1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <drm/i915_drm.h>
8 
9 #include "i915_drv.h"
10 #include "intel_breadcrumbs.h"
11 #include "intel_gt.h"
12 #include "intel_gt_clock_utils.h"
13 #include "intel_gt_irq.h"
14 #include "intel_gt_pm_irq.h"
15 #include "intel_rps.h"
16 #include "intel_sideband.h"
17 #include "../../../platform/x86/intel_ips.h"
18 
19 #define BUSY_MAX_EI	20u /* ms */
20 
21 /*
22  * Lock protecting IPS related data structures
23  */
24 static DEFINE_SPINLOCK(mchdev_lock);
25 
rps_to_gt(struct intel_rps * rps)26 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
27 {
28 	return container_of(rps, struct intel_gt, rps);
29 }
30 
rps_to_i915(struct intel_rps * rps)31 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
32 {
33 	return rps_to_gt(rps)->i915;
34 }
35 
rps_to_uncore(struct intel_rps * rps)36 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
37 {
38 	return rps_to_gt(rps)->uncore;
39 }
40 
rps_pm_sanitize_mask(struct intel_rps * rps,u32 mask)41 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
42 {
43 	return mask & ~rps->pm_intrmsk_mbz;
44 }
45 
set(struct intel_uncore * uncore,i915_reg_t reg,u32 val)46 static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
47 {
48 	intel_uncore_write_fw(uncore, reg, val);
49 }
50 
rps_timer(struct timer_list * t)51 static void rps_timer(struct timer_list *t)
52 {
53 	struct intel_rps *rps = from_timer(rps, t, timer);
54 	struct intel_engine_cs *engine;
55 	ktime_t dt, last, timestamp;
56 	enum intel_engine_id id;
57 	s64 max_busy[3] = {};
58 
59 	timestamp = 0;
60 	for_each_engine(engine, rps_to_gt(rps), id) {
61 		s64 busy;
62 		int i;
63 
64 		dt = intel_engine_get_busy_time(engine, &timestamp);
65 		last = engine->stats.rps;
66 		engine->stats.rps = dt;
67 
68 		busy = ktime_to_ns(ktime_sub(dt, last));
69 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
70 			if (busy > max_busy[i])
71 				swap(busy, max_busy[i]);
72 		}
73 	}
74 	last = rps->pm_timestamp;
75 	rps->pm_timestamp = timestamp;
76 
77 	if (intel_rps_is_active(rps)) {
78 		s64 busy;
79 		int i;
80 
81 		dt = ktime_sub(timestamp, last);
82 
83 		/*
84 		 * Our goal is to evaluate each engine independently, so we run
85 		 * at the lowest clocks required to sustain the heaviest
86 		 * workload. However, a task may be split into sequential
87 		 * dependent operations across a set of engines, such that
88 		 * the independent contributions do not account for high load,
89 		 * but overall the task is GPU bound. For example, consider
90 		 * video decode on vcs followed by colour post-processing
91 		 * on vecs, followed by general post-processing on rcs.
92 		 * Since multi-engines being active does imply a single
93 		 * continuous workload across all engines, we hedge our
94 		 * bets by only contributing a factor of the distributed
95 		 * load into our busyness calculation.
96 		 */
97 		busy = max_busy[0];
98 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
99 			if (!max_busy[i])
100 				break;
101 
102 			busy += div_u64(max_busy[i], 1 << i);
103 		}
104 		GT_TRACE(rps_to_gt(rps),
105 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
106 			 busy, (int)div64_u64(100 * busy, dt),
107 			 max_busy[0], max_busy[1], max_busy[2],
108 			 rps->pm_interval);
109 
110 		if (100 * busy > rps->power.up_threshold * dt &&
111 		    rps->cur_freq < rps->max_freq_softlimit) {
112 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
113 			rps->pm_interval = 1;
114 			schedule_work(&rps->work);
115 		} else if (100 * busy < rps->power.down_threshold * dt &&
116 			   rps->cur_freq > rps->min_freq_softlimit) {
117 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
118 			rps->pm_interval = 1;
119 			schedule_work(&rps->work);
120 		} else {
121 			rps->last_adj = 0;
122 		}
123 
124 		mod_timer(&rps->timer,
125 			  jiffies + msecs_to_jiffies(rps->pm_interval));
126 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
127 	}
128 }
129 
rps_start_timer(struct intel_rps * rps)130 static void rps_start_timer(struct intel_rps *rps)
131 {
132 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
133 	rps->pm_interval = 1;
134 	mod_timer(&rps->timer, jiffies + 1);
135 }
136 
rps_stop_timer(struct intel_rps * rps)137 static void rps_stop_timer(struct intel_rps *rps)
138 {
139 	del_timer_sync(&rps->timer);
140 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
141 	cancel_work_sync(&rps->work);
142 }
143 
rps_pm_mask(struct intel_rps * rps,u8 val)144 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
145 {
146 	u32 mask = 0;
147 
148 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
149 	if (val > rps->min_freq_softlimit)
150 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
151 			 GEN6_PM_RP_DOWN_THRESHOLD |
152 			 GEN6_PM_RP_DOWN_TIMEOUT);
153 
154 	if (val < rps->max_freq_softlimit)
155 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
156 
157 	mask &= rps->pm_events;
158 
159 	return rps_pm_sanitize_mask(rps, ~mask);
160 }
161 
rps_reset_ei(struct intel_rps * rps)162 static void rps_reset_ei(struct intel_rps *rps)
163 {
164 	memset(&rps->ei, 0, sizeof(rps->ei));
165 }
166 
rps_enable_interrupts(struct intel_rps * rps)167 static void rps_enable_interrupts(struct intel_rps *rps)
168 {
169 	struct intel_gt *gt = rps_to_gt(rps);
170 
171 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
172 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
173 
174 	rps_reset_ei(rps);
175 
176 	spin_lock_irq(&gt->irq_lock);
177 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
178 	spin_unlock_irq(&gt->irq_lock);
179 
180 	intel_uncore_write(gt->uncore,
181 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
182 }
183 
gen6_rps_reset_interrupts(struct intel_rps * rps)184 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
185 {
186 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
187 }
188 
gen11_rps_reset_interrupts(struct intel_rps * rps)189 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
190 {
191 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
192 		;
193 }
194 
rps_reset_interrupts(struct intel_rps * rps)195 static void rps_reset_interrupts(struct intel_rps *rps)
196 {
197 	struct intel_gt *gt = rps_to_gt(rps);
198 
199 	spin_lock_irq(&gt->irq_lock);
200 	if (INTEL_GEN(gt->i915) >= 11)
201 		gen11_rps_reset_interrupts(rps);
202 	else
203 		gen6_rps_reset_interrupts(rps);
204 
205 	rps->pm_iir = 0;
206 	spin_unlock_irq(&gt->irq_lock);
207 }
208 
rps_disable_interrupts(struct intel_rps * rps)209 static void rps_disable_interrupts(struct intel_rps *rps)
210 {
211 	struct intel_gt *gt = rps_to_gt(rps);
212 
213 	intel_uncore_write(gt->uncore,
214 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
215 
216 	spin_lock_irq(&gt->irq_lock);
217 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
218 	spin_unlock_irq(&gt->irq_lock);
219 
220 	intel_synchronize_irq(gt->i915);
221 
222 	/*
223 	 * Now that we will not be generating any more work, flush any
224 	 * outstanding tasks. As we are called on the RPS idle path,
225 	 * we will reset the GPU to minimum frequencies, so the current
226 	 * state of the worker can be discarded.
