1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/bio.h>
17 #include <linux/sched/signal.h>
18 #include <linux/migrate.h>
19 
20 #include "../internal.h"
21 
22 static struct iomap_page *
iomap_page_create(struct inode * inode,struct page * page)23 iomap_page_create(struct inode *inode, struct page *page)
24 {
25 	struct iomap_page *iop = to_iomap_page(page);
26 
27 	if (iop || i_blocksize(inode) == PAGE_SIZE)
28 		return iop;
29 
30 	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
31 	atomic_set(&iop->read_count, 0);
32 	atomic_set(&iop->write_count, 0);
33 	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
34 
35 	/*
36 	 * migrate_page_move_mapping() assumes that pages with private data have
37 	 * their count elevated by 1.
38 	 */
39 	get_page(page);
40 	set_page_private(page, (unsigned long)iop);
41 	SetPagePrivate(page);
42 	return iop;
43 }
44 
45 static void
iomap_page_release(struct page * page)46 iomap_page_release(struct page *page)
47 {
48 	struct iomap_page *iop = to_iomap_page(page);
49 
50 	if (!iop)
51 		return;
52 	WARN_ON_ONCE(atomic_read(&iop->read_count));
53 	WARN_ON_ONCE(atomic_read(&iop->write_count));
54 	ClearPagePrivate(page);
55 	set_page_private(page, 0);
56 	put_page(page);
57 	kfree(iop);
58 }
59 
60 /*
61  * Calculate the range inside the page that we actually need to read.
62  */
63 static void
iomap_adjust_read_range(struct inode * inode,struct iomap_page * iop,loff_t * pos,loff_t length,unsigned * offp,unsigned * lenp)64 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
65 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
66 {
67 	loff_t orig_pos = *pos;
68 	loff_t isize = i_size_read(inode);
69 	unsigned block_bits = inode->i_blkbits;
70 	unsigned block_size = (1 << block_bits);
71 	unsigned poff = offset_in_page(*pos);
72 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
73 	unsigned first = poff >> block_bits;
74 	unsigned last = (poff + plen - 1) >> block_bits;
75 
76 	/*
77 	 * If the block size is smaller than the page size we need to check the
78 	 * per-block uptodate status and adjust the offset and length if needed
79 	 * to avoid reading in already uptodate ranges.
80 	 */
81 	if (iop) {
82 		unsigned int i;
83 
84 		/* move forward for each leading block marked uptodate */
85 		for (i = first; i <= last; i++) {
86 			if (!test_bit(i, iop->uptodate))
87 				break;
88 			*pos += block_size;
89 			poff += block_size;
90 			plen -= block_size;
91 			first++;
92 		}
93 
94 		/* truncate len if we find any trailing uptodate block(s) */
95 		for ( ; i <= last; i++) {
96 			if (test_bit(i, iop->uptodate)) {
97 				plen -= (last - i + 1) * block_size;
98 				last = i - 1;
99 				break;
100 			}
101 		}
102 	}
103 
104 	/*
105 	 * If the extent spans the block that contains the i_size we need to
106 	 * handle both halves separately so that we properly zero data in the
107 	 * page cache for blocks that are entirely outside of i_size.
