1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21
22 #include "../internal.h"
23
24 /*
25 * Structure allocated for each page or THP when block size < page size
26 * to track sub-page uptodate status and I/O completions.
27 */
28 struct iomap_page {
29 atomic_t read_bytes_pending;
30 atomic_t write_bytes_pending;
31 spinlock_t uptodate_lock;
32 unsigned long uptodate[];
33 };
34
to_iomap_page(struct page * page)35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 /*
38 * per-block data is stored in the head page. Callers should
39 * not be dealing with tail pages, and if they are, they can
40 * call thp_head() first.
41 */
42 VM_BUG_ON_PGFLAGS(PageTail(page), page);
43
44 if (page_has_private(page))
45 return (struct iomap_page *)page_private(page);
46 return NULL;
47 }
48
49 static struct bio_set iomap_ioend_bioset;
50
51 static struct iomap_page *
iomap_page_create(struct inode * inode,struct page * page)52 iomap_page_create(struct inode *inode, struct page *page)
53 {
54 struct iomap_page *iop = to_iomap_page(page);
55 unsigned int nr_blocks = i_blocks_per_page(inode, page);
56
57 if (iop || nr_blocks <= 1)
58 return iop;
59
60 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
61 GFP_NOFS | __GFP_NOFAIL);
62 spin_lock_init(&iop->uptodate_lock);
63 if (PageUptodate(page))
64 bitmap_fill(iop->uptodate, nr_blocks);
65 attach_page_private(page, iop);
66 return iop;
67 }
68
69 static void
iomap_page_release(struct page * page)70 iomap_page_release(struct page *page)
71 {
72 struct iomap_page *iop = detach_page_private(page);
73 unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
74
75 if (!iop)
76 return;
77 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
78 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
79 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
80 PageUptodate(page));
81 kfree(iop);
82 }
83
84 /*
85 * Calculate the range inside the page that we actually need to read.
86 */
87 static void
iomap_adjust_read_range(struct inode * inode,struct iomap_page * iop,loff_t * pos,loff_t length,unsigned * offp,unsigned * lenp)88 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
89 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
90 {
91 loff_t orig_pos = *pos;
92 loff_t isize = i_size_read(inode);
93 unsigned block_bits = inode->i_blkbits;
94 unsigned block_size = (1 << block_bits);
95 unsigned poff = offset_in_page(*pos);
96 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
97 unsigned first = poff >> block_bits;
98 unsigned last = (poff + plen - 1) >> block_bits;
99
100 /*
101 * If the block size is smaller than the page size, we need to check the
102 * per-block uptodate status and adjust the offset and length if needed
103 * to avoid reading in already uptodate ranges.
104 */
105 if (iop) {
106 unsigned int i;
107
108 /* move forward for each leading block marked uptodate */
109 for (i = first; i <= last; i++) {
110 if (!test_bit(i, iop->uptodate))
111 break;
112 *pos += block_size;
113 poff += block_size;
114 plen -= block_size;
115 first++;
116 }
117
118 /* truncate len if we find any trailing uptodate block(s) */
119 for ( ; i <= last; i++) {
120 if (test_bit(i, iop->uptodate)) {
121 plen -= (last - i + 1) * block_size;
122 last = i - 1;
123 break;
124 }
125 }
126 }
127
128 /*
129 * If the extent spans the block that contains the i_size, we need to
130 * handle both halves separately so that we properly zero data in the
131 * page cache for blocks that are entirely outside of i_size.
132 */
133 if (orig_pos <= isize && orig_pos + length > isize) {
134 unsigned end = offset_in_page(isize - 1) >> block_bits;
135
136 if (first <= end && last > end)
137 plen -= (last - end) * block_size;
138 }
139
140 *offp = poff;
141 *lenp = plen;
142 }
143
144 static void
iomap_iop_set_range_uptodate(struct page * page,unsigned off,unsigned len)145 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
146 {
147 struct iomap_page *iop = to_iomap_page(page);
148 struct inode *inode = page->mapping->host;
149 unsigned first = off >> inode->i_blkbits;
150 unsigned last = (off + len - 1) >> inode->i_blkbits;
151 unsigned long flags;
152
153 spin_lock_irqsave(&iop->uptodate_lock, flags);
154 bitmap_set(iop->uptodate, first, last - first + 1);
155 if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
156 SetPageUptodate(page);
157 spin_unlock_irqrestore(&iop->uptodate_lock, flags);
158 }
159
160 static void
iomap_set_range_uptodate(struct page * page,unsigned off,unsigned len)161 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
162 {
163 if (PageError(page))
164 return;
165
166 if (page_has_private(page))
167 iomap_iop_set_range_uptodate(page, off, len);
168 else
169 SetPageUptodate(page);
170 }
171
172 static void
iomap_read_page_end_io(struct bio_vec * bvec,int error)173 iomap_read_page_end_io(struct bio_vec *bvec, int error)
174 {
175 struct page *page = bvec->bv_page;
176 struct iomap_page *iop = to_iomap_page(page);
177
178 if (unlikely(error)) {
179 ClearPageUptodate(page);
180 SetPageError(page);
181 } else {
182 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
183 }
184
185 if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
186 unlock_page(page);
187 }
188
189 static void
iomap_read_end_io(struct bio * bio)190 iomap_read_end_io(struct bio *bio)
191 {
192 int error = blk_status_to_errno(bio->bi_status);
193 struct bio_vec *bvec;
194 struct bvec_iter_all iter_all;
195
196 bio_for_each_segment_all(bvec, bio, iter_all)
197 iomap_read_page_end_io(bvec, error);
198 bio_put(bio);
199 }
200
201 struct iomap_readpage_ctx {
202 struct page *cur_page;
203 bool cur_page_in_bio;
204 struct bio *bio;
205 struct readahead_control *rac;