227 	 */
228 	cancel_work_sync(&rps->work);
229 
230 	rps_reset_interrupts(rps);
231 	GT_TRACE(gt, "interrupts:off\n");
232 }
233 
234 static const struct cparams {
235 	u16 i;
236 	u16 t;
237 	u16 m;
238 	u16 c;
239 } cparams[] = {
240 	{ 1, 1333, 301, 28664 },
241 	{ 1, 1066, 294, 24460 },
242 	{ 1, 800, 294, 25192 },
243 	{ 0, 1333, 276, 27605 },
244 	{ 0, 1066, 276, 27605 },
245 	{ 0, 800, 231, 23784 },
246 };
247 
gen5_rps_init(struct intel_rps * rps)248 static void gen5_rps_init(struct intel_rps *rps)
249 {
250 	struct drm_i915_private *i915 = rps_to_i915(rps);
251 	struct intel_uncore *uncore = rps_to_uncore(rps);
252 	u8 fmax, fmin, fstart;
253 	u32 rgvmodectl;
254 	int c_m, i;
255 
256 	if (i915->fsb_freq <= 3200)
257 		c_m = 0;
258 	else if (i915->fsb_freq <= 4800)
259 		c_m = 1;
260 	else
261 		c_m = 2;
262 
263 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
264 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
265 			rps->ips.m = cparams[i].m;
266 			rps->ips.c = cparams[i].c;
267 			break;
268 		}
269 	}
270 
271 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
272 
273 	/* Set up min, max, and cur for interrupt handling */
274 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
275 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
276 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
277 		MEMMODE_FSTART_SHIFT;
278 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
279 		fmax, fmin, fstart);
280 
281 	rps->min_freq = fmax;
282 	rps->efficient_freq = fstart;
283 	rps->max_freq = fmin;
284 }
285 
286 static unsigned long
__ips_chipset_val(struct intel_ips * ips)287 __ips_chipset_val(struct intel_ips *ips)
288 {
289 	struct intel_uncore *uncore =
290 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
291 	unsigned long now = jiffies_to_msecs(jiffies), dt;
292 	unsigned long result;
293 	u64 total, delta;
294 
295 	lockdep_assert_held(&mchdev_lock);
296 
297 	/*
298 	 * Prevent division-by-zero if we are asking too fast.
299 	 * Also, we don't get interesting results if we are polling
300 	 * faster than once in 10ms, so just return the saved value
301 	 * in such cases.
302 	 */
303 	dt = now - ips->last_time1;
304 	if (dt <= 10)
305 		return ips->chipset_power;
306 
307 	/* FIXME: handle per-counter overflow */
308 	total = intel_uncore_read(uncore, DMIEC);
309 	total += intel_uncore_read(uncore, DDREC);
310 	total += intel_uncore_read(uncore, CSIEC);
311 
312 	delta = total - ips->last_count1;
313 
314 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
315 
316 	ips->last_count1 = total;
317 	ips->last_time1 = now;
318 
319 	ips->chipset_power = result;
320 
321 	return result;
322 }
323 
ips_mch_val(struct intel_uncore * uncore)324 static unsigned long ips_mch_val(struct intel_uncore *uncore)
325 {
326 	unsigned int m, x, b;
327 	u32 tsfs;
328 
329 	tsfs = intel_uncore_read(uncore, TSFS);
330 	x = intel_uncore_read8(uncore, TR1);
331 
332 	b = tsfs & TSFS_INTR_MASK;
333 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
334 
335 	return m * x / 127 - b;
336 }
337 
_pxvid_to_vd(u8 pxvid)338 static int _pxvid_to_vd(u8 pxvid)
339 {
340 	if (pxvid == 0)
341 		return 0;
342 
343 	if (pxvid >= 8 && pxvid < 31)
344 		pxvid = 31;
345 
346 	return (pxvid + 2) * 125;
347 }
348 
pvid_to_extvid(struct drm_i915_private * i915,u8 pxvid)349 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
350 {
351 	const int vd = _pxvid_to_vd(pxvid);
352 
353 	if (INTEL_INFO(i915)->is_mobile)
354 		return max(vd - 1125, 0);
355 
356 	return vd;
357 }
358 
__gen5_ips_update(struct intel_ips * ips)359 static void __gen5_ips_update(struct intel_ips *ips)
360 {
361 	struct intel_uncore *uncore =
362 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
363 	u64 now, delta, dt;
364 	u32 count;
365 
366 	lockdep_assert_held(&mchdev_lock);
367 
368 	now = ktime_get_raw_ns();
369 	dt = now - ips->last_time2;
370 	do_div(dt, NSEC_PER_MSEC);
371 
372 	/* Don't divide by 0 */
373 	if (dt <= 10)
374 		return;
375 
376 	count = intel_uncore_read(uncore, GFXEC);
377 	delta = count - ips->last_count2;
378 
379 	ips->last_count2 = count;
380 	ips->last_time2 = now;
381 
382 	/* More magic constants... */
383 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
384 }
385 
gen5_rps_update(struct intel_rps * rps)386 static void gen5_rps_update(struct intel_rps *rps)
387 {
388 	spin_lock_irq(&mchdev_lock);
389 	__gen5_ips_update(&rps->ips);
390 	spin_unlock_irq(&mchdev_lock);
391 }
392 
gen5_rps_set(struct intel_rps * rps,u8 val)393 static bool gen5_rps_set(struct intel_rps *rps, u8 val)
394 {
395 	struct intel_uncore *uncore = rps_to_uncore(rps);
396 	u16 rgvswctl;
397 
398 	lockdep_assert_held(&mchdev_lock);
399 
400 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
401 	if (rgvswctl & MEMCTL_CMD_STS) {
402 		DRM_DEBUG("gpu busy, RCS change rejected\n");
403 		return false; /* still busy with another command */
404 	}
405 
406 	/* Invert the frequency bin into an ips delay */
407 	val = rps->max_freq - val;
408 	val = rps->min_freq + val;
409 
410 	rgvswctl =
411 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
412 		(val << MEMCTL_FREQ_SHIFT) |
413 		MEMCTL_SFCAVM;
414 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
415 	intel_uncore_posting_read16(uncore, MEMSWCTL);
416 
417 	rgvswctl |= MEMCTL_CMD_STS;
418 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
419 
420 	return true;
421 }
422 
intel_pxfreq(u32 vidfreq)423 static unsigned long intel_pxfreq(u32 vidfreq)
424 {
425 	int div = (vidfreq & 0x3f0000) >> 16;
426 	int post = (vidfreq & 0x3000) >> 12;
427 	int pre = (vidfreq & 0x7);
428 
429 	if (!pre)
430 		return 0;
431 
432 	return div * 133333 / (pre << post);
433 }
434 
init_emon(struct intel_uncore * uncore)435 static unsigned int init_emon(struct intel_uncore *uncore)
436 {
437 	u8 pxw[16];
438 	int i;
439 
