
407 if (ret <= 0) {
408 WARN_ON_ONCE(ret == 0);
409 break;
410 }
411 pos += ret;
412 length -= ret;
413 }
414
415 if (ctx.bio)
416 submit_bio(ctx.bio);
417 if (ctx.cur_page) {
418 if (!ctx.cur_page_in_bio)
419 unlock_page(ctx.cur_page);
420 put_page(ctx.cur_page);
421 }
422 }
423 EXPORT_SYMBOL_GPL(iomap_readahead);
424
425 /*
426 * iomap_is_partially_uptodate checks whether blocks within a page are
427 * uptodate or not.
428 *
429 * Returns true if all blocks which correspond to a file portion
430 * we want to read within the page are uptodate.
431 */
432 int
iomap_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)433 iomap_is_partially_uptodate(struct page *page, unsigned long from,
434 unsigned long count)
435 {
436 struct iomap_page *iop = to_iomap_page(page);
437 struct inode *inode = page->mapping->host;
438 unsigned len, first, last;
439 unsigned i;
440
441 /* Limit range to one page */
442 len = min_t(unsigned, PAGE_SIZE - from, count);
443
444 /* First and last blocks in range within page */
445 first = from >> inode->i_blkbits;
446 last = (from + len - 1) >> inode->i_blkbits;
447
448 if (iop) {
449 for (i = first; i <= last; i++)
450 if (!test_bit(i, iop->uptodate))
451 return 0;
452 return 1;
453 }
454
455 return 0;
456 }
457 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
458
459 int
iomap_releasepage(struct page * page,gfp_t gfp_mask)460 iomap_releasepage(struct page *page, gfp_t gfp_mask)
461 {
462 trace_iomap_releasepage(page->mapping->host, page_offset(page),
463 PAGE_SIZE);
464
465 /*
466 * mm accommodates an old ext3 case where clean pages might not have had
467 * the dirty bit cleared. Thus, it can send actual dirty pages to
468 * ->releasepage() via shrink_active_list(), skip those here.
469 */
470 if (PageDirty(page) || PageWriteback(page))
471 return 0;
472 iomap_page_release(page);
473 return 1;
474 }
475 EXPORT_SYMBOL_GPL(iomap_releasepage);
476
477 void
iomap_invalidatepage(struct page * page,unsigned int offset,unsigned int len)478 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
479 {
480 trace_iomap_invalidatepage(page->mapping->host, offset, len);
481
482 /*
483 * If we are invalidating the entire page, clear the dirty state from it
484 * and release it to avoid unnecessary buildup of the LRU.
485 */
486 if (offset == 0 && len == PAGE_SIZE) {
487 WARN_ON_ONCE(PageWriteback(page));
488 cancel_dirty_page(page);
489 iomap_page_release(page);
490 }
491 }
492 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
493
494 #ifdef CONFIG_MIGRATION
495 int
iomap_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)496 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
497 struct page *page, enum migrate_mode mode)
498 {
499 int ret;
500
501 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
502 if (ret != MIGRATEPAGE_SUCCESS)
503 return ret;
504
505 if (page_has_private(page))
506 attach_page_private(newpage, detach_page_private(page));
507
508 if (mode != MIGRATE_SYNC_NO_COPY)
509 migrate_page_copy(newpage, page);
510 else
511 migrate_page_states(newpage, page);
512 return MIGRATEPAGE_SUCCESS;
513 }
514 EXPORT_SYMBOL_GPL(iomap_migrate_page);
515 #endif /* CONFIG_MIGRATION */
516
517 enum {
518 IOMAP_WRITE_F_UNSHARE = (1 << 0),
519 };
520
521 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)522 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
523 {
524 loff_t i_size = i_size_read(inode);
525
526 /*
527 * Only truncate newly allocated pages beyoned EOF, even if the
528 * write started inside the existing inode size.