206 };
207
iomap_read_inline_data(const struct iomap_iter * iter,struct page * page)208 static loff_t iomap_read_inline_data(const struct iomap_iter *iter,
209 struct page *page)
210 {
211 const struct iomap *iomap = iomap_iter_srcmap(iter);
212 size_t size = i_size_read(iter->inode) - iomap->offset;
213 size_t poff = offset_in_page(iomap->offset);
214 void *addr;
215
216 if (PageUptodate(page))
217 return PAGE_SIZE - poff;
218
219 if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
220 return -EIO;
221 if (WARN_ON_ONCE(size > PAGE_SIZE -
222 offset_in_page(iomap->inline_data)))
223 return -EIO;
224 if (WARN_ON_ONCE(size > iomap->length))
225 return -EIO;
226 if (poff > 0)
227 iomap_page_create(iter->inode, page);
228
229 addr = kmap_local_page(page) + poff;
230 memcpy(addr, iomap->inline_data, size);
231 memset(addr + size, 0, PAGE_SIZE - poff - size);
232 kunmap_local(addr);
233 iomap_set_range_uptodate(page, poff, PAGE_SIZE - poff);
234 return PAGE_SIZE - poff;
235 }
236
iomap_block_needs_zeroing(const struct iomap_iter * iter,loff_t pos)237 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
238 loff_t pos)
239 {
240 const struct iomap *srcmap = iomap_iter_srcmap(iter);
241
242 return srcmap->type != IOMAP_MAPPED ||
243 (srcmap->flags & IOMAP_F_NEW) ||
244 pos >= i_size_read(iter->inode);
245 }
246
iomap_readpage_iter(const struct iomap_iter * iter,struct iomap_readpage_ctx * ctx,loff_t offset)247 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
248 struct iomap_readpage_ctx *ctx, loff_t offset)
249 {
250 const struct iomap *iomap = &iter->iomap;
251 loff_t pos = iter->pos + offset;
252 loff_t length = iomap_length(iter) - offset;
253 struct page *page = ctx->cur_page;
254 struct iomap_page *iop;
255 loff_t orig_pos = pos;
256 unsigned poff, plen;
257 sector_t sector;
258
259 if (iomap->type == IOMAP_INLINE)
260 return min(iomap_read_inline_data(iter, page), length);
261
262 /* zero post-eof blocks as the page may be mapped */
263 iop = iomap_page_create(iter->inode, page);
264 iomap_adjust_read_range(iter->inode, iop, &pos, length, &poff, &plen);
265 if (plen == 0)
266 goto done;
267
268 if (iomap_block_needs_zeroing(iter, pos)) {
269 zero_user(page, poff, plen);
270 iomap_set_range_uptodate(page, poff, plen);
271 goto done;
272 }
273
274 ctx->cur_page_in_bio = true;
275 if (iop)
276 atomic_add(plen, &iop->read_bytes_pending);
277
278 sector = iomap_sector(iomap, pos);
279 if (!ctx->bio ||
280 bio_end_sector(ctx->bio) != sector ||
281 bio_add_page(ctx->bio, page, plen, poff) != plen) {
282 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
283 gfp_t orig_gfp = gfp;
284 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
285
286 if (ctx->bio)
287 submit_bio(ctx->bio);
288
289 if (ctx->rac) /* same as readahead_gfp_mask */
290 gfp |= __GFP_NORETRY | __GFP_NOWARN;
291 ctx->bio = bio_alloc(gfp, bio_max_segs(nr_vecs));
292 /*
293 * If the bio_alloc fails, try it again for a single page to
294 * avoid having to deal with partial page reads. This emulates
295 * what do_mpage_readpage does.
296 */
297 if (!ctx->bio)
298 ctx->bio = bio_alloc(orig_gfp, 1);
299 ctx->bio->bi_opf = REQ_OP_READ;
300 if (ctx->rac)
301 ctx->bio->bi_opf |= REQ_RAHEAD;
302 ctx->bio->bi_iter.bi_sector = sector;
303 bio_set_dev(ctx->bio, iomap->bdev);
304 ctx->bio->bi_end_io = iomap_read_end_io;
305 __bio_add_page(ctx->bio, page, plen, poff);
306 }
307 done:
308 /*
309 * Move the caller beyond our range so that it keeps making progress.
310 * For that, we have to include any leading non-uptodate ranges, but
311 * we can skip trailing ones as they will be handled in the next
312 * iteration.
313 */
314 return pos - orig_pos + plen;
315 }
316
317 int
iomap_readpage(struct page * page,const struct iomap_ops * ops)318 iomap_readpage(struct page *page, const struct iomap_ops *ops)
319 {
320 struct iomap_iter iter = {
321 .inode = page->mapping->host,
322 .pos = page_offset(page),
323 .len = PAGE_SIZE,
324 };
325 struct iomap_readpage_ctx ctx = {
326 .cur_page = page,
327 };
328 int ret;
329
330 trace_iomap_readpage(page->mapping->host, 1);
331
332 while ((ret = iomap_iter(&iter, ops)) > 0)
333 iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
334
335 if (ret < 0)
336 SetPageError(page);
337
338 if (ctx.bio) {
339 submit_bio(ctx.bio);
340 WARN_ON_ONCE(!ctx.cur_page_in_bio);
341 } else {
342 WARN_ON_ONCE(ctx.cur_page_in_bio);
343 unlock_page(page);
344 }
345
346 /*
347 * Just like mpage_readahead and block_read_full_page, we always
348 * return 0 and just mark the page as PageError on errors. This
349 * should be cleaned up throughout the stack eventually.
350 */
351 return 0;
352 }
353 EXPORT_SYMBOL_GPL(iomap_readpage);
354
iomap_readahead_iter(const struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)355 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
356 struct iomap_readpage_ctx *ctx)
357 {
358 loff_t length = iomap_length(iter);
359 loff_t done, ret;
360
361 for (done = 0; done < length; done += ret) {
362 if (ctx->cur_page && offset_in_page(iter->pos + done) == 0) {
363 if (!ctx->cur_page_in_bio)
364 unlock_page(ctx->cur_page);
365 put_page(ctx->cur_page);
366 ctx->cur_page = NULL;
367 }
368 if (!ctx->cur_page) {
369 ctx->cur_page = readahead_page(ctx->rac);
370 ctx->cur_page_in_bio = false;
371 }
372 ret = iomap_readpage_iter(iter, ctx, done);
373 }
374
375 return done;
376 }
377
378 /**
379 * iomap_readahead - Attempt to read pages from a file.
380 * @rac: Describes the pages to be read.
381 * @ops: The operations vector for the filesystem.
382 *
383 * This function is for filesystems to call to implement their readahead
384 * address_space operation.