108 	 */
109 	if (orig_pos <= isize && orig_pos + length > isize) {
110 		unsigned end = offset_in_page(isize - 1) >> block_bits;
111 
112 		if (first <= end && last > end)
113 			plen -= (last - end) * block_size;
114 	}
115 
116 	*offp = poff;
117 	*lenp = plen;
118 }
119 
120 static void
iomap_set_range_uptodate(struct page * page,unsigned off,unsigned len)121 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
122 {
123 	struct iomap_page *iop = to_iomap_page(page);
124 	struct inode *inode = page->mapping->host;
125 	unsigned first = off >> inode->i_blkbits;
126 	unsigned last = (off + len - 1) >> inode->i_blkbits;
127 	unsigned int i;
128 	bool uptodate = true;
129 
130 	if (iop) {
131 		for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
132 			if (i >= first && i <= last)
133 				set_bit(i, iop->uptodate);
134 			else if (!test_bit(i, iop->uptodate))
135 				uptodate = false;
136 		}
137 	}
138 
139 	if (uptodate && !PageError(page))
140 		SetPageUptodate(page);
141 }
142 
143 static void
iomap_read_finish(struct iomap_page * iop,struct page * page)144 iomap_read_finish(struct iomap_page *iop, struct page *page)
145 {
146 	if (!iop || atomic_dec_and_test(&iop->read_count))
147 		unlock_page(page);
148 }
149 
150 static void
iomap_read_page_end_io(struct bio_vec * bvec,int error)151 iomap_read_page_end_io(struct bio_vec *bvec, int error)
152 {
153 	struct page *page = bvec->bv_page;
154 	struct iomap_page *iop = to_iomap_page(page);
155 
156 	if (unlikely(error)) {
157 		ClearPageUptodate(page);
158 		SetPageError(page);
159 	} else {
160 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
161 	}
162 
163 	iomap_read_finish(iop, page);
164 }
165 
166 static void
iomap_read_end_io(struct bio * bio)167 iomap_read_end_io(struct bio *bio)
168 {
169 	int error = blk_status_to_errno(bio->bi_status);
170 	struct bio_vec *bvec;
171 	struct bvec_iter_all iter_all;
172 
173 	bio_for_each_segment_all(bvec, bio, iter_all)
174 		iomap_read_page_end_io(bvec, error);
175 	bio_put(bio);
176 }
177 
178 struct iomap_readpage_ctx {
179 	struct page		*cur_page;
180 	bool			cur_page_in_bio;
181 	bool			is_readahead;
182 	struct bio		*bio;
183 	struct list_head	*pages;
184 };
185 
186 static void
iomap_read_inline_data(struct inode * inode,struct page * page,struct iomap * iomap)187 iomap_read_inline_data(struct inode *inode, struct page *page,
188 		struct iomap *iomap)
189 {
190 	size_t size = i_size_read(inode);
191 	void *addr;
192 
193 	if (PageUptodate(page))
194 		return;
195 
196 	BUG_ON(page->index);
197 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
198 
199 	addr = kmap_atomic(page);
200 	memcpy(addr, iomap->inline_data, size);
201 	memset(addr + size, 0, PAGE_SIZE - size);
202 	kunmap_atomic(addr);
203 	SetPageUptodate(page);
204 }
205 
206 static loff_t
iomap_readpage_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)207 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
208 		struct iomap *iomap)
209 {
210 	struct iomap_readpage_ctx *ctx = data;
211 	struct page *page = ctx->cur_page;
212 	struct iomap_page *iop = iomap_page_create(inode, page);
213 	bool same_page = false, is_contig = false;
214 	loff_t orig_pos = pos;
215 	unsigned poff, plen;
216 	sector_t sector;
217 
218 	if (iomap->type == IOMAP_INLINE) {
219 		WARN_ON_ONCE(pos);
220 		iomap_read_inline_data(inode, page, iomap);
221 		return PAGE_SIZE;
222 	}
223 
224 	/* zero post-eof blocks as the page may be mapped */
225 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
226 	if (plen == 0)
227 		goto done;
228 
229 	if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
230 		zero_user(page, poff, plen);
231 		iomap_set_range_uptodate(page, poff, plen);
232 		goto done;
233 	}
234 
235 	ctx->cur_page_in_bio = true;
236 
237 	/*
238 	 * Try to merge into a previous segment if we can.
239 	 */
240 	sector = iomap_sector(iomap, pos);
241 	if (ctx->bio && bio_end_sector(ctx->bio) == sector)
242 		is_contig = true;
243 
244 	if (is_contig &&
245 	    __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
246 		if (!same_page && iop)
247 			atomic_inc(&iop->read_count);
248 		goto done;
249 	}
250 
251 	/*
252 	 * If we start a new segment we need to increase the read count, and we
253 	 * need to do so before submitting any previous full bio to make sure
254 	 * that we don't prematurely unlock the page.
