1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38 
39 /*
40  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42  * policy [un]register operations including cgroup file additions /
43  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
44  * allows grabbing it from cgroup callbacks.
45  */
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
48 
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
51 
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
54 
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56 
57 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
58 
59 bool blkcg_debug_stats = false;
60 
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62 
63 #define BLKG_DESTROY_BATCH_SIZE  64
64 
65 /*
66  * Lockless lists for tracking IO stats update
67  *
68  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69  * There are multiple blkg's (one for each block device) attached to each
70  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71  * but it doesn't know which blkg has the updated stats. If there are many
72  * block devices in a system, the cost of iterating all the blkg's to flush
73  * out the IO stats can be high. To reduce such overhead, a set of percpu
74  * lockless lists (lhead) per blkcg are used to track the set of recently
75  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78  * References to blkg are gotten and then put back in the process to
79  * protect against blkg removal.
80  *
81  * Return: 0 if successful or -ENOMEM if allocation fails.
82  */
init_blkcg_llists(struct blkcg * blkcg)83 static int init_blkcg_llists(struct blkcg *blkcg)
84 {
85 	int cpu;
86 
87 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 	if (!blkcg->lhead)
89 		return -ENOMEM;
90 
91 	for_each_possible_cpu(cpu)
92 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 	return 0;
94 }
95 
96 /**
97  * blkcg_css - find the current css
98  *
99  * Find the css associated with either the kthread or the current task.
100  * This may return a dying css, so it is up to the caller to use tryget logic
101  * to confirm it is alive and well.
102  */
blkcg_css(void)103 static struct cgroup_subsys_state *blkcg_css(void)
104 {
105 	struct cgroup_subsys_state *css;
106 
107 	css = kthread_blkcg();
108 	if (css)
109 		return css;
110 	return task_css(current, io_cgrp_id);
111 }
112 
blkcg_policy_enabled(struct request_queue * q,const struct blkcg_policy * pol)113 static bool blkcg_policy_enabled(struct request_queue *q,
114 				 const struct blkcg_policy *pol)
115 {
116 	return pol && test_bit(pol->plid, q->blkcg_pols);
117 }
118 
blkg_free_workfn(struct work_struct * work)119 static void blkg_free_workfn(struct work_struct *work)
120 {
121 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 					     free_work);
123 	struct request_queue *q = blkg->q;
124 	int i;
125 
126 	/*
127 	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 	 * in order to make sure pd_free_fn() is called in order, the deletion
129 	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 	 * blkcg_deactivate_policy().
132 	 */
133 	mutex_lock(&q->blkcg_mutex);
134 	for (i = 0; i < BLKCG_MAX_POLS; i++)
135 		if (blkg->pd[i])
136 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 	if (blkg->parent)
138 		blkg_put(blkg->parent);
139 	spin_lock_irq(&q->queue_lock);
140 	list_del_init(&blkg->q_node);
141 	spin_unlock_irq(&q->queue_lock);
142 	mutex_unlock(&q->blkcg_mutex);
143 
144 	blk_put_queue(q);
145 	free_percpu(blkg->iostat_cpu);
146 	percpu_ref_exit(&blkg->refcnt);
147 	kfree(blkg);
148 }
149 
150 /**
151  * blkg_free - free a blkg
152  * @blkg: blkg to free
153  *
154  * Free @blkg which may be partially allocated.
155  */
blkg_free(struct blkcg_gq * blkg)156 static void blkg_free(struct blkcg_gq *blkg)
157 {
158 	if (!blkg)
159 		return;
160 
161 	/*
162 	 * Both ->pd_free_fn() and request queue's release handler may
163 	 * sleep, so free us by scheduling one work func
164 	 */
165 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 	schedule_work(&blkg->free_work);
167 }
168 
__blkg_release(struct rcu_head * rcu)169 static void __blkg_release(struct rcu_head *rcu)
170 {
171 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 	struct blkcg *blkcg = blkg->blkcg;
173 	int cpu;
174 
175 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 	WARN_ON(!bio_list_empty(&blkg->async_bios));
177 #endif
178 	/*
179 	 * Flush all the non-empty percpu lockless lists before releasing
180 	 * us, given these stat belongs to us.
181 	 *
182 	 * blkg_stat_lock is for serializing blkg stat update
183 	 */
184 	for_each_possible_cpu(cpu)
185 		__blkcg_rstat_flush(blkcg, cpu);
186 
187 	/* release the blkcg and parent blkg refs this blkg has been holding */
188 	css_put(&blkg->blkcg->css);
189 	blkg_free(blkg);
190 }
191 
192 /*
193  * A group is RCU protected, but having an rcu lock does not mean that one
194  * can access all the fields of blkg and assume these are valid.  For
195  * example, don't try to follow throtl_data and request queue links.
196  *
197  * Having a reference to blkg under an rcu allows accesses to only values
198  * local to groups like group stats and group rate limits.
199  */
blkg_release(struct percpu_ref * ref)200 static void blkg_release(struct percpu_ref *ref)
201 {
202 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203 
204 	call_rcu(&blkg->rcu_head, __blkg_release);
205 }
206 
207 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208 static struct workqueue_struct *blkcg_punt_bio_wq;
209 
blkg_async_bio_workfn(struct work_struct * work)210 static void blkg_async_bio_workfn(struct work_struct *work)
211 {
212 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213 					     async_bio_work);
214 	struct bio_list bios = BIO_EMPTY_LIST;
215 	struct bio *bio;
216 	struct blk_plug plug;
217 	bool need_plug = false;
218 
219 	/* as long as there are pending bios, @blkg can't go away */
220 	spin_lock(&blkg->async_bio_lock);
221 	bio_list_merge(&bios, &blkg->async_bios);
222 	bio_list_init(&blkg->async_bios);
223 	spin_unlock(&blkg->async_bio_lock);
224 
225 	/* start plug only when bio_list contains at least 2 bios */
226 	if (bios.head && bios.head->bi_next) {
227 		need_plug = true;
228 		blk_start_plug(&plug);
229 	}
230 	while ((bio = bio_list_pop(&bios)))
231 		submit_bio(bio);
232 	if (need_plug)
233 		blk_finish_plug(&plug);
234 }
235 
236 /*
237  * When a shared kthread issues a bio for a cgroup, doing so synchronously can
238  * lead to priority inversions as the kthread can be trapped waiting for that
239  * cgroup.  Use this helper instead of submit_bio to punt the actual issuing to
240  * a dedicated per-blkcg work item to avoid such priority inversions.
241  */
blkcg_punt_bio_submit(struct bio * bio)242 void blkcg_punt_bio_submit(struct bio *bio)
243 {
244 	struct blkcg_gq *blkg = bio->bi_blkg;
245 
246 	if (blkg->parent) {
247 		spin_lock(&blkg->async_bio_lock);
248 		bio_list_add(&blkg->async_bios, bio);
249 		spin_unlock(&blkg->async_bio_lock);
250 		queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
251 	} else {
252 		/* never bounce for the root cgroup */
253 		submit_bio(bio);
254 	}
255 }
256 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
257 
blkcg_punt_bio_init(void)258 static int __init blkcg_punt_bio_init(void)
259 {
260 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
261 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
262 					    WQ_UNBOUND | WQ_SYSFS, 0);
263 	if (!blkcg_punt_bio_wq)
264 		return -ENOMEM;
265 	return 0;
266 }
267 subsys_initcall(blkcg_punt_bio_init);
268 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
269 
270 /**
271  * bio_blkcg_css - return the blkcg CSS associated with a bio
272  * @bio: target bio
273  *
274  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
275  * associated. Callers are expected to either handle %NULL or know association
276  * has been done prior to calling this.
277  */
bio_blkcg_css(struct bio * bio)278 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
279 {
280 	if (!bio || !bio->bi_blkg)
281 		return NULL;
282 	return &bio->bi_blkg->blkcg->css;
283 }
284 EXPORT_SYMBOL_GPL(bio_blkcg_css);
285 
286 /**
287  * blkcg_parent - get the parent of a blkcg
288  * @blkcg: blkcg of interest
289  *
290  * Return the parent blkcg of @blkcg.  Can be called anytime.
291  */
blkcg_parent(struct blkcg * blkcg)292 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
293 {
294 	return css_to_blkcg(blkcg->css.parent);
295 }
296 
297 /**
298  * blkg_alloc - allocate a blkg
299  * @blkcg: block cgroup the new blkg is associated with
300  * @disk: gendisk the new blkg is associated with
301  * @gfp_mask: allocation mask to use
302  *
303  * Allocate a new blkg assocating @blkcg and @q.