529 */
530 if (pos + len > i_size)
531 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
532 }
533
534 static int
iomap_read_page_sync(loff_t block_start,struct page * page,unsigned poff,unsigned plen,struct iomap * iomap)535 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
536 unsigned plen, struct iomap *iomap)
537 {
538 struct bio_vec bvec;
539 struct bio bio;
540
541 bio_init(&bio, &bvec, 1);
542 bio.bi_opf = REQ_OP_READ;
543 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
544 bio_set_dev(&bio, iomap->bdev);
545 __bio_add_page(&bio, page, plen, poff);
546 return submit_bio_wait(&bio);
547 }
548
549 static int
__iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,int flags,struct page * page,struct iomap * srcmap)550 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
551 struct page *page, struct iomap *srcmap)
552 {
553 struct iomap_page *iop = iomap_page_create(inode, page);
554 loff_t block_size = i_blocksize(inode);
555 loff_t block_start = round_down(pos, block_size);
556 loff_t block_end = round_up(pos + len, block_size);
557 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
558
559 if (PageUptodate(page))
560 return 0;
561 ClearPageError(page);
562
563 do {
564 iomap_adjust_read_range(inode, iop, &block_start,
565 block_end - block_start, &poff, &plen);
566 if (plen == 0)
567 break;
568
569 if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
570 (from <= poff || from >= poff + plen) &&
571 (to <= poff || to >= poff + plen))
572 continue;
573
574 if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
575 if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
576 return -EIO;
577 zero_user_segments(page, poff, from, to, poff + plen);
578 } else {
579 int status = iomap_read_page_sync(block_start, page,
580 poff, plen, srcmap);
581 if (status)
582 return status;
583 }
584 iomap_set_range_uptodate(page, poff, plen);
585 } while ((block_start += plen) < block_end);
586
587 return 0;
588 }
589
590 static int
iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,struct iomap * iomap,struct iomap * srcmap)591 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
592 struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
593 {
594 const struct iomap_page_ops *page_ops = iomap->page_ops;
595 struct page *page;
596 int status = 0;
597
598 BUG_ON(pos + len > iomap->offset + iomap->length);
599 if (srcmap != iomap)
600 BUG_ON(pos + len > srcmap->offset + srcmap->length);
601
602 if (fatal_signal_pending(current))
603 return -EINTR;
604
605 if (page_ops && page_ops->page_prepare) {
606 status = page_ops->page_prepare(inode, pos, len, iomap);
607 if (status)
608 return status;
609 }
610
611 page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
612 AOP_FLAG_NOFS);
613 if (!page) {
614 status = -ENOMEM;
615 goto out_no_page;
616 }
617
618 if (srcmap->type == IOMAP_INLINE)
619 iomap_read_inline_data(inode, page, srcmap);
620 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
621 status = __block_write_begin_int(page, pos, len, NULL, srcmap);
622 else
623 status = __iomap_write_begin(inode, pos, len, flags, page,
624 srcmap);
625
626 if (unlikely(status))
627 goto out_unlock;
628
629 *pagep = page;
630 return 0;
631
632 out_unlock:
633 unlock_page(page);
634 put_page(page);
635 iomap_write_failed(inode, pos, len);
636
637 out_no_page:
638 if (page_ops && page_ops->page_done)
639 page_ops->page_done(inode, pos, 0, NULL, iomap);
640 return status;
641 }
642
643 int
iomap_set_page_dirty(struct page * page)644 iomap_set_page_dirty(struct page *page)
645 {
646 struct address_space *mapping = page_mapping(page);
647 int newly_dirty;
648
649 if (unlikely(!mapping))
650 return !TestSetPageDirty(page);
651
652 /*
653 * Lock out page->mem_cgroup migration to keep PageDirty
654 * synchronized with per-memcg dirty page counters.
655 */
656 lock_page_memcg(page);
657 newly_dirty = !TestSetPageDirty(page);
658 if (newly_dirty)
659 __set_page_dirty(page, mapping, 0);
660 unlock_page_memcg(page);
661
662 if (newly_dirty)
663 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
664 return newly_dirty;
665 }
666 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
667
__iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct page * page)668 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
669 size_t copied, struct page *page)
670 {
671 flush_dcache_page(page);
672
673 /*
674 * The blocks that were entirely written will now be uptodate, so we
675 * don't have to worry about a readpage reading them and overwriting a
676 * partial write. However if we have encountered a short write and only
677 * partially written into a block, it will not be marked uptodate, so a
678 * readpage might come in and destroy our partial write.
679 *
680 * Do the simplest thing, and just treat any short write to a non
681 * uptodate page as a zero-length write, and force the caller to redo
682 * the whole thing.