255 	 */
256 	if (iop)
257 		atomic_inc(&iop->read_count);
258 
259 	if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
260 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
261 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
262 
263 		if (ctx->bio)
264 			submit_bio(ctx->bio);
265 
266 		if (ctx->is_readahead) /* same as readahead_gfp_mask */
267 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
268 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
269 		ctx->bio->bi_opf = REQ_OP_READ;
270 		if (ctx->is_readahead)
271 			ctx->bio->bi_opf |= REQ_RAHEAD;
272 		ctx->bio->bi_iter.bi_sector = sector;
273 		bio_set_dev(ctx->bio, iomap->bdev);
274 		ctx->bio->bi_end_io = iomap_read_end_io;
275 	}
276 
277 	bio_add_page(ctx->bio, page, plen, poff);
278 done:
279 	/*
280 	 * Move the caller beyond our range so that it keeps making progress.
281 	 * For that we have to include any leading non-uptodate ranges, but
282 	 * we can skip trailing ones as they will be handled in the next
283 	 * iteration.
284 	 */
285 	return pos - orig_pos + plen;
286 }
287 
288 int
iomap_readpage(struct page * page,const struct iomap_ops * ops)289 iomap_readpage(struct page *page, const struct iomap_ops *ops)
290 {
291 	struct iomap_readpage_ctx ctx = { .cur_page = page };
292 	struct inode *inode = page->mapping->host;
293 	unsigned poff;
294 	loff_t ret;
295 
296 	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
297 		ret = iomap_apply(inode, page_offset(page) + poff,
298 				PAGE_SIZE - poff, 0, ops, &ctx,
299 				iomap_readpage_actor);
300 		if (ret <= 0) {
301 			WARN_ON_ONCE(ret == 0);
302 			SetPageError(page);
303 			break;
304 		}
305 	}
306 
307 	if (ctx.bio) {
308 		submit_bio(ctx.bio);
309 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
310 	} else {
311 		WARN_ON_ONCE(ctx.cur_page_in_bio);
312 		unlock_page(page);
313 	}
314 
315 	/*
316 	 * Just like mpage_readpages and block_read_full_page we always
317 	 * return 0 and just mark the page as PageError on errors.  This
318 	 * should be cleaned up all through the stack eventually.
319 	 */
320 	return 0;
321 }
322 EXPORT_SYMBOL_GPL(iomap_readpage);
323 
324 static struct page *
iomap_next_page(struct inode * inode,struct list_head * pages,loff_t pos,loff_t length,loff_t * done)325 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
326 		loff_t length, loff_t *done)
327 {
328 	while (!list_empty(pages)) {
329 		struct page *page = lru_to_page(pages);
330 
331 		if (page_offset(page) >= (u64)pos + length)
332 			break;
333 
334 		list_del(&page->lru);
335 		if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
336 				GFP_NOFS))
337 			return page;
338 
339 		/*
340 		 * If we already have a page in the page cache at index we are
341 		 * done.  Upper layers don't care if it is uptodate after the
342 		 * readpages call itself as every page gets checked again once
343 		 * actually needed.
344 		 */
345 		*done += PAGE_SIZE;
346 		put_page(page);
347 	}
348 
349 	return NULL;
350 }
351 
352 static loff_t
iomap_readpages_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)353 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
354 		void *data, struct iomap *iomap)
355 {
356 	struct iomap_readpage_ctx *ctx = data;
357 	loff_t done, ret;
358 
359 	for (done = 0; done < length; done += ret) {
360 		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
361 			if (!ctx->cur_page_in_bio)
362 				unlock_page(ctx->cur_page);
363 			put_page(ctx->cur_page);
364 			ctx->cur_page = NULL;
365 		}
366 		if (!ctx->cur_page) {
367 			ctx->cur_page = iomap_next_page(inode, ctx->pages,
368 					pos, length, &done);
369 			if (!ctx->cur_page)
370 				break;
371 			ctx->cur_page_in_bio = false;
372 		}
373 		ret = iomap_readpage_actor(inode, pos + done, length - done,
374 				ctx, iomap);
375 	}
376 
377 	return done;
378 }
379 
380 int
iomap_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages,const struct iomap_ops * ops)381 iomap_readpages(struct address_space *mapping, struct list_head *pages,
382 		unsigned nr_pages, const struct iomap_ops *ops)
383 {
384 	struct iomap_readpage_ctx ctx = {
385 		.pages		= pages,
386 		.is_readahead	= true,
387 	};
388 	loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
389 	loff_t last = page_offset(list_entry(pages->next, struct page, lru));
390 	loff_t length = last - pos + PAGE_SIZE, ret = 0;
391 
392 	while (length > 0) {
393 		ret = iomap_apply(mapping->host, pos, length, 0, ops,
394 				&ctx, iomap_readpages_actor);
395 		if (ret <= 0) {
396 			WARN_ON_ONCE(ret == 0);
397 			goto done;
398 		}
399 		pos += ret;
400 		length -= ret;
401 	}
402 	ret = 0;
403 done:
404 	if (ctx.bio)
405 		submit_bio(ctx.bio);
406 	if (ctx.cur_page) {
407 		if (!ctx.cur_page_in_bio)
408 			unlock_page(ctx.cur_page);
409 		put_page(ctx.cur_page);
410 	}
411 
412 	/*
413 	 * Check that we didn't lose a page due to the arcance calling
414 	 * conventions..
