1 /*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51 * validate a gm address and related range size,
52 * translate it to host gm address
53 */
intel_gvt_ggtt_validate_range(struct intel_vgpu * vgpu,u64 addr,u32 size)54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 if (size == 0)
57 return vgpu_gmadr_is_valid(vgpu, addr);
58
59 if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 return true;
62 else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 return true;
65
66 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 addr, size);
68 return false;
69 }
70
71 /* translate a guest gmadr to host gmadr */
intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu * vgpu,u64 g_addr,u64 * h_addr)72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75
76 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77 "invalid guest gmadr %llx\n", g_addr))
78 return -EACCES;
79
80 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81 *h_addr = vgpu_aperture_gmadr_base(vgpu)
82 + (g_addr - vgpu_aperture_offset(vgpu));
83 else
84 *h_addr = vgpu_hidden_gmadr_base(vgpu)
85 + (g_addr - vgpu_hidden_offset(vgpu));
86 return 0;
87 }
88
89 /* translate a host gmadr to guest gmadr */
intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu * vgpu,u64 h_addr,u64 * g_addr)90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93
94 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95 "invalid host gmadr %llx\n", h_addr))
96 return -EACCES;
97
98 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99 *g_addr = vgpu_aperture_gmadr_base(vgpu)
100 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101 else
102 *g_addr = vgpu_hidden_gmadr_base(vgpu)
103 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104 return 0;
105 }
106
intel_gvt_ggtt_index_g2h(struct intel_vgpu * vgpu,unsigned long g_index,unsigned long * h_index)107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108 unsigned long *h_index)
109 {
110 u64 h_addr;
111 int ret;
112
113 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114 &h_addr);
115 if (ret)
116 return ret;
117
118 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119 return 0;
120 }
121
intel_gvt_ggtt_h2g_index(struct intel_vgpu * vgpu,unsigned long h_index,unsigned long * g_index)122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123 unsigned long *g_index)
124 {
125 u64 g_addr;
126 int ret;
127
128 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129 &g_addr);
130 if (ret)
131 return ret;
132
133 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134 return 0;
135 }
136
137 #define gtt_type_is_entry(type) \
138 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141
142 #define gtt_type_is_pt(type) \
143 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144
145 #define gtt_type_is_pte_pt(type) \
146 (type == GTT_TYPE_PPGTT_PTE_PT)
147
148 #define gtt_type_is_root_pointer(type) \
149 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150
151 #define gtt_init_entry(e, t, p, v) do { \
152 (e)->type = t; \
153 (e)->pdev = p; \
154 memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156
157 /*
158 * Mappings between GTT_TYPE* enumerations.
159 * Following information can be found according to the given type:
160 * - type of next level page table
161 * - type of entry inside this level page table
162 * - type of entry with PSE set
163 *
164 * If the given type doesn't have such a kind of information,
165 * e.g. give a l4 root entry type, then request to get its PSE type,
166 * give a PTE page table type, then request to get its next level page
167 * table type, as we know l4 root entry doesn't have a PSE bit,
168 * and a PTE page table doesn't have a next level page table type,
169 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170 * page table.
171 */
172
173 struct gtt_type_table_entry {
174 int entry_type;
175 int pt_type;
176 int next_pt_type;
177 int pse_entry_type;
178 };
179
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181 [type] = { \
182 .entry_type = e_type, \
183 .pt_type = cpt_type, \
184 .next_pt_type = npt_type, \
185 .pse_entry_type = pse_type, \
186 }
187
188 static struct gtt_type_table_entry gtt_type_table[] = {
189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191 GTT_TYPE_INVALID,
192 GTT_TYPE_PPGTT_PML4_PT,
193 GTT_TYPE_INVALID),
194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195 GTT_TYPE_PPGTT_PML4_ENTRY,
196 GTT_TYPE_PPGTT_PML4_PT,
197 GTT_TYPE_PPGTT_PDP_PT,
198 GTT_TYPE_INVALID),
199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200 GTT_TYPE_PPGTT_PML4_ENTRY,
201 GTT_TYPE_PPGTT_PML4_PT,
202 GTT_TYPE_PPGTT_PDP_PT,
203 GTT_TYPE_INVALID),
204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205 GTT_TYPE_PPGTT_PDP_ENTRY,
206 GTT_TYPE_PPGTT_PDP_PT,
207 GTT_TYPE_PPGTT_PDE_PT,
208 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211 GTT_TYPE_INVALID,
212 GTT_TYPE_PPGTT_PDE_PT,
213 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215 GTT_TYPE_PPGTT_PDP_ENTRY,
216 GTT_TYPE_PPGTT_PDP_PT,
217 GTT_TYPE_PPGTT_PDE_PT,
218 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220 GTT_TYPE_PPGTT_PDE_ENTRY,
221 GTT_TYPE_PPGTT_PDE_PT,
222 GTT_TYPE_PPGTT_PTE_PT,
223 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225 GTT_TYPE_PPGTT_PDE_ENTRY,
226 GTT_TYPE_PPGTT_PDE_PT,
227 GTT_TYPE_PPGTT_PTE_PT,
228 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 /* We take IPS bit as 'PSE' for PTE level. */
230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 GTT_TYPE_PPGTT_PTE_PT,
233 GTT_TYPE_INVALID,
234 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 GTT_TYPE_PPGTT_PTE_PT,
238 GTT_TYPE_INVALID,
239 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242 GTT_TYPE_PPGTT_PTE_PT,
243 GTT_TYPE_INVALID,
244 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246 GTT_TYPE_PPGTT_PDE_ENTRY,
247 GTT_TYPE_PPGTT_PDE_PT,
248 GTT_TYPE_INVALID,
249 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251 GTT_TYPE_PPGTT_PDP_ENTRY,
252 GTT_TYPE_PPGTT_PDP_PT,
253 GTT_TYPE_INVALID,
254 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256 GTT_TYPE_GGTT_PTE,
257 GTT_TYPE_INVALID,
258 GTT_TYPE_INVALID,
259 GTT_TYPE_INVALID),
260 };
261
get_next_pt_type(int type)262 static inline int get_next_pt_type(int type)
263 {
264 return gtt_type_table[type].next_pt_type;
265 }
266
get_pt_type(int type)267 static inline int get_pt_type(int type)
268 {
269 return gtt_type_table[type].pt_type;
270 }
271
get_entry_type(int type)272 static inline int get_entry_type(int type)
273 {
274 return gtt_type_table[type].entry_type;
275 }
276
get_pse_type(int type)277 static inline int get_pse_type(int type)
278 {
279 return gtt_type_table[type].pse_entry_type;
280 }
281
read_pte64(struct i915_ggtt * ggtt,unsigned long index)282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285
286 return readq(addr);
287 }
288
ggtt_invalidate(struct intel_gt * gt)289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291 mmio_hw_access_pre(gt);
292 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293 mmio_hw_access_post(gt);
294 }
295
write_pte64(struct i915_ggtt * ggtt,unsigned long index,u64 pte)296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299
300 writeq(pte, addr);
301 }
302
gtt_get_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)303 static inline int gtt_get_entry64(void *pt,
304 struct intel_gvt_gtt_entry *e,
305 unsigned long index, bool hypervisor_access, unsigned long gpa,
306 struct intel_vgpu *vgpu)
307 {
308 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309 int ret;
310
311 if (WARN_ON(info->gtt_entry_size != 8))
312 return -EINVAL;
313
314 if (hypervisor_access) {
315 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316 (index << info->gtt_entry_size_shift),
317 &e->val64, 8);
318 if (WARN_ON(ret))
319 return ret;
320 } else if (!pt) {
321 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322 } else {
323 e->val64 = *((u64 *)pt + index);
324 }
325 return 0;
326 }
327
gtt_set_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)328 static inline int gtt_set_entry64(void *pt,
329 struct intel_gvt_gtt_entry *e,
330 unsigned long index, bool hypervisor_access, unsigned long gpa,
331 struct intel_vgpu *vgpu)
332 {
333 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334 int ret;
335
336 if (WARN_ON(info->gtt_entry_size != 8))
337 return -EINVAL;
338
339 if (hypervisor_access) {
340 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341 (index << info->gtt_entry_size_shift),
342 &e->val64, 8);
343 if (WARN_ON(ret))
344 return ret;
345 } else if (!pt) {
346 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347 } else {
348 *((u64 *)pt + index) = e->val64;
349 }
350 return 0;
351 }
352
353 #define GTT_HAW 46
354
355 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
359
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362
363 #define GTT_64K_PTE_STRIDE 16
364
gen8_gtt_get_pfn(struct intel_gvt_gtt_entry * e)365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367 unsigned long pfn;
368
369 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375 else
376 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377 return pfn;
378 }
379
gen8_gtt_set_pfn(struct intel_gvt_gtt_entry * e,unsigned long pfn)380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383 e->val64 &= ~ADDR_1G_MASK;
384 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386 e->val64 &= ~ADDR_2M_MASK;
387 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389 e->val64 &= ~ADDR_64K_MASK;
390 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391 } else {
392 e->val64 &= ~ADDR_4K_MASK;
393 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394 }
395
396 e->val64 |= (pfn << PAGE_SHIFT);
397 }
398
gen8_gtt_test_pse(struct intel_gvt_gtt_entry * e)399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401 return !!(e->val64 & _PAGE_PSE);
402 }
403
gen8_gtt_clear_pse(struct intel_gvt_gtt_entry * e)404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406 if (gen8_gtt_test_pse(e)) {
407 switch (e->type) {
408 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409 e->val64 &= ~_PAGE_PSE;
410 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411 break;
412 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414 e->val64 &= ~_PAGE_PSE;
415 break;
416 default:
417 WARN_ON(1);
418 }
419 }
420 }
421
gen8_gtt_test_ips(struct intel_gvt_gtt_entry * e)422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425 return false;
426
427 return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429
gen8_gtt_clear_ips(struct intel_gvt_gtt_entry * e)430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433 return;
434
435 e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437
gen8_gtt_test_present(struct intel_gvt_gtt_entry * e)438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440 /*
441 * i915 writes PDP root pointer registers without present bit,
442 * it also works, so we need to treat root pointer entry
443 * specifically.
