1 /*
2 * GICv3 ITS emulation
3 *
4 * Copyright (C) 2015,2016 ARM Ltd.
5 * Author: Andre Przywara <andre.przywara@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26 #include <linux/list_sort.h>
27
28 #include <linux/irqchip/arm-gic-v3.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33
34 #include "vgic.h"
35 #include "vgic-mmio.h"
36
37 static int vgic_its_save_tables_v0(struct vgic_its *its);
38 static int vgic_its_restore_tables_v0(struct vgic_its *its);
39 static int vgic_its_commit_v0(struct vgic_its *its);
40 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
41 struct kvm_vcpu *filter_vcpu, bool needs_inv);
42
43 /*
44 * Creates a new (reference to a) struct vgic_irq for a given LPI.
45 * If this LPI is already mapped on another ITS, we increase its refcount
46 * and return a pointer to the existing structure.
47 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
48 * This function returns a pointer to the _unlocked_ structure.
49 */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)50 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
51 struct kvm_vcpu *vcpu)
52 {
53 struct vgic_dist *dist = &kvm->arch.vgic;
54 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
55 unsigned long flags;
56 int ret;
57
58 /* In this case there is no put, since we keep the reference. */
59 if (irq)
60 return irq;
61
62 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
63 if (!irq)
64 return ERR_PTR(-ENOMEM);
65
66 INIT_LIST_HEAD(&irq->lpi_list);
67 INIT_LIST_HEAD(&irq->ap_list);
68 spin_lock_init(&irq->irq_lock);
69
70 irq->config = VGIC_CONFIG_EDGE;
71 kref_init(&irq->refcount);
72 irq->intid = intid;
73 irq->target_vcpu = vcpu;
74 irq->group = 1;
75
76 spin_lock_irqsave(&dist->lpi_list_lock, flags);
77
78 /*
79 * There could be a race with another vgic_add_lpi(), so we need to
80 * check that we don't add a second list entry with the same LPI.
81 */
82 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
83 if (oldirq->intid != intid)
84 continue;
85
86 /* Someone was faster with adding this LPI, lets use that. */
87 kfree(irq);
88 irq = oldirq;
89
90 /*
91 * This increases the refcount, the caller is expected to
92 * call vgic_put_irq() on the returned pointer once it's
93 * finished with the IRQ.
94 */
95 vgic_get_irq_kref(irq);
96
97 goto out_unlock;
98 }
99
100 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
101 dist->lpi_list_count++;
102
103 out_unlock:
104 spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
105
106 /*
107 * We "cache" the configuration table entries in our struct vgic_irq's.
108 * However we only have those structs for mapped IRQs, so we read in
109 * the respective config data from memory here upon mapping the LPI.
110 */
111 ret = update_lpi_config(kvm, irq, NULL, false);
112 if (ret)
113 return ERR_PTR(ret);
114
115 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
116 if (ret)
117 return ERR_PTR(ret);
118
119 return irq;
120 }
121
122 struct its_device {
123 struct list_head dev_list;
124
125 /* the head for the list of ITTEs */
126 struct list_head itt_head;
127 u32 num_eventid_bits;
128 gpa_t itt_addr;
129 u32 device_id;
130 };
131
132 #define COLLECTION_NOT_MAPPED ((u32)~0)
133
134 struct its_collection {
135 struct list_head coll_list;
136
137 u32 collection_id;
138 u32 target_addr;
139 };
140
141 #define its_is_collection_mapped(coll) ((coll) && \
142 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
143
144 struct its_ite {
145 struct list_head ite_list;
146
147 struct vgic_irq *irq;
148 struct its_collection *collection;
149 u32 event_id;
150 };
151
152 /**
153 * struct vgic_its_abi - ITS abi ops and settings
154 * @cte_esz: collection table entry size
155 * @dte_esz: device table entry size
156 * @ite_esz: interrupt translation table entry size
157 * @save tables: save the ITS tables into guest RAM
158 * @restore_tables: restore the ITS internal structs from tables
159 * stored in guest RAM
160 * @commit: initialize the registers which expose the ABI settings,
161 * especially the entry sizes
162 */
163 struct vgic_its_abi {
164 int cte_esz;
165 int dte_esz;
166 int ite_esz;
167 int (*save_tables)(struct vgic_its *its);
168 int (*restore_tables)(struct vgic_its *its);
169 int (*commit)(struct vgic_its *its);
170 };
171
172 #define ABI_0_ESZ 8
173 #define ESZ_MAX ABI_0_ESZ
174
175 static const struct vgic_its_abi its_table_abi_versions[] = {
176 [0] = {
177 .cte_esz = ABI_0_ESZ,
178 .dte_esz = ABI_0_ESZ,
179 .ite_esz = ABI_0_ESZ,
180 .save_tables = vgic_its_save_tables_v0,
181 .restore_tables = vgic_its_restore_tables_v0,
182 .commit = vgic_its_commit_v0,
183 },
184 };
185
186 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
187
vgic_its_get_abi(struct vgic_its * its)188 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
189 {
190 return &its_table_abi_versions[its->abi_rev];
191 }
192
vgic_its_set_abi(struct vgic_its * its,u32 rev)193 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
194 {
195 const struct vgic_its_abi *abi;
196
197 its->abi_rev = rev;
198 abi = vgic_its_get_abi(its);
199 return abi->commit(its);
200 }
201
202 /*
203 * Find and returns a device in the device table for an ITS.
204 * Must be called with the its_lock mutex held.
205 */
find_its_device(struct vgic_its * its,u32 device_id)206 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
207 {
208 struct its_device *device;
209
210 list_for_each_entry(device, &its->device_list, dev_list)
211 if (device_id == device->device_id)
212 return device;
213
214 return NULL;
215 }
216
217 /*
218 * Find and returns an interrupt translation table entry (ITTE) for a given
219 * Device ID/Event ID pair on an ITS.
220 * Must be called with the its_lock mutex held.
221 */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)222 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
223 u32 event_id)
224 {
225 struct its_device *device;
226 struct its_ite *ite;
227
228 device = find_its_device(its, device_id);
229 if (device == NULL)
230 return NULL;
231
232 list_for_each_entry(ite, &device->itt_head, ite_list)
233 if (ite->event_id == event_id)
234 return ite;
235
236 return NULL;
237 }
238
239 /* To be used as an iterator this macro misses the enclosing parentheses */
240 #define for_each_lpi_its(dev, ite, its) \
241 list_for_each_entry(dev, &(its)->device_list, dev_list) \
242 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
243
244 /*
245 * We only implement 48 bits of PA at the moment, although the ITS
246 * supports more. Let's be restrictive here.
247 */
248 #define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
249 #define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
250
251 #define GIC_LPI_OFFSET 8192
252
253 #define VITS_TYPER_IDBITS 16
254 #define VITS_TYPER_DEVBITS 16
255 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
256 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
257
258 /*
259 * Finds and returns a collection in the ITS collection table.
260 * Must be called with the its_lock mutex held.
261 */
find_collection(struct vgic_its * its,int coll_id)262 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
263 {
264 struct its_collection *collection;
265
266 list_for_each_entry(collection, &its->collection_list, coll_list) {
267 if (coll_id == collection->collection_id)
268 return collection;
269 }
270
271 return NULL;
272 }
273
274 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
275 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
276
277 /*
278 * Reads the configuration data for a given LPI from guest memory and
279 * updates the fields in struct vgic_irq.
280 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
281 * VCPU. Unconditionally applies if filter_vcpu is NULL.
282 */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)283 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
284 struct kvm_vcpu *filter_vcpu, bool needs_inv)
285 {
286 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
287 u8 prop;
288 int ret;
289 unsigned long flags;
290
291 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
292 &prop, 1);
293
294 if (ret)
295 return ret;
296
297 spin_lock_irqsave(&irq->irq_lock, flags);
298
299 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
300 irq->priority = LPI_PROP_PRIORITY(prop);
301 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
302
303 if (!irq->hw) {
304 vgic_queue_irq_unlock(kvm, irq, flags);
305 return 0;
306 }
307 }
308
309 spin_unlock_irqrestore(&irq->irq_lock, flags);
310
311 if (irq->hw)
312 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
313
314 return 0;
315 }
316
317 /*
318 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
319 * enumerate those LPIs without holding any lock.
320 * Returns their number and puts the kmalloc'ed array into intid_ptr.
321 */
vgic_copy_lpi_list(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 ** intid_ptr)322 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
323 {
324 struct vgic_dist *dist = &kvm->arch.vgic;
325 struct vgic_irq *irq;
326 unsigned long flags;
327 u32 *intids;
328 int irq_count, i = 0;
329
330 /*
331 * There is an obvious race between allocating the array and LPIs
332 * being mapped/unmapped. If we ended up here as a result of a
333 * command, we're safe (locks are held, preventing another
334 * command). If coming from another path (such as enabling LPIs),
335 * we must be careful not to overrun the array.