415 	 */
416 	WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
417 	return ret;
418 }
419 EXPORT_SYMBOL_GPL(iomap_readpages);
420 
421 /*
422  * iomap_is_partially_uptodate checks whether blocks within a page are
423  * uptodate or not.
424  *
425  * Returns true if all blocks which correspond to a file portion
426  * we want to read within the page are uptodate.
427  */
428 int
iomap_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)429 iomap_is_partially_uptodate(struct page *page, unsigned long from,
430 		unsigned long count)
431 {
432 	struct iomap_page *iop = to_iomap_page(page);
433 	struct inode *inode = page->mapping->host;
434 	unsigned len, first, last;
435 	unsigned i;
436 
437 	/* Limit range to one page */
438 	len = min_t(unsigned, PAGE_SIZE - from, count);
439 
440 	/* First and last blocks in range within page */
441 	first = from >> inode->i_blkbits;
442 	last = (from + len - 1) >> inode->i_blkbits;
443 
444 	if (iop) {
445 		for (i = first; i <= last; i++)
446 			if (!test_bit(i, iop->uptodate))
447 				return 0;
448 		return 1;
449 	}
450 
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
454 
455 int
iomap_releasepage(struct page * page,gfp_t gfp_mask)456 iomap_releasepage(struct page *page, gfp_t gfp_mask)
457 {
458 	/*
459 	 * mm accommodates an old ext3 case where clean pages might not have had
460 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
461 	 * ->releasepage() via shrink_active_list(), skip those here.
462 	 */
463 	if (PageDirty(page) || PageWriteback(page))
464 		return 0;
465 	iomap_page_release(page);
466 	return 1;
467 }
468 EXPORT_SYMBOL_GPL(iomap_releasepage);
469 
470 void
iomap_invalidatepage(struct page * page,unsigned int offset,unsigned int len)471 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
472 {
473 	/*
474 	 * If we are invalidating the entire page, clear the dirty state from it
475 	 * and release it to avoid unnecessary buildup of the LRU.
476 	 */
477 	if (offset == 0 && len == PAGE_SIZE) {
478 		WARN_ON_ONCE(PageWriteback(page));
479 		cancel_dirty_page(page);
480 		iomap_page_release(page);
481 	}
482 }
483 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
484 
485 #ifdef CONFIG_MIGRATION
486 int
iomap_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)487 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
488 		struct page *page, enum migrate_mode mode)
489 {
490 	int ret;
491 
492 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
493 	if (ret != MIGRATEPAGE_SUCCESS)
494 		return ret;
495 
496 	if (page_has_private(page)) {
497 		ClearPagePrivate(page);
498 		get_page(newpage);
499 		set_page_private(newpage, page_private(page));
500 		set_page_private(page, 0);
501 		put_page(page);
502 		SetPagePrivate(newpage);
503 	}
504 
505 	if (mode != MIGRATE_SYNC_NO_COPY)
506 		migrate_page_copy(newpage, page);
507 	else
508 		migrate_page_states(newpage, page);
509 	return MIGRATEPAGE_SUCCESS;
510 }
511 EXPORT_SYMBOL_GPL(iomap_migrate_page);
512 #endif /* CONFIG_MIGRATION */
513 
514 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)515 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
516 {
517 	loff_t i_size = i_size_read(inode);
518 
519 	/*
520 	 * Only truncate newly allocated pages beyoned EOF, even if the
521 	 * write started inside the existing inode size.
