1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
53 enum i915_power_well_id power_well_id);
54
55 static struct i915_power_well *
56 lookup_power_well(struct drm_i915_private *dev_priv,
57 enum i915_power_well_id power_well_id);
58
59 const char *
intel_display_power_domain_str(enum intel_display_power_domain domain)60 intel_display_power_domain_str(enum intel_display_power_domain domain)
61 {
62 switch (domain) {
63 case POWER_DOMAIN_PIPE_A:
64 return "PIPE_A";
65 case POWER_DOMAIN_PIPE_B:
66 return "PIPE_B";
67 case POWER_DOMAIN_PIPE_C:
68 return "PIPE_C";
69 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
70 return "PIPE_A_PANEL_FITTER";
71 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
72 return "PIPE_B_PANEL_FITTER";
73 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
74 return "PIPE_C_PANEL_FITTER";
75 case POWER_DOMAIN_TRANSCODER_A:
76 return "TRANSCODER_A";
77 case POWER_DOMAIN_TRANSCODER_B:
78 return "TRANSCODER_B";
79 case POWER_DOMAIN_TRANSCODER_C:
80 return "TRANSCODER_C";
81 case POWER_DOMAIN_TRANSCODER_EDP:
82 return "TRANSCODER_EDP";
83 case POWER_DOMAIN_TRANSCODER_DSI_A:
84 return "TRANSCODER_DSI_A";
85 case POWER_DOMAIN_TRANSCODER_DSI_C:
86 return "TRANSCODER_DSI_C";
87 case POWER_DOMAIN_PORT_DDI_A_LANES:
88 return "PORT_DDI_A_LANES";
89 case POWER_DOMAIN_PORT_DDI_B_LANES:
90 return "PORT_DDI_B_LANES";
91 case POWER_DOMAIN_PORT_DDI_C_LANES:
92 return "PORT_DDI_C_LANES";
93 case POWER_DOMAIN_PORT_DDI_D_LANES:
94 return "PORT_DDI_D_LANES";
95 case POWER_DOMAIN_PORT_DDI_E_LANES:
96 return "PORT_DDI_E_LANES";
97 case POWER_DOMAIN_PORT_DDI_F_LANES:
98 return "PORT_DDI_F_LANES";
99 case POWER_DOMAIN_PORT_DDI_A_IO:
100 return "PORT_DDI_A_IO";
101 case POWER_DOMAIN_PORT_DDI_B_IO:
102 return "PORT_DDI_B_IO";
103 case POWER_DOMAIN_PORT_DDI_C_IO:
104 return "PORT_DDI_C_IO";
105 case POWER_DOMAIN_PORT_DDI_D_IO:
106 return "PORT_DDI_D_IO";
107 case POWER_DOMAIN_PORT_DDI_E_IO:
108 return "PORT_DDI_E_IO";
109 case POWER_DOMAIN_PORT_DDI_F_IO:
110 return "PORT_DDI_F_IO";
111 case POWER_DOMAIN_PORT_DSI:
112 return "PORT_DSI";
113 case POWER_DOMAIN_PORT_CRT:
114 return "PORT_CRT";
115 case POWER_DOMAIN_PORT_OTHER:
116 return "PORT_OTHER";
117 case POWER_DOMAIN_VGA:
118 return "VGA";
119 case POWER_DOMAIN_AUDIO:
120 return "AUDIO";
121 case POWER_DOMAIN_PLLS:
122 return "PLLS";
123 case POWER_DOMAIN_AUX_A:
124 return "AUX_A";
125 case POWER_DOMAIN_AUX_B:
126 return "AUX_B";
127 case POWER_DOMAIN_AUX_C:
128 return "AUX_C";
129 case POWER_DOMAIN_AUX_D:
130 return "AUX_D";
131 case POWER_DOMAIN_AUX_E:
132 return "AUX_E";
133 case POWER_DOMAIN_AUX_F:
134 return "AUX_F";
135 case POWER_DOMAIN_AUX_IO_A:
136 return "AUX_IO_A";
137 case POWER_DOMAIN_AUX_TBT1:
138 return "AUX_TBT1";
139 case POWER_DOMAIN_AUX_TBT2:
140 return "AUX_TBT2";
141 case POWER_DOMAIN_AUX_TBT3:
142 return "AUX_TBT3";
143 case POWER_DOMAIN_AUX_TBT4:
144 return "AUX_TBT4";
145 case POWER_DOMAIN_GMBUS:
146 return "GMBUS";
147 case POWER_DOMAIN_INIT:
148 return "INIT";
149 case POWER_DOMAIN_MODESET:
150 return "MODESET";
151 case POWER_DOMAIN_GT_IRQ:
152 return "GT_IRQ";
153 default:
154 MISSING_CASE(domain);
155 return "?";
156 }
157 }
158
intel_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)159 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
160 struct i915_power_well *power_well)
161 {
162 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
163 power_well->ops->enable(dev_priv, power_well);
164 power_well->hw_enabled = true;
165 }
166
intel_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)167 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
168 struct i915_power_well *power_well)
169 {
170 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
171 power_well->hw_enabled = false;
172 power_well->ops->disable(dev_priv, power_well);
173 }
174
intel_power_well_get(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)175 static void intel_power_well_get(struct drm_i915_private *dev_priv,
176 struct i915_power_well *power_well)
177 {
178 if (!power_well->count++)
179 intel_power_well_enable(dev_priv, power_well);
180 }
181
intel_power_well_put(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)182 static void intel_power_well_put(struct drm_i915_private *dev_priv,
183 struct i915_power_well *power_well)
184 {
185 WARN(!power_well->count, "Use count on power well %s is already zero",
186 power_well->name);
187
188 if (!--power_well->count)
189 intel_power_well_disable(dev_priv, power_well);
190 }
191
192 /**
193 * __intel_display_power_is_enabled - unlocked check for a power domain
194 * @dev_priv: i915 device instance
195 * @domain: power domain to check
196 *
197 * This is the unlocked version of intel_display_power_is_enabled() and should
198 * only be used from error capture and recovery code where deadlocks are
199 * possible.
200 *
201 * Returns:
202 * True when the power domain is enabled, false otherwise.
203 */
__intel_display_power_is_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)204 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
205 enum intel_display_power_domain domain)
206 {
207 struct i915_power_well *power_well;
208 bool is_enabled;
209
210 if (dev_priv->runtime_pm.suspended)
211 return false;
212
213 is_enabled = true;
214
215 for_each_power_domain_well_rev(dev_priv, power_well, BIT_ULL(domain)) {
216 if (power_well->always_on)
217 continue;
218
219 if (!power_well->hw_enabled) {
220 is_enabled = false;
221 break;
222 }
223 }
224
225 return is_enabled;
226 }
227
228 /**
229 * intel_display_power_is_enabled - check for a power domain
230 * @dev_priv: i915 device instance
231 * @domain: power domain to check
232 *
233 * This function can be used to check the hw power domain state. It is mostly
234 * used in hardware state readout functions. Everywhere else code should rely
235 * upon explicit power domain reference counting to ensure that the hardware
236 * block is powered up before accessing it.
237 *
238 * Callers must hold the relevant modesetting locks to ensure that concurrent
239 * threads can't disable the power well while the caller tries to read a few
240 * registers.
241 *
242 * Returns:
243 * True when the power domain is enabled, false otherwise.
244 */
intel_display_power_is_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)245 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
246 enum intel_display_power_domain domain)
247 {
248 struct i915_power_domains *power_domains;
249 bool ret;
250
251 power_domains = &dev_priv->power_domains;
252
253 mutex_lock(&power_domains->lock);
254 ret = __intel_display_power_is_enabled(dev_priv, domain);
255 mutex_unlock(&power_domains->lock);
256
257 return ret;
258 }
259
260 /**
261 * intel_display_set_init_power - set the initial power domain state
262 * @dev_priv: i915 device instance
263 * @enable: whether to enable or disable the initial power domain state
264 *
265 * For simplicity our driver load/unload and system suspend/resume code assumes
266 * that all power domains are always enabled. This functions controls the state
267 * of this little hack. While the initial power domain state is enabled runtime
268 * pm is effectively disabled.
269 */
intel_display_set_init_power(struct drm_i915_private * dev_priv,bool enable)270 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
271 bool enable)
272 {
273 if (dev_priv->power_domains.init_power_on == enable)
274 return;
275
276 if (enable)
277 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
278 else
279 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
280
281 dev_priv->power_domains.init_power_on = enable;
282 }
283
284 /*
285 * Starting with Haswell, we have a "Power Down Well" that can be turned off
286 * when not needed anymore. We have 4 registers that can request the power well
287 * to be enabled, and it will only be disabled if none of the registers is
288 * requesting it to be enabled.
289 */
hsw_power_well_post_enable(struct drm_i915_private * dev_priv,u8 irq_pipe_mask,bool has_vga)290 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv,
291 u8 irq_pipe_mask, bool has_vga)
292 {
293 struct pci_dev *pdev = dev_priv->drm.pdev;
294
295 /*
296 * After we re-enable the power well, if we touch VGA register 0x3d5
297 * we'll get unclaimed register interrupts. This stops after we write
298 * anything to the VGA MSR register. The vgacon module uses this
299 * register all the time, so if we unbind our driver and, as a
300 * consequence, bind vgacon, we'll get stuck in an infinite loop at
301 * console_unlock(). So make here we touch the VGA MSR register, making
302 * sure vgacon can keep working normally without triggering interrupts
303 * and error messages.
304 */
305 if (has_vga) {
306 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
307 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
308 vga_put(pdev, VGA_RSRC_LEGACY_IO);
309 }
310
311 if (irq_pipe_mask)
312 gen8_irq_power_well_post_enable(dev_priv, irq_pipe_mask);
313 }
314
hsw_power_well_pre_disable(struct drm_i915_private * dev_priv,u8 irq_pipe_mask)315 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv,
316 u8 irq_pipe_mask)
317 {
318 if (irq_pipe_mask)
319 gen8_irq_power_well_pre_disable(dev_priv, irq_pipe_mask);
320 }
321
322
hsw_wait_for_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)323 static void hsw_wait_for_power_well_enable(struct drm_i915_private *dev_priv,
324 struct i915_power_well *power_well)
325 {
326 enum i915_power_well_id id = power_well->id;
327
328 /* Timeout for PW1:10 us, AUX:not specified, other PWs:20 us. */
329 WARN_ON(intel_wait_for_register(dev_priv,
330 HSW_PWR_WELL_CTL_DRIVER(id),
331 HSW_PWR_WELL_CTL_STATE(id),
332 HSW_PWR_WELL_CTL_STATE(id),
333 1));
334 }
335
hsw_power_well_requesters(struct drm_i915_private * dev_priv,enum i915_power_well_id id)336 static u32 hsw_power_well_requesters(struct drm_i915_private *dev_priv,
337 enum i915_power_well_id id)
338 {
339 u32 req_mask = HSW_PWR_WELL_CTL_REQ(id);
340 u32 ret;
341
342 ret = I915_READ(HSW_PWR_WELL_CTL_BIOS(id)) & req_mask ? 1 : 0;
343 ret |= I915_READ(HSW_PWR_WELL_CTL_DRIVER(id)) & req_mask ? 2 : 0;
344 ret |= I915_READ(HSW_PWR_WELL_CTL_KVMR) & req_mask ? 4 : 0;
345 ret |= I915_READ(HSW_PWR_WELL_CTL_DEBUG(id)) & req_mask ? 8 : 0;
346
347 return ret;
348 }
349
hsw_wait_for_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)350 static void hsw_wait_for_power_well_disable(struct drm_i915_private *dev_priv,
351 struct i915_power_well *power_well)
352 {
353 enum i915_power_well_id id = power_well->id;
354 bool disabled;
355 u32 reqs;
356
357 /*
358 * Bspec doesn't require waiting for PWs to get disabled, but still do
359 * this for paranoia. The known cases where a PW will be forced on:
360 * - a KVMR request on any power well via the KVMR request register
361 * - a DMC request on PW1 and MISC_IO power wells via the BIOS and
362 * DEBUG request registers
363 * Skip the wait in case any of the request bits are set and print a
364 * diagnostic message.
365 */
366 wait_for((disabled = !(I915_READ(HSW_PWR_WELL_CTL_DRIVER(id)) &
367 HSW_PWR_WELL_CTL_STATE(id))) ||
368 (reqs = hsw_power_well_requesters(dev_priv, id)), 1);
369 if (disabled)
370 return;
371
372 DRM_DEBUG_KMS("%s forced on (bios:%d driver:%d kvmr:%d debug:%d)\n",
373 power_well->name,
374 !!(reqs & 1), !!(reqs & 2), !!(reqs & 4), !!(reqs & 8));
375 }
376
gen9_wait_for_power_well_fuses(struct drm_i915_private * dev_priv,enum skl_power_gate pg)377 static void gen9_wait_for_power_well_fuses(struct drm_i915_private *dev_priv,
378 enum skl_power_gate pg)
379 {
380 /* Timeout 5us for PG#0, for other PGs 1us */
381 WARN_ON(intel_wait_for_register(dev_priv, SKL_FUSE_STATUS,
382 SKL_FUSE_PG_DIST_STATUS(pg),
383 SKL_FUSE_PG_DIST_STATUS(pg), 1));
384 }
385
hsw_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)386 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
387 struct i915_power_well *power_well)
388 {
389 enum i915_power_well_id id = power_well->id;
390 bool wait_fuses = power_well->hsw.has_fuses;
391 enum skl_power_gate uninitialized_var(pg);
392 u32 val;
393
394 if (wait_fuses) {
395 pg = INTEL_GEN(dev_priv) >= 11 ? ICL_PW_TO_PG(id) :
396 SKL_PW_TO_PG(id);
397 /*
398 * For PW1 we have to wait both for the PW0/PG0 fuse state
399 * before enabling the power well and PW1/PG1's own fuse
400 * state after the enabling. For all other power wells with
401 * fuses we only have to wait for that PW/PG's fuse state
402 * after the enabling.
403 */
404 if (pg == SKL_PG1)
405 gen9_wait_for_power_well_fuses(dev_priv, SKL_PG0);
406 }
407
408 val = I915_READ(HSW_PWR_WELL_CTL_DRIVER(id));
409 I915_WRITE(HSW_PWR_WELL_CTL_DRIVER(id), val | HSW_PWR_WELL_CTL_REQ(id));
410 hsw_wait_for_power_well_enable(dev_priv, power_well);
411
412 /* Display WA #1178: cnl */
413 if (IS_CANNONLAKE(dev_priv) &&
414 (id == CNL_DISP_PW_AUX_B || id == CNL_DISP_PW_AUX_C ||
415 id == CNL_DISP_PW_AUX_D || id == CNL_DISP_PW_AUX_F)) {
416 val = I915_READ(CNL_AUX_ANAOVRD1(id));
417 val |= CNL_AUX_ANAOVRD1_ENABLE | CNL_AUX_ANAOVRD1_LDO_BYPASS;
418 I915_WRITE(CNL_AUX_ANAOVRD1(id), val);
419 }
420
421 if (wait_fuses)
422 gen9_wait_for_power_well_fuses(dev_priv, pg);
423
424 hsw_power_well_post_enable(dev_priv, power_well->hsw.irq_pipe_mask,
425 power_well->hsw.has_vga);
426 }
427
hsw_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)428 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
429 struct i915_power_well *power_well)
430 {
431 enum i915_power_well_id id = power_well->id;
432 u32 val;
433
434 hsw_power_well_pre_disable(dev_priv, power_well->hsw.irq_pipe_mask);
435
436 val = I915_READ(HSW_PWR_WELL_CTL_DRIVER(id));
437 I915_WRITE(HSW_PWR_WELL_CTL_DRIVER(id),
438 val & ~HSW_PWR_WELL_CTL_REQ(id));
439 hsw_wait_for_power_well_disable(dev_priv, power_well);
440 }
441
442 #define ICL_AUX_PW_TO_PORT(pw) ((pw) - ICL_DISP_PW_AUX_A)
443
444 static void
icl_combo_phy_aux_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)445 icl_combo_phy_aux_power_well_enable(struct drm_i915_private *dev_priv,
446 struct i915_power_well *power_well)
447 {
448 enum i915_power_well_id id = power_well->id;
449 enum port port = ICL_AUX_PW_TO_PORT(id);
450 u32 val;
451
452 val = I915_READ(HSW_PWR_WELL_CTL_DRIVER(id));
453 I915_WRITE(HSW_PWR_WELL_CTL_DRIVER(id), val | HSW_PWR_WELL_CTL_REQ(id));
454
455 val = I915_READ(ICL_PORT_CL_DW12(port));
456 I915_WRITE(ICL_PORT_CL_DW12(port), val | ICL_LANE_ENABLE_AUX);
457
458 hsw_wait_for_power_well_enable(dev_priv, power_well);
459 }
460
461 static void
icl_combo_phy_aux_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)462 icl_combo_phy_aux_power_well_disable(struct drm_i915_private *dev_priv,
463 struct i915_power_well *power_well)
464 {
465 enum i915_power_well_id id = power_well->id;
466 enum port port = ICL_AUX_PW_TO_PORT(id);
467 u32 val;
468
469 val = I915_READ(ICL_PORT_CL_DW12(port));
470 I915_WRITE(ICL_PORT_CL_DW12(port), val & ~ICL_LANE_ENABLE_AUX);
471
472 val = I915_READ(HSW_PWR_WELL_CTL_DRIVER(id));
473 I915_WRITE(HSW_PWR_WELL_CTL_DRIVER(id),
474 val & ~HSW_PWR_WELL_CTL_REQ(id));
475
476 hsw_wait_for_power_well_disable(dev_priv, power_well);
477 }
478
479 /*
480 * We should only use the power well if we explicitly asked the hardware to
481 * enable it, so check if it's enabled and also check if we've requested it to
482 * be enabled.