444 */
445 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447 return (e->val64 != 0);
448 else
449 return (e->val64 & _PAGE_PRESENT);
450 }
451
gtt_entry_clear_present(struct intel_gvt_gtt_entry * e)452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454 e->val64 &= ~_PAGE_PRESENT;
455 }
456
gtt_entry_set_present(struct intel_gvt_gtt_entry * e)457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459 e->val64 |= _PAGE_PRESENT;
460 }
461
gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry * e)462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466
gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry * e)467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471
gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry * e)472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476
477 /*
478 * Per-platform GMA routines.
479 */
gma_to_ggtt_pte_index(unsigned long gma)480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483
484 trace_gma_index(__func__, gma, x);
485 return x;
486 }
487
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491 unsigned long x = (exp); \
492 trace_gma_index(__func__, gma, x); \
493 return x; \
494 }
495
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503 .get_entry = gtt_get_entry64,
504 .set_entry = gtt_set_entry64,
505 .clear_present = gtt_entry_clear_present,
506 .set_present = gtt_entry_set_present,
507 .test_present = gen8_gtt_test_present,
508 .test_pse = gen8_gtt_test_pse,
509 .clear_pse = gen8_gtt_clear_pse,
510 .clear_ips = gen8_gtt_clear_ips,
511 .test_ips = gen8_gtt_test_ips,
512 .clear_64k_splited = gen8_gtt_clear_64k_splited,
513 .set_64k_splited = gen8_gtt_set_64k_splited,
514 .test_64k_splited = gen8_gtt_test_64k_splited,
515 .get_pfn = gen8_gtt_get_pfn,
516 .set_pfn = gen8_gtt_set_pfn,
517 };
518
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521 .gma_to_pte_index = gen8_gma_to_pte_index,
522 .gma_to_pde_index = gen8_gma_to_pde_index,
523 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525 .gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527
528 /* Update entry type per pse and ips bit. */
update_entry_type_for_real(struct intel_gvt_gtt_pte_ops * pte_ops,struct intel_gvt_gtt_entry * entry,bool ips)529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530 struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532 switch (entry->type) {
533 case GTT_TYPE_PPGTT_PDE_ENTRY:
534 case GTT_TYPE_PPGTT_PDP_ENTRY:
535 if (pte_ops->test_pse(entry))
536 entry->type = get_pse_type(entry->type);
537 break;
538 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539 if (ips)
540 entry->type = get_pse_type(entry->type);
541 break;
542 default:
543 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544 }
545
546 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548
549 /*
550 * MM helpers.
551 */
_ppgtt_get_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553 struct intel_gvt_gtt_entry *entry, unsigned long index,
554 bool guest)
555 {
556 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557
558 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559
560 entry->type = mm->ppgtt_mm.root_entry_type;
561 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562 mm->ppgtt_mm.shadow_pdps,
563 entry, index, false, 0, mm->vgpu);
564 update_entry_type_for_real(pte_ops, entry, false);
565 }
566
ppgtt_get_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568 struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570 _ppgtt_get_root_entry(mm, entry, index, true);
571 }
572
ppgtt_get_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574 struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576 _ppgtt_get_root_entry(mm, entry, index, false);
577 }
578
_ppgtt_set_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580 struct intel_gvt_gtt_entry *entry, unsigned long index,
581 bool guest)
582 {
583 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584
585 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586 mm->ppgtt_mm.shadow_pdps,
587 entry, index, false, 0, mm->vgpu);
588 }
589
ppgtt_set_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)590 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
591 struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593 _ppgtt_set_root_entry(mm, entry, index, false);
594 }
595
ggtt_get_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)596 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
597 struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
600
601 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
602
603 entry->type = GTT_TYPE_GGTT_PTE;
604 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
605 false, 0, mm->vgpu);
606 }
607
ggtt_set_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)608 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
609 struct intel_gvt_gtt_entry *entry, unsigned long index)
610 {
611 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
612
613 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
614
615 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
616 false, 0, mm->vgpu);
617 }
618
ggtt_get_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)619 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
620 struct intel_gvt_gtt_entry *entry, unsigned long index)
621 {
622 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
623
624 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
625
626 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
627 }
628
ggtt_set_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)629 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
630 struct intel_gvt_gtt_entry *entry, unsigned long index)
631 {
632 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
633 unsigned long offset = index;
634
635 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
636
637 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
638 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
639 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
640 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
641 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
642 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
643 }
644
645 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
646 }
647
648 /*
649 * PPGTT shadow page table helpers.
650 */
ppgtt_spt_get_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)651 static inline int ppgtt_spt_get_entry(
652 struct intel_vgpu_ppgtt_spt *spt,
653 void *page_table, int type,
654 struct intel_gvt_gtt_entry *e, unsigned long index,
655 bool guest)
656 {
657 struct intel_gvt *gvt = spt->vgpu->gvt;
658 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
659 int ret;
660
661 e->type = get_entry_type(type);
662
663 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
664 return -EINVAL;
665
666 ret = ops->get_entry(page_table, e, index, guest,
667 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
668 spt->vgpu);
669 if (ret)
670 return ret;
671
672 update_entry_type_for_real(ops, e, guest ?
673 spt->guest_page.pde_ips : false);
674
675 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
676 type, e->type, index, e->val64);
677 return 0;
678 }
679
ppgtt_spt_set_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)680 static inline int ppgtt_spt_set_entry(
681 struct intel_vgpu_ppgtt_spt *spt,
682 void *page_table, int type,
683 struct intel_gvt_gtt_entry *e, unsigned long index,
684 bool guest)
685 {
686 struct intel_gvt *gvt = spt->vgpu->gvt;
687 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
688
689 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
690 return -EINVAL;
691
692 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
693 type, e->type, index, e->val64);
694
695 return ops->set_entry(page_table, e, index, guest,
696 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
697 spt->vgpu);
698 }
699
700 #define ppgtt_get_guest_entry(spt, e, index) \
701 ppgtt_spt_get_entry(spt, NULL, \
702 spt->guest_page.type, e, index, true)
703
704 #define ppgtt_set_guest_entry(spt, e, index) \
705 ppgtt_spt_set_entry(spt, NULL, \
706 spt->guest_page.type, e, index, true)
707
708 #define ppgtt_get_shadow_entry(spt, e, index) \
709 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
710 spt->shadow_page.type, e, index, false)
711
712 #define ppgtt_set_shadow_entry(spt, e, index) \
713 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
714 spt->shadow_page.type, e, index, false)
715
alloc_spt(gfp_t gfp_mask)716 static void *alloc_spt(gfp_t gfp_mask)
717 {
718 struct intel_vgpu_ppgtt_spt *spt;
719
720 spt = kzalloc(sizeof(*spt), gfp_mask);
721 if (!spt)
722 return NULL;
723
724 spt->shadow_page.page = alloc_page(gfp_mask);
725 if (!spt->shadow_page.page) {
726 kfree(spt);
727 return NULL;
728 }
729 return spt;
730 }
731
free_spt(struct intel_vgpu_ppgtt_spt * spt)732 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
733 {
734 __free_page(spt->shadow_page.page);
735 kfree(spt);
736 }
737
738 static int detach_oos_page(struct intel_vgpu *vgpu,
739 struct intel_vgpu_oos_page *oos_page);
740
ppgtt_free_spt(struct intel_vgpu_ppgtt_spt * spt)741 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
742 {
743 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
744
745 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
746
747 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
748 PCI_DMA_BIDIRECTIONAL);
749
750 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
751
752 if (spt->guest_page.gfn) {
753 if (spt->guest_page.oos_page)
754 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
755
756 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
757 }
758
759 list_del_init(&spt->post_shadow_list);
760 free_spt(spt);
761 }
762
ppgtt_free_all_spt(struct intel_vgpu * vgpu)763 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
764 {
765 struct intel_vgpu_ppgtt_spt *spt, *spn;
766 struct radix_tree_iter iter;
767 LIST_HEAD(all_spt);
768 void __rcu **slot;
769
770 rcu_read_lock();
771 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
772 spt = radix_tree_deref_slot(slot);
773 list_move(&spt->post_shadow_list, &all_spt);
774 }
775 rcu_read_unlock();
776
777 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
778 ppgtt_free_spt(spt);
779 }
780
781 static int ppgtt_handle_guest_write_page_table_bytes(
782 struct intel_vgpu_ppgtt_spt *spt,
783 u64 pa, void *p_data, int bytes);
784
ppgtt_write_protection_handler(struct intel_vgpu_page_track * page_track,u64 gpa,void * data,int bytes)785 static int ppgtt_write_protection_handler(
786 struct intel_vgpu_page_track *page_track,
787 u64 gpa, void *data, int bytes)
788 {
789 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
790
791 int ret;
792
793 if (bytes != 4 && bytes != 8)
794 return -EINVAL;
795
796 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
797 if (ret)
798 return ret;
799 return ret;
800 }
801
802 /* Find a spt by guest gfn. */
intel_vgpu_find_spt_by_gfn(struct intel_vgpu * vgpu,unsigned long gfn)803 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
804 struct intel_vgpu *vgpu, unsigned long gfn)
805 {
806 struct intel_vgpu_page_track *track;
807
808 track = intel_vgpu_find_page_track(vgpu, gfn);
809 if (track && track->handler == ppgtt_write_protection_handler)
810 return track->priv_data;
811
812 return NULL;
813 }
814
815 /* Find the spt by shadow page mfn. */
intel_vgpu_find_spt_by_mfn(struct intel_vgpu * vgpu,unsigned long mfn)816 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
817 struct intel_vgpu *vgpu, unsigned long mfn)
818 {
819 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
820 }
821
822 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
823
824 /* Allocate shadow page table without guest page. */
ppgtt_alloc_spt(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)825 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
826 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
827 {
828 struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
829 struct intel_vgpu_ppgtt_spt *spt = NULL;
830 dma_addr_t daddr;
831 int ret;
832
833 retry:
834 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
835 if (!spt) {
836 if (reclaim_one_ppgtt_mm(vgpu->gvt))
837 goto retry;
838
839 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
840 return ERR_PTR(-ENOMEM);
841 }
842
843 spt->vgpu = vgpu;
844 atomic_set(&spt->refcount, 1);
845 INIT_LIST_HEAD(&spt->post_shadow_list);
846
847 /*
848 * Init shadow_page.