336 */
337 irq_count = READ_ONCE(dist->lpi_list_count);
338 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
339 if (!intids)
340 return -ENOMEM;
341
342 spin_lock_irqsave(&dist->lpi_list_lock, flags);
343 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
344 if (i == irq_count)
345 break;
346 /* We don't need to "get" the IRQ, as we hold the list lock. */
347 if (vcpu && irq->target_vcpu != vcpu)
348 continue;
349 intids[i++] = irq->intid;
350 }
351 spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
352
353 *intid_ptr = intids;
354 return i;
355 }
356
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)357 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
358 {
359 int ret = 0;
360 unsigned long flags;
361
362 spin_lock_irqsave(&irq->irq_lock, flags);
363 irq->target_vcpu = vcpu;
364 spin_unlock_irqrestore(&irq->irq_lock, flags);
365
366 if (irq->hw) {
367 struct its_vlpi_map map;
368
369 ret = its_get_vlpi(irq->host_irq, &map);
370 if (ret)
371 return ret;
372
373 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
374
375 ret = its_map_vlpi(irq->host_irq, &map);
376 }
377
378 return ret;
379 }
380
381 /*
382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383 * is targeting) to the VGIC's view, which deals with target VCPUs.
384 * Needs to be called whenever either the collection for a LPIs has
385 * changed or the collection itself got retargeted.
386 */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 struct kvm_vcpu *vcpu;
390
391 if (!its_is_collection_mapped(ite->collection))
392 return;
393
394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 update_affinity(ite->irq, vcpu);
396 }
397
398 /*
399 * Updates the target VCPU for every LPI targeting this collection.
400 * Must be called with the its_lock mutex held.
401 */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 struct its_collection *coll)
404 {
405 struct its_device *device;
406 struct its_ite *ite;
407
408 for_each_lpi_its(device, ite, its) {
409 if (!ite->collection || coll != ite->collection)
410 continue;
411
412 update_affinity_ite(kvm, ite);
413 }
414 }
415
max_lpis_propbaser(u64 propbaser)416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 int nr_idbits = (propbaser & 0x1f) + 1;
419
420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422
423 /*
424 * Sync the pending table pending bit of LPIs targeting @vcpu
425 * with our own data structures. This relies on the LPI being
426 * mapped before.
427 */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 struct vgic_irq *irq;
432 int last_byte_offset = -1;
433 int ret = 0;
434 u32 *intids;
435 int nr_irqs, i;
436 unsigned long flags;
437 u8 pendmask;
438
439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 if (nr_irqs < 0)
441 return nr_irqs;
442
443 for (i = 0; i < nr_irqs; i++) {
444 int byte_offset, bit_nr;
445
446 byte_offset = intids[i] / BITS_PER_BYTE;
447 bit_nr = intids[i] % BITS_PER_BYTE;
448
449 /*
450 * For contiguously allocated LPIs chances are we just read
451 * this very same byte in the last iteration. Reuse that.
452 */
453 if (byte_offset != last_byte_offset) {
454 ret = kvm_read_guest_lock(vcpu->kvm,
455 pendbase + byte_offset,
456 &pendmask, 1);
457 if (ret) {
458 kfree(intids);
459 return ret;
460 }
461 last_byte_offset = byte_offset;
462 }
463
464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 spin_lock_irqsave(&irq->irq_lock, flags);
466 irq->pending_latch = pendmask & (1U << bit_nr);
467 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
468 vgic_put_irq(vcpu->kvm, irq);
469 }
470
471 kfree(intids);
472
473 return ret;
474 }
475
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
477 struct vgic_its *its,
478 gpa_t addr, unsigned int len)
479 {
480 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
481 u64 reg = GITS_TYPER_PLPIS;
482
483 /*
484 * We use linear CPU numbers for redistributor addressing,
485 * so GITS_TYPER.PTA is 0.
486 * Also we force all PROPBASER registers to be the same, so
487 * CommonLPIAff is 0 as well.
488 * To avoid memory waste in the guest, we keep the number of IDBits and
489 * DevBits low - as least for the time being.
490 */
491 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
492 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
493 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
494
495 return extract_bytes(reg, addr & 7, len);
496 }
497
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
499 struct vgic_its *its,
500 gpa_t addr, unsigned int len)
501 {
502 u32 val;
503
504 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
505 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
506 return val;
507 }
508
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
510 struct vgic_its *its,
511 gpa_t addr, unsigned int len,
512 unsigned long val)
513 {
514 u32 rev = GITS_IIDR_REV(val);
515
516 if (rev >= NR_ITS_ABIS)
517 return -EINVAL;
518 return vgic_its_set_abi(its, rev);
519 }
520
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
522 struct vgic_its *its,
523 gpa_t addr, unsigned int len)
524 {
525 switch (addr & 0xffff) {
526 case GITS_PIDR0:
527 return 0x92; /* part number, bits[7:0] */
528 case GITS_PIDR1:
529 return 0xb4; /* part number, bits[11:8] */
530 case GITS_PIDR2:
531 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
532 case GITS_PIDR4:
533 return 0x40; /* This is a 64K software visible page */
534 /* The following are the ID registers for (any) GIC. */
535 case GITS_CIDR0:
536 return 0x0d;
537 case GITS_CIDR1:
538 return 0xf0;
539 case GITS_CIDR2:
540 return 0x05;
541 case GITS_CIDR3:
542 return 0xb1;
543 }
544
545 return 0;
546 }
547
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)548 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
549 u32 devid, u32 eventid, struct vgic_irq **irq)
550 {
551 struct kvm_vcpu *vcpu;
552 struct its_ite *ite;
553
554 if (!its->enabled)
555 return -EBUSY;
556
557 ite = find_ite(its, devid, eventid);
558 if (!ite || !its_is_collection_mapped(ite->collection))
559 return E_ITS_INT_UNMAPPED_INTERRUPT;
560
561 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
562 if (!vcpu)
563 return E_ITS_INT_UNMAPPED_INTERRUPT;
564
565 if (!vcpu->arch.vgic_cpu.lpis_enabled)
566 return -EBUSY;
567
568 *irq = ite->irq;
569 return 0;
570 }
571
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)572 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
573 {
574 u64 address;
575 struct kvm_io_device *kvm_io_dev;
576 struct vgic_io_device *iodev;
577
578 if (!vgic_has_its(kvm))
579 return ERR_PTR(-ENODEV);
580
581 if (!(msi->flags & KVM_MSI_VALID_DEVID))
582 return ERR_PTR(-EINVAL);
583
584 address = (u64)msi->address_hi << 32 | msi->address_lo;
585
586 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
587 if (!kvm_io_dev)
588 return ERR_PTR(-EINVAL);
589
590 if (kvm_io_dev->ops != &kvm_io_gic_ops)
591 return ERR_PTR(-EINVAL);
592
593 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
594 if (iodev->iodev_type != IODEV_ITS)
595 return ERR_PTR(-EINVAL);
596
597 return iodev->its;
598 }
599
600 /*
601 * Find the target VCPU and the LPI number for a given devid/eventid pair
602 * and make this IRQ pending, possibly injecting it.
603 * Must be called with the its_lock mutex held.
604 * Returns 0 on success, a positive error value for any ITS mapping
605 * related errors and negative error values for generic errors.
606 */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)607 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
608 u32 devid, u32 eventid)
609 {
610 struct vgic_irq *irq = NULL;
611 unsigned long flags;
612 int err;
613
614 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
615 if (err)
616 return err;
617
618 if (irq->hw)
619 return irq_set_irqchip_state(irq->host_irq,
620 IRQCHIP_STATE_PENDING, true);
621
622 spin_lock_irqsave(&irq->irq_lock, flags);
623 irq->pending_latch = true;
624 vgic_queue_irq_unlock(kvm, irq, flags);
625
626 return 0;
627 }
628
629 /*
630 * Queries the KVM IO bus framework to get the ITS pointer from the given
631 * doorbell address.
632 * We then call vgic_its_trigger_msi() with the decoded data.
633 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
634 */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)635 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
636 {
637 struct vgic_its *its;
638 int ret;
639
640 its = vgic_msi_to_its(kvm, msi);
641 if (IS_ERR(its))
642 return PTR_ERR(its);
643
644 mutex_lock(&its->its_lock);
645 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
646 mutex_unlock(&its->its_lock);
647
648 if (ret < 0)
649 return ret;
650
651 /*
652 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
653 * if the guest has blocked the MSI. So we map any LPI mapping
654 * related error to that.
