1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_context.h"
39 #include "gem/i915_gem_pm.h"
40 #include "gt/intel_context.h"
41 
42 #include "i915_drv.h"
43 #include "gvt.h"
44 
45 #define RING_CTX_OFF(x) \
46 	offsetof(struct execlist_ring_context, x)
47 
set_context_pdp_root_pointer(struct execlist_ring_context * ring_context,u32 pdp[8])48 static void set_context_pdp_root_pointer(
49 		struct execlist_ring_context *ring_context,
50 		u32 pdp[8])
51 {
52 	int i;
53 
54 	for (i = 0; i < 8; i++)
55 		ring_context->pdps[i].val = pdp[7 - i];
56 }
57 
update_shadow_pdps(struct intel_vgpu_workload * workload)58 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
59 {
60 	struct drm_i915_gem_object *ctx_obj =
61 		workload->req->hw_context->state->obj;
62 	struct execlist_ring_context *shadow_ring_context;
63 	struct page *page;
64 
65 	if (WARN_ON(!workload->shadow_mm))
66 		return;
67 
68 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69 		return;
70 
71 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72 	shadow_ring_context = kmap(page);
73 	set_context_pdp_root_pointer(shadow_ring_context,
74 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75 	kunmap(page);
76 }
77 
78 /*
79  * when populating shadow ctx from guest, we should not overrride oa related
80  * registers, so that they will not be overlapped by guest oa configs. Thus
81  * made it possible to capture oa data from host for both host and guests.
82  */
sr_oa_regs(struct intel_vgpu_workload * workload,u32 * reg_state,bool save)83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84 		u32 *reg_state, bool save)
85 {
86 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
88 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
89 	int i = 0;
90 	u32 flex_mmio[] = {
91 		i915_mmio_reg_offset(EU_PERF_CNTL0),
92 		i915_mmio_reg_offset(EU_PERF_CNTL1),
93 		i915_mmio_reg_offset(EU_PERF_CNTL2),
94 		i915_mmio_reg_offset(EU_PERF_CNTL3),
95 		i915_mmio_reg_offset(EU_PERF_CNTL4),
96 		i915_mmio_reg_offset(EU_PERF_CNTL5),
97 		i915_mmio_reg_offset(EU_PERF_CNTL6),
98 	};
99 
100 	if (workload->ring_id != RCS0)
101 		return;
102 
103 	if (save) {
104 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105 
106 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107 			u32 state_offset = ctx_flexeu0 + i * 2;
108 
109 			workload->flex_mmio[i] = reg_state[state_offset + 1];
110 		}
111 	} else {
112 		reg_state[ctx_oactxctrl] =
113 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115 
116 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117 			u32 state_offset = ctx_flexeu0 + i * 2;
118 			u32 mmio = flex_mmio[i];
119 
120 			reg_state[state_offset] = mmio;
121 			reg_state[state_offset + 1] = workload->flex_mmio[i];
122 		}
123 	}
124 }
125 
populate_shadow_context(struct intel_vgpu_workload * workload)126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128 	struct intel_vgpu *vgpu = workload->vgpu;
129 	struct intel_gvt *gvt = vgpu->gvt;
130 	int ring_id = workload->ring_id;
131 	struct drm_i915_gem_object *ctx_obj =
132 		workload->req->hw_context->state->obj;
133 	struct execlist_ring_context *shadow_ring_context;
134 	struct page *page;
135 	void *dst;
136 	unsigned long context_gpa, context_page_num;
137 	int i;
138 
139 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140 	shadow_ring_context = kmap(page);
141 
142 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148 					      + RING_CTX_OFF(name.val),\
149 					      &shadow_ring_context->name.val, 4);\
150 		shadow_ring_context->name.val |= 0xffff << 16;\
151 	}
152 
153 	COPY_REG_MASKED(ctx_ctrl);
154 	COPY_REG(ctx_timestamp);
155 
156 	if (ring_id == RCS0) {
157 		COPY_REG(bb_per_ctx_ptr);
158 		COPY_REG(rcs_indirect_ctx);
159 		COPY_REG(rcs_indirect_ctx_offset);
160 	}
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163 
164 	intel_gvt_hypervisor_read_gpa(vgpu,
165 			workload->ring_context_gpa +
166 			sizeof(*shadow_ring_context),
167 			(void *)shadow_ring_context +
168 			sizeof(*shadow_ring_context),
169 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170 
171 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172 	kunmap(page);
173 
174 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175 		return 0;
176 
177 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
178 			workload->ctx_desc.lrca);
179 
180 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
181 
182 	context_page_num = context_page_num >> PAGE_SHIFT;
183 
184 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
185 		context_page_num = 19;
186 
187 	i = 2;
188 	while (i < context_page_num) {
189 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190 				(u32)((workload->ctx_desc.lrca + i) <<
191 				I915_GTT_PAGE_SHIFT));
192 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193 			gvt_vgpu_err("Invalid guest context descriptor\n");
194 			return -EFAULT;
195 		}
196 
197 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
198 		dst = kmap(page);
199 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200 				I915_GTT_PAGE_SIZE);
201 		kunmap(page);
202 		i++;
203 	}
204 	return 0;
205 }
206 
is_gvt_request(struct i915_request * req)207 static inline bool is_gvt_request(struct i915_request *req)
208 {
209 	return i915_gem_context_force_single_submission(req->gem_context);
210 }
211 
save_ring_hw_state(struct intel_vgpu * vgpu,int ring_id)212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
213 {
214 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
215 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
216 	i915_reg_t reg;
217 
218 	reg = RING_INSTDONE(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 	reg = RING_ACTHD(ring_base);
221 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222 	reg = RING_ACTHD_UDW(ring_base);
223 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
224 }
225 
shadow_context_status_change(struct notifier_block * nb,unsigned long action,void * data)226 static int shadow_context_status_change(struct notifier_block *nb,
227 		unsigned long action, void *data)
228 {
229 	struct i915_request *req = data;
230 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
231 				shadow_ctx_notifier_block[req->engine->id]);
232 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
233 	enum intel_engine_id ring_id = req->engine->id;
234 	struct intel_vgpu_workload *workload;
235 	unsigned long flags;
236 
237 	if (!is_gvt_request(req)) {
238 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
239 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
240 		    scheduler->engine_owner[ring_id]) {
241 			/* Switch ring from vGPU to host. */
242 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
243 					      NULL, ring_id);
244 			scheduler->engine_owner[ring_id] = NULL;
245 		}
246 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247 
248 		return NOTIFY_OK;
249 	}
250 
251 	workload = scheduler->current_workload[ring_id];
252 	if (unlikely(!workload))
253 		return NOTIFY_OK;
254 
255 	switch (action) {
256 	case INTEL_CONTEXT_SCHEDULE_IN:
257 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
