1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Keystone NetCP Core driver
4 *
5 * Copyright (C) 2014 Texas Instruments Incorporated
6 * Authors: Sandeep Nair <sandeep_n@ti.com>
7 * Sandeep Paulraj <s-paulraj@ti.com>
8 * Cyril Chemparathy <cyril@ti.com>
9 * Santosh Shilimkar <santosh.shilimkar@ti.com>
10 * Murali Karicheri <m-karicheri2@ti.com>
11 * Wingman Kwok <w-kwok2@ti.com>
12 */
13
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/of_net.h>
17 #include <linux/of_address.h>
18 #include <linux/if_vlan.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/platform_device.h>
21 #include <linux/soc/ti/knav_qmss.h>
22 #include <linux/soc/ti/knav_dma.h>
23
24 #include "netcp.h"
25
26 #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD)
27 #define NETCP_NAPI_WEIGHT 64
28 #define NETCP_TX_TIMEOUT (5 * HZ)
29 #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN)
30 #define NETCP_MIN_PACKET_SIZE ETH_ZLEN
31 #define NETCP_MAX_MCAST_ADDR 16
32
33 #define NETCP_EFUSE_REG_INDEX 0
34
35 #define NETCP_MOD_PROBE_SKIPPED 1
36 #define NETCP_MOD_PROBE_FAILED 2
37
38 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
39 NETIF_MSG_DRV | NETIF_MSG_LINK | \
40 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
41 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
42 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
43 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
44 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
45 NETIF_MSG_RX_STATUS)
46
47 #define NETCP_EFUSE_ADDR_SWAP 2
48
49 #define knav_queue_get_id(q) knav_queue_device_control(q, \
50 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
51
52 #define knav_queue_enable_notify(q) knav_queue_device_control(q, \
53 KNAV_QUEUE_ENABLE_NOTIFY, \
54 (unsigned long)NULL)
55
56 #define knav_queue_disable_notify(q) knav_queue_device_control(q, \
57 KNAV_QUEUE_DISABLE_NOTIFY, \
58 (unsigned long)NULL)
59
60 #define knav_queue_get_count(q) knav_queue_device_control(q, \
61 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
62
63 #define for_each_netcp_module(module) \
64 list_for_each_entry(module, &netcp_modules, module_list)
65
66 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
67 list_for_each_entry(inst_modpriv, \
68 &((netcp_device)->modpriv_head), inst_list)
69
70 #define for_each_module(netcp, intf_modpriv) \
71 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
72
73 /* Module management structures */
74 struct netcp_device {
75 struct list_head device_list;
76 struct list_head interface_head;
77 struct list_head modpriv_head;
78 struct device *device;
79 };
80
81 struct netcp_inst_modpriv {
82 struct netcp_device *netcp_device;
83 struct netcp_module *netcp_module;
84 struct list_head inst_list;
85 void *module_priv;
86 };
87
88 struct netcp_intf_modpriv {
89 struct netcp_intf *netcp_priv;
90 struct netcp_module *netcp_module;
91 struct list_head intf_list;
92 void *module_priv;
93 };
94
95 struct netcp_tx_cb {
96 void *ts_context;
97 void (*txtstamp)(void *context, struct sk_buff *skb);
98 };
99
100 static LIST_HEAD(netcp_devices);
101 static LIST_HEAD(netcp_modules);
102 static DEFINE_MUTEX(netcp_modules_lock);
103
104 static int netcp_debug_level = -1;
105 module_param(netcp_debug_level, int, 0);
106 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
107
108 /* Helper functions - Get/Set */
get_pkt_info(dma_addr_t * buff,u32 * buff_len,dma_addr_t * ndesc,struct knav_dma_desc * desc)109 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
110 struct knav_dma_desc *desc)
111 {
112 *buff_len = le32_to_cpu(desc->buff_len);
113 *buff = le32_to_cpu(desc->buff);
114 *ndesc = le32_to_cpu(desc->next_desc);
115 }
116
get_desc_info(u32 * desc_info,u32 * pkt_info,struct knav_dma_desc * desc)117 static void get_desc_info(u32 *desc_info, u32 *pkt_info,
118 struct knav_dma_desc *desc)
119 {
120 *desc_info = le32_to_cpu(desc->desc_info);
121 *pkt_info = le32_to_cpu(desc->packet_info);
122 }
123
get_sw_data(int index,struct knav_dma_desc * desc)124 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
125 {
126 /* No Endian conversion needed as this data is untouched by hw */
127 return desc->sw_data[index];
128 }
129
130 /* use these macros to get sw data */
131 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
132 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
133 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
134 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
135
get_org_pkt_info(dma_addr_t * buff,u32 * buff_len,struct knav_dma_desc * desc)136 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
137 struct knav_dma_desc *desc)
138 {
139 *buff = le32_to_cpu(desc->orig_buff);
140 *buff_len = le32_to_cpu(desc->orig_len);
141 }
142
get_words(dma_addr_t * words,int num_words,__le32 * desc)143 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
144 {
145 int i;
146
147 for (i = 0; i < num_words; i++)
148 words[i] = le32_to_cpu(desc[i]);
149 }
150
set_pkt_info(dma_addr_t buff,u32 buff_len,u32 ndesc,struct knav_dma_desc * desc)151 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
152 struct knav_dma_desc *desc)
153 {
154 desc->buff_len = cpu_to_le32(buff_len);
155 desc->buff = cpu_to_le32(buff);
156 desc->next_desc = cpu_to_le32(ndesc);
157 }
158
set_desc_info(u32 desc_info,u32 pkt_info,struct knav_dma_desc * desc)159 static void set_desc_info(u32 desc_info, u32 pkt_info,
160 struct knav_dma_desc *desc)
161 {
162 desc->desc_info = cpu_to_le32(desc_info);
163 desc->packet_info = cpu_to_le32(pkt_info);
164 }
165
set_sw_data(int index,u32 data,struct knav_dma_desc * desc)166 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
167 {
168 /* No Endian conversion needed as this data is untouched by hw */
169 desc->sw_data[index] = data;
170 }
171
172 /* use these macros to set sw data */
173 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
174 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
175 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
176 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
177
set_org_pkt_info(dma_addr_t buff,u32 buff_len,struct knav_dma_desc * desc)178 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
179 struct knav_dma_desc *desc)
180 {
181 desc->orig_buff = cpu_to_le32(buff);
182 desc->orig_len = cpu_to_le32(buff_len);
183 }
184
set_words(u32 * words,int num_words,__le32 * desc)185 static void set_words(u32 *words, int num_words, __le32 *desc)
186 {
187 int i;
188
189 for (i = 0; i < num_words; i++)
190 desc[i] = cpu_to_le32(words[i]);
191 }
192
193 /* Read the e-fuse value as 32 bit values to be endian independent */
emac_arch_get_mac_addr(char * x,void __iomem * efuse_mac,u32 swap)194 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
195 {
196 unsigned int addr0, addr1;
197
198 addr1 = readl(efuse_mac + 4);
199 addr0 = readl(efuse_mac);
200
201 switch (swap) {
202 case NETCP_EFUSE_ADDR_SWAP:
203 addr0 = addr1;
204 addr1 = readl(efuse_mac);
205 break;
206 default:
207 break;
208 }
209
210 x[0] = (addr1 & 0x0000ff00) >> 8;
211 x[1] = addr1 & 0x000000ff;
212 x[2] = (addr0 & 0xff000000) >> 24;
213 x[3] = (addr0 & 0x00ff0000) >> 16;
214 x[4] = (addr0 & 0x0000ff00) >> 8;
215 x[5] = addr0 & 0x000000ff;
216
217 return 0;
218 }
219
220 /* Module management routines */
netcp_register_interface(struct netcp_intf * netcp)221 static int netcp_register_interface(struct netcp_intf *netcp)
222 {
223 int ret;
224
225 ret = register_netdev(netcp->ndev);
226 if (!ret)
227 netcp->netdev_registered = true;
228 return ret;
229 }
230
netcp_module_probe(struct netcp_device * netcp_device,struct netcp_module * module)231 static int netcp_module_probe(struct netcp_device *netcp_device,
232 struct netcp_module *module)
233 {
234 struct device *dev = netcp_device->device;
235 struct device_node *devices, *interface, *node = dev->of_node;
236 struct device_node *child;
237 struct netcp_inst_modpriv *inst_modpriv;
238 struct netcp_intf *netcp_intf;
239 struct netcp_module *tmp;
240 bool primary_module_registered = false;
241 int ret;
242
243 /* Find this module in the sub-tree for this device */
244 devices = of_get_child_by_name(node, "netcp-devices");
245 if (!devices) {
246 dev_err(dev, "could not find netcp-devices node\n");
247 return NETCP_MOD_PROBE_SKIPPED;
248 }
249
250 for_each_available_child_of_node(devices, child) {
251 const char *name;
252 char node_name[32];
253
254 if (of_property_read_string(child, "label", &name) < 0) {
255 snprintf(node_name, sizeof(node_name), "%pOFn", child);
256 name = node_name;
257 }
258 if (!strcasecmp(module->name, name))
259 break;
260 }
261
262 of_node_put(devices);
263 /* If module not used for this device, skip it */
264 if (!child) {
265 dev_warn(dev, "module(%s) not used for device\n", module->name);
266 return NETCP_MOD_PROBE_SKIPPED;
267 }
268
269 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
270 if (!inst_modpriv) {
271 of_node_put(child);