522 	 */
523 	if (pos + len > i_size)
524 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
525 }
526 
527 static int
iomap_read_page_sync(struct inode * inode,loff_t block_start,struct page * page,unsigned poff,unsigned plen,unsigned from,unsigned to,struct iomap * iomap)528 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
529 		unsigned poff, unsigned plen, unsigned from, unsigned to,
530 		struct iomap *iomap)
531 {
532 	struct bio_vec bvec;
533 	struct bio bio;
534 
535 	if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
536 		zero_user_segments(page, poff, from, to, poff + plen);
537 		iomap_set_range_uptodate(page, poff, plen);
538 		return 0;
539 	}
540 
541 	bio_init(&bio, &bvec, 1);
542 	bio.bi_opf = REQ_OP_READ;
543 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
544 	bio_set_dev(&bio, iomap->bdev);
545 	__bio_add_page(&bio, page, plen, poff);
546 	return submit_bio_wait(&bio);
547 }
548 
549 static int
__iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,struct page * page,struct iomap * iomap)550 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
551 		struct page *page, struct iomap *iomap)
552 {
553 	struct iomap_page *iop = iomap_page_create(inode, page);
554 	loff_t block_size = i_blocksize(inode);
555 	loff_t block_start = pos & ~(block_size - 1);
556 	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
557 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
558 	int status = 0;
559 
560 	if (PageUptodate(page))
561 		return 0;
562 
563 	do {
564 		iomap_adjust_read_range(inode, iop, &block_start,
565 				block_end - block_start, &poff, &plen);
566 		if (plen == 0)
567 			break;
568 
569 		if ((from > poff && from < poff + plen) ||
570 		    (to > poff && to < poff + plen)) {
571 			status = iomap_read_page_sync(inode, block_start, page,
572 					poff, plen, from, to, iomap);
573 			if (status)
574 				break;
575 		}
576 
577 	} while ((block_start += plen) < block_end);
578 
579 	return status;
580 }
581 
582 static int
iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,struct iomap * iomap)583 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
584 		struct page **pagep, struct iomap *iomap)
585 {
586 	const struct iomap_page_ops *page_ops = iomap->page_ops;
587 	pgoff_t index = pos >> PAGE_SHIFT;
588 	struct page *page;
589 	int status = 0;
590 
591 	BUG_ON(pos + len > iomap->offset + iomap->length);
592 
593 	if (fatal_signal_pending(current))
594 		return -EINTR;
595 
596 	if (page_ops && page_ops->page_prepare) {
597 		status = page_ops->page_prepare(inode, pos, len, iomap);
598 		if (status)
599 			return status;
600 	}
601 
602 	page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
603 	if (!page) {
604 		status = -ENOMEM;
605 		goto out_no_page;
606 	}
607 
608 	if (iomap->type == IOMAP_INLINE)
609 		iomap_read_inline_data(inode, page, iomap);
610 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
611 		status = __block_write_begin_int(page, pos, len, NULL, iomap);
612 	else
613 		status = __iomap_write_begin(inode, pos, len, page, iomap);
614 
615 	if (unlikely(status))
616 		goto out_unlock;
617 
618 	*pagep = page;
619 	return 0;
620 
621 out_unlock:
622 	unlock_page(page);
623 	put_page(page);
624 	iomap_write_failed(inode, pos, len);
625 
626 out_no_page:
627 	if (page_ops && page_ops->page_done)
628 		page_ops->page_done(inode, pos, 0, NULL, iomap);
629 	return status;
630 }
631 
632 int
iomap_set_page_dirty(struct page * page)633 iomap_set_page_dirty(struct page *page)
634 {
635 	struct address_space *mapping = page_mapping(page);
636 	int newly_dirty;
637 
638 	if (unlikely(!mapping))
639 		return !TestSetPageDirty(page);
640 
641 	/*
642 	 * Lock out page->mem_cgroup migration to keep PageDirty
643 	 * synchronized with per-memcg dirty page counters.