483 */
hsw_power_well_enabled(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)484 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
485 struct i915_power_well *power_well)
486 {
487 enum i915_power_well_id id = power_well->id;
488 u32 mask = HSW_PWR_WELL_CTL_REQ(id) | HSW_PWR_WELL_CTL_STATE(id);
489
490 return (I915_READ(HSW_PWR_WELL_CTL_DRIVER(id)) & mask) == mask;
491 }
492
assert_can_enable_dc9(struct drm_i915_private * dev_priv)493 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
494 {
495 enum i915_power_well_id id = SKL_DISP_PW_2;
496
497 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
498 "DC9 already programmed to be enabled.\n");
499 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
500 "DC5 still not disabled to enable DC9.\n");
501 WARN_ONCE(I915_READ(HSW_PWR_WELL_CTL_DRIVER(id)) &
502 HSW_PWR_WELL_CTL_REQ(id),
503 "Power well 2 on.\n");
504 WARN_ONCE(intel_irqs_enabled(dev_priv),
505 "Interrupts not disabled yet.\n");
506
507 /*
508 * TODO: check for the following to verify the conditions to enter DC9
509 * state are satisfied:
510 * 1] Check relevant display engine registers to verify if mode set
511 * disable sequence was followed.
512 * 2] Check if display uninitialize sequence is initialized.
513 */
514 }
515
assert_can_disable_dc9(struct drm_i915_private * dev_priv)516 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
517 {
518 WARN_ONCE(intel_irqs_enabled(dev_priv),
519 "Interrupts not disabled yet.\n");
520 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
521 "DC5 still not disabled.\n");
522
523 /*
524 * TODO: check for the following to verify DC9 state was indeed
525 * entered before programming to disable it:
526 * 1] Check relevant display engine registers to verify if mode
527 * set disable sequence was followed.
528 * 2] Check if display uninitialize sequence is initialized.
529 */
530 }
531
gen9_write_dc_state(struct drm_i915_private * dev_priv,u32 state)532 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
533 u32 state)
534 {
535 int rewrites = 0;
536 int rereads = 0;
537 u32 v;
538
539 I915_WRITE(DC_STATE_EN, state);
540
541 /* It has been observed that disabling the dc6 state sometimes
542 * doesn't stick and dmc keeps returning old value. Make sure
543 * the write really sticks enough times and also force rewrite until
544 * we are confident that state is exactly what we want.
545 */
546 do {
547 v = I915_READ(DC_STATE_EN);
548
549 if (v != state) {
550 I915_WRITE(DC_STATE_EN, state);
551 rewrites++;
552 rereads = 0;
553 } else if (rereads++ > 5) {
554 break;
555 }
556
557 } while (rewrites < 100);
558
559 if (v != state)
560 DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
561 state, v);
562
563 /* Most of the times we need one retry, avoid spam */
564 if (rewrites > 1)
565 DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
566 state, rewrites);
567 }
568
gen9_dc_mask(struct drm_i915_private * dev_priv)569 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
570 {
571 u32 mask;
572
573 mask = DC_STATE_EN_UPTO_DC5;
574 if (IS_GEN9_LP(dev_priv))
575 mask |= DC_STATE_EN_DC9;
576 else
577 mask |= DC_STATE_EN_UPTO_DC6;
578
579 return mask;
580 }
581
gen9_sanitize_dc_state(struct drm_i915_private * dev_priv)582 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
583 {
584 u32 val;
585
586 val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
587
588 DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
589 dev_priv->csr.dc_state, val);
590 dev_priv->csr.dc_state = val;
591 }
592
593 /**
594 * gen9_set_dc_state - set target display C power state
595 * @dev_priv: i915 device instance
596 * @state: target DC power state
597 * - DC_STATE_DISABLE
598 * - DC_STATE_EN_UPTO_DC5
599 * - DC_STATE_EN_UPTO_DC6
600 * - DC_STATE_EN_DC9
601 *
602 * Signal to DMC firmware/HW the target DC power state passed in @state.
603 * DMC/HW can turn off individual display clocks and power rails when entering
604 * a deeper DC power state (higher in number) and turns these back when exiting
605 * that state to a shallower power state (lower in number). The HW will decide
606 * when to actually enter a given state on an on-demand basis, for instance
607 * depending on the active state of display pipes. The state of display
608 * registers backed by affected power rails are saved/restored as needed.
609 *
610 * Based on the above enabling a deeper DC power state is asynchronous wrt.
611 * enabling it. Disabling a deeper power state is synchronous: for instance
612 * setting %DC_STATE_DISABLE won't complete until all HW resources are turned
613 * back on and register state is restored. This is guaranteed by the MMIO write
614 * to DC_STATE_EN blocking until the state is restored.
615 */
gen9_set_dc_state(struct drm_i915_private * dev_priv,uint32_t state)616 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
617 {
618 uint32_t val;
619 uint32_t mask;
620
621 if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
622 state &= dev_priv->csr.allowed_dc_mask;
623
624 val = I915_READ(DC_STATE_EN);
625 mask = gen9_dc_mask(dev_priv);
626 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
627 val & mask, state);
628
629 /* Check if DMC is ignoring our DC state requests */
630 if ((val & mask) != dev_priv->csr.dc_state)
631 DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
632 dev_priv->csr.dc_state, val & mask);
633
634 val &= ~mask;
635 val |= state;
636
637 gen9_write_dc_state(dev_priv, val);
638
639 dev_priv->csr.dc_state = val & mask;
640 }
641
bxt_enable_dc9(struct drm_i915_private * dev_priv)642 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
643 {
644 assert_can_enable_dc9(dev_priv);
645
646 DRM_DEBUG_KMS("Enabling DC9\n");
647
648 intel_power_sequencer_reset(dev_priv);
649 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
650 }
651
bxt_disable_dc9(struct drm_i915_private * dev_priv)652 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
653 {
654 assert_can_disable_dc9(dev_priv);
655
656 DRM_DEBUG_KMS("Disabling DC9\n");
657
658 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
659
660 intel_pps_unlock_regs_wa(dev_priv);
661 }
662
assert_csr_loaded(struct drm_i915_private * dev_priv)663 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
664 {
665 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
666 "CSR program storage start is NULL\n");
667 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
668 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
669 }
670
assert_can_enable_dc5(struct drm_i915_private * dev_priv)671 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
672 {
673 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
674 SKL_DISP_PW_2);
675
676 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
677
678 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
679 "DC5 already programmed to be enabled.\n");
680 assert_rpm_wakelock_held(dev_priv);
681
682 assert_csr_loaded(dev_priv);
683 }
684
gen9_enable_dc5(struct drm_i915_private * dev_priv)685 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
686 {
687 assert_can_enable_dc5(dev_priv);
688
689 DRM_DEBUG_KMS("Enabling DC5\n");
690
691 /* Wa Display #1183: skl,kbl,cfl */
692 if (IS_GEN9_BC(dev_priv))
693 I915_WRITE(GEN8_CHICKEN_DCPR_1, I915_READ(GEN8_CHICKEN_DCPR_1) |
694 SKL_SELECT_ALTERNATE_DC_EXIT);
695
696 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
697 }
698
assert_can_enable_dc6(struct drm_i915_private * dev_priv)699 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
700 {
701 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
702 "Backlight is not disabled.\n");
703 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
704 "DC6 already programmed to be enabled.\n");
705
706 assert_csr_loaded(dev_priv);
707 }
708
skl_enable_dc6(struct drm_i915_private * dev_priv)709 static void skl_enable_dc6(struct drm_i915_private *dev_priv)
710 {
711 assert_can_enable_dc6(dev_priv);
712
713 DRM_DEBUG_KMS("Enabling DC6\n");
714
715 /* Wa Display #1183: skl,kbl,cfl */
716 if (IS_GEN9_BC(dev_priv))
717 I915_WRITE(GEN8_CHICKEN_DCPR_1, I915_READ(GEN8_CHICKEN_DCPR_1) |
718 SKL_SELECT_ALTERNATE_DC_EXIT);
719
720 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
721 }
722
hsw_power_well_sync_hw(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)723 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
724 struct i915_power_well *power_well)
725 {
726 enum i915_power_well_id id = power_well->id;
727 u32 mask = HSW_PWR_WELL_CTL_REQ(id);
728 u32 bios_req = I915_READ(HSW_PWR_WELL_CTL_BIOS(id));
729
730 /* Take over the request bit if set by BIOS. */
731 if (bios_req & mask) {
732 u32 drv_req = I915_READ(HSW_PWR_WELL_CTL_DRIVER(id));
733
734 if (!(drv_req & mask))
735 I915_WRITE(HSW_PWR_WELL_CTL_DRIVER(id), drv_req | mask);
736 I915_WRITE(HSW_PWR_WELL_CTL_BIOS(id), bios_req & ~mask);
737 }
738 }
739
bxt_dpio_cmn_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)740 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
741 struct i915_power_well *power_well)
742 {
743 bxt_ddi_phy_init(dev_priv, power_well->bxt.phy);
744 }
745
bxt_dpio_cmn_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)746 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
747 struct i915_power_well *power_well)
748 {
749 bxt_ddi_phy_uninit(dev_priv, power_well->bxt.phy);
750 }
751
bxt_dpio_cmn_power_well_enabled(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)752 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
753 struct i915_power_well *power_well)
754 {
755 return bxt_ddi_phy_is_enabled(dev_priv, power_well->bxt.phy);
756 }
757
bxt_verify_ddi_phy_power_wells(struct drm_i915_private * dev_priv)758 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
759 {
760 struct i915_power_well *power_well;
761
762 power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
763 if (power_well->count > 0)
764 bxt_ddi_phy_verify_state(dev_priv, power_well->bxt.phy);
765
766 power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
767 if (power_well->count > 0)
768 bxt_ddi_phy_verify_state(dev_priv, power_well->bxt.phy);
769
770 if (IS_GEMINILAKE(dev_priv)) {
771 power_well = lookup_power_well(dev_priv, GLK_DPIO_CMN_C);
772 if (power_well->count > 0)
773 bxt_ddi_phy_verify_state(dev_priv, power_well->bxt.phy);
774 }
775 }
776
gen9_dc_off_power_well_enabled(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)777 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
778 struct i915_power_well *power_well)
779 {
780 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
781 }
782
gen9_assert_dbuf_enabled(struct drm_i915_private * dev_priv)783 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
784 {
785 u32 tmp = I915_READ(DBUF_CTL);
786
787 WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
788 (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
789 "Unexpected DBuf power power state (0x%08x)\n", tmp);
790 }
791
gen9_dc_off_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)792 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
793 struct i915_power_well *power_well)
794 {
795 struct intel_cdclk_state cdclk_state = {};
796
797 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
798
799 dev_priv->display.get_cdclk(dev_priv, &cdclk_state);
800 /* Can't read out voltage_level so can't use intel_cdclk_changed() */
801 WARN_ON(intel_cdclk_needs_modeset(&dev_priv->cdclk.hw, &cdclk_state));
802
803 gen9_assert_dbuf_enabled(dev_priv);
804
805 if (IS_GEN9_LP(dev_priv))
806 bxt_verify_ddi_phy_power_wells(dev_priv);
807 }
808
gen9_dc_off_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)809 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
810 struct i915_power_well *power_well)
811 {
812 if (!dev_priv->csr.dmc_payload)
813 return;
814
815 if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
816 skl_enable_dc6(dev_priv);
817 else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
818 gen9_enable_dc5(dev_priv);
819 }
820
i9xx_power_well_sync_hw_noop(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)821 static void i9xx_power_well_sync_hw_noop(struct drm_i915_private *dev_priv,
822 struct i915_power_well *power_well)
823 {
824 }
825
i9xx_always_on_power_well_noop(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)826 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
827 struct i915_power_well *power_well)
828 {
829 }
830
i9xx_always_on_power_well_enabled(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)831 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
832 struct i915_power_well *power_well)
833 {
834 return true;
835 }
836
i830_pipes_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)837 static void i830_pipes_power_well_enable(struct drm_i915_private *dev_priv,
838 struct i915_power_well *power_well)
839 {
840 if ((I915_READ(PIPECONF(PIPE_A)) & PIPECONF_ENABLE) == 0)
841 i830_enable_pipe(dev_priv, PIPE_A);
842 if ((I915_READ(PIPECONF(PIPE_B)) & PIPECONF_ENABLE) == 0)
843 i830_enable_pipe(dev_priv, PIPE_B);
844 }
845
i830_pipes_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)846 static void i830_pipes_power_well_disable(struct drm_i915_private *dev_priv,
847 struct i915_power_well *power_well)
848 {
849 i830_disable_pipe(dev_priv, PIPE_B);
850 i830_disable_pipe(dev_priv, PIPE_A);
851 }
852
i830_pipes_power_well_enabled(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)853 static bool i830_pipes_power_well_enabled(struct drm_i915_private *dev_priv,
854 struct i915_power_well *power_well)
855 {
856 return I915_READ(PIPECONF(PIPE_A)) & PIPECONF_ENABLE &&
857 I915_READ(PIPECONF(PIPE_B)) & PIPECONF_ENABLE;
858 }
859
i830_pipes_power_well_sync_hw(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)860 static void i830_pipes_power_well_sync_hw(struct drm_i915_private *dev_priv,
861 struct i915_power_well *power_well)
862 {
863 if (power_well->count > 0)
864 i830_pipes_power_well_enable(dev_priv, power_well);
865 else
866 i830_pipes_power_well_disable(dev_priv, power_well);
867 }
868
vlv_set_power_well(struct drm_i915_private * dev_priv,struct i915_power_well * power_well,bool enable)869 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
870 struct i915_power_well *power_well, bool enable)
871 {
872 enum i915_power_well_id power_well_id = power_well->id;
873 u32 mask;
874 u32 state;
875 u32 ctrl;
876
877 mask = PUNIT_PWRGT_MASK(power_well_id);
878 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
879 PUNIT_PWRGT_PWR_GATE(power_well_id);
880
881 mutex_lock(&dev_priv->pcu_lock);
882
883 #define COND \
884 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
885
886 if (COND)
887 goto out;
888
889 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
890 ctrl &= ~mask;
891 ctrl |= state;
892 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
893
894 if (wait_for(COND, 100))
895 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
896 state,
897 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
898
899 #undef COND
900
901 out:
902 mutex_unlock(&dev_priv->pcu_lock);
903 }
904
vlv_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)905 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
906 struct i915_power_well *power_well)
907 {
908 vlv_set_power_well(dev_priv, power_well, true);
909 }
910
vlv_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)911 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
912 struct i915_power_well *power_well)
913 {
914 vlv_set_power_well(dev_priv, power_well, false);
915 }
916
vlv_power_well_enabled(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)917 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
918 struct i915_power_well *power_well)
919 {
920 enum i915_power_well_id power_well_id = power_well->id;
921 bool enabled = false;
922 u32 mask;
923 u32 state;
924 u32 ctrl;
925
926 mask = PUNIT_PWRGT_MASK(power_well_id);
927 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
928
929 mutex_lock(&dev_priv->pcu_lock);
930
931 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
932 /*
933 * We only ever set the power-on and power-gate states, anything
934 * else is unexpected.
935 */
936 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
937 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
938 if (state == ctrl)
939 enabled = true;
940
941 /*
942 * A transient state at this point would mean some unexpected party
943 * is poking at the power controls too.
944 */
945 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
946 WARN_ON(ctrl != state);
947
948 mutex_unlock(&dev_priv->pcu_lock);
949
950 return enabled;
951 }
952
vlv_init_display_clock_gating(struct drm_i915_private * dev_priv)953 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
954 {
955 u32 val;
956
957 /*
958 * On driver load, a pipe may be active and driving a DSI display.
959 * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
960 * (and never recovering) in this case. intel_dsi_post_disable() will
961 * clear it when we turn off the display.
962 */
963 val = I915_READ(DSPCLK_GATE_D);
964 val &= DPOUNIT_CLOCK_GATE_DISABLE;
965 val |= VRHUNIT_CLOCK_GATE_DISABLE;
966 I915_WRITE(DSPCLK_GATE_D, val);
967
968 /*
969 * Disable trickle feed and enable pnd deadline calculation
970 */
971 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
972 I915_WRITE(CBR1_VLV, 0);
973
974 WARN_ON(dev_priv->rawclk_freq == 0);
975
976 I915_WRITE(RAWCLK_FREQ_VLV,
977 DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
978 }
979
vlv_display_power_well_init(struct drm_i915_private * dev_priv)980 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
981 {
982 struct intel_encoder *encoder;
983 enum pipe pipe;
984
985 /*
986 * Enable the CRI clock source so we can get at the
987 * display and the reference clock for VGA
988 * hotplug / manual detection. Supposedly DSI also
989 * needs the ref clock up and running.
990 *
991 * CHV DPLL B/C have some issues if VGA mode is enabled.