258 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
259 			/* Switch ring from host to vGPU or vGPU to vGPU. */
260 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
261 					      workload->vgpu, ring_id);
262 			scheduler->engine_owner[ring_id] = workload->vgpu;
263 		} else
264 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
265 				      ring_id, workload->vgpu->id);
266 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
267 		atomic_set(&workload->shadow_ctx_active, 1);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_OUT:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		atomic_set(&workload->shadow_ctx_active, 0);
272 		break;
273 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
274 		save_ring_hw_state(workload->vgpu, ring_id);
275 		break;
276 	default:
277 		WARN_ON(1);
278 		return NOTIFY_OK;
279 	}
280 	wake_up(&workload->shadow_ctx_status_wq);
281 	return NOTIFY_OK;
282 }
283 
284 static void
shadow_context_descriptor_update(struct intel_context * ce,struct intel_vgpu_workload * workload)285 shadow_context_descriptor_update(struct intel_context *ce,
286 				 struct intel_vgpu_workload *workload)
287 {
288 	u64 desc = ce->lrc_desc;
289 
290 	/*
291 	 * Update bits 0-11 of the context descriptor which includes flags
292 	 * like GEN8_CTX_* cached in desc_template
293 	 */
294 	desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
295 	desc |= workload->ctx_desc.addressing_mode <<
296 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
297 
298 	ce->lrc_desc = desc;
299 }
300 
copy_workload_to_ring_buffer(struct intel_vgpu_workload * workload)301 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
302 {
303 	struct intel_vgpu *vgpu = workload->vgpu;
304 	struct i915_request *req = workload->req;
305 	void *shadow_ring_buffer_va;
306 	u32 *cs;
307 	int err;
308 
309 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
310 		intel_vgpu_restore_inhibit_context(vgpu, req);
311 
312 	/*
313 	 * To track whether a request has started on HW, we can emit a
314 	 * breadcrumb at the beginning of the request and check its
315 	 * timeline's HWSP to see if the breadcrumb has advanced past the
316 	 * start of this request. Actually, the request must have the
317 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
318 	 * scheduler might get a wrong state of it during reset. Since the
319 	 * requests from gvt always set the has_init_breadcrumb flag, here
320 	 * need to do the emit_init_breadcrumb for all the requests.
321 	 */
322 	if (req->engine->emit_init_breadcrumb) {
323 		err = req->engine->emit_init_breadcrumb(req);
324 		if (err) {
325 			gvt_vgpu_err("fail to emit init breadcrumb\n");
326 			return err;
327 		}
328 	}
329 
330 	/* allocate shadow ring buffer */
331 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
332 	if (IS_ERR(cs)) {
333 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
334 			workload->rb_len);
335 		return PTR_ERR(cs);
336 	}
337 
338 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
339 
340 	/* get shadow ring buffer va */
341 	workload->shadow_ring_buffer_va = cs;
342 
343 	memcpy(cs, shadow_ring_buffer_va,
344 			workload->rb_len);
345 
346 	cs += workload->rb_len / sizeof(u32);
347 	intel_ring_advance(workload->req, cs);
348 
349 	return 0;
350 }
351 
release_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)352 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
353 {
354 	if (!wa_ctx->indirect_ctx.obj)
355 		return;
356 
357 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
358 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
359 
360 	wa_ctx->indirect_ctx.obj = NULL;
361 	wa_ctx->indirect_ctx.shadow_va = NULL;
362 }
363 
set_context_ppgtt_from_shadow(struct intel_vgpu_workload * workload,struct i915_gem_context * ctx)364 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
365 					  struct i915_gem_context *ctx)
366 {
367 	struct intel_vgpu_mm *mm = workload->shadow_mm;
368 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm);
369 	int i = 0;
370 
371 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
372 		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
373 	} else {
374 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
375 			struct i915_page_directory * const pd =
376 				i915_pd_entry(ppgtt->pd, i);
377 
378 			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
379 		}
380 	}
381 }
382 
383 static int
intel_gvt_workload_req_alloc(struct intel_vgpu_workload * workload)384 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
385 {
386 	struct intel_vgpu *vgpu = workload->vgpu;
387 	struct intel_vgpu_submission *s = &vgpu->submission;
388 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
389 	struct i915_request *rq;
390 
391 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
392 
393 	if (workload->req)
394 		return 0;
395 
396 	rq = i915_request_create(s->shadow[workload->ring_id]);
397 	if (IS_ERR(rq)) {
398 		gvt_vgpu_err("fail to allocate gem request\n");
399 		return PTR_ERR(rq);
400 	}
401 
402 	workload->req = i915_request_get(rq);
403 	return 0;
404 }
405 
406 /**
407  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
408  * shadow it as well, include ringbuffer,wa_ctx and ctx.
409  * @workload: an abstract entity for each execlist submission.
410  *
411  * This function is called before the workload submitting to i915, to make
412  * sure the content of the workload is valid.
413  */
intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload * workload)414 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
415 {
416 	struct intel_vgpu *vgpu = workload->vgpu;
417 	struct intel_vgpu_submission *s = &vgpu->submission;
418 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
419 	int ret;
420 
421 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
422 
423 	if (workload->shadow)
424 		return 0;
425 
426 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
427 		shadow_context_descriptor_update(s->shadow[workload->ring_id],
428 						 workload);
429 
430 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
431 	if (ret)
432 		return ret;
433 
434 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
435 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
436 		if (ret)
437 			goto err_shadow;
438 	}
439 
440 	workload->shadow = true;
441 	return 0;
442 err_shadow:
443 	release_shadow_wa_ctx(&workload->wa_ctx);
444 	return ret;
445 }
446 
447 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
448 
prepare_shadow_batch_buffer(struct intel_vgpu_workload * workload)449 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
450 {
451 	struct intel_gvt *gvt = workload->vgpu->gvt;
452 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
453 	struct intel_vgpu_shadow_bb *bb;
454 	int ret;
455 
456 	list_for_each_entry(bb, &workload->shadow_bb, list) {
457 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
458 		 * is only updated into ring_scan_buffer, not real ring address
459 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
460 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
461 		 * in copy_workload_to_ring_buffer.