272 return -ENOMEM;
273 }
274
275 inst_modpriv->netcp_device = netcp_device;
276 inst_modpriv->netcp_module = module;
277 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
278
279 ret = module->probe(netcp_device, dev, child,
280 &inst_modpriv->module_priv);
281 of_node_put(child);
282 if (ret) {
283 dev_err(dev, "Probe of module(%s) failed with %d\n",
284 module->name, ret);
285 list_del(&inst_modpriv->inst_list);
286 devm_kfree(dev, inst_modpriv);
287 return NETCP_MOD_PROBE_FAILED;
288 }
289
290 /* Attach modules only if the primary module is probed */
291 for_each_netcp_module(tmp) {
292 if (tmp->primary)
293 primary_module_registered = true;
294 }
295
296 if (!primary_module_registered)
297 return 0;
298
299 /* Attach module to interfaces */
300 list_for_each_entry(netcp_intf, &netcp_device->interface_head,
301 interface_list) {
302 struct netcp_intf_modpriv *intf_modpriv;
303
304 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
305 GFP_KERNEL);
306 if (!intf_modpriv)
307 return -ENOMEM;
308
309 interface = of_parse_phandle(netcp_intf->node_interface,
310 module->name, 0);
311
312 if (!interface) {
313 devm_kfree(dev, intf_modpriv);
314 continue;
315 }
316
317 intf_modpriv->netcp_priv = netcp_intf;
318 intf_modpriv->netcp_module = module;
319 list_add_tail(&intf_modpriv->intf_list,
320 &netcp_intf->module_head);
321
322 ret = module->attach(inst_modpriv->module_priv,
323 netcp_intf->ndev, interface,
324 &intf_modpriv->module_priv);
325 of_node_put(interface);
326 if (ret) {
327 dev_dbg(dev, "Attach of module %s declined with %d\n",
328 module->name, ret);
329 list_del(&intf_modpriv->intf_list);
330 devm_kfree(dev, intf_modpriv);
331 continue;
332 }
333 }
334
335 /* Now register the interface with netdev */
336 list_for_each_entry(netcp_intf,
337 &netcp_device->interface_head,
338 interface_list) {
339 /* If interface not registered then register now */
340 if (!netcp_intf->netdev_registered) {
341 ret = netcp_register_interface(netcp_intf);
342 if (ret)
343 return -ENODEV;
344 }
345 }
346 return 0;
347 }
348
netcp_register_module(struct netcp_module * module)349 int netcp_register_module(struct netcp_module *module)
350 {
351 struct netcp_device *netcp_device;
352 struct netcp_module *tmp;
353 int ret;
354
355 if (!module->name) {
356 WARN(1, "error registering netcp module: no name\n");
357 return -EINVAL;
358 }
359
360 if (!module->probe) {
361 WARN(1, "error registering netcp module: no probe\n");
362 return -EINVAL;
363 }
364
365 mutex_lock(&netcp_modules_lock);
366
367 for_each_netcp_module(tmp) {
368 if (!strcasecmp(tmp->name, module->name)) {
369 mutex_unlock(&netcp_modules_lock);
370 return -EEXIST;
371 }
372 }
373 list_add_tail(&module->module_list, &netcp_modules);
374
375 list_for_each_entry(netcp_device, &netcp_devices, device_list) {
376 ret = netcp_module_probe(netcp_device, module);
377 if (ret < 0)
378 goto fail;
379 }
380 mutex_unlock(&netcp_modules_lock);
381 return 0;
382
383 fail:
384 mutex_unlock(&netcp_modules_lock);
385 netcp_unregister_module(module);
386 return ret;
387 }
388 EXPORT_SYMBOL_GPL(netcp_register_module);
389
netcp_release_module(struct netcp_device * netcp_device,struct netcp_module * module)390 static void netcp_release_module(struct netcp_device *netcp_device,
391 struct netcp_module *module)
392 {
393 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
394 struct netcp_intf *netcp_intf, *netcp_tmp;
395 struct device *dev = netcp_device->device;
396
397 /* Release the module from each interface */
398 list_for_each_entry_safe(netcp_intf, netcp_tmp,
399 &netcp_device->interface_head,
400 interface_list) {
401 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
402
403 list_for_each_entry_safe(intf_modpriv, intf_tmp,
404 &netcp_intf->module_head,
405 intf_list) {
406 if (intf_modpriv->netcp_module == module) {
407 module->release(intf_modpriv->module_priv);
408 list_del(&intf_modpriv->intf_list);
409 devm_kfree(dev, intf_modpriv);
410 break;
411 }
412 }
413 }
414
415 /* Remove the module from each instance */
416 list_for_each_entry_safe(inst_modpriv, inst_tmp,
417 &netcp_device->modpriv_head, inst_list) {
418 if (inst_modpriv->netcp_module == module) {
419 module->remove(netcp_device,
420 inst_modpriv->module_priv);
421 list_del(&inst_modpriv->inst_list);
422 devm_kfree(dev, inst_modpriv);
423 break;
424 }
425 }
426 }
427
netcp_unregister_module(struct netcp_module * module)428 void netcp_unregister_module(struct netcp_module *module)
429 {
430 struct netcp_device *netcp_device;
431 struct netcp_module *module_tmp;
432
433 mutex_lock(&netcp_modules_lock);
434
435 list_for_each_entry(netcp_device, &netcp_devices, device_list) {
436 netcp_release_module(netcp_device, module);
437 }
438
439 /* Remove the module from the module list */
440 for_each_netcp_module(module_tmp) {
441 if (module == module_tmp) {
442 list_del(&module->module_list);
443 break;
444 }
445 }
446
447 mutex_unlock(&netcp_modules_lock);
448 }
449 EXPORT_SYMBOL_GPL(netcp_unregister_module);
450
netcp_module_get_intf_data(struct netcp_module * module,struct netcp_intf * intf)451 void *netcp_module_get_intf_data(struct netcp_module *module,
452 struct netcp_intf *intf)
453 {
454 struct netcp_intf_modpriv *intf_modpriv;
455
456 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
457 if (intf_modpriv->netcp_module == module)
458 return intf_modpriv->module_priv;
459 return NULL;
460 }
461 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
462
463 /* Module TX and RX Hook management */
464 struct netcp_hook_list {
465 struct list_head list;
466 netcp_hook_rtn *hook_rtn;
467 void *hook_data;
468 int order;
469 };
470
netcp_register_txhook(struct netcp_intf * netcp_priv,int order,netcp_hook_rtn * hook_rtn,void * hook_data)471 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
472 netcp_hook_rtn *hook_rtn, void *hook_data)
473 {
474 struct netcp_hook_list *entry;
475 struct netcp_hook_list *next;
476 unsigned long flags;
477
478 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
479 if (!entry)
480 return -ENOMEM;
481
482 entry->hook_rtn = hook_rtn;
483 entry->hook_data = hook_data;
484 entry->order = order;
485
486 spin_lock_irqsave(&netcp_priv->lock, flags);
487 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
488 if (next->order > order)
489 break;
490 }
491 __list_add(&entry->list, next->list.prev, &next->list);
492 spin_unlock_irqrestore(&netcp_priv->lock, flags);
493
494 return 0;
495 }
496 EXPORT_SYMBOL_GPL(netcp_register_txhook);
497
netcp_unregister_txhook(struct netcp_intf * netcp_priv,int order,netcp_hook_rtn * hook_rtn,void * hook_data)498 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
499 netcp_hook_rtn *hook_rtn, void *hook_data)
500 {
501 struct netcp_hook_list *next, *n;
502 unsigned long flags;
503
504 spin_lock_irqsave(&netcp_priv->lock, flags);
505 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
506 if ((next->order == order) &&
507 (next->hook_rtn == hook_rtn) &&
508 (next->hook_data == hook_data)) {
509 list_del(&next->list);
510 spin_unlock_irqrestore(&netcp_priv->lock, flags);
511 devm_kfree(netcp_priv->dev, next);
512 return 0;
513 }
514 }
515 spin_unlock_irqrestore(&netcp_priv->lock, flags);
516 return -ENOENT;
517 }
518 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
519
netcp_register_rxhook(struct netcp_intf * netcp_priv,int order,netcp_hook_rtn * hook_rtn,void * hook_data)520 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
521 netcp_hook_rtn *hook_rtn, void *hook_data)
522 {
523 struct netcp_hook_list *entry;
524 struct netcp_hook_list *next;
525 unsigned long flags;
526
527 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
528 if (!entry)
529 return -ENOMEM;
530
531 entry->hook_rtn = hook_rtn;
532 entry->hook_data = hook_data;
533 entry->order = order;
534
535 spin_lock_irqsave(&netcp_priv->lock, flags);
536 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
537 if (next->order > order)
538 break;
539 }
540 __list_add(&entry->list, next->list.prev, &next->list);
541 spin_unlock_irqrestore(&netcp_priv->lock, flags);
542
543 return 0;
544 }
545 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
546
netcp_unregister_rxhook(struct netcp_intf * netcp_priv,int order,netcp_hook_rtn * hook_rtn,void * hook_data)547 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
548 netcp_hook_rtn *hook_rtn, void *hook_data)
549 {
550 struct netcp_hook_list *next, *n;
551 unsigned long flags;
552
553 spin_lock_irqsave(&netcp_priv->lock, flags);
554 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
555 if ((next->order == order) &&
556 (next->hook_rtn == hook_rtn) &&
557 (next->hook_data == hook_data)) {
558 list_del(&next->list);
559 spin_unlock_irqrestore(&netcp_priv->lock, flags);
560 devm_kfree(netcp_priv->dev, next);
561 return 0;
562 }
563 }
564 spin_unlock_irqrestore(&netcp_priv->lock, flags);
565
566 return -ENOENT;
567 }