440 	/* Disable to program */
441 	intel_uncore_write(uncore, ECR, 0);
442 	intel_uncore_posting_read(uncore, ECR);
443 
444 	/* Program energy weights for various events */
445 	intel_uncore_write(uncore, SDEW, 0x15040d00);
446 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
447 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
448 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
449 
450 	for (i = 0; i < 5; i++)
451 		intel_uncore_write(uncore, PEW(i), 0);
452 	for (i = 0; i < 3; i++)
453 		intel_uncore_write(uncore, DEW(i), 0);
454 
455 	/* Program P-state weights to account for frequency power adjustment */
456 	for (i = 0; i < 16; i++) {
457 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
458 		unsigned int freq = intel_pxfreq(pxvidfreq);
459 		unsigned int vid =
460 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
461 		unsigned int val;
462 
463 		val = vid * vid * freq / 1000 * 255;
464 		val /= 127 * 127 * 900;
465 
466 		pxw[i] = val;
467 	}
468 	/* Render standby states get 0 weight */
469 	pxw[14] = 0;
470 	pxw[15] = 0;
471 
472 	for (i = 0; i < 4; i++) {
473 		intel_uncore_write(uncore, PXW(i),
474 				   pxw[i * 4 + 0] << 24 |
475 				   pxw[i * 4 + 1] << 16 |
476 				   pxw[i * 4 + 2] <<  8 |
477 				   pxw[i * 4 + 3] <<  0);
478 	}
479 
480 	/* Adjust magic regs to magic values (more experimental results) */
481 	intel_uncore_write(uncore, OGW0, 0);
482 	intel_uncore_write(uncore, OGW1, 0);
483 	intel_uncore_write(uncore, EG0, 0x00007f00);
484 	intel_uncore_write(uncore, EG1, 0x0000000e);
485 	intel_uncore_write(uncore, EG2, 0x000e0000);
486 	intel_uncore_write(uncore, EG3, 0x68000300);
487 	intel_uncore_write(uncore, EG4, 0x42000000);
488 	intel_uncore_write(uncore, EG5, 0x00140031);
489 	intel_uncore_write(uncore, EG6, 0);
490 	intel_uncore_write(uncore, EG7, 0);
491 
492 	for (i = 0; i < 8; i++)
493 		intel_uncore_write(uncore, PXWL(i), 0);
494 
495 	/* Enable PMON + select events */
496 	intel_uncore_write(uncore, ECR, 0x80000019);
497 
498 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
499 }
500 
gen5_rps_enable(struct intel_rps * rps)501 static bool gen5_rps_enable(struct intel_rps *rps)
502 {
503 	struct intel_uncore *uncore = rps_to_uncore(rps);
504 	u8 fstart, vstart;
505 	u32 rgvmodectl;
506 
507 	spin_lock_irq(&mchdev_lock);
508 
509 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
510 
511 	/* Enable temp reporting */
512 	intel_uncore_write16(uncore, PMMISC,
513 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
514 	intel_uncore_write16(uncore, TSC1,
515 			     intel_uncore_read16(uncore, TSC1) | TSE);
516 
517 	/* 100ms RC evaluation intervals */
518 	intel_uncore_write(uncore, RCUPEI, 100000);
519 	intel_uncore_write(uncore, RCDNEI, 100000);
520 
521 	/* Set max/min thresholds to 90ms and 80ms respectively */
522 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
523 	intel_uncore_write(uncore, RCBMINAVG, 80000);
524 
525 	intel_uncore_write(uncore, MEMIHYST, 1);
526 
527 	/* Set up min, max, and cur for interrupt handling */
528 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
529 		MEMMODE_FSTART_SHIFT;
530 
531 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
532 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
533 
534 	intel_uncore_write(uncore,
535 			   MEMINTREN,
536 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
537 
538 	intel_uncore_write(uncore, VIDSTART, vstart);
539 	intel_uncore_posting_read(uncore, VIDSTART);
540 
541 	rgvmodectl |= MEMMODE_SWMODE_EN;
542 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
543 
544 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
545 			     MEMCTL_CMD_STS) == 0, 10))
546 		drm_err(&uncore->i915->drm,
547 			"stuck trying to change perf mode\n");
548 	mdelay(1);
549 
550 	gen5_rps_set(rps, rps->cur_freq);
551 
552 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
553 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
554 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
555 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
556 
557 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
558 	rps->ips.last_time2 = ktime_get_raw_ns();
559 
560 	spin_unlock_irq(&mchdev_lock);
561 
562 	rps->ips.corr = init_emon(uncore);
563 
564 	return true;
565 }
566 
gen5_rps_disable(struct intel_rps * rps)567 static void gen5_rps_disable(struct intel_rps *rps)
568 {
569 	struct intel_uncore *uncore = rps_to_uncore(rps);
570 	u16 rgvswctl;
571 
572 	spin_lock_irq(&mchdev_lock);
573 
574 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
575 
576 	/* Ack interrupts, disable EFC interrupt */
577 	intel_uncore_write(uncore, MEMINTREN,
578 			   intel_uncore_read(uncore, MEMINTREN) &
579 			   ~MEMINT_EVAL_CHG_EN);
580 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
581 	intel_uncore_write(uncore, DEIER,
582 			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
583 	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
584 	intel_uncore_write(uncore, DEIMR,
585 			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
586 
587 	/* Go back to the starting frequency */
588 	gen5_rps_set(rps, rps->idle_freq);
589 	mdelay(1);
590 	rgvswctl |= MEMCTL_CMD_STS;
591 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
592 	mdelay(1);
593 
594 	spin_unlock_irq(&mchdev_lock);
595 }
596 
rps_limits(struct intel_rps * rps,u8 val)597 static u32 rps_limits(struct intel_rps *rps, u8 val)
598 {
599 	u32 limits;
600 
601 	/*
602 	 * Only set the down limit when we've reached the lowest level to avoid
603 	 * getting more interrupts, otherwise leave this clear. This prevents a
604 	 * race in the hw when coming out of rc6: There's a tiny window where
605 	 * the hw runs at the minimal clock before selecting the desired
606 	 * frequency, if the down threshold expires in that window we will not
607 	 * receive a down interrupt.