992 */
993 for_each_pipe(dev_priv, pipe) {
994 u32 val = I915_READ(DPLL(pipe));
995
996 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
997 if (pipe != PIPE_A)
998 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
999
1000 I915_WRITE(DPLL(pipe), val);
1001 }
1002
1003 vlv_init_display_clock_gating(dev_priv);
1004
1005 spin_lock_irq(&dev_priv->irq_lock);
1006 valleyview_enable_display_irqs(dev_priv);
1007 spin_unlock_irq(&dev_priv->irq_lock);
1008
1009 /*
1010 * During driver initialization/resume we can avoid restoring the
1011 * part of the HW/SW state that will be inited anyway explicitly.
1012 */
1013 if (dev_priv->power_domains.initializing)
1014 return;
1015
1016 intel_hpd_init(dev_priv);
1017
1018 /* Re-enable the ADPA, if we have one */
1019 for_each_intel_encoder(&dev_priv->drm, encoder) {
1020 if (encoder->type == INTEL_OUTPUT_ANALOG)
1021 intel_crt_reset(&encoder->base);
1022 }
1023
1024 i915_redisable_vga_power_on(dev_priv);
1025
1026 intel_pps_unlock_regs_wa(dev_priv);
1027 }
1028
vlv_display_power_well_deinit(struct drm_i915_private * dev_priv)1029 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1030 {
1031 spin_lock_irq(&dev_priv->irq_lock);
1032 valleyview_disable_display_irqs(dev_priv);
1033 spin_unlock_irq(&dev_priv->irq_lock);
1034
1035 /* make sure we're done processing display irqs */
1036 synchronize_irq(dev_priv->drm.irq);
1037
1038 intel_power_sequencer_reset(dev_priv);
1039
1040 /* Prevent us from re-enabling polling on accident in late suspend */
1041 if (!dev_priv->drm.dev->power.is_suspended)
1042 intel_hpd_poll_init(dev_priv);
1043 }
1044
vlv_display_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)1045 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1046 struct i915_power_well *power_well)
1047 {
1048 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DISP2D);
1049
1050 vlv_set_power_well(dev_priv, power_well, true);
1051
1052 vlv_display_power_well_init(dev_priv);
1053 }
1054
vlv_display_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)1055 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1056 struct i915_power_well *power_well)
1057 {
1058 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DISP2D);
1059
1060 vlv_display_power_well_deinit(dev_priv);
1061
1062 vlv_set_power_well(dev_priv, power_well, false);
1063 }
1064
vlv_dpio_cmn_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)1065 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1066 struct i915_power_well *power_well)
1067 {
1068 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC);
1069
1070 /* since ref/cri clock was enabled */
1071 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1072
1073 vlv_set_power_well(dev_priv, power_well, true);
1074
1075 /*
1076 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1077 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1078 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1079 * b. The other bits such as sfr settings / modesel may all
1080 * be set to 0.
1081 *
1082 * This should only be done on init and resume from S3 with
1083 * both PLLs disabled, or we risk losing DPIO and PLL
1084 * synchronization.
1085 */
1086 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1087 }
1088
vlv_dpio_cmn_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)1089 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1090 struct i915_power_well *power_well)
1091 {
1092 enum pipe pipe;
1093
1094 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC);
1095
1096 for_each_pipe(dev_priv, pipe)
1097 assert_pll_disabled(dev_priv, pipe);
1098
1099 /* Assert common reset */
1100 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1101
1102 vlv_set_power_well(dev_priv, power_well, false);
1103 }
1104
1105 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
1106
1107 static struct i915_power_well *
lookup_power_well(struct drm_i915_private * dev_priv,enum i915_power_well_id power_well_id)1108 lookup_power_well(struct drm_i915_private *dev_priv,
1109 enum i915_power_well_id power_well_id)
1110 {
1111 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1112 int i;
1113
1114 for (i = 0; i < power_domains->power_well_count; i++) {
1115 struct i915_power_well *power_well;
1116
1117 power_well = &power_domains->power_wells[i];
1118 if (power_well->id == power_well_id)
1119 return power_well;
1120 }
1121
1122 return NULL;
1123 }
1124
1125 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1126
assert_chv_phy_status(struct drm_i915_private * dev_priv)1127 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1128 {
1129 struct i915_power_well *cmn_bc =
1130 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1131 struct i915_power_well *cmn_d =
1132 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1133 u32 phy_control = dev_priv->chv_phy_control;
1134 u32 phy_status = 0;
1135 u32 phy_status_mask = 0xffffffff;
1136
1137 /*
1138 * The BIOS can leave the PHY is some weird state
1139 * where it doesn't fully power down some parts.
1140 * Disable the asserts until the PHY has been fully
1141 * reset (ie. the power well has been disabled at
1142 * least once).
1143 */
1144 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1145 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1146 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1147 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1148 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1149 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1150 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1151
1152 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1153 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1154 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1155 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1156
1157 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1158 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1159
1160 /* this assumes override is only used to enable lanes */
1161 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1162 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1163
1164 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1165 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1166
1167 /* CL1 is on whenever anything is on in either channel */
1168 if (BITS_SET(phy_control,
1169 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1170 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1171 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1172
1173 /*
1174 * The DPLLB check accounts for the pipe B + port A usage
1175 * with CL2 powered up but all the lanes in the second channel
1176 * powered down.
1177 */
1178 if (BITS_SET(phy_control,
1179 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1180 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1181 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1182
1183 if (BITS_SET(phy_control,
1184 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1185 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1186 if (BITS_SET(phy_control,
1187 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1188 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1189
1190 if (BITS_SET(phy_control,
1191 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1192 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1193 if (BITS_SET(phy_control,
1194 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1195 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1196 }
1197
1198 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1199 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1200
1201 /* this assumes override is only used to enable lanes */
1202 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1203 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1204
1205 if (BITS_SET(phy_control,
1206 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1207 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1208
1209 if (BITS_SET(phy_control,
1210 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1211 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1212 if (BITS_SET(phy_control,
1213 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1214 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1215 }
1216
1217 phy_status &= phy_status_mask;
1218
1219 /*
1220 * The PHY may be busy with some initial calibration and whatnot,
1221 * so the power state can take a while to actually change.
1222 */
1223 if (intel_wait_for_register(dev_priv,
1224 DISPLAY_PHY_STATUS,
1225 phy_status_mask,
1226 phy_status,
1227 10))
1228 DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1229 I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1230 phy_status, dev_priv->chv_phy_control);
1231 }
1232
1233 #undef BITS_SET
1234
chv_dpio_cmn_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)1235 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1236 struct i915_power_well *power_well)
1237 {
1238 enum dpio_phy phy;
1239 enum pipe pipe;
1240 uint32_t tmp;
1241
1242 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1243 power_well->id != PUNIT_POWER_WELL_DPIO_CMN_D);
1244
1245 if (power_well->id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1246 pipe = PIPE_A;
1247 phy = DPIO_PHY0;
1248 } else {
1249 pipe = PIPE_C;
1250 phy = DPIO_PHY1;
1251 }
1252
1253 /* since ref/cri clock was enabled */
1254 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1255 vlv_set_power_well(dev_priv, power_well, true);
1256
1257 /* Poll for phypwrgood signal */
1258 if (intel_wait_for_register(dev_priv,
1259 DISPLAY_PHY_STATUS,
1260 PHY_POWERGOOD(phy),
1261 PHY_POWERGOOD(phy),
1262 1))
1263 DRM_ERROR("Display PHY %d is not power up\n", phy);
1264
1265 mutex_lock(&dev_priv->sb_lock);
1266
1267 /* Enable dynamic power down */
1268 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1269 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1270 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1271 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1272
1273 if (power_well->id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1274 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1275 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1276 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1277 } else {
1278 /*
1279 * Force the non-existing CL2 off. BXT does this
1280 * too, so maybe it saves some power even though
1281 * CL2 doesn't exist?
1282 */
1283 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1284 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1285 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1286 }
1287
1288 mutex_unlock(&dev_priv->sb_lock);
1289
1290 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1291 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1292
1293 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1294 phy, dev_priv->chv_phy_control);
1295
1296 assert_chv_phy_status(dev_priv);
1297 }
1298
chv_dpio_cmn_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)1299 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1300 struct i915_power_well *power_well)
1301 {
1302 enum dpio_phy phy;
1303
1304 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1305 power_well->id != PUNIT_POWER_WELL_DPIO_CMN_D);
1306
1307 if (power_well->id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1308 phy = DPIO_PHY0;
1309 assert_pll_disabled(dev_priv, PIPE_A);
1310 assert_pll_disabled(dev_priv, PIPE_B);
1311 } else {
1312 phy = DPIO_PHY1;
1313 assert_pll_disabled(dev_priv, PIPE_C);
1314 }
1315
1316 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1317 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1318
1319 vlv_set_power_well(dev_priv, power_well, false);
1320
1321 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1322 phy, dev_priv->chv_phy_control);
1323
1324 /* PHY is fully reset now, so we can enable the PHY state asserts */
1325 dev_priv->chv_phy_assert[phy] = true;
1326
1327 assert_chv_phy_status(dev_priv);
1328 }
1329
assert_chv_phy_powergate(struct drm_i915_private * dev_priv,enum dpio_phy phy,enum dpio_channel ch,bool override,unsigned int mask)1330 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1331 enum dpio_channel ch, bool override, unsigned int mask)
1332 {
1333 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1334 u32 reg, val, expected, actual;
1335
1336 /*
1337 * The BIOS can leave the PHY is some weird state
1338 * where it doesn't fully power down some parts.
1339 * Disable the asserts until the PHY has been fully
1340 * reset (ie. the power well has been disabled at
1341 * least once).
1342 */
1343 if (!dev_priv->chv_phy_assert[phy])
1344 return;
1345
1346 if (ch == DPIO_CH0)
1347 reg = _CHV_CMN_DW0_CH0;
1348 else
1349 reg = _CHV_CMN_DW6_CH1;
1350
1351 mutex_lock(&dev_priv->sb_lock);
1352 val = vlv_dpio_read(dev_priv, pipe, reg);
1353 mutex_unlock(&dev_priv->sb_lock);
1354
1355 /*
1356 * This assumes !override is only used when the port is disabled.
1357 * All lanes should power down even without the override when
1358 * the port is disabled.
1359 */
1360 if (!override || mask == 0xf) {
1361 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1362 /*
1363 * If CH1 common lane is not active anymore
1364 * (eg. for pipe B DPLL) the entire channel will
1365 * shut down, which causes the common lane registers
1366 * to read as 0. That means we can't actually check
1367 * the lane power down status bits, but as the entire
1368 * register reads as 0 it's a good indication that the
1369 * channel is indeed entirely powered down.
1370 */
1371 if (ch == DPIO_CH1 && val == 0)
1372 expected = 0;
1373 } else if (mask != 0x0) {
1374 expected = DPIO_ANYDL_POWERDOWN;
1375 } else {
1376 expected = 0;
1377 }
1378
1379 if (ch == DPIO_CH0)
1380 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1381 else
1382 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1383 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1384
1385 WARN(actual != expected,
1386 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1387 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1388 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1389 reg, val);
1390 }
1391
chv_phy_powergate_ch(struct drm_i915_private * dev_priv,enum dpio_phy phy,enum dpio_channel ch,bool override)1392 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1393 enum dpio_channel ch, bool override)
1394 {
1395 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1396 bool was_override;
1397
1398 mutex_lock(&power_domains->lock);
1399
1400 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1401
1402 if (override == was_override)
1403 goto out;
1404
1405 if (override)
1406 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1407 else
1408 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1409
1410 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1411
1412 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1413 phy, ch, dev_priv->chv_phy_control);
1414
1415 assert_chv_phy_status(dev_priv);
1416
1417 out:
1418 mutex_unlock(&power_domains->lock);
1419
1420 return was_override;
1421 }
1422
chv_phy_powergate_lanes(struct intel_encoder * encoder,bool override,unsigned int mask)1423 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1424 bool override, unsigned int mask)
1425 {
1426 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1427 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1428 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1429 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1430
1431 mutex_lock(&power_domains->lock);
1432
1433 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1434 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1435
1436 if (override)
1437 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1438 else
1439 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1440
1441 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1442
1443 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1444 phy, ch, mask, dev_priv->chv_phy_control);
1445
1446 assert_chv_phy_status(dev_priv);
1447
1448 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1449
1450 mutex_unlock(&power_domains->lock);
1451 }
1452
chv_pipe_power_well_enabled(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)1453 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1454 struct i915_power_well *power_well)
1455 {
1456 enum pipe pipe = PIPE_A;
1457 bool enabled;
1458 u32 state, ctrl;
1459
1460 mutex_lock(&dev_priv->pcu_lock);
1461
1462 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1463 /*
1464 * We only ever set the power-on and power-gate states, anything
1465 * else is unexpected.
1466 */
1467 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1468 enabled = state == DP_SSS_PWR_ON(pipe);
1469
1470 /*
1471 * A transient state at this point would mean some unexpected party
1472 * is poking at the power controls too.
1473 */
1474 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1475 WARN_ON(ctrl << 16 != state);
1476
1477 mutex_unlock(&dev_priv->pcu_lock);
1478
1479 return enabled;
1480 }
1481
chv_set_pipe_power_well(struct drm_i915_private * dev_priv,struct i915_power_well * power_well,bool enable)1482 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1483 struct i915_power_well *power_well,
1484 bool enable)
1485 {
1486 enum pipe pipe = PIPE_A;
1487 u32 state;
1488 u32 ctrl;
1489
1490 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1491
1492 mutex_lock(&dev_priv->pcu_lock);
1493
1494 #define COND \
1495 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1496
1497 if (COND)
1498 goto out;
1499
1500 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1501 ctrl &= ~DP_SSC_MASK(pipe);
1502 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1503 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1504
1505 if (wait_for(COND, 100))
1506 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1507 state,
1508 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1509
1510 #undef COND
1511
1512 out:
1513 mutex_unlock(&dev_priv->pcu_lock);
1514 }
1515
chv_pipe_power_well_enable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)1516 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1517 struct i915_power_well *power_well)
1518 {
1519 WARN_ON_ONCE(power_well->id != CHV_DISP_PW_PIPE_A);
1520
1521 chv_set_pipe_power_well(dev_priv, power_well, true);
1522
1523 vlv_display_power_well_init(dev_priv);
1524 }
1525
chv_pipe_power_well_disable(struct drm_i915_private * dev_priv,struct i915_power_well * power_well)1526 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1527 struct i915_power_well *power_well)
1528 {
1529 WARN_ON_ONCE(power_well->id != CHV_DISP_PW_PIPE_A);
1530
1531 vlv_display_power_well_deinit(dev_priv);
1532
1533 chv_set_pipe_power_well(dev_priv, power_well, false);
1534 }
1535
1536 static void
__intel_display_power_get_domain(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)1537 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1538 enum intel_display_power_domain domain)
1539 {
1540 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1541 struct i915_power_well *power_well;
1542
1543 for_each_power_domain_well(dev_priv, power_well, BIT_ULL(domain))
1544 intel_power_well_get(dev_priv, power_well);
1545
1546 power_domains->domain_use_count[domain]++;
1547 }
1548
1549 /**
1550 * intel_display_power_get - grab a power domain reference
1551 * @dev_priv: i915 device instance
1552 * @domain: power domain to reference
1553 *
1554 * This function grabs a power domain reference for @domain and ensures that the
1555 * power domain and all its parents are powered up. Therefore users should only
1556 * grab a reference to the innermost power domain they need.
1557 *
1558 * Any power domain reference obtained by this function must have a symmetric
1559 * call to intel_display_power_put() to release the reference again.
1560 */
intel_display_power_get(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)1561 void intel_display_power_get(struct drm_i915_private *dev_priv,
1562 enum intel_display_power_domain domain)
1563 {
1564 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1565
1566 intel_runtime_pm_get(dev_priv);
1567
1568 mutex_lock(&power_domains->lock);
1569
1570 __intel_display_power_get_domain(dev_priv, domain);
1571
1572 mutex_unlock(&power_domains->lock);
1573 }
1574
1575 /**
1576 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1577 * @dev_priv: i915 device instance
1578 * @domain: power domain to reference
1579 *
1580 * This function grabs a power domain reference for @domain and ensures that the
1581 * power domain and all its parents are powered up. Therefore users should only
1582 * grab a reference to the innermost power domain they need.
1583 *
1584 * Any power domain reference obtained by this function must have a symmetric
1585 * call to intel_display_power_put() to release the reference again.
1586 */
intel_display_power_get_if_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)1587 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1588 enum intel_display_power_domain domain)
1589 {
1590 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1591 bool is_enabled;
1592
1593 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1594 return false;
1595
1596 mutex_lock(&power_domains->lock);
1597
1598 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1599 __intel_display_power_get_domain(dev_priv, domain);
1600 is_enabled = true;
1601 } else {
1602 is_enabled = false;
1603 }
1604
1605 mutex_unlock(&power_domains->lock);
1606
1607 if (!is_enabled)
1608 intel_runtime_pm_put(dev_priv);
1609
1610 return is_enabled;
1611 }
1612
1613 /**
1614 * intel_display_power_put - release a power domain reference
1615 * @dev_priv: i915 device instance
1616 * @domain: power domain to reference
1617 *
1618 * This function drops the power domain reference obtained by
1619 * intel_display_power_get() and might power down the corresponding hardware
1620 * block right away if this is the last reference.