385 *
386 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
387 * blocks from disc), and may wait for it. The caller may be trying to
388 * access a different page, and so sleeping excessively should be avoided.
389 * It may allocate memory, but should avoid costly allocations. This
390 * function is called with memalloc_nofs set, so allocations will not cause
391 * the filesystem to be reentered.
392 */
iomap_readahead(struct readahead_control * rac,const struct iomap_ops * ops)393 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
394 {
395 struct iomap_iter iter = {
396 .inode = rac->mapping->host,
397 .pos = readahead_pos(rac),
398 .len = readahead_length(rac),
399 };
400 struct iomap_readpage_ctx ctx = {
401 .rac = rac,
402 };
403
404 trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
405
406 while (iomap_iter(&iter, ops) > 0)
407 iter.processed = iomap_readahead_iter(&iter, &ctx);
408
409 if (ctx.bio)
410 submit_bio(ctx.bio);
411 if (ctx.cur_page) {
412 if (!ctx.cur_page_in_bio)
413 unlock_page(ctx.cur_page);
414 put_page(ctx.cur_page);
415 }
416 }
417 EXPORT_SYMBOL_GPL(iomap_readahead);
418
419 /*
420 * iomap_is_partially_uptodate checks whether blocks within a page are
421 * uptodate or not.
422 *
423 * Returns true if all blocks which correspond to a file portion
424 * we want to read within the page are uptodate.
425 */
426 int
iomap_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)427 iomap_is_partially_uptodate(struct page *page, unsigned long from,
428 unsigned long count)
429 {
430 struct iomap_page *iop = to_iomap_page(page);
431 struct inode *inode = page->mapping->host;
432 unsigned len, first, last;
433 unsigned i;
434
435 /* Limit range to one page */
436 len = min_t(unsigned, PAGE_SIZE - from, count);
437
438 /* First and last blocks in range within page */
439 first = from >> inode->i_blkbits;
440 last = (from + len - 1) >> inode->i_blkbits;
441
442 if (iop) {
443 for (i = first; i <= last; i++)
444 if (!test_bit(i, iop->uptodate))
445 return 0;
446 return 1;
447 }
448
449 return 0;
450 }
451 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
452
453 int
iomap_releasepage(struct page * page,gfp_t gfp_mask)454 iomap_releasepage(struct page *page, gfp_t gfp_mask)
455 {
456 trace_iomap_releasepage(page->mapping->host, page_offset(page),
457 PAGE_SIZE);
458
459 /*
460 * mm accommodates an old ext3 case where clean pages might not have had
461 * the dirty bit cleared. Thus, it can send actual dirty pages to
462 * ->releasepage() via shrink_active_list(); skip those here.
463 */
464 if (PageDirty(page) || PageWriteback(page))
465 return 0;
466 iomap_page_release(page);
467 return 1;
468 }
469 EXPORT_SYMBOL_GPL(iomap_releasepage);
470
471 void
iomap_invalidatepage(struct page * page,unsigned int offset,unsigned int len)472 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
473 {
474 trace_iomap_invalidatepage(page->mapping->host, offset, len);
475
476 /*
477 * If we're invalidating the entire page, clear the dirty state from it
478 * and release it to avoid unnecessary buildup of the LRU.
479 */
480 if (offset == 0 && len == PAGE_SIZE) {
481 WARN_ON_ONCE(PageWriteback(page));
482 cancel_dirty_page(page);
483 iomap_page_release(page);
484 }
485 }
486 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
487
488 #ifdef CONFIG_MIGRATION
489 int
iomap_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)490 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
491 struct page *page, enum migrate_mode mode)
492 {
493 int ret;
494
495 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
496 if (ret != MIGRATEPAGE_SUCCESS)
497 return ret;
498
499 if (page_has_private(page))
500 attach_page_private(newpage, detach_page_private(page));
501
502 if (mode != MIGRATE_SYNC_NO_COPY)
503 migrate_page_copy(newpage, page);
504 else
505 migrate_page_states(newpage, page);
506 return MIGRATEPAGE_SUCCESS;
507 }
508 EXPORT_SYMBOL_GPL(iomap_migrate_page);
509 #endif /* CONFIG_MIGRATION */
510
511 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)512 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
513 {
514 loff_t i_size = i_size_read(inode);
515
516 /*
517 * Only truncate newly allocated pages beyoned EOF, even if the
518 * write started inside the existing inode size.
519 */
520 if (pos + len > i_size)
521 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
522 }
523
524 static int
iomap_read_page_sync(loff_t block_start,struct page * page,unsigned poff,unsigned plen,const struct iomap * iomap)525 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
526 unsigned plen, const struct iomap *iomap)
527 {
528 struct bio_vec bvec;
529 struct bio bio;
530
531 bio_init(&bio, &bvec, 1);
532 bio.bi_opf = REQ_OP_READ;
533 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
534 bio_set_dev(&bio, iomap->bdev);
535 __bio_add_page(&bio, page, plen, poff);
536 return submit_bio_wait(&bio);
537 }
538
__iomap_write_begin(const struct iomap_iter * iter,loff_t pos,unsigned len,struct page * page)539 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
540 unsigned len, struct page *page)
541 {
542 const struct iomap *srcmap = iomap_iter_srcmap(iter);
543 struct iomap_page *iop = iomap_page_create(iter->inode, page);
544 loff_t block_size = i_blocksize(iter->inode);
545 loff_t block_start = round_down(pos, block_size);
546 loff_t block_end = round_up(pos + len, block_size);
547 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
548
549 if (PageUptodate(page))
550 return 0;
551 ClearPageError(page);
552
553 do {
554 iomap_adjust_read_range(iter->inode, iop, &block_start,
555 block_end - block_start, &poff, &plen);
556 if (plen == 0)
557 break;
558
559 if (!(iter->flags & IOMAP_UNSHARE) &&
560 (from <= poff || from >= poff + plen) &&
561 (to <= poff || to >= poff + plen))
562 continue;
563
564 if (iomap_block_needs_zeroing(iter, block_start)) {
565 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
566 return -EIO;
567 zero_user_segments(page, poff, from, to, poff + plen);
568 } else {