683 */
684 if (unlikely(copied < len && !PageUptodate(page)))
685 return 0;
686 iomap_set_range_uptodate(page, offset_in_page(pos), len);
687 iomap_set_page_dirty(page);
688 return copied;
689 }
690
iomap_write_end_inline(struct inode * inode,struct page * page,struct iomap * iomap,loff_t pos,size_t copied)691 static size_t iomap_write_end_inline(struct inode *inode, struct page *page,
692 struct iomap *iomap, loff_t pos, size_t copied)
693 {
694 void *addr;
695
696 WARN_ON_ONCE(!PageUptodate(page));
697 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
698
699 flush_dcache_page(page);
700 addr = kmap_atomic(page);
701 memcpy(iomap->inline_data + pos, addr + pos, copied);
702 kunmap_atomic(addr);
703
704 mark_inode_dirty(inode);
705 return copied;
706 }
707
708 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */
iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct page * page,struct iomap * iomap,struct iomap * srcmap)709 static size_t iomap_write_end(struct inode *inode, loff_t pos, size_t len,
710 size_t copied, struct page *page, struct iomap *iomap,
711 struct iomap *srcmap)
712 {
713 const struct iomap_page_ops *page_ops = iomap->page_ops;
714 loff_t old_size = inode->i_size;
715 size_t ret;
716
717 if (srcmap->type == IOMAP_INLINE) {
718 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
719 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
720 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
721 page, NULL);
722 } else {
723 ret = __iomap_write_end(inode, pos, len, copied, page);
724 }
725
726 /*
727 * Update the in-memory inode size after copying the data into the page
728 * cache. It's up to the file system to write the updated size to disk,
729 * preferably after I/O completion so that no stale data is exposed.
730 */
731 if (pos + ret > old_size) {
732 i_size_write(inode, pos + ret);
733 iomap->flags |= IOMAP_F_SIZE_CHANGED;
734 }
735 unlock_page(page);
736
737 if (old_size < pos)
738 pagecache_isize_extended(inode, old_size, pos);
739 if (page_ops && page_ops->page_done)
740 page_ops->page_done(inode, pos, ret, page, iomap);
741 put_page(page);
742
743 if (ret < len)
744 iomap_write_failed(inode, pos, len);
745 return ret;
746 }
747
748 static loff_t
iomap_write_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)749 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
750 struct iomap *iomap, struct iomap *srcmap)
751 {
752 struct iov_iter *i = data;
753 long status = 0;
754 ssize_t written = 0;
755
756 do {
757 struct page *page;
758 unsigned long offset; /* Offset into pagecache page */
759 unsigned long bytes; /* Bytes to write to page */
760 size_t copied; /* Bytes copied from user */
761
762 offset = offset_in_page(pos);
763 bytes = min_t(unsigned long, PAGE_SIZE - offset,
764 iov_iter_count(i));
765 again:
766 if (bytes > length)
767 bytes = length;
768
769 /*
770 * Bring in the user page that we will copy from _first_.
771 * Otherwise there's a nasty deadlock on copying from the
772 * same page as we're writing to, without it being marked
773 * up-to-date.
774 *
775 * Not only is this an optimisation, but it is also required
776 * to check that the address is actually valid, when atomic
777 * usercopies are used, below.
778 */
779 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
780 status = -EFAULT;
781 break;
782 }
783
784 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
785 srcmap);
786 if (unlikely(status))
787 break;
788
789 if (mapping_writably_mapped(inode->i_mapping))
790 flush_dcache_page(page);
791
792 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
793
794 copied = iomap_write_end(inode, pos, bytes, copied, page, iomap,
795 srcmap);
796
797 cond_resched();
798
799 iov_iter_advance(i, copied);
800 if (unlikely(copied == 0)) {
801 /*
802 * If we were unable to copy any data at all, we must
803 * fall back to a single segment length write.
804 *
805 * If we didn't fallback here, we could livelock
806 * because not all segments in the iov can be copied at
807 * once without a pagefault.
808 */
809 bytes = min_t(unsigned long, PAGE_SIZE - offset,
810 iov_iter_single_seg_count(i));
811 goto again;
812 }
813 pos += copied;
814 written += copied;
815 length -= copied;
816
817 balance_dirty_pages_ratelimited(inode->i_mapping);
818 } while (iov_iter_count(i) && length);
819
820 return written ? written : status;
821 }
822
823 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)824 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
825 const struct iomap_ops *ops)
826 {
827 struct inode *inode = iocb->ki_filp->f_mapping->host;
828 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
829
830 while (iov_iter_count(iter)) {
831 ret = iomap_apply(inode, pos, iov_iter_count(iter),
832 IOMAP_WRITE, ops, iter, iomap_write_actor);
833 if (ret <= 0)
834 break;
835 pos += ret;
836 written += ret;
837 }
838
839 return written ? written : ret;
840 }
841 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
842
843 static loff_t
iomap_unshare_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)844 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
845 struct iomap *iomap, struct iomap *srcmap)
846 {
847 long status = 0;
848 loff_t written = 0;
849
850 /* don't bother with blocks that are not shared to start with */
851 if (!(iomap->flags & IOMAP_F_SHARED))
852 return length;
853 /* don't bother with holes or unwritten extents */
854 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
855 return length;
856
857 do {
858 unsigned long offset = offset_in_page(pos);
859 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