655 */
656 if (ret)
657 return 0;
658 else
659 return 1;
660 }
661
662 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)663 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
664 {
665 list_del(&ite->ite_list);
666
667 /* This put matches the get in vgic_add_lpi. */
668 if (ite->irq) {
669 if (ite->irq->hw)
670 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
671
672 vgic_put_irq(kvm, ite->irq);
673 }
674
675 kfree(ite);
676 }
677
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)678 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
679 {
680 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
681 }
682
683 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
684 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
685 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
686 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
687 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
688 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
689 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
690 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
691 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
692
693 /*
694 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
695 * Must be called with the its_lock mutex held.
696 */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)697 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
698 u64 *its_cmd)
699 {
700 u32 device_id = its_cmd_get_deviceid(its_cmd);
701 u32 event_id = its_cmd_get_id(its_cmd);
702 struct its_ite *ite;
703
704
705 ite = find_ite(its, device_id, event_id);
706 if (ite && ite->collection) {
707 /*
708 * Though the spec talks about removing the pending state, we
709 * don't bother here since we clear the ITTE anyway and the
710 * pending state is a property of the ITTE struct.
711 */
712 its_free_ite(kvm, ite);
713 return 0;
714 }
715
716 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
717 }
718
719 /*
720 * The MOVI command moves an ITTE to a different collection.
721 * Must be called with the its_lock mutex held.
722 */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)723 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
724 u64 *its_cmd)
725 {
726 u32 device_id = its_cmd_get_deviceid(its_cmd);
727 u32 event_id = its_cmd_get_id(its_cmd);
728 u32 coll_id = its_cmd_get_collection(its_cmd);
729 struct kvm_vcpu *vcpu;
730 struct its_ite *ite;
731 struct its_collection *collection;
732
733 ite = find_ite(its, device_id, event_id);
734 if (!ite)
735 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
736
737 if (!its_is_collection_mapped(ite->collection))
738 return E_ITS_MOVI_UNMAPPED_COLLECTION;
739
740 collection = find_collection(its, coll_id);
741 if (!its_is_collection_mapped(collection))
742 return E_ITS_MOVI_UNMAPPED_COLLECTION;
743
744 ite->collection = collection;
745 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
746
747 return update_affinity(ite->irq, vcpu);
748 }
749
750 /*
751 * Check whether an ID can be stored into the corresponding guest table.
752 * For a direct table this is pretty easy, but gets a bit nasty for
753 * indirect tables. We check whether the resulting guest physical address
754 * is actually valid (covered by a memslot and guest accessible).
755 * For this we have to read the respective first level entry.
756 */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)757 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
758 gpa_t *eaddr)
759 {
760 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
761 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
762 int esz = GITS_BASER_ENTRY_SIZE(baser);
763 int index;
764 gfn_t gfn;
765
766 switch (type) {
767 case GITS_BASER_TYPE_DEVICE:
768 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
769 return false;
770 break;
771 case GITS_BASER_TYPE_COLLECTION:
772 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
773 if (id >= BIT_ULL(16))
774 return false;
775 break;
776 default:
777 return false;
778 }
779
780 if (!(baser & GITS_BASER_INDIRECT)) {
781 phys_addr_t addr;
782
783 if (id >= (l1_tbl_size / esz))
784 return false;
785
786 addr = BASER_ADDRESS(baser) + id * esz;
787 gfn = addr >> PAGE_SHIFT;
788
789 if (eaddr)
790 *eaddr = addr;
791 return kvm_is_visible_gfn(its->dev->kvm, gfn);
792 }
793
794 /* calculate and check the index into the 1st level */
795 index = id / (SZ_64K / esz);
796 if (index >= (l1_tbl_size / sizeof(u64)))
797 return false;
798
799 /* Each 1st level entry is represented by a 64-bit value. */
800 if (kvm_read_guest_lock(its->dev->kvm,
801 BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
802 &indirect_ptr, sizeof(indirect_ptr)))
803 return false;
804
805 indirect_ptr = le64_to_cpu(indirect_ptr);
806
807 /* check the valid bit of the first level entry */
808 if (!(indirect_ptr & BIT_ULL(63)))
809 return false;
810
811 /*
812 * Mask the guest physical address and calculate the frame number.
813 * Any address beyond our supported 48 bits of PA will be caught
814 * by the actual check in the final step.
815 */
816 indirect_ptr &= GENMASK_ULL(51, 16);
817
818 /* Find the address of the actual entry */
819 index = id % (SZ_64K / esz);
820 indirect_ptr += index * esz;
821 gfn = indirect_ptr >> PAGE_SHIFT;
822
823 if (eaddr)
824 *eaddr = indirect_ptr;
825 return kvm_is_visible_gfn(its->dev->kvm, gfn);
826 }
827
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)828 static int vgic_its_alloc_collection(struct vgic_its *its,
829 struct its_collection **colp,
830 u32 coll_id)
831 {
832 struct its_collection *collection;
833
834 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
835 return E_ITS_MAPC_COLLECTION_OOR;
836
837 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
838 if (!collection)
839 return -ENOMEM;
840
841 collection->collection_id = coll_id;
842 collection->target_addr = COLLECTION_NOT_MAPPED;
843
844 list_add_tail(&collection->coll_list, &its->collection_list);
845 *colp = collection;
846
847 return 0;
848 }
849
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)850 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
851 {
852 struct its_collection *collection;
853 struct its_device *device;
854 struct its_ite *ite;
855
856 /*
857 * Clearing the mapping for that collection ID removes the
858 * entry from the list. If there wasn't any before, we can
859 * go home early.
860 */
861 collection = find_collection(its, coll_id);
862 if (!collection)
863 return;
864
865 for_each_lpi_its(device, ite, its)
866 if (ite->collection &&
867 ite->collection->collection_id == coll_id)
868 ite->collection = NULL;
869
870 list_del(&collection->coll_list);
871 kfree(collection);
872 }
873
874 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)875 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
876 struct its_collection *collection,
877 u32 event_id)
878 {
879 struct its_ite *ite;
880
881 ite = kzalloc(sizeof(*ite), GFP_KERNEL);
882 if (!ite)
883 return ERR_PTR(-ENOMEM);
884
885 ite->event_id = event_id;
886 ite->collection = collection;
887
888 list_add_tail(&ite->ite_list, &device->itt_head);
889 return ite;
890 }
891
892 /*
893 * The MAPTI and MAPI commands map LPIs to ITTEs.
894 * Must be called with its_lock mutex held.
895 */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)896 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
897 u64 *its_cmd)
898 {
899 u32 device_id = its_cmd_get_deviceid(its_cmd);
900 u32 event_id = its_cmd_get_id(its_cmd);
901 u32 coll_id = its_cmd_get_collection(its_cmd);
902 struct its_ite *ite;
903 struct kvm_vcpu *vcpu = NULL;
904 struct its_device *device;
905 struct its_collection *collection, *new_coll = NULL;
906 struct vgic_irq *irq;
907 int lpi_nr;
908
909 device = find_its_device(its, device_id);
910 if (!device)
911 return E_ITS_MAPTI_UNMAPPED_DEVICE;
912
913 if (event_id >= BIT_ULL(device->num_eventid_bits))
914 return E_ITS_MAPTI_ID_OOR;
915
916 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
917 lpi_nr = its_cmd_get_physical_id(its_cmd);
918 else
919 lpi_nr = event_id;
920 if (lpi_nr < GIC_LPI_OFFSET ||
921 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
922 return E_ITS_MAPTI_PHYSICALID_OOR;
923
924 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
925 if (find_ite(its, device_id, event_id))
926 return 0;
927
928 collection = find_collection(its, coll_id);
929 if (!collection) {
930 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
931 if (ret)
932 return ret;
933 new_coll = collection;
934 }
935
936 ite = vgic_its_alloc_ite(device, collection, event_id);
937 if (IS_ERR(ite)) {
938 if (new_coll)
939 vgic_its_free_collection(its, coll_id);
940 return PTR_ERR(ite);
941 }
942
943 if (its_is_collection_mapped(collection))
944 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
945
946 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
947 if (IS_ERR(irq)) {
948 if (new_coll)
949 vgic_its_free_collection(its, coll_id);
950 its_free_ite(kvm, ite);
951 return PTR_ERR(irq);
952 }
953 ite->irq = irq;
954
955 return 0;
956 }
957
958 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct its_device * device)959 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
960 {
961 struct its_ite *ite, *temp;
962
963 /*
964 * The spec says that unmapping a device with still valid
965 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
966 * since we cannot leave the memory unreferenced.
967 */
968 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
969 its_free_ite(kvm, ite);
970
971 list_del(&device->dev_list);
972 kfree(device);
973 }
974
975 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)976 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
977 {
978 struct its_device *cur, *temp;
979
980 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
981 vgic_its_free_device(kvm, cur);
982 }
983
984 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)985 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
986 {
987 struct its_collection *cur, *temp;
988
989 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
990 vgic_its_free_collection(its, cur->collection_id);
991 }
992
993 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)994 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
995 u32 device_id, gpa_t itt_addr,
996 u8 num_eventid_bits)
997 {
998 struct its_device *device;
999
1000 device = kzalloc(sizeof(*device), GFP_KERNEL);
1001 if (!device)
1002 return ERR_PTR(-ENOMEM);
1003
1004 device->device_id = device_id;
1005 device->itt_addr = itt_addr;
1006 device->num_eventid_bits = num_eventid_bits;
1007 INIT_LIST_HEAD(&device->itt_head);
1008
1009 list_add_tail(&device->dev_list, &its->device_list);
1010 return device;
1011 }
1012
1013 /*
1014 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1015 * Must be called with the its_lock mutex held.