849 */
850 spt->shadow_page.type = type;
851 daddr = dma_map_page(kdev, spt->shadow_page.page,
852 0, 4096, PCI_DMA_BIDIRECTIONAL);
853 if (dma_mapping_error(kdev, daddr)) {
854 gvt_vgpu_err("fail to map dma addr\n");
855 ret = -EINVAL;
856 goto err_free_spt;
857 }
858 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
859 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
860
861 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
862 if (ret)
863 goto err_unmap_dma;
864
865 return spt;
866
867 err_unmap_dma:
868 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
869 err_free_spt:
870 free_spt(spt);
871 return ERR_PTR(ret);
872 }
873
874 /* Allocate shadow page table associated with specific gfn. */
ppgtt_alloc_spt_gfn(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type,unsigned long gfn,bool guest_pde_ips)875 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
876 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
877 unsigned long gfn, bool guest_pde_ips)
878 {
879 struct intel_vgpu_ppgtt_spt *spt;
880 int ret;
881
882 spt = ppgtt_alloc_spt(vgpu, type);
883 if (IS_ERR(spt))
884 return spt;
885
886 /*
887 * Init guest_page.
888 */
889 ret = intel_vgpu_register_page_track(vgpu, gfn,
890 ppgtt_write_protection_handler, spt);
891 if (ret) {
892 ppgtt_free_spt(spt);
893 return ERR_PTR(ret);
894 }
895
896 spt->guest_page.type = type;
897 spt->guest_page.gfn = gfn;
898 spt->guest_page.pde_ips = guest_pde_ips;
899
900 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
901
902 return spt;
903 }
904
905 #define pt_entry_size_shift(spt) \
906 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
907
908 #define pt_entries(spt) \
909 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
910
911 #define for_each_present_guest_entry(spt, e, i) \
912 for (i = 0; i < pt_entries(spt); \
913 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
914 if (!ppgtt_get_guest_entry(spt, e, i) && \
915 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
916
917 #define for_each_present_shadow_entry(spt, e, i) \
918 for (i = 0; i < pt_entries(spt); \
919 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
920 if (!ppgtt_get_shadow_entry(spt, e, i) && \
921 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
922
923 #define for_each_shadow_entry(spt, e, i) \
924 for (i = 0; i < pt_entries(spt); \
925 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
926 if (!ppgtt_get_shadow_entry(spt, e, i))
927
ppgtt_get_spt(struct intel_vgpu_ppgtt_spt * spt)928 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
929 {
930 int v = atomic_read(&spt->refcount);
931
932 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
933 atomic_inc(&spt->refcount);
934 }
935
ppgtt_put_spt(struct intel_vgpu_ppgtt_spt * spt)936 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
937 {
938 int v = atomic_read(&spt->refcount);
939
940 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
941 return atomic_dec_return(&spt->refcount);
942 }
943
944 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
945
ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * e)946 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
947 struct intel_gvt_gtt_entry *e)
948 {
949 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
950 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
951 struct intel_vgpu_ppgtt_spt *s;
952 enum intel_gvt_gtt_type cur_pt_type;
953
954 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
955
956 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
957 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
958 cur_pt_type = get_next_pt_type(e->type);
959
960 if (!gtt_type_is_pt(cur_pt_type) ||
961 !gtt_type_is_pt(cur_pt_type + 1)) {
962 drm_WARN(&i915->drm, 1,
963 "Invalid page table type, cur_pt_type is: %d\n",
964 cur_pt_type);
965 return -EINVAL;
966 }
967
968 cur_pt_type += 1;
969
970 if (ops->get_pfn(e) ==
971 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
972 return 0;
973 }
974 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
975 if (!s) {
976 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
977 ops->get_pfn(e));
978 return -ENXIO;
979 }
980 return ppgtt_invalidate_spt(s);
981 }
982
ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * entry)983 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
984 struct intel_gvt_gtt_entry *entry)
985 {
986 struct intel_vgpu *vgpu = spt->vgpu;
987 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
988 unsigned long pfn;
989 int type;
990
991 pfn = ops->get_pfn(entry);
992 type = spt->shadow_page.type;
993
994 /* Uninitialized spte or unshadowed spte. */
995 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
996 return;
997
998 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
999 }
1000
ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt * spt)1001 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1002 {
1003 struct intel_vgpu *vgpu = spt->vgpu;
1004 struct intel_gvt_gtt_entry e;
1005 unsigned long index;
1006 int ret;
1007
1008 trace_spt_change(spt->vgpu->id, "die", spt,
1009 spt->guest_page.gfn, spt->shadow_page.type);
1010
1011 if (ppgtt_put_spt(spt) > 0)
1012 return 0;
1013
1014 for_each_present_shadow_entry(spt, &e, index) {
1015 switch (e.type) {
1016 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1017 gvt_vdbg_mm("invalidate 4K entry\n");
1018 ppgtt_invalidate_pte(spt, &e);
1019 break;
1020 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1021 /* We don't setup 64K shadow entry so far. */
1022 WARN(1, "suspicious 64K gtt entry\n");
1023 continue;
1024 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1025 gvt_vdbg_mm("invalidate 2M entry\n");
1026 continue;
1027 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1028 WARN(1, "GVT doesn't support 1GB page\n");
1029 continue;
1030 case GTT_TYPE_PPGTT_PML4_ENTRY:
1031 case GTT_TYPE_PPGTT_PDP_ENTRY:
1032 case GTT_TYPE_PPGTT_PDE_ENTRY:
1033 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1034 ret = ppgtt_invalidate_spt_by_shadow_entry(
1035 spt->vgpu, &e);
1036 if (ret)
1037 goto fail;
1038 break;
1039 default:
1040 GEM_BUG_ON(1);
1041 }
1042 }
1043
1044 trace_spt_change(spt->vgpu->id, "release", spt,
1045 spt->guest_page.gfn, spt->shadow_page.type);
1046 ppgtt_free_spt(spt);
1047 return 0;
1048 fail:
1049 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1050 spt, e.val64, e.type);
1051 return ret;
1052 }
1053
vgpu_ips_enabled(struct intel_vgpu * vgpu)1054 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1055 {
1056 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1057
1058 if (GRAPHICS_VER(dev_priv) == 9) {
1059 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1060 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1061
1062 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1063 } else if (GRAPHICS_VER(dev_priv) >= 11) {
1064 /* 64K paging only controlled by IPS bit in PTE now. */
1065 return true;
1066 } else
1067 return false;
1068 }
1069
1070 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1071
ppgtt_populate_spt_by_guest_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * we)1072 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1073 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1074 {
1075 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1076 struct intel_vgpu_ppgtt_spt *spt = NULL;
1077 bool ips = false;
1078 int ret;
1079
1080 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1081
1082 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1083 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1084
1085 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1086 if (spt) {
1087 ppgtt_get_spt(spt);
1088
1089 if (ips != spt->guest_page.pde_ips) {
1090 spt->guest_page.pde_ips = ips;
1091
1092 gvt_dbg_mm("reshadow PDE since ips changed\n");
1093 clear_page(spt->shadow_page.vaddr);
1094 ret = ppgtt_populate_spt(spt);
1095 if (ret) {
1096 ppgtt_put_spt(spt);
1097 goto err;
1098 }
1099 }
1100 } else {
1101 int type = get_next_pt_type(we->type);
1102
1103 if (!gtt_type_is_pt(type)) {
1104 ret = -EINVAL;
1105 goto err;
1106 }
1107
1108 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1109 if (IS_ERR(spt)) {
1110 ret = PTR_ERR(spt);
1111 goto err;
1112 }
1113
1114 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1115 if (ret)
1116 goto err_free_spt;
1117
1118 ret = ppgtt_populate_spt(spt);
1119 if (ret)
1120 goto err_free_spt;
1121
1122 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1123 spt->shadow_page.type);
1124 }
1125 return spt;
1126
1127 err_free_spt:
1128 ppgtt_free_spt(spt);
1129 spt = NULL;
1130 err:
1131 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1132 spt, we->val64, we->type);
1133 return ERR_PTR(ret);
1134 }
1135
ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry * se,struct intel_vgpu_ppgtt_spt * s,struct intel_gvt_gtt_entry * ge)1136 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1137 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1138 {
1139 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1140
1141 se->type = ge->type;
1142 se->val64 = ge->val64;
1143
1144 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1145 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1146 ops->clear_ips(se);
1147
1148 ops->set_pfn(se, s->shadow_page.mfn);
1149 }
1150
1151 /**
1152 * Check if can do 2M page
1153 * @vgpu: target vgpu
1154 * @entry: target pfn's gtt entry
1155 *
1156 * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
1157 * negative if found err.