860 struct page *page;
861
862 status = iomap_write_begin(inode, pos, bytes,
863 IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
864 if (unlikely(status))
865 return status;
866
867 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
868 srcmap);
869 if (WARN_ON_ONCE(status == 0))
870 return -EIO;
871
872 cond_resched();
873
874 pos += status;
875 written += status;
876 length -= status;
877
878 balance_dirty_pages_ratelimited(inode->i_mapping);
879 } while (length);
880
881 return written;
882 }
883
884 int
iomap_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)885 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
886 const struct iomap_ops *ops)
887 {
888 loff_t ret;
889
890 while (len) {
891 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
892 iomap_unshare_actor);
893 if (ret <= 0)
894 return ret;
895 pos += ret;
896 len -= ret;
897 }
898
899 return 0;
900 }
901 EXPORT_SYMBOL_GPL(iomap_file_unshare);
902
iomap_zero(struct inode * inode,loff_t pos,u64 length,struct iomap * iomap,struct iomap * srcmap)903 static s64 iomap_zero(struct inode *inode, loff_t pos, u64 length,
904 struct iomap *iomap, struct iomap *srcmap)
905 {
906 struct page *page;
907 int status;
908 unsigned offset = offset_in_page(pos);
909 unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
910
911 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
912 if (status)
913 return status;
914
915 zero_user(page, offset, bytes);
916 mark_page_accessed(page);
917
918 return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
919 }
920
iomap_zero_range_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)921 static loff_t iomap_zero_range_actor(struct inode *inode, loff_t pos,
922 loff_t length, void *data, struct iomap *iomap,
923 struct iomap *srcmap)
924 {
925 bool *did_zero = data;
926 loff_t written = 0;
927
928 /* already zeroed? we're done. */
929 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
930 return length;
931
932 do {
933 s64 bytes;
934
935 if (IS_DAX(inode))
936 bytes = dax_iomap_zero(pos, length, iomap);
937 else
938 bytes = iomap_zero(inode, pos, length, iomap, srcmap);
939 if (bytes < 0)
940 return bytes;
941
942 pos += bytes;
943 length -= bytes;
944 written += bytes;
945 if (did_zero)
946 *did_zero = true;
947 } while (length > 0);
948
949 return written;
950 }
951
952 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)953 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
954 const struct iomap_ops *ops)
955 {
956 loff_t ret;
957
958 while (len > 0) {
959 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
960 ops, did_zero, iomap_zero_range_actor);
961 if (ret <= 0)
962 return ret;
963
964 pos += ret;
965 len -= ret;
966 }
967
968 return 0;
969 }
970 EXPORT_SYMBOL_GPL(iomap_zero_range);
971
972 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)973 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
974 const struct iomap_ops *ops)
975 {
976 unsigned int blocksize = i_blocksize(inode);
977 unsigned int off = pos & (blocksize - 1);
978
979 /* Block boundary? Nothing to do */
980 if (!off)
981 return 0;
982 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
983 }
984 EXPORT_SYMBOL_GPL(iomap_truncate_page);
985
986 static loff_t
iomap_page_mkwrite_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)987 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
988 void *data, struct iomap *iomap, struct iomap *srcmap)
989 {
990 struct page *page = data;
991 int ret;
992
993 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
994 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
995 if (ret)
996 return ret;
997 block_commit_write(page, 0, length);
998 } else {
999 WARN_ON_ONCE(!PageUptodate(page));
1000 iomap_page_create(inode, page);
1001 set_page_dirty(page);
1002 }
1003
1004 return length;
1005 }
1006
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops)1007 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1008 {
1009 struct page *page = vmf->page;
1010 struct inode *inode = file_inode(vmf->vma->vm_file);
1011 unsigned long length;
1012 loff_t offset;
1013 ssize_t ret;
1014
1015 lock_page(page);
1016 ret = page_mkwrite_check_truncate(page, inode);
1017 if (ret < 0)
1018 goto out_unlock;
1019 length = ret;
1020
1021 offset = page_offset(page);
1022 while (length > 0) {
1023 ret = iomap_apply(inode, offset, length,
1024 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1025 iomap_page_mkwrite_actor);
1026 if (unlikely(ret <= 0))
1027 goto out_unlock;
1028 offset += ret;
1029 length -= ret;
1030 }
1031
1032 wait_for_stable_page(page);
1033 return VM_FAULT_LOCKED;
1034 out_unlock:
1035 unlock_page(page);
1036 return block_page_mkwrite_return(ret);
1037 }
1038 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1039
1040 static void
iomap_finish_page_writeback(struct inode * inode,struct page * page,int error,unsigned int len)1041 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1042 int error, unsigned int len)
1043 {
1044 struct iomap_page *iop = to_iomap_page(page);
1045
1046 if (error) {
1047 SetPageError(page);
1048 mapping_set_error(inode->i_mapping, -EIO);
1049 }
1050
1051 WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1052 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1053
1054 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1055 end_page_writeback(page);
1056 }
1057
1058 /*
1059 * We're now finished for good with this ioend structure. Update the page
1060 * state, release holds on bios, and finally free up memory. Do not use the
1061 * ioend after this.