1016 */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1017 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1018 u64 *its_cmd)
1019 {
1020 u32 device_id = its_cmd_get_deviceid(its_cmd);
1021 bool valid = its_cmd_get_validbit(its_cmd);
1022 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1023 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1024 struct its_device *device;
1025
1026 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1027 return E_ITS_MAPD_DEVICE_OOR;
1028
1029 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1030 return E_ITS_MAPD_ITTSIZE_OOR;
1031
1032 device = find_its_device(its, device_id);
1033
1034 /*
1035 * The spec says that calling MAPD on an already mapped device
1036 * invalidates all cached data for this device. We implement this
1037 * by removing the mapping and re-establishing it.
1038 */
1039 if (device)
1040 vgic_its_free_device(kvm, device);
1041
1042 /*
1043 * The spec does not say whether unmapping a not-mapped device
1044 * is an error, so we are done in any case.
1045 */
1046 if (!valid)
1047 return 0;
1048
1049 device = vgic_its_alloc_device(its, device_id, itt_addr,
1050 num_eventid_bits);
1051
1052 return PTR_ERR_OR_ZERO(device);
1053 }
1054
1055 /*
1056 * The MAPC command maps collection IDs to redistributors.
1057 * Must be called with the its_lock mutex held.
1058 */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1059 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1060 u64 *its_cmd)
1061 {
1062 u16 coll_id;
1063 u32 target_addr;
1064 struct its_collection *collection;
1065 bool valid;
1066
1067 valid = its_cmd_get_validbit(its_cmd);
1068 coll_id = its_cmd_get_collection(its_cmd);
1069 target_addr = its_cmd_get_target_addr(its_cmd);
1070
1071 if (target_addr >= atomic_read(&kvm->online_vcpus))
1072 return E_ITS_MAPC_PROCNUM_OOR;
1073
1074 if (!valid) {
1075 vgic_its_free_collection(its, coll_id);
1076 } else {
1077 collection = find_collection(its, coll_id);
1078
1079 if (!collection) {
1080 int ret;
1081
1082 ret = vgic_its_alloc_collection(its, &collection,
1083 coll_id);
1084 if (ret)
1085 return ret;
1086 collection->target_addr = target_addr;
1087 } else {
1088 collection->target_addr = target_addr;
1089 update_affinity_collection(kvm, its, collection);
1090 }
1091 }
1092
1093 return 0;
1094 }
1095
1096 /*
1097 * The CLEAR command removes the pending state for a particular LPI.
1098 * Must be called with the its_lock mutex held.
1099 */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1100 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1101 u64 *its_cmd)
1102 {
1103 u32 device_id = its_cmd_get_deviceid(its_cmd);
1104 u32 event_id = its_cmd_get_id(its_cmd);
1105 struct its_ite *ite;
1106
1107
1108 ite = find_ite(its, device_id, event_id);
1109 if (!ite)
1110 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1111
1112 ite->irq->pending_latch = false;
1113
1114 if (ite->irq->hw)
1115 return irq_set_irqchip_state(ite->irq->host_irq,
1116 IRQCHIP_STATE_PENDING, false);
1117
1118 return 0;
1119 }
1120
1121 /*
1122 * The INV command syncs the configuration bits from the memory table.
1123 * Must be called with the its_lock mutex held.
1124 */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1125 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1126 u64 *its_cmd)
1127 {
1128 u32 device_id = its_cmd_get_deviceid(its_cmd);
1129 u32 event_id = its_cmd_get_id(its_cmd);
1130 struct its_ite *ite;
1131
1132
1133 ite = find_ite(its, device_id, event_id);
1134 if (!ite)
1135 return E_ITS_INV_UNMAPPED_INTERRUPT;
1136
1137 return update_lpi_config(kvm, ite->irq, NULL, true);
1138 }
1139
1140 /*
1141 * The INVALL command requests flushing of all IRQ data in this collection.
1142 * Find the VCPU mapped to that collection, then iterate over the VM's list
1143 * of mapped LPIs and update the configuration for each IRQ which targets
1144 * the specified vcpu. The configuration will be read from the in-memory
1145 * configuration table.
1146 * Must be called with the its_lock mutex held.
1147 */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1148 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1149 u64 *its_cmd)
1150 {
1151 u32 coll_id = its_cmd_get_collection(its_cmd);
1152 struct its_collection *collection;
1153 struct kvm_vcpu *vcpu;
1154 struct vgic_irq *irq;
1155 u32 *intids;
1156 int irq_count, i;
1157
1158 collection = find_collection(its, coll_id);
1159 if (!its_is_collection_mapped(collection))
1160 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1161
1162 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1163
1164 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1165 if (irq_count < 0)
1166 return irq_count;
1167
1168 for (i = 0; i < irq_count; i++) {
1169 irq = vgic_get_irq(kvm, NULL, intids[i]);
1170 if (!irq)
1171 continue;
1172 update_lpi_config(kvm, irq, vcpu, false);
1173 vgic_put_irq(kvm, irq);
1174 }
1175
1176 kfree(intids);
1177
1178 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1179 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1180
1181 return 0;
1182 }
1183
1184 /*
1185 * The MOVALL command moves the pending state of all IRQs targeting one
1186 * redistributor to another. We don't hold the pending state in the VCPUs,
1187 * but in the IRQs instead, so there is really not much to do for us here.
1188 * However the spec says that no IRQ must target the old redistributor
1189 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1190 * This command affects all LPIs in the system that target that redistributor.
1191 */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1192 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1193 u64 *its_cmd)
1194 {
1195 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1196 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1197 struct kvm_vcpu *vcpu1, *vcpu2;
1198 struct vgic_irq *irq;
1199 u32 *intids;
1200 int irq_count, i;
1201
1202 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1203 target2_addr >= atomic_read(&kvm->online_vcpus))
1204 return E_ITS_MOVALL_PROCNUM_OOR;
1205
1206 if (target1_addr == target2_addr)
1207 return 0;
1208
1209 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1210 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1211
1212 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1213 if (irq_count < 0)
1214 return irq_count;
1215
1216 for (i = 0; i < irq_count; i++) {
1217 irq = vgic_get_irq(kvm, NULL, intids[i]);
1218
1219 update_affinity(irq, vcpu2);
1220
1221 vgic_put_irq(kvm, irq);
1222 }
1223
1224 kfree(intids);
1225 return 0;
1226 }
1227
1228 /*
1229 * The INT command injects the LPI associated with that DevID/EvID pair.
1230 * Must be called with the its_lock mutex held.
1231 */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1232 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1233 u64 *its_cmd)
1234 {
1235 u32 msi_data = its_cmd_get_id(its_cmd);
1236 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1237
1238 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1239 }
1240
1241 /*
1242 * This function is called with the its_cmd lock held, but the ITS data
1243 * structure lock dropped.
1244 */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1245 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1246 u64 *its_cmd)
1247 {
1248 int ret = -ENODEV;
1249
1250 mutex_lock(&its->its_lock);
1251 switch (its_cmd_get_command(its_cmd)) {
1252 case GITS_CMD_MAPD:
1253 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1254 break;
1255 case GITS_CMD_MAPC:
1256 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1257 break;
1258 case GITS_CMD_MAPI:
1259 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1260 break;
1261 case GITS_CMD_MAPTI:
1262 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1263 break;
1264 case GITS_CMD_MOVI:
1265 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1266 break;
1267 case GITS_CMD_DISCARD:
1268 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1269 break;
1270 case GITS_CMD_CLEAR:
1271 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1272 break;
1273 case GITS_CMD_MOVALL:
1274 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1275 break;
1276 case GITS_CMD_INT:
1277 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1278 break;
1279 case GITS_CMD_INV:
1280 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1281 break;
1282 case GITS_CMD_INVALL:
1283 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1284 break;
1285 case GITS_CMD_SYNC:
1286 /* we ignore this command: we are in sync all of the time */
1287 ret = 0;
1288 break;
1289 }
1290 mutex_unlock(&its->its_lock);
1291
1292 return ret;
1293 }
1294
vgic_sanitise_its_baser(u64 reg)1295 static u64 vgic_sanitise_its_baser(u64 reg)
1296 {
1297 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1298 GITS_BASER_SHAREABILITY_SHIFT,
1299 vgic_sanitise_shareability);
1300 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1301 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1302 vgic_sanitise_inner_cacheability);
1303 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1304 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1305 vgic_sanitise_outer_cacheability);
1306
1307 /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1308 reg &= ~GENMASK_ULL(15, 12);
1309
1310 /* We support only one (ITS) page size: 64K */
1311 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1312
1313 return reg;
1314 }
1315
vgic_sanitise_its_cbaser(u64 reg)1316 static u64 vgic_sanitise_its_cbaser(u64 reg)
1317 {
1318 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1319 GITS_CBASER_SHAREABILITY_SHIFT,
1320 vgic_sanitise_shareability);
1321 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1322 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1323 vgic_sanitise_inner_cacheability);
1324 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1325 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1326 vgic_sanitise_outer_cacheability);
1327
1328 /*
1329 * Sanitise the physical address to be 64k aligned.