304  */
blkg_alloc(struct blkcg * blkcg,struct gendisk * disk,gfp_t gfp_mask)305 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
306 				   gfp_t gfp_mask)
307 {
308 	struct blkcg_gq *blkg;
309 	int i, cpu;
310 
311 	/* alloc and init base part */
312 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
313 	if (!blkg)
314 		return NULL;
315 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
316 		goto out_free_blkg;
317 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
318 	if (!blkg->iostat_cpu)
319 		goto out_exit_refcnt;
320 	if (!blk_get_queue(disk->queue))
321 		goto out_free_iostat;
322 
323 	blkg->q = disk->queue;
324 	INIT_LIST_HEAD(&blkg->q_node);
325 	blkg->blkcg = blkcg;
326 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
327 	spin_lock_init(&blkg->async_bio_lock);
328 	bio_list_init(&blkg->async_bios);
329 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
330 #endif
331 
332 	u64_stats_init(&blkg->iostat.sync);
333 	for_each_possible_cpu(cpu) {
334 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
335 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
336 	}
337 
338 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
339 		struct blkcg_policy *pol = blkcg_policy[i];
340 		struct blkg_policy_data *pd;
341 
342 		if (!blkcg_policy_enabled(disk->queue, pol))
343 			continue;
344 
345 		/* alloc per-policy data and attach it to blkg */
346 		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
347 		if (!pd)
348 			goto out_free_pds;
349 		blkg->pd[i] = pd;
350 		pd->blkg = blkg;
351 		pd->plid = i;
352 		pd->online = false;
353 	}
354 
355 	return blkg;
356 
357 out_free_pds:
358 	while (--i >= 0)
359 		if (blkg->pd[i])
360 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
361 	blk_put_queue(disk->queue);
362 out_free_iostat:
363 	free_percpu(blkg->iostat_cpu);
364 out_exit_refcnt:
365 	percpu_ref_exit(&blkg->refcnt);
366 out_free_blkg:
367 	kfree(blkg);
368 	return NULL;
369 }
370 
371 /*
372  * If @new_blkg is %NULL, this function tries to allocate a new one as
373  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
374  */
blkg_create(struct blkcg * blkcg,struct gendisk * disk,struct blkcg_gq * new_blkg)375 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
376 				    struct blkcg_gq *new_blkg)
377 {
378 	struct blkcg_gq *blkg;
379 	int i, ret;
380 
381 	lockdep_assert_held(&disk->queue->queue_lock);
382 
383 	/* request_queue is dying, do not create/recreate a blkg */
384 	if (blk_queue_dying(disk->queue)) {
385 		ret = -ENODEV;
386 		goto err_free_blkg;
387 	}
388 
389 	/* blkg holds a reference to blkcg */
390 	if (!css_tryget_online(&blkcg->css)) {
391 		ret = -ENODEV;
392 		goto err_free_blkg;
393 	}
394 
395 	/* allocate */
396 	if (!new_blkg) {
397 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
398 		if (unlikely(!new_blkg)) {
399 			ret = -ENOMEM;
400 			goto err_put_css;
401 		}
402 	}
403 	blkg = new_blkg;
404 
405 	/* link parent */
406 	if (blkcg_parent(blkcg)) {
407 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
408 		if (WARN_ON_ONCE(!blkg->parent)) {
409 			ret = -ENODEV;
410 			goto err_put_css;
411 		}
412 		blkg_get(blkg->parent);
413 	}
414 
415 	/* invoke per-policy init */
416 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
417 		struct blkcg_policy *pol = blkcg_policy[i];
418 
419 		if (blkg->pd[i] && pol->pd_init_fn)
420 			pol->pd_init_fn(blkg->pd[i]);
421 	}
422 
423 	/* insert */
424 	spin_lock(&blkcg->lock);
425 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
426 	if (likely(!ret)) {
427 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
428 		list_add(&blkg->q_node, &disk->queue->blkg_list);
429 
430 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
431 			struct blkcg_policy *pol = blkcg_policy[i];
432 
433 			if (blkg->pd[i]) {
434 				if (pol->pd_online_fn)
435 					pol->pd_online_fn(blkg->pd[i]);
436 				blkg->pd[i]->online = true;
437 			}
438 		}
439 	}
440 	blkg->online = true;
441 	spin_unlock(&blkcg->lock);
442 
443 	if (!ret)
444 		return blkg;
445 
446 	/* @blkg failed fully initialized, use the usual release path */
447 	blkg_put(blkg);
448 	return ERR_PTR(ret);
449 
450 err_put_css:
451 	css_put(&blkcg->css);
452 err_free_blkg:
453 	if (new_blkg)
454 		blkg_free(new_blkg);
455 	return ERR_PTR(ret);
456 }
457 
458 /**
459  * blkg_lookup_create - lookup blkg, try to create one if not there
460  * @blkcg: blkcg of interest
461  * @disk: gendisk of interest
462  *
463  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
464  * create one.  blkg creation is performed recursively from blkcg_root such
465  * that all non-root blkg's have access to the parent blkg.  This function
466  * should be called under RCU read lock and takes @disk->queue->queue_lock.
467  *
468  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
469  * down from root.
470  */
blkg_lookup_create(struct blkcg * blkcg,struct gendisk * disk)471 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
472 		struct gendisk *disk)
473 {
474 	struct request_queue *q = disk->queue;
475 	struct blkcg_gq *blkg;
476 	unsigned long flags;
477 
478 	WARN_ON_ONCE(!rcu_read_lock_held());
479 
480 	blkg = blkg_lookup(blkcg, q);
481 	if (blkg)
482 		return blkg;
483 
484 	spin_lock_irqsave(&q->queue_lock, flags);
485 	blkg = blkg_lookup(blkcg, q);
486 	if (blkg) {
487 		if (blkcg != &blkcg_root &&
488 		    blkg != rcu_dereference(blkcg->blkg_hint))
489 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
490 		goto found;
491 	}
492 
493 	/*
494 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
495 	 * non-root blkgs have access to their parents.  Returns the closest
496 	 * blkg to the intended blkg should blkg_create() fail.
497 	 */
498 	while (true) {
499 		struct blkcg *pos = blkcg;
500 		struct blkcg *parent = blkcg_parent(blkcg);
501 		struct blkcg_gq *ret_blkg = q->root_blkg;
502 
503 		while (parent) {
504 			blkg = blkg_lookup(parent, q);
505 			if (blkg) {
506 				/* remember closest blkg */
507 				ret_blkg = blkg;
508 				break;
509 			}
510 			pos = parent;
511 			parent = blkcg_parent(parent);
512 		}
513 
514 		blkg = blkg_create(pos, disk, NULL);
515 		if (IS_ERR(blkg)) {
516 			blkg = ret_blkg;
517 			break;
518 		}
519 		if (pos == blkcg)
520 			break;
521 	}
522 
523 found:
524 	spin_unlock_irqrestore(&q->queue_lock, flags);
525 	return blkg;
526 }
527 
blkg_destroy(struct blkcg_gq * blkg)528 static void blkg_destroy(struct blkcg_gq *blkg)
529 {
530 	struct blkcg *blkcg = blkg->blkcg;
531 	int i;
532 
533 	lockdep_assert_held(&blkg->q->queue_lock);
534 	lockdep_assert_held(&blkcg->lock);
535 
536 	/*
537 	 * blkg stays on the queue list until blkg_free_workfn(), see details in
538 	 * blkg_free_workfn(), hence this function can be called from
539 	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
540 	 * blkg_free_workfn().
541 	 */
542 	if (hlist_unhashed(&blkg->blkcg_node))
543 		return;
544 
545 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
546 		struct blkcg_policy *pol = blkcg_policy[i];
547 
548 		if (blkg->pd[i] && blkg->pd[i]->online) {
549 			blkg->pd[i]->online = false;
550 			if (pol->pd_offline_fn)
551 				pol->pd_offline_fn(blkg->pd[i]);
552 		}
553 	}
554 
555 	blkg->online = false;
556 
557 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
558 	hlist_del_init_rcu(&blkg->blkcg_node);
559 
560 	/*
561 	 * Both setting lookup hint to and clearing it from @blkg are done
562 	 * under queue_lock.  If it's not pointing to @blkg now, it never
563 	 * will.  Hint assignment itself can race safely.
564 	 */
565 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
566 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
567 
568 	/*
569 	 * Put the reference taken at the time of creation so that when all
570 	 * queues are gone, group can be destroyed.
571 	 */
572 	percpu_ref_kill(&blkg->refcnt);
573 }
574 
blkg_destroy_all(struct gendisk * disk)575 static void blkg_destroy_all(struct gendisk *disk)
576 {
577 	struct request_queue *q = disk->queue;
578 	struct blkcg_gq *blkg, *n;
579 	int count = BLKG_DESTROY_BATCH_SIZE;
580 
581 restart:
582 	spin_lock_irq(&q->queue_lock);
583 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
584 		struct blkcg *blkcg = blkg->blkcg;
585 
586 		if (hlist_unhashed(&blkg->blkcg_node))
587 			continue;
588 
589 		spin_lock(&blkcg->lock);
590 		blkg_destroy(blkg);
591 		spin_unlock(&blkcg->lock);
592 
593 		/*
594 		 * in order to avoid holding the spin lock for too long, release
595 		 * it when a batch of blkgs are destroyed.