608 	 */
609 	if (INTEL_GEN(rps_to_i915(rps)) >= 9) {
610 		limits = rps->max_freq_softlimit << 23;
611 		if (val <= rps->min_freq_softlimit)
612 			limits |= rps->min_freq_softlimit << 14;
613 	} else {
614 		limits = rps->max_freq_softlimit << 24;
615 		if (val <= rps->min_freq_softlimit)
616 			limits |= rps->min_freq_softlimit << 16;
617 	}
618 
619 	return limits;
620 }
621 
rps_set_power(struct intel_rps * rps,int new_power)622 static void rps_set_power(struct intel_rps *rps, int new_power)
623 {
624 	struct intel_gt *gt = rps_to_gt(rps);
625 	struct intel_uncore *uncore = gt->uncore;
626 	u32 threshold_up = 0, threshold_down = 0; /* in % */
627 	u32 ei_up = 0, ei_down = 0;
628 
629 	lockdep_assert_held(&rps->power.mutex);
630 
631 	if (new_power == rps->power.mode)
632 		return;
633 
634 	threshold_up = 95;
635 	threshold_down = 85;
636 
637 	/* Note the units here are not exactly 1us, but 1280ns. */
638 	switch (new_power) {
639 	case LOW_POWER:
640 		ei_up = 16000;
641 		ei_down = 32000;
642 		break;
643 
644 	case BETWEEN:
645 		ei_up = 13000;
646 		ei_down = 32000;
647 		break;
648 
649 	case HIGH_POWER:
650 		ei_up = 10000;
651 		ei_down = 32000;
652 		break;
653 	}
654 
655 	/* When byt can survive without system hang with dynamic
656 	 * sw freq adjustments, this restriction can be lifted.
657 	 */
658 	if (IS_VALLEYVIEW(gt->i915))
659 		goto skip_hw_write;
660 
661 	GT_TRACE(gt,
662 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
663 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
664 
665 	set(uncore, GEN6_RP_UP_EI,
666 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
667 	set(uncore, GEN6_RP_UP_THRESHOLD,
668 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
669 
670 	set(uncore, GEN6_RP_DOWN_EI,
671 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
672 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
673 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
674 
675 	set(uncore, GEN6_RP_CONTROL,
676 	    (INTEL_GEN(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
677 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
678 	    GEN6_RP_MEDIA_IS_GFX |
679 	    GEN6_RP_ENABLE |
680 	    GEN6_RP_UP_BUSY_AVG |
681 	    GEN6_RP_DOWN_IDLE_AVG);
682 
683 skip_hw_write:
684 	rps->power.mode = new_power;
685 	rps->power.up_threshold = threshold_up;
686 	rps->power.down_threshold = threshold_down;
687 }
688 
gen6_rps_set_thresholds(struct intel_rps * rps,u8 val)689 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
690 {
691 	int new_power;
692 
693 	new_power = rps->power.mode;
694 	switch (rps->power.mode) {
695 	case LOW_POWER:
696 		if (val > rps->efficient_freq + 1 &&
697 		    val > rps->cur_freq)
698 			new_power = BETWEEN;
699 		break;
700 
701 	case BETWEEN:
702 		if (val <= rps->efficient_freq &&
703 		    val < rps->cur_freq)
704 			new_power = LOW_POWER;
705 		else if (val >= rps->rp0_freq &&
706 			 val > rps->cur_freq)
707 			new_power = HIGH_POWER;
708 		break;
709 
710 	case HIGH_POWER:
711 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
712 		    val < rps->cur_freq)
713 			new_power = BETWEEN;
714 		break;
715 	}
716 	/* Max/min bins are special */
717 	if (val <= rps->min_freq_softlimit)
718 		new_power = LOW_POWER;
719 	if (val >= rps->max_freq_softlimit)
720 		new_power = HIGH_POWER;
721 
722 	mutex_lock(&rps->power.mutex);
723 	if (rps->power.interactive)
724 		new_power = HIGH_POWER;
725 	rps_set_power(rps, new_power);
726 	mutex_unlock(&rps->power.mutex);
727 }
728 
intel_rps_mark_interactive(struct intel_rps * rps,bool interactive)729 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
730 {
731 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
732 
733 	mutex_lock(&rps->power.mutex);
734 	if (interactive) {
735 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
736 			rps_set_power(rps, HIGH_POWER);
737 	} else {
738 		GEM_BUG_ON(!rps->power.interactive);
739 		rps->power.interactive--;
740 	}
741 	mutex_unlock(&rps->power.mutex);
742 }
743 
gen6_rps_set(struct intel_rps * rps,u8 val)744 static int gen6_rps_set(struct intel_rps *rps, u8 val)
745 {
746 	struct intel_uncore *uncore = rps_to_uncore(rps);
747 	struct drm_i915_private *i915 = rps_to_i915(rps);
748 	u32 swreq;
749 
750 	if (INTEL_GEN(i915) >= 9)
751 		swreq = GEN9_FREQUENCY(val);
752 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
753 		swreq = HSW_FREQUENCY(val);
754 	else
755 		swreq = (GEN6_FREQUENCY(val) |
756 			 GEN6_OFFSET(0) |
757 			 GEN6_AGGRESSIVE_TURBO);
758 	set(uncore, GEN6_RPNSWREQ, swreq);
759 
760 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
761 		 val, intel_gpu_freq(rps, val), swreq);
762 
763 	return 0;
764 }
765 
vlv_rps_set(struct intel_rps * rps,u8 val)766 static int vlv_rps_set(struct intel_rps *rps, u8 val)
767 {
768 	struct drm_i915_private *i915 = rps_to_i915(rps);
769 	int err;
770 
771 	vlv_punit_get(i915);
772 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
773 	vlv_punit_put(i915);
774 
775 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
776 		 val, intel_gpu_freq(rps, val));
777 
778 	return err;
779 }
780 
rps_set(struct intel_rps * rps,u8 val,bool update)781 static int rps_set(struct intel_rps *rps, u8 val, bool update)
782 {
783 	struct drm_i915_private *i915 = rps_to_i915(rps);
784 	int err;
785 
786 	if (INTEL_GEN(i915) < 6)
787 		return 0;
788 
789 	if (val == rps->last_freq)
790 		return 0;
791 
792 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
793 		err = vlv_rps_set(rps, val);
794 	else
795 		err = gen6_rps_set(rps, val);
796 	if (err)
797 		return err;
798 
799 	if (update)
800 		gen6_rps_set_thresholds(rps, val);
801 	rps->last_freq = val;
802 
803 	return 0;
804 }
805 
intel_rps_unpark(struct intel_rps * rps)806 void intel_rps_unpark(struct intel_rps *rps)
807 {
808 	if (!intel_rps_is_enabled(rps))
809 		return;
810 
811 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
812 
813 	/*
814 	 * Use the user's desired frequency as a guide, but for better
815 	 * performance, jump directly to RPe as our starting frequency.