569 int status = iomap_read_page_sync(block_start, page,
570 poff, plen, srcmap);
571 if (status)
572 return status;
573 }
574 iomap_set_range_uptodate(page, poff, plen);
575 } while ((block_start += plen) < block_end);
576
577 return 0;
578 }
579
iomap_write_begin_inline(const struct iomap_iter * iter,struct page * page)580 static int iomap_write_begin_inline(const struct iomap_iter *iter,
581 struct page *page)
582 {
583 int ret;
584
585 /* needs more work for the tailpacking case; disable for now */
586 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
587 return -EIO;
588 ret = iomap_read_inline_data(iter, page);
589 if (ret < 0)
590 return ret;
591 return 0;
592 }
593
iomap_write_begin(const struct iomap_iter * iter,loff_t pos,unsigned len,struct page ** pagep)594 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
595 unsigned len, struct page **pagep)
596 {
597 const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
598 const struct iomap *srcmap = iomap_iter_srcmap(iter);
599 struct page *page;
600 int status = 0;
601
602 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
603 if (srcmap != &iter->iomap)
604 BUG_ON(pos + len > srcmap->offset + srcmap->length);
605
606 if (fatal_signal_pending(current))
607 return -EINTR;
608
609 if (page_ops && page_ops->page_prepare) {
610 status = page_ops->page_prepare(iter->inode, pos, len);
611 if (status)
612 return status;
613 }
614
615 page = grab_cache_page_write_begin(iter->inode->i_mapping,
616 pos >> PAGE_SHIFT, AOP_FLAG_NOFS);
617 if (!page) {
618 status = -ENOMEM;
619 goto out_no_page;
620 }
621
622 if (srcmap->type == IOMAP_INLINE)
623 status = iomap_write_begin_inline(iter, page);
624 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
625 status = __block_write_begin_int(page, pos, len, NULL, srcmap);
626 else
627 status = __iomap_write_begin(iter, pos, len, page);
628
629 if (unlikely(status))
630 goto out_unlock;
631
632 *pagep = page;
633 return 0;
634
635 out_unlock:
636 unlock_page(page);
637 put_page(page);
638 iomap_write_failed(iter->inode, pos, len);
639
640 out_no_page:
641 if (page_ops && page_ops->page_done)
642 page_ops->page_done(iter->inode, pos, 0, NULL);
643 return status;
644 }
645
__iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct page * page)646 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
647 size_t copied, struct page *page)
648 {
649 flush_dcache_page(page);
650
651 /*
652 * The blocks that were entirely written will now be uptodate, so we
653 * don't have to worry about a readpage reading them and overwriting a
654 * partial write. However, if we've encountered a short write and only
655 * partially written into a block, it will not be marked uptodate, so a
656 * readpage might come in and destroy our partial write.
657 *
658 * Do the simplest thing and just treat any short write to a
659 * non-uptodate page as a zero-length write, and force the caller to
660 * redo the whole thing.
661 */
662 if (unlikely(copied < len && !PageUptodate(page)))
663 return 0;
664 iomap_set_range_uptodate(page, offset_in_page(pos), len);
665 __set_page_dirty_nobuffers(page);
666 return copied;
667 }
668
iomap_write_end_inline(const struct iomap_iter * iter,struct page * page,loff_t pos,size_t copied)669 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
670 struct page *page, loff_t pos, size_t copied)
671 {
672 const struct iomap *iomap = &iter->iomap;
673 void *addr;
674
675 WARN_ON_ONCE(!PageUptodate(page));
676 BUG_ON(!iomap_inline_data_valid(iomap));
677
678 flush_dcache_page(page);
679 addr = kmap_local_page(page) + pos;
680 memcpy(iomap_inline_data(iomap, pos), addr, copied);
681 kunmap_local(addr);
682
683 mark_inode_dirty(iter->inode);
684 return copied;
685 }
686
687 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */
iomap_write_end(struct iomap_iter * iter,loff_t pos,size_t len,size_t copied,struct page * page)688 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
689 size_t copied, struct page *page)
690 {
691 const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
692 const struct iomap *srcmap = iomap_iter_srcmap(iter);
693 loff_t old_size = iter->inode->i_size;
694 size_t ret;
695
696 if (srcmap->type == IOMAP_INLINE) {
697 ret = iomap_write_end_inline(iter, page, pos, copied);
698 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
699 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
700 copied, page, NULL);
701 } else {
702 ret = __iomap_write_end(iter->inode, pos, len, copied, page);
703 }
704
705 /*
706 * Update the in-memory inode size after copying the data into the page
707 * cache. It's up to the file system to write the updated size to disk,
708 * preferably after I/O completion so that no stale data is exposed.
709 */
710 if (pos + ret > old_size) {
711 i_size_write(iter->inode, pos + ret);
712 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
713 }
714 unlock_page(page);
715
716 if (old_size < pos)
717 pagecache_isize_extended(iter->inode, old_size, pos);
718 if (page_ops && page_ops->page_done)
719 page_ops->page_done(iter->inode, pos, ret, page);
720 put_page(page);
721
722 if (ret < len)
723 iomap_write_failed(iter->inode, pos, len);
724 return ret;
725 }
726
iomap_write_iter(struct iomap_iter * iter,struct iov_iter * i)727 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
728 {
729 loff_t length = iomap_length(iter);
730 loff_t pos = iter->pos;
731 ssize_t written = 0;
732 long status = 0;
733
734 do {
735 struct page *page;
736 unsigned long offset; /* Offset into pagecache page */
737 unsigned long bytes; /* Bytes to write to page */
738 size_t copied; /* Bytes copied from user */
739
740 offset = offset_in_page(pos);
741 bytes = min_t(unsigned long, PAGE_SIZE - offset,
742 iov_iter_count(i));
743 again:
744 if (bytes > length)
745 bytes = length;
746
747 /*
748 * Bring in the user page that we'll copy from _first_.
749 * Otherwise there's a nasty deadlock on copying from the
750 * same page as we're writing to, without it being marked
751 * up-to-date.