568 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
569
netcp_frag_free(bool is_frag,void * ptr)570 static void netcp_frag_free(bool is_frag, void *ptr)
571 {
572 if (is_frag)
573 skb_free_frag(ptr);
574 else
575 kfree(ptr);
576 }
577
netcp_free_rx_desc_chain(struct netcp_intf * netcp,struct knav_dma_desc * desc)578 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
579 struct knav_dma_desc *desc)
580 {
581 struct knav_dma_desc *ndesc;
582 dma_addr_t dma_desc, dma_buf;
583 unsigned int buf_len, dma_sz = sizeof(*ndesc);
584 void *buf_ptr;
585 u32 tmp;
586
587 get_words(&dma_desc, 1, &desc->next_desc);
588
589 while (dma_desc) {
590 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
591 if (unlikely(!ndesc)) {
592 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
593 break;
594 }
595 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
596 /* warning!!!! We are retrieving the virtual ptr in the sw_data
597 * field as a 32bit value. Will not work on 64bit machines
598 */
599 buf_ptr = (void *)GET_SW_DATA0(ndesc);
600 buf_len = (int)GET_SW_DATA1(desc);
601 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
602 __free_page(buf_ptr);
603 knav_pool_desc_put(netcp->rx_pool, desc);
604 }
605 /* warning!!!! We are retrieving the virtual ptr in the sw_data
606 * field as a 32bit value. Will not work on 64bit machines
607 */
608 buf_ptr = (void *)GET_SW_DATA0(desc);
609 buf_len = (int)GET_SW_DATA1(desc);
610
611 if (buf_ptr)
612 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
613 knav_pool_desc_put(netcp->rx_pool, desc);
614 }
615
netcp_empty_rx_queue(struct netcp_intf * netcp)616 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
617 {
618 struct netcp_stats *rx_stats = &netcp->stats;
619 struct knav_dma_desc *desc;
620 unsigned int dma_sz;
621 dma_addr_t dma;
622
623 for (; ;) {
624 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
625 if (!dma)
626 break;
627
628 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
629 if (unlikely(!desc)) {
630 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
631 __func__);
632 rx_stats->rx_errors++;
633 continue;
634 }
635 netcp_free_rx_desc_chain(netcp, desc);
636 rx_stats->rx_dropped++;
637 }
638 }
639
netcp_process_one_rx_packet(struct netcp_intf * netcp)640 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
641 {
642 struct netcp_stats *rx_stats = &netcp->stats;
643 unsigned int dma_sz, buf_len, org_buf_len;
644 struct knav_dma_desc *desc, *ndesc;
645 unsigned int pkt_sz = 0, accum_sz;
646 struct netcp_hook_list *rx_hook;
647 dma_addr_t dma_desc, dma_buff;
648 struct netcp_packet p_info;
649 struct sk_buff *skb;
650 void *org_buf_ptr;
651 u32 tmp;
652
653 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
654 if (!dma_desc)
655 return -1;
656
657 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
658 if (unlikely(!desc)) {
659 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
660 return 0;
661 }
662
663 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
664 /* warning!!!! We are retrieving the virtual ptr in the sw_data
665 * field as a 32bit value. Will not work on 64bit machines
666 */
667 org_buf_ptr = (void *)GET_SW_DATA0(desc);
668 org_buf_len = (int)GET_SW_DATA1(desc);
669
670 if (unlikely(!org_buf_ptr)) {
671 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
672 goto free_desc;
673 }
674
675 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
676 accum_sz = buf_len;
677 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
678
679 /* Build a new sk_buff for the primary buffer */
680 skb = build_skb(org_buf_ptr, org_buf_len);
681 if (unlikely(!skb)) {
682 dev_err(netcp->ndev_dev, "build_skb() failed\n");
683 goto free_desc;
684 }
685
686 /* update data, tail and len */
687 skb_reserve(skb, NETCP_SOP_OFFSET);
688 __skb_put(skb, buf_len);
689
690 /* Fill in the page fragment list */
691 while (dma_desc) {
692 struct page *page;
693
694 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
695 if (unlikely(!ndesc)) {
696 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
697 goto free_desc;
698 }
699
700 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
701 /* warning!!!! We are retrieving the virtual ptr in the sw_data
702 * field as a 32bit value. Will not work on 64bit machines
703 */
704 page = (struct page *)GET_SW_DATA0(ndesc);
705
706 if (likely(dma_buff && buf_len && page)) {
707 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
708 DMA_FROM_DEVICE);
709 } else {
710 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
711 &dma_buff, buf_len, page);
712 goto free_desc;
713 }
714
715 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
716 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
717 accum_sz += buf_len;
718
719 /* Free the descriptor */
720 knav_pool_desc_put(netcp->rx_pool, ndesc);
721 }
722
723 /* check for packet len and warn */
724 if (unlikely(pkt_sz != accum_sz))
725 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
726 pkt_sz, accum_sz);
727
728 /* Newer version of the Ethernet switch can trim the Ethernet FCS
729 * from the packet and is indicated in hw_cap. So trim it only for
730 * older h/w
731 */
732 if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
733 __pskb_trim(skb, skb->len - ETH_FCS_LEN);
734
735 /* Call each of the RX hooks */
736 p_info.skb = skb;
737 skb->dev = netcp->ndev;
738 p_info.rxtstamp_complete = false;
739 get_desc_info(&tmp, &p_info.eflags, desc);
740 p_info.epib = desc->epib;
741 p_info.psdata = (u32 __force *)desc->psdata;
742 p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
743 KNAV_DMA_DESC_EFLAGS_MASK);
744 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
745 int ret;
746
747 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
748 &p_info);
749 if (unlikely(ret)) {
750 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
751 rx_hook->order, ret);
752 /* Free the primary descriptor */
753 rx_stats->rx_dropped++;
754 knav_pool_desc_put(netcp->rx_pool, desc);
755 dev_kfree_skb(skb);
756 return 0;
757 }
758 }
759 /* Free the primary descriptor */
760 knav_pool_desc_put(netcp->rx_pool, desc);
761
762 u64_stats_update_begin(&rx_stats->syncp_rx);
763 rx_stats->rx_packets++;
764 rx_stats->rx_bytes += skb->len;
765 u64_stats_update_end(&rx_stats->syncp_rx);
766
767 /* push skb up the stack */
768 skb->protocol = eth_type_trans(skb, netcp->ndev);
769 netif_receive_skb(skb);
770 return 0;
771
772 free_desc:
773 netcp_free_rx_desc_chain(netcp, desc);
774 rx_stats->rx_errors++;
775 return 0;
776 }
777
netcp_process_rx_packets(struct netcp_intf * netcp,unsigned int budget)778 static int netcp_process_rx_packets(struct netcp_intf *netcp,
779 unsigned int budget)
780 {
781 int i;
782
783 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
784 ;
785 return i;
786 }
787
788 /* Release descriptors and attached buffers from Rx FDQ */
netcp_free_rx_buf(struct netcp_intf * netcp,int fdq)789 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
790 {
791 struct knav_dma_desc *desc;
792 unsigned int buf_len, dma_sz;
793 dma_addr_t dma;
794 void *buf_ptr;
795
796 /* Allocate descriptor */
797 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
798 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
799 if (unlikely(!desc)) {
800 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
801 continue;
802 }
803
804 get_org_pkt_info(&dma, &buf_len, desc);
805 /* warning!!!! We are retrieving the virtual ptr in the sw_data
806 * field as a 32bit value. Will not work on 64bit machines
807 */
808 buf_ptr = (void *)GET_SW_DATA0(desc);
809
810 if (unlikely(!dma)) {
811 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
812 knav_pool_desc_put(netcp->rx_pool, desc);
813 continue;
814 }
815
816 if (unlikely(!buf_ptr)) {
817 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
818 knav_pool_desc_put(netcp->rx_pool, desc);
819 continue;
820 }
821
822 if (fdq == 0) {
823 dma_unmap_single(netcp->dev, dma, buf_len,
824 DMA_FROM_DEVICE);
825 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
826 } else {
827 dma_unmap_page(netcp->dev, dma, buf_len,
828 DMA_FROM_DEVICE);
829 __free_page(buf_ptr);
830 }
831
832 knav_pool_desc_put(netcp->rx_pool, desc);
833 }
834 }
835
netcp_rxpool_free(struct netcp_intf * netcp)836 static void netcp_rxpool_free(struct netcp_intf *netcp)
837 {
838 int i;
839
840 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
841 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
842 netcp_free_rx_buf(netcp, i);
843
844 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
845 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
846 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
847
848 knav_pool_destroy(netcp->rx_pool);
849 netcp->rx_pool = NULL;
850 }
851
netcp_allocate_rx_buf(struct netcp_intf * netcp,int fdq)852 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
853 {
854 struct knav_dma_desc *hwdesc;
855 unsigned int buf_len, dma_sz;