1158 */
is_2MB_gtt_possible(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)1159 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1160 struct intel_gvt_gtt_entry *entry)
1161 {
1162 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1163 unsigned long pfn;
1164
1165 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1166 return 0;
1167
1168 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1169 if (pfn == INTEL_GVT_INVALID_ADDR)
1170 return -EINVAL;
1171
1172 return PageTransHuge(pfn_to_page(pfn));
1173 }
1174
split_2MB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1175 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1176 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1177 struct intel_gvt_gtt_entry *se)
1178 {
1179 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1180 struct intel_vgpu_ppgtt_spt *sub_spt;
1181 struct intel_gvt_gtt_entry sub_se;
1182 unsigned long start_gfn;
1183 dma_addr_t dma_addr;
1184 unsigned long sub_index;
1185 int ret;
1186
1187 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1188
1189 start_gfn = ops->get_pfn(se);
1190
1191 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1192 if (IS_ERR(sub_spt))
1193 return PTR_ERR(sub_spt);
1194
1195 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1196 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1197 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1198 if (ret) {
1199 ppgtt_invalidate_spt(spt);
1200 return ret;
1201 }
1202 sub_se.val64 = se->val64;
1203
1204 /* Copy the PAT field from PDE. */
1205 sub_se.val64 &= ~_PAGE_PAT;
1206 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1207
1208 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1209 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1210 }
1211
1212 /* Clear dirty field. */
1213 se->val64 &= ~_PAGE_DIRTY;
1214
1215 ops->clear_pse(se);
1216 ops->clear_ips(se);
1217 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1218 ppgtt_set_shadow_entry(spt, se, index);
1219 return 0;
1220 }
1221
split_64KB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1222 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1223 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1224 struct intel_gvt_gtt_entry *se)
1225 {
1226 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1227 struct intel_gvt_gtt_entry entry = *se;
1228 unsigned long start_gfn;
1229 dma_addr_t dma_addr;
1230 int i, ret;
1231
1232 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1233
1234 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1235
1236 start_gfn = ops->get_pfn(se);
1237
1238 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1239 ops->set_64k_splited(&entry);
1240
1241 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1242 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1243 start_gfn + i, PAGE_SIZE, &dma_addr);
1244 if (ret)
1245 return ret;
1246
1247 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1248 ppgtt_set_shadow_entry(spt, &entry, index + i);
1249 }
1250 return 0;
1251 }
1252
ppgtt_populate_shadow_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * ge)1253 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1254 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1255 struct intel_gvt_gtt_entry *ge)
1256 {
1257 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1258 struct intel_gvt_gtt_entry se = *ge;
1259 unsigned long gfn, page_size = PAGE_SIZE;
1260 dma_addr_t dma_addr;
1261 int ret;
1262
1263 if (!pte_ops->test_present(ge))
1264 return 0;
1265
1266 gfn = pte_ops->get_pfn(ge);
1267
1268 switch (ge->type) {
1269 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1270 gvt_vdbg_mm("shadow 4K gtt entry\n");
1271 break;
1272 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1273 gvt_vdbg_mm("shadow 64K gtt entry\n");
1274 /*
1275 * The layout of 64K page is special, the page size is
1276 * controlled by uper PDE. To be simple, we always split
1277 * 64K page to smaller 4K pages in shadow PT.
1278 */
1279 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1280 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1281 gvt_vdbg_mm("shadow 2M gtt entry\n");
1282 ret = is_2MB_gtt_possible(vgpu, ge);
1283 if (ret == 0)
1284 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1285 else if (ret < 0)
1286 return ret;
1287 page_size = I915_GTT_PAGE_SIZE_2M;
1288 break;
1289 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1290 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1291 return -EINVAL;
1292 default:
1293 GEM_BUG_ON(1);
1294 }
1295
1296 /* direct shadow */
1297 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1298 &dma_addr);
1299 if (ret)
1300 return -ENXIO;
1301
1302 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1303 ppgtt_set_shadow_entry(spt, &se, index);
1304 return 0;
1305 }
1306
ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt * spt)1307 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1308 {
1309 struct intel_vgpu *vgpu = spt->vgpu;
1310 struct intel_gvt *gvt = vgpu->gvt;
1311 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1312 struct intel_vgpu_ppgtt_spt *s;
1313 struct intel_gvt_gtt_entry se, ge;
1314 unsigned long gfn, i;
1315 int ret;
1316
1317 trace_spt_change(spt->vgpu->id, "born", spt,
1318 spt->guest_page.gfn, spt->shadow_page.type);
1319
1320 for_each_present_guest_entry(spt, &ge, i) {
1321 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1322 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1323 if (IS_ERR(s)) {
1324 ret = PTR_ERR(s);
1325 goto fail;
1326 }
1327 ppgtt_get_shadow_entry(spt, &se, i);
1328 ppgtt_generate_shadow_entry(&se, s, &ge);
1329 ppgtt_set_shadow_entry(spt, &se, i);
1330 } else {
1331 gfn = ops->get_pfn(&ge);
1332 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1333 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1334 ppgtt_set_shadow_entry(spt, &se, i);
1335 continue;
1336 }
1337
1338 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1339 if (ret)
1340 goto fail;
1341 }
1342 }
1343 return 0;
1344 fail:
1345 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1346 spt, ge.val64, ge.type);
1347 return ret;
1348 }
1349
ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * se,unsigned long index)1350 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1351 struct intel_gvt_gtt_entry *se, unsigned long index)
1352 {
1353 struct intel_vgpu *vgpu = spt->vgpu;
1354 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1355 int ret;
1356
1357 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1358 spt->shadow_page.type, se->val64, index);
1359
1360 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1361 se->type, index, se->val64);
1362
1363 if (!ops->test_present(se))
1364 return 0;
1365
1366 if (ops->get_pfn(se) ==
1367 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1368 return 0;
1369
1370 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1371 struct intel_vgpu_ppgtt_spt *s =
1372 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1373 if (!s) {
1374 gvt_vgpu_err("fail to find guest page\n");
1375 ret = -ENXIO;
1376 goto fail;
1377 }
1378 ret = ppgtt_invalidate_spt(s);
1379 if (ret)
1380 goto fail;
1381 } else {
1382 /* We don't setup 64K shadow entry so far. */
1383 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1384 "suspicious 64K entry\n");
1385 ppgtt_invalidate_pte(spt, se);
1386 }
1387
1388 return 0;
1389 fail:
1390 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1391 spt, se->val64, se->type);
1392 return ret;
1393 }
1394
ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1395 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1396 struct intel_gvt_gtt_entry *we, unsigned long index)
1397 {
1398 struct intel_vgpu *vgpu = spt->vgpu;
1399 struct intel_gvt_gtt_entry m;
1400 struct intel_vgpu_ppgtt_spt *s;
1401 int ret;
1402
1403 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1404 we->val64, index);
1405
1406 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1407 we->type, index, we->val64);
1408
1409 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1410 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1411 if (IS_ERR(s)) {
1412 ret = PTR_ERR(s);
1413 goto fail;
1414 }
1415 ppgtt_get_shadow_entry(spt, &m, index);
1416 ppgtt_generate_shadow_entry(&m, s, we);
1417 ppgtt_set_shadow_entry(spt, &m, index);
1418 } else {
1419 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1420 if (ret)
1421 goto fail;
1422 }
1423 return 0;
1424 fail:
1425 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1426 spt, we->val64, we->type);
1427 return ret;
1428 }
1429
sync_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1430 static int sync_oos_page(struct intel_vgpu *vgpu,
1431 struct intel_vgpu_oos_page *oos_page)
1432 {
1433 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1434 struct intel_gvt *gvt = vgpu->gvt;
1435 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1436 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1437 struct intel_gvt_gtt_entry old, new;
1438 int index;
1439 int ret;
1440
1441 trace_oos_change(vgpu->id, "sync", oos_page->id,
1442 spt, spt->guest_page.type);
1443
1444 old.type = new.type = get_entry_type(spt->guest_page.type);
1445 old.val64 = new.val64 = 0;
1446
1447 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1448 info->gtt_entry_size_shift); index++) {
1449 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1450 ops->get_entry(NULL, &new, index, true,
1451 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1452
1453 if (old.val64 == new.val64
1454 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1455 continue;
1456
1457 trace_oos_sync(vgpu->id, oos_page->id,
1458 spt, spt->guest_page.type,
1459 new.val64, index);
1460
1461 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1462 if (ret)
1463 return ret;
1464
1465 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1466 }
1467
1468 spt->guest_page.write_cnt = 0;
1469 list_del_init(&spt->post_shadow_list);
1470 return 0;
1471 }
1472
detach_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1473 static int detach_oos_page(struct intel_vgpu *vgpu,
1474 struct intel_vgpu_oos_page *oos_page)
1475 {
1476 struct intel_gvt *gvt = vgpu->gvt;
1477 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1478
1479 trace_oos_change(vgpu->id, "detach", oos_page->id,
1480 spt, spt->guest_page.type);
1481
1482 spt->guest_page.write_cnt = 0;
1483 spt->guest_page.oos_page = NULL;
1484 oos_page->spt = NULL;
1485
1486 list_del_init(&oos_page->vm_list);
1487 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1488
1489 return 0;
1490 }
1491
attach_oos_page(struct intel_vgpu_oos_page * oos_page,struct intel_vgpu_ppgtt_spt * spt)1492 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1493 struct intel_vgpu_ppgtt_spt *spt)
1494 {
1495 struct intel_gvt *gvt = spt->vgpu->gvt;
1496 int ret;
1497
1498 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1499 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1500 oos_page->mem, I915_GTT_PAGE_SIZE);
1501 if (ret)
1502 return ret;
1503
1504 oos_page->spt = spt;
1505 spt->guest_page.oos_page = oos_page;
1506
1507 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1508
1509 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1510 spt, spt->guest_page.type);
1511 return 0;
1512 }
1513
ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt * spt)1514 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1515 {
1516 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1517 int ret;
1518
1519 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1520 if (ret)
1521 return ret;
1522
1523 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1524 spt, spt->guest_page.type);
1525
1526 list_del_init(&oos_page->vm_list);
1527 return sync_oos_page(spt->vgpu, oos_page);
1528 }
1529
ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt * spt)1530 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1531 {
1532 struct intel_gvt *gvt = spt->vgpu->gvt;
1533 struct intel_gvt_gtt *gtt = &gvt->gtt;
1534 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1535 int ret;
1536
1537 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1538
1539 if (list_empty(>t->oos_page_free_list_head)) {
1540 oos_page = container_of(gtt->oos_page_use_list_head.next,
1541 struct intel_vgpu_oos_page, list);
1542 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1543 if (ret)
1544 return ret;
1545 ret = detach_oos_page(spt->vgpu, oos_page);
1546 if (ret)
1547 return ret;
1548 } else
1549 oos_page = container_of(gtt->oos_page_free_list_head.next,
1550 struct intel_vgpu_oos_page, list);
1551 return attach_oos_page(oos_page, spt);
1552 }
1553
ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt * spt)1554 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1555 {
1556 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1557
1558 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1559 return -EINVAL;
1560
1561 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1562 spt, spt->guest_page.type);
1563
1564 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1565 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1566 }
1567
1568 /**
1569 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1570 * @vgpu: a vGPU
1571 *
1572 * This function is called before submitting a guest workload to host,
1573 * to sync all the out-of-synced shadow for vGPU
1574 *
1575 * Returns:
1576 * Zero on success, negative error code if failed.
