1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Anhua Xu
25 * Kevin Tian <kevin.tian@intel.com>
26 *
27 * Contributors:
28 * Min He <min.he@intel.com>
29 * Bing Niu <bing.niu@intel.com>
30 * Zhi Wang <zhi.a.wang@intel.com>
31 *
32 */
33
34 #include "i915_drv.h"
35 #include "gvt.h"
36
vgpu_has_pending_workload(struct intel_vgpu * vgpu)37 static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
38 {
39 enum intel_engine_id i;
40 struct intel_engine_cs *engine;
41
42 for_each_engine(engine, vgpu->gvt->dev_priv, i) {
43 if (!list_empty(workload_q_head(vgpu, i)))
44 return true;
45 }
46
47 return false;
48 }
49
50 /* We give 2 seconds higher prio for vGPU during start */
51 #define GVT_SCHED_VGPU_PRI_TIME 2
52
53 struct vgpu_sched_data {
54 struct list_head lru_list;
55 struct intel_vgpu *vgpu;
56 bool active;
57 bool pri_sched;
58 ktime_t pri_time;
59 ktime_t sched_in_time;
60 ktime_t sched_time;
61 ktime_t left_ts;
62 ktime_t allocated_ts;
63
64 struct vgpu_sched_ctl sched_ctl;
65 };
66
67 struct gvt_sched_data {
68 struct intel_gvt *gvt;
69 struct hrtimer timer;
70 unsigned long period;
71 struct list_head lru_runq_head;
72 ktime_t expire_time;
73 };
74
vgpu_update_timeslice(struct intel_vgpu * vgpu,ktime_t cur_time)75 static void vgpu_update_timeslice(struct intel_vgpu *vgpu, ktime_t cur_time)
76 {
77 ktime_t delta_ts;
78 struct vgpu_sched_data *vgpu_data;
79
80 if (!vgpu || vgpu == vgpu->gvt->idle_vgpu)
81 return;
82
83 vgpu_data = vgpu->sched_data;
84 delta_ts = ktime_sub(cur_time, vgpu_data->sched_in_time);
85 vgpu_data->sched_time = ktime_add(vgpu_data->sched_time, delta_ts);
86 vgpu_data->left_ts = ktime_sub(vgpu_data->left_ts, delta_ts);
87 vgpu_data->sched_in_time = cur_time;
88 }
89
90 #define GVT_TS_BALANCE_PERIOD_MS 100
91 #define GVT_TS_BALANCE_STAGE_NUM 10
92
gvt_balance_timeslice(struct gvt_sched_data * sched_data)93 static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
94 {
95 struct vgpu_sched_data *vgpu_data;
96 struct list_head *pos;
97 static u64 stage_check;
98 int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;
99
100 /* The timeslice accumulation reset at stage 0, which is
101 * allocated again without adding previous debt.
102 */
103 if (stage == 0) {
104 int total_weight = 0;
105 ktime_t fair_timeslice;
106
107 list_for_each(pos, &sched_data->lru_runq_head) {
108 vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
109 total_weight += vgpu_data->sched_ctl.weight;
110 }
111
112 list_for_each(pos, &sched_data->lru_runq_head) {
113 vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
114 fair_timeslice = ktime_divns(ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS),
115 total_weight) * vgpu_data->sched_ctl.weight;
116
117 vgpu_data->allocated_ts = fair_timeslice;
118 vgpu_data->left_ts = vgpu_data->allocated_ts;
119 }
120 } else {
121 list_for_each(pos, &sched_data->lru_runq_head) {
122 vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
123
124 /* timeslice for next 100ms should add the left/debt
125 * slice of previous stages.
126 */
127 vgpu_data->left_ts += vgpu_data->allocated_ts;
128 }
129 }
130 }
131
try_to_schedule_next_vgpu(struct intel_gvt * gvt)132 static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
133 {
134 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
135 enum intel_engine_id i;
136 struct intel_engine_cs *engine;
137 struct vgpu_sched_data *vgpu_data;
138 ktime_t cur_time;
139
140 /* no need to schedule if next_vgpu is the same with current_vgpu,
141 * let scheduler chose next_vgpu again by setting it to NULL.