644 	 */
645 	lock_page_memcg(page);
646 	newly_dirty = !TestSetPageDirty(page);
647 	if (newly_dirty)
648 		__set_page_dirty(page, mapping, 0);
649 	unlock_page_memcg(page);
650 
651 	if (newly_dirty)
652 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
653 	return newly_dirty;
654 }
655 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
656 
657 static int
__iomap_write_end(struct inode * inode,loff_t pos,unsigned len,unsigned copied,struct page * page,struct iomap * iomap)658 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
659 		unsigned copied, struct page *page, struct iomap *iomap)
660 {
661 	flush_dcache_page(page);
662 
663 	/*
664 	 * The blocks that were entirely written will now be uptodate, so we
665 	 * don't have to worry about a readpage reading them and overwriting a
666 	 * partial write.  However if we have encountered a short write and only
667 	 * partially written into a block, it will not be marked uptodate, so a
668 	 * readpage might come in and destroy our partial write.
669 	 *
670 	 * Do the simplest thing, and just treat any short write to a non
671 	 * uptodate page as a zero-length write, and force the caller to redo
672 	 * the whole thing.
673 	 */
674 	if (unlikely(copied < len && !PageUptodate(page)))
675 		return 0;
676 	iomap_set_range_uptodate(page, offset_in_page(pos), len);
677 	iomap_set_page_dirty(page);
678 	return copied;
679 }
680 
681 static int
iomap_write_end_inline(struct inode * inode,struct page * page,struct iomap * iomap,loff_t pos,unsigned copied)682 iomap_write_end_inline(struct inode *inode, struct page *page,
683 		struct iomap *iomap, loff_t pos, unsigned copied)
684 {
685 	void *addr;
686 
687 	WARN_ON_ONCE(!PageUptodate(page));
688 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
689 
690 	addr = kmap_atomic(page);
691 	memcpy(iomap->inline_data + pos, addr + pos, copied);
692 	kunmap_atomic(addr);
693 
694 	mark_inode_dirty(inode);
695 	return copied;
696 }
697 
698 static int
iomap_write_end(struct inode * inode,loff_t pos,unsigned len,unsigned copied,struct page * page,struct iomap * iomap)699 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
700 		unsigned copied, struct page *page, struct iomap *iomap)
701 {
702 	const struct iomap_page_ops *page_ops = iomap->page_ops;
703 	loff_t old_size = inode->i_size;
704 	int ret;
705 
706 	if (iomap->type == IOMAP_INLINE) {
707 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
708 	} else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
709 		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
710 				page, NULL);
711 	} else {
712 		ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
713 	}
714 
715 	/*
716 	 * Update the in-memory inode size after copying the data into the page
717 	 * cache.  It's up to the file system to write the updated size to disk,
718 	 * preferably after I/O completion so that no stale data is exposed.
719 	 */
720 	if (pos + ret > old_size) {
721 		i_size_write(inode, pos + ret);
722 		iomap->flags |= IOMAP_F_SIZE_CHANGED;
723 	}
724 	unlock_page(page);
725 
726 	if (old_size < pos)
727 		pagecache_isize_extended(inode, old_size, pos);
728 	if (page_ops && page_ops->page_done)
729 		page_ops->page_done(inode, pos, ret, page, iomap);
730 	put_page(page);
731 
732 	if (ret < len)
733 		iomap_write_failed(inode, pos, len);
734 	return ret;
735 }
736 
737 static loff_t
iomap_write_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)738 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
739 		struct iomap *iomap)
740 {
741 	struct iov_iter *i = data;
742 	long status = 0;
743 	ssize_t written = 0;
744 	unsigned int flags = AOP_FLAG_NOFS;
745 
746 	do {
747 		struct page *page;
748 		unsigned long offset;	/* Offset into pagecache page */
749 		unsigned long bytes;	/* Bytes to write to page */
750 		size_t copied;		/* Bytes copied from user */
751 
752 		offset = offset_in_page(pos);
753 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
754 						iov_iter_count(i));
755 again:
756 		if (bytes > length)
757 			bytes = length;
758 
759 		/*
760 		 * Bring in the user page that we will copy from _first_.
761 		 * Otherwise there's a nasty deadlock on copying from the
762 		 * same page as we're writing to, without it being marked
763 		 * up-to-date.
764 		 *
765 		 * Not only is this an optimisation, but it is also required
766 		 * to check that the address is actually valid, when atomic
767 		 * usercopies are used, below.
