1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
set_context_pdp_root_pointer(struct execlist_ring_context * ring_context,u32 pdp[8])44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	int i;
49 
50 	for (i = 0; i < 8; i++)
51 		ring_context->pdps[i].val = pdp[7 - i];
52 }
53 
update_shadow_pdps(struct intel_vgpu_workload * workload)54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56 	struct drm_i915_gem_object *ctx_obj =
57 		workload->req->hw_context->state->obj;
58 	struct execlist_ring_context *shadow_ring_context;
59 	struct page *page;
60 
61 	if (WARN_ON(!workload->shadow_mm))
62 		return;
63 
64 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65 		return;
66 
67 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 	shadow_ring_context = kmap(page);
69 	set_context_pdp_root_pointer(shadow_ring_context,
70 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71 	kunmap(page);
72 }
73 
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
sr_oa_regs(struct intel_vgpu_workload * workload,u32 * reg_state,bool save)79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 		u32 *reg_state, bool save)
81 {
82 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85 	int i = 0;
86 	u32 flex_mmio[] = {
87 		i915_mmio_reg_offset(EU_PERF_CNTL0),
88 		i915_mmio_reg_offset(EU_PERF_CNTL1),
89 		i915_mmio_reg_offset(EU_PERF_CNTL2),
90 		i915_mmio_reg_offset(EU_PERF_CNTL3),
91 		i915_mmio_reg_offset(EU_PERF_CNTL4),
92 		i915_mmio_reg_offset(EU_PERF_CNTL5),
93 		i915_mmio_reg_offset(EU_PERF_CNTL6),
94 	};
95 
96 	if (workload->ring_id != RCS)
97 		return;
98 
99 	if (save) {
100 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101 
102 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 			u32 state_offset = ctx_flexeu0 + i * 2;
104 
105 			workload->flex_mmio[i] = reg_state[state_offset + 1];
106 		}
107 	} else {
108 		reg_state[ctx_oactxctrl] =
109 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 			u32 mmio = flex_mmio[i];
115 
116 			reg_state[state_offset] = mmio;
117 			reg_state[state_offset + 1] = workload->flex_mmio[i];
118 		}
119 	}
120 }
121 
populate_shadow_context(struct intel_vgpu_workload * workload)122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124 	struct intel_vgpu *vgpu = workload->vgpu;
125 	struct intel_gvt *gvt = vgpu->gvt;
126 	int ring_id = workload->ring_id;
127 	struct drm_i915_gem_object *ctx_obj =
128 		workload->req->hw_context->state->obj;
129 	struct execlist_ring_context *shadow_ring_context;
130 	struct page *page;
131 	void *dst;
132 	unsigned long context_gpa, context_page_num;
133 	int i;
134 
135 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
136 			workload->ctx_desc.lrca);
137 
138 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
139 
140 	context_page_num = context_page_num >> PAGE_SHIFT;
141 
142 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
143 		context_page_num = 19;
144 
145 	i = 2;
146 
147 	while (i < context_page_num) {
148 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
149 				(u32)((workload->ctx_desc.lrca + i) <<
150 				I915_GTT_PAGE_SHIFT));
151 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
152 			gvt_vgpu_err("Invalid guest context descriptor\n");
153 			return -EFAULT;
154 		}
155 
156 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
157 		dst = kmap(page);
158 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
159 				I915_GTT_PAGE_SIZE);
160 		kunmap(page);
161 		i++;
162 	}
163 
164 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
165 	shadow_ring_context = kmap(page);
166 
167 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
168 #define COPY_REG(name) \
169 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
170 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
171 #define COPY_REG_MASKED(name) {\
172 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
173 					      + RING_CTX_OFF(name.val),\
174 					      &shadow_ring_context->name.val, 4);\
175 		shadow_ring_context->name.val |= 0xffff << 16;\
176 	}
177 
178 	COPY_REG_MASKED(ctx_ctrl);
179 	COPY_REG(ctx_timestamp);
180 
181 	if (ring_id == RCS) {
182 		COPY_REG(bb_per_ctx_ptr);
183 		COPY_REG(rcs_indirect_ctx);
184 		COPY_REG(rcs_indirect_ctx_offset);
185 	}
186 #undef COPY_REG
187 #undef COPY_REG_MASKED
188 
189 	intel_gvt_hypervisor_read_gpa(vgpu,
190 			workload->ring_context_gpa +
191 			sizeof(*shadow_ring_context),
192 			(void *)shadow_ring_context +
193 			sizeof(*shadow_ring_context),
194 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
195 
196 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
197 	kunmap(page);
198 	return 0;
199 }
200 
is_gvt_request(struct i915_request * req)201 static inline bool is_gvt_request(struct i915_request *req)
202 {
203 	return i915_gem_context_force_single_submission(req->gem_context);
204 }
205 
save_ring_hw_state(struct intel_vgpu * vgpu,int ring_id)206 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
207 {
208 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
209 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
210 	i915_reg_t reg;
211 
212 	reg = RING_INSTDONE(ring_base);
213 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
214 	reg = RING_ACTHD(ring_base);
215 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 	reg = RING_ACTHD_UDW(ring_base);
217 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 }
219 
shadow_context_status_change(struct notifier_block * nb,unsigned long action,void * data)220 static int shadow_context_status_change(struct notifier_block *nb,
221 		unsigned long action, void *data)
222 {
223 	struct i915_request *req = data;
224 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
225 				shadow_ctx_notifier_block[req->engine->id]);
226 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
227 	enum intel_engine_id ring_id = req->engine->id;
228 	struct intel_vgpu_workload *workload;
229 	unsigned long flags;
230 
231 	if (!is_gvt_request(req)) {
232 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
233 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
234 		    scheduler->engine_owner[ring_id]) {
235 			/* Switch ring from vGPU to host. */
236 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
237 					      NULL, ring_id);
238 			scheduler->engine_owner[ring_id] = NULL;
239 		}
240 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