596 		 */
597 		if (!(--count)) {
598 			count = BLKG_DESTROY_BATCH_SIZE;
599 			spin_unlock_irq(&q->queue_lock);
600 			cond_resched();
601 			goto restart;
602 		}
603 	}
604 
605 	q->root_blkg = NULL;
606 	spin_unlock_irq(&q->queue_lock);
607 }
608 
blkcg_reset_stats(struct cgroup_subsys_state * css,struct cftype * cftype,u64 val)609 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
610 			     struct cftype *cftype, u64 val)
611 {
612 	struct blkcg *blkcg = css_to_blkcg(css);
613 	struct blkcg_gq *blkg;
614 	int i, cpu;
615 
616 	mutex_lock(&blkcg_pol_mutex);
617 	spin_lock_irq(&blkcg->lock);
618 
619 	/*
620 	 * Note that stat reset is racy - it doesn't synchronize against
621 	 * stat updates.  This is a debug feature which shouldn't exist
622 	 * anyway.  If you get hit by a race, retry.
623 	 */
624 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
625 		for_each_possible_cpu(cpu) {
626 			struct blkg_iostat_set *bis =
627 				per_cpu_ptr(blkg->iostat_cpu, cpu);
628 			memset(bis, 0, sizeof(*bis));
629 
630 			/* Re-initialize the cleared blkg_iostat_set */
631 			u64_stats_init(&bis->sync);
632 			bis->blkg = blkg;
633 		}
634 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
635 		u64_stats_init(&blkg->iostat.sync);
636 
637 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
638 			struct blkcg_policy *pol = blkcg_policy[i];
639 
640 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
641 				pol->pd_reset_stats_fn(blkg->pd[i]);
642 		}
643 	}
644 
645 	spin_unlock_irq(&blkcg->lock);
646 	mutex_unlock(&blkcg_pol_mutex);
647 	return 0;
648 }
649 
blkg_dev_name(struct blkcg_gq * blkg)650 const char *blkg_dev_name(struct blkcg_gq *blkg)
651 {
652 	if (!blkg->q->disk)
653 		return NULL;
654 	return bdi_dev_name(blkg->q->disk->bdi);
655 }
656 
657 /**
658  * blkcg_print_blkgs - helper for printing per-blkg data
659  * @sf: seq_file to print to
660  * @blkcg: blkcg of interest
661  * @prfill: fill function to print out a blkg
662  * @pol: policy in question
663  * @data: data to be passed to @prfill
664  * @show_total: to print out sum of prfill return values or not
665  *
666  * This function invokes @prfill on each blkg of @blkcg if pd for the
667  * policy specified by @pol exists.  @prfill is invoked with @sf, the
668  * policy data and @data and the matching queue lock held.  If @show_total
669  * is %true, the sum of the return values from @prfill is printed with
670  * "Total" label at the end.
671  *
672  * This is to be used to construct print functions for
673  * cftype->read_seq_string method.
674  */
blkcg_print_blkgs(struct seq_file * sf,struct blkcg * blkcg,u64 (* prfill)(struct seq_file *,struct blkg_policy_data *,int),const struct blkcg_policy * pol,int data,bool show_total)675 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
676 		       u64 (*prfill)(struct seq_file *,
677 				     struct blkg_policy_data *, int),
678 		       const struct blkcg_policy *pol, int data,
679 		       bool show_total)
680 {
681 	struct blkcg_gq *blkg;
682 	u64 total = 0;
683 
684 	rcu_read_lock();
685 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
686 		spin_lock_irq(&blkg->q->queue_lock);
687 		if (blkcg_policy_enabled(blkg->q, pol))
688 			total += prfill(sf, blkg->pd[pol->plid], data);
689 		spin_unlock_irq(&blkg->q->queue_lock);
690 	}
691 	rcu_read_unlock();
692 
693 	if (show_total)
694 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
695 }
696 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
697 
698 /**
699  * __blkg_prfill_u64 - prfill helper for a single u64 value
700  * @sf: seq_file to print to
701  * @pd: policy private data of interest
702  * @v: value to print
703  *
704  * Print @v to @sf for the device associated with @pd.
705  */
__blkg_prfill_u64(struct seq_file * sf,struct blkg_policy_data * pd,u64 v)706 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
707 {
708 	const char *dname = blkg_dev_name(pd->blkg);
709 
710 	if (!dname)
711 		return 0;
712 
713 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
714 	return v;
715 }
716 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
717 
718 /**
719  * blkg_conf_init - initialize a blkg_conf_ctx
720  * @ctx: blkg_conf_ctx to initialize
721  * @input: input string
722  *
723  * Initialize @ctx which can be used to parse blkg config input string @input.
724  * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
725  * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
726  */
blkg_conf_init(struct blkg_conf_ctx * ctx,char * input)727 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
728 {
729 	*ctx = (struct blkg_conf_ctx){ .input = input };
730 }
731 EXPORT_SYMBOL_GPL(blkg_conf_init);
732 
733 /**
734  * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
735  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
736  *
737  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
738  * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
739  * set to point past the device node prefix.
740  *
741  * This function may be called multiple times on @ctx and the extra calls become
742  * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
743  * explicitly if bdev access is needed without resolving the blkcg / policy part
744  * of @ctx->input. Returns -errno on error.
745  */
blkg_conf_open_bdev(struct blkg_conf_ctx * ctx)746 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
747 {
748 	char *input = ctx->input;
749 	unsigned int major, minor;
750 	struct block_device *bdev;
751 	int key_len;
752 
753 	if (ctx->bdev)
754 		return 0;
755 
756 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
757 		return -EINVAL;
758 
759 	input += key_len;
760 	if (!isspace(*input))
761 		return -EINVAL;
762 	input = skip_spaces(input);
763 
764 	bdev = blkdev_get_no_open(MKDEV(major, minor));
765 	if (!bdev)
766 		return -ENODEV;
767 	if (bdev_is_partition(bdev)) {
768 		blkdev_put_no_open(bdev);
769 		return -ENODEV;
770 	}
771 
772 	mutex_lock(&bdev->bd_queue->rq_qos_mutex);
773 	if (!disk_live(bdev->bd_disk)) {
774 		blkdev_put_no_open(bdev);
775 		mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
776 		return -ENODEV;
777 	}
778 
779 	ctx->body = input;
780 	ctx->bdev = bdev;
781 	return 0;
782 }
783 
784 /**
785  * blkg_conf_prep - parse and prepare for per-blkg config update
786  * @blkcg: target block cgroup
787  * @pol: target policy
788  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
789  *
790  * Parse per-blkg config update from @ctx->input and initialize @ctx
791  * accordingly. On success, @ctx->body points to the part of @ctx->input
792  * following MAJ:MIN, @ctx->bdev points to the target block device and
793  * @ctx->blkg to the blkg being configured.
794  *
795  * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
796  * function returns with queue lock held and must be followed by
797  * blkg_conf_exit().
798  */
blkg_conf_prep(struct blkcg * blkcg,const struct blkcg_policy * pol,struct blkg_conf_ctx * ctx)799 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
800 		   struct blkg_conf_ctx *ctx)
801 	__acquires(&bdev->bd_queue->queue_lock)
802 {
803 	struct gendisk *disk;
804 	struct request_queue *q;
805 	struct blkcg_gq *blkg;
806 	int ret;
807 
808 	ret = blkg_conf_open_bdev(ctx);
809 	if (ret)
810 		return ret;
811 
812 	disk = ctx->bdev->bd_disk;
813 	q = disk->queue;
814 
815 	/*
816 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
817 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
818 	 */
819 	ret = blk_queue_enter(q, 0);
820 	if (ret)
821 		goto fail;
822 
823 	spin_lock_irq(&q->queue_lock);
824 
825 	if (!blkcg_policy_enabled(q, pol)) {
826 		ret = -EOPNOTSUPP;
827 		goto fail_unlock;
828 	}
829 
830 	blkg = blkg_lookup(blkcg, q);
831 	if (blkg)
832 		goto success;
833 
834 	/*
835 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
836 	 * non-root blkgs have access to their parents.