1330 * Also limit the physical addresses to 48 bits.
1331 */
1332 reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1333
1334 return reg;
1335 }
1336
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1337 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1338 struct vgic_its *its,
1339 gpa_t addr, unsigned int len)
1340 {
1341 return extract_bytes(its->cbaser, addr & 7, len);
1342 }
1343
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1344 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1345 gpa_t addr, unsigned int len,
1346 unsigned long val)
1347 {
1348 /* When GITS_CTLR.Enable is 1, this register is RO. */
1349 if (its->enabled)
1350 return;
1351
1352 mutex_lock(&its->cmd_lock);
1353 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1354 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1355 its->creadr = 0;
1356 /*
1357 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1358 * it to CREADR to make sure we start with an empty command buffer.
1359 */
1360 its->cwriter = its->creadr;
1361 mutex_unlock(&its->cmd_lock);
1362 }
1363
1364 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1365 #define ITS_CMD_SIZE 32
1366 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1367
1368 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1369 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1370 {
1371 gpa_t cbaser;
1372 u64 cmd_buf[4];
1373
1374 /* Commands are only processed when the ITS is enabled. */
1375 if (!its->enabled)
1376 return;
1377
1378 cbaser = CBASER_ADDRESS(its->cbaser);
1379
1380 while (its->cwriter != its->creadr) {
1381 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1382 cmd_buf, ITS_CMD_SIZE);
1383 /*
1384 * If kvm_read_guest() fails, this could be due to the guest
1385 * programming a bogus value in CBASER or something else going
1386 * wrong from which we cannot easily recover.
1387 * According to section 6.3.2 in the GICv3 spec we can just
1388 * ignore that command then.
1389 */
1390 if (!ret)
1391 vgic_its_handle_command(kvm, its, cmd_buf);
1392
1393 its->creadr += ITS_CMD_SIZE;
1394 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1395 its->creadr = 0;
1396 }
1397 }
1398
1399 /*
1400 * By writing to CWRITER the guest announces new commands to be processed.
1401 * To avoid any races in the first place, we take the its_cmd lock, which
1402 * protects our ring buffer variables, so that there is only one user
1403 * per ITS handling commands at a given time.
1404 */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1405 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1406 gpa_t addr, unsigned int len,
1407 unsigned long val)
1408 {
1409 u64 reg;
1410
1411 if (!its)
1412 return;
1413
1414 mutex_lock(&its->cmd_lock);
1415
1416 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1417 reg = ITS_CMD_OFFSET(reg);
1418 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1419 mutex_unlock(&its->cmd_lock);
1420 return;
1421 }
1422 its->cwriter = reg;
1423
1424 vgic_its_process_commands(kvm, its);
1425
1426 mutex_unlock(&its->cmd_lock);
1427 }
1428
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1429 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1430 struct vgic_its *its,
1431 gpa_t addr, unsigned int len)
1432 {
1433 return extract_bytes(its->cwriter, addr & 0x7, len);
1434 }
1435
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1436 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1437 struct vgic_its *its,
1438 gpa_t addr, unsigned int len)
1439 {
1440 return extract_bytes(its->creadr, addr & 0x7, len);
1441 }
1442
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1443 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1444 struct vgic_its *its,
1445 gpa_t addr, unsigned int len,
1446 unsigned long val)
1447 {
1448 u32 cmd_offset;
1449 int ret = 0;
1450
1451 mutex_lock(&its->cmd_lock);
1452
1453 if (its->enabled) {
1454 ret = -EBUSY;
1455 goto out;
1456 }
1457
1458 cmd_offset = ITS_CMD_OFFSET(val);
1459 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1460 ret = -EINVAL;
1461 goto out;
1462 }
1463
1464 its->creadr = cmd_offset;
1465 out:
1466 mutex_unlock(&its->cmd_lock);
1467 return ret;
1468 }
1469
1470 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1471 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1472 struct vgic_its *its,
1473 gpa_t addr, unsigned int len)
1474 {
1475 u64 reg;
1476
1477 switch (BASER_INDEX(addr)) {
1478 case 0:
1479 reg = its->baser_device_table;
1480 break;
1481 case 1:
1482 reg = its->baser_coll_table;
1483 break;
1484 default:
1485 reg = 0;
1486 break;
1487 }
1488
1489 return extract_bytes(reg, addr & 7, len);
1490 }
1491
1492 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1493 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1494 struct vgic_its *its,
1495 gpa_t addr, unsigned int len,
1496 unsigned long val)
1497 {
1498 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1499 u64 entry_size, table_type;
1500 u64 reg, *regptr, clearbits = 0;
1501
1502 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1503 if (its->enabled)
1504 return;
1505
1506 switch (BASER_INDEX(addr)) {
1507 case 0:
1508 regptr = &its->baser_device_table;
1509 entry_size = abi->dte_esz;
1510 table_type = GITS_BASER_TYPE_DEVICE;
1511 break;
1512 case 1:
1513 regptr = &its->baser_coll_table;
1514 entry_size = abi->cte_esz;
1515 table_type = GITS_BASER_TYPE_COLLECTION;
1516 clearbits = GITS_BASER_INDIRECT;
1517 break;
1518 default:
1519 return;
1520 }
1521
1522 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1523 reg &= ~GITS_BASER_RO_MASK;
1524 reg &= ~clearbits;
1525
1526 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1527 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1528 reg = vgic_sanitise_its_baser(reg);
1529
1530 *regptr = reg;
1531
1532 if (!(reg & GITS_BASER_VALID)) {
1533 /* Take the its_lock to prevent a race with a save/restore */
1534 mutex_lock(&its->its_lock);
1535 switch (table_type) {
1536 case GITS_BASER_TYPE_DEVICE:
1537 vgic_its_free_device_list(kvm, its);
1538 break;
1539 case GITS_BASER_TYPE_COLLECTION:
1540 vgic_its_free_collection_list(kvm, its);
1541 break;
1542 }
1543 mutex_unlock(&its->its_lock);
1544 }
1545 }
1546
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1547 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1548 struct vgic_its *its,
1549 gpa_t addr, unsigned int len)
1550 {
1551 u32 reg = 0;
1552
1553 mutex_lock(&its->cmd_lock);
1554 if (its->creadr == its->cwriter)
1555 reg |= GITS_CTLR_QUIESCENT;
1556 if (its->enabled)
1557 reg |= GITS_CTLR_ENABLE;
1558 mutex_unlock(&its->cmd_lock);
1559
1560 return reg;
1561 }
1562
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1563 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1564 gpa_t addr, unsigned int len,
1565 unsigned long val)
1566 {
1567 mutex_lock(&its->cmd_lock);
1568
1569 /*
1570 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1571 * device/collection BASER are invalid
1572 */
1573 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1574 (!(its->baser_device_table & GITS_BASER_VALID) ||
1575 !(its->baser_coll_table & GITS_BASER_VALID) ||
1576 !(its->cbaser & GITS_CBASER_VALID)))
1577 goto out;
1578
1579 its->enabled = !!(val & GITS_CTLR_ENABLE);
1580
1581 /*
1582 * Try to process any pending commands. This function bails out early
1583 * if the ITS is disabled or no commands have been queued.