241 
242 		return NOTIFY_OK;
243 	}
244 
245 	workload = scheduler->current_workload[ring_id];
246 	if (unlikely(!workload))
247 		return NOTIFY_OK;
248 
249 	switch (action) {
250 	case INTEL_CONTEXT_SCHEDULE_IN:
251 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
252 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
253 			/* Switch ring from host to vGPU or vGPU to vGPU. */
254 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
255 					      workload->vgpu, ring_id);
256 			scheduler->engine_owner[ring_id] = workload->vgpu;
257 		} else
258 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
259 				      ring_id, workload->vgpu->id);
260 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
261 		atomic_set(&workload->shadow_ctx_active, 1);
262 		break;
263 	case INTEL_CONTEXT_SCHEDULE_OUT:
264 		save_ring_hw_state(workload->vgpu, ring_id);
265 		atomic_set(&workload->shadow_ctx_active, 0);
266 		break;
267 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
268 		save_ring_hw_state(workload->vgpu, ring_id);
269 		break;
270 	default:
271 		WARN_ON(1);
272 		return NOTIFY_OK;
273 	}
274 	wake_up(&workload->shadow_ctx_status_wq);
275 	return NOTIFY_OK;
276 }
277 
shadow_context_descriptor_update(struct intel_context * ce)278 static void shadow_context_descriptor_update(struct intel_context *ce)
279 {
280 	u64 desc = 0;
281 
282 	desc = ce->lrc_desc;
283 
284 	/* Update bits 0-11 of the context descriptor which includes flags
285 	 * like GEN8_CTX_* cached in desc_template
286 	 */
287 	desc &= U64_MAX << 12;
288 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
289 
290 	ce->lrc_desc = desc;
291 }
292 
copy_workload_to_ring_buffer(struct intel_vgpu_workload * workload)293 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
294 {
295 	struct intel_vgpu *vgpu = workload->vgpu;
296 	struct i915_request *req = workload->req;
297 	void *shadow_ring_buffer_va;
298 	u32 *cs;
299 
300 	if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915))
301 		&& is_inhibit_context(req->hw_context))
302 		intel_vgpu_restore_inhibit_context(vgpu, req);
303 
304 	/* allocate shadow ring buffer */
305 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
306 	if (IS_ERR(cs)) {
307 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
308 			workload->rb_len);
309 		return PTR_ERR(cs);
310 	}
311 
312 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
313 
314 	/* get shadow ring buffer va */
315 	workload->shadow_ring_buffer_va = cs;
316 
317 	memcpy(cs, shadow_ring_buffer_va,
318 			workload->rb_len);
319 
320 	cs += workload->rb_len / sizeof(u32);
321 	intel_ring_advance(workload->req, cs);
322 
323 	return 0;
324 }
325 
release_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)326 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
327 {
328 	if (!wa_ctx->indirect_ctx.obj)
329 		return;
330 
331 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
332 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
333 }
334 
335 /**
336  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
337  * shadow it as well, include ringbuffer,wa_ctx and ctx.
338  * @workload: an abstract entity for each execlist submission.
339  *
340  * This function is called before the workload submitting to i915, to make
341  * sure the content of the workload is valid.
342  */
intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload * workload)343 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
344 {
345 	struct intel_vgpu *vgpu = workload->vgpu;
346 	struct intel_vgpu_submission *s = &vgpu->submission;
347 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
348 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
349 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
350 	struct intel_context *ce;
351 	struct i915_request *rq;
352 	int ret;
353 
354 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
355 
356 	if (workload->req)
357 		return 0;
358 
359 	/* pin shadow context by gvt even the shadow context will be pinned
360 	 * when i915 alloc request. That is because gvt will update the guest
361 	 * context from shadow context when workload is completed, and at that
362 	 * moment, i915 may already unpined the shadow context to make the
363 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
364 	 * the guest context, gvt can unpin the shadow_ctx safely.
365 	 */
366 	ce = intel_context_pin(shadow_ctx, engine);
367 	if (IS_ERR(ce)) {
368 		gvt_vgpu_err("fail to pin shadow context\n");
369 		return PTR_ERR(ce);
370 	}
371 
372 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
373 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
374 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
375 
376 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
377 		shadow_context_descriptor_update(ce);
378 
379 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
380 	if (ret)
381 		goto err_unpin;
382 
383 	if ((workload->ring_id == RCS) &&
384 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
385 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
386 		if (ret)
387 			goto err_shadow;
388 	}
389 
390 	rq = i915_request_alloc(engine, shadow_ctx);
391 	if (IS_ERR(rq)) {
392 		gvt_vgpu_err("fail to allocate gem request\n");
393 		ret = PTR_ERR(rq);
394 		goto err_shadow;
395 	}
396 	workload->req = i915_request_get(rq);
397 
398 	ret = populate_shadow_context(workload);
399 	if (ret)
400 		goto err_req;
401 
402 	return 0;
403 err_req:
404 	rq = fetch_and_zero(&workload->req);
405 	i915_request_put(rq);
406 err_shadow:
407 	release_shadow_wa_ctx(&workload->wa_ctx);
408 err_unpin:
409 	intel_context_unpin(ce);
410 	return ret;
411 }
412 
413 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
414 
prepare_shadow_batch_buffer(struct intel_vgpu_workload * workload)415 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
416 {
417 	struct intel_gvt *gvt = workload->vgpu->gvt;
418 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
419 	struct intel_vgpu_shadow_bb *bb;
420 	int ret;
421 
422 	list_for_each_entry(bb, &workload->shadow_bb, list) {
423 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
424 		 * is only updated into ring_scan_buffer, not real ring address
425 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
426 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
427 		 * in copy_workload_to_ring_buffer.