142 */
143 if (scheduler->next_vgpu == scheduler->current_vgpu) {
144 scheduler->next_vgpu = NULL;
145 return;
146 }
147
148 /*
149 * after the flag is set, workload dispatch thread will
150 * stop dispatching workload for current vgpu
151 */
152 scheduler->need_reschedule = true;
153
154 /* still have uncompleted workload? */
155 for_each_engine(engine, gvt->dev_priv, i) {
156 if (scheduler->current_workload[i])
157 return;
158 }
159
160 cur_time = ktime_get();
161 vgpu_update_timeslice(scheduler->current_vgpu, cur_time);
162 vgpu_data = scheduler->next_vgpu->sched_data;
163 vgpu_data->sched_in_time = cur_time;
164
165 /* switch current vgpu */
166 scheduler->current_vgpu = scheduler->next_vgpu;
167 scheduler->next_vgpu = NULL;
168
169 scheduler->need_reschedule = false;
170
171 /* wake up workload dispatch thread */
172 for_each_engine(engine, gvt->dev_priv, i)
173 wake_up(&scheduler->waitq[i]);
174 }
175
find_busy_vgpu(struct gvt_sched_data * sched_data)176 static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
177 {
178 struct vgpu_sched_data *vgpu_data;
179 struct intel_vgpu *vgpu = NULL;
180 struct list_head *head = &sched_data->lru_runq_head;
181 struct list_head *pos;
182
183 /* search a vgpu with pending workload */
184 list_for_each(pos, head) {
185
186 vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
187 if (!vgpu_has_pending_workload(vgpu_data->vgpu))
188 continue;
189
190 if (vgpu_data->pri_sched) {
191 if (ktime_before(ktime_get(), vgpu_data->pri_time)) {
192 vgpu = vgpu_data->vgpu;
193 break;
194 } else
195 vgpu_data->pri_sched = false;
196 }
197
198 /* Return the vGPU only if it has time slice left */
199 if (vgpu_data->left_ts > 0) {
200 vgpu = vgpu_data->vgpu;
201 break;
202 }
203 }
204
205 return vgpu;
206 }
207
208 /* in nanosecond */
209 #define GVT_DEFAULT_TIME_SLICE 1000000
210
tbs_sched_func(struct gvt_sched_data * sched_data)211 static void tbs_sched_func(struct gvt_sched_data *sched_data)
212 {
213 struct intel_gvt *gvt = sched_data->gvt;
214 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
215 struct vgpu_sched_data *vgpu_data;
216 struct intel_vgpu *vgpu = NULL;
217
218 /* no active vgpu or has already had a target */
219 if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
220 goto out;
221
222 vgpu = find_busy_vgpu(sched_data);
223 if (vgpu) {
224 scheduler->next_vgpu = vgpu;
225 vgpu_data = vgpu->sched_data;
226 if (!vgpu_data->pri_sched) {
227 /* Move the last used vGPU to the tail of lru_list */
228 list_del_init(&vgpu_data->lru_list);
229 list_add_tail(&vgpu_data->lru_list,
230 &sched_data->lru_runq_head);
231 }
232 } else {
233 scheduler->next_vgpu = gvt->idle_vgpu;
234 }
235 out:
236 if (scheduler->next_vgpu)
237 try_to_schedule_next_vgpu(gvt);
238 }
239
intel_gvt_schedule(struct intel_gvt * gvt)240 void intel_gvt_schedule(struct intel_gvt *gvt)
241 {
242 struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
243 ktime_t cur_time;
244
245 mutex_lock(&gvt->sched_lock);
246 cur_time = ktime_get();
247
248 if (test_and_clear_bit(INTEL_GVT_REQUEST_SCHED,
249 (void *)&gvt->service_request)) {
250 if (cur_time >= sched_data->expire_time) {
251 gvt_balance_timeslice(sched_data);
252 sched_data->expire_time = ktime_add_ms(
253 cur_time, GVT_TS_BALANCE_PERIOD_MS);
254 }
255 }
256 clear_bit(INTEL_GVT_REQUEST_EVENT_SCHED, (void *)&gvt->service_request);
257
258 vgpu_update_timeslice(gvt->scheduler.current_vgpu, cur_time);