816 	 */
817 	mutex_lock(&rps->lock);
818 
819 	intel_rps_set_active(rps);
820 	intel_rps_set(rps,
821 		      clamp(rps->cur_freq,
822 			    rps->min_freq_softlimit,
823 			    rps->max_freq_softlimit));
824 
825 	mutex_unlock(&rps->lock);
826 
827 	rps->pm_iir = 0;
828 	if (intel_rps_has_interrupts(rps))
829 		rps_enable_interrupts(rps);
830 	if (intel_rps_uses_timer(rps))
831 		rps_start_timer(rps);
832 
833 	if (IS_GEN(rps_to_i915(rps), 5))
834 		gen5_rps_update(rps);
835 }
836 
intel_rps_park(struct intel_rps * rps)837 void intel_rps_park(struct intel_rps *rps)
838 {
839 	int adj;
840 
841 	if (!intel_rps_clear_active(rps))
842 		return;
843 
844 	if (intel_rps_uses_timer(rps))
845 		rps_stop_timer(rps);
846 	if (intel_rps_has_interrupts(rps))
847 		rps_disable_interrupts(rps);
848 
849 	if (rps->last_freq <= rps->idle_freq)
850 		return;
851 
852 	/*
853 	 * The punit delays the write of the frequency and voltage until it
854 	 * determines the GPU is awake. During normal usage we don't want to
855 	 * waste power changing the frequency if the GPU is sleeping (rc6).
856 	 * However, the GPU and driver is now idle and we do not want to delay
857 	 * switching to minimum voltage (reducing power whilst idle) as we do
858 	 * not expect to be woken in the near future and so must flush the
859 	 * change by waking the device.
860 	 *
861 	 * We choose to take the media powerwell (either would do to trick the
862 	 * punit into committing the voltage change) as that takes a lot less
863 	 * power than the render powerwell.
864 	 */
865 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
866 	rps_set(rps, rps->idle_freq, false);
867 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
868 
869 	/*
870 	 * Since we will try and restart from the previously requested
871 	 * frequency on unparking, treat this idle point as a downclock
872 	 * interrupt and reduce the frequency for resume. If we park/unpark
873 	 * more frequently than the rps worker can run, we will not respond
874 	 * to any EI and never see a change in frequency.
875 	 *
876 	 * (Note we accommodate Cherryview's limitation of only using an
877 	 * even bin by applying it to all.)
878 	 */
879 	adj = rps->last_adj;
880 	if (adj < 0)
881 		adj *= 2;
882 	else /* CHV needs even encode values */
883 		adj = -2;
884 	rps->last_adj = adj;
885 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
886 	if (rps->cur_freq < rps->efficient_freq) {
887 		rps->cur_freq = rps->efficient_freq;
888 		rps->last_adj = 0;
889 	}
890 
891 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
892 }
893 
intel_rps_boost(struct i915_request * rq)894 void intel_rps_boost(struct i915_request *rq)
895 {
896 	struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
897 	unsigned long flags;
898 
899 	if (i915_request_signaled(rq) || !intel_rps_is_active(rps))
900 		return;
901 
902 	/* Serializes with i915_request_retire() */
903 	spin_lock_irqsave(&rq->lock, flags);
904 	if (!i915_request_has_waitboost(rq) &&
905 	    !dma_fence_is_signaled_locked(&rq->fence)) {
906 		set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
907 
908 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
909 			 rq->fence.context, rq->fence.seqno);
910 
911 		if (!atomic_fetch_inc(&rps->num_waiters) &&
912 		    READ_ONCE(rps->cur_freq) < rps->boost_freq)
913 			schedule_work(&rps->work);
914 
915 		atomic_inc(&rps->boosts);
916 	}
917 	spin_unlock_irqrestore(&rq->lock, flags);
918 }
919 
intel_rps_set(struct intel_rps * rps,u8 val)920 int intel_rps_set(struct intel_rps *rps, u8 val)
921 {
922 	int err;
923 
924 	lockdep_assert_held(&rps->lock);
925 	GEM_BUG_ON(val > rps->max_freq);
926 	GEM_BUG_ON(val < rps->min_freq);
927 
928 	if (intel_rps_is_active(rps)) {
929 		err = rps_set(rps, val, true);
930 		if (err)
931 			return err;
932 
933 		/*
934 		 * Make sure we continue to get interrupts
935 		 * until we hit the minimum or maximum frequencies.