428 		 */
429 
430 		if (bb->bb_offset)
431 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
432 				+ bb->bb_offset;
433 
434 		if (bb->ppgtt) {
435 			/* for non-priv bb, scan&shadow is only for
436 			 * debugging purpose, so the content of shadow bb
437 			 * is the same as original bb. Therefore,
438 			 * here, rather than switch to shadow bb's gma
439 			 * address, we directly use original batch buffer's
440 			 * gma address, and send original bb to hardware
441 			 * directly
442 			 */
443 			if (bb->clflush & CLFLUSH_AFTER) {
444 				drm_clflush_virt_range(bb->va,
445 						bb->obj->base.size);
446 				bb->clflush &= ~CLFLUSH_AFTER;
447 			}
448 			i915_gem_obj_finish_shmem_access(bb->obj);
449 			bb->accessing = false;
450 
451 		} else {
452 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
453 					NULL, 0, 0, 0);
454 			if (IS_ERR(bb->vma)) {
455 				ret = PTR_ERR(bb->vma);
456 				goto err;
457 			}
458 
459 			/* relocate shadow batch buffer */
460 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
461 			if (gmadr_bytes == 8)
462 				bb->bb_start_cmd_va[2] = 0;
463 
464 			/* No one is going to touch shadow bb from now on. */
465 			if (bb->clflush & CLFLUSH_AFTER) {
466 				drm_clflush_virt_range(bb->va,
467 						bb->obj->base.size);
468 				bb->clflush &= ~CLFLUSH_AFTER;
469 			}
470 
471 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
472 					false);
473 			if (ret)
474 				goto err;
475 
476 			i915_gem_obj_finish_shmem_access(bb->obj);
477 			bb->accessing = false;
478 
479 			ret = i915_vma_move_to_active(bb->vma,
480 						      workload->req,
481 						      0);
482 			if (ret)
483 				goto err;
484 		}
485 	}
486 	return 0;
487 err:
488 	release_shadow_batch_buffer(workload);
489 	return ret;
490 }
491 
update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx * wa_ctx)492 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
493 {
494 	struct intel_vgpu_workload *workload =
495 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
496 	struct i915_request *rq = workload->req;
497 	struct execlist_ring_context *shadow_ring_context =
498 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
499 
500 	shadow_ring_context->bb_per_ctx_ptr.val =
501 		(shadow_ring_context->bb_per_ctx_ptr.val &
502 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
503 	shadow_ring_context->rcs_indirect_ctx.val =
504 		(shadow_ring_context->rcs_indirect_ctx.val &
505 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
506 }
507 
prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)508 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
509 {
510 	struct i915_vma *vma;
511 	unsigned char *per_ctx_va =
512 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
513 		wa_ctx->indirect_ctx.size;
514 
515 	if (wa_ctx->indirect_ctx.size == 0)
516 		return 0;
517 
518 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
519 				       0, CACHELINE_BYTES, 0);
520 	if (IS_ERR(vma))
521 		return PTR_ERR(vma);
522 
523 	/* FIXME: we are not tracking our pinned VMA leaving it
524 	 * up to the core to fix up the stray pin_count upon
525 	 * free.