1062 */
1063 static void
iomap_finish_ioend(struct iomap_ioend * ioend,int error)1064 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1065 {
1066 struct inode *inode = ioend->io_inode;
1067 struct bio *bio = &ioend->io_inline_bio;
1068 struct bio *last = ioend->io_bio, *next;
1069 u64 start = bio->bi_iter.bi_sector;
1070 loff_t offset = ioend->io_offset;
1071 bool quiet = bio_flagged(bio, BIO_QUIET);
1072
1073 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1074 struct bio_vec *bv;
1075 struct bvec_iter_all iter_all;
1076
1077 /*
1078 * For the last bio, bi_private points to the ioend, so we
1079 * need to explicitly end the iteration here.
1080 */
1081 if (bio == last)
1082 next = NULL;
1083 else
1084 next = bio->bi_private;
1085
1086 /* walk each page on bio, ending page IO on them */
1087 bio_for_each_segment_all(bv, bio, iter_all)
1088 iomap_finish_page_writeback(inode, bv->bv_page, error,
1089 bv->bv_len);
1090 bio_put(bio);
1091 }
1092 /* The ioend has been freed by bio_put() */
1093
1094 if (unlikely(error && !quiet)) {
1095 printk_ratelimited(KERN_ERR
1096 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1097 inode->i_sb->s_id, inode->i_ino, offset, start);
1098 }
1099 }
1100
1101 void
iomap_finish_ioends(struct iomap_ioend * ioend,int error)1102 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1103 {
1104 struct list_head tmp;
1105
1106 list_replace_init(&ioend->io_list, &tmp);
1107 iomap_finish_ioend(ioend, error);
1108
1109 while (!list_empty(&tmp)) {
1110 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1111 list_del_init(&ioend->io_list);
1112 iomap_finish_ioend(ioend, error);
1113 }
1114 }
1115 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1116
1117 /*
1118 * We can merge two adjacent ioends if they have the same set of work to do.
1119 */
1120 static bool
iomap_ioend_can_merge(struct iomap_ioend * ioend,struct iomap_ioend * next)1121 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1122 {
1123 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1124 return false;
1125 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1126 (next->io_flags & IOMAP_F_SHARED))
1127 return false;
1128 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1129 (next->io_type == IOMAP_UNWRITTEN))
1130 return false;
1131 if (ioend->io_offset + ioend->io_size != next->io_offset)
1132 return false;
1133 return true;
1134 }
1135
1136 void
iomap_ioend_try_merge(struct iomap_ioend * ioend,struct list_head * more_ioends,void (* merge_private)(struct iomap_ioend * ioend,struct iomap_ioend * next))1137 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1138 void (*merge_private)(struct iomap_ioend *ioend,
1139 struct iomap_ioend *next))
1140 {
1141 struct iomap_ioend *next;
1142
1143 INIT_LIST_HEAD(&ioend->io_list);
1144
1145 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1146 io_list))) {
1147 if (!iomap_ioend_can_merge(ioend, next))
1148 break;
1149 list_move_tail(&next->io_list, &ioend->io_list);
1150 ioend->io_size += next->io_size;
1151 if (next->io_private && merge_private)
1152 merge_private(ioend, next);
1153 }
1154 }
1155 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1156
1157 static int
iomap_ioend_compare(void * priv,struct list_head * a,struct list_head * b)1158 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1159 {
1160 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1161 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1162
1163 if (ia->io_offset < ib->io_offset)
1164 return -1;
1165 if (ia->io_offset > ib->io_offset)
1166 return 1;
1167 return 0;
1168 }
1169
1170 void
iomap_sort_ioends(struct list_head * ioend_list)1171 iomap_sort_ioends(struct list_head *ioend_list)
1172 {
1173 list_sort(NULL, ioend_list, iomap_ioend_compare);
1174 }
1175 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1176
iomap_writepage_end_bio(struct bio * bio)1177 static void iomap_writepage_end_bio(struct bio *bio)
1178 {
1179 struct iomap_ioend *ioend = bio->bi_private;
1180
1181 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1182 }
1183
1184 /*
1185 * Submit the final bio for an ioend.