1621 */
intel_display_power_put(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)1622 void intel_display_power_put(struct drm_i915_private *dev_priv,
1623 enum intel_display_power_domain domain)
1624 {
1625 struct i915_power_domains *power_domains;
1626 struct i915_power_well *power_well;
1627
1628 power_domains = &dev_priv->power_domains;
1629
1630 mutex_lock(&power_domains->lock);
1631
1632 WARN(!power_domains->domain_use_count[domain],
1633 "Use count on domain %s is already zero\n",
1634 intel_display_power_domain_str(domain));
1635 power_domains->domain_use_count[domain]--;
1636
1637 for_each_power_domain_well_rev(dev_priv, power_well, BIT_ULL(domain))
1638 intel_power_well_put(dev_priv, power_well);
1639
1640 mutex_unlock(&power_domains->lock);
1641
1642 intel_runtime_pm_put(dev_priv);
1643 }
1644
1645 #define I830_PIPES_POWER_DOMAINS ( \
1646 BIT_ULL(POWER_DOMAIN_PIPE_A) | \
1647 BIT_ULL(POWER_DOMAIN_PIPE_B) | \
1648 BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1649 BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1650 BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
1651 BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
1652 BIT_ULL(POWER_DOMAIN_INIT))
1653
1654 #define VLV_DISPLAY_POWER_DOMAINS ( \
1655 BIT_ULL(POWER_DOMAIN_PIPE_A) | \
1656 BIT_ULL(POWER_DOMAIN_PIPE_B) | \
1657 BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1658 BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1659 BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
1660 BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
1661 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1662 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1663 BIT_ULL(POWER_DOMAIN_PORT_DSI) | \
1664 BIT_ULL(POWER_DOMAIN_PORT_CRT) | \
1665 BIT_ULL(POWER_DOMAIN_VGA) | \
1666 BIT_ULL(POWER_DOMAIN_AUDIO) | \
1667 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1668 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1669 BIT_ULL(POWER_DOMAIN_GMBUS) | \
1670 BIT_ULL(POWER_DOMAIN_INIT))
1671
1672 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1673 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1674 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1675 BIT_ULL(POWER_DOMAIN_PORT_CRT) | \
1676 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1677 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1678 BIT_ULL(POWER_DOMAIN_INIT))
1679
1680 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1681 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1682 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1683 BIT_ULL(POWER_DOMAIN_INIT))
1684
1685 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1686 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1687 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1688 BIT_ULL(POWER_DOMAIN_INIT))
1689
1690 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1691 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1692 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1693 BIT_ULL(POWER_DOMAIN_INIT))
1694
1695 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1696 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1697 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1698 BIT_ULL(POWER_DOMAIN_INIT))
1699
1700 #define CHV_DISPLAY_POWER_DOMAINS ( \
1701 BIT_ULL(POWER_DOMAIN_PIPE_A) | \
1702 BIT_ULL(POWER_DOMAIN_PIPE_B) | \
1703 BIT_ULL(POWER_DOMAIN_PIPE_C) | \
1704 BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1705 BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1706 BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1707 BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
1708 BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
1709 BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
1710 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1711 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1712 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1713 BIT_ULL(POWER_DOMAIN_PORT_DSI) | \
1714 BIT_ULL(POWER_DOMAIN_VGA) | \
1715 BIT_ULL(POWER_DOMAIN_AUDIO) | \
1716 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1717 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1718 BIT_ULL(POWER_DOMAIN_AUX_D) | \
1719 BIT_ULL(POWER_DOMAIN_GMBUS) | \
1720 BIT_ULL(POWER_DOMAIN_INIT))
1721
1722 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1723 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1724 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1725 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1726 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1727 BIT_ULL(POWER_DOMAIN_INIT))
1728
1729 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1730 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1731 BIT_ULL(POWER_DOMAIN_AUX_D) | \
1732 BIT_ULL(POWER_DOMAIN_INIT))
1733
1734 #define HSW_DISPLAY_POWER_DOMAINS ( \
1735 BIT_ULL(POWER_DOMAIN_PIPE_B) | \
1736 BIT_ULL(POWER_DOMAIN_PIPE_C) | \
1737 BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1738 BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1739 BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1740 BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
1741 BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
1742 BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
1743 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1744 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1745 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1746 BIT_ULL(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1747 BIT_ULL(POWER_DOMAIN_VGA) | \
1748 BIT_ULL(POWER_DOMAIN_AUDIO) | \
1749 BIT_ULL(POWER_DOMAIN_INIT))
1750
1751 #define BDW_DISPLAY_POWER_DOMAINS ( \
1752 BIT_ULL(POWER_DOMAIN_PIPE_B) | \
1753 BIT_ULL(POWER_DOMAIN_PIPE_C) | \
1754 BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1755 BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1756 BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
1757 BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
1758 BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
1759 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1760 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1761 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1762 BIT_ULL(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1763 BIT_ULL(POWER_DOMAIN_VGA) | \
1764 BIT_ULL(POWER_DOMAIN_AUDIO) | \
1765 BIT_ULL(POWER_DOMAIN_INIT))
1766
1767 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
1768 BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
1769 BIT_ULL(POWER_DOMAIN_PIPE_B) | \
1770 BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
1771 BIT_ULL(POWER_DOMAIN_PIPE_C) | \
1772 BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
1773 BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1774 BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1775 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1776 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1777 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1778 BIT_ULL(POWER_DOMAIN_PORT_DDI_E_LANES) | \
1779 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1780 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1781 BIT_ULL(POWER_DOMAIN_AUX_D) | \
1782 BIT_ULL(POWER_DOMAIN_AUDIO) | \
1783 BIT_ULL(POWER_DOMAIN_VGA) | \
1784 BIT_ULL(POWER_DOMAIN_INIT))
1785 #define SKL_DISPLAY_DDI_IO_A_E_POWER_DOMAINS ( \
1786 BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO) | \
1787 BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO) | \
1788 BIT_ULL(POWER_DOMAIN_INIT))
1789 #define SKL_DISPLAY_DDI_IO_B_POWER_DOMAINS ( \
1790 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO) | \
1791 BIT_ULL(POWER_DOMAIN_INIT))
1792 #define SKL_DISPLAY_DDI_IO_C_POWER_DOMAINS ( \
1793 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO) | \
1794 BIT_ULL(POWER_DOMAIN_INIT))
1795 #define SKL_DISPLAY_DDI_IO_D_POWER_DOMAINS ( \
1796 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO) | \
1797 BIT_ULL(POWER_DOMAIN_INIT))
1798 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
1799 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
1800 BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
1801 BIT_ULL(POWER_DOMAIN_MODESET) | \
1802 BIT_ULL(POWER_DOMAIN_AUX_A) | \
1803 BIT_ULL(POWER_DOMAIN_INIT))
1804
1805 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
1806 BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
1807 BIT_ULL(POWER_DOMAIN_PIPE_B) | \
1808 BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
1809 BIT_ULL(POWER_DOMAIN_PIPE_C) | \
1810 BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
1811 BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1812 BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1813 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1814 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1815 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1816 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1817 BIT_ULL(POWER_DOMAIN_AUDIO) | \
1818 BIT_ULL(POWER_DOMAIN_VGA) | \
1819 BIT_ULL(POWER_DOMAIN_INIT))
1820 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
1821 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
1822 BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
1823 BIT_ULL(POWER_DOMAIN_MODESET) | \
1824 BIT_ULL(POWER_DOMAIN_AUX_A) | \
1825 BIT_ULL(POWER_DOMAIN_GMBUS) | \
1826 BIT_ULL(POWER_DOMAIN_INIT))
1827 #define BXT_DPIO_CMN_A_POWER_DOMAINS ( \
1828 BIT_ULL(POWER_DOMAIN_PORT_DDI_A_LANES) | \
1829 BIT_ULL(POWER_DOMAIN_AUX_A) | \
1830 BIT_ULL(POWER_DOMAIN_INIT))
1831 #define BXT_DPIO_CMN_BC_POWER_DOMAINS ( \
1832 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1833 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1834 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1835 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1836 BIT_ULL(POWER_DOMAIN_INIT))
1837
1838 #define GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
1839 BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
1840 BIT_ULL(POWER_DOMAIN_PIPE_B) | \
1841 BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
1842 BIT_ULL(POWER_DOMAIN_PIPE_C) | \
1843 BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
1844 BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1845 BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1846 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1847 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1848 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1849 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1850 BIT_ULL(POWER_DOMAIN_AUDIO) | \
1851 BIT_ULL(POWER_DOMAIN_VGA) | \
1852 BIT_ULL(POWER_DOMAIN_INIT))
1853 #define GLK_DISPLAY_DDI_IO_A_POWER_DOMAINS ( \
1854 BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO))
1855 #define GLK_DISPLAY_DDI_IO_B_POWER_DOMAINS ( \
1856 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO))
1857 #define GLK_DISPLAY_DDI_IO_C_POWER_DOMAINS ( \
1858 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO))
1859 #define GLK_DPIO_CMN_A_POWER_DOMAINS ( \
1860 BIT_ULL(POWER_DOMAIN_PORT_DDI_A_LANES) | \
1861 BIT_ULL(POWER_DOMAIN_AUX_A) | \
1862 BIT_ULL(POWER_DOMAIN_INIT))
1863 #define GLK_DPIO_CMN_B_POWER_DOMAINS ( \
1864 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1865 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1866 BIT_ULL(POWER_DOMAIN_INIT))
1867 #define GLK_DPIO_CMN_C_POWER_DOMAINS ( \
1868 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1869 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1870 BIT_ULL(POWER_DOMAIN_INIT))
1871 #define GLK_DISPLAY_AUX_A_POWER_DOMAINS ( \
1872 BIT_ULL(POWER_DOMAIN_AUX_A) | \
1873 BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \
1874 BIT_ULL(POWER_DOMAIN_INIT))
1875 #define GLK_DISPLAY_AUX_B_POWER_DOMAINS ( \
1876 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1877 BIT_ULL(POWER_DOMAIN_INIT))
1878 #define GLK_DISPLAY_AUX_C_POWER_DOMAINS ( \
1879 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1880 BIT_ULL(POWER_DOMAIN_INIT))
1881 #define GLK_DISPLAY_DC_OFF_POWER_DOMAINS ( \
1882 GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
1883 BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
1884 BIT_ULL(POWER_DOMAIN_MODESET) | \
1885 BIT_ULL(POWER_DOMAIN_AUX_A) | \
1886 BIT_ULL(POWER_DOMAIN_GMBUS) | \
1887 BIT_ULL(POWER_DOMAIN_INIT))
1888
1889 #define CNL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
1890 BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
1891 BIT_ULL(POWER_DOMAIN_PIPE_B) | \
1892 BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
1893 BIT_ULL(POWER_DOMAIN_PIPE_C) | \
1894 BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
1895 BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1896 BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1897 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1898 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1899 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1900 BIT_ULL(POWER_DOMAIN_PORT_DDI_F_LANES) | \
1901 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1902 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1903 BIT_ULL(POWER_DOMAIN_AUX_D) | \
1904 BIT_ULL(POWER_DOMAIN_AUX_F) | \
1905 BIT_ULL(POWER_DOMAIN_AUDIO) | \
1906 BIT_ULL(POWER_DOMAIN_VGA) | \
1907 BIT_ULL(POWER_DOMAIN_INIT))
1908 #define CNL_DISPLAY_DDI_A_IO_POWER_DOMAINS ( \
1909 BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO) | \
1910 BIT_ULL(POWER_DOMAIN_INIT))
1911 #define CNL_DISPLAY_DDI_B_IO_POWER_DOMAINS ( \
1912 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO) | \
1913 BIT_ULL(POWER_DOMAIN_INIT))
1914 #define CNL_DISPLAY_DDI_C_IO_POWER_DOMAINS ( \
1915 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO) | \
1916 BIT_ULL(POWER_DOMAIN_INIT))
1917 #define CNL_DISPLAY_DDI_D_IO_POWER_DOMAINS ( \
1918 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO) | \
1919 BIT_ULL(POWER_DOMAIN_INIT))
1920 #define CNL_DISPLAY_AUX_A_POWER_DOMAINS ( \
1921 BIT_ULL(POWER_DOMAIN_AUX_A) | \
1922 BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \
1923 BIT_ULL(POWER_DOMAIN_INIT))
1924 #define CNL_DISPLAY_AUX_B_POWER_DOMAINS ( \
1925 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1926 BIT_ULL(POWER_DOMAIN_INIT))
1927 #define CNL_DISPLAY_AUX_C_POWER_DOMAINS ( \
1928 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1929 BIT_ULL(POWER_DOMAIN_INIT))
1930 #define CNL_DISPLAY_AUX_D_POWER_DOMAINS ( \
1931 BIT_ULL(POWER_DOMAIN_AUX_D) | \
1932 BIT_ULL(POWER_DOMAIN_INIT))
1933 #define CNL_DISPLAY_AUX_F_POWER_DOMAINS ( \
1934 BIT_ULL(POWER_DOMAIN_AUX_F) | \
1935 BIT_ULL(POWER_DOMAIN_INIT))
1936 #define CNL_DISPLAY_DDI_F_IO_POWER_DOMAINS ( \
1937 BIT_ULL(POWER_DOMAIN_PORT_DDI_F_IO) | \
1938 BIT_ULL(POWER_DOMAIN_INIT))
1939 #define CNL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
1940 CNL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