526 	 */
527 
528 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
529 
530 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
531 	memset(per_ctx_va, 0, CACHELINE_BYTES);
532 
533 	update_wa_ctx_2_shadow_ctx(wa_ctx);
534 	return 0;
535 }
536 
release_shadow_batch_buffer(struct intel_vgpu_workload * workload)537 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
538 {
539 	struct intel_vgpu *vgpu = workload->vgpu;
540 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
541 	struct intel_vgpu_shadow_bb *bb, *pos;
542 
543 	if (list_empty(&workload->shadow_bb))
544 		return;
545 
546 	bb = list_first_entry(&workload->shadow_bb,
547 			struct intel_vgpu_shadow_bb, list);
548 
549 	mutex_lock(&dev_priv->drm.struct_mutex);
550 
551 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
552 		if (bb->obj) {
553 			if (bb->accessing)
554 				i915_gem_obj_finish_shmem_access(bb->obj);
555 
556 			if (bb->va && !IS_ERR(bb->va))
557 				i915_gem_object_unpin_map(bb->obj);
558 
559 			if (bb->vma && !IS_ERR(bb->vma)) {
560 				i915_vma_unpin(bb->vma);
561 				i915_vma_close(bb->vma);
562 			}
563 			__i915_gem_object_release_unless_active(bb->obj);
564 		}
565 		list_del(&bb->list);
566 		kfree(bb);
567 	}
568 
569 	mutex_unlock(&dev_priv->drm.struct_mutex);
570 }
571 
prepare_workload(struct intel_vgpu_workload * workload)572 static int prepare_workload(struct intel_vgpu_workload *workload)
573 {
574 	struct intel_vgpu *vgpu = workload->vgpu;
575 	int ret = 0;
576 
577 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
578 	if (ret) {
579 		gvt_vgpu_err("fail to vgpu pin mm\n");
580 		return ret;
581 	}
582 
583 	update_shadow_pdps(workload);
584 
585 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
586 	if (ret) {
587 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
588 		goto err_unpin_mm;
589 	}
590 
591 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
592 	if (ret) {
593 		gvt_vgpu_err("fail to flush post shadow\n");
594 		goto err_unpin_mm;
595 	}
596 
597 	ret = copy_workload_to_ring_buffer(workload);
598 	if (ret) {
599 		gvt_vgpu_err("fail to generate request\n");
600 		goto err_unpin_mm;
601 	}
602 
603 	ret = prepare_shadow_batch_buffer(workload);
604 	if (ret) {
605 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
606 		goto err_unpin_mm;
607 	}
608 
609 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
610 	if (ret) {
611 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
612 		goto err_shadow_batch;
613 	}
614 
615 	if (workload->prepare) {
616 		ret = workload->prepare(workload);
617 		if (ret)
618 			goto err_shadow_wa_ctx;
619 	}
620 
621 	return 0;
622 err_shadow_wa_ctx:
623 	release_shadow_wa_ctx(&workload->wa_ctx);
624 err_shadow_batch:
625 	release_shadow_batch_buffer(workload);
626 err_unpin_mm:
627 	intel_vgpu_unpin_mm(workload->shadow_mm);
628 	return ret;
629 }
630 
dispatch_workload(struct intel_vgpu_workload * workload)631 static int dispatch_workload(struct intel_vgpu_workload *workload)
632 {
633 	struct intel_vgpu *vgpu = workload->vgpu;
634 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
635 	int ring_id = workload->ring_id;
636 	int ret;
637 
638 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
639 		ring_id, workload);
640 
641 	mutex_lock(&vgpu->vgpu_lock);
642 	mutex_lock(&dev_priv->drm.struct_mutex);
643 
644 	ret = intel_gvt_scan_and_shadow_workload(workload);
645 	if (ret)
646 		goto out;
647 
648 	ret = prepare_workload(workload);
649 
650 out:
651 	if (ret)
652 		workload->status = ret;
653 
654 	if (!IS_ERR_OR_NULL(workload->req)) {
655 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
656 				ring_id, workload->req);
657 		i915_request_add(workload->req);
658 		workload->dispatched = true;
659 	}
660 
661 	mutex_unlock(&dev_priv->drm.struct_mutex);
662 	mutex_unlock(&vgpu->vgpu_lock);
663 	return ret;
664 }
665 
pick_next_workload(struct intel_gvt * gvt,int ring_id)666 static struct intel_vgpu_workload *pick_next_workload(
667 		struct intel_gvt *gvt, int ring_id)
668 {
669 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
670 	struct intel_vgpu_workload *workload = NULL;
671 
672 	mutex_lock(&gvt->sched_lock);
673 
674 	/*
675 	 * no current vgpu / will be scheduled out / no workload
676 	 * bail out
677 	 */
678 	if (!scheduler->current_vgpu) {
679 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
680 		goto out;
681 	}
682 
683 	if (scheduler->need_reschedule) {
684 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
685 		goto out;
686 	}
687 
688 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
689 		goto out;
690 
691 	/*
692 	 * still have current workload, maybe the workload disptacher
693 	 * fail to submit it for some reason, resubmit it.
694 	 */
695 	if (scheduler->current_workload[ring_id]) {
696 		workload = scheduler->current_workload[ring_id];
697 		gvt_dbg_sched("ring id %d still have current workload %p\n",
698 				ring_id, workload);
699 		goto out;
700 	}
701 
702 	/*
703 	 * pick a workload as current workload
704 	 * once current workload is set, schedule policy routines
705 	 * will wait the current workload is finished when trying to
706 	 * schedule out a vgpu.