462 		 */
463 
464 		if (bb->bb_offset)
465 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
466 				+ bb->bb_offset;
467 
468 		if (bb->ppgtt) {
469 			/* for non-priv bb, scan&shadow is only for
470 			 * debugging purpose, so the content of shadow bb
471 			 * is the same as original bb. Therefore,
472 			 * here, rather than switch to shadow bb's gma
473 			 * address, we directly use original batch buffer's
474 			 * gma address, and send original bb to hardware
475 			 * directly
476 			 */
477 			if (bb->clflush & CLFLUSH_AFTER) {
478 				drm_clflush_virt_range(bb->va,
479 						bb->obj->base.size);
480 				bb->clflush &= ~CLFLUSH_AFTER;
481 			}
482 			i915_gem_object_finish_access(bb->obj);
483 			bb->accessing = false;
484 
485 		} else {
486 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
487 					NULL, 0, 0, 0);
488 			if (IS_ERR(bb->vma)) {
489 				ret = PTR_ERR(bb->vma);
490 				goto err;
491 			}
492 
493 			/* relocate shadow batch buffer */
494 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
495 			if (gmadr_bytes == 8)
496 				bb->bb_start_cmd_va[2] = 0;
497 
498 			/* No one is going to touch shadow bb from now on. */
499 			if (bb->clflush & CLFLUSH_AFTER) {
500 				drm_clflush_virt_range(bb->va,
501 						bb->obj->base.size);
502 				bb->clflush &= ~CLFLUSH_AFTER;
503 			}
504 
505 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
506 								false);
507 			if (ret)
508 				goto err;
509 
510 			ret = i915_vma_move_to_active(bb->vma,
511 						      workload->req,
512 						      0);
513 			if (ret)
514 				goto err;
515 
516 			i915_gem_object_finish_access(bb->obj);
517 			bb->accessing = false;
518 		}
519 	}
520 	return 0;
521 err:
522 	release_shadow_batch_buffer(workload);
523 	return ret;
524 }
525 
update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx * wa_ctx)526 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
527 {
528 	struct intel_vgpu_workload *workload =
529 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
530 	struct i915_request *rq = workload->req;
531 	struct execlist_ring_context *shadow_ring_context =
532 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
533 
534 	shadow_ring_context->bb_per_ctx_ptr.val =
535 		(shadow_ring_context->bb_per_ctx_ptr.val &
536 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
537 	shadow_ring_context->rcs_indirect_ctx.val =
538 		(shadow_ring_context->rcs_indirect_ctx.val &
539 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
540 }
541 
prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)542 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
543 {
544 	struct i915_vma *vma;
545 	unsigned char *per_ctx_va =
546 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
547 		wa_ctx->indirect_ctx.size;
548 
549 	if (wa_ctx->indirect_ctx.size == 0)
550 		return 0;
551 
552 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
553 				       0, CACHELINE_BYTES, 0);
554 	if (IS_ERR(vma))
555 		return PTR_ERR(vma);
556 
557 	/* FIXME: we are not tracking our pinned VMA leaving it
558 	 * up to the core to fix up the stray pin_count upon
559 	 * free.
560 	 */
561 
562 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
563 
564 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
565 	memset(per_ctx_va, 0, CACHELINE_BYTES);
566 
567 	update_wa_ctx_2_shadow_ctx(wa_ctx);
568 	return 0;
569 }
570 
update_vreg_in_ctx(struct intel_vgpu_workload * workload)571 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
572 {
573 	struct intel_vgpu *vgpu = workload->vgpu;
574 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
575 	u32 ring_base;
576 
577 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
578 	vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start;
579 }
580 
release_shadow_batch_buffer(struct intel_vgpu_workload * workload)581 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
582 {
583 	struct intel_vgpu *vgpu = workload->vgpu;
584 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
585 	struct intel_vgpu_shadow_bb *bb, *pos;
586 
587 	if (list_empty(&workload->shadow_bb))
588 		return;
589 
590 	bb = list_first_entry(&workload->shadow_bb,
591 			struct intel_vgpu_shadow_bb, list);
592 
593 	mutex_lock(&dev_priv->drm.struct_mutex);
594 
595 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
596 		if (bb->obj) {
597 			if (bb->accessing)
598 				i915_gem_object_finish_access(bb->obj);
599 
600 			if (bb->va && !IS_ERR(bb->va))
601 				i915_gem_object_unpin_map(bb->obj);
602 
603 			if (bb->vma && !IS_ERR(bb->vma)) {
604 				i915_vma_unpin(bb->vma);
605 				i915_vma_close(bb->vma);
606 			}
607 			i915_gem_object_put(bb->obj);
608 		}
609 		list_del(&bb->list);
610 		kfree(bb);
611 	}
612 
613 	mutex_unlock(&dev_priv->drm.struct_mutex);
614 }
615 
prepare_workload(struct intel_vgpu_workload * workload)616 static int prepare_workload(struct intel_vgpu_workload *workload)
617 {
618 	struct intel_vgpu *vgpu = workload->vgpu;
619 	struct intel_vgpu_submission *s = &vgpu->submission;
620 	int ring = workload->ring_id;
621 	int ret = 0;
622 
623 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
624 	if (ret) {
625 		gvt_vgpu_err("fail to vgpu pin mm\n");
626 		return ret;
627 	}
628 
629 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
630 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
631 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
632 		return -EINVAL;
633 	}
634 
635 	update_shadow_pdps(workload);
636 
637 	set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context);
638 
639 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
640 	if (ret) {
641 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
642 		goto err_unpin_mm;
643 	}
644 
645 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
646 	if (ret) {
647 		gvt_vgpu_err("fail to flush post shadow\n");
648 		goto err_unpin_mm;
649 	}
650 
651 	ret = copy_workload_to_ring_buffer(workload);
652 	if (ret) {
653 		gvt_vgpu_err("fail to generate request\n");
654 		goto err_unpin_mm;
655 	}
656 
657 	ret = prepare_shadow_batch_buffer(workload);
658 	if (ret) {
659 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
660 		goto err_unpin_mm;
661 	}
662 
663 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
664 	if (ret) {
665 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
666 		goto err_shadow_batch;
667 	}
668 
669 	if (workload->prepare) {
670 		ret = workload->prepare(workload);
671 		if (ret)
672 			goto err_shadow_wa_ctx;
673 	}
674 
675 	return 0;
676 err_shadow_wa_ctx:
677 	release_shadow_wa_ctx(&workload->wa_ctx);
678 err_shadow_batch:
679 	release_shadow_batch_buffer(workload);
680 err_unpin_mm:
681 	intel_vgpu_unpin_mm(workload->shadow_mm);
682 	return ret;
683 }
684 
dispatch_workload(struct intel_vgpu_workload * workload)685 static int dispatch_workload(struct intel_vgpu_workload *workload)
686 {
687 	struct intel_vgpu *vgpu = workload->vgpu;
688 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
689 	struct i915_request *rq;
690 	int ring_id = workload->ring_id;
691 	int ret;
692 