856 u32 desc_info, pkt_info;
857 struct page *page;
858 dma_addr_t dma;
859 void *bufptr;
860 u32 sw_data[2];
861
862 /* Allocate descriptor */
863 hwdesc = knav_pool_desc_get(netcp->rx_pool);
864 if (IS_ERR_OR_NULL(hwdesc)) {
865 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
866 return -ENOMEM;
867 }
868
869 if (likely(fdq == 0)) {
870 unsigned int primary_buf_len;
871 /* Allocate a primary receive queue entry */
872 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
873 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
874 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
875
876 bufptr = netdev_alloc_frag(primary_buf_len);
877 sw_data[1] = primary_buf_len;
878
879 if (unlikely(!bufptr)) {
880 dev_warn_ratelimited(netcp->ndev_dev,
881 "Primary RX buffer alloc failed\n");
882 goto fail;
883 }
884 dma = dma_map_single(netcp->dev, bufptr, buf_len,
885 DMA_TO_DEVICE);
886 if (unlikely(dma_mapping_error(netcp->dev, dma)))
887 goto fail;
888
889 /* warning!!!! We are saving the virtual ptr in the sw_data
890 * field as a 32bit value. Will not work on 64bit machines
891 */
892 sw_data[0] = (u32)bufptr;
893 } else {
894 /* Allocate a secondary receive queue entry */
895 page = alloc_page(GFP_ATOMIC | GFP_DMA);
896 if (unlikely(!page)) {
897 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
898 goto fail;
899 }
900 buf_len = PAGE_SIZE;
901 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
902 /* warning!!!! We are saving the virtual ptr in the sw_data
903 * field as a 32bit value. Will not work on 64bit machines
904 */
905 sw_data[0] = (u32)page;
906 sw_data[1] = 0;
907 }
908
909 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC;
910 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
911 pkt_info = KNAV_DMA_DESC_HAS_EPIB;
912 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
913 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
914 KNAV_DMA_DESC_RETQ_SHIFT;
915 set_org_pkt_info(dma, buf_len, hwdesc);
916 SET_SW_DATA0(sw_data[0], hwdesc);
917 SET_SW_DATA1(sw_data[1], hwdesc);
918 set_desc_info(desc_info, pkt_info, hwdesc);
919
920 /* Push to FDQs */
921 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
922 &dma_sz);
923 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
924 return 0;
925
926 fail:
927 knav_pool_desc_put(netcp->rx_pool, hwdesc);
928 return -ENOMEM;
929 }
930
931 /* Refill Rx FDQ with descriptors & attached buffers */
netcp_rxpool_refill(struct netcp_intf * netcp)932 static void netcp_rxpool_refill(struct netcp_intf *netcp)
933 {
934 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
935 int i, ret = 0;
936
937 /* Calculate the FDQ deficit and refill */
938 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
939 fdq_deficit[i] = netcp->rx_queue_depths[i] -
940 knav_queue_get_count(netcp->rx_fdq[i]);
941
942 while (fdq_deficit[i]-- && !ret)
943 ret = netcp_allocate_rx_buf(netcp, i);
944 } /* end for fdqs */
945 }
946
947 /* NAPI poll */
netcp_rx_poll(struct napi_struct * napi,int budget)948 static int netcp_rx_poll(struct napi_struct *napi, int budget)
949 {
950 struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
951 rx_napi);
952 unsigned int packets;
953
954 packets = netcp_process_rx_packets(netcp, budget);
955
956 netcp_rxpool_refill(netcp);
957 if (packets < budget) {
958 napi_complete_done(&netcp->rx_napi, packets);
959 knav_queue_enable_notify(netcp->rx_queue);
960 }
961
962 return packets;
963 }
964
netcp_rx_notify(void * arg)965 static void netcp_rx_notify(void *arg)
966 {
967 struct netcp_intf *netcp = arg;
968
969 knav_queue_disable_notify(netcp->rx_queue);
970 napi_schedule(&netcp->rx_napi);
971 }
972
netcp_free_tx_desc_chain(struct netcp_intf * netcp,struct knav_dma_desc * desc,unsigned int desc_sz)973 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
974 struct knav_dma_desc *desc,
975 unsigned int desc_sz)
976 {
977 struct knav_dma_desc *ndesc = desc;
978 dma_addr_t dma_desc, dma_buf;
979 unsigned int buf_len;
980
981 while (ndesc) {
982 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
983
984 if (dma_buf && buf_len)
985 dma_unmap_single(netcp->dev, dma_buf, buf_len,
986 DMA_TO_DEVICE);
987 else
988 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
989 &dma_buf, buf_len);
990
991 knav_pool_desc_put(netcp->tx_pool, ndesc);
992 ndesc = NULL;
993 if (dma_desc) {
994 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
995 desc_sz);
996 if (!ndesc)
997 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
998 }
999 }
1000 }
1001
netcp_process_tx_compl_packets(struct netcp_intf * netcp,unsigned int budget)1002 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1003 unsigned int budget)
1004 {
1005 struct netcp_stats *tx_stats = &netcp->stats;
1006 struct knav_dma_desc *desc;
1007 struct netcp_tx_cb *tx_cb;
1008 struct sk_buff *skb;
1009 unsigned int dma_sz;
1010 dma_addr_t dma;
1011 int pkts = 0;
1012
1013 while (budget--) {
1014 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1015 if (!dma)
1016 break;
1017 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1018 if (unlikely(!desc)) {
1019 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1020 tx_stats->tx_errors++;
1021 continue;
1022 }
1023
1024 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1025 * field as a 32bit value. Will not work on 64bit machines
1026 */
1027 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1028 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1029 if (!skb) {
1030 dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1031 tx_stats->tx_errors++;
1032 continue;
1033 }
1034
1035 tx_cb = (struct netcp_tx_cb *)skb->cb;
1036 if (tx_cb->txtstamp)
1037 tx_cb->txtstamp(tx_cb->ts_context, skb);
1038
1039 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1040 netif_running(netcp->ndev) &&
1041 (knav_pool_count(netcp->tx_pool) >
1042 netcp->tx_resume_threshold)) {
1043 u16 subqueue = skb_get_queue_mapping(skb);
1044
1045 netif_wake_subqueue(netcp->ndev, subqueue);
1046 }
1047
1048 u64_stats_update_begin(&tx_stats->syncp_tx);
1049 tx_stats->tx_packets++;
1050 tx_stats->tx_bytes += skb->len;
1051 u64_stats_update_end(&tx_stats->syncp_tx);
1052 dev_kfree_skb(skb);
1053 pkts++;
1054 }
1055 return pkts;
1056 }
1057
netcp_tx_poll(struct napi_struct * napi,int budget)1058 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1059 {
1060 int packets;
1061 struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1062 tx_napi);
1063
1064 packets = netcp_process_tx_compl_packets(netcp, budget);
1065 if (packets < budget) {
1066 napi_complete(&netcp->tx_napi);
1067 knav_queue_enable_notify(netcp->tx_compl_q);
1068 }
1069
1070 return packets;
1071 }
1072
netcp_tx_notify(void * arg)1073 static void netcp_tx_notify(void *arg)
1074 {
1075 struct netcp_intf *netcp = arg;
1076
1077 knav_queue_disable_notify(netcp->tx_compl_q);
1078 napi_schedule(&netcp->tx_napi);
1079 }
1080
1081 static struct knav_dma_desc*
netcp_tx_map_skb(struct sk_buff * skb,struct netcp_intf * netcp)1082 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1083 {
1084 struct knav_dma_desc *desc, *ndesc, *pdesc;
1085 unsigned int pkt_len = skb_headlen(skb);
1086 struct device *dev = netcp->dev;
1087 dma_addr_t dma_addr;
1088 unsigned int dma_sz;
1089 int i;
1090
1091 /* Map the linear buffer */
1092 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1093 if (unlikely(dma_mapping_error(dev, dma_addr))) {
1094 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1095 return NULL;
1096 }
1097
1098 desc = knav_pool_desc_get(netcp->tx_pool);
1099 if (IS_ERR_OR_NULL(desc)) {
1100 dev_err(netcp->ndev_dev, "out of TX desc\n");
1101 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1102 return NULL;
1103 }
1104
1105 set_pkt_info(dma_addr, pkt_len, 0, desc);
1106 if (skb_is_nonlinear(skb)) {
1107 prefetchw(skb_shinfo(skb));
1108 } else {
1109 desc->next_desc = 0;
1110 goto upd_pkt_len;
1111 }
1112
1113 pdesc = desc;
1114
1115 /* Handle the case where skb is fragmented in pages */
1116 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1117 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1118 struct page *page = skb_frag_page(frag);
1119 u32 page_offset = skb_frag_off(frag);
1120 u32 buf_len = skb_frag_size(frag);
1121 dma_addr_t desc_dma;
1122 u32 desc_dma_32;
1123
1124 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1125 DMA_TO_DEVICE);
1126 if (unlikely(!dma_addr)) {
1127 dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1128 goto free_descs;
1129 }
1130
1131 ndesc = knav_pool_desc_get(netcp->tx_pool);
1132 if (IS_ERR_OR_NULL(ndesc)) {
1133 dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1134 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1135 goto free_descs;
1136 }
1137
1138 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1139 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1140 desc_dma_32 = (u32)desc_dma;
1141 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1142 pkt_len += buf_len;