707 	 */
708 	scheduler->current_workload[ring_id] = container_of(
709 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
710 			struct intel_vgpu_workload, list);
711 
712 	workload = scheduler->current_workload[ring_id];
713 
714 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
715 
716 	atomic_inc(&workload->vgpu->submission.running_workload_num);
717 out:
718 	mutex_unlock(&gvt->sched_lock);
719 	return workload;
720 }
721 
update_guest_context(struct intel_vgpu_workload * workload)722 static void update_guest_context(struct intel_vgpu_workload *workload)
723 {
724 	struct i915_request *rq = workload->req;
725 	struct intel_vgpu *vgpu = workload->vgpu;
726 	struct intel_gvt *gvt = vgpu->gvt;
727 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
728 	struct execlist_ring_context *shadow_ring_context;
729 	struct page *page;
730 	void *src;
731 	unsigned long context_gpa, context_page_num;
732 	int i;
733 
734 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
735 		      workload->ctx_desc.lrca);
736 
737 	context_page_num = rq->engine->context_size;
738 	context_page_num = context_page_num >> PAGE_SHIFT;
739 
740 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS)
741 		context_page_num = 19;
742 
743 	i = 2;
744 
745 	while (i < context_page_num) {
746 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
747 				(u32)((workload->ctx_desc.lrca + i) <<
748 					I915_GTT_PAGE_SHIFT));
749 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
750 			gvt_vgpu_err("invalid guest context descriptor\n");
751 			return;
752 		}
753 
754 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
755 		src = kmap(page);
756 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
757 				I915_GTT_PAGE_SIZE);
758 		kunmap(page);
759 		i++;
760 	}
761 
762 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
763 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
764 
765 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
766 	shadow_ring_context = kmap(page);
767 
768 #define COPY_REG(name) \
769 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
770 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
771 
772 	COPY_REG(ctx_ctrl);
773 	COPY_REG(ctx_timestamp);
774 
775 #undef COPY_REG
776 
777 	intel_gvt_hypervisor_write_gpa(vgpu,
778 			workload->ring_context_gpa +
779 			sizeof(*shadow_ring_context),
780 			(void *)shadow_ring_context +
781 			sizeof(*shadow_ring_context),
782 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
783 
784 	kunmap(page);
785 }
786 
intel_vgpu_clean_workloads(struct intel_vgpu * vgpu,unsigned long engine_mask)787 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
788 				unsigned long engine_mask)
789 {
790 	struct intel_vgpu_submission *s = &vgpu->submission;
791 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
792 	struct intel_engine_cs *engine;
793 	struct intel_vgpu_workload *pos, *n;
794 	unsigned int tmp;
795 
796 	/* free the unsubmited workloads in the queues. */
797 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
798 		list_for_each_entry_safe(pos, n,
799 			&s->workload_q_head[engine->id], list) {
800 			list_del_init(&pos->list);
801 			intel_vgpu_destroy_workload(pos);
802 		}
803 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
804 	}
805 }
806 
complete_current_workload(struct intel_gvt * gvt,int ring_id)807 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
808 {
809 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
810 	struct intel_vgpu_workload *workload =
811 		scheduler->current_workload[ring_id];
812 	struct intel_vgpu *vgpu = workload->vgpu;
813 	struct intel_vgpu_submission *s = &vgpu->submission;
814 	struct i915_request *rq = workload->req;
815 	int event;
816 
817 	mutex_lock(&vgpu->vgpu_lock);
818 	mutex_lock(&gvt->sched_lock);
819 
820 	/* For the workload w/ request, needs to wait for the context
821 	 * switch to make sure request is completed.
822 	 * For the workload w/o request, directly complete the workload.
823 	 */
824 	if (rq) {
825 		wait_event(workload->shadow_ctx_status_wq,
826 			   !atomic_read(&workload->shadow_ctx_active));
827 
828 		/* If this request caused GPU hang, req->fence.error will
829 		 * be set to -EIO. Use -EIO to set workload status so
830 		 * that when this request caused GPU hang, didn't trigger
831 		 * context switch interrupt to guest.
832 		 */
833 		if (likely(workload->status == -EINPROGRESS)) {
834 			if (workload->req->fence.error == -EIO)
835 				workload->status = -EIO;
836 			else
837 				workload->status = 0;
838 		}
839 
840 		if (!workload->status && !(vgpu->resetting_eng &
841 					   ENGINE_MASK(ring_id))) {
842 			update_guest_context(workload);
843 
844 			for_each_set_bit(event, workload->pending_events,
845 					 INTEL_GVT_EVENT_MAX)
846 				intel_vgpu_trigger_virtual_event(vgpu, event);
847 		}
848 
849 		/* unpin shadow ctx as the shadow_ctx update is done */
850 		mutex_lock(&rq->i915->drm.struct_mutex);
851 		intel_context_unpin(rq->hw_context);
852 		mutex_unlock(&rq->i915->drm.struct_mutex);
853 
854 		i915_request_put(fetch_and_zero(&workload->req));
855 	}
856 
857 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
858 			ring_id, workload, workload->status);
859 
860 	scheduler->current_workload[ring_id] = NULL;
861 
862 	list_del_init(&workload->list);
863 
864 	if (!workload->status) {
865 		release_shadow_batch_buffer(workload);
866 		release_shadow_wa_ctx(&workload->wa_ctx);
867 	}
868 
869 	if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
870 		/* if workload->status is not successful means HW GPU
871 		 * has occurred GPU hang or something wrong with i915/GVT,
872 		 * and GVT won't inject context switch interrupt to guest.
873 		 * So this error is a vGPU hang actually to the guest.
874 		 * According to this we should emunlate a vGPU hang. If
875 		 * there are pending workloads which are already submitted
876 		 * from guest, we should clean them up like HW GPU does.
877 		 *
878 		 * if it is in middle of engine resetting, the pending
879 		 * workloads won't be submitted to HW GPU and will be
880 		 * cleaned up during the resetting process later, so doing
881 		 * the workload clean up here doesn't have any impact.