693 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
694 		ring_id, workload);
695 
696 	mutex_lock(&vgpu->vgpu_lock);
697 	mutex_lock(&dev_priv->drm.struct_mutex);
698 
699 	ret = intel_gvt_workload_req_alloc(workload);
700 	if (ret)
701 		goto err_req;
702 
703 	ret = intel_gvt_scan_and_shadow_workload(workload);
704 	if (ret)
705 		goto out;
706 
707 	ret = populate_shadow_context(workload);
708 	if (ret) {
709 		release_shadow_wa_ctx(&workload->wa_ctx);
710 		goto out;
711 	}
712 
713 	ret = prepare_workload(workload);
714 out:
715 	if (ret) {
716 		/* We might still need to add request with
717 		 * clean ctx to retire it properly..
718 		 */
719 		rq = fetch_and_zero(&workload->req);
720 		i915_request_put(rq);
721 	}
722 
723 	if (!IS_ERR_OR_NULL(workload->req)) {
724 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
725 				ring_id, workload->req);
726 		i915_request_add(workload->req);
727 		workload->dispatched = true;
728 	}
729 err_req:
730 	if (ret)
731 		workload->status = ret;
732 	mutex_unlock(&dev_priv->drm.struct_mutex);
733 	mutex_unlock(&vgpu->vgpu_lock);
734 	return ret;
735 }
736 
pick_next_workload(struct intel_gvt * gvt,int ring_id)737 static struct intel_vgpu_workload *pick_next_workload(
738 		struct intel_gvt *gvt, int ring_id)
739 {
740 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
741 	struct intel_vgpu_workload *workload = NULL;
742 
743 	mutex_lock(&gvt->sched_lock);
744 
745 	/*
746 	 * no current vgpu / will be scheduled out / no workload
747 	 * bail out
748 	 */
749 	if (!scheduler->current_vgpu) {
750 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
751 		goto out;
752 	}
753 
754 	if (scheduler->need_reschedule) {
755 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
756 		goto out;
757 	}
758 
759 	if (!scheduler->current_vgpu->active ||
760 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
761 		goto out;
762 
763 	/*
764 	 * still have current workload, maybe the workload disptacher
765 	 * fail to submit it for some reason, resubmit it.
766 	 */
767 	if (scheduler->current_workload[ring_id]) {
768 		workload = scheduler->current_workload[ring_id];
769 		gvt_dbg_sched("ring id %d still have current workload %p\n",
770 				ring_id, workload);
771 		goto out;
772 	}
773 
774 	/*
775 	 * pick a workload as current workload
776 	 * once current workload is set, schedule policy routines
777 	 * will wait the current workload is finished when trying to
778 	 * schedule out a vgpu.
779 	 */
780 	scheduler->current_workload[ring_id] = container_of(
781 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
782 			struct intel_vgpu_workload, list);
783 
784 	workload = scheduler->current_workload[ring_id];
785 
786 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
787 
788 	atomic_inc(&workload->vgpu->submission.running_workload_num);
789 out:
790 	mutex_unlock(&gvt->sched_lock);
791 	return workload;
792 }
793 
update_guest_context(struct intel_vgpu_workload * workload)794 static void update_guest_context(struct intel_vgpu_workload *workload)
795 {
796 	struct i915_request *rq = workload->req;
797 	struct intel_vgpu *vgpu = workload->vgpu;
798 	struct intel_gvt *gvt = vgpu->gvt;
799 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
800 	struct execlist_ring_context *shadow_ring_context;
801 	struct page *page;
802 	void *src;
803 	unsigned long context_gpa, context_page_num;
804 	int i;
805 	struct drm_i915_private *dev_priv = gvt->dev_priv;
806 	u32 ring_base;
807 	u32 head, tail;
808 	u16 wrap_count;
809 
810 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
811 		      workload->ctx_desc.lrca);
812 
813 	head = workload->rb_head;
814 	tail = workload->rb_tail;
815 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
816 
817 	if (tail < head) {
818 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
819 			wrap_count = 0;
820 		else
821 			wrap_count += 1;
822 	}
823 
824 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
825 
826 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
827 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
828 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
829 
830 	context_page_num = rq->engine->context_size;
831 	context_page_num = context_page_num >> PAGE_SHIFT;
832 
833 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
834 		context_page_num = 19;
835 
836 	i = 2;
837 
838 	while (i < context_page_num) {
839 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
840 				(u32)((workload->ctx_desc.lrca + i) <<
841 					I915_GTT_PAGE_SHIFT));
842 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
843 			gvt_vgpu_err("invalid guest context descriptor\n");
844 			return;
845 		}
846 
847 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
848 		src = kmap(page);
849 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
850 				I915_GTT_PAGE_SIZE);
851 		kunmap(page);
852 		i++;
853 	}
854 
855 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
856 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
857 
858 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
859 	shadow_ring_context = kmap(page);
860 
861 #define COPY_REG(name) \
862 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
863 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
864 
865 	COPY_REG(ctx_ctrl);
866 	COPY_REG(ctx_timestamp);
867 
868 #undef COPY_REG
869 
870 	intel_gvt_hypervisor_write_gpa(vgpu,
871 			workload->ring_context_gpa +
872 			sizeof(*shadow_ring_context),
873 			(void *)shadow_ring_context +
874 			sizeof(*shadow_ring_context),
875 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
876 
877 	kunmap(page);
878 }
879 
intel_vgpu_clean_workloads(struct intel_vgpu * vgpu,intel_engine_mask_t engine_mask)880 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
881 				intel_engine_mask_t engine_mask)
882 {
883 	struct intel_vgpu_submission *s = &vgpu->submission;
884 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
885 	struct intel_engine_cs *engine;
886 	struct intel_vgpu_workload *pos, *n;
887 	intel_engine_mask_t tmp;
888 
889 	/* free the unsubmited workloads in the queues. */
890 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
891 		list_for_each_entry_safe(pos, n,
892 			&s->workload_q_head[engine->id], list) {
893 			list_del_init(&pos->list);
894 			intel_vgpu_destroy_workload(pos);
895 		}
896 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
897 	}
898 }
899 
complete_current_workload(struct intel_gvt * gvt,int ring_id)900 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
901 {
902 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
903 	struct intel_vgpu_workload *workload =
904 		scheduler->current_workload[ring_id];
905 	struct intel_vgpu *vgpu = workload->vgpu;
906 	struct intel_vgpu_submission *s = &vgpu->submission;
907 	struct i915_request *rq = workload->req;
908 	int event;
909 
910 	mutex_lock(&vgpu->vgpu_lock);
911 	mutex_lock(&gvt->sched_lock);
912 
913 	/* For the workload w/ request, needs to wait for the context
914 	 * switch to make sure request is completed.