1584 */
1585 vgic_its_process_commands(kvm, its);
1586
1587 out:
1588 mutex_unlock(&its->cmd_lock);
1589 }
1590
1591 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1592 { \
1593 .reg_offset = off, \
1594 .len = length, \
1595 .access_flags = acc, \
1596 .its_read = rd, \
1597 .its_write = wr, \
1598 }
1599
1600 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1601 { \
1602 .reg_offset = off, \
1603 .len = length, \
1604 .access_flags = acc, \
1605 .its_read = rd, \
1606 .its_write = wr, \
1607 .uaccess_its_write = uwr, \
1608 }
1609
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1610 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1611 gpa_t addr, unsigned int len, unsigned long val)
1612 {
1613 /* Ignore */
1614 }
1615
1616 static struct vgic_register_region its_registers[] = {
1617 REGISTER_ITS_DESC(GITS_CTLR,
1618 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1619 VGIC_ACCESS_32bit),
1620 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1621 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1622 vgic_mmio_uaccess_write_its_iidr, 4,
1623 VGIC_ACCESS_32bit),
1624 REGISTER_ITS_DESC(GITS_TYPER,
1625 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1626 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1627 REGISTER_ITS_DESC(GITS_CBASER,
1628 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1629 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1630 REGISTER_ITS_DESC(GITS_CWRITER,
1631 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1632 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1633 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1634 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1635 vgic_mmio_uaccess_write_its_creadr, 8,
1636 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1637 REGISTER_ITS_DESC(GITS_BASER,
1638 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1639 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1640 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1641 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1642 VGIC_ACCESS_32bit),
1643 };
1644
1645 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1646 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1647 {
1648 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1649 its_sync_lpi_pending_table(vcpu);
1650 }
1651
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1652 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1653 u64 addr)
1654 {
1655 struct vgic_io_device *iodev = &its->iodev;
1656 int ret;
1657
1658 mutex_lock(&kvm->slots_lock);
1659 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1660 ret = -EBUSY;
1661 goto out;
1662 }
1663
1664 its->vgic_its_base = addr;
1665 iodev->regions = its_registers;
1666 iodev->nr_regions = ARRAY_SIZE(its_registers);
1667 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1668
1669 iodev->base_addr = its->vgic_its_base;
1670 iodev->iodev_type = IODEV_ITS;
1671 iodev->its = its;
1672 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1673 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1674 out:
1675 mutex_unlock(&kvm->slots_lock);
1676
1677 return ret;
1678 }
1679
1680 #define INITIAL_BASER_VALUE \
1681 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1682 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1683 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1684 GITS_BASER_PAGE_SIZE_64K)
1685
1686 #define INITIAL_PROPBASER_VALUE \
1687 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1688 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1689 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1690
vgic_its_create(struct kvm_device * dev,u32 type)1691 static int vgic_its_create(struct kvm_device *dev, u32 type)
1692 {
1693 struct vgic_its *its;
1694
1695 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1696 return -ENODEV;
1697
1698 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1699 if (!its)
1700 return -ENOMEM;
1701
1702 if (vgic_initialized(dev->kvm)) {
1703 int ret = vgic_v4_init(dev->kvm);
1704 if (ret < 0) {
1705 kfree(its);
1706 return ret;
1707 }
1708 }
1709
1710 mutex_init(&its->its_lock);
1711 mutex_init(&its->cmd_lock);
1712
1713 its->vgic_its_base = VGIC_ADDR_UNDEF;
1714
1715 INIT_LIST_HEAD(&its->device_list);
1716 INIT_LIST_HEAD(&its->collection_list);
1717
1718 dev->kvm->arch.vgic.msis_require_devid = true;
1719 dev->kvm->arch.vgic.has_its = true;
1720 its->enabled = false;
1721 its->dev = dev;
1722
1723 its->baser_device_table = INITIAL_BASER_VALUE |
1724 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1725 its->baser_coll_table = INITIAL_BASER_VALUE |
1726 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1727 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1728
1729 dev->private = its;
1730
1731 return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1732 }
1733
vgic_its_destroy(struct kvm_device * kvm_dev)1734 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1735 {
1736 struct kvm *kvm = kvm_dev->kvm;
1737 struct vgic_its *its = kvm_dev->private;
1738
1739 mutex_lock(&its->its_lock);
1740
1741 vgic_its_free_device_list(kvm, its);
1742 vgic_its_free_collection_list(kvm, its);
1743
1744 mutex_unlock(&its->its_lock);
1745 kfree(its);
1746 }
1747
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1748 int vgic_its_has_attr_regs(struct kvm_device *dev,
1749 struct kvm_device_attr *attr)
1750 {
1751 const struct vgic_register_region *region;
1752 gpa_t offset = attr->attr;
1753 int align;
1754
1755 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1756
1757 if (offset & align)
1758 return -EINVAL;
1759
1760 region = vgic_find_mmio_region(its_registers,
1761 ARRAY_SIZE(its_registers),
1762 offset);
1763 if (!region)
1764 return -ENXIO;
1765
1766 return 0;
1767 }
1768
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1769 int vgic_its_attr_regs_access(struct kvm_device *dev,
1770 struct kvm_device_attr *attr,
1771 u64 *reg, bool is_write)
1772 {
1773 const struct vgic_register_region *region;
1774 struct vgic_its *its;
1775 gpa_t addr, offset;
1776 unsigned int len;
1777 int align, ret = 0;
1778
1779 its = dev->private;
1780 offset = attr->attr;
1781
1782 /*
1783 * Although the spec supports upper/lower 32-bit accesses to
1784 * 64-bit ITS registers, the userspace ABI requires 64-bit
1785 * accesses to all 64-bit wide registers. We therefore only
1786 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1787 * registers
1788 */
1789 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1790 align = 0x3;
1791 else
1792 align = 0x7;
1793
1794 if (offset & align)
1795 return -EINVAL;
1796
1797 mutex_lock(&dev->kvm->lock);
1798
1799 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1800 ret = -ENXIO;
1801 goto out;
1802 }
1803
1804 region = vgic_find_mmio_region(its_registers,
1805 ARRAY_SIZE(its_registers),
1806 offset);
1807 if (!region) {
1808 ret = -ENXIO;
1809 goto out;
1810 }
1811
1812 if (!lock_all_vcpus(dev->kvm)) {
1813 ret = -EBUSY;
1814 goto out;
1815 }
1816
1817 addr = its->vgic_its_base + offset;
1818
1819 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1820
1821 if (is_write) {
1822 if (region->uaccess_its_write)
1823 ret = region->uaccess_its_write(dev->kvm, its, addr,
1824 len, *reg);
1825 else
1826 region->its_write(dev->kvm, its, addr, len, *reg);
1827 } else {
1828 *reg = region->its_read(dev->kvm, its, addr, len);
1829 }
1830 unlock_all_vcpus(dev->kvm);
1831 out:
1832 mutex_unlock(&dev->kvm->lock);
1833 return ret;
1834 }
1835
compute_next_devid_offset(struct list_head * h,struct its_device * dev)1836 static u32 compute_next_devid_offset(struct list_head *h,
1837 struct its_device *dev)
1838 {
1839 struct its_device *next;
1840 u32 next_offset;
1841
1842 if (list_is_last(&dev->dev_list, h))
1843 return 0;
1844 next = list_next_entry(dev, dev_list);
1845 next_offset = next->device_id - dev->device_id;
1846
1847 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1848 }
1849
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)1850 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1851 {
1852 struct its_ite *next;
1853 u32 next_offset;
1854
1855 if (list_is_last(&ite->ite_list, h))
1856 return 0;
1857 next = list_next_entry(ite, ite_list);
1858 next_offset = next->event_id - ite->event_id;
1859
1860 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1861 }
1862
1863 /**
1864 * entry_fn_t - Callback called on a table entry restore path
1865 * @its: its handle
1866 * @id: id of the entry
1867 * @entry: pointer to the entry
1868 * @opaque: pointer to an opaque data
1869 *
1870 * Return: < 0 on error, 0 if last element was identified, id offset to next
1871 * element otherwise
1872 */
1873 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1874 void *opaque);
1875
1876 /**
1877 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1878 * to each entry
1879 *
1880 * @its: its handle
1881 * @base: base gpa of the table
1882 * @size: size of the table in bytes
1883 * @esz: entry size in bytes
1884 * @start_id: the ID of the first entry in the table
1885 * (non zero for 2d level tables)
1886 * @fn: function to apply on each entry
1887 *
1888 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1889 * (the last element may not be found on second level tables)
1890 */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)1891 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
1892 int start_id, entry_fn_t fn, void *opaque)
1893 {
1894 struct kvm *kvm = its->dev->kvm;
1895 unsigned long len = size;
1896 int id = start_id;
1897 gpa_t gpa = base;
1898 char entry[ESZ_MAX];
1899 int ret;
1900
1901 memset(entry, 0, esz);
1902
1903 while (len > 0) {
1904 int next_offset;
1905 size_t byte_offset;
1906
1907 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
1908 if (ret)
1909 return ret;
1910
1911 next_offset = fn(its, id, entry, opaque);
1912 if (next_offset <= 0)
1913 return next_offset;
1914
1915 byte_offset = next_offset * esz;
1916 id += next_offset;
1917 gpa += byte_offset;
1918 len -= byte_offset;
1919 }
1920 return 1;
1921 }
1922
1923 /**
1924 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1925 */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)1926 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1927 struct its_ite *ite, gpa_t gpa, int ite_esz)
1928 {
1929 struct kvm *kvm = its->dev->kvm;
1930 u32 next_offset;
1931 u64 val;
1932
1933 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1934 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1935 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1936 ite->collection->collection_id;
1937 val = cpu_to_le64(val);
1938 return kvm_write_guest(kvm, gpa, &val, ite_esz);
1939 }
1940
1941 /**
1942 * vgic_its_restore_ite - restore an interrupt translation entry
1943 * @event_id: id used for indexing
1944 * @ptr: pointer to the ITE entry
1945 * @opaque: pointer to the its_device
1946 */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)1947 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1948 void *ptr, void *opaque)
1949 {
1950 struct its_device *dev = (struct its_device *)opaque;
1951 struct its_collection *collection;
1952 struct kvm *kvm = its->dev->kvm;
1953 struct kvm_vcpu *vcpu = NULL;
1954 u64 val;
1955 u64 *p = (u64 *)ptr;
1956 struct vgic_irq *irq;
1957 u32 coll_id, lpi_id;
1958 struct its_ite *ite;
1959 u32 offset;
1960
1961 val = *p;
1962
1963 val = le64_to_cpu(val);
1964
1965 coll_id = val & KVM_ITS_ITE_ICID_MASK;
1966 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1967
1968 if (!lpi_id)
1969 return 1; /* invalid entry, no choice but to scan next entry */
1970
1971 if (lpi_id < VGIC_MIN_LPI)
1972 return -EINVAL;
1973
1974 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1975 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1976 return -EINVAL;
1977
1978 collection = find_collection(its, coll_id);
1979 if (!collection)
1980 return -EINVAL;
1981
1982 ite = vgic_its_alloc_ite(dev, collection, event_id);
1983 if (IS_ERR(ite))
1984 return PTR_ERR(ite);
1985
1986 if (its_is_collection_mapped(collection))
1987 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1988
1989 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1990 if (IS_ERR(irq))
1991 return PTR_ERR(irq);
1992 ite->irq = irq;
1993
1994 return offset;
1995 }
1996
vgic_its_ite_cmp(void * priv,struct list_head * a,struct list_head * b)1997 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1998 struct list_head *b)
1999 {
2000 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2001 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2002
2003 if (itea->event_id < iteb->event_id)
2004 return -1;
2005 else
2006 return 1;
2007 }
2008
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2009 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2010 {
2011 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2012 gpa_t base = device->itt_addr;
2013 struct its_ite *ite;
2014 int ret;
2015 int ite_esz = abi->ite_esz;
2016
2017 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2018
2019 list_for_each_entry(ite, &device->itt_head, ite_list) {
2020 gpa_t gpa = base + ite->event_id * ite_esz;
2021
2022 /*
2023 * If an LPI carries the HW bit, this means that this
2024 * interrupt is controlled by GICv4, and we do not
2025 * have direct access to that state. Let's simply fail
2026 * the save operation...