1577 */
intel_vgpu_sync_oos_pages(struct intel_vgpu * vgpu)1578 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1579 {
1580 struct list_head *pos, *n;
1581 struct intel_vgpu_oos_page *oos_page;
1582 int ret;
1583
1584 if (!enable_out_of_sync)
1585 return 0;
1586
1587 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1588 oos_page = container_of(pos,
1589 struct intel_vgpu_oos_page, vm_list);
1590 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1591 if (ret)
1592 return ret;
1593 }
1594 return 0;
1595 }
1596
1597 /*
1598 * The heart of PPGTT shadow page table.
1599 */
ppgtt_handle_guest_write_page_table(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1600 static int ppgtt_handle_guest_write_page_table(
1601 struct intel_vgpu_ppgtt_spt *spt,
1602 struct intel_gvt_gtt_entry *we, unsigned long index)
1603 {
1604 struct intel_vgpu *vgpu = spt->vgpu;
1605 int type = spt->shadow_page.type;
1606 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1607 struct intel_gvt_gtt_entry old_se;
1608 int new_present;
1609 int i, ret;
1610
1611 new_present = ops->test_present(we);
1612
1613 /*
1614 * Adding the new entry first and then removing the old one, that can
1615 * guarantee the ppgtt table is validated during the window between
1616 * adding and removal.
1617 */
1618 ppgtt_get_shadow_entry(spt, &old_se, index);
1619
1620 if (new_present) {
1621 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1622 if (ret)
1623 goto fail;
1624 }
1625
1626 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1627 if (ret)
1628 goto fail;
1629
1630 if (!new_present) {
1631 /* For 64KB splited entries, we need clear them all. */
1632 if (ops->test_64k_splited(&old_se) &&
1633 !(index % GTT_64K_PTE_STRIDE)) {
1634 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1635 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1636 ops->clear_64k_splited(&old_se);
1637 ops->set_pfn(&old_se,
1638 vgpu->gtt.scratch_pt[type].page_mfn);
1639 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1640 }
1641 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1642 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1643 ops->clear_pse(&old_se);
1644 ops->set_pfn(&old_se,
1645 vgpu->gtt.scratch_pt[type].page_mfn);
1646 ppgtt_set_shadow_entry(spt, &old_se, index);
1647 } else {
1648 ops->set_pfn(&old_se,
1649 vgpu->gtt.scratch_pt[type].page_mfn);
1650 ppgtt_set_shadow_entry(spt, &old_se, index);
1651 }
1652 }
1653
1654 return 0;
1655 fail:
1656 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1657 spt, we->val64, we->type);
1658 return ret;
1659 }
1660
1661
1662
can_do_out_of_sync(struct intel_vgpu_ppgtt_spt * spt)1663 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1664 {
1665 return enable_out_of_sync
1666 && gtt_type_is_pte_pt(spt->guest_page.type)
1667 && spt->guest_page.write_cnt >= 2;
1668 }
1669
ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt * spt,unsigned long index)1670 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1671 unsigned long index)
1672 {
1673 set_bit(index, spt->post_shadow_bitmap);
1674 if (!list_empty(&spt->post_shadow_list))
1675 return;
1676
1677 list_add_tail(&spt->post_shadow_list,
1678 &spt->vgpu->gtt.post_shadow_list_head);
1679 }
1680
1681 /**
1682 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1683 * @vgpu: a vGPU
1684 *
1685 * This function is called before submitting a guest workload to host,
1686 * to flush all the post shadows for a vGPU.
1687 *
1688 * Returns:
1689 * Zero on success, negative error code if failed.
1690 */
intel_vgpu_flush_post_shadow(struct intel_vgpu * vgpu)1691 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1692 {
1693 struct list_head *pos, *n;
1694 struct intel_vgpu_ppgtt_spt *spt;
1695 struct intel_gvt_gtt_entry ge;
1696 unsigned long index;
1697 int ret;
1698
1699 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1700 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1701 post_shadow_list);
1702
1703 for_each_set_bit(index, spt->post_shadow_bitmap,
1704 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1705 ppgtt_get_guest_entry(spt, &ge, index);
1706
1707 ret = ppgtt_handle_guest_write_page_table(spt,
1708 &ge, index);
1709 if (ret)
1710 return ret;
1711 clear_bit(index, spt->post_shadow_bitmap);
1712 }
1713 list_del_init(&spt->post_shadow_list);
1714 }
1715 return 0;
1716 }
1717
ppgtt_handle_guest_write_page_table_bytes(struct intel_vgpu_ppgtt_spt * spt,u64 pa,void * p_data,int bytes)1718 static int ppgtt_handle_guest_write_page_table_bytes(
1719 struct intel_vgpu_ppgtt_spt *spt,
1720 u64 pa, void *p_data, int bytes)
1721 {
1722 struct intel_vgpu *vgpu = spt->vgpu;
1723 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1724 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1725 struct intel_gvt_gtt_entry we, se;
1726 unsigned long index;
1727 int ret;
1728
1729 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1730
1731 ppgtt_get_guest_entry(spt, &we, index);
1732
1733 /*
1734 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1735 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1736 * ignored.
1737 */
1738 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1739 (index % GTT_64K_PTE_STRIDE)) {
1740 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1741 index);
1742 return 0;
1743 }
1744
1745 if (bytes == info->gtt_entry_size) {
1746 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1747 if (ret)
1748 return ret;
1749 } else {
1750 if (!test_bit(index, spt->post_shadow_bitmap)) {
1751 int type = spt->shadow_page.type;
1752
1753 ppgtt_get_shadow_entry(spt, &se, index);
1754 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1755 if (ret)
1756 return ret;
1757 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1758 ppgtt_set_shadow_entry(spt, &se, index);
1759 }
1760 ppgtt_set_post_shadow(spt, index);
1761 }
1762
1763 if (!enable_out_of_sync)
1764 return 0;
1765
1766 spt->guest_page.write_cnt++;
1767
1768 if (spt->guest_page.oos_page)
1769 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1770 false, 0, vgpu);
1771
1772 if (can_do_out_of_sync(spt)) {
1773 if (!spt->guest_page.oos_page)
1774 ppgtt_allocate_oos_page(spt);
1775
1776 ret = ppgtt_set_guest_page_oos(spt);
1777 if (ret < 0)
1778 return ret;
1779 }
1780 return 0;
1781 }
1782
invalidate_ppgtt_mm(struct intel_vgpu_mm * mm)1783 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1784 {
1785 struct intel_vgpu *vgpu = mm->vgpu;
1786 struct intel_gvt *gvt = vgpu->gvt;
1787 struct intel_gvt_gtt *gtt = &gvt->gtt;
1788 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1789 struct intel_gvt_gtt_entry se;
1790 int index;
1791
1792 if (!mm->ppgtt_mm.shadowed)
1793 return;
1794
1795 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1796 ppgtt_get_shadow_root_entry(mm, &se, index);
1797
1798 if (!ops->test_present(&se))
1799 continue;
1800
1801 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1802 se.val64 = 0;
1803 ppgtt_set_shadow_root_entry(mm, &se, index);
1804
1805 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1806 NULL, se.type, se.val64, index);
1807 }
1808
1809 mm->ppgtt_mm.shadowed = false;
1810 }
1811
1812
shadow_ppgtt_mm(struct intel_vgpu_mm * mm)1813 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1814 {
1815 struct intel_vgpu *vgpu = mm->vgpu;
1816 struct intel_gvt *gvt = vgpu->gvt;
1817 struct intel_gvt_gtt *gtt = &gvt->gtt;
1818 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1819 struct intel_vgpu_ppgtt_spt *spt;
1820 struct intel_gvt_gtt_entry ge, se;
1821 int index, ret;
1822
1823 if (mm->ppgtt_mm.shadowed)
1824 return 0;
1825
1826 mm->ppgtt_mm.shadowed = true;
1827
1828 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1829 ppgtt_get_guest_root_entry(mm, &ge, index);
1830
1831 if (!ops->test_present(&ge))
1832 continue;
1833
1834 trace_spt_guest_change(vgpu->id, __func__, NULL,
1835 ge.type, ge.val64, index);
1836
1837 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1838 if (IS_ERR(spt)) {
1839 gvt_vgpu_err("fail to populate guest root pointer\n");
1840 ret = PTR_ERR(spt);
1841 goto fail;
1842 }
1843 ppgtt_generate_shadow_entry(&se, spt, &ge);
1844 ppgtt_set_shadow_root_entry(mm, &se, index);
1845
1846 trace_spt_guest_change(vgpu->id, "populate root pointer",
1847 NULL, se.type, se.val64, index);
1848 }
1849
1850 return 0;
1851 fail:
1852 invalidate_ppgtt_mm(mm);
1853 return ret;
1854 }
1855
vgpu_alloc_mm(struct intel_vgpu * vgpu)1856 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1857 {
1858 struct intel_vgpu_mm *mm;
1859
1860 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1861 if (!mm)
1862 return NULL;
1863
1864 mm->vgpu = vgpu;
1865 kref_init(&mm->ref);
1866 atomic_set(&mm->pincount, 0);
1867
1868 return mm;
1869 }
1870
vgpu_free_mm(struct intel_vgpu_mm * mm)1871 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1872 {
1873 kfree(mm);
1874 }
1875
1876 /**
1877 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1878 * @vgpu: a vGPU
1879 * @root_entry_type: ppgtt root entry type
1880 * @pdps: guest pdps.