1143 if (pdesc != desc)
1144 knav_pool_desc_map(netcp->tx_pool, pdesc,
1145 sizeof(*pdesc), &desc_dma, &dma_sz);
1146 pdesc = ndesc;
1147 }
1148 if (pdesc != desc)
1149 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1150 &dma_addr, &dma_sz);
1151
1152 /* frag list based linkage is not supported for now. */
1153 if (skb_shinfo(skb)->frag_list) {
1154 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1155 goto free_descs;
1156 }
1157
1158 upd_pkt_len:
1159 WARN_ON(pkt_len != skb->len);
1160
1161 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1162 set_words(&pkt_len, 1, &desc->desc_info);
1163 return desc;
1164
1165 free_descs:
1166 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1167 return NULL;
1168 }
1169
netcp_tx_submit_skb(struct netcp_intf * netcp,struct sk_buff * skb,struct knav_dma_desc * desc)1170 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1171 struct sk_buff *skb,
1172 struct knav_dma_desc *desc)
1173 {
1174 struct netcp_tx_pipe *tx_pipe = NULL;
1175 struct netcp_hook_list *tx_hook;
1176 struct netcp_packet p_info;
1177 struct netcp_tx_cb *tx_cb;
1178 unsigned int dma_sz;
1179 dma_addr_t dma;
1180 u32 tmp = 0;
1181 int ret = 0;
1182
1183 p_info.netcp = netcp;
1184 p_info.skb = skb;
1185 p_info.tx_pipe = NULL;
1186 p_info.psdata_len = 0;
1187 p_info.ts_context = NULL;
1188 p_info.txtstamp = NULL;
1189 p_info.epib = desc->epib;
1190 p_info.psdata = (u32 __force *)desc->psdata;
1191 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1192
1193 /* Find out where to inject the packet for transmission */
1194 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1195 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1196 &p_info);
1197 if (unlikely(ret != 0)) {
1198 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1199 tx_hook->order, ret);
1200 ret = (ret < 0) ? ret : NETDEV_TX_OK;
1201 goto out;
1202 }
1203 }
1204
1205 /* Make sure some TX hook claimed the packet */
1206 tx_pipe = p_info.tx_pipe;
1207 if (!tx_pipe) {
1208 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1209 ret = -ENXIO;
1210 goto out;
1211 }
1212
1213 tx_cb = (struct netcp_tx_cb *)skb->cb;
1214 tx_cb->ts_context = p_info.ts_context;
1215 tx_cb->txtstamp = p_info.txtstamp;
1216
1217 /* update descriptor */
1218 if (p_info.psdata_len) {
1219 /* psdata points to both native-endian and device-endian data */
1220 __le32 *psdata = (void __force *)p_info.psdata;
1221
1222 set_words((u32 *)psdata +
1223 (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1224 p_info.psdata_len, psdata);
1225 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1226 KNAV_DMA_DESC_PSLEN_SHIFT;
1227 }
1228
1229 tmp |= KNAV_DMA_DESC_HAS_EPIB |
1230 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1231 KNAV_DMA_DESC_RETQ_SHIFT);
1232
1233 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1234 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1235 KNAV_DMA_DESC_PSFLAG_SHIFT);
1236 }
1237
1238 set_words(&tmp, 1, &desc->packet_info);
1239 /* warning!!!! We are saving the virtual ptr in the sw_data
1240 * field as a 32bit value. Will not work on 64bit machines
1241 */
1242 SET_SW_DATA0((u32)skb, desc);
1243
1244 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1245 tmp = tx_pipe->switch_to_port;
1246 set_words(&tmp, 1, &desc->tag_info);
1247 }
1248
1249 /* submit packet descriptor */
1250 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1251 &dma_sz);
1252 if (unlikely(ret)) {
1253 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1254 ret = -ENOMEM;
1255 goto out;
1256 }
1257 skb_tx_timestamp(skb);
1258 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1259
1260 out:
1261 return ret;
1262 }
1263
1264 /* Submit the packet */
netcp_ndo_start_xmit(struct sk_buff * skb,struct net_device * ndev)1265 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1266 {
1267 struct netcp_intf *netcp = netdev_priv(ndev);
1268 struct netcp_stats *tx_stats = &netcp->stats;
1269 int subqueue = skb_get_queue_mapping(skb);
1270 struct knav_dma_desc *desc;
1271 int desc_count, ret = 0;
1272
1273 if (unlikely(skb->len <= 0)) {
1274 dev_kfree_skb(skb);
1275 return NETDEV_TX_OK;
1276 }
1277
1278 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1279 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1280 if (ret < 0) {
1281 /* If we get here, the skb has already been dropped */
1282 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1283 ret);
1284 tx_stats->tx_dropped++;
1285 return ret;
1286 }
1287 skb->len = NETCP_MIN_PACKET_SIZE;
1288 }
1289
1290 desc = netcp_tx_map_skb(skb, netcp);
1291 if (unlikely(!desc)) {
1292 netif_stop_subqueue(ndev, subqueue);
1293 ret = -ENOBUFS;
1294 goto drop;
1295 }
1296
1297 ret = netcp_tx_submit_skb(netcp, skb, desc);
1298 if (ret)
1299 goto drop;
1300
1301 /* Check Tx pool count & stop subqueue if needed */
1302 desc_count = knav_pool_count(netcp->tx_pool);
1303 if (desc_count < netcp->tx_pause_threshold) {
1304 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1305 netif_stop_subqueue(ndev, subqueue);
1306 }
1307 return NETDEV_TX_OK;
1308
1309 drop:
1310 tx_stats->tx_dropped++;
1311 if (desc)
1312 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1313 dev_kfree_skb(skb);
1314 return ret;
1315 }
1316
netcp_txpipe_close(struct netcp_tx_pipe * tx_pipe)1317 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1318 {
1319 if (tx_pipe->dma_channel) {
1320 knav_dma_close_channel(tx_pipe->dma_channel);
1321 tx_pipe->dma_channel = NULL;
1322 }
1323 return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1326
netcp_txpipe_open(struct netcp_tx_pipe * tx_pipe)1327 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1328 {
1329 struct device *dev = tx_pipe->netcp_device->device;
1330 struct knav_dma_cfg config;
1331 int ret = 0;
1332 u8 name[16];
1333
1334 memset(&config, 0, sizeof(config));
1335 config.direction = DMA_MEM_TO_DEV;
1336 config.u.tx.filt_einfo = false;
1337 config.u.tx.filt_pswords = false;
1338 config.u.tx.priority = DMA_PRIO_MED_L;
1339
1340 tx_pipe->dma_channel = knav_dma_open_channel(dev,
1341 tx_pipe->dma_chan_name, &config);
1342 if (IS_ERR(tx_pipe->dma_channel)) {
1343 dev_err(dev, "failed opening tx chan(%s)\n",
1344 tx_pipe->dma_chan_name);
1345 ret = PTR_ERR(tx_pipe->dma_channel);
1346 goto err;
1347 }
1348
1349 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1350 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1351 KNAV_QUEUE_SHARED);
1352 if (IS_ERR(tx_pipe->dma_queue)) {
1353 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1354 name, ret);
1355 ret = PTR_ERR(tx_pipe->dma_queue);
1356 goto err;
1357 }
1358
1359 dev_dbg(dev, "opened tx pipe %s\n", name);
1360 return 0;
1361
1362 err:
1363 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1364 knav_dma_close_channel(tx_pipe->dma_channel);
1365 tx_pipe->dma_channel = NULL;
1366 return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1369
netcp_txpipe_init(struct netcp_tx_pipe * tx_pipe,struct netcp_device * netcp_device,const char * dma_chan_name,unsigned int dma_queue_id)1370 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1371 struct netcp_device *netcp_device,
1372 const char *dma_chan_name, unsigned int dma_queue_id)
1373 {
1374 memset(tx_pipe, 0, sizeof(*tx_pipe));
1375 tx_pipe->netcp_device = netcp_device;
1376 tx_pipe->dma_chan_name = dma_chan_name;
1377 tx_pipe->dma_queue_id = dma_queue_id;
1378 return 0;
1379 }
1380 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1381
netcp_addr_find(struct netcp_intf * netcp,const u8 * addr,enum netcp_addr_type type)1382 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1383 const u8 *addr,
1384 enum netcp_addr_type type)
1385 {
1386 struct netcp_addr *naddr;
1387
1388 list_for_each_entry(naddr, &netcp->addr_list, node) {
1389 if (naddr->type != type)
1390 continue;
1391 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1392 continue;
1393 return naddr;
1394 }
1395
1396 return NULL;
1397 }
1398
netcp_addr_add(struct netcp_intf * netcp,const u8 * addr,enum netcp_addr_type type)1399 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1400 const u8 *addr,
1401 enum netcp_addr_type type)
1402 {
1403 struct netcp_addr *naddr;
1404
1405 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1406 if (!naddr)
1407 return NULL;
1408
1409 naddr->type = type;
1410 naddr->flags = 0;
1411 naddr->netcp = netcp;
1412 if (addr)
1413 ether_addr_copy(naddr->addr, addr);
1414 else
1415 eth_zero_addr(naddr->addr);
1416 list_add_tail(&naddr->node, &netcp->addr_list);
1417
1418 return naddr;
1419 }
1420
netcp_addr_del(struct netcp_intf * netcp,struct netcp_addr * naddr)1421 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1422 {
1423 list_del(&naddr->node);
1424 devm_kfree(netcp->dev, naddr);
1425 }
1426
netcp_addr_clear_mark(struct netcp_intf * netcp)1427 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1428 {
1429 struct netcp_addr *naddr;