915 	 * For the workload w/o request, directly complete the workload.
916 	 */
917 	if (rq) {
918 		wait_event(workload->shadow_ctx_status_wq,
919 			   !atomic_read(&workload->shadow_ctx_active));
920 
921 		/* If this request caused GPU hang, req->fence.error will
922 		 * be set to -EIO. Use -EIO to set workload status so
923 		 * that when this request caused GPU hang, didn't trigger
924 		 * context switch interrupt to guest.
925 		 */
926 		if (likely(workload->status == -EINPROGRESS)) {
927 			if (workload->req->fence.error == -EIO)
928 				workload->status = -EIO;
929 			else
930 				workload->status = 0;
931 		}
932 
933 		if (!workload->status &&
934 		    !(vgpu->resetting_eng & BIT(ring_id))) {
935 			update_guest_context(workload);
936 
937 			for_each_set_bit(event, workload->pending_events,
938 					 INTEL_GVT_EVENT_MAX)
939 				intel_vgpu_trigger_virtual_event(vgpu, event);
940 		}
941 
942 		i915_request_put(fetch_and_zero(&workload->req));
943 	}
944 
945 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
946 			ring_id, workload, workload->status);
947 
948 	scheduler->current_workload[ring_id] = NULL;
949 
950 	list_del_init(&workload->list);
951 
952 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
953 		/* if workload->status is not successful means HW GPU
954 		 * has occurred GPU hang or something wrong with i915/GVT,
955 		 * and GVT won't inject context switch interrupt to guest.
956 		 * So this error is a vGPU hang actually to the guest.
957 		 * According to this we should emunlate a vGPU hang. If
958 		 * there are pending workloads which are already submitted
959 		 * from guest, we should clean them up like HW GPU does.
960 		 *
961 		 * if it is in middle of engine resetting, the pending
962 		 * workloads won't be submitted to HW GPU and will be
963 		 * cleaned up during the resetting process later, so doing
964 		 * the workload clean up here doesn't have any impact.
965 		 **/
966 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
967 	}
968 
969 	workload->complete(workload);
970 
971 	atomic_dec(&s->running_workload_num);
972 	wake_up(&scheduler->workload_complete_wq);
973 
974 	if (gvt->scheduler.need_reschedule)
975 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
976 
977 	mutex_unlock(&gvt->sched_lock);
978 	mutex_unlock(&vgpu->vgpu_lock);
979 }
980 
981 struct workload_thread_param {
982 	struct intel_gvt *gvt;
983 	int ring_id;
984 };
985 
workload_thread(void * priv)986 static int workload_thread(void *priv)
987 {
988 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
989 	struct intel_gvt *gvt = p->gvt;
990 	int ring_id = p->ring_id;
991 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
992 	struct intel_vgpu_workload *workload = NULL;
993 	struct intel_vgpu *vgpu = NULL;
994 	int ret;
995 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
996 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
997 	struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
998 
999 	kfree(p);
1000 
1001 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
1002 
1003 	while (!kthread_should_stop()) {
1004 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
1005 		do {
1006 			workload = pick_next_workload(gvt, ring_id);
1007 			if (workload)
1008 				break;
1009 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1010 				   MAX_SCHEDULE_TIMEOUT);
1011 		} while (!kthread_should_stop());
1012 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1013 
1014 		if (!workload)
1015 			break;
1016 
1017 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1018 				workload->ring_id, workload,
1019 				workload->vgpu->id);
1020 
1021 		intel_runtime_pm_get(rpm);
1022 
1023 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1024 				workload->ring_id, workload);
1025 
1026 		if (need_force_wake)
1027 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1028 					FORCEWAKE_ALL);
1029 		/*
1030 		 * Update the vReg of the vGPU which submitted this
1031 		 * workload. The vGPU may use these registers for checking
1032 		 * the context state. The value comes from GPU commands
1033 		 * in this workload.