768 		 */
769 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
770 			status = -EFAULT;
771 			break;
772 		}
773 
774 		status = iomap_write_begin(inode, pos, bytes, flags, &page,
775 				iomap);
776 		if (unlikely(status))
777 			break;
778 
779 		if (mapping_writably_mapped(inode->i_mapping))
780 			flush_dcache_page(page);
781 
782 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
783 
784 		flush_dcache_page(page);
785 
786 		status = iomap_write_end(inode, pos, bytes, copied, page,
787 				iomap);
788 		if (unlikely(status < 0))
789 			break;
790 		copied = status;
791 
792 		cond_resched();
793 
794 		iov_iter_advance(i, copied);
795 		if (unlikely(copied == 0)) {
796 			/*
797 			 * If we were unable to copy any data at all, we must
798 			 * fall back to a single segment length write.
799 			 *
800 			 * If we didn't fallback here, we could livelock
801 			 * because not all segments in the iov can be copied at
802 			 * once without a pagefault.
803 			 */
804 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
805 						iov_iter_single_seg_count(i));
806 			goto again;
807 		}
808 		pos += copied;
809 		written += copied;
810 		length -= copied;
811 
812 		balance_dirty_pages_ratelimited(inode->i_mapping);
813 	} while (iov_iter_count(i) && length);
814 
815 	return written ? written : status;
816 }
817 
818 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)819 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
820 		const struct iomap_ops *ops)
821 {
822 	struct inode *inode = iocb->ki_filp->f_mapping->host;
823 	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
824 
825 	while (iov_iter_count(iter)) {
826 		ret = iomap_apply(inode, pos, iov_iter_count(iter),
827 				IOMAP_WRITE, ops, iter, iomap_write_actor);
828 		if (ret <= 0)
829 			break;
830 		pos += ret;
831 		written += ret;
832 	}
833 
834 	return written ? written : ret;
835 }
836 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
837 
838 static struct page *
__iomap_read_page(struct inode * inode,loff_t offset)839 __iomap_read_page(struct inode *inode, loff_t offset)
840 {
841 	struct address_space *mapping = inode->i_mapping;
842 	struct page *page;
843 
844 	page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
845 	if (IS_ERR(page))
846 		return page;
847 	if (!PageUptodate(page)) {
848 		put_page(page);
849 		return ERR_PTR(-EIO);
850 	}
851 	return page;
852 }
853 
854 static loff_t
iomap_dirty_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)855 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
856 		struct iomap *iomap)
857 {
858 	long status = 0;
859 	ssize_t written = 0;
860 
861 	do {
862 		struct page *page, *rpage;
863 		unsigned long offset;	/* Offset into pagecache page */
864 		unsigned long bytes;	/* Bytes to write to page */
865 
866 		offset = offset_in_page(pos);
867 		bytes = min_t(loff_t, PAGE_SIZE - offset, length);
868 
869 		rpage = __iomap_read_page(inode, pos);
870 		if (IS_ERR(rpage))
871 			return PTR_ERR(rpage);
872 
873 		status = iomap_write_begin(inode, pos, bytes,
874 					   AOP_FLAG_NOFS, &page, iomap);
875 		put_page(rpage);
876 		if (unlikely(status))
877 			return status;
878 
879 		WARN_ON_ONCE(!PageUptodate(page));
880 
881 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
882 		if (unlikely(status <= 0)) {
883 			if (WARN_ON_ONCE(status == 0))
884 				return -EIO;
885 			return status;
886 		}
887 
888 		cond_resched();
889 
890 		pos += status;
891 		written += status;
892 		length -= status;
893 
894 		balance_dirty_pages_ratelimited(inode->i_mapping);
895 	} while (length);
896 
897 	return written;
898 }
899 
900 int
iomap_file_dirty(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)901 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
902 		const struct iomap_ops *ops)
903 {
904 	loff_t ret;
905 
906 	while (len) {
907 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
908 				iomap_dirty_actor);
909 		if (ret <= 0)
910 			return ret;
911 		pos += ret;
912 		len -= ret;
913 	}
914 
915 	return 0;
916 }
917 EXPORT_SYMBOL_GPL(iomap_file_dirty);
918 
iomap_zero(struct inode * inode,loff_t pos,unsigned offset,unsigned bytes,struct iomap * iomap)919 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
920 		unsigned bytes, struct iomap *iomap)
921 {
922 	struct page *page;
923 	int status;
924 