1941 BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
1942 BIT_ULL(POWER_DOMAIN_MODESET) | \
1943 BIT_ULL(POWER_DOMAIN_AUX_A) | \
1944 BIT_ULL(POWER_DOMAIN_INIT))
1945
1946 /*
1947 * ICL PW_0/PG_0 domains (HW/DMC control):
1948 * - PCI
1949 * - clocks except port PLL
1950 * - central power except FBC
1951 * - shared functions except pipe interrupts, pipe MBUS, DBUF registers
1952 * ICL PW_1/PG_1 domains (HW/DMC control):
1953 * - DBUF function
1954 * - PIPE_A and its planes, except VGA
1955 * - transcoder EDP + PSR
1956 * - transcoder DSI
1957 * - DDI_A
1958 * - FBC
1959 */
1960 #define ICL_PW_4_POWER_DOMAINS ( \
1961 BIT_ULL(POWER_DOMAIN_PIPE_C) | \
1962 BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1963 BIT_ULL(POWER_DOMAIN_INIT))
1964 /* VDSC/joining */
1965 #define ICL_PW_3_POWER_DOMAINS ( \
1966 ICL_PW_4_POWER_DOMAINS | \
1967 BIT_ULL(POWER_DOMAIN_PIPE_B) | \
1968 BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
1969 BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
1970 BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
1971 BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1972 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1973 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO) | \
1974 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1975 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO) | \
1976 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1977 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO) | \
1978 BIT_ULL(POWER_DOMAIN_PORT_DDI_E_LANES) | \
1979 BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO) | \
1980 BIT_ULL(POWER_DOMAIN_PORT_DDI_F_LANES) | \
1981 BIT_ULL(POWER_DOMAIN_PORT_DDI_F_IO) | \
1982 BIT_ULL(POWER_DOMAIN_AUX_B) | \
1983 BIT_ULL(POWER_DOMAIN_AUX_C) | \
1984 BIT_ULL(POWER_DOMAIN_AUX_D) | \
1985 BIT_ULL(POWER_DOMAIN_AUX_E) | \
1986 BIT_ULL(POWER_DOMAIN_AUX_F) | \
1987 BIT_ULL(POWER_DOMAIN_AUX_TBT1) | \
1988 BIT_ULL(POWER_DOMAIN_AUX_TBT2) | \
1989 BIT_ULL(POWER_DOMAIN_AUX_TBT3) | \
1990 BIT_ULL(POWER_DOMAIN_AUX_TBT4) | \
1991 BIT_ULL(POWER_DOMAIN_VGA) | \
1992 BIT_ULL(POWER_DOMAIN_AUDIO) | \
1993 BIT_ULL(POWER_DOMAIN_INIT))
1994 /*
1995 * - transcoder WD
1996 * - KVMR (HW control)
1997 */
1998 #define ICL_PW_2_POWER_DOMAINS ( \
1999 ICL_PW_3_POWER_DOMAINS | \
2000 BIT_ULL(POWER_DOMAIN_INIT))
2001 /*
2002 * - eDP/DSI VDSC
2003 * - KVMR (HW control)
2004 */
2005 #define ICL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
2006 ICL_PW_2_POWER_DOMAINS | \
2007 BIT_ULL(POWER_DOMAIN_MODESET) | \
2008 BIT_ULL(POWER_DOMAIN_AUX_A) | \
2009 BIT_ULL(POWER_DOMAIN_INIT))
2010
2011 #define ICL_DDI_IO_A_POWER_DOMAINS ( \
2012 BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO))
2013 #define ICL_DDI_IO_B_POWER_DOMAINS ( \
2014 BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO))
2015 #define ICL_DDI_IO_C_POWER_DOMAINS ( \
2016 BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO))
2017 #define ICL_DDI_IO_D_POWER_DOMAINS ( \
2018 BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO))
2019 #define ICL_DDI_IO_E_POWER_DOMAINS ( \
2020 BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO))
2021 #define ICL_DDI_IO_F_POWER_DOMAINS ( \
2022 BIT_ULL(POWER_DOMAIN_PORT_DDI_F_IO))
2023
2024 #define ICL_AUX_A_IO_POWER_DOMAINS ( \
2025 BIT_ULL(POWER_DOMAIN_AUX_A))
2026 #define ICL_AUX_B_IO_POWER_DOMAINS ( \
2027 BIT_ULL(POWER_DOMAIN_AUX_B))
2028 #define ICL_AUX_C_IO_POWER_DOMAINS ( \
2029 BIT_ULL(POWER_DOMAIN_AUX_C))
2030 #define ICL_AUX_D_IO_POWER_DOMAINS ( \
2031 BIT_ULL(POWER_DOMAIN_AUX_D))
2032 #define ICL_AUX_E_IO_POWER_DOMAINS ( \
2033 BIT_ULL(POWER_DOMAIN_AUX_E))
2034 #define ICL_AUX_F_IO_POWER_DOMAINS ( \
2035 BIT_ULL(POWER_DOMAIN_AUX_F))
2036 #define ICL_AUX_TBT1_IO_POWER_DOMAINS ( \
2037 BIT_ULL(POWER_DOMAIN_AUX_TBT1))
2038 #define ICL_AUX_TBT2_IO_POWER_DOMAINS ( \
2039 BIT_ULL(POWER_DOMAIN_AUX_TBT2))
2040 #define ICL_AUX_TBT3_IO_POWER_DOMAINS ( \
2041 BIT_ULL(POWER_DOMAIN_AUX_TBT3))
2042 #define ICL_AUX_TBT4_IO_POWER_DOMAINS ( \
2043 BIT_ULL(POWER_DOMAIN_AUX_TBT4))
2044
2045 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
2046 .sync_hw = i9xx_power_well_sync_hw_noop,
2047 .enable = i9xx_always_on_power_well_noop,
2048 .disable = i9xx_always_on_power_well_noop,
2049 .is_enabled = i9xx_always_on_power_well_enabled,
2050 };
2051
2052 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
2053 .sync_hw = i9xx_power_well_sync_hw_noop,
2054 .enable = chv_pipe_power_well_enable,
2055 .disable = chv_pipe_power_well_disable,
2056 .is_enabled = chv_pipe_power_well_enabled,
2057 };
2058
2059 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
2060 .sync_hw = i9xx_power_well_sync_hw_noop,
2061 .enable = chv_dpio_cmn_power_well_enable,
2062 .disable = chv_dpio_cmn_power_well_disable,
2063 .is_enabled = vlv_power_well_enabled,
2064 };
2065
2066 static struct i915_power_well i9xx_always_on_power_well[] = {
2067 {
2068 .name = "always-on",
2069 .always_on = 1,
2070 .domains = POWER_DOMAIN_MASK,
2071 .ops = &i9xx_always_on_power_well_ops,
2072 .id = I915_DISP_PW_ALWAYS_ON,
2073 },
2074 };
2075
2076 static const struct i915_power_well_ops i830_pipes_power_well_ops = {
2077 .sync_hw = i830_pipes_power_well_sync_hw,
2078 .enable = i830_pipes_power_well_enable,
2079 .disable = i830_pipes_power_well_disable,
2080 .is_enabled = i830_pipes_power_well_enabled,
2081 };
2082
2083 static struct i915_power_well i830_power_wells[] = {
2084 {
2085 .name = "always-on",
2086 .always_on = 1,
2087 .domains = POWER_DOMAIN_MASK,
2088 .ops = &i9xx_always_on_power_well_ops,
2089 .id = I915_DISP_PW_ALWAYS_ON,
2090 },
2091 {
2092 .name = "pipes",
2093 .domains = I830_PIPES_POWER_DOMAINS,
2094 .ops = &i830_pipes_power_well_ops,
2095 .id = I830_DISP_PW_PIPES,
2096 },
2097 };
2098
2099 static const struct i915_power_well_ops hsw_power_well_ops = {
2100 .sync_hw = hsw_power_well_sync_hw,
2101 .enable = hsw_power_well_enable,
2102 .disable = hsw_power_well_disable,
2103 .is_enabled = hsw_power_well_enabled,
2104 };
2105
2106 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
2107 .sync_hw = i9xx_power_well_sync_hw_noop,
2108 .enable = gen9_dc_off_power_well_enable,
2109 .disable = gen9_dc_off_power_well_disable,
2110 .is_enabled = gen9_dc_off_power_well_enabled,
2111 };
2112
2113 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
2114 .sync_hw = i9xx_power_well_sync_hw_noop,
2115 .enable = bxt_dpio_cmn_power_well_enable,
2116 .disable = bxt_dpio_cmn_power_well_disable,
2117 .is_enabled = bxt_dpio_cmn_power_well_enabled,
2118 };
2119
2120 static struct i915_power_well hsw_power_wells[] = {
2121 {
2122 .name = "always-on",
2123 .always_on = 1,
2124 .domains = POWER_DOMAIN_MASK,
2125 .ops = &i9xx_always_on_power_well_ops,
2126 .id = I915_DISP_PW_ALWAYS_ON,
2127 },
2128 {
2129 .name = "display",
2130 .domains = HSW_DISPLAY_POWER_DOMAINS,
2131 .ops = &hsw_power_well_ops,
2132 .id = HSW_DISP_PW_GLOBAL,
2133 {
2134 .hsw.has_vga = true,
2135 },
2136 },
2137 };
2138
2139 static struct i915_power_well bdw_power_wells[] = {
2140 {
2141 .name = "always-on",
2142 .always_on = 1,
2143 .domains = POWER_DOMAIN_MASK,
2144 .ops = &i9xx_always_on_power_well_ops,
2145 .id = I915_DISP_PW_ALWAYS_ON,
2146 },
2147 {
2148 .name = "display",
2149 .domains = BDW_DISPLAY_POWER_DOMAINS,
2150 .ops = &hsw_power_well_ops,
2151 .id = HSW_DISP_PW_GLOBAL,
2152 {
2153 .hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
2154 .hsw.has_vga = true,
2155 },
2156 },
2157 };
2158
2159 static const struct i915_power_well_ops vlv_display_power_well_ops = {
2160 .sync_hw = i9xx_power_well_sync_hw_noop,
2161 .enable = vlv_display_power_well_enable,
2162 .disable = vlv_display_power_well_disable,
2163 .is_enabled = vlv_power_well_enabled,
2164 };
2165
2166 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
2167 .sync_hw = i9xx_power_well_sync_hw_noop,
2168 .enable = vlv_dpio_cmn_power_well_enable,
2169 .disable = vlv_dpio_cmn_power_well_disable,
2170 .is_enabled = vlv_power_well_enabled,
2171 };
2172
2173 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
2174 .sync_hw = i9xx_power_well_sync_hw_noop,
2175 .enable = vlv_power_well_enable,
2176 .disable = vlv_power_well_disable,
2177 .is_enabled = vlv_power_well_enabled,
2178 };
2179
2180 static struct i915_power_well vlv_power_wells[] = {
2181 {
2182 .name = "always-on",
2183 .always_on = 1,
2184 .domains = POWER_DOMAIN_MASK,
2185 .ops = &i9xx_always_on_power_well_ops,
2186 .id = I915_DISP_PW_ALWAYS_ON,
2187 },
2188 {
2189 .name = "display",
2190 .domains = VLV_DISPLAY_POWER_DOMAINS,
2191 .id = PUNIT_POWER_WELL_DISP2D,
2192 .ops = &vlv_display_power_well_ops,
2193 },
2194 {
2195 .name = "dpio-tx-b-01",
2196 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2197 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2198 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2199 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2200 .ops = &vlv_dpio_power_well_ops,
2201 .id = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
2202 },
2203 {
2204 .name = "dpio-tx-b-23",
2205 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2206 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2207 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2208 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2209 .ops = &vlv_dpio_power_well_ops,
2210 .id = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
2211 },
2212 {
2213 .name = "dpio-tx-c-01",
2214 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2215 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2216 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2217 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2218 .ops = &vlv_dpio_power_well_ops,
2219 .id = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2220 },
2221 {
2222 .name = "dpio-tx-c-23",
2223 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2224 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2225 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2226 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2227 .ops = &vlv_dpio_power_well_ops,
2228 .id = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2229 },
2230 {
2231 .name = "dpio-common",
2232 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2233 .id = PUNIT_POWER_WELL_DPIO_CMN_BC,
2234 .ops = &vlv_dpio_cmn_power_well_ops,
2235 },
2236 };
2237
2238 static struct i915_power_well chv_power_wells[] = {
2239 {
2240 .name = "always-on",
2241 .always_on = 1,
2242 .domains = POWER_DOMAIN_MASK,
2243 .ops = &i9xx_always_on_power_well_ops,
2244 .id = I915_DISP_PW_ALWAYS_ON,
2245 },
2246 {
2247 .name = "display",
2248 /*
2249 * Pipe A power well is the new disp2d well. Pipe B and C
2250 * power wells don't actually exist. Pipe A power well is
2251 * required for any pipe to work.
2252 */
2253 .domains = CHV_DISPLAY_POWER_DOMAINS,
2254 .id = CHV_DISP_PW_PIPE_A,
2255 .ops = &chv_pipe_power_well_ops,
2256 },
2257 {
2258 .name = "dpio-common-bc",
2259 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2260 .id = PUNIT_POWER_WELL_DPIO_CMN_BC,
2261 .ops = &chv_dpio_cmn_power_well_ops,
2262 },
2263 {
2264 .name = "dpio-common-d",
2265 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2266 .id = PUNIT_POWER_WELL_DPIO_CMN_D,
2267 .ops = &chv_dpio_cmn_power_well_ops,
2268 },
2269 };
2270
intel_display_power_well_is_enabled(struct drm_i915_private * dev_priv,enum i915_power_well_id power_well_id)2271 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2272 enum i915_power_well_id power_well_id)
2273 {
2274 struct i915_power_well *power_well;
2275 bool ret;
2276
2277 power_well = lookup_power_well(dev_priv, power_well_id);
2278 ret = power_well->ops->is_enabled(dev_priv, power_well);
2279
2280 return ret;
2281 }
2282
2283 static struct i915_power_well skl_power_wells[] = {
2284 {
2285 .name = "always-on",
2286 .always_on = 1,
2287 .domains = POWER_DOMAIN_MASK,
2288 .ops = &i9xx_always_on_power_well_ops,
2289 .id = I915_DISP_PW_ALWAYS_ON,
2290 },
2291 {
2292 .name = "power well 1",
2293 /* Handled by the DMC firmware */
2294 .domains = 0,
2295 .ops = &hsw_power_well_ops,
2296 .id = SKL_DISP_PW_1,
2297 {
2298 .hsw.has_fuses = true,
2299 },
2300 },
2301 {
2302 .name = "MISC IO power well",
2303 /* Handled by the DMC firmware */
2304 .domains = 0,
2305 .ops = &hsw_power_well_ops,
2306 .id = SKL_DISP_PW_MISC_IO,
2307 },
2308 {
2309 .name = "DC off",
2310 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2311 .ops = &gen9_dc_off_power_well_ops,
2312 .id = SKL_DISP_PW_DC_OFF,
2313 },
2314 {
2315 .name = "power well 2",
2316 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2317 .ops = &hsw_power_well_ops,
2318 .id = SKL_DISP_PW_2,
2319 {
2320 .hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
2321 .hsw.has_vga = true,
2322 .hsw.has_fuses = true,
2323 },
2324 },
2325 {
2326 .name = "DDI A/E IO power well",
2327 .domains = SKL_DISPLAY_DDI_IO_A_E_POWER_DOMAINS,
2328 .ops = &hsw_power_well_ops,
2329 .id = SKL_DISP_PW_DDI_A_E,
2330 },
2331 {
2332 .name = "DDI B IO power well",
2333 .domains = SKL_DISPLAY_DDI_IO_B_POWER_DOMAINS,
2334 .ops = &hsw_power_well_ops,
2335 .id = SKL_DISP_PW_DDI_B,
2336 },
2337 {
2338 .name = "DDI C IO power well",
2339 .domains = SKL_DISPLAY_DDI_IO_C_POWER_DOMAINS,
2340 .ops = &hsw_power_well_ops,
2341 .id = SKL_DISP_PW_DDI_C,
2342 },
2343 {
2344 .name = "DDI D IO power well",
2345 .domains = SKL_DISPLAY_DDI_IO_D_POWER_DOMAINS,
2346 .ops = &hsw_power_well_ops,
2347 .id = SKL_DISP_PW_DDI_D,
2348 },
2349 };
2350
2351 static struct i915_power_well bxt_power_wells[] = {
2352 {
2353 .name = "always-on",
2354 .always_on = 1,
2355 .domains = POWER_DOMAIN_MASK,
2356 .ops = &i9xx_always_on_power_well_ops,
2357 .id = I915_DISP_PW_ALWAYS_ON,
2358 },
2359 {
2360 .name = "power well 1",
2361 .domains = 0,
2362 .ops = &hsw_power_well_ops,
2363 .id = SKL_DISP_PW_1,
2364 {
2365 .hsw.has_fuses = true,
2366 },
2367 },
2368 {
2369 .name = "DC off",
2370 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2371 .ops = &gen9_dc_off_power_well_ops,
2372 .id = SKL_DISP_PW_DC_OFF,
2373 },
2374 {
2375 .name = "power well 2",
2376 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2377 .ops = &hsw_power_well_ops,
2378 .id = SKL_DISP_PW_2,
2379 {
2380 .hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
2381 .hsw.has_vga = true,
2382 .hsw.has_fuses = true,
2383 },
2384 },
2385 {
2386 .name = "dpio-common-a",
2387 .domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2388 .ops = &bxt_dpio_cmn_power_well_ops,
2389 .id = BXT_DPIO_CMN_A,
2390 {
2391 .bxt.phy = DPIO_PHY1,
2392 },
2393 },
2394 {
2395 .name = "dpio-common-bc",
2396 .domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2397 .ops = &bxt_dpio_cmn_power_well_ops,
2398 .id = BXT_DPIO_CMN_BC,
2399 {
2400 .bxt.phy = DPIO_PHY0,
2401 },
2402 },
2403 };
2404
2405 static struct i915_power_well glk_power_wells[] = {
2406 {
2407 .name = "always-on",
2408 .always_on = 1,