1034 		 */
1035 		update_vreg_in_ctx(workload);
1036 
1037 		ret = dispatch_workload(workload);
1038 
1039 		if (ret) {
1040 			vgpu = workload->vgpu;
1041 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1042 			goto complete;
1043 		}
1044 
1045 		gvt_dbg_sched("ring id %d wait workload %p\n",
1046 				workload->ring_id, workload);
1047 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1048 
1049 complete:
1050 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1051 				workload, workload->status);
1052 
1053 		complete_current_workload(gvt, ring_id);
1054 
1055 		if (need_force_wake)
1056 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1057 					FORCEWAKE_ALL);
1058 
1059 		intel_runtime_pm_put_unchecked(rpm);
1060 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1061 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1062 	}
1063 	return 0;
1064 }
1065 
intel_gvt_wait_vgpu_idle(struct intel_vgpu * vgpu)1066 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1067 {
1068 	struct intel_vgpu_submission *s = &vgpu->submission;
1069 	struct intel_gvt *gvt = vgpu->gvt;
1070 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1071 
1072 	if (atomic_read(&s->running_workload_num)) {
1073 		gvt_dbg_sched("wait vgpu idle\n");
1074 
1075 		wait_event(scheduler->workload_complete_wq,
1076 				!atomic_read(&s->running_workload_num));
1077 	}
1078 }
1079 
intel_gvt_clean_workload_scheduler(struct intel_gvt * gvt)1080 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1081 {
1082 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1083 	struct intel_engine_cs *engine;
1084 	enum intel_engine_id i;
1085 
1086 	gvt_dbg_core("clean workload scheduler\n");
1087 
1088 	for_each_engine(engine, gvt->dev_priv, i) {
1089 		atomic_notifier_chain_unregister(
1090 					&engine->context_status_notifier,
1091 					&gvt->shadow_ctx_notifier_block[i]);
1092 		kthread_stop(scheduler->thread[i]);
1093 	}
1094 }
1095 
intel_gvt_init_workload_scheduler(struct intel_gvt * gvt)1096 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1097 {
1098 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1099 	struct workload_thread_param *param = NULL;
1100 	struct intel_engine_cs *engine;
1101 	enum intel_engine_id i;
1102 	int ret;
1103 
1104 	gvt_dbg_core("init workload scheduler\n");
1105 
1106 	init_waitqueue_head(&scheduler->workload_complete_wq);
1107 
1108 	for_each_engine(engine, gvt->dev_priv, i) {
1109 		init_waitqueue_head(&scheduler->waitq[i]);
1110 
1111 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1112 		if (!param) {
1113 			ret = -ENOMEM;
1114 			goto err;
1115 		}
1116 
1117 		param->gvt = gvt;
1118 		param->ring_id = i;
1119 
1120 		scheduler->thread[i] = kthread_run(workload_thread, param,
1121 			"gvt workload %d", i);
1122 		if (IS_ERR(scheduler->thread[i])) {
1123 			gvt_err("fail to create workload thread\n");
1124 			ret = PTR_ERR(scheduler->thread[i]);
1125 			goto err;
1126 		}
1127 
1128 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1129 					shadow_context_status_change;
1130 		atomic_notifier_chain_register(&engine->context_status_notifier,
1131 					&gvt->shadow_ctx_notifier_block[i]);
1132 	}
1133 	return 0;
1134 err:
1135 	intel_gvt_clean_workload_scheduler(gvt);
1136 	kfree(param);
1137 	param = NULL;
1138 	return ret;
1139 }
1140 
1141 static void
i915_context_ppgtt_root_restore(struct intel_vgpu_submission * s,struct i915_ppgtt * ppgtt)1142 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1143 				struct i915_ppgtt *ppgtt)
1144 {
1145 	int i;
1146 
1147 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1148 		px_dma(ppgtt->pd) = s->i915_context_pml4;
1149 	} else {
1150 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1151 			struct i915_page_directory * const pd =
1152 				i915_pd_entry(ppgtt->pd, i);
1153 
1154 			px_dma(pd) = s->i915_context_pdps[i];
1155 		}
1156 	}
1157 }
1158 
1159 /**
1160  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1161  * @vgpu: a vGPU
1162  *
1163  * This function is called when a vGPU is being destroyed.
1164  *
1165  */
intel_vgpu_clean_submission(struct intel_vgpu * vgpu)1166 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1167 {
1168 	struct intel_vgpu_submission *s = &vgpu->submission;
1169 	struct intel_engine_cs *engine;
1170 	enum intel_engine_id id;
1171 
1172 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1173 
1174 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1175 	for_each_engine(engine, vgpu->gvt->dev_priv, id)
1176 		intel_context_unpin(s->shadow[id]);
1177 
1178 	kmem_cache_destroy(s->workloads);
1179 }
1180 
1181 
1182 /**
1183  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1184  * @vgpu: a vGPU
1185  * @engine_mask: engines expected to be reset
1186  *
1187  * This function is called when a vGPU is being destroyed.
1188  *
1189  */
intel_vgpu_reset_submission(struct intel_vgpu * vgpu,intel_engine_mask_t engine_mask)1190 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1191 				 intel_engine_mask_t engine_mask)
1192 {
1193 	struct intel_vgpu_submission *s = &vgpu->submission;
1194 
1195 	if (!s->active)
1196 		return;
1197 
1198 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1199 	s->ops->reset(vgpu, engine_mask);
1200 }
1201 
1202 static void
i915_context_ppgtt_root_save(struct intel_vgpu_submission * s,struct i915_ppgtt * ppgtt)1203 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1204 			     struct i915_ppgtt *ppgtt)
1205 {
1206 	int i;
1207 
1208 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1209 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1210 	} else {
1211 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1212 			struct i915_page_directory * const pd =
1213 				i915_pd_entry(ppgtt->pd, i);
1214 
1215 			s->i915_context_pdps[i] = px_dma(pd);
1216 		}
1217 	}
1218 }
1219 
1220 /**
1221  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1222  * @vgpu: a vGPU
1223  *
1224  * This function is called when a vGPU is being created.
1225  *
1226  * Returns:
1227  * Zero on success, negative error code if failed.