925 	status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
926 				   iomap);
927 	if (status)
928 		return status;
929 
930 	zero_user(page, offset, bytes);
931 	mark_page_accessed(page);
932 
933 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
934 }
935 
iomap_dax_zero(loff_t pos,unsigned offset,unsigned bytes,struct iomap * iomap)936 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
937 		struct iomap *iomap)
938 {
939 	return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
940 			iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
941 }
942 
943 static loff_t
iomap_zero_range_actor(struct inode * inode,loff_t pos,loff_t count,void * data,struct iomap * iomap)944 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
945 		void *data, struct iomap *iomap)
946 {
947 	bool *did_zero = data;
948 	loff_t written = 0;
949 	int status;
950 
951 	/* already zeroed?  we're done. */
952 	if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
953 		return count;
954 
955 	do {
956 		unsigned offset, bytes;
957 
958 		offset = offset_in_page(pos);
959 		bytes = min_t(loff_t, PAGE_SIZE - offset, count);
960 
961 		if (IS_DAX(inode))
962 			status = iomap_dax_zero(pos, offset, bytes, iomap);
963 		else
964 			status = iomap_zero(inode, pos, offset, bytes, iomap);
965 		if (status < 0)
966 			return status;
967 
968 		pos += bytes;
969 		count -= bytes;
970 		written += bytes;
971 		if (did_zero)
972 			*did_zero = true;
973 	} while (count > 0);
974 
975 	return written;
976 }
977 
978 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)979 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
980 		const struct iomap_ops *ops)
981 {
982 	loff_t ret;
983 
984 	while (len > 0) {
985 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
986 				ops, did_zero, iomap_zero_range_actor);
987 		if (ret <= 0)
988 			return ret;
989 
990 		pos += ret;
991 		len -= ret;
992 	}
993 
994 	return 0;
995 }
996 EXPORT_SYMBOL_GPL(iomap_zero_range);
997 
998 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)999 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1000 		const struct iomap_ops *ops)
1001 {
1002 	unsigned int blocksize = i_blocksize(inode);
1003 	unsigned int off = pos & (blocksize - 1);
1004 
1005 	/* Block boundary? Nothing to do */
1006 	if (!off)
1007 		return 0;
1008 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1009 }
1010 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1011 
1012 static loff_t
iomap_page_mkwrite_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1013 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1014 		void *data, struct iomap *iomap)
1015 {
1016 	struct page *page = data;
1017 	int ret;
1018 
1019 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1020 		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1021 		if (ret)
1022 			return ret;
1023 		block_commit_write(page, 0, length);
1024 	} else {
1025 		WARN_ON_ONCE(!PageUptodate(page));
1026 		iomap_page_create(inode, page);
1027 		set_page_dirty(page);
1028 	}
1029 
1030 	return length;
1031 }
1032 
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops)1033 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1034 {
1035 	struct page *page = vmf->page;
1036 	struct inode *inode = file_inode(vmf->vma->vm_file);
1037 	unsigned long length;
1038 	loff_t offset, size;
1039 	ssize_t ret;
1040 
1041 	lock_page(page);
1042 	size = i_size_read(inode);
1043 	if ((page->mapping != inode->i_mapping) ||
1044 	    (page_offset(page) > size)) {
1045 		/* We overload EFAULT to mean page got truncated */
1046 		ret = -EFAULT;
1047 		goto out_unlock;
1048 	}
1049 
1050 	/* page is wholly or partially inside EOF */
1051 	if (((page->index + 1) << PAGE_SHIFT) > size)
1052 		length = offset_in_page(size);
1053 	else
1054 		length = PAGE_SIZE;
1055 
1056 	offset = page_offset(page);
1057 	while (length > 0) {
1058 		ret = iomap_apply(inode, offset, length,
1059 				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1060 				iomap_page_mkwrite_actor);
1061 		if (unlikely(ret <= 0))
1062 			goto out_unlock;
1063 		offset += ret;
1064 		length -= ret;
1065 	}
1066 
1067 	wait_for_stable_page(page);
1068 	return VM_FAULT_LOCKED;
1069 out_unlock:
1070 	unlock_page(page);
1071 	return block_page_mkwrite_return(ret);
1072 }
1073 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1074