752 */
753 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
754 status = -EFAULT;
755 break;
756 }
757
758 status = iomap_write_begin(iter, pos, bytes, &page);
759 if (unlikely(status))
760 break;
761
762 if (mapping_writably_mapped(iter->inode->i_mapping))
763 flush_dcache_page(page);
764
765 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
766
767 status = iomap_write_end(iter, pos, bytes, copied, page);
768
769 if (unlikely(copied != status))
770 iov_iter_revert(i, copied - status);
771
772 cond_resched();
773 if (unlikely(status == 0)) {
774 /*
775 * A short copy made iomap_write_end() reject the
776 * thing entirely. Might be memory poisoning
777 * halfway through, might be a race with munmap,
778 * might be severe memory pressure.
779 */
780 if (copied)
781 bytes = copied;
782 goto again;
783 }
784 pos += status;
785 written += status;
786 length -= status;
787
788 balance_dirty_pages_ratelimited(iter->inode->i_mapping);
789 } while (iov_iter_count(i) && length);
790
791 return written ? written : status;
792 }
793
794 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * i,const struct iomap_ops * ops)795 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
796 const struct iomap_ops *ops)
797 {
798 struct iomap_iter iter = {
799 .inode = iocb->ki_filp->f_mapping->host,
800 .pos = iocb->ki_pos,
801 .len = iov_iter_count(i),
802 .flags = IOMAP_WRITE,
803 };
804 int ret;
805
806 while ((ret = iomap_iter(&iter, ops)) > 0)
807 iter.processed = iomap_write_iter(&iter, i);
808 if (iter.pos == iocb->ki_pos)
809 return ret;
810 return iter.pos - iocb->ki_pos;
811 }
812 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
813
iomap_unshare_iter(struct iomap_iter * iter)814 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
815 {
816 struct iomap *iomap = &iter->iomap;
817 const struct iomap *srcmap = iomap_iter_srcmap(iter);
818 loff_t pos = iter->pos;
819 loff_t length = iomap_length(iter);
820 long status = 0;
821 loff_t written = 0;
822
823 /* don't bother with blocks that are not shared to start with */
824 if (!(iomap->flags & IOMAP_F_SHARED))
825 return length;
826 /* don't bother with holes or unwritten extents */
827 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
828 return length;
829
830 do {
831 unsigned long offset = offset_in_page(pos);
832 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
833 struct page *page;
834
835 status = iomap_write_begin(iter, pos, bytes, &page);
836 if (unlikely(status))
837 return status;
838
839 status = iomap_write_end(iter, pos, bytes, bytes, page);
840 if (WARN_ON_ONCE(status == 0))
841 return -EIO;
842
843 cond_resched();
844
845 pos += status;
846 written += status;
847 length -= status;
848
849 balance_dirty_pages_ratelimited(iter->inode->i_mapping);
850 } while (length);
851
852 return written;
853 }
854
855 int
iomap_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)856 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
857 const struct iomap_ops *ops)
858 {
859 struct iomap_iter iter = {
860 .inode = inode,
861 .pos = pos,
862 .len = len,
863 .flags = IOMAP_WRITE | IOMAP_UNSHARE,
864 };
865 int ret;
866
867 while ((ret = iomap_iter(&iter, ops)) > 0)
868 iter.processed = iomap_unshare_iter(&iter);
869 return ret;
870 }
871 EXPORT_SYMBOL_GPL(iomap_file_unshare);
872
__iomap_zero_iter(struct iomap_iter * iter,loff_t pos,u64 length)873 static s64 __iomap_zero_iter(struct iomap_iter *iter, loff_t pos, u64 length)
874 {
875 struct page *page;
876 int status;
877 unsigned offset = offset_in_page(pos);
878 unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
879
880 status = iomap_write_begin(iter, pos, bytes, &page);
881 if (status)
882 return status;
883
884 zero_user(page, offset, bytes);
885 mark_page_accessed(page);
886
887 return iomap_write_end(iter, pos, bytes, bytes, page);
888 }
889
iomap_zero_iter(struct iomap_iter * iter,bool * did_zero)890 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
891 {
892 struct iomap *iomap = &iter->iomap;
893 const struct iomap *srcmap = iomap_iter_srcmap(iter);
894 loff_t pos = iter->pos;
895 loff_t length = iomap_length(iter);
896 loff_t written = 0;
897
898 /* already zeroed? we're done. */
899 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
900 return length;
901
902 do {
903 s64 bytes;
904
905 if (IS_DAX(iter->inode))
906 bytes = dax_iomap_zero(pos, length, iomap);
907 else
908 bytes = __iomap_zero_iter(iter, pos, length);
909 if (bytes < 0)
910 return bytes;
911
912 pos += bytes;
913 length -= bytes;
914 written += bytes;
915 if (did_zero)
916 *did_zero = true;
917 } while (length > 0);
918
919 return written;
920 }
921
922 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)923 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
924 const struct iomap_ops *ops)
925 {
926 struct iomap_iter iter = {
927 .inode = inode,
928 .pos = pos,
929 .len = len,
930 .flags = IOMAP_ZERO,
931 };
932 int ret;
933
934 while ((ret = iomap_iter(&iter, ops)) > 0)
935 iter.processed = iomap_zero_iter(&iter, did_zero);
936 return ret;
937 }
938 EXPORT_SYMBOL_GPL(iomap_zero_range);
939
940 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)941 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
942 const struct iomap_ops *ops)
943 {
944 unsigned int blocksize = i_blocksize(inode);
945 unsigned int off = pos & (blocksize - 1);
946
947 /* Block boundary? Nothing to do */
948 if (!off)
949 return 0;
950 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
951 }
952 EXPORT_SYMBOL_GPL(iomap_truncate_page);
953
iomap_page_mkwrite_iter(struct iomap_iter * iter,struct page * page)954 static loff_t iomap_page_mkwrite_iter(struct iomap_iter *iter,
955 struct page *page)
956 {
957 loff_t length = iomap_length(iter);
958 int ret;
959
960 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
961 ret = __block_write_begin_int(page, iter->pos, length, NULL,
962 &iter->iomap);
963 if (ret)
964 return ret;
965 block_commit_write(page, 0, length);
966 } else {
967 WARN_ON_ONCE(!PageUptodate(page));
968 set_page_dirty(page);
969 }
970
971 return length;
972 }
973
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops)974 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
975 {
976 struct iomap_iter iter = {
977 .inode = file_inode(vmf->vma->vm_file),
978 .flags = IOMAP_WRITE | IOMAP_FAULT,
979 };
980 struct page *page = vmf->page;
981 ssize_t ret;
982
983 lock_page(page);
984 ret = page_mkwrite_check_truncate(page, iter.inode);
985 if (ret < 0)
986 goto out_unlock;
987 iter.pos = page_offset(page);
988 iter.len = ret;
989 while ((ret = iomap_iter(&iter, ops)) > 0)
990 iter.processed = iomap_page_mkwrite_iter(&iter, page);
991
992 if (ret < 0)
993 goto out_unlock;
994 wait_for_stable_page(page);
995 return VM_FAULT_LOCKED;
996 out_unlock:
997 unlock_page(page);
998 return block_page_mkwrite_return(ret);
999 }
1000 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1001
1002 static void
iomap_finish_page_writeback(struct inode * inode,struct page * page,int error,unsigned int len)1003 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1004 int error, unsigned int len)
1005 {
1006 struct iomap_page *iop = to_iomap_page(page);
1007
1008 if (error) {
1009 SetPageError(page);
1010 mapping_set_error(inode->i_mapping, error);
1011 }
1012
1013 WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1014 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1015
1016 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1017 end_page_writeback(page);
1018 }
1019
1020 /*
1021 * We're now finished for good with this ioend structure. Update the page
1022 * state, release holds on bios, and finally free up memory. Do not use the
1023 * ioend after this.