1186 *
1187 * If @error is non-zero, it means that we have a situation where some part of
1188 * the submission process has failed after we have marked paged for writeback
1189 * and unlocked them. In this situation, we need to fail the bio instead of
1190 * submitting it. This typically only happens on a filesystem shutdown.
1191 */
1192 static int
iomap_submit_ioend(struct iomap_writepage_ctx * wpc,struct iomap_ioend * ioend,int error)1193 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1194 int error)
1195 {
1196 ioend->io_bio->bi_private = ioend;
1197 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1198
1199 if (wpc->ops->prepare_ioend)
1200 error = wpc->ops->prepare_ioend(ioend, error);
1201 if (error) {
1202 /*
1203 * If we are failing the IO now, just mark the ioend with an
1204 * error and finish it. This will run IO completion immediately
1205 * as there is only one reference to the ioend at this point in
1206 * time.
1207 */
1208 ioend->io_bio->bi_status = errno_to_blk_status(error);
1209 bio_endio(ioend->io_bio);
1210 return error;
1211 }
1212
1213 submit_bio(ioend->io_bio);
1214 return 0;
1215 }
1216
1217 static struct iomap_ioend *
iomap_alloc_ioend(struct inode * inode,struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector,struct writeback_control * wbc)1218 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1219 loff_t offset, sector_t sector, struct writeback_control *wbc)
1220 {
1221 struct iomap_ioend *ioend;
1222 struct bio *bio;
1223
1224 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1225 bio_set_dev(bio, wpc->iomap.bdev);
1226 bio->bi_iter.bi_sector = sector;
1227 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1228 bio->bi_write_hint = inode->i_write_hint;
1229 wbc_init_bio(wbc, bio);
1230
1231 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1232 INIT_LIST_HEAD(&ioend->io_list);
1233 ioend->io_type = wpc->iomap.type;
1234 ioend->io_flags = wpc->iomap.flags;
1235 ioend->io_inode = inode;
1236 ioend->io_size = 0;
1237 ioend->io_offset = offset;
1238 ioend->io_private = NULL;
1239 ioend->io_bio = bio;
1240 return ioend;
1241 }
1242
1243 /*
1244 * Allocate a new bio, and chain the old bio to the new one.
1245 *
1246 * Note that we have to do perform the chaining in this unintuitive order
1247 * so that the bi_private linkage is set up in the right direction for the
1248 * traversal in iomap_finish_ioend().
1249 */
1250 static struct bio *
iomap_chain_bio(struct bio * prev)1251 iomap_chain_bio(struct bio *prev)
1252 {
1253 struct bio *new;
1254
1255 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1256 bio_copy_dev(new, prev);/* also copies over blkcg information */
1257 new->bi_iter.bi_sector = bio_end_sector(prev);
1258 new->bi_opf = prev->bi_opf;
1259 new->bi_write_hint = prev->bi_write_hint;
1260
1261 bio_chain(prev, new);
1262 bio_get(prev); /* for iomap_finish_ioend */
1263 submit_bio(prev);
1264 return new;
1265 }
1266
1267 static bool
iomap_can_add_to_ioend(struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector)1268 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1269 sector_t sector)
1270 {
1271 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1272 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1273 return false;
1274 if (wpc->iomap.type != wpc->ioend->io_type)
1275 return false;
1276 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1277 return false;
1278 if (sector != bio_end_sector(wpc->ioend->io_bio))
1279 return false;
1280 return true;
1281 }
1282
1283 /*
1284 * Test to see if we have an existing ioend structure that we could append to
1285 * first, otherwise finish off the current ioend and start another.
1286 */
1287 static void
iomap_add_to_ioend(struct inode * inode,loff_t offset,struct page * page,struct iomap_page * iop,struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct list_head * iolist)1288 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1289 struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1290 struct writeback_control *wbc, struct list_head *iolist)
1291 {
1292 sector_t sector = iomap_sector(&wpc->iomap, offset);
1293 unsigned len = i_blocksize(inode);
1294 unsigned poff = offset & (PAGE_SIZE - 1);
1295 bool merged, same_page = false;
1296
1297 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1298 if (wpc->ioend)
1299 list_add(&wpc->ioend->io_list, iolist);
1300 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1301 }
1302
1303 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1304 &same_page);
1305 if (iop)
1306 atomic_add(len, &iop->write_bytes_pending);
1307
1308 if (!merged) {
1309 if (bio_full(wpc->ioend->io_bio, len)) {
1310 wpc->ioend->io_bio =
1311 iomap_chain_bio(wpc->ioend->io_bio);
1312 }
1313 bio_add_page(wpc->ioend->io_bio, page, len, poff);
1314 }
1315
1316 wpc->ioend->io_size += len;
1317 wbc_account_cgroup_owner(wbc, page, len);
1318 }
1319
1320 /*
1321 * We implement an immediate ioend submission policy here to avoid needing to
1322 * chain multiple ioends and hence nest mempool allocations which can violate
1323 * forward progress guarantees we need to provide. The current ioend we are
1324 * adding blocks to is cached on the writepage context, and if the new block
1325 * does not append to the cached ioend it will create a new ioend and cache that
1326 * instead.