1430
1431 list_for_each_entry(naddr, &netcp->addr_list, node)
1432 naddr->flags = 0;
1433 }
1434
netcp_addr_add_mark(struct netcp_intf * netcp,const u8 * addr,enum netcp_addr_type type)1435 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1436 enum netcp_addr_type type)
1437 {
1438 struct netcp_addr *naddr;
1439
1440 naddr = netcp_addr_find(netcp, addr, type);
1441 if (naddr) {
1442 naddr->flags |= ADDR_VALID;
1443 return;
1444 }
1445
1446 naddr = netcp_addr_add(netcp, addr, type);
1447 if (!WARN_ON(!naddr))
1448 naddr->flags |= ADDR_NEW;
1449 }
1450
netcp_addr_sweep_del(struct netcp_intf * netcp)1451 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1452 {
1453 struct netcp_addr *naddr, *tmp;
1454 struct netcp_intf_modpriv *priv;
1455 struct netcp_module *module;
1456 int error;
1457
1458 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1459 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1460 continue;
1461 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1462 naddr->addr, naddr->type);
1463 for_each_module(netcp, priv) {
1464 module = priv->netcp_module;
1465 if (!module->del_addr)
1466 continue;
1467 error = module->del_addr(priv->module_priv,
1468 naddr);
1469 WARN_ON(error);
1470 }
1471 netcp_addr_del(netcp, naddr);
1472 }
1473 }
1474
netcp_addr_sweep_add(struct netcp_intf * netcp)1475 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1476 {
1477 struct netcp_addr *naddr, *tmp;
1478 struct netcp_intf_modpriv *priv;
1479 struct netcp_module *module;
1480 int error;
1481
1482 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1483 if (!(naddr->flags & ADDR_NEW))
1484 continue;
1485 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1486 naddr->addr, naddr->type);
1487
1488 for_each_module(netcp, priv) {
1489 module = priv->netcp_module;
1490 if (!module->add_addr)
1491 continue;
1492 error = module->add_addr(priv->module_priv, naddr);
1493 WARN_ON(error);
1494 }
1495 }
1496 }
1497
netcp_set_promiscuous(struct netcp_intf * netcp,bool promisc)1498 static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
1499 {
1500 struct netcp_intf_modpriv *priv;
1501 struct netcp_module *module;
1502 int error;
1503
1504 for_each_module(netcp, priv) {
1505 module = priv->netcp_module;
1506 if (!module->set_rx_mode)
1507 continue;
1508
1509 error = module->set_rx_mode(priv->module_priv, promisc);
1510 if (error)
1511 return error;
1512 }
1513 return 0;
1514 }
1515
netcp_set_rx_mode(struct net_device * ndev)1516 static void netcp_set_rx_mode(struct net_device *ndev)
1517 {
1518 struct netcp_intf *netcp = netdev_priv(ndev);
1519 struct netdev_hw_addr *ndev_addr;
1520 bool promisc;
1521
1522 promisc = (ndev->flags & IFF_PROMISC ||
1523 ndev->flags & IFF_ALLMULTI ||
1524 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1525
1526 spin_lock(&netcp->lock);
1527 /* first clear all marks */
1528 netcp_addr_clear_mark(netcp);
1529
1530 /* next add new entries, mark existing ones */
1531 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1532 for_each_dev_addr(ndev, ndev_addr)
1533 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1534 netdev_for_each_uc_addr(ndev_addr, ndev)
1535 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1536 netdev_for_each_mc_addr(ndev_addr, ndev)
1537 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1538
1539 if (promisc)
1540 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1541
1542 /* finally sweep and callout into modules */
1543 netcp_addr_sweep_del(netcp);
1544 netcp_addr_sweep_add(netcp);
1545 netcp_set_promiscuous(netcp, promisc);
1546 spin_unlock(&netcp->lock);
1547 }
1548
netcp_free_navigator_resources(struct netcp_intf * netcp)1549 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1550 {
1551 int i;
1552
1553 if (netcp->rx_channel) {
1554 knav_dma_close_channel(netcp->rx_channel);
1555 netcp->rx_channel = NULL;
1556 }
1557
1558 if (!IS_ERR_OR_NULL(netcp->rx_pool))
1559 netcp_rxpool_free(netcp);
1560
1561 if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1562 knav_queue_close(netcp->rx_queue);
1563 netcp->rx_queue = NULL;
1564 }
1565
1566 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1567 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1568 knav_queue_close(netcp->rx_fdq[i]);
1569 netcp->rx_fdq[i] = NULL;
1570 }
1571
1572 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1573 knav_queue_close(netcp->tx_compl_q);
1574 netcp->tx_compl_q = NULL;
1575 }
1576
1577 if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1578 knav_pool_destroy(netcp->tx_pool);
1579 netcp->tx_pool = NULL;
1580 }
1581 }
1582
netcp_setup_navigator_resources(struct net_device * ndev)1583 static int netcp_setup_navigator_resources(struct net_device *ndev)
1584 {
1585 struct netcp_intf *netcp = netdev_priv(ndev);
1586 struct knav_queue_notify_config notify_cfg;
1587 struct knav_dma_cfg config;
1588 u32 last_fdq = 0;
1589 u8 name[16];
1590 int ret;
1591 int i;
1592
1593 /* Create Rx/Tx descriptor pools */
1594 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1595 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1596 netcp->rx_pool_region_id);
1597 if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1598 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1599 ret = PTR_ERR(netcp->rx_pool);
1600 goto fail;
1601 }
1602
1603 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1604 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1605 netcp->tx_pool_region_id);
1606 if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1607 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1608 ret = PTR_ERR(netcp->tx_pool);
1609 goto fail;
1610 }
1611
1612 /* open Tx completion queue */
1613 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1614 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1615 if (IS_ERR(netcp->tx_compl_q)) {
1616 ret = PTR_ERR(netcp->tx_compl_q);
1617 goto fail;
1618 }
1619 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1620
1621 /* Set notification for Tx completion */
1622 notify_cfg.fn = netcp_tx_notify;
1623 notify_cfg.fn_arg = netcp;
1624 ret = knav_queue_device_control(netcp->tx_compl_q,
1625 KNAV_QUEUE_SET_NOTIFIER,
1626 (unsigned long)¬ify_cfg);
1627 if (ret)
1628 goto fail;
1629
1630 knav_queue_disable_notify(netcp->tx_compl_q);
1631
1632 /* open Rx completion queue */
1633 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1634 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1635 if (IS_ERR(netcp->rx_queue)) {
1636 ret = PTR_ERR(netcp->rx_queue);
1637 goto fail;
1638 }
1639 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1640
1641 /* Set notification for Rx completion */
1642 notify_cfg.fn = netcp_rx_notify;
1643 notify_cfg.fn_arg = netcp;
1644 ret = knav_queue_device_control(netcp->rx_queue,
1645 KNAV_QUEUE_SET_NOTIFIER,
1646 (unsigned long)¬ify_cfg);
1647 if (ret)
1648 goto fail;
1649
1650 knav_queue_disable_notify(netcp->rx_queue);
1651
1652 /* open Rx FDQs */
1653 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1654 ++i) {
1655 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1656 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1657 if (IS_ERR(netcp->rx_fdq[i])) {
1658 ret = PTR_ERR(netcp->rx_fdq[i]);
1659 goto fail;
1660 }
1661 }
1662
1663 memset(&config, 0, sizeof(config));
1664 config.direction = DMA_DEV_TO_MEM;
1665 config.u.rx.einfo_present = true;
1666 config.u.rx.psinfo_present = true;
1667 config.u.rx.err_mode = DMA_DROP;
1668 config.u.rx.desc_type = DMA_DESC_HOST;
1669 config.u.rx.psinfo_at_sop = false;
1670 config.u.rx.sop_offset = NETCP_SOP_OFFSET;
1671 config.u.rx.dst_q = netcp->rx_queue_id;
1672 config.u.rx.thresh = DMA_THRESH_NONE;
1673
1674 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1675 if (netcp->rx_fdq[i])
1676 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1677 config.u.rx.fdq[i] = last_fdq;
1678 }
1679
1680 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1681 netcp->dma_chan_name, &config);
1682 if (IS_ERR(netcp->rx_channel)) {
1683 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1684 netcp->dma_chan_name);
1685 ret = PTR_ERR(netcp->rx_channel);
1686 goto fail;
1687 }
1688
1689 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1690 return 0;
1691
1692 fail:
1693 netcp_free_navigator_resources(netcp);
1694 return ret;
1695 }
1696
1697 /* Open the device */
netcp_ndo_open(struct net_device * ndev)1698 static int netcp_ndo_open(struct net_device *ndev)
1699 {
1700 struct netcp_intf *netcp = netdev_priv(ndev);
1701 struct netcp_intf_modpriv *intf_modpriv;
1702 struct netcp_module *module;
1703 int ret;
1704
1705 netif_carrier_off(ndev);
1706 ret = netcp_setup_navigator_resources(ndev);
1707 if (ret) {
1708 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1709 goto fail;
1710 }
1711
1712 for_each_module(netcp, intf_modpriv) {
1713 module = intf_modpriv->netcp_module;
1714 if (module->open) {
1715 ret = module->open(intf_modpriv->module_priv, ndev);