1024 */
1025 static void
iomap_finish_ioend(struct iomap_ioend * ioend,int error)1026 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1027 {
1028 struct inode *inode = ioend->io_inode;
1029 struct bio *bio = &ioend->io_inline_bio;
1030 struct bio *last = ioend->io_bio, *next;
1031 u64 start = bio->bi_iter.bi_sector;
1032 loff_t offset = ioend->io_offset;
1033 bool quiet = bio_flagged(bio, BIO_QUIET);
1034
1035 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1036 struct bio_vec *bv;
1037 struct bvec_iter_all iter_all;
1038
1039 /*
1040 * For the last bio, bi_private points to the ioend, so we
1041 * need to explicitly end the iteration here.
1042 */
1043 if (bio == last)
1044 next = NULL;
1045 else
1046 next = bio->bi_private;
1047
1048 /* walk each page on bio, ending page IO on them */
1049 bio_for_each_segment_all(bv, bio, iter_all)
1050 iomap_finish_page_writeback(inode, bv->bv_page, error,
1051 bv->bv_len);
1052 bio_put(bio);
1053 }
1054 /* The ioend has been freed by bio_put() */
1055
1056 if (unlikely(error && !quiet)) {
1057 printk_ratelimited(KERN_ERR
1058 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1059 inode->i_sb->s_id, inode->i_ino, offset, start);
1060 }
1061 }
1062
1063 void
iomap_finish_ioends(struct iomap_ioend * ioend,int error)1064 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1065 {
1066 struct list_head tmp;
1067
1068 list_replace_init(&ioend->io_list, &tmp);
1069 iomap_finish_ioend(ioend, error);
1070
1071 while (!list_empty(&tmp)) {
1072 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1073 list_del_init(&ioend->io_list);
1074 iomap_finish_ioend(ioend, error);
1075 }
1076 }
1077 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1078
1079 /*
1080 * We can merge two adjacent ioends if they have the same set of work to do.
1081 */
1082 static bool
iomap_ioend_can_merge(struct iomap_ioend * ioend,struct iomap_ioend * next)1083 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1084 {
1085 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1086 return false;
1087 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1088 (next->io_flags & IOMAP_F_SHARED))
1089 return false;
1090 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1091 (next->io_type == IOMAP_UNWRITTEN))
1092 return false;
1093 if (ioend->io_offset + ioend->io_size != next->io_offset)
1094 return false;
1095 return true;
1096 }
1097
1098 void
iomap_ioend_try_merge(struct iomap_ioend * ioend,struct list_head * more_ioends)1099 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1100 {
1101 struct iomap_ioend *next;
1102
1103 INIT_LIST_HEAD(&ioend->io_list);
1104
1105 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1106 io_list))) {
1107 if (!iomap_ioend_can_merge(ioend, next))
1108 break;
1109 list_move_tail(&next->io_list, &ioend->io_list);
1110 ioend->io_size += next->io_size;
1111 }
1112 }
1113 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1114
1115 static int
iomap_ioend_compare(void * priv,const struct list_head * a,const struct list_head * b)1116 iomap_ioend_compare(void *priv, const struct list_head *a,
1117 const struct list_head *b)
1118 {
1119 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1120 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1121
1122 if (ia->io_offset < ib->io_offset)
1123 return -1;
1124 if (ia->io_offset > ib->io_offset)
1125 return 1;
1126 return 0;
1127 }
1128
1129 void
iomap_sort_ioends(struct list_head * ioend_list)1130 iomap_sort_ioends(struct list_head *ioend_list)
1131 {
1132 list_sort(NULL, ioend_list, iomap_ioend_compare);
1133 }
1134 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1135
iomap_writepage_end_bio(struct bio * bio)1136 static void iomap_writepage_end_bio(struct bio *bio)
1137 {
1138 struct iomap_ioend *ioend = bio->bi_private;
1139
1140 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1141 }
1142
1143 /*
1144 * Submit the final bio for an ioend.
1145 *
1146 * If @error is non-zero, it means that we have a situation where some part of
1147 * the submission process has failed after we've marked pages for writeback
1148 * and unlocked them. In this situation, we need to fail the bio instead of
1149 * submitting it. This typically only happens on a filesystem shutdown.
1150 */
1151 static int
iomap_submit_ioend(struct iomap_writepage_ctx * wpc,struct iomap_ioend * ioend,int error)1152 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1153 int error)
1154 {
1155 ioend->io_bio->bi_private = ioend;
1156 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1157
1158 if (wpc->ops->prepare_ioend)
1159 error = wpc->ops->prepare_ioend(ioend, error);
1160 if (error) {
1161 /*
1162 * If we're failing the IO now, just mark the ioend with an
1163 * error and finish it. This will run IO completion immediately
1164 * as there is only one reference to the ioend at this point in
1165 * time.