259 tbs_sched_func(sched_data);
260
261 mutex_unlock(&gvt->sched_lock);
262 }
263
tbs_timer_fn(struct hrtimer * timer_data)264 static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
265 {
266 struct gvt_sched_data *data;
267
268 data = container_of(timer_data, struct gvt_sched_data, timer);
269
270 intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);
271
272 hrtimer_add_expires_ns(&data->timer, data->period);
273
274 return HRTIMER_RESTART;
275 }
276
tbs_sched_init(struct intel_gvt * gvt)277 static int tbs_sched_init(struct intel_gvt *gvt)
278 {
279 struct intel_gvt_workload_scheduler *scheduler =
280 &gvt->scheduler;
281
282 struct gvt_sched_data *data;
283
284 data = kzalloc(sizeof(*data), GFP_KERNEL);
285 if (!data)
286 return -ENOMEM;
287
288 INIT_LIST_HEAD(&data->lru_runq_head);
289 hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
290 data->timer.function = tbs_timer_fn;
291 data->period = GVT_DEFAULT_TIME_SLICE;
292 data->gvt = gvt;
293
294 scheduler->sched_data = data;
295
296 return 0;
297 }
298
tbs_sched_clean(struct intel_gvt * gvt)299 static void tbs_sched_clean(struct intel_gvt *gvt)
300 {
301 struct intel_gvt_workload_scheduler *scheduler =
302 &gvt->scheduler;
303 struct gvt_sched_data *data = scheduler->sched_data;
304
305 hrtimer_cancel(&data->timer);
306
307 kfree(data);
308 scheduler->sched_data = NULL;
309 }
310
tbs_sched_init_vgpu(struct intel_vgpu * vgpu)311 static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
312 {
313 struct vgpu_sched_data *data;
314
315 data = kzalloc(sizeof(*data), GFP_KERNEL);
316 if (!data)
317 return -ENOMEM;
318
319 data->sched_ctl.weight = vgpu->sched_ctl.weight;
320 data->vgpu = vgpu;
321 INIT_LIST_HEAD(&data->lru_list);
322
323 vgpu->sched_data = data;
324
325 return 0;
326 }
327
tbs_sched_clean_vgpu(struct intel_vgpu * vgpu)328 static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
329 {
330 struct intel_gvt *gvt = vgpu->gvt;
331 struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
332
333 kfree(vgpu->sched_data);
334 vgpu->sched_data = NULL;
335
336 /* this vgpu id has been removed */
337 if (idr_is_empty(&gvt->vgpu_idr))
338 hrtimer_cancel(&sched_data->timer);
339 }
340
tbs_sched_start_schedule(struct intel_vgpu * vgpu)341 static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
342 {
343 struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
344 struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
345 ktime_t now;
346
347 if (!list_empty(&vgpu_data->lru_list))
348 return;
349
350 now = ktime_get();
351 vgpu_data->pri_time = ktime_add(now,
352 ktime_set(GVT_SCHED_VGPU_PRI_TIME, 0));
353 vgpu_data->pri_sched = true;
354
355 list_add(&vgpu_data->lru_list, &sched_data->lru_runq_head);
356
357 if (!hrtimer_active(&sched_data->timer))
358 hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
359 sched_data->period), HRTIMER_MODE_ABS);
360 vgpu_data->active = true;
361 }
362
tbs_sched_stop_schedule(struct intel_vgpu * vgpu)363 static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
364 {
365 struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
366
367 list_del_init(&vgpu_data->lru_list);
368 vgpu_data->active = false;
369 }
370
371 static struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
372 .init = tbs_sched_init,
373 .clean = tbs_sched_clean,
374 .init_vgpu = tbs_sched_init_vgpu,
375 .clean_vgpu = tbs_sched_clean_vgpu,
376 .start_schedule = tbs_sched_start_schedule,