2027 */
2028 if (ite->irq->hw)
2029 return -EACCES;
2030
2031 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2032 if (ret)
2033 return ret;
2034 }
2035 return 0;
2036 }
2037
2038 /**
2039 * vgic_its_restore_itt - restore the ITT of a device
2040 *
2041 * @its: its handle
2042 * @dev: device handle
2043 *
2044 * Return 0 on success, < 0 on error
2045 */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2046 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2047 {
2048 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2049 gpa_t base = dev->itt_addr;
2050 int ret;
2051 int ite_esz = abi->ite_esz;
2052 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2053
2054 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2055 vgic_its_restore_ite, dev);
2056
2057 /* scan_its_table returns +1 if all ITEs are invalid */
2058 if (ret > 0)
2059 ret = 0;
2060
2061 return ret;
2062 }
2063
2064 /**
2065 * vgic_its_save_dte - Save a device table entry at a given GPA
2066 *
2067 * @its: ITS handle
2068 * @dev: ITS device
2069 * @ptr: GPA
2070 */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2071 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2072 gpa_t ptr, int dte_esz)
2073 {
2074 struct kvm *kvm = its->dev->kvm;
2075 u64 val, itt_addr_field;
2076 u32 next_offset;
2077
2078 itt_addr_field = dev->itt_addr >> 8;
2079 next_offset = compute_next_devid_offset(&its->device_list, dev);
2080 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2081 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2082 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2083 (dev->num_eventid_bits - 1));
2084 val = cpu_to_le64(val);
2085 return kvm_write_guest(kvm, ptr, &val, dte_esz);
2086 }
2087
2088 /**
2089 * vgic_its_restore_dte - restore a device table entry
2090 *
2091 * @its: its handle
2092 * @id: device id the DTE corresponds to
2093 * @ptr: kernel VA where the 8 byte DTE is located
2094 * @opaque: unused
2095 *
2096 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2097 * next dte otherwise
2098 */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2099 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2100 void *ptr, void *opaque)
2101 {
2102 struct its_device *dev;
2103 gpa_t itt_addr;
2104 u8 num_eventid_bits;
2105 u64 entry = *(u64 *)ptr;
2106 bool valid;
2107 u32 offset;
2108 int ret;
2109
2110 entry = le64_to_cpu(entry);
2111
2112 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2113 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2114 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2115 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2116
2117 if (!valid)
2118 return 1;
2119
2120 /* dte entry is valid */
2121 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2122
2123 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2124 if (IS_ERR(dev))
2125 return PTR_ERR(dev);
2126
2127 ret = vgic_its_restore_itt(its, dev);
2128 if (ret) {
2129 vgic_its_free_device(its->dev->kvm, dev);
2130 return ret;
2131 }
2132
2133 return offset;
2134 }
2135
vgic_its_device_cmp(void * priv,struct list_head * a,struct list_head * b)2136 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2137 struct list_head *b)
2138 {
2139 struct its_device *deva = container_of(a, struct its_device, dev_list);
2140 struct its_device *devb = container_of(b, struct its_device, dev_list);
2141
2142 if (deva->device_id < devb->device_id)
2143 return -1;
2144 else
2145 return 1;
2146 }
2147
2148 /**
2149 * vgic_its_save_device_tables - Save the device table and all ITT
2150 * into guest RAM
2151 *
2152 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2153 * returns the GPA of the device entry
2154 */
vgic_its_save_device_tables(struct vgic_its * its)2155 static int vgic_its_save_device_tables(struct vgic_its *its)
2156 {
2157 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2158 u64 baser = its->baser_device_table;
2159 struct its_device *dev;
2160 int dte_esz = abi->dte_esz;
2161
2162 if (!(baser & GITS_BASER_VALID))
2163 return 0;
2164
2165 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2166
2167 list_for_each_entry(dev, &its->device_list, dev_list) {
2168 int ret;
2169 gpa_t eaddr;
2170
2171 if (!vgic_its_check_id(its, baser,
2172 dev->device_id, &eaddr))
2173 return -EINVAL;
2174
2175 ret = vgic_its_save_itt(its, dev);
2176 if (ret)
2177 return ret;
2178
2179 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2180 if (ret)
2181 return ret;
2182 }
2183 return 0;
2184 }
2185
2186 /**
2187 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2188 *
2189 * @its: its handle
2190 * @id: index of the entry in the L1 table
2191 * @addr: kernel VA
2192 * @opaque: unused
2193 *
2194 * L1 table entries are scanned by steps of 1 entry
2195 * Return < 0 if error, 0 if last dte was found when scanning the L2
2196 * table, +1 otherwise (meaning next L1 entry must be scanned)
2197 */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2198 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2199 void *opaque)
2200 {
2201 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2202 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2203 u64 entry = *(u64 *)addr;
2204 int dte_esz = abi->dte_esz;
2205 gpa_t gpa;
2206 int ret;
2207
2208 entry = le64_to_cpu(entry);
2209
2210 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2211 return 1;
2212
2213 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2214
2215 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2216 l2_start_id, vgic_its_restore_dte, NULL);
2217
2218 return ret;
2219 }
2220
2221 /**
2222 * vgic_its_restore_device_tables - Restore the device table and all ITT
2223 * from guest RAM to internal data structs
2224 */
vgic_its_restore_device_tables(struct vgic_its * its)2225 static int vgic_its_restore_device_tables(struct vgic_its *its)
2226 {
2227 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2228 u64 baser = its->baser_device_table;
2229 int l1_esz, ret;
2230 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2231 gpa_t l1_gpa;
2232
2233 if (!(baser & GITS_BASER_VALID))
2234 return 0;
2235
2236 l1_gpa = BASER_ADDRESS(baser);
2237
2238 if (baser & GITS_BASER_INDIRECT) {
2239 l1_esz = GITS_LVL1_ENTRY_SIZE;
2240 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2241 handle_l1_dte, NULL);
2242 } else {
2243 l1_esz = abi->dte_esz;
2244 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2245 vgic_its_restore_dte, NULL);
2246 }
2247
2248 /* scan_its_table returns +1 if all entries are invalid */
2249 if (ret > 0)
2250 ret = 0;
2251
2252 return ret;
2253 }
2254
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2255 static int vgic_its_save_cte(struct vgic_its *its,
2256 struct its_collection *collection,
2257 gpa_t gpa, int esz)
2258 {
2259 u64 val;
2260
2261 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2262 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2263 collection->collection_id);
2264 val = cpu_to_le64(val);
2265 return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
2266 }
2267
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2268 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2269 {
2270 struct its_collection *collection;
2271 struct kvm *kvm = its->dev->kvm;
2272 u32 target_addr, coll_id;
2273 u64 val;
2274 int ret;
2275
2276 BUG_ON(esz > sizeof(val));
2277 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2278 if (ret)
2279 return ret;
2280 val = le64_to_cpu(val);
2281 if (!(val & KVM_ITS_CTE_VALID_MASK))
2282 return 0;
2283
2284 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2285 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2286
2287 if (target_addr >= atomic_read(&kvm->online_vcpus))
2288 return -EINVAL;
2289
2290 collection = find_collection(its, coll_id);
2291 if (collection)
2292 return -EEXIST;
2293 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2294 if (ret)
2295 return ret;
2296 collection->target_addr = target_addr;
2297 return 1;
2298 }
2299
2300 /**
2301 * vgic_its_save_collection_table - Save the collection table into
2302 * guest RAM
2303 */
vgic_its_save_collection_table(struct vgic_its * its)2304 static int vgic_its_save_collection_table(struct vgic_its *its)
2305 {
2306 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2307 u64 baser = its->baser_coll_table;
2308 gpa_t gpa = BASER_ADDRESS(baser);
2309 struct its_collection *collection;
2310 u64 val;
2311 size_t max_size, filled = 0;
2312 int ret, cte_esz = abi->cte_esz;
2313
2314 if (!(baser & GITS_BASER_VALID))
2315 return 0;
2316
2317 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2318
2319 list_for_each_entry(collection, &its->collection_list, coll_list) {
2320 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2321 if (ret)
2322 return ret;
2323 gpa += cte_esz;
2324 filled += cte_esz;
2325 }
2326
2327 if (filled == max_size)
2328 return 0;
2329
2330 /*
2331 * table is not fully filled, add a last dummy element
2332 * with valid bit unset
2333 */
2334 val = 0;
2335 BUG_ON(cte_esz > sizeof(val));
2336 ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
2337 return ret;
2338 }
2339
2340 /**
2341 * vgic_its_restore_collection_table - reads the collection table
2342 * in guest memory and restores the ITS internal state. Requires the
2343 * BASER registers to be restored before.