837 	 */
838 	while (true) {
839 		struct blkcg *pos = blkcg;
840 		struct blkcg *parent;
841 		struct blkcg_gq *new_blkg;
842 
843 		parent = blkcg_parent(blkcg);
844 		while (parent && !blkg_lookup(parent, q)) {
845 			pos = parent;
846 			parent = blkcg_parent(parent);
847 		}
848 
849 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
850 		spin_unlock_irq(&q->queue_lock);
851 
852 		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
853 		if (unlikely(!new_blkg)) {
854 			ret = -ENOMEM;
855 			goto fail_exit_queue;
856 		}
857 
858 		if (radix_tree_preload(GFP_KERNEL)) {
859 			blkg_free(new_blkg);
860 			ret = -ENOMEM;
861 			goto fail_exit_queue;
862 		}
863 
864 		spin_lock_irq(&q->queue_lock);
865 
866 		if (!blkcg_policy_enabled(q, pol)) {
867 			blkg_free(new_blkg);
868 			ret = -EOPNOTSUPP;
869 			goto fail_preloaded;
870 		}
871 
872 		blkg = blkg_lookup(pos, q);
873 		if (blkg) {
874 			blkg_free(new_blkg);
875 		} else {
876 			blkg = blkg_create(pos, disk, new_blkg);
877 			if (IS_ERR(blkg)) {
878 				ret = PTR_ERR(blkg);
879 				goto fail_preloaded;
880 			}
881 		}
882 
883 		radix_tree_preload_end();
884 
885 		if (pos == blkcg)
886 			goto success;
887 	}
888 success:
889 	blk_queue_exit(q);
890 	ctx->blkg = blkg;
891 	return 0;
892 
893 fail_preloaded:
894 	radix_tree_preload_end();
895 fail_unlock:
896 	spin_unlock_irq(&q->queue_lock);
897 fail_exit_queue:
898 	blk_queue_exit(q);
899 fail:
900 	/*
901 	 * If queue was bypassing, we should retry.  Do so after a
902 	 * short msleep().  It isn't strictly necessary but queue
903 	 * can be bypassing for some time and it's always nice to
904 	 * avoid busy looping.
905 	 */
906 	if (ret == -EBUSY) {
907 		msleep(10);
908 		ret = restart_syscall();
909 	}
910 	return ret;
911 }
912 EXPORT_SYMBOL_GPL(blkg_conf_prep);
913 
914 /**
915  * blkg_conf_exit - clean up per-blkg config update
916  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
917  *
918  * Clean up after per-blkg config update. This function must be called on all
919  * blkg_conf_ctx's initialized with blkg_conf_init().
920  */
blkg_conf_exit(struct blkg_conf_ctx * ctx)921 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
922 	__releases(&ctx->bdev->bd_queue->queue_lock)
923 	__releases(&ctx->bdev->bd_queue->rq_qos_mutex)
924 {
925 	if (ctx->blkg) {
926 		spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
927 		ctx->blkg = NULL;
928 	}
929 
930 	if (ctx->bdev) {
931 		mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
932 		blkdev_put_no_open(ctx->bdev);
933 		ctx->body = NULL;
934 		ctx->bdev = NULL;
935 	}
936 }
937 EXPORT_SYMBOL_GPL(blkg_conf_exit);
938 
blkg_iostat_set(struct blkg_iostat * dst,struct blkg_iostat * src)939 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
940 {
941 	int i;
942 
943 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
944 		dst->bytes[i] = src->bytes[i];
945 		dst->ios[i] = src->ios[i];
946 	}
947 }
948 
blkg_iostat_add(struct blkg_iostat * dst,struct blkg_iostat * src)949 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
950 {
951 	int i;
952 
953 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
954 		dst->bytes[i] += src->bytes[i];
955 		dst->ios[i] += src->ios[i];
956 	}
957 }
958 
blkg_iostat_sub(struct blkg_iostat * dst,struct blkg_iostat * src)959 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
960 {
961 	int i;
962 
963 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
964 		dst->bytes[i] -= src->bytes[i];
965 		dst->ios[i] -= src->ios[i];
966 	}
967 }
968 
blkcg_iostat_update(struct blkcg_gq * blkg,struct blkg_iostat * cur,struct blkg_iostat * last)969 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
970 				struct blkg_iostat *last)
971 {
972 	struct blkg_iostat delta;
973 	unsigned long flags;
974 
975 	/* propagate percpu delta to global */
976 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
977 	blkg_iostat_set(&delta, cur);
978 	blkg_iostat_sub(&delta, last);
979 	blkg_iostat_add(&blkg->iostat.cur, &delta);
980 	blkg_iostat_add(last, &delta);
981 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
982 }
983 
__blkcg_rstat_flush(struct blkcg * blkcg,int cpu)984 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
985 {
986 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
987 	struct llist_node *lnode;
988 	struct blkg_iostat_set *bisc, *next_bisc;
989 	unsigned long flags;
990 
991 	rcu_read_lock();
992 
993 	lnode = llist_del_all(lhead);
994 	if (!lnode)
995 		goto out;
996 
997 	/*
998 	 * For covering concurrent parent blkg update from blkg_release().
999 	 *
1000 	 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1001 	 * this lock won't cause contention most of time.
1002 	 */
1003 	raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1004 
1005 	/*
1006 	 * Iterate only the iostat_cpu's queued in the lockless list.
1007 	 */
1008 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1009 		struct blkcg_gq *blkg = bisc->blkg;
1010 		struct blkcg_gq *parent = blkg->parent;
1011 		struct blkg_iostat cur;
1012 		unsigned int seq;
1013 
1014 		WRITE_ONCE(bisc->lqueued, false);
1015 
1016 		/* fetch the current per-cpu values */
1017 		do {
1018 			seq = u64_stats_fetch_begin(&bisc->sync);
1019 			blkg_iostat_set(&cur, &bisc->cur);
1020 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
1021 
1022 		blkcg_iostat_update(blkg, &cur, &bisc->last);
1023 
1024 		/* propagate global delta to parent (unless that's root) */
1025 		if (parent && parent->parent)
1026 			blkcg_iostat_update(parent, &blkg->iostat.cur,
1027 					    &blkg->iostat.last);
1028 	}
1029 	raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1030 out:
1031 	rcu_read_unlock();
1032 }
1033 
blkcg_rstat_flush(struct cgroup_subsys_state * css,int cpu)1034 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1035 {
1036 	/* Root-level stats are sourced from system-wide IO stats */
1037 	if (cgroup_parent(css->cgroup))
1038 		__blkcg_rstat_flush(css_to_blkcg(css), cpu);
1039 }
1040 
1041 /*
1042  * We source root cgroup stats from the system-wide stats to avoid
1043  * tracking the same information twice and incurring overhead when no
1044  * cgroups are defined. For that reason, cgroup_rstat_flush in
1045  * blkcg_print_stat does not actually fill out the iostat in the root
1046  * cgroup's blkcg_gq.
1047  *
1048  * However, we would like to re-use the printing code between the root and
1049  * non-root cgroups to the extent possible. For that reason, we simulate
1050  * flushing the root cgroup's stats by explicitly filling in the iostat
1051  * with disk level statistics.