2409 .domains = POWER_DOMAIN_MASK,
2410 .ops = &i9xx_always_on_power_well_ops,
2411 .id = I915_DISP_PW_ALWAYS_ON,
2412 },
2413 {
2414 .name = "power well 1",
2415 /* Handled by the DMC firmware */
2416 .domains = 0,
2417 .ops = &hsw_power_well_ops,
2418 .id = SKL_DISP_PW_1,
2419 {
2420 .hsw.has_fuses = true,
2421 },
2422 },
2423 {
2424 .name = "DC off",
2425 .domains = GLK_DISPLAY_DC_OFF_POWER_DOMAINS,
2426 .ops = &gen9_dc_off_power_well_ops,
2427 .id = SKL_DISP_PW_DC_OFF,
2428 },
2429 {
2430 .name = "power well 2",
2431 .domains = GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2432 .ops = &hsw_power_well_ops,
2433 .id = SKL_DISP_PW_2,
2434 {
2435 .hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
2436 .hsw.has_vga = true,
2437 .hsw.has_fuses = true,
2438 },
2439 },
2440 {
2441 .name = "dpio-common-a",
2442 .domains = GLK_DPIO_CMN_A_POWER_DOMAINS,
2443 .ops = &bxt_dpio_cmn_power_well_ops,
2444 .id = BXT_DPIO_CMN_A,
2445 {
2446 .bxt.phy = DPIO_PHY1,
2447 },
2448 },
2449 {
2450 .name = "dpio-common-b",
2451 .domains = GLK_DPIO_CMN_B_POWER_DOMAINS,
2452 .ops = &bxt_dpio_cmn_power_well_ops,
2453 .id = BXT_DPIO_CMN_BC,
2454 {
2455 .bxt.phy = DPIO_PHY0,
2456 },
2457 },
2458 {
2459 .name = "dpio-common-c",
2460 .domains = GLK_DPIO_CMN_C_POWER_DOMAINS,
2461 .ops = &bxt_dpio_cmn_power_well_ops,
2462 .id = GLK_DPIO_CMN_C,
2463 {
2464 .bxt.phy = DPIO_PHY2,
2465 },
2466 },
2467 {
2468 .name = "AUX A",
2469 .domains = GLK_DISPLAY_AUX_A_POWER_DOMAINS,
2470 .ops = &hsw_power_well_ops,
2471 .id = GLK_DISP_PW_AUX_A,
2472 },
2473 {
2474 .name = "AUX B",
2475 .domains = GLK_DISPLAY_AUX_B_POWER_DOMAINS,
2476 .ops = &hsw_power_well_ops,
2477 .id = GLK_DISP_PW_AUX_B,
2478 },
2479 {
2480 .name = "AUX C",
2481 .domains = GLK_DISPLAY_AUX_C_POWER_DOMAINS,
2482 .ops = &hsw_power_well_ops,
2483 .id = GLK_DISP_PW_AUX_C,
2484 },
2485 {
2486 .name = "DDI A IO power well",
2487 .domains = GLK_DISPLAY_DDI_IO_A_POWER_DOMAINS,
2488 .ops = &hsw_power_well_ops,
2489 .id = GLK_DISP_PW_DDI_A,
2490 },
2491 {
2492 .name = "DDI B IO power well",
2493 .domains = GLK_DISPLAY_DDI_IO_B_POWER_DOMAINS,
2494 .ops = &hsw_power_well_ops,
2495 .id = SKL_DISP_PW_DDI_B,
2496 },
2497 {
2498 .name = "DDI C IO power well",
2499 .domains = GLK_DISPLAY_DDI_IO_C_POWER_DOMAINS,
2500 .ops = &hsw_power_well_ops,
2501 .id = SKL_DISP_PW_DDI_C,
2502 },
2503 };
2504
2505 static struct i915_power_well cnl_power_wells[] = {
2506 {
2507 .name = "always-on",
2508 .always_on = 1,
2509 .domains = POWER_DOMAIN_MASK,
2510 .ops = &i9xx_always_on_power_well_ops,
2511 .id = I915_DISP_PW_ALWAYS_ON,
2512 },
2513 {
2514 .name = "power well 1",
2515 /* Handled by the DMC firmware */
2516 .domains = 0,
2517 .ops = &hsw_power_well_ops,
2518 .id = SKL_DISP_PW_1,
2519 {
2520 .hsw.has_fuses = true,
2521 },
2522 },
2523 {
2524 .name = "AUX A",
2525 .domains = CNL_DISPLAY_AUX_A_POWER_DOMAINS,
2526 .ops = &hsw_power_well_ops,
2527 .id = CNL_DISP_PW_AUX_A,
2528 },
2529 {
2530 .name = "AUX B",
2531 .domains = CNL_DISPLAY_AUX_B_POWER_DOMAINS,
2532 .ops = &hsw_power_well_ops,
2533 .id = CNL_DISP_PW_AUX_B,
2534 },
2535 {
2536 .name = "AUX C",
2537 .domains = CNL_DISPLAY_AUX_C_POWER_DOMAINS,
2538 .ops = &hsw_power_well_ops,
2539 .id = CNL_DISP_PW_AUX_C,
2540 },
2541 {
2542 .name = "AUX D",
2543 .domains = CNL_DISPLAY_AUX_D_POWER_DOMAINS,
2544 .ops = &hsw_power_well_ops,
2545 .id = CNL_DISP_PW_AUX_D,
2546 },
2547 {
2548 .name = "DC off",
2549 .domains = CNL_DISPLAY_DC_OFF_POWER_DOMAINS,
2550 .ops = &gen9_dc_off_power_well_ops,
2551 .id = SKL_DISP_PW_DC_OFF,
2552 },
2553 {
2554 .name = "power well 2",
2555 .domains = CNL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2556 .ops = &hsw_power_well_ops,
2557 .id = SKL_DISP_PW_2,
2558 {
2559 .hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
2560 .hsw.has_vga = true,
2561 .hsw.has_fuses = true,
2562 },
2563 },
2564 {
2565 .name = "DDI A IO power well",
2566 .domains = CNL_DISPLAY_DDI_A_IO_POWER_DOMAINS,
2567 .ops = &hsw_power_well_ops,
2568 .id = CNL_DISP_PW_DDI_A,
2569 },
2570 {
2571 .name = "DDI B IO power well",
2572 .domains = CNL_DISPLAY_DDI_B_IO_POWER_DOMAINS,
2573 .ops = &hsw_power_well_ops,
2574 .id = SKL_DISP_PW_DDI_B,
2575 },
2576 {
2577 .name = "DDI C IO power well",
2578 .domains = CNL_DISPLAY_DDI_C_IO_POWER_DOMAINS,
2579 .ops = &hsw_power_well_ops,
2580 .id = SKL_DISP_PW_DDI_C,
2581 },
2582 {
2583 .name = "DDI D IO power well",
2584 .domains = CNL_DISPLAY_DDI_D_IO_POWER_DOMAINS,
2585 .ops = &hsw_power_well_ops,
2586 .id = SKL_DISP_PW_DDI_D,
2587 },
2588 {
2589 .name = "DDI F IO power well",
2590 .domains = CNL_DISPLAY_DDI_F_IO_POWER_DOMAINS,
2591 .ops = &hsw_power_well_ops,
2592 .id = CNL_DISP_PW_DDI_F,
2593 },
2594 {
2595 .name = "AUX F",
2596 .domains = CNL_DISPLAY_AUX_F_POWER_DOMAINS,
2597 .ops = &hsw_power_well_ops,
2598 .id = CNL_DISP_PW_AUX_F,
2599 },
2600 };
2601
2602 static const struct i915_power_well_ops icl_combo_phy_aux_power_well_ops = {
2603 .sync_hw = hsw_power_well_sync_hw,
2604 .enable = icl_combo_phy_aux_power_well_enable,
2605 .disable = icl_combo_phy_aux_power_well_disable,
2606 .is_enabled = hsw_power_well_enabled,
2607 };
2608
2609 static struct i915_power_well icl_power_wells[] = {
2610 {
2611 .name = "always-on",
2612 .always_on = 1,
2613 .domains = POWER_DOMAIN_MASK,
2614 .ops = &i9xx_always_on_power_well_ops,
2615 .id = I915_DISP_PW_ALWAYS_ON,
2616 },
2617 {
2618 .name = "power well 1",
2619 /* Handled by the DMC firmware */
2620 .domains = 0,
2621 .ops = &hsw_power_well_ops,
2622 .id = ICL_DISP_PW_1,
2623 .hsw.has_fuses = true,
2624 },
2625 {
2626 .name = "power well 2",
2627 .domains = ICL_PW_2_POWER_DOMAINS,
2628 .ops = &hsw_power_well_ops,
2629 .id = ICL_DISP_PW_2,
2630 .hsw.has_fuses = true,
2631 },
2632 {
2633 .name = "DC off",
2634 .domains = ICL_DISPLAY_DC_OFF_POWER_DOMAINS,
2635 .ops = &gen9_dc_off_power_well_ops,
2636 .id = SKL_DISP_PW_DC_OFF,
2637 },
2638 {
2639 .name = "power well 3",
2640 .domains = ICL_PW_3_POWER_DOMAINS,
2641 .ops = &hsw_power_well_ops,
2642 .id = ICL_DISP_PW_3,
2643 .hsw.irq_pipe_mask = BIT(PIPE_B),
2644 .hsw.has_vga = true,
2645 .hsw.has_fuses = true,
2646 },
2647 {
2648 .name = "DDI A IO",
2649 .domains = ICL_DDI_IO_A_POWER_DOMAINS,
2650 .ops = &hsw_power_well_ops,
2651 .id = ICL_DISP_PW_DDI_A,
2652 },
2653 {
2654 .name = "DDI B IO",
2655 .domains = ICL_DDI_IO_B_POWER_DOMAINS,
2656 .ops = &hsw_power_well_ops,
2657 .id = ICL_DISP_PW_DDI_B,
2658 },
2659 {
2660 .name = "DDI C IO",
2661 .domains = ICL_DDI_IO_C_POWER_DOMAINS,
2662 .ops = &hsw_power_well_ops,
2663 .id = ICL_DISP_PW_DDI_C,
2664 },
2665 {
2666 .name = "DDI D IO",
2667 .domains = ICL_DDI_IO_D_POWER_DOMAINS,
2668 .ops = &hsw_power_well_ops,
2669 .id = ICL_DISP_PW_DDI_D,
2670 },
2671 {
2672 .name = "DDI E IO",
2673 .domains = ICL_DDI_IO_E_POWER_DOMAINS,
2674 .ops = &hsw_power_well_ops,
2675 .id = ICL_DISP_PW_DDI_E,
2676 },
2677 {
2678 .name = "DDI F IO",
2679 .domains = ICL_DDI_IO_F_POWER_DOMAINS,
2680 .ops = &hsw_power_well_ops,
2681 .id = ICL_DISP_PW_DDI_F,
2682 },
2683 {
2684 .name = "AUX A",
2685 .domains = ICL_AUX_A_IO_POWER_DOMAINS,
2686 .ops = &icl_combo_phy_aux_power_well_ops,
2687 .id = ICL_DISP_PW_AUX_A,
2688 },
2689 {
2690 .name = "AUX B",
2691 .domains = ICL_AUX_B_IO_POWER_DOMAINS,
2692 .ops = &icl_combo_phy_aux_power_well_ops,
2693 .id = ICL_DISP_PW_AUX_B,
2694 },
2695 {
2696 .name = "AUX C",
2697 .domains = ICL_AUX_C_IO_POWER_DOMAINS,
2698 .ops = &hsw_power_well_ops,
2699 .id = ICL_DISP_PW_AUX_C,
2700 },
2701 {
2702 .name = "AUX D",
2703 .domains = ICL_AUX_D_IO_POWER_DOMAINS,
2704 .ops = &hsw_power_well_ops,
2705 .id = ICL_DISP_PW_AUX_D,
2706 },
2707 {
2708 .name = "AUX E",
2709 .domains = ICL_AUX_E_IO_POWER_DOMAINS,
2710 .ops = &hsw_power_well_ops,
2711 .id = ICL_DISP_PW_AUX_E,
2712 },
2713 {
2714 .name = "AUX F",
2715 .domains = ICL_AUX_F_IO_POWER_DOMAINS,
2716 .ops = &hsw_power_well_ops,
2717 .id = ICL_DISP_PW_AUX_F,
2718 },
2719 {
2720 .name = "AUX TBT1",
2721 .domains = ICL_AUX_TBT1_IO_POWER_DOMAINS,
2722 .ops = &hsw_power_well_ops,
2723 .id = ICL_DISP_PW_AUX_TBT1,
2724 },
2725 {
2726 .name = "AUX TBT2",
2727 .domains = ICL_AUX_TBT2_IO_POWER_DOMAINS,
2728 .ops = &hsw_power_well_ops,
2729 .id = ICL_DISP_PW_AUX_TBT2,
2730 },
2731 {
2732 .name = "AUX TBT3",
2733 .domains = ICL_AUX_TBT3_IO_POWER_DOMAINS,
2734 .ops = &hsw_power_well_ops,
2735 .id = ICL_DISP_PW_AUX_TBT3,
2736 },
2737 {
2738 .name = "AUX TBT4",
2739 .domains = ICL_AUX_TBT4_IO_POWER_DOMAINS,
2740 .ops = &hsw_power_well_ops,
2741 .id = ICL_DISP_PW_AUX_TBT4,
2742 },
2743 {
2744 .name = "power well 4",
2745 .domains = ICL_PW_4_POWER_DOMAINS,
2746 .ops = &hsw_power_well_ops,
2747 .id = ICL_DISP_PW_4,
2748 .hsw.has_fuses = true,
2749 .hsw.irq_pipe_mask = BIT(PIPE_C),
2750 },
2751 };
2752
2753 static int
sanitize_disable_power_well_option(const struct drm_i915_private * dev_priv,int disable_power_well)2754 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2755 int disable_power_well)
2756 {
2757 if (disable_power_well >= 0)
2758 return !!disable_power_well;
2759
2760 return 1;
2761 }
2762
get_allowed_dc_mask(const struct drm_i915_private * dev_priv,int enable_dc)2763 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2764 int enable_dc)
2765 {
2766 uint32_t mask;
2767 int requested_dc;
2768 int max_dc;
2769
2770 if (IS_GEN9_BC(dev_priv) || INTEL_INFO(dev_priv)->gen >= 10) {
2771 max_dc = 2;
2772 mask = 0;
2773 } else if (IS_GEN9_LP(dev_priv)) {
2774 max_dc = 1;
2775 /*
2776 * DC9 has a separate HW flow from the rest of the DC states,
2777 * not depending on the DMC firmware. It's needed by system
2778 * suspend/resume, so allow it unconditionally.
2779 */
2780 mask = DC_STATE_EN_DC9;
2781 } else {
2782 max_dc = 0;
2783 mask = 0;
2784 }
2785
2786 if (!i915_modparams.disable_power_well)
2787 max_dc = 0;
2788
2789 if (enable_dc >= 0 && enable_dc <= max_dc) {
2790 requested_dc = enable_dc;
2791 } else if (enable_dc == -1) {
2792 requested_dc = max_dc;
2793 } else if (enable_dc > max_dc && enable_dc <= 2) {
2794 DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2795 enable_dc, max_dc);
2796 requested_dc = max_dc;
2797 } else {
2798 DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2799 requested_dc = max_dc;
2800 }
2801
2802 if (requested_dc > 1)
2803 mask |= DC_STATE_EN_UPTO_DC6;
2804 if (requested_dc > 0)
2805 mask |= DC_STATE_EN_UPTO_DC5;
2806
2807 DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2808
2809 return mask;
2810 }
2811
assert_power_well_ids_unique(struct drm_i915_private * dev_priv)2812 static void assert_power_well_ids_unique(struct drm_i915_private *dev_priv)
2813 {
2814 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2815 u64 power_well_ids;
2816 int i;
2817
2818 power_well_ids = 0;
2819 for (i = 0; i < power_domains->power_well_count; i++) {
2820 enum i915_power_well_id id = power_domains->power_wells[i].id;
2821
2822 WARN_ON(id >= sizeof(power_well_ids) * 8);
2823 WARN_ON(power_well_ids & BIT_ULL(id));
2824 power_well_ids |= BIT_ULL(id);
2825 }
2826 }
2827
2828 #define set_power_wells(power_domains, __power_wells) ({ \
2829 (power_domains)->power_wells = (__power_wells); \
2830 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
2831 })
2832
2833 /**
2834 * intel_power_domains_init - initializes the power domain structures
2835 * @dev_priv: i915 device instance
2836 *
2837 * Initializes the power domain structures for @dev_priv depending upon the
2838 * supported platform.
2839 */
intel_power_domains_init(struct drm_i915_private * dev_priv)2840 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2841 {
2842 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2843
2844 i915_modparams.disable_power_well =
2845 sanitize_disable_power_well_option(dev_priv,
2846 i915_modparams.disable_power_well);
2847 dev_priv->csr.allowed_dc_mask =
2848 get_allowed_dc_mask(dev_priv, i915_modparams.enable_dc);
2849
2850 BUILD_BUG_ON(POWER_DOMAIN_NUM > 64);
2851
2852 mutex_init(&power_domains->lock);
2853
2854 /*
2855 * The enabling order will be from lower to higher indexed wells,
2856 * the disabling order is reversed.
2857 */
2858 if (IS_ICELAKE(dev_priv)) {
2859 set_power_wells(power_domains, icl_power_wells);
2860 } else if (IS_HASWELL(dev_priv)) {
2861 set_power_wells(power_domains, hsw_power_wells);
2862 } else if (IS_BROADWELL(dev_priv)) {
2863 set_power_wells(power_domains, bdw_power_wells);
2864 } else if (IS_GEN9_BC(dev_priv)) {
2865 set_power_wells(power_domains, skl_power_wells);
2866 } else if (IS_CANNONLAKE(dev_priv)) {
2867 set_power_wells(power_domains, cnl_power_wells);
2868
2869 /*
2870 * DDI and Aux IO are getting enabled for all ports
2871 * regardless the presence or use. So, in order to avoid
2872 * timeouts, lets remove them from the list
2873 * for the SKUs without port F.
2874 */
2875 if (!IS_CNL_WITH_PORT_F(dev_priv))
2876 power_domains->power_well_count -= 2;
2877
2878 } else if (IS_BROXTON(dev_priv)) {
2879 set_power_wells(power_domains, bxt_power_wells);
2880 } else if (IS_GEMINILAKE(dev_priv)) {
2881 set_power_wells(power_domains, glk_power_wells);
2882 } else if (IS_CHERRYVIEW(dev_priv)) {
2883 set_power_wells(power_domains, chv_power_wells);
2884 } else if (IS_VALLEYVIEW(dev_priv)) {
2885 set_power_wells(power_domains, vlv_power_wells);
2886 } else if (IS_I830(dev_priv)) {
2887 set_power_wells(power_domains, i830_power_wells);
2888 } else {
2889 set_power_wells(power_domains, i9xx_always_on_power_well);
2890 }
2891
2892 assert_power_well_ids_unique(dev_priv);
2893
2894 return 0;
2895 }
2896
2897 /**
2898 * intel_power_domains_fini - finalizes the power domain structures
2899 * @dev_priv: i915 device instance
2900 *
2901 * Finalizes the power domain structures for @dev_priv depending upon the
2902 * supported platform. This function also disables runtime pm and ensures that
2903 * the device stays powered up so that the driver can be reloaded.
2904 */
intel_power_domains_fini(struct drm_i915_private * dev_priv)2905 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2906 {
2907 struct device *kdev = &dev_priv->drm.pdev->dev;
2908
2909 /*
2910 * The i915.ko module is still not prepared to be loaded when
2911 * the power well is not enabled, so just enable it in case
2912 * we're going to unload/reload.
2913 * The following also reacquires the RPM reference the core passed
2914 * to the driver during loading, which is dropped in
2915 * intel_runtime_pm_enable(). We have to hand back the control of the
2916 * device to the core with this reference held.
2917 */
2918 intel_display_set_init_power(dev_priv, true);
2919
2920 /* Remove the refcount we took to keep power well support disabled. */
2921 if (!i915_modparams.disable_power_well)
2922 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2923
2924 /*
2925 * Remove the refcount we took in intel_runtime_pm_enable() in case
2926 * the platform doesn't support runtime PM.