2344 */
vgic_its_restore_collection_table(struct vgic_its * its)2345 static int vgic_its_restore_collection_table(struct vgic_its *its)
2346 {
2347 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2348 u64 baser = its->baser_coll_table;
2349 int cte_esz = abi->cte_esz;
2350 size_t max_size, read = 0;
2351 gpa_t gpa;
2352 int ret;
2353
2354 if (!(baser & GITS_BASER_VALID))
2355 return 0;
2356
2357 gpa = BASER_ADDRESS(baser);
2358
2359 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2360
2361 while (read < max_size) {
2362 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2363 if (ret <= 0)
2364 break;
2365 gpa += cte_esz;
2366 read += cte_esz;
2367 }
2368
2369 if (ret > 0)
2370 return 0;
2371
2372 return ret;
2373 }
2374
2375 /**
2376 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2377 * according to v0 ABI
2378 */
vgic_its_save_tables_v0(struct vgic_its * its)2379 static int vgic_its_save_tables_v0(struct vgic_its *its)
2380 {
2381 int ret;
2382
2383 ret = vgic_its_save_device_tables(its);
2384 if (ret)
2385 return ret;
2386
2387 return vgic_its_save_collection_table(its);
2388 }
2389
2390 /**
2391 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2392 * to internal data structs according to V0 ABI
2393 *
2394 */
vgic_its_restore_tables_v0(struct vgic_its * its)2395 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2396 {
2397 int ret;
2398
2399 ret = vgic_its_restore_collection_table(its);
2400 if (ret)
2401 return ret;
2402
2403 return vgic_its_restore_device_tables(its);
2404 }
2405
vgic_its_commit_v0(struct vgic_its * its)2406 static int vgic_its_commit_v0(struct vgic_its *its)
2407 {
2408 const struct vgic_its_abi *abi;
2409
2410 abi = vgic_its_get_abi(its);
2411 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2412 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2413
2414 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2415 << GITS_BASER_ENTRY_SIZE_SHIFT);
2416
2417 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2418 << GITS_BASER_ENTRY_SIZE_SHIFT);
2419 return 0;
2420 }
2421
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2422 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2423 {
2424 /* We need to keep the ABI specific field values */
2425 its->baser_coll_table &= ~GITS_BASER_VALID;
2426 its->baser_device_table &= ~GITS_BASER_VALID;
2427 its->cbaser = 0;
2428 its->creadr = 0;
2429 its->cwriter = 0;
2430 its->enabled = 0;
2431 vgic_its_free_device_list(kvm, its);
2432 vgic_its_free_collection_list(kvm, its);
2433 }
2434
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2435 static int vgic_its_has_attr(struct kvm_device *dev,
2436 struct kvm_device_attr *attr)
2437 {
2438 switch (attr->group) {
2439 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2440 switch (attr->attr) {
2441 case KVM_VGIC_ITS_ADDR_TYPE:
2442 return 0;
2443 }
2444 break;
2445 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2446 switch (attr->attr) {
2447 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2448 return 0;
2449 case KVM_DEV_ARM_ITS_CTRL_RESET:
2450 return 0;
2451 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2452 return 0;
2453 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2454 return 0;
2455 }
2456 break;
2457 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2458 return vgic_its_has_attr_regs(dev, attr);
2459 }
2460 return -ENXIO;
2461 }
2462
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2463 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2464 {
2465 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2466 int ret = 0;
2467
2468 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2469 return 0;
2470
2471 mutex_lock(&kvm->lock);
2472 mutex_lock(&its->its_lock);
2473
2474 if (!lock_all_vcpus(kvm)) {
2475 mutex_unlock(&its->its_lock);
2476 mutex_unlock(&kvm->lock);
2477 return -EBUSY;
2478 }
2479
2480 switch (attr) {
2481 case KVM_DEV_ARM_ITS_CTRL_RESET:
2482 vgic_its_reset(kvm, its);
2483 break;
2484 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2485 ret = abi->save_tables(its);
2486 break;
2487 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2488 ret = abi->restore_tables(its);
2489 break;
2490 }
2491
2492 unlock_all_vcpus(kvm);
2493 mutex_unlock(&its->its_lock);
2494 mutex_unlock(&kvm->lock);
2495 return ret;
2496 }
2497
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2498 static int vgic_its_set_attr(struct kvm_device *dev,
2499 struct kvm_device_attr *attr)
2500 {
2501 struct vgic_its *its = dev->private;
2502 int ret;
2503
2504 switch (attr->group) {
2505 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2506 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2507 unsigned long type = (unsigned long)attr->attr;
2508 u64 addr;
2509
2510 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2511 return -ENODEV;
2512
2513 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2514 return -EFAULT;
2515
2516 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2517 addr, SZ_64K);
2518 if (ret)
2519 return ret;
2520
2521 return vgic_register_its_iodev(dev->kvm, its, addr);
2522 }
2523 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2524 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2525 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2526 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2527 u64 reg;
2528
2529 if (get_user(reg, uaddr))
2530 return -EFAULT;
2531
2532 return vgic_its_attr_regs_access(dev, attr, ®, true);
2533 }
2534 }
2535 return -ENXIO;
2536 }
2537
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2538 static int vgic_its_get_attr(struct kvm_device *dev,
2539 struct kvm_device_attr *attr)
2540 {
2541 switch (attr->group) {
2542 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2543 struct vgic_its *its = dev->private;
2544 u64 addr = its->vgic_its_base;
2545 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2546 unsigned long type = (unsigned long)attr->attr;
2547
2548 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2549 return -ENODEV;
2550
2551 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2552 return -EFAULT;
2553 break;
2554 }
2555 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2556 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2557 u64 reg;
2558 int ret;
2559
2560 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2561 if (ret)
2562 return ret;
2563 return put_user(reg, uaddr);
2564 }
2565 default:
2566 return -ENXIO;
2567 }
2568
2569 return 0;
2570 }
2571
2572 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2573 .name = "kvm-arm-vgic-its",
2574 .create = vgic_its_create,
2575 .destroy = vgic_its_destroy,
2576 .set_attr = vgic_its_set_attr,
2577 .get_attr = vgic_its_get_attr,
2578 .has_attr = vgic_its_has_attr,
2579 };
2580
kvm_vgic_register_its_device(void)2581 int kvm_vgic_register_its_device(void)
2582 {
2583 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2584 KVM_DEV_TYPE_ARM_VGIC_ITS);
2585 }
2586