1881 *
1882 * This function is used to create a ppgtt mm object for a vGPU.
1883 *
1884 * Returns:
1885 * Zero on success, negative error code in pointer if failed.
1886 */
intel_vgpu_create_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])1887 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1888 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1889 {
1890 struct intel_gvt *gvt = vgpu->gvt;
1891 struct intel_vgpu_mm *mm;
1892 int ret;
1893
1894 mm = vgpu_alloc_mm(vgpu);
1895 if (!mm)
1896 return ERR_PTR(-ENOMEM);
1897
1898 mm->type = INTEL_GVT_MM_PPGTT;
1899
1900 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1901 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1902 mm->ppgtt_mm.root_entry_type = root_entry_type;
1903
1904 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1905 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1906 INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1907
1908 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1909 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1910 else
1911 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1912 sizeof(mm->ppgtt_mm.guest_pdps));
1913
1914 ret = shadow_ppgtt_mm(mm);
1915 if (ret) {
1916 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1917 vgpu_free_mm(mm);
1918 return ERR_PTR(ret);
1919 }
1920
1921 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1922
1923 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1924 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1925 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1926
1927 return mm;
1928 }
1929
intel_vgpu_create_ggtt_mm(struct intel_vgpu * vgpu)1930 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1931 {
1932 struct intel_vgpu_mm *mm;
1933 unsigned long nr_entries;
1934
1935 mm = vgpu_alloc_mm(vgpu);
1936 if (!mm)
1937 return ERR_PTR(-ENOMEM);
1938
1939 mm->type = INTEL_GVT_MM_GGTT;
1940
1941 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1942 mm->ggtt_mm.virtual_ggtt =
1943 vzalloc(array_size(nr_entries,
1944 vgpu->gvt->device_info.gtt_entry_size));
1945 if (!mm->ggtt_mm.virtual_ggtt) {
1946 vgpu_free_mm(mm);
1947 return ERR_PTR(-ENOMEM);
1948 }
1949
1950 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1951 if (!mm->ggtt_mm.host_ggtt_aperture) {
1952 vfree(mm->ggtt_mm.virtual_ggtt);
1953 vgpu_free_mm(mm);
1954 return ERR_PTR(-ENOMEM);
1955 }
1956
1957 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1958 if (!mm->ggtt_mm.host_ggtt_hidden) {
1959 vfree(mm->ggtt_mm.host_ggtt_aperture);
1960 vfree(mm->ggtt_mm.virtual_ggtt);
1961 vgpu_free_mm(mm);
1962 return ERR_PTR(-ENOMEM);
1963 }
1964
1965 return mm;
1966 }
1967
1968 /**
1969 * _intel_vgpu_mm_release - destroy a mm object
1970 * @mm_ref: a kref object
1971 *
1972 * This function is used to destroy a mm object for vGPU
1973 *
1974 */
_intel_vgpu_mm_release(struct kref * mm_ref)1975 void _intel_vgpu_mm_release(struct kref *mm_ref)
1976 {
1977 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1978
1979 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1980 gvt_err("vgpu mm pin count bug detected\n");
1981
1982 if (mm->type == INTEL_GVT_MM_PPGTT) {
1983 list_del(&mm->ppgtt_mm.list);
1984
1985 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1986 list_del(&mm->ppgtt_mm.lru_list);
1987 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1988
1989 invalidate_ppgtt_mm(mm);
1990 } else {
1991 vfree(mm->ggtt_mm.virtual_ggtt);
1992 vfree(mm->ggtt_mm.host_ggtt_aperture);
1993 vfree(mm->ggtt_mm.host_ggtt_hidden);
1994 }
1995
1996 vgpu_free_mm(mm);
1997 }
1998
1999 /**
2000 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2001 * @mm: a vGPU mm object
2002 *
2003 * This function is called when user doesn't want to use a vGPU mm object
2004 */
intel_vgpu_unpin_mm(struct intel_vgpu_mm * mm)2005 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2006 {
2007 atomic_dec_if_positive(&mm->pincount);
2008 }
2009
2010 /**
2011 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2012 * @mm: target vgpu mm
2013 *
2014 * This function is called when user wants to use a vGPU mm object. If this
2015 * mm object hasn't been shadowed yet, the shadow will be populated at this
2016 * time.
2017 *
2018 * Returns:
2019 * Zero on success, negative error code if failed.
2020 */
intel_vgpu_pin_mm(struct intel_vgpu_mm * mm)2021 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2022 {
2023 int ret;
2024
2025 atomic_inc(&mm->pincount);
2026
2027 if (mm->type == INTEL_GVT_MM_PPGTT) {
2028 ret = shadow_ppgtt_mm(mm);
2029 if (ret)
2030 return ret;
2031
2032 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2033 list_move_tail(&mm->ppgtt_mm.lru_list,
2034 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2035 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2036 }
2037
2038 return 0;
2039 }
2040
reclaim_one_ppgtt_mm(struct intel_gvt * gvt)2041 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2042 {
2043 struct intel_vgpu_mm *mm;
2044 struct list_head *pos, *n;
2045
2046 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2047
2048 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2049 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2050
2051 if (atomic_read(&mm->pincount))
2052 continue;
2053
2054 list_del_init(&mm->ppgtt_mm.lru_list);
2055 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2056 invalidate_ppgtt_mm(mm);
2057 return 1;
2058 }
2059 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2060 return 0;
2061 }
2062
2063 /*
2064 * GMA translation APIs.
2065 */
ppgtt_get_next_level_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)2066 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2067 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2068 {
2069 struct intel_vgpu *vgpu = mm->vgpu;
2070 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2071 struct intel_vgpu_ppgtt_spt *s;
2072
2073 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2074 if (!s)
2075 return -ENXIO;
2076
2077 if (!guest)
2078 ppgtt_get_shadow_entry(s, e, index);
2079 else
2080 ppgtt_get_guest_entry(s, e, index);
2081 return 0;
2082 }
2083
2084 /**
2085 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2086 * @mm: mm object. could be a PPGTT or GGTT mm object
2087 * @gma: graphics memory address in this mm object
2088 *
2089 * This function is used to translate a graphics memory address in specific
2090 * graphics memory space to guest physical address.
2091 *
2092 * Returns:
2093 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2094 */
intel_vgpu_gma_to_gpa(struct intel_vgpu_mm * mm,unsigned long gma)2095 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2096 {
2097 struct intel_vgpu *vgpu = mm->vgpu;
2098 struct intel_gvt *gvt = vgpu->gvt;
2099 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2100 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2101 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2102 unsigned long gma_index[4];
2103 struct intel_gvt_gtt_entry e;
2104 int i, levels = 0;
2105 int ret;
2106
2107 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2108 mm->type != INTEL_GVT_MM_PPGTT);
2109
2110 if (mm->type == INTEL_GVT_MM_GGTT) {
2111 if (!vgpu_gmadr_is_valid(vgpu, gma))
2112 goto err;
2113
2114 ggtt_get_guest_entry(mm, &e,
2115 gma_ops->gma_to_ggtt_pte_index(gma));
2116
2117 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2118 + (gma & ~I915_GTT_PAGE_MASK);
2119
2120 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2121 } else {
2122 switch (mm->ppgtt_mm.root_entry_type) {
2123 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2124 ppgtt_get_shadow_root_entry(mm, &e, 0);
2125
2126 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2127 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2128 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2129 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2130 levels = 4;
2131 break;
2132 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2133 ppgtt_get_shadow_root_entry(mm, &e,
2134 gma_ops->gma_to_l3_pdp_index(gma));
2135
2136 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2137 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2138 levels = 2;
2139 break;
2140 default:
2141 GEM_BUG_ON(1);
2142 }
2143
2144 /* walk the shadow page table and get gpa from guest entry */
2145 for (i = 0; i < levels; i++) {
2146 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2147 (i == levels - 1));
2148 if (ret)
2149 goto err;
2150
2151 if (!pte_ops->test_present(&e)) {
2152 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2153 goto err;
2154 }
2155 }
2156
2157 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2158 (gma & ~I915_GTT_PAGE_MASK);
2159 trace_gma_translate(vgpu->id, "ppgtt", 0,
2160 mm->ppgtt_mm.root_entry_type, gma, gpa);
2161 }
2162
2163 return gpa;
2164 err:
2165 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2166 return INTEL_GVT_INVALID_ADDR;
2167 }
2168
emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2169 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2170 unsigned int off, void *p_data, unsigned int bytes)
2171 {
2172 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2173 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2174 unsigned long index = off >> info->gtt_entry_size_shift;
2175 unsigned long gma;
2176 struct intel_gvt_gtt_entry e;
2177
2178 if (bytes != 4 && bytes != 8)
2179 return -EINVAL;
2180
2181 gma = index << I915_GTT_PAGE_SHIFT;
2182 if (!intel_gvt_ggtt_validate_range(vgpu,
2183 gma, 1 << I915_GTT_PAGE_SHIFT)) {
2184 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2185 memset(p_data, 0, bytes);
2186 return 0;
2187 }
2188
2189 ggtt_get_guest_entry(ggtt_mm, &e, index);
2190 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2191 bytes);
2192 return 0;
2193 }
2194
2195 /**
2196 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2197 * @vgpu: a vGPU
2198 * @off: register offset
2199 * @p_data: data will be returned to guest
2200 * @bytes: data length
2201 *
2202 * This function is used to emulate the GTT MMIO register read
2203 *
2204 * Returns:
2205 * Zero on success, error code if failed.