2927 */
2928 if (!HAS_RUNTIME_PM(dev_priv))
2929 pm_runtime_put(kdev);
2930 }
2931
intel_power_domains_sync_hw(struct drm_i915_private * dev_priv)2932 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2933 {
2934 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2935 struct i915_power_well *power_well;
2936
2937 mutex_lock(&power_domains->lock);
2938 for_each_power_well(dev_priv, power_well) {
2939 power_well->ops->sync_hw(dev_priv, power_well);
2940 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2941 power_well);
2942 }
2943 mutex_unlock(&power_domains->lock);
2944 }
2945
2946 static inline
intel_dbuf_slice_set(struct drm_i915_private * dev_priv,i915_reg_t reg,bool enable)2947 bool intel_dbuf_slice_set(struct drm_i915_private *dev_priv,
2948 i915_reg_t reg, bool enable)
2949 {
2950 u32 val, status;
2951
2952 val = I915_READ(reg);
2953 val = enable ? (val | DBUF_POWER_REQUEST) : (val & ~DBUF_POWER_REQUEST);
2954 I915_WRITE(reg, val);
2955 POSTING_READ(reg);
2956 udelay(10);
2957
2958 status = I915_READ(reg) & DBUF_POWER_STATE;
2959 if ((enable && !status) || (!enable && status)) {
2960 DRM_ERROR("DBus power %s timeout!\n",
2961 enable ? "enable" : "disable");
2962 return false;
2963 }
2964 return true;
2965 }
2966
gen9_dbuf_enable(struct drm_i915_private * dev_priv)2967 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2968 {
2969 intel_dbuf_slice_set(dev_priv, DBUF_CTL, true);
2970 }
2971
gen9_dbuf_disable(struct drm_i915_private * dev_priv)2972 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2973 {
2974 intel_dbuf_slice_set(dev_priv, DBUF_CTL, false);
2975 }
2976
intel_dbuf_max_slices(struct drm_i915_private * dev_priv)2977 static u8 intel_dbuf_max_slices(struct drm_i915_private *dev_priv)
2978 {
2979 if (INTEL_GEN(dev_priv) < 11)
2980 return 1;
2981 return 2;
2982 }
2983
icl_dbuf_slices_update(struct drm_i915_private * dev_priv,u8 req_slices)2984 void icl_dbuf_slices_update(struct drm_i915_private *dev_priv,
2985 u8 req_slices)
2986 {
2987 u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices;
2988 u32 val;
2989 bool ret;
2990
2991 if (req_slices > intel_dbuf_max_slices(dev_priv)) {
2992 DRM_ERROR("Invalid number of dbuf slices requested\n");
2993 return;
2994 }
2995
2996 if (req_slices == hw_enabled_slices || req_slices == 0)
2997 return;
2998
2999 val = I915_READ(DBUF_CTL_S2);
3000 if (req_slices > hw_enabled_slices)
3001 ret = intel_dbuf_slice_set(dev_priv, DBUF_CTL_S2, true);
3002 else
3003 ret = intel_dbuf_slice_set(dev_priv, DBUF_CTL_S2, false);
3004
3005 if (ret)
3006 dev_priv->wm.skl_hw.ddb.enabled_slices = req_slices;
3007 }
3008
icl_dbuf_enable(struct drm_i915_private * dev_priv)3009 static void icl_dbuf_enable(struct drm_i915_private *dev_priv)
3010 {
3011 I915_WRITE(DBUF_CTL_S1, I915_READ(DBUF_CTL_S1) | DBUF_POWER_REQUEST);
3012 I915_WRITE(DBUF_CTL_S2, I915_READ(DBUF_CTL_S2) | DBUF_POWER_REQUEST);
3013 POSTING_READ(DBUF_CTL_S2);
3014
3015 udelay(10);
3016
3017 if (!(I915_READ(DBUF_CTL_S1) & DBUF_POWER_STATE) ||
3018 !(I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE))
3019 DRM_ERROR("DBuf power enable timeout\n");
3020 else
3021 dev_priv->wm.skl_hw.ddb.enabled_slices = 2;
3022 }
3023
icl_dbuf_disable(struct drm_i915_private * dev_priv)3024 static void icl_dbuf_disable(struct drm_i915_private *dev_priv)
3025 {
3026 I915_WRITE(DBUF_CTL_S1, I915_READ(DBUF_CTL_S1) & ~DBUF_POWER_REQUEST);
3027 I915_WRITE(DBUF_CTL_S2, I915_READ(DBUF_CTL_S2) & ~DBUF_POWER_REQUEST);
3028 POSTING_READ(DBUF_CTL_S2);
3029
3030 udelay(10);
3031
3032 if ((I915_READ(DBUF_CTL_S1) & DBUF_POWER_STATE) ||
3033 (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE))
3034 DRM_ERROR("DBuf power disable timeout!\n");
3035 else
3036 dev_priv->wm.skl_hw.ddb.enabled_slices = 0;
3037 }
3038
icl_mbus_init(struct drm_i915_private * dev_priv)3039 static void icl_mbus_init(struct drm_i915_private *dev_priv)
3040 {
3041 uint32_t val;
3042
3043 val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
3044 MBUS_ABOX_BT_CREDIT_POOL2(16) |
3045 MBUS_ABOX_B_CREDIT(1) |
3046 MBUS_ABOX_BW_CREDIT(1);
3047
3048 I915_WRITE(MBUS_ABOX_CTL, val);
3049 }
3050
skl_display_core_init(struct drm_i915_private * dev_priv,bool resume)3051 static void skl_display_core_init(struct drm_i915_private *dev_priv,
3052 bool resume)
3053 {
3054 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3055 struct i915_power_well *well;
3056 uint32_t val;
3057
3058 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
3059
3060 /* enable PCH reset handshake */
3061 val = I915_READ(HSW_NDE_RSTWRN_OPT);
3062 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
3063
3064 /* enable PG1 and Misc I/O */
3065 mutex_lock(&power_domains->lock);
3066
3067 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
3068 intel_power_well_enable(dev_priv, well);
3069
3070 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
3071 intel_power_well_enable(dev_priv, well);
3072
3073 mutex_unlock(&power_domains->lock);
3074
3075 skl_init_cdclk(dev_priv);
3076
3077 gen9_dbuf_enable(dev_priv);
3078
3079 if (resume && dev_priv->csr.dmc_payload)
3080 intel_csr_load_program(dev_priv);
3081 }
3082
skl_display_core_uninit(struct drm_i915_private * dev_priv)3083 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
3084 {
3085 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3086 struct i915_power_well *well;
3087
3088 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
3089
3090 gen9_dbuf_disable(dev_priv);
3091
3092 skl_uninit_cdclk(dev_priv);
3093
3094 /* The spec doesn't call for removing the reset handshake flag */
3095 /* disable PG1 and Misc I/O */
3096
3097 mutex_lock(&power_domains->lock);
3098
3099 /*
3100 * BSpec says to keep the MISC IO power well enabled here, only
3101 * remove our request for power well 1.
3102 * Note that even though the driver's request is removed power well 1
3103 * may stay enabled after this due to DMC's own request on it.
3104 */
3105 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
3106 intel_power_well_disable(dev_priv, well);
3107
3108 mutex_unlock(&power_domains->lock);
3109
3110 usleep_range(10, 30); /* 10 us delay per Bspec */
3111 }
3112
bxt_display_core_init(struct drm_i915_private * dev_priv,bool resume)3113 void bxt_display_core_init(struct drm_i915_private *dev_priv,
3114 bool resume)
3115 {
3116 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3117 struct i915_power_well *well;
3118 uint32_t val;
3119
3120 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
3121
3122 /*
3123 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
3124 * or else the reset will hang because there is no PCH to respond.
3125 * Move the handshake programming to initialization sequence.
3126 * Previously was left up to BIOS.
3127 */
3128 val = I915_READ(HSW_NDE_RSTWRN_OPT);
3129 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
3130 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
3131
3132 /* Enable PG1 */
3133 mutex_lock(&power_domains->lock);
3134
3135 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
3136 intel_power_well_enable(dev_priv, well);
3137
3138 mutex_unlock(&power_domains->lock);
3139
3140 bxt_init_cdclk(dev_priv);
3141
3142 gen9_dbuf_enable(dev_priv);
3143
3144 if (resume && dev_priv->csr.dmc_payload)
3145 intel_csr_load_program(dev_priv);
3146 }
3147
bxt_display_core_uninit(struct drm_i915_private * dev_priv)3148 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
3149 {
3150 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3151 struct i915_power_well *well;
3152
3153 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
3154
3155 gen9_dbuf_disable(dev_priv);
3156
3157 bxt_uninit_cdclk(dev_priv);
3158
3159 /* The spec doesn't call for removing the reset handshake flag */
3160
3161 /*
3162 * Disable PW1 (PG1).
3163 * Note that even though the driver's request is removed power well 1
3164 * may stay enabled after this due to DMC's own request on it.
3165 */
3166 mutex_lock(&power_domains->lock);
3167
3168 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
3169 intel_power_well_disable(dev_priv, well);
3170
3171 mutex_unlock(&power_domains->lock);
3172
3173 usleep_range(10, 30); /* 10 us delay per Bspec */
3174 }
3175
3176 enum {
3177 PROCMON_0_85V_DOT_0,
3178 PROCMON_0_95V_DOT_0,
3179 PROCMON_0_95V_DOT_1,
3180 PROCMON_1_05V_DOT_0,
3181 PROCMON_1_05V_DOT_1,
3182 };
3183
3184 static const struct cnl_procmon {
3185 u32 dw1, dw9, dw10;
3186 } cnl_procmon_values[] = {
3187 [PROCMON_0_85V_DOT_0] =
3188 { .dw1 = 0x00000000, .dw9 = 0x62AB67BB, .dw10 = 0x51914F96, },
3189 [PROCMON_0_95V_DOT_0] =
3190 { .dw1 = 0x00000000, .dw9 = 0x86E172C7, .dw10 = 0x77CA5EAB, },
3191 [PROCMON_0_95V_DOT_1] =
3192 { .dw1 = 0x00000000, .dw9 = 0x93F87FE1, .dw10 = 0x8AE871C5, },
3193 [PROCMON_1_05V_DOT_0] =
3194 { .dw1 = 0x00000000, .dw9 = 0x98FA82DD, .dw10 = 0x89E46DC1, },
3195 [PROCMON_1_05V_DOT_1] =
3196 { .dw1 = 0x00440000, .dw9 = 0x9A00AB25, .dw10 = 0x8AE38FF1, },
3197 };
3198
3199 /*
3200 * CNL has just one set of registers, while ICL has two sets: one for port A and
3201 * the other for port B. The CNL registers are equivalent to the ICL port A
3202 * registers, that's why we call the ICL macros even though the function has CNL
3203 * on its name.
3204 */
cnl_set_procmon_ref_values(struct drm_i915_private * dev_priv,enum port port)3205 static void cnl_set_procmon_ref_values(struct drm_i915_private *dev_priv,
3206 enum port port)
3207 {
3208 const struct cnl_procmon *procmon;
3209 u32 val;
3210
3211 val = I915_READ(ICL_PORT_COMP_DW3(port));
3212 switch (val & (PROCESS_INFO_MASK | VOLTAGE_INFO_MASK)) {
3213 default:
3214 MISSING_CASE(val);
3215 /* fall through */
3216 case VOLTAGE_INFO_0_85V | PROCESS_INFO_DOT_0:
3217 procmon = &cnl_procmon_values[PROCMON_0_85V_DOT_0];
3218 break;
3219 case VOLTAGE_INFO_0_95V | PROCESS_INFO_DOT_0:
3220 procmon = &cnl_procmon_values[PROCMON_0_95V_DOT_0];
3221 break;
3222 case VOLTAGE_INFO_0_95V | PROCESS_INFO_DOT_1:
3223 procmon = &cnl_procmon_values[PROCMON_0_95V_DOT_1];
3224 break;
3225 case VOLTAGE_INFO_1_05V | PROCESS_INFO_DOT_0:
3226 procmon = &cnl_procmon_values[PROCMON_1_05V_DOT_0];
3227 break;
3228 case VOLTAGE_INFO_1_05V | PROCESS_INFO_DOT_1:
3229 procmon = &cnl_procmon_values[PROCMON_1_05V_DOT_1];
3230 break;
3231 }
3232
3233 val = I915_READ(ICL_PORT_COMP_DW1(port));
3234 val &= ~((0xff << 16) | 0xff);
3235 val |= procmon->dw1;
3236 I915_WRITE(ICL_PORT_COMP_DW1(port), val);
3237
3238 I915_WRITE(ICL_PORT_COMP_DW9(port), procmon->dw9);
3239 I915_WRITE(ICL_PORT_COMP_DW10(port), procmon->dw10);
3240 }
3241
cnl_display_core_init(struct drm_i915_private * dev_priv,bool resume)3242 static void cnl_display_core_init(struct drm_i915_private *dev_priv, bool resume)
3243 {
3244 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3245 struct i915_power_well *well;
3246 u32 val;
3247
3248 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
3249
3250 /* 1. Enable PCH Reset Handshake */
3251 val = I915_READ(HSW_NDE_RSTWRN_OPT);
3252 val |= RESET_PCH_HANDSHAKE_ENABLE;
3253 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
3254
3255 /* 2. Enable Comp */
3256 val = I915_READ(CHICKEN_MISC_2);
3257 val &= ~CNL_COMP_PWR_DOWN;
3258 I915_WRITE(CHICKEN_MISC_2, val);
3259
3260 /* Dummy PORT_A to get the correct CNL register from the ICL macro */
3261 cnl_set_procmon_ref_values(dev_priv, PORT_A);
3262
3263 val = I915_READ(CNL_PORT_COMP_DW0);
3264 val |= COMP_INIT;
3265 I915_WRITE(CNL_PORT_COMP_DW0, val);
3266
3267 /* 3. */
3268 val = I915_READ(CNL_PORT_CL1CM_DW5);
3269 val |= CL_POWER_DOWN_ENABLE;
3270 I915_WRITE(CNL_PORT_CL1CM_DW5, val);
3271
3272 /*
3273 * 4. Enable Power Well 1 (PG1).
3274 * The AUX IO power wells will be enabled on demand.
3275 */
3276 mutex_lock(&power_domains->lock);
3277 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
3278 intel_power_well_enable(dev_priv, well);
3279 mutex_unlock(&power_domains->lock);
3280
3281 /* 5. Enable CD clock */
3282 cnl_init_cdclk(dev_priv);
3283
3284 /* 6. Enable DBUF */
3285 gen9_dbuf_enable(dev_priv);
3286
3287 if (resume && dev_priv->csr.dmc_payload)
3288 intel_csr_load_program(dev_priv);
3289 }
3290
cnl_display_core_uninit(struct drm_i915_private * dev_priv)3291 static void cnl_display_core_uninit(struct drm_i915_private *dev_priv)
3292 {
3293 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3294 struct i915_power_well *well;
3295 u32 val;
3296
3297 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
3298
3299 /* 1. Disable all display engine functions -> aready done */
3300
3301 /* 2. Disable DBUF */
3302 gen9_dbuf_disable(dev_priv);
3303
3304 /* 3. Disable CD clock */
3305 cnl_uninit_cdclk(dev_priv);
3306
3307 /*
3308 * 4. Disable Power Well 1 (PG1).
3309 * The AUX IO power wells are toggled on demand, so they are already
3310 * disabled at this point.
3311 */
3312 mutex_lock(&power_domains->lock);
3313 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
3314 intel_power_well_disable(dev_priv, well);
3315 mutex_unlock(&power_domains->lock);
3316
3317 usleep_range(10, 30); /* 10 us delay per Bspec */
3318
3319 /* 5. Disable Comp */
3320 val = I915_READ(CHICKEN_MISC_2);
3321 val |= CNL_COMP_PWR_DOWN;
3322 I915_WRITE(CHICKEN_MISC_2, val);
3323 }
3324
icl_display_core_init(struct drm_i915_private * dev_priv,bool resume)3325 static void icl_display_core_init(struct drm_i915_private *dev_priv,
3326 bool resume)
3327 {
3328 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3329 struct i915_power_well *well;
3330 enum port port;
3331 u32 val;
3332
3333 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
3334
3335 /* 1. Enable PCH reset handshake. */
3336 val = I915_READ(HSW_NDE_RSTWRN_OPT);
3337 val |= RESET_PCH_HANDSHAKE_ENABLE;
3338 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
3339
3340 for (port = PORT_A; port <= PORT_B; port++) {
3341 /* 2. Enable DDI combo PHY comp. */
3342 val = I915_READ(ICL_PHY_MISC(port));
3343 val &= ~ICL_PHY_MISC_DE_IO_COMP_PWR_DOWN;
3344 I915_WRITE(ICL_PHY_MISC(port), val);
3345
3346 cnl_set_procmon_ref_values(dev_priv, port);
3347
3348 val = I915_READ(ICL_PORT_COMP_DW0(port));
3349 val |= COMP_INIT;
3350 I915_WRITE(ICL_PORT_COMP_DW0(port), val);
3351
3352 /* 3. Set power down enable. */
3353 val = I915_READ(ICL_PORT_CL_DW5(port));
3354 val |= CL_POWER_DOWN_ENABLE;
3355 I915_WRITE(ICL_PORT_CL_DW5(port), val);
3356 }
3357
3358 /*
3359 * 4. Enable Power Well 1 (PG1).