1327 *
1328 * If a new ioend is created and cached, the old ioend is returned and queued
1329 * locally for submission once the entire page is processed or an error has been
1330 * detected. While ioends are submitted immediately after they are completed,
1331 * batching optimisations are provided by higher level block plugging.
1332 *
1333 * At the end of a writeback pass, there will be a cached ioend remaining on the
1334 * writepage context that the caller will need to submit.
1335 */
1336 static int
iomap_writepage_map(struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct inode * inode,struct page * page,u64 end_offset)1337 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1338 struct writeback_control *wbc, struct inode *inode,
1339 struct page *page, u64 end_offset)
1340 {
1341 struct iomap_page *iop = to_iomap_page(page);
1342 struct iomap_ioend *ioend, *next;
1343 unsigned len = i_blocksize(inode);
1344 u64 file_offset; /* file offset of page */
1345 int error = 0, count = 0, i;
1346 LIST_HEAD(submit_list);
1347
1348 WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1349 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1350
1351 /*
1352 * Walk through the page to find areas to write back. If we run off the
1353 * end of the current map or find the current map invalid, grab a new
1354 * one.
1355 */
1356 for (i = 0, file_offset = page_offset(page);
1357 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1358 i++, file_offset += len) {
1359 if (iop && !test_bit(i, iop->uptodate))
1360 continue;
1361
1362 error = wpc->ops->map_blocks(wpc, inode, file_offset);
1363 if (error)
1364 break;
1365 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1366 continue;
1367 if (wpc->iomap.type == IOMAP_HOLE)
1368 continue;
1369 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1370 &submit_list);
1371 count++;
1372 }
1373
1374 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1375 WARN_ON_ONCE(!PageLocked(page));
1376 WARN_ON_ONCE(PageWriteback(page));
1377 WARN_ON_ONCE(PageDirty(page));
1378
1379 /*
1380 * We cannot cancel the ioend directly here on error. We may have
1381 * already set other pages under writeback and hence we have to run I/O
1382 * completion to mark the error state of the pages under writeback
1383 * appropriately.
1384 */
1385 if (unlikely(error)) {
1386 /*
1387 * Let the filesystem know what portion of the current page
1388 * failed to map. If the page wasn't been added to ioend, it
1389 * won't be affected by I/O completion and we must unlock it
1390 * now.
1391 */
1392 if (wpc->ops->discard_page)
1393 wpc->ops->discard_page(page, file_offset);
1394 if (!count) {
1395 ClearPageUptodate(page);
1396 unlock_page(page);
1397 goto done;
1398 }
1399 }
1400
1401 set_page_writeback(page);
1402 unlock_page(page);
1403
1404 /*
1405 * Preserve the original error if there was one, otherwise catch
1406 * submission errors here and propagate into subsequent ioend
1407 * submissions.
1408 */
1409 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1410 int error2;
1411
1412 list_del_init(&ioend->io_list);
1413 error2 = iomap_submit_ioend(wpc, ioend, error);
1414 if (error2 && !error)
1415 error = error2;
1416 }
1417
1418 /*
1419 * We can end up here with no error and nothing to write only if we race
1420 * with a partial page truncate on a sub-page block sized filesystem.
1421 */
1422 if (!count)
1423 end_page_writeback(page);
1424 done:
1425 mapping_set_error(page->mapping, error);
1426 return error;
1427 }
1428
1429 /*
1430 * Write out a dirty page.
1431 *
1432 * For delalloc space on the page we need to allocate space and flush it.
1433 * For unwritten space on the page we need to start the conversion to
1434 * regular allocated space.
1435 */
1436 static int
iomap_do_writepage(struct page * page,struct writeback_control * wbc,void * data)1437 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1438 {
1439 struct iomap_writepage_ctx *wpc = data;
1440 struct inode *inode = page->mapping->host;
1441 pgoff_t end_index;
1442 u64 end_offset;
1443 loff_t offset;
1444
1445 trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1446
1447 /*
1448 * Refuse to write the page out if we are called from reclaim context.