1052  */
blkcg_fill_root_iostats(void)1053 static void blkcg_fill_root_iostats(void)
1054 {
1055 	struct class_dev_iter iter;
1056 	struct device *dev;
1057 
1058 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1059 	while ((dev = class_dev_iter_next(&iter))) {
1060 		struct block_device *bdev = dev_to_bdev(dev);
1061 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1062 		struct blkg_iostat tmp;
1063 		int cpu;
1064 		unsigned long flags;
1065 
1066 		memset(&tmp, 0, sizeof(tmp));
1067 		for_each_possible_cpu(cpu) {
1068 			struct disk_stats *cpu_dkstats;
1069 
1070 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1071 			tmp.ios[BLKG_IOSTAT_READ] +=
1072 				cpu_dkstats->ios[STAT_READ];
1073 			tmp.ios[BLKG_IOSTAT_WRITE] +=
1074 				cpu_dkstats->ios[STAT_WRITE];
1075 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
1076 				cpu_dkstats->ios[STAT_DISCARD];
1077 			// convert sectors to bytes
1078 			tmp.bytes[BLKG_IOSTAT_READ] +=
1079 				cpu_dkstats->sectors[STAT_READ] << 9;
1080 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
1081 				cpu_dkstats->sectors[STAT_WRITE] << 9;
1082 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1083 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
1084 		}
1085 
1086 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1087 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
1088 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1089 	}
1090 }
1091 
blkcg_print_one_stat(struct blkcg_gq * blkg,struct seq_file * s)1092 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1093 {
1094 	struct blkg_iostat_set *bis = &blkg->iostat;
1095 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
1096 	const char *dname;
1097 	unsigned seq;
1098 	int i;
1099 
1100 	if (!blkg->online)
1101 		return;
1102 
1103 	dname = blkg_dev_name(blkg);
1104 	if (!dname)
1105 		return;
1106 
1107 	seq_printf(s, "%s ", dname);
1108 
1109 	do {
1110 		seq = u64_stats_fetch_begin(&bis->sync);
1111 
1112 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1113 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1114 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1115 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1116 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1117 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1118 	} while (u64_stats_fetch_retry(&bis->sync, seq));
1119 
1120 	if (rbytes || wbytes || rios || wios) {
1121 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1122 			rbytes, wbytes, rios, wios,
1123 			dbytes, dios);
1124 	}
1125 
1126 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1127 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1128 			atomic_read(&blkg->use_delay),
1129 			atomic64_read(&blkg->delay_nsec));
1130 	}
1131 
1132 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1133 		struct blkcg_policy *pol = blkcg_policy[i];
1134 
1135 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1136 			continue;
1137 
1138 		pol->pd_stat_fn(blkg->pd[i], s);
1139 	}
1140 
1141 	seq_puts(s, "\n");
1142 }
1143 
blkcg_print_stat(struct seq_file * sf,void * v)1144 static int blkcg_print_stat(struct seq_file *sf, void *v)
1145 {
1146 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1147 	struct blkcg_gq *blkg;
1148 
1149 	if (!seq_css(sf)->parent)
1150 		blkcg_fill_root_iostats();
1151 	else
1152 		cgroup_rstat_flush(blkcg->css.cgroup);
1153 
1154 	rcu_read_lock();
1155 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1156 		spin_lock_irq(&blkg->q->queue_lock);
1157 		blkcg_print_one_stat(blkg, sf);
1158 		spin_unlock_irq(&blkg->q->queue_lock);
1159 	}
1160 	rcu_read_unlock();
1161 	return 0;
1162 }
1163 
1164 static struct cftype blkcg_files[] = {
1165 	{
1166 		.name = "stat",
1167 		.seq_show = blkcg_print_stat,
1168 	},
1169 	{ }	/* terminate */
1170 };
1171 
1172 static struct cftype blkcg_legacy_files[] = {
1173 	{
1174 		.name = "reset_stats",
1175 		.write_u64 = blkcg_reset_stats,
1176 	},
1177 	{ }	/* terminate */
1178 };
1179 
1180 #ifdef CONFIG_CGROUP_WRITEBACK
blkcg_get_cgwb_list(struct cgroup_subsys_state * css)1181 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1182 {
1183 	return &css_to_blkcg(css)->cgwb_list;
1184 }
1185 #endif
1186 
1187 /*
1188  * blkcg destruction is a three-stage process.
1189  *
1190  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1191  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1192  *    to the completion of writeback associated with the blkcg.  This lets us
1193  *    avoid punting potentially large amounts of outstanding writeback to root
1194  *    while maintaining any ongoing policies.  The next stage is triggered when
1195  *    the nr_cgwbs count goes to zero.
1196  *
1197  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1198  *    and handles the destruction of blkgs.  Here the css reference held by
1199  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1200  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1201  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1202  *    punted to the root_blkg.
1203  *
1204  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1205  *    This finally frees the blkcg.
1206  */
1207 
1208 /**
1209  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1210  * @blkcg: blkcg of interest
1211  *
1212  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1213  * is nested inside q lock, this function performs reverse double lock dancing.
1214  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1215  * blkcg_css_free to eventually be called.
1216  *
1217  * This is the blkcg counterpart of ioc_release_fn().
1218  */
blkcg_destroy_blkgs(struct blkcg * blkcg)1219 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1220 {
1221 	might_sleep();
1222 
1223 	spin_lock_irq(&blkcg->lock);
1224 
1225 	while (!hlist_empty(&blkcg->blkg_list)) {
1226 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1227 						struct blkcg_gq, blkcg_node);
1228 		struct request_queue *q = blkg->q;
1229 
1230 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1231 			/*
1232 			 * Given that the system can accumulate a huge number
1233 			 * of blkgs in pathological cases, check to see if we
1234 			 * need to rescheduling to avoid softlockup.
1235 			 */
1236 			spin_unlock_irq(&blkcg->lock);
1237 			cond_resched();
1238 			spin_lock_irq(&blkcg->lock);
1239 			continue;
1240 		}
1241 
1242 		blkg_destroy(blkg);
1243 		spin_unlock(&q->queue_lock);
1244 	}
1245 
1246 	spin_unlock_irq(&blkcg->lock);
1247 }
1248 
1249 /**
1250  * blkcg_pin_online - pin online state
1251  * @blkcg_css: blkcg of interest
1252  *
1253  * While pinned, a blkcg is kept online.  This is primarily used to
1254  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1255  * while an associated cgwb is still active.
1256  */
blkcg_pin_online(struct cgroup_subsys_state * blkcg_css)1257 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1258 {
1259 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1260 }
1261 
1262 /**
1263  * blkcg_unpin_online - unpin online state
1264  * @blkcg_css: blkcg of interest
1265  *
1266  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1267  * that blkg doesn't go offline while an associated cgwb is still active.
1268  * When this count goes to zero, all active cgwbs have finished so the
1269  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1270  */
blkcg_unpin_online(struct cgroup_subsys_state * blkcg_css)1271 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1272 {
1273 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1274 
1275 	do {
1276 		if (!refcount_dec_and_test(&blkcg->online_pin))
1277 			break;
1278 		blkcg_destroy_blkgs(blkcg);
1279 		blkcg = blkcg_parent(blkcg);
1280 	} while (blkcg);
1281 }
1282 
1283 /**
1284  * blkcg_css_offline - cgroup css_offline callback
1285  * @css: css of interest
1286  *
1287  * This function is called when @css is about to go away.  Here the cgwbs are
1288  * offlined first and only once writeback associated with the blkcg has
1289  * finished do we start step 2 (see above).
1290  */
blkcg_css_offline(struct cgroup_subsys_state * css)1291 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1292 {
1293 	/* this prevents anyone from attaching or migrating to this blkcg */
1294 	wb_blkcg_offline(css);
1295 
1296 	/* put the base online pin allowing step 2 to be triggered */
1297 	blkcg_unpin_online(css);
1298 }
1299 
blkcg_css_free(struct cgroup_subsys_state * css)1300 static void blkcg_css_free(struct cgroup_subsys_state *css)
1301 {
1302 	struct blkcg *blkcg = css_to_blkcg(css);
1303 	int i;
1304 
1305 	mutex_lock(&blkcg_pol_mutex);
1306 
1307 	list_del(&blkcg->all_blkcgs_node);
1308 
1309 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1310 		if (blkcg->cpd[i])
1311 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1312 
1313 	mutex_unlock(&blkcg_pol_mutex);
1314 
1315 	free_percpu(blkcg->lhead);
1316 	kfree(blkcg);
1317 }
1318 
1319 static struct cgroup_subsys_state *
blkcg_css_alloc(struct cgroup_subsys_state * parent_css)1320 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1321 {
1322 	struct blkcg *blkcg;
1323 	int i;
1324 
1325 	mutex_lock(&blkcg_pol_mutex);
1326 
1327 	if (!parent_css) {
1328 		blkcg = &blkcg_root;
1329 	} else {
1330 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1331 		if (!blkcg)
1332 			goto unlock;
1333 	}
1334 
1335 	if (init_blkcg_llists(blkcg))
1336 		goto free_blkcg;
1337 
1338 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1339 		struct blkcg_policy *pol = blkcg_policy[i];
1340 		struct blkcg_policy_data *cpd;
1341 
1342 		/*
1343 		 * If the policy hasn't been attached yet, wait for it
1344 		 * to be attached before doing anything else. Otherwise,
1345 		 * check if the policy requires any specific per-cgroup
1346 		 * data: if it does, allocate and initialize it.
1347 		 */
1348 		if (!pol || !pol->cpd_alloc_fn)
1349 			continue;
1350 
1351 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1352 		if (!cpd)
1353 			goto free_pd_blkcg;
1354 
1355 		blkcg->cpd[i] = cpd;
1356 		cpd->blkcg = blkcg;
1357 		cpd->plid = i;
1358 	}
1359 
1360 	spin_lock_init(&blkcg->lock);
1361 	refcount_set(&blkcg->online_pin, 1);
1362 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1363 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1364 #ifdef CONFIG_CGROUP_WRITEBACK
1365 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1366 #endif
1367 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1368 
1369 	mutex_unlock(&blkcg_pol_mutex);
1370 	return &blkcg->css;
1371 
1372 free_pd_blkcg:
1373 	for (i--; i >= 0; i--)
1374 		if (blkcg->cpd[i])
1375 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1376 	free_percpu(blkcg->lhead);
1377 free_blkcg:
1378 	if (blkcg != &blkcg_root)
1379 		kfree(blkcg);
1380 unlock:
1381 	mutex_unlock(&blkcg_pol_mutex);
1382 	return ERR_PTR(-ENOMEM);
1383 }
1384 
blkcg_css_online(struct cgroup_subsys_state * css)1385 static int blkcg_css_online(struct cgroup_subsys_state *css)
1386 {
1387 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1388 
1389 	/*
1390 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1391 	 * don't go offline while cgwbs are still active on them.  Pin the
1392 	 * parent so that offline always happens towards the root.