882 		 **/
883 		intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id));
884 	}
885 
886 	workload->complete(workload);
887 
888 	atomic_dec(&s->running_workload_num);
889 	wake_up(&scheduler->workload_complete_wq);
890 
891 	if (gvt->scheduler.need_reschedule)
892 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
893 
894 	mutex_unlock(&gvt->sched_lock);
895 	mutex_unlock(&vgpu->vgpu_lock);
896 }
897 
898 struct workload_thread_param {
899 	struct intel_gvt *gvt;
900 	int ring_id;
901 };
902 
workload_thread(void * priv)903 static int workload_thread(void *priv)
904 {
905 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
906 	struct intel_gvt *gvt = p->gvt;
907 	int ring_id = p->ring_id;
908 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
909 	struct intel_vgpu_workload *workload = NULL;
910 	struct intel_vgpu *vgpu = NULL;
911 	int ret;
912 	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
913 			|| IS_KABYLAKE(gvt->dev_priv)
914 			|| IS_BROXTON(gvt->dev_priv);
915 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
916 
917 	kfree(p);
918 
919 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
920 
921 	while (!kthread_should_stop()) {
922 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
923 		do {
924 			workload = pick_next_workload(gvt, ring_id);
925 			if (workload)
926 				break;
927 			wait_woken(&wait, TASK_INTERRUPTIBLE,
928 				   MAX_SCHEDULE_TIMEOUT);
929 		} while (!kthread_should_stop());
930 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
931 
932 		if (!workload)
933 			break;
934 
935 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
936 				workload->ring_id, workload,
937 				workload->vgpu->id);
938 
939 		intel_runtime_pm_get(gvt->dev_priv);
940 
941 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
942 				workload->ring_id, workload);
943 
944 		if (need_force_wake)
945 			intel_uncore_forcewake_get(gvt->dev_priv,
946 					FORCEWAKE_ALL);
947 
948 		ret = dispatch_workload(workload);
949 
950 		if (ret) {
951 			vgpu = workload->vgpu;
952 			gvt_vgpu_err("fail to dispatch workload, skip\n");
953 			goto complete;
954 		}
955 
956 		gvt_dbg_sched("ring id %d wait workload %p\n",
957 				workload->ring_id, workload);
958 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
959 
960 complete:
961 		gvt_dbg_sched("will complete workload %p, status: %d\n",
962 				workload, workload->status);
963 
964 		complete_current_workload(gvt, ring_id);
965 
966 		if (need_force_wake)
967 			intel_uncore_forcewake_put(gvt->dev_priv,
968 					FORCEWAKE_ALL);
969 
970 		intel_runtime_pm_put(gvt->dev_priv);
971 		if (ret && (vgpu_is_vm_unhealthy(ret)))
972 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
973 	}
974 	return 0;
975 }
976 
intel_gvt_wait_vgpu_idle(struct intel_vgpu * vgpu)977 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
978 {
979 	struct intel_vgpu_submission *s = &vgpu->submission;
980 	struct intel_gvt *gvt = vgpu->gvt;
981 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
982 
983 	if (atomic_read(&s->running_workload_num)) {
984 		gvt_dbg_sched("wait vgpu idle\n");
985 
986 		wait_event(scheduler->workload_complete_wq,
987 				!atomic_read(&s->running_workload_num));
988 	}
989 }
990 
intel_gvt_clean_workload_scheduler(struct intel_gvt * gvt)991 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
992 {
993 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
994 	struct intel_engine_cs *engine;
995 	enum intel_engine_id i;
996 
997 	gvt_dbg_core("clean workload scheduler\n");
998 
999 	for_each_engine(engine, gvt->dev_priv, i) {
1000 		atomic_notifier_chain_unregister(
1001 					&engine->context_status_notifier,
1002 					&gvt->shadow_ctx_notifier_block[i]);
1003 		kthread_stop(scheduler->thread[i]);
1004 	}
1005 }
1006 
intel_gvt_init_workload_scheduler(struct intel_gvt * gvt)1007 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1008 {
1009 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1010 	struct workload_thread_param *param = NULL;
1011 	struct intel_engine_cs *engine;
1012 	enum intel_engine_id i;
1013 	int ret;
1014 
1015 	gvt_dbg_core("init workload scheduler\n");
1016 
1017 	init_waitqueue_head(&scheduler->workload_complete_wq);
1018 
1019 	for_each_engine(engine, gvt->dev_priv, i) {
1020 		init_waitqueue_head(&scheduler->waitq[i]);
1021 
1022 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1023 		if (!param) {
1024 			ret = -ENOMEM;
1025 			goto err;
1026 		}
1027 
1028 		param->gvt = gvt;
1029 		param->ring_id = i;
1030 
1031 		scheduler->thread[i] = kthread_run(workload_thread, param,
1032 			"gvt workload %d", i);
1033 		if (IS_ERR(scheduler->thread[i])) {
1034 			gvt_err("fail to create workload thread\n");
1035 			ret = PTR_ERR(scheduler->thread[i]);
1036 			goto err;
1037 		}
1038 
1039 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1040 					shadow_context_status_change;
1041 		atomic_notifier_chain_register(&engine->context_status_notifier,
1042 					&gvt->shadow_ctx_notifier_block[i]);
1043 	}
1044 	return 0;
1045 err:
1046 	intel_gvt_clean_workload_scheduler(gvt);
1047 	kfree(param);
1048 	param = NULL;
1049 	return ret;
1050 }
1051 
1052 /**
1053  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1054  * @vgpu: a vGPU
1055  *
1056  * This function is called when a vGPU is being destroyed.
1057  *
1058  */
intel_vgpu_clean_submission(struct intel_vgpu * vgpu)1059 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1060 {
1061 	struct intel_vgpu_submission *s = &vgpu->submission;
1062 
1063 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1064 	i915_gem_context_put(s->shadow_ctx);
1065 	kmem_cache_destroy(s->workloads);
1066 }
1067 
1068 
1069 /**
1070  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1071  * @vgpu: a vGPU
1072  * @engine_mask: engines expected to be reset
1073  *
1074  * This function is called when a vGPU is being destroyed.