1228  *
1229  */
intel_vgpu_setup_submission(struct intel_vgpu * vgpu)1230 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1231 {
1232 	struct drm_i915_private *i915 = vgpu->gvt->dev_priv;
1233 	struct intel_vgpu_submission *s = &vgpu->submission;
1234 	struct intel_engine_cs *engine;
1235 	struct i915_gem_context *ctx;
1236 	enum intel_engine_id i;
1237 	int ret;
1238 
1239 	mutex_lock(&i915->drm.struct_mutex);
1240 
1241 	ctx = i915_gem_context_create_kernel(i915, I915_PRIORITY_MAX);
1242 	if (IS_ERR(ctx)) {
1243 		ret = PTR_ERR(ctx);
1244 		goto out_unlock;
1245 	}
1246 
1247 	i915_gem_context_set_force_single_submission(ctx);
1248 
1249 	i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm));
1250 
1251 	for_each_engine(engine, i915, i) {
1252 		struct intel_context *ce;
1253 
1254 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1255 		s->shadow[i] = ERR_PTR(-EINVAL);
1256 
1257 		ce = intel_context_create(ctx, engine);
1258 		if (IS_ERR(ce)) {
1259 			ret = PTR_ERR(ce);
1260 			goto out_shadow_ctx;
1261 		}
1262 
1263 		if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */
1264 			const unsigned int ring_size = 512 * SZ_4K;
1265 
1266 			ce->ring = __intel_context_ring_size(ring_size);
1267 		}
1268 
1269 		ret = intel_context_pin(ce);
1270 		intel_context_put(ce);
1271 		if (ret)
1272 			goto out_shadow_ctx;
1273 
1274 		s->shadow[i] = ce;
1275 	}
1276 
1277 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1278 
1279 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1280 						  sizeof(struct intel_vgpu_workload), 0,
1281 						  SLAB_HWCACHE_ALIGN,
1282 						  offsetof(struct intel_vgpu_workload, rb_tail),
1283 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1284 						  NULL);
1285 
1286 	if (!s->workloads) {
1287 		ret = -ENOMEM;
1288 		goto out_shadow_ctx;
1289 	}
1290 
1291 	atomic_set(&s->running_workload_num, 0);
1292 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1293 
1294 	i915_gem_context_put(ctx);
1295 	mutex_unlock(&i915->drm.struct_mutex);
1296 	return 0;
1297 
1298 out_shadow_ctx:
1299 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm));
1300 	for_each_engine(engine, i915, i) {
1301 		if (IS_ERR(s->shadow[i]))
1302 			break;
1303 
1304 		intel_context_unpin(s->shadow[i]);
1305 		intel_context_put(s->shadow[i]);
1306 	}
1307 	i915_gem_context_put(ctx);
1308 out_unlock:
1309 	mutex_unlock(&i915->drm.struct_mutex);
1310 	return ret;
1311 }
1312 
1313 /**
1314  * intel_vgpu_select_submission_ops - select virtual submission interface
1315  * @vgpu: a vGPU
1316  * @engine_mask: either ALL_ENGINES or target engine mask
1317  * @interface: expected vGPU virtual submission interface
1318  *
1319  * This function is called when guest configures submission interface.
1320  *
1321  * Returns:
1322  * Zero on success, negative error code if failed.
1323  *
1324  */
intel_vgpu_select_submission_ops(struct intel_vgpu * vgpu,intel_engine_mask_t engine_mask,unsigned int interface)1325 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1326 				     intel_engine_mask_t engine_mask,
1327 				     unsigned int interface)
1328 {
1329 	struct intel_vgpu_submission *s = &vgpu->submission;
1330 	const struct intel_vgpu_submission_ops *ops[] = {
1331 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1332 			&intel_vgpu_execlist_submission_ops,
1333 	};
1334 	int ret;
1335 
1336 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1337 		return -EINVAL;
1338 
1339 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1340 		return -EINVAL;
1341 
1342 	if (s->active)
1343 		s->ops->clean(vgpu, engine_mask);
1344 
1345 	if (interface == 0) {
1346 		s->ops = NULL;
1347 		s->virtual_submission_interface = 0;
1348 		s->active = false;
1349 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1350 		return 0;
1351 	}
1352 
1353 	ret = ops[interface]->init(vgpu, engine_mask);
1354 	if (ret)
1355 		return ret;
1356 
1357 	s->ops = ops[interface];
1358 	s->virtual_submission_interface = interface;
1359 	s->active = true;
1360 
1361 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1362 			vgpu->id, s->ops->name);
1363 
1364 	return 0;
1365 }
1366 
1367 /**
1368  * intel_vgpu_destroy_workload - destroy a vGPU workload
1369  * @workload: workload to destroy
1370  *
1371  * This function is called when destroy a vGPU workload.
1372  *
1373  */
intel_vgpu_destroy_workload(struct intel_vgpu_workload * workload)1374 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1375 {
1376 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1377 
1378 	release_shadow_batch_buffer(workload);
1379 	release_shadow_wa_ctx(&workload->wa_ctx);
1380 
1381 	if (workload->shadow_mm)
1382 		intel_vgpu_mm_put(workload->shadow_mm);
1383 
1384 	kmem_cache_free(s->workloads, workload);
1385 }
1386 
1387 static struct intel_vgpu_workload *
alloc_workload(struct intel_vgpu * vgpu)1388 alloc_workload(struct intel_vgpu *vgpu)
1389 {
1390 	struct intel_vgpu_submission *s = &vgpu->submission;
1391 	struct intel_vgpu_workload *workload;
1392 
1393 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1394 	if (!workload)
1395 		return ERR_PTR(-ENOMEM);
1396 
1397 	INIT_LIST_HEAD(&workload->list);
1398 	INIT_LIST_HEAD(&workload->shadow_bb);
1399 
1400 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1401 	atomic_set(&workload->shadow_ctx_active, 0);
1402 
1403 	workload->status = -EINPROGRESS;
1404 	workload->vgpu = vgpu;
1405 
1406 	return workload;
1407 }
1408 
1409 #define RING_CTX_OFF(x) \
1410 	offsetof(struct execlist_ring_context, x)
1411 
read_guest_pdps(struct intel_vgpu * vgpu,u64 ring_context_gpa,u32 pdp[8])1412 static void read_guest_pdps(struct intel_vgpu *vgpu,
1413 		u64 ring_context_gpa, u32 pdp[8])
1414 {
1415 	u64 gpa;
1416 	int i;
1417 
1418 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1419 
1420 	for (i = 0; i < 8; i++)
1421 		intel_gvt_hypervisor_read_gpa(vgpu,
1422 				gpa + i * 8, &pdp[7 - i], 4);
1423 }
1424 
prepare_mm(struct intel_vgpu_workload * workload)1425 static int prepare_mm(struct intel_vgpu_workload *workload)
1426 {
1427 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1428 	struct intel_vgpu_mm *mm;
1429 	struct intel_vgpu *vgpu = workload->vgpu;
1430 	enum intel_gvt_gtt_type root_entry_type;
1431 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1432 
1433 	switch (desc->addressing_mode) {
1434 	case 1: /* legacy 32-bit */
1435 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1436 		break;
1437 	case 3: /* legacy 64-bit */
1438 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1439 		break;
1440 	default:
1441 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1442 		return -EINVAL;
1443 	}
1444 
1445 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1446 
1447 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1448 	if (IS_ERR(mm))
1449 		return PTR_ERR(mm);
1450 
1451 	workload->shadow_mm = mm;
1452 	return 0;
1453 }
1454 
1455 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1456 		((a)->lrca == (b)->lrca))
1457 
1458 /**
1459  * intel_vgpu_create_workload - create a vGPU workload
1460  * @vgpu: a vGPU
1461  * @ring_id: ring index
1462  * @desc: a guest context descriptor
1463  *
1464  * This function is called when creating a vGPU workload.