1449 *
1450 * This avoids stack overflows when called from deeply used stacks in
1451 * random callers for direct reclaim or memcg reclaim. We explicitly
1452 * allow reclaim from kswapd as the stack usage there is relatively low.
1453 *
1454 * This should never happen except in the case of a VM regression so
1455 * warn about it.
1456 */
1457 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1458 PF_MEMALLOC))
1459 goto redirty;
1460
1461 /*
1462 * Given that we do not allow direct reclaim to call us, we should
1463 * never be called in a recursive filesystem reclaim context.
1464 */
1465 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1466 goto redirty;
1467
1468 /*
1469 * Is this page beyond the end of the file?
1470 *
1471 * The page index is less than the end_index, adjust the end_offset
1472 * to the highest offset that this page should represent.
1473 * -----------------------------------------------------
1474 * | file mapping | <EOF> |
1475 * -----------------------------------------------------
1476 * | Page ... | Page N-2 | Page N-1 | Page N | |
1477 * ^--------------------------------^----------|--------
1478 * | desired writeback range | see else |
1479 * ---------------------------------^------------------|
1480 */
1481 offset = i_size_read(inode);
1482 end_index = offset >> PAGE_SHIFT;
1483 if (page->index < end_index)
1484 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1485 else {
1486 /*
1487 * Check whether the page to write out is beyond or straddles
1488 * i_size or not.
1489 * -------------------------------------------------------
1490 * | file mapping | <EOF> |
1491 * -------------------------------------------------------
1492 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1493 * ^--------------------------------^-----------|---------
1494 * | | Straddles |
1495 * ---------------------------------^-----------|--------|
1496 */
1497 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1498
1499 /*
1500 * Skip the page if it is fully outside i_size, e.g. due to a
1501 * truncate operation that is in progress. We must redirty the
1502 * page so that reclaim stops reclaiming it. Otherwise
1503 * iomap_vm_releasepage() is called on it and gets confused.
1504 *
1505 * Note that the end_index is unsigned long, it would overflow
1506 * if the given offset is greater than 16TB on 32-bit system
1507 * and if we do check the page is fully outside i_size or not
1508 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1509 * will be evaluated to 0. Hence this page will be redirtied
1510 * and be written out repeatedly which would result in an
1511 * infinite loop, the user program that perform this operation
1512 * will hang. Instead, we can verify this situation by checking
1513 * if the page to write is totally beyond the i_size or if it's
1514 * offset is just equal to the EOF.
1515 */
1516 if (page->index > end_index ||
1517 (page->index == end_index && offset_into_page == 0))
1518 goto redirty;
1519
1520 /*
1521 * The page straddles i_size. It must be zeroed out on each
1522 * and every writepage invocation because it may be mmapped.
1523 * "A file is mapped in multiples of the page size. For a file
1524 * that is not a multiple of the page size, the remaining
1525 * memory is zeroed when mapped, and writes to that region are
1526 * not written out to the file."
1527 */
1528 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1529
1530 /* Adjust the end_offset to the end of file */
1531 end_offset = offset;
1532 }
1533
1534 return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1535
1536 redirty:
1537 redirty_page_for_writepage(wbc, page);
1538 unlock_page(page);
1539 return 0;
1540 }
1541
1542 int
iomap_writepage(struct page * page,struct writeback_control * wbc,struct iomap_writepage_ctx * wpc,const struct iomap_writeback_ops * ops)1543 iomap_writepage(struct page *page, struct writeback_control *wbc,
1544 struct iomap_writepage_ctx *wpc,
1545 const struct iomap_writeback_ops *ops)
1546 {
1547 int ret;
1548
1549 wpc->ops = ops;
1550 ret = iomap_do_writepage(page, wbc, wpc);
1551 if (!wpc->ioend)
1552 return ret;
1553 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1554 }
1555 EXPORT_SYMBOL_GPL(iomap_writepage);
1556
1557 int
iomap_writepages(struct address_space * mapping,struct writeback_control * wbc,struct iomap_writepage_ctx * wpc,const struct iomap_writeback_ops * ops)1558 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1559 struct iomap_writepage_ctx *wpc,
1560 const struct iomap_writeback_ops *ops)
1561 {
1562 int ret;
1563
1564 wpc->ops = ops;
1565 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1566 if (!wpc->ioend)
1567 return ret;
1568 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1569 }
1570 EXPORT_SYMBOL_GPL(iomap_writepages);
1571
iomap_init(void)1572 static int __init iomap_init(void)
1573 {
1574 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1575 offsetof(struct iomap_ioend, io_inline_bio),
1576 BIOSET_NEED_BVECS);
1577 }
1578 fs_initcall(iomap_init);
1579