1393 	 */
1394 	if (parent)
1395 		blkcg_pin_online(&parent->css);
1396 	return 0;
1397 }
1398 
blkcg_init_disk(struct gendisk * disk)1399 int blkcg_init_disk(struct gendisk *disk)
1400 {
1401 	struct request_queue *q = disk->queue;
1402 	struct blkcg_gq *new_blkg, *blkg;
1403 	bool preloaded;
1404 	int ret;
1405 
1406 	INIT_LIST_HEAD(&q->blkg_list);
1407 	mutex_init(&q->blkcg_mutex);
1408 
1409 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1410 	if (!new_blkg)
1411 		return -ENOMEM;
1412 
1413 	preloaded = !radix_tree_preload(GFP_KERNEL);
1414 
1415 	/* Make sure the root blkg exists. */
1416 	/* spin_lock_irq can serve as RCU read-side critical section. */
1417 	spin_lock_irq(&q->queue_lock);
1418 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1419 	if (IS_ERR(blkg))
1420 		goto err_unlock;
1421 	q->root_blkg = blkg;
1422 	spin_unlock_irq(&q->queue_lock);
1423 
1424 	if (preloaded)
1425 		radix_tree_preload_end();
1426 
1427 	ret = blk_ioprio_init(disk);
1428 	if (ret)
1429 		goto err_destroy_all;
1430 
1431 	ret = blk_throtl_init(disk);
1432 	if (ret)
1433 		goto err_ioprio_exit;
1434 
1435 	return 0;
1436 
1437 err_ioprio_exit:
1438 	blk_ioprio_exit(disk);
1439 err_destroy_all:
1440 	blkg_destroy_all(disk);
1441 	return ret;
1442 err_unlock:
1443 	spin_unlock_irq(&q->queue_lock);
1444 	if (preloaded)
1445 		radix_tree_preload_end();
1446 	return PTR_ERR(blkg);
1447 }
1448 
blkcg_exit_disk(struct gendisk * disk)1449 void blkcg_exit_disk(struct gendisk *disk)
1450 {
1451 	blkg_destroy_all(disk);
1452 	blk_throtl_exit(disk);
1453 }
1454 
blkcg_exit(struct task_struct * tsk)1455 static void blkcg_exit(struct task_struct *tsk)
1456 {
1457 	if (tsk->throttle_disk)
1458 		put_disk(tsk->throttle_disk);
1459 	tsk->throttle_disk = NULL;
1460 }
1461 
1462 struct cgroup_subsys io_cgrp_subsys = {
1463 	.css_alloc = blkcg_css_alloc,
1464 	.css_online = blkcg_css_online,
1465 	.css_offline = blkcg_css_offline,
1466 	.css_free = blkcg_css_free,
1467 	.css_rstat_flush = blkcg_rstat_flush,
1468 	.dfl_cftypes = blkcg_files,
1469 	.legacy_cftypes = blkcg_legacy_files,
1470 	.legacy_name = "blkio",
1471 	.exit = blkcg_exit,
1472 #ifdef CONFIG_MEMCG
1473 	/*
1474 	 * This ensures that, if available, memcg is automatically enabled
1475 	 * together on the default hierarchy so that the owner cgroup can
1476 	 * be retrieved from writeback pages.
1477 	 */
1478 	.depends_on = 1 << memory_cgrp_id,
1479 #endif
1480 };
1481 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1482 
1483 /**
1484  * blkcg_activate_policy - activate a blkcg policy on a gendisk
1485  * @disk: gendisk of interest
1486  * @pol: blkcg policy to activate
1487  *
1488  * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1489  * bypass mode to populate its blkgs with policy_data for @pol.
1490  *
1491  * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1492  * from IO path.  Update of each blkg is protected by both queue and blkcg
1493  * locks so that holding either lock and testing blkcg_policy_enabled() is
1494  * always enough for dereferencing policy data.
1495  *
1496  * The caller is responsible for synchronizing [de]activations and policy
1497  * [un]registerations.  Returns 0 on success, -errno on failure.
1498  */
blkcg_activate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1499 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1500 {
1501 	struct request_queue *q = disk->queue;
1502 	struct blkg_policy_data *pd_prealloc = NULL;
1503 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1504 	int ret;
1505 
1506 	if (blkcg_policy_enabled(q, pol))
1507 		return 0;
1508 
1509 	if (queue_is_mq(q))
1510 		blk_mq_freeze_queue(q);
1511 retry:
1512 	spin_lock_irq(&q->queue_lock);
1513 
1514 	/* blkg_list is pushed at the head, reverse walk to initialize parents first */
1515 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1516 		struct blkg_policy_data *pd;
1517 
1518 		if (blkg->pd[pol->plid])
1519 			continue;
1520 
1521 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1522 		if (blkg == pinned_blkg) {
1523 			pd = pd_prealloc;
1524 			pd_prealloc = NULL;
1525 		} else {
1526 			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1527 					      GFP_NOWAIT | __GFP_NOWARN);
1528 		}
1529 
1530 		if (!pd) {
1531 			/*
1532 			 * GFP_NOWAIT failed.  Free the existing one and
1533 			 * prealloc for @blkg w/ GFP_KERNEL.
1534 			 */
1535 			if (pinned_blkg)
1536 				blkg_put(pinned_blkg);
1537 			blkg_get(blkg);
1538 			pinned_blkg = blkg;
1539 
1540 			spin_unlock_irq(&q->queue_lock);
1541 
1542 			if (pd_prealloc)
1543 				pol->pd_free_fn(pd_prealloc);
1544 			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1545 						       GFP_KERNEL);
1546 			if (pd_prealloc)
1547 				goto retry;
1548 			else
1549 				goto enomem;
1550 		}
1551 
1552 		spin_lock(&blkg->blkcg->lock);
1553 
1554 		pd->blkg = blkg;
1555 		pd->plid = pol->plid;
1556 		blkg->pd[pol->plid] = pd;
1557 
1558 		if (pol->pd_init_fn)
1559 			pol->pd_init_fn(pd);
1560 
1561 		if (pol->pd_online_fn)
1562 			pol->pd_online_fn(pd);
1563 		pd->online = true;
1564 
1565 		spin_unlock(&blkg->blkcg->lock);
1566 	}
1567 
1568 	__set_bit(pol->plid, q->blkcg_pols);
1569 	ret = 0;
1570 
1571 	spin_unlock_irq(&q->queue_lock);
1572 out:
1573 	if (queue_is_mq(q))
1574 		blk_mq_unfreeze_queue(q);
1575 	if (pinned_blkg)
1576 		blkg_put(pinned_blkg);
1577 	if (pd_prealloc)
1578 		pol->pd_free_fn(pd_prealloc);
1579 	return ret;
1580 
1581 enomem:
1582 	/* alloc failed, take down everything */
1583 	spin_lock_irq(&q->queue_lock);
1584 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1585 		struct blkcg *blkcg = blkg->blkcg;
1586 		struct blkg_policy_data *pd;
1587 
1588 		spin_lock(&blkcg->lock);
1589 		pd = blkg->pd[pol->plid];
1590 		if (pd) {
1591 			if (pd->online && pol->pd_offline_fn)
1592 				pol->pd_offline_fn(pd);
1593 			pd->online = false;
1594 			pol->pd_free_fn(pd);
1595 			blkg->pd[pol->plid] = NULL;
1596 		}
1597 		spin_unlock(&blkcg->lock);
1598 	}
1599 	spin_unlock_irq(&q->queue_lock);
1600 	ret = -ENOMEM;
1601 	goto out;
1602 }
1603 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1604 
1605 /**
1606  * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1607  * @disk: gendisk of interest
1608  * @pol: blkcg policy to deactivate
1609  *
1610  * Deactivate @pol on @disk.  Follows the same synchronization rules as
1611  * blkcg_activate_policy().