1075  *
1076  */
intel_vgpu_reset_submission(struct intel_vgpu * vgpu,unsigned long engine_mask)1077 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1078 		unsigned long engine_mask)
1079 {
1080 	struct intel_vgpu_submission *s = &vgpu->submission;
1081 
1082 	if (!s->active)
1083 		return;
1084 
1085 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1086 	s->ops->reset(vgpu, engine_mask);
1087 }
1088 
1089 /**
1090  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1091  * @vgpu: a vGPU
1092  *
1093  * This function is called when a vGPU is being created.
1094  *
1095  * Returns:
1096  * Zero on success, negative error code if failed.
1097  *
1098  */
intel_vgpu_setup_submission(struct intel_vgpu * vgpu)1099 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1100 {
1101 	struct intel_vgpu_submission *s = &vgpu->submission;
1102 	enum intel_engine_id i;
1103 	struct intel_engine_cs *engine;
1104 	int ret;
1105 
1106 	s->shadow_ctx = i915_gem_context_create_gvt(
1107 			&vgpu->gvt->dev_priv->drm);
1108 	if (IS_ERR(s->shadow_ctx))
1109 		return PTR_ERR(s->shadow_ctx);
1110 
1111 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1112 
1113 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1114 						  sizeof(struct intel_vgpu_workload), 0,
1115 						  SLAB_HWCACHE_ALIGN,
1116 						  offsetof(struct intel_vgpu_workload, rb_tail),
1117 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1118 						  NULL);
1119 
1120 	if (!s->workloads) {
1121 		ret = -ENOMEM;
1122 		goto out_shadow_ctx;
1123 	}
1124 
1125 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1126 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1127 
1128 	atomic_set(&s->running_workload_num, 0);
1129 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1130 
1131 	return 0;
1132 
1133 out_shadow_ctx:
1134 	i915_gem_context_put(s->shadow_ctx);
1135 	return ret;
1136 }
1137 
1138 /**
1139  * intel_vgpu_select_submission_ops - select virtual submission interface
1140  * @vgpu: a vGPU
1141  * @interface: expected vGPU virtual submission interface
1142  *
1143  * This function is called when guest configures submission interface.
1144  *
1145  * Returns:
1146  * Zero on success, negative error code if failed.
1147  *
1148  */
intel_vgpu_select_submission_ops(struct intel_vgpu * vgpu,unsigned long engine_mask,unsigned int interface)1149 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1150 				     unsigned long engine_mask,
1151 				     unsigned int interface)
1152 {
1153 	struct intel_vgpu_submission *s = &vgpu->submission;
1154 	const struct intel_vgpu_submission_ops *ops[] = {
1155 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1156 			&intel_vgpu_execlist_submission_ops,
1157 	};
1158 	int ret;
1159 
1160 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1161 		return -EINVAL;
1162 
1163 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1164 		return -EINVAL;
1165 
1166 	if (s->active)
1167 		s->ops->clean(vgpu, engine_mask);
1168 
1169 	if (interface == 0) {
1170 		s->ops = NULL;
1171 		s->virtual_submission_interface = 0;
1172 		s->active = false;
1173 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1174 		return 0;
1175 	}
1176 
1177 	ret = ops[interface]->init(vgpu, engine_mask);
1178 	if (ret)
1179 		return ret;
1180 
1181 	s->ops = ops[interface];
1182 	s->virtual_submission_interface = interface;
1183 	s->active = true;
1184 
1185 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1186 			vgpu->id, s->ops->name);
1187 
1188 	return 0;
1189 }
1190 
1191 /**
1192  * intel_vgpu_destroy_workload - destroy a vGPU workload
1193  * @vgpu: a vGPU
1194  *
1195  * This function is called when destroy a vGPU workload.
1196  *
1197  */
intel_vgpu_destroy_workload(struct intel_vgpu_workload * workload)1198 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1199 {
1200 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1201 
1202 	if (workload->shadow_mm)
1203 		intel_vgpu_mm_put(workload->shadow_mm);
1204 
1205 	kmem_cache_free(s->workloads, workload);
1206 }
1207 
1208 static struct intel_vgpu_workload *
alloc_workload(struct intel_vgpu * vgpu)1209 alloc_workload(struct intel_vgpu *vgpu)
1210 {
1211 	struct intel_vgpu_submission *s = &vgpu->submission;
1212 	struct intel_vgpu_workload *workload;
1213 
1214 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1215 	if (!workload)
1216 		return ERR_PTR(-ENOMEM);
1217 
1218 	INIT_LIST_HEAD(&workload->list);
1219 	INIT_LIST_HEAD(&workload->shadow_bb);
1220 
1221 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1222 	atomic_set(&workload->shadow_ctx_active, 0);
1223 
1224 	workload->status = -EINPROGRESS;
1225 	workload->vgpu = vgpu;
1226 
1227 	return workload;
1228 }
1229 
1230 #define RING_CTX_OFF(x) \
1231 	offsetof(struct execlist_ring_context, x)
1232 
read_guest_pdps(struct intel_vgpu * vgpu,u64 ring_context_gpa,u32 pdp[8])1233 static void read_guest_pdps(struct intel_vgpu *vgpu,
1234 		u64 ring_context_gpa, u32 pdp[8])
1235 {
1236 	u64 gpa;
1237 	int i;
1238 
1239 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1240 
1241 	for (i = 0; i < 8; i++)
1242 		intel_gvt_hypervisor_read_gpa(vgpu,
1243 				gpa + i * 8, &pdp[7 - i], 4);
1244 }
1245 
prepare_mm(struct intel_vgpu_workload * workload)1246 static int prepare_mm(struct intel_vgpu_workload *workload)
1247 {
1248 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1249 	struct intel_vgpu_mm *mm;
1250 	struct intel_vgpu *vgpu = workload->vgpu;
1251 	intel_gvt_gtt_type_t root_entry_type;
1252 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1253 
1254 	switch (desc->addressing_mode) {
1255 	case 1: /* legacy 32-bit */
1256 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1257 		break;
1258 	case 3: /* legacy 64-bit */
1259 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1260 		break;
1261 	default:
1262 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1263 		return -EINVAL;
1264 	}
1265 
1266 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1267 
1268 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1269 	if (IS_ERR(mm))
1270 		return PTR_ERR(mm);
1271 
1272 	workload->shadow_mm = mm;
1273 	return 0;
1274 }
1275 
1276 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1277 		((a)->lrca == (b)->lrca))
1278 
1279 #define get_last_workload(q) \
1280 	(list_empty(q) ? NULL : container_of(q->prev, \
1281 	struct intel_vgpu_workload, list))
1282 /**
1283  * intel_vgpu_create_workload - create a vGPU workload
1284  * @vgpu: a vGPU
1285  * @desc: a guest context descriptor
1286  *
1287  * This function is called when creating a vGPU workload.