1716 if (ret != 0) {
1717 dev_err(netcp->ndev_dev, "module open failed\n");
1718 goto fail_open;
1719 }
1720 }
1721 }
1722
1723 napi_enable(&netcp->rx_napi);
1724 napi_enable(&netcp->tx_napi);
1725 knav_queue_enable_notify(netcp->tx_compl_q);
1726 knav_queue_enable_notify(netcp->rx_queue);
1727 netcp_rxpool_refill(netcp);
1728 netif_tx_wake_all_queues(ndev);
1729 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1730 return 0;
1731
1732 fail_open:
1733 for_each_module(netcp, intf_modpriv) {
1734 module = intf_modpriv->netcp_module;
1735 if (module->close)
1736 module->close(intf_modpriv->module_priv, ndev);
1737 }
1738
1739 fail:
1740 netcp_free_navigator_resources(netcp);
1741 return ret;
1742 }
1743
1744 /* Close the device */
netcp_ndo_stop(struct net_device * ndev)1745 static int netcp_ndo_stop(struct net_device *ndev)
1746 {
1747 struct netcp_intf *netcp = netdev_priv(ndev);
1748 struct netcp_intf_modpriv *intf_modpriv;
1749 struct netcp_module *module;
1750 int err = 0;
1751
1752 netif_tx_stop_all_queues(ndev);
1753 netif_carrier_off(ndev);
1754 netcp_addr_clear_mark(netcp);
1755 netcp_addr_sweep_del(netcp);
1756 knav_queue_disable_notify(netcp->rx_queue);
1757 knav_queue_disable_notify(netcp->tx_compl_q);
1758 napi_disable(&netcp->rx_napi);
1759 napi_disable(&netcp->tx_napi);
1760
1761 for_each_module(netcp, intf_modpriv) {
1762 module = intf_modpriv->netcp_module;
1763 if (module->close) {
1764 err = module->close(intf_modpriv->module_priv, ndev);
1765 if (err != 0)
1766 dev_err(netcp->ndev_dev, "Close failed\n");
1767 }
1768 }
1769
1770 /* Recycle Rx descriptors from completion queue */
1771 netcp_empty_rx_queue(netcp);
1772
1773 /* Recycle Tx descriptors from completion queue */
1774 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1775
1776 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1777 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1778 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1779
1780 netcp_free_navigator_resources(netcp);
1781 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1782 return 0;
1783 }
1784
netcp_ndo_ioctl(struct net_device * ndev,struct ifreq * req,int cmd)1785 static int netcp_ndo_ioctl(struct net_device *ndev,
1786 struct ifreq *req, int cmd)
1787 {
1788 struct netcp_intf *netcp = netdev_priv(ndev);
1789 struct netcp_intf_modpriv *intf_modpriv;
1790 struct netcp_module *module;
1791 int ret = -1, err = -EOPNOTSUPP;
1792
1793 if (!netif_running(ndev))
1794 return -EINVAL;
1795
1796 for_each_module(netcp, intf_modpriv) {
1797 module = intf_modpriv->netcp_module;
1798 if (!module->ioctl)
1799 continue;
1800
1801 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1802 if ((err < 0) && (err != -EOPNOTSUPP)) {
1803 ret = err;
1804 goto out;
1805 }
1806 if (err == 0)
1807 ret = err;
1808 }
1809
1810 out:
1811 return (ret == 0) ? 0 : err;
1812 }
1813
netcp_ndo_tx_timeout(struct net_device * ndev)1814 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1815 {
1816 struct netcp_intf *netcp = netdev_priv(ndev);
1817 unsigned int descs = knav_pool_count(netcp->tx_pool);
1818
1819 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1820 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1821 netif_trans_update(ndev);
1822 netif_tx_wake_all_queues(ndev);
1823 }
1824
netcp_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)1825 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1826 {
1827 struct netcp_intf *netcp = netdev_priv(ndev);
1828 struct netcp_intf_modpriv *intf_modpriv;
1829 struct netcp_module *module;
1830 unsigned long flags;
1831 int err = 0;
1832
1833 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1834
1835 spin_lock_irqsave(&netcp->lock, flags);
1836 for_each_module(netcp, intf_modpriv) {
1837 module = intf_modpriv->netcp_module;
1838 if ((module->add_vid) && (vid != 0)) {
1839 err = module->add_vid(intf_modpriv->module_priv, vid);
1840 if (err != 0) {
1841 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1842 vid);
1843 break;
1844 }
1845 }
1846 }
1847 spin_unlock_irqrestore(&netcp->lock, flags);
1848
1849 return err;
1850 }
1851
netcp_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)1852 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1853 {
1854 struct netcp_intf *netcp = netdev_priv(ndev);
1855 struct netcp_intf_modpriv *intf_modpriv;
1856 struct netcp_module *module;
1857 unsigned long flags;
1858 int err = 0;
1859
1860 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1861
1862 spin_lock_irqsave(&netcp->lock, flags);
1863 for_each_module(netcp, intf_modpriv) {
1864 module = intf_modpriv->netcp_module;
1865 if (module->del_vid) {
1866 err = module->del_vid(intf_modpriv->module_priv, vid);
1867 if (err != 0) {
1868 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1869 vid);
1870 break;
1871 }
1872 }
1873 }
1874 spin_unlock_irqrestore(&netcp->lock, flags);
1875 return err;
1876 }
1877
netcp_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)1878 static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1879 void *type_data)
1880 {
1881 struct tc_mqprio_qopt *mqprio = type_data;
1882 u8 num_tc;
1883 int i;
1884
1885 /* setup tc must be called under rtnl lock */
1886 ASSERT_RTNL();
1887
1888 if (type != TC_SETUP_QDISC_MQPRIO)
1889 return -EOPNOTSUPP;
1890
1891 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1892 num_tc = mqprio->num_tc;
1893
1894 /* Sanity-check the number of traffic classes requested */
1895 if ((dev->real_num_tx_queues <= 1) ||
1896 (dev->real_num_tx_queues < num_tc))
1897 return -EINVAL;
1898
1899 /* Configure traffic class to queue mappings */
1900 if (num_tc) {
1901 netdev_set_num_tc(dev, num_tc);
1902 for (i = 0; i < num_tc; i++)
1903 netdev_set_tc_queue(dev, i, 1, i);
1904 } else {
1905 netdev_reset_tc(dev);
1906 }
1907
1908 return 0;
1909 }
1910
1911 static void
netcp_get_stats(struct net_device * ndev,struct rtnl_link_stats64 * stats)1912 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1913 {
1914 struct netcp_intf *netcp = netdev_priv(ndev);
1915 struct netcp_stats *p = &netcp->stats;
1916 u64 rxpackets, rxbytes, txpackets, txbytes;
1917 unsigned int start;
1918
1919 do {
1920 start = u64_stats_fetch_begin_irq(&p->syncp_rx);
1921 rxpackets = p->rx_packets;
1922 rxbytes = p->rx_bytes;
1923 } while (u64_stats_fetch_retry_irq(&p->syncp_rx, start));
1924
1925 do {
1926 start = u64_stats_fetch_begin_irq(&p->syncp_tx);
1927 txpackets = p->tx_packets;
1928 txbytes = p->tx_bytes;
1929 } while (u64_stats_fetch_retry_irq(&p->syncp_tx, start));
1930
1931 stats->rx_packets = rxpackets;
1932 stats->rx_bytes = rxbytes;
1933 stats->tx_packets = txpackets;
1934 stats->tx_bytes = txbytes;
1935
1936 /* The following are stored as 32 bit */
1937 stats->rx_errors = p->rx_errors;
1938 stats->rx_dropped = p->rx_dropped;
1939 stats->tx_dropped = p->tx_dropped;
1940 }
1941
1942 static const struct net_device_ops netcp_netdev_ops = {
1943 .ndo_open = netcp_ndo_open,
1944 .ndo_stop = netcp_ndo_stop,
1945 .ndo_start_xmit = netcp_ndo_start_xmit,
1946 .ndo_set_rx_mode = netcp_set_rx_mode,
1947 .ndo_do_ioctl = netcp_ndo_ioctl,
1948 .ndo_get_stats64 = netcp_get_stats,
1949 .ndo_set_mac_address = eth_mac_addr,
1950 .ndo_validate_addr = eth_validate_addr,
1951 .ndo_vlan_rx_add_vid = netcp_rx_add_vid,
1952 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid,
1953 .ndo_tx_timeout = netcp_ndo_tx_timeout,
1954 .ndo_select_queue = dev_pick_tx_zero,
1955 .ndo_setup_tc = netcp_setup_tc,
1956 };
1957
netcp_create_interface(struct netcp_device * netcp_device,struct device_node * node_interface)1958 static int netcp_create_interface(struct netcp_device *netcp_device,
1959 struct device_node *node_interface)
1960 {
1961 struct device *dev = netcp_device->device;
1962 struct device_node *node = dev->of_node;
1963 struct netcp_intf *netcp;
1964 struct net_device *ndev;
1965 resource_size_t size;
1966 struct resource res;
1967 void __iomem *efuse = NULL;
1968 u32 efuse_mac = 0;
1969 const void *mac_addr;
1970 u8 efuse_mac_addr[6];
1971 u32 temp[2];
1972 int ret = 0;
1973
1974 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1975 if (!ndev) {
1976 dev_err(dev, "Error allocating netdev\n");
1977 return -ENOMEM;
1978 }
1979
1980 ndev->features |= NETIF_F_SG;
1981 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1982 ndev->hw_features = ndev->features;
1983 ndev->vlan_features |= NETIF_F_SG;
1984
1985 /* MTU range: 68 - 9486 */
1986 ndev->min_mtu = ETH_MIN_MTU;
1987 ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1988
1989 netcp = netdev_priv(ndev);
1990 spin_lock_init(&netcp->lock);
1991 INIT_LIST_HEAD(&netcp->module_head);
1992 INIT_LIST_HEAD(&netcp->txhook_list_head);
1993 INIT_LIST_HEAD(&netcp->rxhook_list_head);
1994 INIT_LIST_HEAD(&netcp->addr_list);
1995 u64_stats_init(&netcp->stats.syncp_rx);
1996 u64_stats_init(&netcp->stats.syncp_tx);
1997 netcp->netcp_device = netcp_device;
1998 netcp->dev = netcp_device->device;