936 		 */
937 		if (intel_rps_has_interrupts(rps)) {
938 			struct intel_uncore *uncore = rps_to_uncore(rps);
939 
940 			set(uncore,
941 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
942 
943 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
944 		}
945 	}
946 
947 	rps->cur_freq = val;
948 	return 0;
949 }
950 
gen6_rps_init(struct intel_rps * rps)951 static void gen6_rps_init(struct intel_rps *rps)
952 {
953 	struct drm_i915_private *i915 = rps_to_i915(rps);
954 	struct intel_uncore *uncore = rps_to_uncore(rps);
955 
956 	/* All of these values are in units of 50MHz */
957 
958 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
959 	if (IS_GEN9_LP(i915)) {
960 		u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
961 
962 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
963 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
964 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
965 	} else {
966 		u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
967 
968 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
969 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
970 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
971 	}
972 
973 	/* hw_max = RP0 until we check for overclocking */
974 	rps->max_freq = rps->rp0_freq;
975 
976 	rps->efficient_freq = rps->rp1_freq;
977 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
978 	    IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
979 		u32 ddcc_status = 0;
980 
981 		if (sandybridge_pcode_read(i915,
982 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
983 					   &ddcc_status, NULL) == 0)
984 			rps->efficient_freq =
985 				clamp_t(u8,
986 					(ddcc_status >> 8) & 0xff,
987 					rps->min_freq,
988 					rps->max_freq);
989 	}
990 
991 	if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
992 		/* Store the frequency values in 16.66 MHZ units, which is
993 		 * the natural hardware unit for SKL
994 		 */
995 		rps->rp0_freq *= GEN9_FREQ_SCALER;
996 		rps->rp1_freq *= GEN9_FREQ_SCALER;
997 		rps->min_freq *= GEN9_FREQ_SCALER;
998 		rps->max_freq *= GEN9_FREQ_SCALER;
999 		rps->efficient_freq *= GEN9_FREQ_SCALER;
1000 	}
1001 }
1002 
rps_reset(struct intel_rps * rps)1003 static bool rps_reset(struct intel_rps *rps)
1004 {
1005 	struct drm_i915_private *i915 = rps_to_i915(rps);
1006 
1007 	/* force a reset */
1008 	rps->power.mode = -1;
1009 	rps->last_freq = -1;
1010 
1011 	if (rps_set(rps, rps->min_freq, true)) {
1012 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1013 		return false;
1014 	}
1015 
1016 	rps->cur_freq = rps->min_freq;
1017 	return true;
1018 }
1019 
1020 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_rps_enable(struct intel_rps * rps)1021 static bool gen9_rps_enable(struct intel_rps *rps)
1022 {
1023 	struct intel_gt *gt = rps_to_gt(rps);
1024 	struct intel_uncore *uncore = gt->uncore;
1025 
1026 	/* Program defaults and thresholds for RPS */
1027 	if (IS_GEN(gt->i915, 9))
1028 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1029 				      GEN9_FREQUENCY(rps->rp1_freq));
1030 
1031 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1032 
1033 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1034 
1035 	return rps_reset(rps);
1036 }
1037 
gen8_rps_enable(struct intel_rps * rps)1038 static bool gen8_rps_enable(struct intel_rps *rps)
1039 {
1040 	struct intel_uncore *uncore = rps_to_uncore(rps);
1041 
1042 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1043 			      HSW_FREQUENCY(rps->rp1_freq));
1044 
1045 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1046 
1047 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1048 
1049 	return rps_reset(rps);
1050 }
1051 
gen6_rps_enable(struct intel_rps * rps)1052 static bool gen6_rps_enable(struct intel_rps *rps)
1053 {
1054 	struct intel_uncore *uncore = rps_to_uncore(rps);
1055 
1056 	/* Power down if completely idle for over 50ms */
1057 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1058 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1059 
1060 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1061 			  GEN6_PM_RP_DOWN_THRESHOLD |
1062 			  GEN6_PM_RP_DOWN_TIMEOUT);
1063 
1064 	return rps_reset(rps);
1065 }
1066 
chv_rps_max_freq(struct intel_rps * rps)1067 static int chv_rps_max_freq(struct intel_rps *rps)
1068 {
1069 	struct drm_i915_private *i915 = rps_to_i915(rps);
1070 	struct intel_gt *gt = rps_to_gt(rps);
1071 	u32 val;
1072 
1073 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1074 
1075 	switch (gt->info.sseu.eu_total) {
1076 	case 8:
1077 		/* (2 * 4) config */
1078 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1079 		break;
1080 	case 12:
1081 		/* (2 * 6) config */
1082 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1083 		break;
1084 	case 16:
1085 		/* (2 * 8) config */
1086 	default:
1087 		/* Setting (2 * 8) Min RP0 for any other combination */
1088 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1089 		break;
1090 	}
1091 
1092 	return val & FB_GFX_FREQ_FUSE_MASK;
1093 }
1094 
chv_rps_rpe_freq(struct intel_rps * rps)1095 static int chv_rps_rpe_freq(struct intel_rps *rps)
1096 {
1097 	struct drm_i915_private *i915 = rps_to_i915(rps);
1098 	u32 val;
1099 
1100 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1101 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1102 
1103 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1104 }
1105 
chv_rps_guar_freq(struct intel_rps * rps)1106 static int chv_rps_guar_freq(struct intel_rps *rps)
1107 {
1108 	struct drm_i915_private *i915 = rps_to_i915(rps);
1109 	u32 val;
1110 
1111 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1112 
1113 	return val & FB_GFX_FREQ_FUSE_MASK;
1114 }
1115 
chv_rps_min_freq(struct intel_rps * rps)1116 static u32 chv_rps_min_freq(struct intel_rps *rps)
1117 {
1118 	struct drm_i915_private *i915 = rps_to_i915(rps);
1119 	u32 val;
1120 
1121 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1122 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1123 
1124 	return val & FB_GFX_FREQ_FUSE_MASK;
1125 }
1126 
chv_rps_enable(struct intel_rps * rps)1127 static bool chv_rps_enable(struct intel_rps *rps)
1128 {
1129 	struct intel_uncore *uncore = rps_to_uncore(rps);
1130 	struct drm_i915_private *i915 = rps_to_i915(rps);
1131 	u32 val;
1132 
1133 	/* 1: Program defaults and thresholds for RPS*/
1134 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1135 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1136 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1137 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1138 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1139 
1140 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1141 
1142 	/* 2: Enable RPS */
1143 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1144 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1145 			      GEN6_RP_MEDIA_IS_GFX |
1146 			      GEN6_RP_ENABLE |
1147 			      GEN6_RP_UP_BUSY_AVG |
1148 			      GEN6_RP_DOWN_IDLE_AVG);
1149 
1150 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1151 			  GEN6_PM_RP_DOWN_THRESHOLD |
1152 			  GEN6_PM_RP_DOWN_TIMEOUT);
1153 
1154 	/* Setting Fixed Bias */
1155 	vlv_punit_get(i915);
1156 
1157 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1158 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1159 
1160 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1161 
1162 	vlv_punit_put(i915);
1163 
1164 	/* RPS code assumes GPLL is used */
1165 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1166 		      "GPLL not enabled\n");
1167 
1168 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1169 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1170 
1171 	return rps_reset(rps);
1172 }
1173 
vlv_rps_guar_freq(struct intel_rps * rps)1174 static int vlv_rps_guar_freq(struct intel_rps *rps)
1175 {
1176 	struct drm_i915_private *i915 = rps_to_i915(rps);
1177 	u32 val, rp1;
1178 
1179 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1180 
1181 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1182 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1183 
1184 	return rp1;
1185 }
1186 
vlv_rps_max_freq(struct intel_rps * rps)1187 static int vlv_rps_max_freq(struct intel_rps *rps)
1188 {
1189 	struct drm_i915_private *i915 = rps_to_i915(rps);
1190 	u32 val, rp0;
1191 
1192 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1193 
1194 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1195 	/* Clamp to max */
1196 	rp0 = min_t(u32, rp0, 0xea);
1197 
1198 	return rp0;
1199 }
1200 
vlv_rps_rpe_freq(struct intel_rps * rps)1201 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1202 {
1203 	struct drm_i915_private *i915 = rps_to_i915(rps);
1204 	u32 val, rpe;
1205 
1206 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1207 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1208 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1209 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1210 
1211 	return rpe;
1212 }
1213 
vlv_rps_min_freq(struct intel_rps * rps)1214 static int vlv_rps_min_freq(struct intel_rps *rps)
1215 {
1216 	struct drm_i915_private *i915 = rps_to_i915(rps);
1217 	u32 val;
1218 
1219 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1220 	/*
1221 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1222 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1223 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1224 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1225 	 * to make sure it matches what Punit accepts.