1288  *
1289  * Returns:
1290  * struct intel_vgpu_workload * on success, negative error code in
1291  * pointer if failed.
1292  *
1293  */
1294 struct intel_vgpu_workload *
intel_vgpu_create_workload(struct intel_vgpu * vgpu,int ring_id,struct execlist_ctx_descriptor_format * desc)1295 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1296 			   struct execlist_ctx_descriptor_format *desc)
1297 {
1298 	struct intel_vgpu_submission *s = &vgpu->submission;
1299 	struct list_head *q = workload_q_head(vgpu, ring_id);
1300 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1301 	struct intel_vgpu_workload *workload = NULL;
1302 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1303 	u64 ring_context_gpa;
1304 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1305 	int ret;
1306 
1307 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1308 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1309 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1310 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1311 		return ERR_PTR(-EINVAL);
1312 	}
1313 
1314 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1315 			RING_CTX_OFF(ring_header.val), &head, 4);
1316 
1317 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1318 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1319 
1320 	head &= RB_HEAD_OFF_MASK;
1321 	tail &= RB_TAIL_OFF_MASK;
1322 
1323 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1324 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1325 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1326 				last_workload->rb_tail);
1327 		/*
1328 		 * cannot use guest context head pointer here,
1329 		 * as it might not be updated at this time
1330 		 */
1331 		head = last_workload->rb_tail;
1332 	}
1333 
1334 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1335 
1336 	/* record some ring buffer register values for scan and shadow */
1337 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1338 			RING_CTX_OFF(rb_start.val), &start, 4);
1339 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1340 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1341 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1342 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1343 
1344 	workload = alloc_workload(vgpu);
1345 	if (IS_ERR(workload))
1346 		return workload;
1347 
1348 	workload->ring_id = ring_id;
1349 	workload->ctx_desc = *desc;
1350 	workload->ring_context_gpa = ring_context_gpa;
1351 	workload->rb_head = head;
1352 	workload->rb_tail = tail;
1353 	workload->rb_start = start;
1354 	workload->rb_ctl = ctl;
1355 
1356 	if (ring_id == RCS) {
1357 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1358 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1359 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1360 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1361 
1362 		workload->wa_ctx.indirect_ctx.guest_gma =
1363 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1364 		workload->wa_ctx.indirect_ctx.size =
1365 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1366 			CACHELINE_BYTES;
1367 		workload->wa_ctx.per_ctx.guest_gma =
1368 			per_ctx & PER_CTX_ADDR_MASK;
1369 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1370 	}
1371 
1372 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1373 			workload, ring_id, head, tail, start, ctl);
1374 
1375 	ret = prepare_mm(workload);
1376 	if (ret) {
1377 		kmem_cache_free(s->workloads, workload);
1378 		return ERR_PTR(ret);
1379 	}
1380 
1381 	/* Only scan and shadow the first workload in the queue
1382 	 * as there is only one pre-allocated buf-obj for shadow.
1383 	 */
1384 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1385 		intel_runtime_pm_get(dev_priv);
1386 		mutex_lock(&dev_priv->drm.struct_mutex);
1387 		ret = intel_gvt_scan_and_shadow_workload(workload);
1388 		mutex_unlock(&dev_priv->drm.struct_mutex);
1389 		intel_runtime_pm_put(dev_priv);
1390 	}
1391 
1392 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1393 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1394 		intel_vgpu_destroy_workload(workload);
1395 		return ERR_PTR(ret);
1396 	}
1397 
1398 	return workload;
1399 }
1400 
1401 /**
1402  * intel_vgpu_queue_workload - Qeue a vGPU workload
1403  * @workload: the workload to queue in
1404  */
intel_vgpu_queue_workload(struct intel_vgpu_workload * workload)1405 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1406 {
1407 	list_add_tail(&workload->list,
1408 		workload_q_head(workload->vgpu, workload->ring_id));
1409 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1410 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1411 }
1412