377 .stop_schedule = tbs_sched_stop_schedule,
378 };
379
intel_gvt_init_sched_policy(struct intel_gvt * gvt)380 int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
381 {
382 int ret;
383
384 mutex_lock(&gvt->sched_lock);
385 gvt->scheduler.sched_ops = &tbs_schedule_ops;
386 ret = gvt->scheduler.sched_ops->init(gvt);
387 mutex_unlock(&gvt->sched_lock);
388
389 return ret;
390 }
391
intel_gvt_clean_sched_policy(struct intel_gvt * gvt)392 void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
393 {
394 mutex_lock(&gvt->sched_lock);
395 gvt->scheduler.sched_ops->clean(gvt);
396 mutex_unlock(&gvt->sched_lock);
397 }
398
399 /* for per-vgpu scheduler policy, there are 2 per-vgpu data:
400 * sched_data, and sched_ctl. We see these 2 data as part of
401 * the global scheduler which are proteced by gvt->sched_lock.
402 * Caller should make their decision if the vgpu_lock should
403 * be hold outside.
404 */
405
intel_vgpu_init_sched_policy(struct intel_vgpu * vgpu)406 int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
407 {
408 int ret;
409
410 mutex_lock(&vgpu->gvt->sched_lock);
411 ret = vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
412 mutex_unlock(&vgpu->gvt->sched_lock);
413
414 return ret;
415 }
416
intel_vgpu_clean_sched_policy(struct intel_vgpu * vgpu)417 void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
418 {
419 mutex_lock(&vgpu->gvt->sched_lock);
420 vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
421 mutex_unlock(&vgpu->gvt->sched_lock);
422 }
423
intel_vgpu_start_schedule(struct intel_vgpu * vgpu)424 void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
425 {
426 struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
427
428 mutex_lock(&vgpu->gvt->sched_lock);
429 if (!vgpu_data->active) {
430 gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);
431 vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
432 }
433 mutex_unlock(&vgpu->gvt->sched_lock);
434 }
435
intel_gvt_kick_schedule(struct intel_gvt * gvt)436 void intel_gvt_kick_schedule(struct intel_gvt *gvt)
437 {
438 mutex_lock(&gvt->sched_lock);
439 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
440 mutex_unlock(&gvt->sched_lock);
441 }
442
intel_vgpu_stop_schedule(struct intel_vgpu * vgpu)443 void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
444 {
445 struct intel_gvt_workload_scheduler *scheduler =
446 &vgpu->gvt->scheduler;
447 int ring_id;
448 struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
449 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
450
451 if (!vgpu_data->active)
452 return;
453
454 gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);
455
456 mutex_lock(&vgpu->gvt->sched_lock);
457 scheduler->sched_ops->stop_schedule(vgpu);
458
459 if (scheduler->next_vgpu == vgpu)
460 scheduler->next_vgpu = NULL;
461
462 if (scheduler->current_vgpu == vgpu) {
463 /* stop workload dispatching */
464 scheduler->need_reschedule = true;
465 scheduler->current_vgpu = NULL;
466 }
467
468 intel_runtime_pm_get(&dev_priv->runtime_pm);
469 spin_lock_bh(&scheduler->mmio_context_lock);
470 for (ring_id = 0; ring_id < I915_NUM_ENGINES; ring_id++) {
471 if (scheduler->engine_owner[ring_id] == vgpu) {
472 intel_gvt_switch_mmio(vgpu, NULL, ring_id);
473 scheduler->engine_owner[ring_id] = NULL;
474 }
475 }
476 spin_unlock_bh(&scheduler->mmio_context_lock);
477 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
478 mutex_unlock(&vgpu->gvt->sched_lock);
479 }
480