1612  */
blkcg_deactivate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1613 void blkcg_deactivate_policy(struct gendisk *disk,
1614 			     const struct blkcg_policy *pol)
1615 {
1616 	struct request_queue *q = disk->queue;
1617 	struct blkcg_gq *blkg;
1618 
1619 	if (!blkcg_policy_enabled(q, pol))
1620 		return;
1621 
1622 	if (queue_is_mq(q))
1623 		blk_mq_freeze_queue(q);
1624 
1625 	mutex_lock(&q->blkcg_mutex);
1626 	spin_lock_irq(&q->queue_lock);
1627 
1628 	__clear_bit(pol->plid, q->blkcg_pols);
1629 
1630 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1631 		struct blkcg *blkcg = blkg->blkcg;
1632 
1633 		spin_lock(&blkcg->lock);
1634 		if (blkg->pd[pol->plid]) {
1635 			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1636 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1637 			pol->pd_free_fn(blkg->pd[pol->plid]);
1638 			blkg->pd[pol->plid] = NULL;
1639 		}
1640 		spin_unlock(&blkcg->lock);
1641 	}
1642 
1643 	spin_unlock_irq(&q->queue_lock);
1644 	mutex_unlock(&q->blkcg_mutex);
1645 
1646 	if (queue_is_mq(q))
1647 		blk_mq_unfreeze_queue(q);
1648 }
1649 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1650 
blkcg_free_all_cpd(struct blkcg_policy * pol)1651 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1652 {
1653 	struct blkcg *blkcg;
1654 
1655 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1656 		if (blkcg->cpd[pol->plid]) {
1657 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1658 			blkcg->cpd[pol->plid] = NULL;
1659 		}
1660 	}
1661 }
1662 
1663 /**
1664  * blkcg_policy_register - register a blkcg policy
1665  * @pol: blkcg policy to register
1666  *
1667  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1668  * successful registration.  Returns 0 on success and -errno on failure.
1669  */
blkcg_policy_register(struct blkcg_policy * pol)1670 int blkcg_policy_register(struct blkcg_policy *pol)
1671 {
1672 	struct blkcg *blkcg;
1673 	int i, ret;
1674 
1675 	mutex_lock(&blkcg_pol_register_mutex);
1676 	mutex_lock(&blkcg_pol_mutex);
1677 
1678 	/* find an empty slot */
1679 	ret = -ENOSPC;
1680 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1681 		if (!blkcg_policy[i])
1682 			break;
1683 	if (i >= BLKCG_MAX_POLS) {
1684 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1685 		goto err_unlock;
1686 	}
1687 
1688 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1689 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1690 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1691 		goto err_unlock;
1692 
1693 	/* register @pol */
1694 	pol->plid = i;
1695 	blkcg_policy[pol->plid] = pol;
1696 
1697 	/* allocate and install cpd's */
1698 	if (pol->cpd_alloc_fn) {
1699 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1700 			struct blkcg_policy_data *cpd;
1701 
1702 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1703 			if (!cpd)
1704 				goto err_free_cpds;
1705 
1706 			blkcg->cpd[pol->plid] = cpd;
1707 			cpd->blkcg = blkcg;
1708 			cpd->plid = pol->plid;
1709 		}
1710 	}
1711 
1712 	mutex_unlock(&blkcg_pol_mutex);
1713 
1714 	/* everything is in place, add intf files for the new policy */
1715 	if (pol->dfl_cftypes)
1716 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1717 					       pol->dfl_cftypes));
1718 	if (pol->legacy_cftypes)
1719 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1720 						  pol->legacy_cftypes));
1721 	mutex_unlock(&blkcg_pol_register_mutex);
1722 	return 0;
1723 
1724 err_free_cpds:
1725 	if (pol->cpd_free_fn)
1726 		blkcg_free_all_cpd(pol);
1727 
1728 	blkcg_policy[pol->plid] = NULL;
1729 err_unlock:
1730 	mutex_unlock(&blkcg_pol_mutex);
1731 	mutex_unlock(&blkcg_pol_register_mutex);
1732 	return ret;
1733 }
1734 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1735 
1736 /**
1737  * blkcg_policy_unregister - unregister a blkcg policy
1738  * @pol: blkcg policy to unregister
1739  *
1740  * Undo blkcg_policy_register(@pol).  Might sleep.
1741  */
blkcg_policy_unregister(struct blkcg_policy * pol)1742 void blkcg_policy_unregister(struct blkcg_policy *pol)
1743 {
1744 	mutex_lock(&blkcg_pol_register_mutex);
1745 
1746 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1747 		goto out_unlock;
1748 
1749 	/* kill the intf files first */
1750 	if (pol->dfl_cftypes)
1751 		cgroup_rm_cftypes(pol->dfl_cftypes);
1752 	if (pol->legacy_cftypes)
1753 		cgroup_rm_cftypes(pol->legacy_cftypes);
1754 
1755 	/* remove cpds and unregister */
1756 	mutex_lock(&blkcg_pol_mutex);
1757 
1758 	if (pol->cpd_free_fn)
1759 		blkcg_free_all_cpd(pol);
1760 
1761 	blkcg_policy[pol->plid] = NULL;
1762 
1763 	mutex_unlock(&blkcg_pol_mutex);
1764 out_unlock:
1765 	mutex_unlock(&blkcg_pol_register_mutex);
1766 }
1767 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1768 
1769 /*
1770  * Scale the accumulated delay based on how long it has been since we updated
1771  * the delay.  We only call this when we are adding delay, in case it's been a
1772  * while since we added delay, and when we are checking to see if we need to
1773  * delay a task, to account for any delays that may have occurred.
1774  */
blkcg_scale_delay(struct blkcg_gq * blkg,u64 now)1775 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1776 {
1777 	u64 old = atomic64_read(&blkg->delay_start);
1778 
1779 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1780 	if (atomic_read(&blkg->use_delay) < 0)
1781 		return;
1782 
1783 	/*
1784 	 * We only want to scale down every second.  The idea here is that we
1785 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1786 	 * time window.  We only want to throttle tasks for recent delay that
1787 	 * has occurred, in 1 second time windows since that's the maximum
1788 	 * things can be throttled.  We save the current delay window in
1789 	 * blkg->last_delay so we know what amount is still left to be charged
1790 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1791 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1792 	 * are ok with whatever is happening now, and we can take away more of
1793 	 * the accumulated delay as we've already throttled enough that
1794 	 * everybody is happy with their IO latencies.
1795 	 */
1796 	if (time_before64(old + NSEC_PER_SEC, now) &&
1797 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1798 		u64 cur = atomic64_read(&blkg->delay_nsec);
1799 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1800 		int cur_use = atomic_read(&blkg->use_delay);
1801 
1802 		/*
1803 		 * We've been unthrottled, subtract a larger chunk of our
1804 		 * accumulated delay.
1805 		 */
1806 		if (cur_use < blkg->last_use)
1807 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1808 
1809 		/*
1810 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1811 		 * should only ever be growing except here where we subtract out
1812 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1813 		 * rather not end up with negative numbers.
1814 		 */
1815 		if (unlikely(cur < sub)) {
1816 			atomic64_set(&blkg->delay_nsec, 0);
1817 			blkg->last_delay = 0;
1818 		} else {
1819 			atomic64_sub(sub, &blkg->delay_nsec);
1820 			blkg->last_delay = cur - sub;
1821 		}
1822 		blkg->last_use = cur_use;
1823 	}
1824 }
1825 
1826 /*
1827  * This is called when we want to actually walk up the hierarchy and check to
1828  * see if we need to throttle, and then actually throttle if there is some
1829  * accumulated delay.  This should only be called upon return to user space so
1830  * we're not holding some lock that would induce a priority inversion.
1831  */
blkcg_maybe_throttle_blkg(struct blkcg_gq * blkg,bool use_memdelay)1832 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1833 {
1834 	unsigned long pflags;
1835 	bool clamp;
1836 	u64 now = ktime_to_ns(ktime_get());
1837 	u64 exp;
1838 	u64 delay_nsec = 0;
1839 	int tok;
1840 
1841 	while (blkg->parent) {
1842 		int use_delay = atomic_read(&blkg->use_delay);
1843 
1844 		if (use_delay) {
1845 			u64 this_delay;
1846 
1847 			blkcg_scale_delay(blkg, now);
1848 			this_delay = atomic64_read(&blkg->delay_nsec);
1849 			if (this_delay > delay_nsec) {
1850 				delay_nsec = this_delay;
1851 				clamp = use_delay > 0;
1852 			}
1853 		}
1854 		blkg = blkg->parent;
1855 	}
1856 
1857 	if (!delay_nsec)
1858 		return;
1859 
1860 	/*
1861 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1862 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1863 	 * delay, and we want userspace to be able to do _something_ so cap the
1864 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1865 	 * tasks will be delayed for 0.25 second for every syscall. If
1866 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1867 	 * caller is responsible for regulating the range.
1868 	 */
1869 	if (clamp)
1870 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1871 
1872 	if (use_memdelay)
1873 		psi_memstall_enter(&pflags);
1874 
1875 	exp = ktime_add_ns(now, delay_nsec);
1876 	tok = io_schedule_prepare();
1877 	do {
1878 		__set_current_state(TASK_KILLABLE);
1879 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1880 			break;
1881 	} while (!fatal_signal_pending(current));
1882 	io_schedule_finish(tok);
1883 
1884 	if (use_memdelay)
1885 		psi_memstall_leave(&pflags);
1886 }
1887 
1888 /**
1889  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1890  *
1891  * This is only called if we've been marked with set_notify_resume().  Obviously
1892  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1893  * check to see if current->throttle_disk is set and if not this doesn't do
1894  * anything.  This should only ever be called by the resume code, it's not meant
1895  * to be called by people willy-nilly as it will actually do the work to
1896  * throttle the task if it is setup for throttling.