3360 * The AUX IO power wells will be enabled on demand.
3361 */
3362 mutex_lock(&power_domains->lock);
3363 well = lookup_power_well(dev_priv, ICL_DISP_PW_1);
3364 intel_power_well_enable(dev_priv, well);
3365 mutex_unlock(&power_domains->lock);
3366
3367 /* 5. Enable CDCLK. */
3368 icl_init_cdclk(dev_priv);
3369
3370 /* 6. Enable DBUF. */
3371 icl_dbuf_enable(dev_priv);
3372
3373 /* 7. Setup MBUS. */
3374 icl_mbus_init(dev_priv);
3375
3376 /* 8. CHICKEN_DCPR_1 */
3377 I915_WRITE(GEN8_CHICKEN_DCPR_1, I915_READ(GEN8_CHICKEN_DCPR_1) |
3378 CNL_DDI_CLOCK_REG_ACCESS_ON);
3379 }
3380
icl_display_core_uninit(struct drm_i915_private * dev_priv)3381 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
3382 {
3383 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3384 struct i915_power_well *well;
3385 enum port port;
3386 u32 val;
3387
3388 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
3389
3390 /* 1. Disable all display engine functions -> aready done */
3391
3392 /* 2. Disable DBUF */
3393 icl_dbuf_disable(dev_priv);
3394
3395 /* 3. Disable CD clock */
3396 icl_uninit_cdclk(dev_priv);
3397
3398 /*
3399 * 4. Disable Power Well 1 (PG1).
3400 * The AUX IO power wells are toggled on demand, so they are already
3401 * disabled at this point.
3402 */
3403 mutex_lock(&power_domains->lock);
3404 well = lookup_power_well(dev_priv, ICL_DISP_PW_1);
3405 intel_power_well_disable(dev_priv, well);
3406 mutex_unlock(&power_domains->lock);
3407
3408 /* 5. Disable Comp */
3409 for (port = PORT_A; port <= PORT_B; port++) {
3410 val = I915_READ(ICL_PHY_MISC(port));
3411 val |= ICL_PHY_MISC_DE_IO_COMP_PWR_DOWN;
3412 I915_WRITE(ICL_PHY_MISC(port), val);
3413 }
3414 }
3415
chv_phy_control_init(struct drm_i915_private * dev_priv)3416 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
3417 {
3418 struct i915_power_well *cmn_bc =
3419 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
3420 struct i915_power_well *cmn_d =
3421 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
3422
3423 /*
3424 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
3425 * workaround never ever read DISPLAY_PHY_CONTROL, and
3426 * instead maintain a shadow copy ourselves. Use the actual
3427 * power well state and lane status to reconstruct the
3428 * expected initial value.
3429 */
3430 dev_priv->chv_phy_control =
3431 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
3432 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
3433 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
3434 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
3435 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
3436
3437 /*
3438 * If all lanes are disabled we leave the override disabled
3439 * with all power down bits cleared to match the state we
3440 * would use after disabling the port. Otherwise enable the
3441 * override and set the lane powerdown bits accding to the
3442 * current lane status.
3443 */
3444 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
3445 uint32_t status = I915_READ(DPLL(PIPE_A));
3446 unsigned int mask;
3447
3448 mask = status & DPLL_PORTB_READY_MASK;
3449 if (mask == 0xf)
3450 mask = 0x0;
3451 else
3452 dev_priv->chv_phy_control |=
3453 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
3454
3455 dev_priv->chv_phy_control |=
3456 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
3457
3458 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
3459 if (mask == 0xf)
3460 mask = 0x0;
3461 else
3462 dev_priv->chv_phy_control |=
3463 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
3464
3465 dev_priv->chv_phy_control |=
3466 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
3467
3468 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
3469
3470 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
3471 } else {
3472 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
3473 }
3474
3475 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
3476 uint32_t status = I915_READ(DPIO_PHY_STATUS);
3477 unsigned int mask;
3478
3479 mask = status & DPLL_PORTD_READY_MASK;
3480
3481 if (mask == 0xf)
3482 mask = 0x0;
3483 else
3484 dev_priv->chv_phy_control |=
3485 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
3486
3487 dev_priv->chv_phy_control |=
3488 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
3489
3490 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
3491
3492 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
3493 } else {
3494 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
3495 }
3496
3497 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
3498
3499 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
3500 dev_priv->chv_phy_control);
3501 }
3502
vlv_cmnlane_wa(struct drm_i915_private * dev_priv)3503 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
3504 {
3505 struct i915_power_well *cmn =
3506 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
3507 struct i915_power_well *disp2d =
3508 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
3509
3510 /* If the display might be already active skip this */
3511 if (cmn->ops->is_enabled(dev_priv, cmn) &&
3512 disp2d->ops->is_enabled(dev_priv, disp2d) &&
3513 I915_READ(DPIO_CTL) & DPIO_CMNRST)
3514 return;
3515
3516 DRM_DEBUG_KMS("toggling display PHY side reset\n");
3517
3518 /* cmnlane needs DPLL registers */
3519 disp2d->ops->enable(dev_priv, disp2d);
3520
3521 /*
3522 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
3523 * Need to assert and de-assert PHY SB reset by gating the
3524 * common lane power, then un-gating it.
3525 * Simply ungating isn't enough to reset the PHY enough to get
3526 * ports and lanes running.
3527 */
3528 cmn->ops->disable(dev_priv, cmn);
3529 }
3530
3531 /**
3532 * intel_power_domains_init_hw - initialize hardware power domain state
3533 * @dev_priv: i915 device instance
3534 * @resume: Called from resume code paths or not
3535 *
3536 * This function initializes the hardware power domain state and enables all
3537 * power wells belonging to the INIT power domain. Power wells in other
3538 * domains (and not in the INIT domain) are referenced or disabled during the
3539 * modeset state HW readout. After that the reference count of each power well
3540 * must match its HW enabled state, see intel_power_domains_verify_state().
3541 */
intel_power_domains_init_hw(struct drm_i915_private * dev_priv,bool resume)3542 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
3543 {
3544 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3545
3546 power_domains->initializing = true;
3547
3548 if (IS_ICELAKE(dev_priv)) {
3549 icl_display_core_init(dev_priv, resume);
3550 } else if (IS_CANNONLAKE(dev_priv)) {
3551 cnl_display_core_init(dev_priv, resume);
3552 } else if (IS_GEN9_BC(dev_priv)) {
3553 skl_display_core_init(dev_priv, resume);
3554 } else if (IS_GEN9_LP(dev_priv)) {
3555 bxt_display_core_init(dev_priv, resume);
3556 } else if (IS_CHERRYVIEW(dev_priv)) {
3557 mutex_lock(&power_domains->lock);
3558 chv_phy_control_init(dev_priv);
3559 mutex_unlock(&power_domains->lock);
3560 } else if (IS_VALLEYVIEW(dev_priv)) {
3561 mutex_lock(&power_domains->lock);
3562 vlv_cmnlane_wa(dev_priv);
3563 mutex_unlock(&power_domains->lock);
3564 }
3565
3566 /* For now, we need the power well to be always enabled. */
3567 intel_display_set_init_power(dev_priv, true);
3568 /* Disable power support if the user asked so. */
3569 if (!i915_modparams.disable_power_well)
3570 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
3571 intel_power_domains_sync_hw(dev_priv);
3572 power_domains->initializing = false;
3573 }
3574
3575 /**
3576 * intel_power_domains_suspend - suspend power domain state
3577 * @dev_priv: i915 device instance
3578 *
3579 * This function prepares the hardware power domain state before entering
3580 * system suspend. It must be paired with intel_power_domains_init_hw().
3581 */
intel_power_domains_suspend(struct drm_i915_private * dev_priv)3582 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
3583 {
3584 /*
3585 * Even if power well support was disabled we still want to disable
3586 * power wells while we are system suspended.
3587 */
3588 if (!i915_modparams.disable_power_well)
3589 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
3590
3591 if (IS_ICELAKE(dev_priv))
3592 icl_display_core_uninit(dev_priv);
3593 else if (IS_CANNONLAKE(dev_priv))
3594 cnl_display_core_uninit(dev_priv);
3595 else if (IS_GEN9_BC(dev_priv))
3596 skl_display_core_uninit(dev_priv);
3597 else if (IS_GEN9_LP(dev_priv))
3598 bxt_display_core_uninit(dev_priv);
3599 }
3600
intel_power_domains_dump_info(struct drm_i915_private * dev_priv)3601 static void intel_power_domains_dump_info(struct drm_i915_private *dev_priv)
3602 {
3603 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3604 struct i915_power_well *power_well;
3605
3606 for_each_power_well(dev_priv, power_well) {
3607 enum intel_display_power_domain domain;
3608
3609 DRM_DEBUG_DRIVER("%-25s %d\n",
3610 power_well->name, power_well->count);
3611
3612 for_each_power_domain(domain, power_well->domains)
3613 DRM_DEBUG_DRIVER(" %-23s %d\n",
3614 intel_display_power_domain_str(domain),
3615 power_domains->domain_use_count[domain]);
3616 }
3617 }
3618
3619 /**
3620 * intel_power_domains_verify_state - verify the HW/SW state for all power wells
3621 * @dev_priv: i915 device instance
3622 *
3623 * Verify if the reference count of each power well matches its HW enabled
3624 * state and the total refcount of the domains it belongs to. This must be
3625 * called after modeset HW state sanitization, which is responsible for
3626 * acquiring reference counts for any power wells in use and disabling the
3627 * ones left on by BIOS but not required by any active output.
3628 */
intel_power_domains_verify_state(struct drm_i915_private * dev_priv)3629 void intel_power_domains_verify_state(struct drm_i915_private *dev_priv)
3630 {
3631 struct i915_power_domains *power_domains = &dev_priv->power_domains;
3632 struct i915_power_well *power_well;
3633 bool dump_domain_info;
3634
3635 mutex_lock(&power_domains->lock);
3636
3637 dump_domain_info = false;
3638 for_each_power_well(dev_priv, power_well) {
3639 enum intel_display_power_domain domain;
3640 int domains_count;
3641 bool enabled;
3642
3643 /*
3644 * Power wells not belonging to any domain (like the MISC_IO
3645 * and PW1 power wells) are under FW control, so ignore them,
3646 * since their state can change asynchronously.
3647 */
3648 if (!power_well->domains)
3649 continue;
3650
3651 enabled = power_well->ops->is_enabled(dev_priv, power_well);
3652 if ((power_well->count || power_well->always_on) != enabled)
3653 DRM_ERROR("power well %s state mismatch (refcount %d/enabled %d)",
3654 power_well->name, power_well->count, enabled);
3655
3656 domains_count = 0;
3657 for_each_power_domain(domain, power_well->domains)
3658 domains_count += power_domains->domain_use_count[domain];
3659
3660 if (power_well->count != domains_count) {
3661 DRM_ERROR("power well %s refcount/domain refcount mismatch "
3662 "(refcount %d/domains refcount %d)\n",
3663 power_well->name, power_well->count,
3664 domains_count);
3665 dump_domain_info = true;
3666 }
3667 }
3668
3669 if (dump_domain_info) {
3670 static bool dumped;
3671
3672 if (!dumped) {
3673 intel_power_domains_dump_info(dev_priv);
3674 dumped = true;
3675 }
3676 }
3677
3678 mutex_unlock(&power_domains->lock);
3679 }
3680
3681 /**
3682 * intel_runtime_pm_get - grab a runtime pm reference
3683 * @dev_priv: i915 device instance
3684 *
3685 * This function grabs a device-level runtime pm reference (mostly used for GEM
3686 * code to ensure the GTT or GT is on) and ensures that it is powered up.
3687 *
3688 * Any runtime pm reference obtained by this function must have a symmetric
3689 * call to intel_runtime_pm_put() to release the reference again.
3690 */
intel_runtime_pm_get(struct drm_i915_private * dev_priv)3691 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
3692 {
3693 struct pci_dev *pdev = dev_priv->drm.pdev;
3694 struct device *kdev = &pdev->dev;
3695 int ret;
3696
3697 ret = pm_runtime_get_sync(kdev);
3698 WARN_ONCE(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
3699
3700 atomic_inc(&dev_priv->runtime_pm.wakeref_count);
3701 assert_rpm_wakelock_held(dev_priv);
3702 }
3703
3704 /**
3705 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
3706 * @dev_priv: i915 device instance
3707 *
3708 * This function grabs a device-level runtime pm reference if the device is
3709 * already in use and ensures that it is powered up. It is illegal to try
3710 * and access the HW should intel_runtime_pm_get_if_in_use() report failure.
3711 *
3712 * Any runtime pm reference obtained by this function must have a symmetric
3713 * call to intel_runtime_pm_put() to release the reference again.
3714 *
3715 * Returns: True if the wakeref was acquired, or False otherwise.
3716 */
intel_runtime_pm_get_if_in_use(struct drm_i915_private * dev_priv)3717 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
3718 {
3719 if (IS_ENABLED(CONFIG_PM)) {
3720 struct pci_dev *pdev = dev_priv->drm.pdev;
3721 struct device *kdev = &pdev->dev;
3722
3723 /*
3724 * In cases runtime PM is disabled by the RPM core and we get
3725 * an -EINVAL return value we are not supposed to call this
3726 * function, since the power state is undefined. This applies
3727 * atm to the late/early system suspend/resume handlers.
3728 */
3729 if (pm_runtime_get_if_in_use(kdev) <= 0)
3730 return false;
3731 }
3732
3733 atomic_inc(&dev_priv->runtime_pm.wakeref_count);
3734 assert_rpm_wakelock_held(dev_priv);
3735
3736 return true;
3737 }
3738
3739 /**
3740 * intel_runtime_pm_get_noresume - grab a runtime pm reference
3741 * @dev_priv: i915 device instance
3742 *
3743 * This function grabs a device-level runtime pm reference (mostly used for GEM
3744 * code to ensure the GTT or GT is on).
3745 *
3746 * It will _not_ power up the device but instead only check that it's powered
3747 * on. Therefore it is only valid to call this functions from contexts where
3748 * the device is known to be powered up and where trying to power it up would
3749 * result in hilarity and deadlocks. That pretty much means only the system
3750 * suspend/resume code where this is used to grab runtime pm references for
3751 * delayed setup down in work items.
3752 *
3753 * Any runtime pm reference obtained by this function must have a symmetric
3754 * call to intel_runtime_pm_put() to release the reference again.
3755 */
intel_runtime_pm_get_noresume(struct drm_i915_private * dev_priv)3756 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
3757 {
3758 struct pci_dev *pdev = dev_priv->drm.pdev;
3759 struct device *kdev = &pdev->dev;
3760
3761 assert_rpm_wakelock_held(dev_priv);
3762 pm_runtime_get_noresume(kdev);
3763
3764 atomic_inc(&dev_priv->runtime_pm.wakeref_count);
3765 }
3766
3767 /**
3768 * intel_runtime_pm_put - release a runtime pm reference
3769 * @dev_priv: i915 device instance
3770 *
3771 * This function drops the device-level runtime pm reference obtained by
3772 * intel_runtime_pm_get() and might power down the corresponding
3773 * hardware block right away if this is the last reference.
3774 */
intel_runtime_pm_put(struct drm_i915_private * dev_priv)3775 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
3776 {
3777 struct pci_dev *pdev = dev_priv->drm.pdev;
3778 struct device *kdev = &pdev->dev;
3779
3780 assert_rpm_wakelock_held(dev_priv);
3781 atomic_dec(&dev_priv->runtime_pm.wakeref_count);
3782
3783 pm_runtime_mark_last_busy(kdev);
3784 pm_runtime_put_autosuspend(kdev);
3785 }
3786
3787 /**
3788 * intel_runtime_pm_enable - enable runtime pm
3789 * @dev_priv: i915 device instance
3790 *
3791 * This function enables runtime pm at the end of the driver load sequence.
3792 *
3793 * Note that this function does currently not enable runtime pm for the
3794 * subordinate display power domains. That is only done on the first modeset
3795 * using intel_display_set_init_power().
3796 */
intel_runtime_pm_enable(struct drm_i915_private * dev_priv)3797 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
3798 {
3799 struct pci_dev *pdev = dev_priv->drm.pdev;
3800 struct device *kdev = &pdev->dev;
3801
3802 pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
3803 pm_runtime_mark_last_busy(kdev);
3804
3805 /*
3806 * Take a permanent reference to disable the RPM functionality and drop
3807 * it only when unloading the driver. Use the low level get/put helpers,
3808 * so the driver's own RPM reference tracking asserts also work on
3809 * platforms without RPM support.
3810 */
3811 if (!HAS_RUNTIME_PM(dev_priv)) {
3812 int ret;
3813
3814 pm_runtime_dont_use_autosuspend(kdev);
3815 ret = pm_runtime_get_sync(kdev);
3816 WARN(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
3817 } else {
3818 pm_runtime_use_autosuspend(kdev);
3819 }
3820
3821 /*
3822 * The core calls the driver load handler with an RPM reference held.
3823 * We drop that here and will reacquire it during unloading in
3824 * intel_power_domains_fini().
3825 */
3826 pm_runtime_put_autosuspend(kdev);
3827 }
3828