1999 netcp->ndev = ndev;
2000 netcp->ndev_dev = &ndev->dev;
2001 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2002 netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2003 netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2004 netcp->node_interface = node_interface;
2005
2006 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2007 if (efuse_mac) {
2008 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2009 dev_err(dev, "could not find efuse-mac reg resource\n");
2010 ret = -ENODEV;
2011 goto quit;
2012 }
2013 size = resource_size(&res);
2014
2015 if (!devm_request_mem_region(dev, res.start, size,
2016 dev_name(dev))) {
2017 dev_err(dev, "could not reserve resource\n");
2018 ret = -ENOMEM;
2019 goto quit;
2020 }
2021
2022 efuse = devm_ioremap_nocache(dev, res.start, size);
2023 if (!efuse) {
2024 dev_err(dev, "could not map resource\n");
2025 devm_release_mem_region(dev, res.start, size);
2026 ret = -ENOMEM;
2027 goto quit;
2028 }
2029
2030 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2031 if (is_valid_ether_addr(efuse_mac_addr))
2032 ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
2033 else
2034 eth_random_addr(ndev->dev_addr);
2035
2036 devm_iounmap(dev, efuse);
2037 devm_release_mem_region(dev, res.start, size);
2038 } else {
2039 mac_addr = of_get_mac_address(node_interface);
2040 if (!IS_ERR(mac_addr))
2041 ether_addr_copy(ndev->dev_addr, mac_addr);
2042 else
2043 eth_random_addr(ndev->dev_addr);
2044 }
2045
2046 ret = of_property_read_string(node_interface, "rx-channel",
2047 &netcp->dma_chan_name);
2048 if (ret < 0) {
2049 dev_err(dev, "missing \"rx-channel\" parameter\n");
2050 ret = -ENODEV;
2051 goto quit;
2052 }
2053
2054 ret = of_property_read_u32(node_interface, "rx-queue",
2055 &netcp->rx_queue_id);
2056 if (ret < 0) {
2057 dev_warn(dev, "missing \"rx-queue\" parameter\n");
2058 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2059 }
2060
2061 ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2062 netcp->rx_queue_depths,
2063 KNAV_DMA_FDQ_PER_CHAN);
2064 if (ret < 0) {
2065 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2066 netcp->rx_queue_depths[0] = 128;
2067 }
2068
2069 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2070 if (ret < 0) {
2071 dev_err(dev, "missing \"rx-pool\" parameter\n");
2072 ret = -ENODEV;
2073 goto quit;
2074 }
2075 netcp->rx_pool_size = temp[0];
2076 netcp->rx_pool_region_id = temp[1];
2077
2078 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2079 if (ret < 0) {
2080 dev_err(dev, "missing \"tx-pool\" parameter\n");
2081 ret = -ENODEV;
2082 goto quit;
2083 }
2084 netcp->tx_pool_size = temp[0];
2085 netcp->tx_pool_region_id = temp[1];
2086
2087 if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2088 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2089 MAX_SKB_FRAGS);
2090 ret = -ENODEV;
2091 goto quit;
2092 }
2093
2094 ret = of_property_read_u32(node_interface, "tx-completion-queue",
2095 &netcp->tx_compl_qid);
2096 if (ret < 0) {
2097 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2098 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2099 }
2100
2101 /* NAPI register */
2102 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2103 netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2104
2105 /* Register the network device */
2106 ndev->dev_id = 0;
2107 ndev->watchdog_timeo = NETCP_TX_TIMEOUT;
2108 ndev->netdev_ops = &netcp_netdev_ops;
2109 SET_NETDEV_DEV(ndev, dev);
2110
2111 list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2112 return 0;
2113
2114 quit:
2115 free_netdev(ndev);
2116 return ret;
2117 }
2118
netcp_delete_interface(struct netcp_device * netcp_device,struct net_device * ndev)2119 static void netcp_delete_interface(struct netcp_device *netcp_device,
2120 struct net_device *ndev)
2121 {
2122 struct netcp_intf_modpriv *intf_modpriv, *tmp;
2123 struct netcp_intf *netcp = netdev_priv(ndev);
2124 struct netcp_module *module;
2125
2126 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2127 ndev->name);
2128
2129 /* Notify each of the modules that the interface is going away */
2130 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2131 intf_list) {
2132 module = intf_modpriv->netcp_module;
2133 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2134 module->name);
2135 if (module->release)
2136 module->release(intf_modpriv->module_priv);
2137 list_del(&intf_modpriv->intf_list);
2138 }
2139 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2140 ndev->name);
2141
2142 list_del(&netcp->interface_list);
2143
2144 of_node_put(netcp->node_interface);
2145 unregister_netdev(ndev);
2146 free_netdev(ndev);
2147 }
2148
netcp_probe(struct platform_device * pdev)2149 static int netcp_probe(struct platform_device *pdev)
2150 {
2151 struct device_node *node = pdev->dev.of_node;
2152 struct netcp_intf *netcp_intf, *netcp_tmp;
2153 struct device_node *child, *interfaces;
2154 struct netcp_device *netcp_device;
2155 struct device *dev = &pdev->dev;
2156 struct netcp_module *module;
2157 int ret;
2158
2159 if (!knav_dma_device_ready() ||
2160 !knav_qmss_device_ready())
2161 return -EPROBE_DEFER;
2162
2163 if (!node) {
2164 dev_err(dev, "could not find device info\n");
2165 return -ENODEV;
2166 }
2167
2168 /* Allocate a new NETCP device instance */
2169 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2170 if (!netcp_device)
2171 return -ENOMEM;
2172
2173 pm_runtime_enable(&pdev->dev);
2174 ret = pm_runtime_get_sync(&pdev->dev);
2175 if (ret < 0) {
2176 dev_err(dev, "Failed to enable NETCP power-domain\n");
2177 pm_runtime_disable(&pdev->dev);
2178 return ret;
2179 }
2180
2181 /* Initialize the NETCP device instance */
2182 INIT_LIST_HEAD(&netcp_device->interface_head);
2183 INIT_LIST_HEAD(&netcp_device->modpriv_head);
2184 netcp_device->device = dev;
2185 platform_set_drvdata(pdev, netcp_device);
2186
2187 /* create interfaces */
2188 interfaces = of_get_child_by_name(node, "netcp-interfaces");
2189 if (!interfaces) {
2190 dev_err(dev, "could not find netcp-interfaces node\n");
2191 ret = -ENODEV;
2192 goto probe_quit;
2193 }
2194
2195 for_each_available_child_of_node(interfaces, child) {
2196 ret = netcp_create_interface(netcp_device, child);
2197 if (ret) {
2198 dev_err(dev, "could not create interface(%pOFn)\n",
2199 child);
2200 goto probe_quit_interface;
2201 }
2202 }
2203
2204 of_node_put(interfaces);
2205
2206 /* Add the device instance to the list */
2207 list_add_tail(&netcp_device->device_list, &netcp_devices);
2208
2209 /* Probe & attach any modules already registered */
2210 mutex_lock(&netcp_modules_lock);
2211 for_each_netcp_module(module) {
2212 ret = netcp_module_probe(netcp_device, module);
2213 if (ret < 0)
2214 dev_err(dev, "module(%s) probe failed\n", module->name);
2215 }
2216 mutex_unlock(&netcp_modules_lock);
2217 return 0;
2218
2219 probe_quit_interface:
2220 list_for_each_entry_safe(netcp_intf, netcp_tmp,
2221 &netcp_device->interface_head,
2222 interface_list) {
2223 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2224 }
2225
2226 of_node_put(interfaces);
2227
2228 probe_quit:
2229 pm_runtime_put_sync(&pdev->dev);
2230 pm_runtime_disable(&pdev->dev);
2231 platform_set_drvdata(pdev, NULL);
2232 return ret;
2233 }
2234
netcp_remove(struct platform_device * pdev)2235 static int netcp_remove(struct platform_device *pdev)
2236 {
2237 struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2238 struct netcp_intf *netcp_intf, *netcp_tmp;
2239 struct netcp_inst_modpriv *inst_modpriv, *tmp;
2240 struct netcp_module *module;
2241
2242 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2243 inst_list) {
2244 module = inst_modpriv->netcp_module;
2245 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2246 module->remove(netcp_device, inst_modpriv->module_priv);
2247 list_del(&inst_modpriv->inst_list);
2248 }
2249
2250 /* now that all modules are removed, clean up the interfaces */
2251 list_for_each_entry_safe(netcp_intf, netcp_tmp,
2252 &netcp_device->interface_head,
2253 interface_list) {
2254 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2255 }
2256
2257 WARN(!list_empty(&netcp_device->interface_head),
2258 "%s interface list not empty!\n", pdev->name);
2259
2260 pm_runtime_put_sync(&pdev->dev);
2261 pm_runtime_disable(&pdev->dev);
2262 platform_set_drvdata(pdev, NULL);
2263 return 0;
2264 }
2265
2266 static const struct of_device_id of_match[] = {
2267 { .compatible = "ti,netcp-1.0", },
2268 {},
2269 };
2270 MODULE_DEVICE_TABLE(of, of_match);
2271
2272 static struct platform_driver netcp_driver = {
2273 .driver = {
2274 .name = "netcp-1.0",
2275 .of_match_table = of_match,
2276 },
2277 .probe = netcp_probe,
2278 .remove = netcp_remove,
2279 };
2280 module_platform_driver(netcp_driver);
2281
2282 MODULE_LICENSE("GPL v2");
2283 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2284 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
2285