1897  */
blkcg_maybe_throttle_current(void)1898 void blkcg_maybe_throttle_current(void)
1899 {
1900 	struct gendisk *disk = current->throttle_disk;
1901 	struct blkcg *blkcg;
1902 	struct blkcg_gq *blkg;
1903 	bool use_memdelay = current->use_memdelay;
1904 
1905 	if (!disk)
1906 		return;
1907 
1908 	current->throttle_disk = NULL;
1909 	current->use_memdelay = false;
1910 
1911 	rcu_read_lock();
1912 	blkcg = css_to_blkcg(blkcg_css());
1913 	if (!blkcg)
1914 		goto out;
1915 	blkg = blkg_lookup(blkcg, disk->queue);
1916 	if (!blkg)
1917 		goto out;
1918 	if (!blkg_tryget(blkg))
1919 		goto out;
1920 	rcu_read_unlock();
1921 
1922 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1923 	blkg_put(blkg);
1924 	put_disk(disk);
1925 	return;
1926 out:
1927 	rcu_read_unlock();
1928 }
1929 
1930 /**
1931  * blkcg_schedule_throttle - this task needs to check for throttling
1932  * @disk: disk to throttle
1933  * @use_memdelay: do we charge this to memory delay for PSI
1934  *
1935  * This is called by the IO controller when we know there's delay accumulated
1936  * for the blkg for this task.  We do not pass the blkg because there are places
1937  * we call this that may not have that information, the swapping code for
1938  * instance will only have a block_device at that point.  This set's the
1939  * notify_resume for the task to check and see if it requires throttling before
1940  * returning to user space.
1941  *
1942  * We will only schedule once per syscall.  You can call this over and over
1943  * again and it will only do the check once upon return to user space, and only
1944  * throttle once.  If the task needs to be throttled again it'll need to be
1945  * re-set at the next time we see the task.
1946  */
blkcg_schedule_throttle(struct gendisk * disk,bool use_memdelay)1947 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1948 {
1949 	if (unlikely(current->flags & PF_KTHREAD))
1950 		return;
1951 
1952 	if (current->throttle_disk != disk) {
1953 		if (test_bit(GD_DEAD, &disk->state))
1954 			return;
1955 		get_device(disk_to_dev(disk));
1956 
1957 		if (current->throttle_disk)
1958 			put_disk(current->throttle_disk);
1959 		current->throttle_disk = disk;
1960 	}
1961 
1962 	if (use_memdelay)
1963 		current->use_memdelay = use_memdelay;
1964 	set_notify_resume(current);
1965 }
1966 
1967 /**
1968  * blkcg_add_delay - add delay to this blkg
1969  * @blkg: blkg of interest
1970  * @now: the current time in nanoseconds
1971  * @delta: how many nanoseconds of delay to add
1972  *
1973  * Charge @delta to the blkg's current delay accumulation.  This is used to
1974  * throttle tasks if an IO controller thinks we need more throttling.
1975  */
blkcg_add_delay(struct blkcg_gq * blkg,u64 now,u64 delta)1976 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1977 {
1978 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1979 		return;
1980 	blkcg_scale_delay(blkg, now);
1981 	atomic64_add(delta, &blkg->delay_nsec);
1982 }
1983 
1984 /**
1985  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1986  * @bio: target bio
1987  * @css: target css
1988  *
1989  * As the failure mode here is to walk up the blkg tree, this ensure that the
1990  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1991  * up taking a reference on or %NULL if no reference was taken.
1992  */
blkg_tryget_closest(struct bio * bio,struct cgroup_subsys_state * css)1993 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1994 		struct cgroup_subsys_state *css)
1995 {
1996 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1997 
1998 	rcu_read_lock();
1999 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2000 	while (blkg) {
2001 		if (blkg_tryget(blkg)) {
2002 			ret_blkg = blkg;
2003 			break;
2004 		}
2005 		blkg = blkg->parent;
2006 	}
2007 	rcu_read_unlock();
2008 
2009 	return ret_blkg;
2010 }
2011 
2012 /**
2013  * bio_associate_blkg_from_css - associate a bio with a specified css
2014  * @bio: target bio
2015  * @css: target css
2016  *
2017  * Associate @bio with the blkg found by combining the css's blkg and the
2018  * request_queue of the @bio.  An association failure is handled by walking up
2019  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
2020  * and q->root_blkg.  This situation only happens when a cgroup is dying and
2021  * then the remaining bios will spill to the closest alive blkg.
2022  *
2023  * A reference will be taken on the blkg and will be released when @bio is
2024  * freed.
2025  */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)2026 void bio_associate_blkg_from_css(struct bio *bio,
2027 				 struct cgroup_subsys_state *css)
2028 {
2029 	if (bio->bi_blkg)
2030 		blkg_put(bio->bi_blkg);
2031 
2032 	if (css && css->parent) {
2033 		bio->bi_blkg = blkg_tryget_closest(bio, css);
2034 	} else {
2035 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2036 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2037 	}
2038 }
2039 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2040 
2041 /**
2042  * bio_associate_blkg - associate a bio with a blkg
2043  * @bio: target bio
2044  *
2045  * Associate @bio with the blkg found from the bio's css and request_queue.
2046  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2047  * already associated, the css is reused and association redone as the
2048  * request_queue may have changed.
2049  */
bio_associate_blkg(struct bio * bio)2050 void bio_associate_blkg(struct bio *bio)
2051 {
2052 	struct cgroup_subsys_state *css;
2053 
2054 	rcu_read_lock();
2055 
2056 	if (bio->bi_blkg)
2057 		css = bio_blkcg_css(bio);
2058 	else
2059 		css = blkcg_css();
2060 
2061 	bio_associate_blkg_from_css(bio, css);
2062 
2063 	rcu_read_unlock();
2064 }
2065 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2066 
2067 /**
2068  * bio_clone_blkg_association - clone blkg association from src to dst bio
2069  * @dst: destination bio
2070  * @src: source bio
2071  */
bio_clone_blkg_association(struct bio * dst,struct bio * src)2072 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2073 {
2074 	if (src->bi_blkg)
2075 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2076 }
2077 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2078 
blk_cgroup_io_type(struct bio * bio)2079 static int blk_cgroup_io_type(struct bio *bio)
2080 {
2081 	if (op_is_discard(bio->bi_opf))
2082 		return BLKG_IOSTAT_DISCARD;
2083 	if (op_is_write(bio->bi_opf))
2084 		return BLKG_IOSTAT_WRITE;
2085 	return BLKG_IOSTAT_READ;
2086 }
2087 
blk_cgroup_bio_start(struct bio * bio)2088 void blk_cgroup_bio_start(struct bio *bio)
2089 {
2090 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2091 	int rwd = blk_cgroup_io_type(bio), cpu;
2092 	struct blkg_iostat_set *bis;
2093 	unsigned long flags;
2094 
2095 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2096 		return;
2097 
2098 	/* Root-level stats are sourced from system-wide IO stats */
2099 	if (!cgroup_parent(blkcg->css.cgroup))
2100 		return;
2101 
2102 	cpu = get_cpu();
2103 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2104 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2105 
2106 	/*
2107 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2108 	 * bio and we would have already accounted for the size of the bio.
2109 	 */
2110 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2111 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2112 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2113 	}
2114 	bis->cur.ios[rwd]++;
2115 
2116 	/*
2117 	 * If the iostat_cpu isn't in a lockless list, put it into the
2118 	 * list to indicate that a stat update is pending.
2119 	 */
2120 	if (!READ_ONCE(bis->lqueued)) {
2121 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2122 
2123 		llist_add(&bis->lnode, lhead);
2124 		WRITE_ONCE(bis->lqueued, true);
2125 	}
2126 
2127 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2128 	cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2129 	put_cpu();
2130 }
2131 
blk_cgroup_congested(void)2132 bool blk_cgroup_congested(void)
2133 {
2134 	struct cgroup_subsys_state *css;
2135 	bool ret = false;
2136 
2137 	rcu_read_lock();
2138 	for (css = blkcg_css(); css; css = css->parent) {
2139 		if (atomic_read(&css->cgroup->congestion_count)) {
2140 			ret = true;
2141 			break;
2142 		}
2143 	}
2144 	rcu_read_unlock();
2145 	return ret;
2146 }
2147 
2148 module_param(blkcg_debug_stats, bool, 0644);
2149 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2150