1226 	 */
1227 	return max_t(u32, val, 0xc0);
1228 }
1229 
vlv_rps_enable(struct intel_rps * rps)1230 static bool vlv_rps_enable(struct intel_rps *rps)
1231 {
1232 	struct intel_uncore *uncore = rps_to_uncore(rps);
1233 	struct drm_i915_private *i915 = rps_to_i915(rps);
1234 	u32 val;
1235 
1236 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1237 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1238 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1239 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1240 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1241 
1242 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1243 
1244 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1245 			      GEN6_RP_MEDIA_TURBO |
1246 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1247 			      GEN6_RP_MEDIA_IS_GFX |
1248 			      GEN6_RP_ENABLE |
1249 			      GEN6_RP_UP_BUSY_AVG |
1250 			      GEN6_RP_DOWN_IDLE_CONT);
1251 
1252 	/* WaGsvRC0ResidencyMethod:vlv */
1253 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1254 
1255 	vlv_punit_get(i915);
1256 
1257 	/* Setting Fixed Bias */
1258 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1259 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1260 
1261 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1262 
1263 	vlv_punit_put(i915);
1264 
1265 	/* RPS code assumes GPLL is used */
1266 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1267 		      "GPLL not enabled\n");
1268 
1269 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1270 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1271 
1272 	return rps_reset(rps);
1273 }
1274 
__ips_gfx_val(struct intel_ips * ips)1275 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1276 {
1277 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1278 	struct intel_uncore *uncore = rps_to_uncore(rps);
1279 	unsigned long t, corr, state1, corr2, state2;
1280 	u32 pxvid, ext_v;
1281 
1282 	lockdep_assert_held(&mchdev_lock);
1283 
1284 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1285 	pxvid = (pxvid >> 24) & 0x7f;
1286 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1287 
1288 	state1 = ext_v;
1289 
1290 	/* Revel in the empirically derived constants */
1291 
1292 	/* Correction factor in 1/100000 units */
1293 	t = ips_mch_val(uncore);
1294 	if (t > 80)
1295 		corr = t * 2349 + 135940;
1296 	else if (t >= 50)
1297 		corr = t * 964 + 29317;
1298 	else /* < 50 */
1299 		corr = t * 301 + 1004;
1300 
1301 	corr = corr * 150142 * state1 / 10000 - 78642;
1302 	corr /= 100000;
1303 	corr2 = corr * ips->corr;
1304 
1305 	state2 = corr2 * state1 / 10000;
1306 	state2 /= 100; /* convert to mW */
1307 
1308 	__gen5_ips_update(ips);
1309 
1310 	return ips->gfx_power + state2;
1311 }
1312 
has_busy_stats(struct intel_rps * rps)1313 static bool has_busy_stats(struct intel_rps *rps)
1314 {
1315 	struct intel_engine_cs *engine;
1316 	enum intel_engine_id id;
1317 
1318 	for_each_engine(engine, rps_to_gt(rps), id) {
1319 		if (!intel_engine_supports_stats(engine))
1320 			return false;
1321 	}
1322 
1323 	return true;
1324 }
1325 
intel_rps_enable(struct intel_rps * rps)1326 void intel_rps_enable(struct intel_rps *rps)
1327 {
1328 	struct drm_i915_private *i915 = rps_to_i915(rps);
1329 	struct intel_uncore *uncore = rps_to_uncore(rps);
1330 	bool enabled = false;
1331 
1332 	if (!HAS_RPS(i915))
1333 		return;
1334 
1335 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1336 
1337 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1338 	if (rps->max_freq <= rps->min_freq)
1339 		/* leave disabled, no room for dynamic reclocking */;
1340 	else if (IS_CHERRYVIEW(i915))
1341 		enabled = chv_rps_enable(rps);
1342 	else if (IS_VALLEYVIEW(i915))
1343 		enabled = vlv_rps_enable(rps);
1344 	else if (INTEL_GEN(i915) >= 9)
1345 		enabled = gen9_rps_enable(rps);
1346 	else if (INTEL_GEN(i915) >= 8)
1347 		enabled = gen8_rps_enable(rps);
1348 	else if (INTEL_GEN(i915) >= 6)
1349 		enabled = gen6_rps_enable(rps);
1350 	else if (IS_IRONLAKE_M(i915))
1351 		enabled = gen5_rps_enable(rps);
1352 	else
1353 		MISSING_CASE(INTEL_GEN(i915));
1354 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1355 	if (!enabled)
1356 		return;
1357 
1358 	GT_TRACE(rps_to_gt(rps),
1359 		 "min:%x, max:%x, freq:[%d, %d]\n",
1360 		 rps->min_freq, rps->max_freq,
1361 		 intel_gpu_freq(rps, rps->min_freq),
1362 		 intel_gpu_freq(rps, rps->max_freq));
1363 
1364 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1365 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1366 
1367 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1368 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1369 
1370 	if (has_busy_stats(rps))
1371 		intel_rps_set_timer(rps);
1372 	else if (INTEL_GEN(i915) >= 6)
1373 		intel_rps_set_interrupts(rps);
1374 	else
1375 		/* Ironlake currently uses intel_ips.ko */ {}
1376 
1377 	intel_rps_set_enabled(rps);
1378 }
1379 
gen6_rps_disable(struct intel_rps * rps)1380 static void gen6_rps_disable(struct intel_rps *rps)
1381 {
1382 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1383 }
1384 
intel_rps_disable(struct intel_rps * rps)1385 void intel_rps_disable(struct intel_rps *rps)
1386 {
1387 	struct drm_i915_private *i915 = rps_to_i915(rps);
1388 
1389 	intel_rps_clear_enabled(rps);
1390 	intel_rps_clear_interrupts(rps);
1391 	intel_rps_clear_timer(rps);
1392 
1393 	if (INTEL_GEN(i915) >= 6)
1394 		gen6_rps_disable(rps);
1395 	else if (IS_IRONLAKE_M(i915))