2206 */
intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2207 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2208 void *p_data, unsigned int bytes)
2209 {
2210 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2211 int ret;
2212
2213 if (bytes != 4 && bytes != 8)
2214 return -EINVAL;
2215
2216 off -= info->gtt_start_offset;
2217 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2218 return ret;
2219 }
2220
ggtt_invalidate_pte(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)2221 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2222 struct intel_gvt_gtt_entry *entry)
2223 {
2224 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2225 unsigned long pfn;
2226
2227 pfn = pte_ops->get_pfn(entry);
2228 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2229 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2230 pfn << PAGE_SHIFT);
2231 }
2232
emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2233 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2234 void *p_data, unsigned int bytes)
2235 {
2236 struct intel_gvt *gvt = vgpu->gvt;
2237 const struct intel_gvt_device_info *info = &gvt->device_info;
2238 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2239 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2240 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2241 unsigned long gma, gfn;
2242 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2243 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2244 dma_addr_t dma_addr;
2245 int ret;
2246 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2247 bool partial_update = false;
2248
2249 if (bytes != 4 && bytes != 8)
2250 return -EINVAL;
2251
2252 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2253
2254 /* the VM may configure the whole GM space when ballooning is used */
2255 if (!vgpu_gmadr_is_valid(vgpu, gma))
2256 return 0;
2257
2258 e.type = GTT_TYPE_GGTT_PTE;
2259 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2260 bytes);
2261
2262 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2263 * write, save the first 4 bytes in a list and update virtual
2264 * PTE. Only update shadow PTE when the second 4 bytes comes.
2265 */
2266 if (bytes < info->gtt_entry_size) {
2267 bool found = false;
2268
2269 list_for_each_entry_safe(pos, n,
2270 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2271 if (g_gtt_index == pos->offset >>
2272 info->gtt_entry_size_shift) {
2273 if (off != pos->offset) {
2274 /* the second partial part*/
2275 int last_off = pos->offset &
2276 (info->gtt_entry_size - 1);
2277
2278 memcpy((void *)&e.val64 + last_off,
2279 (void *)&pos->data + last_off,
2280 bytes);
2281
2282 list_del(&pos->list);
2283 kfree(pos);
2284 found = true;
2285 break;
2286 }
2287
2288 /* update of the first partial part */
2289 pos->data = e.val64;
2290 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2291 return 0;
2292 }
2293 }
2294
2295 if (!found) {
2296 /* the first partial part */
2297 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2298 if (!partial_pte)
2299 return -ENOMEM;
2300 partial_pte->offset = off;
2301 partial_pte->data = e.val64;
2302 list_add_tail(&partial_pte->list,
2303 &ggtt_mm->ggtt_mm.partial_pte_list);
2304 partial_update = true;
2305 }
2306 }
2307
2308 if (!partial_update && (ops->test_present(&e))) {
2309 gfn = ops->get_pfn(&e);
2310 m.val64 = e.val64;
2311 m.type = e.type;
2312
2313 /* one PTE update may be issued in multiple writes and the
2314 * first write may not construct a valid gfn
2315 */
2316 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2317 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2318 goto out;
2319 }
2320
2321 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2322 PAGE_SIZE, &dma_addr);
2323 if (ret) {
2324 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2325 /* guest driver may read/write the entry when partial
2326 * update the entry in this situation p2m will fail
2327 * settting the shadow entry to point to a scratch page
2328 */
2329 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2330 } else
2331 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2332 } else {
2333 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2334 ops->clear_present(&m);
2335 }
2336
2337 out:
2338 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2339
2340 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2341 ggtt_invalidate_pte(vgpu, &e);
2342
2343 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2344 ggtt_invalidate(gvt->gt);
2345 return 0;
2346 }
2347
2348 /*
2349 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2350 * @vgpu: a vGPU
2351 * @off: register offset
2352 * @p_data: data from guest write
2353 * @bytes: data length
2354 *
2355 * This function is used to emulate the GTT MMIO register write
2356 *
2357 * Returns:
2358 * Zero on success, error code if failed.
2359 */
intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2360 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2361 unsigned int off, void *p_data, unsigned int bytes)
2362 {
2363 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2364 int ret;
2365 struct intel_vgpu_submission *s = &vgpu->submission;
2366 struct intel_engine_cs *engine;
2367 int i;
2368
2369 if (bytes != 4 && bytes != 8)
2370 return -EINVAL;
2371
2372 off -= info->gtt_start_offset;
2373 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2374
2375 /* if ggtt of last submitted context is written,
2376 * that context is probably got unpinned.
2377 * Set last shadowed ctx to invalid.
2378 */
2379 for_each_engine(engine, vgpu->gvt->gt, i) {
2380 if (!s->last_ctx[i].valid)
2381 continue;
2382
2383 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2384 s->last_ctx[i].valid = false;
2385 }
2386 return ret;
2387 }
2388
alloc_scratch_pages(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)2389 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2390 enum intel_gvt_gtt_type type)
2391 {
2392 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2393 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2394 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2395 int page_entry_num = I915_GTT_PAGE_SIZE >>
2396 vgpu->gvt->device_info.gtt_entry_size_shift;
2397 void *scratch_pt;
2398 int i;
2399 struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2400 dma_addr_t daddr;
2401
2402 if (drm_WARN_ON(&i915->drm,
2403 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2404 return -EINVAL;
2405
2406 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2407 if (!scratch_pt) {
2408 gvt_vgpu_err("fail to allocate scratch page\n");
2409 return -ENOMEM;
2410 }
2411
2412 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2413 4096, PCI_DMA_BIDIRECTIONAL);
2414 if (dma_mapping_error(dev, daddr)) {
2415 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2416 __free_page(virt_to_page(scratch_pt));
2417 return -ENOMEM;
2418 }
2419 gtt->scratch_pt[type].page_mfn =
2420 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2421 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2422 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2423 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2424
2425 /* Build the tree by full filled the scratch pt with the entries which
2426 * point to the next level scratch pt or scratch page. The
2427 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2428 * 'type' pt.
2429 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2430 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2431 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2432 */
2433 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2434 struct intel_gvt_gtt_entry se;
2435
2436 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2437 se.type = get_entry_type(type - 1);
2438 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2439
2440 /* The entry parameters like present/writeable/cache type
2441 * set to the same as i915's scratch page tree.
2442 */
2443 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2444 if (type == GTT_TYPE_PPGTT_PDE_PT)
2445 se.val64 |= PPAT_CACHED;
2446
2447 for (i = 0; i < page_entry_num; i++)
2448 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2449 }
2450
2451 return 0;
2452 }
2453
release_scratch_page_tree(struct intel_vgpu * vgpu)2454 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2455 {
2456 int i;
2457 struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2458 dma_addr_t daddr;
2459
2460 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2461 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2462 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2463 I915_GTT_PAGE_SHIFT);
2464 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2465 __free_page(vgpu->gtt.scratch_pt[i].page);
2466 vgpu->gtt.scratch_pt[i].page = NULL;
2467 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2468 }
2469 }
2470
2471 return 0;
2472 }
2473
create_scratch_page_tree(struct intel_vgpu * vgpu)2474 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2475 {
2476 int i, ret;
2477
2478 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2479 ret = alloc_scratch_pages(vgpu, i);
2480 if (ret)
2481 goto err;
2482 }
2483
2484 return 0;
2485
2486 err:
2487 release_scratch_page_tree(vgpu);
2488 return ret;
2489 }
2490
2491 /**
2492 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2493 * @vgpu: a vGPU
2494 *
2495 * This function is used to initialize per-vGPU graphics memory virtualization
2496 * components.
2497 *
2498 * Returns:
2499 * Zero on success, error code if failed.
2500 */
intel_vgpu_init_gtt(struct intel_vgpu * vgpu)2501 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2502 {
2503 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2504
2505 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL);
2506
2507 INIT_LIST_HEAD(>t->ppgtt_mm_list_head);
2508 INIT_LIST_HEAD(>t->oos_page_list_head);
2509 INIT_LIST_HEAD(>t->post_shadow_list_head);
2510
2511 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2512 if (IS_ERR(gtt->ggtt_mm)) {
2513 gvt_vgpu_err("fail to create mm for ggtt.\n");
2514 return PTR_ERR(gtt->ggtt_mm);
2515 }
2516
2517 intel_vgpu_reset_ggtt(vgpu, false);
2518
2519 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list);
2520
2521 return create_scratch_page_tree(vgpu);
2522 }
2523
intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu * vgpu)2524 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2525 {
2526 struct list_head *pos, *n;
2527 struct intel_vgpu_mm *mm;
2528
2529 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2530 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2531 intel_vgpu_destroy_mm(mm);
2532 }
2533
2534 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2535 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2536
2537 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2538 gvt_err("Why we still has spt not freed?\n");
2539 ppgtt_free_all_spt(vgpu);
2540 }
2541 }
2542
intel_vgpu_destroy_ggtt_mm(struct intel_vgpu * vgpu)2543 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2544 {
2545 struct intel_gvt_partial_pte *pos, *next;
2546
2547 list_for_each_entry_safe(pos, next,
2548 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2549 list) {
2550 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2551 pos->offset, pos->data);
2552 kfree(pos);
2553 }
2554 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2555 vgpu->gtt.ggtt_mm = NULL;
2556 }
2557
2558 /**
2559 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2560 * @vgpu: a vGPU
2561 *
2562 * This function is used to clean up per-vGPU graphics memory virtualization
2563 * components.
2564 *
2565 * Returns:
2566 * Zero on success, error code if failed.