1166 */
1167 ioend->io_bio->bi_status = errno_to_blk_status(error);
1168 bio_endio(ioend->io_bio);
1169 return error;
1170 }
1171
1172 submit_bio(ioend->io_bio);
1173 return 0;
1174 }
1175
1176 static struct iomap_ioend *
iomap_alloc_ioend(struct inode * inode,struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector,struct writeback_control * wbc)1177 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1178 loff_t offset, sector_t sector, struct writeback_control *wbc)
1179 {
1180 struct iomap_ioend *ioend;
1181 struct bio *bio;
1182
1183 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &iomap_ioend_bioset);
1184 bio_set_dev(bio, wpc->iomap.bdev);
1185 bio->bi_iter.bi_sector = sector;
1186 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1187 bio->bi_write_hint = inode->i_write_hint;
1188 wbc_init_bio(wbc, bio);
1189
1190 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1191 INIT_LIST_HEAD(&ioend->io_list);
1192 ioend->io_type = wpc->iomap.type;
1193 ioend->io_flags = wpc->iomap.flags;
1194 ioend->io_inode = inode;
1195 ioend->io_size = 0;
1196 ioend->io_offset = offset;
1197 ioend->io_bio = bio;
1198 return ioend;
1199 }
1200
1201 /*
1202 * Allocate a new bio, and chain the old bio to the new one.
1203 *
1204 * Note that we have to perform the chaining in this unintuitive order
1205 * so that the bi_private linkage is set up in the right direction for the
1206 * traversal in iomap_finish_ioend().
1207 */
1208 static struct bio *
iomap_chain_bio(struct bio * prev)1209 iomap_chain_bio(struct bio *prev)
1210 {
1211 struct bio *new;
1212
1213 new = bio_alloc(GFP_NOFS, BIO_MAX_VECS);
1214 bio_copy_dev(new, prev);/* also copies over blkcg information */
1215 new->bi_iter.bi_sector = bio_end_sector(prev);
1216 new->bi_opf = prev->bi_opf;
1217 new->bi_write_hint = prev->bi_write_hint;
1218
1219 bio_chain(prev, new);
1220 bio_get(prev); /* for iomap_finish_ioend */
1221 submit_bio(prev);
1222 return new;
1223 }
1224
1225 static bool
iomap_can_add_to_ioend(struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector)1226 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1227 sector_t sector)
1228 {
1229 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1230 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1231 return false;
1232 if (wpc->iomap.type != wpc->ioend->io_type)
1233 return false;
1234 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1235 return false;
1236 if (sector != bio_end_sector(wpc->ioend->io_bio))
1237 return false;
1238 return true;
1239 }
1240
1241 /*
1242 * Test to see if we have an existing ioend structure that we could append to
1243 * first; otherwise finish off the current ioend and start another.
1244 */
1245 static void
iomap_add_to_ioend(struct inode * inode,loff_t offset,struct page * page,struct iomap_page * iop,struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct list_head * iolist)1246 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1247 struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1248 struct writeback_control *wbc, struct list_head *iolist)
1249 {
1250 sector_t sector = iomap_sector(&wpc->iomap, offset);
1251 unsigned len = i_blocksize(inode);
1252 unsigned poff = offset & (PAGE_SIZE - 1);
1253
1254 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1255 if (wpc->ioend)
1256 list_add(&wpc->ioend->io_list, iolist);
1257 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1258 }
1259
1260 if (bio_add_page(wpc->ioend->io_bio, page, len, poff) != len) {
1261 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1262 __bio_add_page(wpc->ioend->io_bio, page, len, poff);
1263 }
1264
1265 if (iop)
1266 atomic_add(len, &iop->write_bytes_pending);
1267 wpc->ioend->io_size += len;
1268 wbc_account_cgroup_owner(wbc, page, len);
1269 }
1270
1271 /*
1272 * We implement an immediate ioend submission policy here to avoid needing to
1273 * chain multiple ioends and hence nest mempool allocations which can violate
1274 * the forward progress guarantees we need to provide. The current ioend we're
1275 * adding blocks to is cached in the writepage context, and if the new block
1276 * doesn't append to the cached ioend, it will create a new ioend and cache that
1277 * instead.
1278 *
1279 * If a new ioend is created and cached, the old ioend is returned and queued
1280 * locally for submission once the entire page is processed or an error has been
1281 * detected. While ioends are submitted immediately after they are completed,
1282 * batching optimisations are provided by higher level block plugging.
1283 *
1284 * At the end of a writeback pass, there will be a cached ioend remaining on the
1285 * writepage context that the caller will need to submit.
1286 */
1287 static int
iomap_writepage_map(struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct inode * inode,struct page * page,u64 end_offset)1288 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1289 struct writeback_control *wbc, struct inode *inode,
1290 struct page *page, u64 end_offset)
1291 {
1292 struct iomap_page *iop = iomap_page_create(inode, page);
1293 struct iomap_ioend *ioend, *next;
1294 unsigned len = i_blocksize(inode);
1295 u64 file_offset; /* file offset of page */
1296 int error = 0, count = 0, i;
1297 LIST_HEAD(submit_list);
1298
1299 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1300
1301 /*
1302 * Walk through the page to find areas to write back. If we run off the
1303 * end of the current map or find the current map invalid, grab a new
1304 * one.
1305 */
1306 for (i = 0, file_offset = page_offset(page);
1307 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1308 i++, file_offset += len) {
1309 if (iop && !test_bit(i, iop->uptodate))
1310 continue;
1311
1312 error = wpc->ops->map_blocks(wpc, inode, file_offset);
1313 if (error)
1314 break;
1315 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1316 continue;
1317 if (wpc->iomap.type == IOMAP_HOLE)
1318 continue;
1319 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1320 &submit_list);
1321 count++;
1322 }
1323
1324 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1325 WARN_ON_ONCE(!PageLocked(page));
1326 WARN_ON_ONCE(PageWriteback(page));
1327 WARN_ON_ONCE(PageDirty(page));
1328
1329 /*
1330 * We cannot cancel the ioend directly here on error. We may have
1331 * already set other pages under writeback and hence we have to run I/O
1332 * completion to mark the error state of the pages under writeback
1333 * appropriately.
1334 */
1335 if (unlikely(error)) {
1336 /*
1337 * Let the filesystem know what portion of the current page
1338 * failed to map. If the page hasn't been added to ioend, it
1339 * won't be affected by I/O completion and we must unlock it
1340 * now.