1465  *
1466  * Returns:
1467  * struct intel_vgpu_workload * on success, negative error code in
1468  * pointer if failed.
1469  *
1470  */
1471 struct intel_vgpu_workload *
intel_vgpu_create_workload(struct intel_vgpu * vgpu,int ring_id,struct execlist_ctx_descriptor_format * desc)1472 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1473 			   struct execlist_ctx_descriptor_format *desc)
1474 {
1475 	struct intel_vgpu_submission *s = &vgpu->submission;
1476 	struct list_head *q = workload_q_head(vgpu, ring_id);
1477 	struct intel_vgpu_workload *last_workload = NULL;
1478 	struct intel_vgpu_workload *workload = NULL;
1479 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1480 	u64 ring_context_gpa;
1481 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1482 	u32 guest_head;
1483 	int ret;
1484 
1485 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1486 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1487 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1488 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1489 		return ERR_PTR(-EINVAL);
1490 	}
1491 
1492 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1493 			RING_CTX_OFF(ring_header.val), &head, 4);
1494 
1495 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1496 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1497 
1498 	guest_head = head;
1499 
1500 	head &= RB_HEAD_OFF_MASK;
1501 	tail &= RB_TAIL_OFF_MASK;
1502 
1503 	list_for_each_entry_reverse(last_workload, q, list) {
1504 
1505 		if (same_context(&last_workload->ctx_desc, desc)) {
1506 			gvt_dbg_el("ring id %d cur workload == last\n",
1507 					ring_id);
1508 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1509 					last_workload->rb_tail);
1510 			/*
1511 			 * cannot use guest context head pointer here,
1512 			 * as it might not be updated at this time
1513 			 */
1514 			head = last_workload->rb_tail;
1515 			break;
1516 		}
1517 	}
1518 
1519 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1520 
1521 	/* record some ring buffer register values for scan and shadow */
1522 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1523 			RING_CTX_OFF(rb_start.val), &start, 4);
1524 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1525 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1526 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1527 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1528 
1529 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1530 				_RING_CTL_BUF_SIZE(ctl))) {
1531 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1532 		return ERR_PTR(-EINVAL);
1533 	}
1534 
1535 	workload = alloc_workload(vgpu);
1536 	if (IS_ERR(workload))
1537 		return workload;
1538 
1539 	workload->ring_id = ring_id;
1540 	workload->ctx_desc = *desc;
1541 	workload->ring_context_gpa = ring_context_gpa;
1542 	workload->rb_head = head;
1543 	workload->guest_rb_head = guest_head;
1544 	workload->rb_tail = tail;
1545 	workload->rb_start = start;
1546 	workload->rb_ctl = ctl;
1547 
1548 	if (ring_id == RCS0) {
1549 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1550 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1551 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1552 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1553 
1554 		workload->wa_ctx.indirect_ctx.guest_gma =
1555 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1556 		workload->wa_ctx.indirect_ctx.size =
1557 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1558 			CACHELINE_BYTES;
1559 
1560 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1561 			if (!intel_gvt_ggtt_validate_range(vgpu,
1562 				workload->wa_ctx.indirect_ctx.guest_gma,
1563 				workload->wa_ctx.indirect_ctx.size)) {
1564 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1565 				    workload->wa_ctx.indirect_ctx.guest_gma);
1566 				kmem_cache_free(s->workloads, workload);
1567 				return ERR_PTR(-EINVAL);
1568 			}
1569 		}
1570 
1571 		workload->wa_ctx.per_ctx.guest_gma =
1572 			per_ctx & PER_CTX_ADDR_MASK;
1573 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1574 		if (workload->wa_ctx.per_ctx.valid) {
1575 			if (!intel_gvt_ggtt_validate_range(vgpu,
1576 				workload->wa_ctx.per_ctx.guest_gma,
1577 				CACHELINE_BYTES)) {
1578 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1579 					workload->wa_ctx.per_ctx.guest_gma);
1580 				kmem_cache_free(s->workloads, workload);
1581 				return ERR_PTR(-EINVAL);
1582 			}
1583 		}
1584 	}
1585 
1586 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1587 			workload, ring_id, head, tail, start, ctl);
1588 
1589 	ret = prepare_mm(workload);
1590 	if (ret) {
1591 		kmem_cache_free(s->workloads, workload);
1592 		return ERR_PTR(ret);
1593 	}
1594 
1595 	/* Only scan and shadow the first workload in the queue
1596 	 * as there is only one pre-allocated buf-obj for shadow.
1597 	 */
1598 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1599 		intel_runtime_pm_get(&dev_priv->runtime_pm);
1600 		mutex_lock(&dev_priv->drm.struct_mutex);
1601 		ret = intel_gvt_scan_and_shadow_workload(workload);
1602 		mutex_unlock(&dev_priv->drm.struct_mutex);
1603 		intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1604 	}
1605 
1606 	if (ret) {
1607 		if (vgpu_is_vm_unhealthy(ret))
1608 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1609 		intel_vgpu_destroy_workload(workload);
1610 		return ERR_PTR(ret);
1611 	}
1612 
1613 	return workload;
1614 }
1615 
1616 /**
1617  * intel_vgpu_queue_workload - Qeue a vGPU workload
1618  * @workload: the workload to queue in
1619  */
intel_vgpu_queue_workload(struct intel_vgpu_workload * workload)1620 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1621 {
1622 	list_add_tail(&workload->list,
1623 		workload_q_head(workload->vgpu, workload->ring_id));
1624 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1625 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1626 }
1627