2567 */
intel_vgpu_clean_gtt(struct intel_vgpu * vgpu)2568 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2569 {
2570 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2571 intel_vgpu_destroy_ggtt_mm(vgpu);
2572 release_scratch_page_tree(vgpu);
2573 }
2574
clean_spt_oos(struct intel_gvt * gvt)2575 static void clean_spt_oos(struct intel_gvt *gvt)
2576 {
2577 struct intel_gvt_gtt *gtt = &gvt->gtt;
2578 struct list_head *pos, *n;
2579 struct intel_vgpu_oos_page *oos_page;
2580
2581 WARN(!list_empty(>t->oos_page_use_list_head),
2582 "someone is still using oos page\n");
2583
2584 list_for_each_safe(pos, n, >t->oos_page_free_list_head) {
2585 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2586 list_del(&oos_page->list);
2587 free_page((unsigned long)oos_page->mem);
2588 kfree(oos_page);
2589 }
2590 }
2591
setup_spt_oos(struct intel_gvt * gvt)2592 static int setup_spt_oos(struct intel_gvt *gvt)
2593 {
2594 struct intel_gvt_gtt *gtt = &gvt->gtt;
2595 struct intel_vgpu_oos_page *oos_page;
2596 int i;
2597 int ret;
2598
2599 INIT_LIST_HEAD(>t->oos_page_free_list_head);
2600 INIT_LIST_HEAD(>t->oos_page_use_list_head);
2601
2602 for (i = 0; i < preallocated_oos_pages; i++) {
2603 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2604 if (!oos_page) {
2605 ret = -ENOMEM;
2606 goto fail;
2607 }
2608 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2609 if (!oos_page->mem) {
2610 ret = -ENOMEM;
2611 kfree(oos_page);
2612 goto fail;
2613 }
2614
2615 INIT_LIST_HEAD(&oos_page->list);
2616 INIT_LIST_HEAD(&oos_page->vm_list);
2617 oos_page->id = i;
2618 list_add_tail(&oos_page->list, >t->oos_page_free_list_head);
2619 }
2620
2621 gvt_dbg_mm("%d oos pages preallocated\n", i);
2622
2623 return 0;
2624 fail:
2625 clean_spt_oos(gvt);
2626 return ret;
2627 }
2628
2629 /**
2630 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2631 * @vgpu: a vGPU
2632 * @pdps: pdp root array
2633 *
2634 * This function is used to find a PPGTT mm object from mm object pool
2635 *
2636 * Returns:
2637 * pointer to mm object on success, NULL if failed.
2638 */
intel_vgpu_find_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2639 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2640 u64 pdps[])
2641 {
2642 struct intel_vgpu_mm *mm;
2643 struct list_head *pos;
2644
2645 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2646 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2647
2648 switch (mm->ppgtt_mm.root_entry_type) {
2649 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2650 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2651 return mm;
2652 break;
2653 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2654 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2655 sizeof(mm->ppgtt_mm.guest_pdps)))
2656 return mm;
2657 break;
2658 default:
2659 GEM_BUG_ON(1);
2660 }
2661 }
2662 return NULL;
2663 }
2664
2665 /**
2666 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2667 * @vgpu: a vGPU
2668 * @root_entry_type: ppgtt root entry type
2669 * @pdps: guest pdps
2670 *
2671 * This function is used to find or create a PPGTT mm object from a guest.
2672 *
2673 * Returns:
2674 * Zero on success, negative error code if failed.
2675 */
intel_vgpu_get_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])2676 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2677 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2678 {
2679 struct intel_vgpu_mm *mm;
2680
2681 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2682 if (mm) {
2683 intel_vgpu_mm_get(mm);
2684 } else {
2685 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2686 if (IS_ERR(mm))
2687 gvt_vgpu_err("fail to create mm\n");
2688 }
2689 return mm;
2690 }
2691
2692 /**
2693 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2694 * @vgpu: a vGPU
2695 * @pdps: guest pdps
2696 *
2697 * This function is used to find a PPGTT mm object from a guest and destroy it.
2698 *
2699 * Returns:
2700 * Zero on success, negative error code if failed.
2701 */
intel_vgpu_put_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2702 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2703 {
2704 struct intel_vgpu_mm *mm;
2705
2706 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2707 if (!mm) {
2708 gvt_vgpu_err("fail to find ppgtt instance.\n");
2709 return -EINVAL;
2710 }
2711 intel_vgpu_mm_put(mm);
2712 return 0;
2713 }
2714
2715 /**
2716 * intel_gvt_init_gtt - initialize mm components of a GVT device
2717 * @gvt: GVT device
2718 *
2719 * This function is called at the initialization stage, to initialize
2720 * the mm components of a GVT device.
2721 *
2722 * Returns:
2723 * zero on success, negative error code if failed.
2724 */
intel_gvt_init_gtt(struct intel_gvt * gvt)2725 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2726 {
2727 int ret;
2728 void *page;
2729 struct device *dev = gvt->gt->i915->drm.dev;
2730 dma_addr_t daddr;
2731
2732 gvt_dbg_core("init gtt\n");
2733
2734 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2735 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2736
2737 page = (void *)get_zeroed_page(GFP_KERNEL);
2738 if (!page) {
2739 gvt_err("fail to allocate scratch ggtt page\n");
2740 return -ENOMEM;
2741 }
2742
2743 daddr = dma_map_page(dev, virt_to_page(page), 0,
2744 4096, PCI_DMA_BIDIRECTIONAL);
2745 if (dma_mapping_error(dev, daddr)) {
2746 gvt_err("fail to dmamap scratch ggtt page\n");
2747 __free_page(virt_to_page(page));
2748 return -ENOMEM;
2749 }
2750
2751 gvt->gtt.scratch_page = virt_to_page(page);
2752 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2753
2754 if (enable_out_of_sync) {
2755 ret = setup_spt_oos(gvt);
2756 if (ret) {
2757 gvt_err("fail to initialize SPT oos\n");
2758 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2759 __free_page(gvt->gtt.scratch_page);
2760 return ret;
2761 }
2762 }
2763 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2764 mutex_init(&gvt->gtt.ppgtt_mm_lock);
2765 return 0;
2766 }
2767
2768 /**
2769 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2770 * @gvt: GVT device
2771 *
2772 * This function is called at the driver unloading stage, to clean up the
2773 * the mm components of a GVT device.
2774 *
2775 */
intel_gvt_clean_gtt(struct intel_gvt * gvt)2776 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2777 {
2778 struct device *dev = gvt->gt->i915->drm.dev;
2779 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2780 I915_GTT_PAGE_SHIFT);
2781
2782 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2783
2784 __free_page(gvt->gtt.scratch_page);
2785
2786 if (enable_out_of_sync)
2787 clean_spt_oos(gvt);
2788 }
2789
2790 /**
2791 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2792 * @vgpu: a vGPU
2793 *
2794 * This function is called when invalidate all PPGTT instances of a vGPU.
2795 *
2796 */
intel_vgpu_invalidate_ppgtt(struct intel_vgpu * vgpu)2797 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2798 {
2799 struct list_head *pos, *n;
2800 struct intel_vgpu_mm *mm;
2801
2802 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2803 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2804 if (mm->type == INTEL_GVT_MM_PPGTT) {
2805 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2806 list_del_init(&mm->ppgtt_mm.lru_list);
2807 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2808 if (mm->ppgtt_mm.shadowed)
2809 invalidate_ppgtt_mm(mm);
2810 }
2811 }
2812 }
2813
2814 /**
2815 * intel_vgpu_reset_ggtt - reset the GGTT entry
2816 * @vgpu: a vGPU
2817 * @invalidate_old: invalidate old entries
2818 *
2819 * This function is called at the vGPU create stage
2820 * to reset all the GGTT entries.
2821 *
2822 */
intel_vgpu_reset_ggtt(struct intel_vgpu * vgpu,bool invalidate_old)2823 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2824 {
2825 struct intel_gvt *gvt = vgpu->gvt;
2826 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2827 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2828 struct intel_gvt_gtt_entry old_entry;
2829 u32 index;
2830 u32 num_entries;
2831
2832 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2833 pte_ops->set_present(&entry);
2834
2835 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2836 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2837 while (num_entries--) {
2838 if (invalidate_old) {
2839 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2840 ggtt_invalidate_pte(vgpu, &old_entry);
2841 }
2842 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2843 }
2844
2845 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2846 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2847 while (num_entries--) {
2848 if (invalidate_old) {
2849 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2850 ggtt_invalidate_pte(vgpu, &old_entry);
2851 }
2852 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2853 }
2854
2855 ggtt_invalidate(gvt->gt);
2856 }
2857
2858 /**
2859 * intel_vgpu_reset_gtt - reset the all GTT related status
2860 * @vgpu: a vGPU
2861 *
2862 * This function is called from vfio core to reset reset all
2863 * GTT related status, including GGTT, PPGTT, scratch page.
2864 *
2865 */
intel_vgpu_reset_gtt(struct intel_vgpu * vgpu)2866 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2867 {
2868 /* Shadow pages are only created when there is no page
2869 * table tracking data, so remove page tracking data after
2870 * removing the shadow pages.
2871 */
2872 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2873 intel_vgpu_reset_ggtt(vgpu, true);
2874 }
2875
2876 /**
2877 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2878 * @gvt: intel gvt device
2879 *
2880 * This function is called at driver resume stage to restore
2881 * GGTT entries of every vGPU.
2882 *
2883 */
intel_gvt_restore_ggtt(struct intel_gvt * gvt)2884 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2885 {
2886 struct intel_vgpu *vgpu;
2887 struct intel_vgpu_mm *mm;
2888 int id;
2889 gen8_pte_t pte;
2890 u32 idx, num_low, num_hi, offset;
2891
2892 /* Restore dirty host ggtt for all vGPUs */
2893 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2894 mm = vgpu->gtt.ggtt_mm;
2895
2896 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2897 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2898 for (idx = 0; idx < num_low; idx++) {
2899 pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2900 if (pte & _PAGE_PRESENT)
2901 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2902 }
2903
2904 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2905 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2906 for (idx = 0; idx < num_hi; idx++) {
2907 pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2908 if (pte & _PAGE_PRESENT)
2909 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2910 }
2911 }
2912 }
2913