1341 */
1342 if (wpc->ops->discard_page)
1343 wpc->ops->discard_page(page, file_offset);
1344 if (!count) {
1345 ClearPageUptodate(page);
1346 unlock_page(page);
1347 goto done;
1348 }
1349 }
1350
1351 set_page_writeback(page);
1352 unlock_page(page);
1353
1354 /*
1355 * Preserve the original error if there was one; catch
1356 * submission errors here and propagate into subsequent ioend
1357 * submissions.
1358 */
1359 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1360 int error2;
1361
1362 list_del_init(&ioend->io_list);
1363 error2 = iomap_submit_ioend(wpc, ioend, error);
1364 if (error2 && !error)
1365 error = error2;
1366 }
1367
1368 /*
1369 * We can end up here with no error and nothing to write only if we race
1370 * with a partial page truncate on a sub-page block sized filesystem.
1371 */
1372 if (!count)
1373 end_page_writeback(page);
1374 done:
1375 mapping_set_error(page->mapping, error);
1376 return error;
1377 }
1378
1379 /*
1380 * Write out a dirty page.
1381 *
1382 * For delalloc space on the page, we need to allocate space and flush it.
1383 * For unwritten space on the page, we need to start the conversion to
1384 * regular allocated space.
1385 */
1386 static int
iomap_do_writepage(struct page * page,struct writeback_control * wbc,void * data)1387 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1388 {
1389 struct iomap_writepage_ctx *wpc = data;
1390 struct inode *inode = page->mapping->host;
1391 pgoff_t end_index;
1392 u64 end_offset;
1393 loff_t offset;
1394
1395 trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1396
1397 /*
1398 * Refuse to write the page out if we're called from reclaim context.
1399 *
1400 * This avoids stack overflows when called from deeply used stacks in
1401 * random callers for direct reclaim or memcg reclaim. We explicitly
1402 * allow reclaim from kswapd as the stack usage there is relatively low.
1403 *
1404 * This should never happen except in the case of a VM regression so
1405 * warn about it.
1406 */
1407 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1408 PF_MEMALLOC))
1409 goto redirty;
1410
1411 /*
1412 * Is this page beyond the end of the file?
1413 *
1414 * The page index is less than the end_index, adjust the end_offset
1415 * to the highest offset that this page should represent.
1416 * -----------------------------------------------------
1417 * | file mapping | <EOF> |
1418 * -----------------------------------------------------
1419 * | Page ... | Page N-2 | Page N-1 | Page N | |
1420 * ^--------------------------------^----------|--------
1421 * | desired writeback range | see else |
1422 * ---------------------------------^------------------|
1423 */
1424 offset = i_size_read(inode);
1425 end_index = offset >> PAGE_SHIFT;
1426 if (page->index < end_index)
1427 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1428 else {
1429 /*
1430 * Check whether the page to write out is beyond or straddles
1431 * i_size or not.
1432 * -------------------------------------------------------
1433 * | file mapping | <EOF> |
1434 * -------------------------------------------------------
1435 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1436 * ^--------------------------------^-----------|---------
1437 * | | Straddles |
1438 * ---------------------------------^-----------|--------|
1439 */
1440 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1441
1442 /*
1443 * Skip the page if it's fully outside i_size, e.g. due to a
1444 * truncate operation that's in progress. We must redirty the
1445 * page so that reclaim stops reclaiming it. Otherwise
1446 * iomap_vm_releasepage() is called on it and gets confused.
1447 *
1448 * Note that the end_index is unsigned long. If the given
1449 * offset is greater than 16TB on a 32-bit system then if we
1450 * checked if the page is fully outside i_size with
1451 * "if (page->index >= end_index + 1)", "end_index + 1" would
1452 * overflow and evaluate to 0. Hence this page would be
1453 * redirtied and written out repeatedly, which would result in
1454 * an infinite loop; the user program performing this operation
1455 * would hang. Instead, we can detect this situation by
1456 * checking if the page is totally beyond i_size or if its
1457 * offset is just equal to the EOF.
1458 */
1459 if (page->index > end_index ||
1460 (page->index == end_index && offset_into_page == 0))
1461 goto redirty;
1462
1463 /*
1464 * The page straddles i_size. It must be zeroed out on each
1465 * and every writepage invocation because it may be mmapped.
1466 * "A file is mapped in multiples of the page size. For a file
1467 * that is not a multiple of the page size, the remaining
1468 * memory is zeroed when mapped, and writes to that region are
1469 * not written out to the file."
1470 */
1471 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1472
1473 /* Adjust the end_offset to the end of file */
1474 end_offset = offset;
1475 }
1476
1477 return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1478
1479 redirty:
1480 redirty_page_for_writepage(wbc, page);
1481 unlock_page(page);
1482 return 0;
1483 }
1484
1485 int
iomap_writepage(struct page * page,struct writeback_control * wbc,struct iomap_writepage_ctx * wpc,const struct iomap_writeback_ops * ops)1486 iomap_writepage(struct page *page, struct writeback_control *wbc,
1487 struct iomap_writepage_ctx *wpc,
1488 const struct iomap_writeback_ops *ops)
1489 {
1490 int ret;
1491
1492 wpc->ops = ops;
1493 ret = iomap_do_writepage(page, wbc, wpc);
1494 if (!wpc->ioend)
1495 return ret;
1496 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1497 }
1498 EXPORT_SYMBOL_GPL(iomap_writepage);
1499
1500 int
iomap_writepages(struct address_space * mapping,struct writeback_control * wbc,struct iomap_writepage_ctx * wpc,const struct iomap_writeback_ops * ops)1501 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1502 struct iomap_writepage_ctx *wpc,
1503 const struct iomap_writeback_ops *ops)
1504 {
1505 int ret;
1506
1507 wpc->ops = ops;
1508 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1509 if (!wpc->ioend)
1510 return ret;
1511 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1512 }
1513 EXPORT_SYMBOL_GPL(iomap_writepages);
1514
iomap_init(void)1515 static int __init iomap_init(void)
1516 {
1517 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1518 offsetof(struct iomap_ioend, io_inline_bio),
1519 BIOSET_NEED_BVECS);
1520 }
1521 fs_initcall(iomap_init);
1522