1396 		gen5_rps_disable(rps);
1397 }
1398 
byt_gpu_freq(struct intel_rps * rps,int val)1399 static int byt_gpu_freq(struct intel_rps *rps, int val)
1400 {
1401 	/*
1402 	 * N = val - 0xb7
1403 	 * Slow = Fast = GPLL ref * N
1404 	 */
1405 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1406 }
1407 
byt_freq_opcode(struct intel_rps * rps,int val)1408 static int byt_freq_opcode(struct intel_rps *rps, int val)
1409 {
1410 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1411 }
1412 
chv_gpu_freq(struct intel_rps * rps,int val)1413 static int chv_gpu_freq(struct intel_rps *rps, int val)
1414 {
1415 	/*
1416 	 * N = val / 2
1417 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1418 	 */
1419 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1420 }
1421 
chv_freq_opcode(struct intel_rps * rps,int val)1422 static int chv_freq_opcode(struct intel_rps *rps, int val)
1423 {
1424 	/* CHV needs even values */
1425 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1426 }
1427 
intel_gpu_freq(struct intel_rps * rps,int val)1428 int intel_gpu_freq(struct intel_rps *rps, int val)
1429 {
1430 	struct drm_i915_private *i915 = rps_to_i915(rps);
1431 
1432 	if (INTEL_GEN(i915) >= 9)
1433 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1434 					 GEN9_FREQ_SCALER);
1435 	else if (IS_CHERRYVIEW(i915))
1436 		return chv_gpu_freq(rps, val);
1437 	else if (IS_VALLEYVIEW(i915))
1438 		return byt_gpu_freq(rps, val);
1439 	else
1440 		return val * GT_FREQUENCY_MULTIPLIER;
1441 }
1442 
intel_freq_opcode(struct intel_rps * rps,int val)1443 int intel_freq_opcode(struct intel_rps *rps, int val)
1444 {
1445 	struct drm_i915_private *i915 = rps_to_i915(rps);
1446 
1447 	if (INTEL_GEN(i915) >= 9)
1448 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1449 					 GT_FREQUENCY_MULTIPLIER);
1450 	else if (IS_CHERRYVIEW(i915))
1451 		return chv_freq_opcode(rps, val);
1452 	else if (IS_VALLEYVIEW(i915))
1453 		return byt_freq_opcode(rps, val);
1454 	else
1455 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1456 }
1457 
vlv_init_gpll_ref_freq(struct intel_rps * rps)1458 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1459 {
1460 	struct drm_i915_private *i915 = rps_to_i915(rps);
1461 
1462 	rps->gpll_ref_freq =
1463 		vlv_get_cck_clock(i915, "GPLL ref",
1464 				  CCK_GPLL_CLOCK_CONTROL,
1465 				  i915->czclk_freq);
1466 
1467 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1468 		rps->gpll_ref_freq);
1469 }
1470 
vlv_rps_init(struct intel_rps * rps)1471 static void vlv_rps_init(struct intel_rps *rps)
1472 {
1473 	struct drm_i915_private *i915 = rps_to_i915(rps);
1474 	u32 val;
1475 
1476 	vlv_iosf_sb_get(i915,
1477 			BIT(VLV_IOSF_SB_PUNIT) |
1478 			BIT(VLV_IOSF_SB_NC) |
1479 			BIT(VLV_IOSF_SB_CCK));
1480 
1481 	vlv_init_gpll_ref_freq(rps);
1482 
1483 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1484 	switch ((val >> 6) & 3) {
1485 	case 0:
1486 	case 1:
1487 		i915->mem_freq = 800;
1488 		break;
1489 	case 2:
1490 		i915->mem_freq = 1066;
1491 		break;
1492 	case 3:
1493 		i915->mem_freq = 1333;
1494 		break;
1495 	}
1496 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1497 
1498 	rps->max_freq = vlv_rps_max_freq(rps);
1499 	rps->rp0_freq = rps->max_freq;
1500 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1501 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1502 
1503 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1504 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1505 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1506 
1507 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1508 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1509 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1510 
1511 	rps->min_freq = vlv_rps_min_freq(rps);
1512 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1513 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1514 
1515 	vlv_iosf_sb_put(i915,
1516 			BIT(VLV_IOSF_SB_PUNIT) |
1517 			BIT(VLV_IOSF_SB_NC) |
1518 			BIT(VLV_IOSF_SB_CCK));
1519 }
1520 
chv_rps_init(struct intel_rps * rps)1521 static void chv_rps_init(struct intel_rps *rps)
1522 {
1523 	struct drm_i915_private *i915 = rps_to_i915(rps);
1524 	u32 val;
1525 
1526 	vlv_iosf_sb_get(i915,
1527 			BIT(VLV_IOSF_SB_PUNIT) |
1528 			BIT(VLV_IOSF_SB_NC) |
1529 			BIT(VLV_IOSF_SB_CCK));
1530 
1531 	vlv_init_gpll_ref_freq(rps);
1532 
1533 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1534 
1535 	switch ((val >> 2) & 0x7) {
1536 	case 3:
1537 		i915->mem_freq = 2000;
1538 		break;
1539 	default:
1540 		i915->mem_freq = 1600;
1541 		break;
1542 	}
1543 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1544 
1545 	rps->max_freq = chv_rps_max_freq(rps);
1546 	rps->rp0_freq = rps->max_freq;
1547 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1548 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1549 
1550 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1551 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1552 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1553 
1554 	rps->rp1_freq = chv_rps_guar_freq(rps);
1555 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1556 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1557 
1558 	rps->min_freq = chv_rps_min_freq(rps);
1559 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1560 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1561 
1562 	vlv_iosf_sb_put(i915,
1563 			BIT(VLV_IOSF_SB_PUNIT) |
1564 			BIT(VLV_IOSF_SB_NC) |
1565 			BIT(VLV_IOSF_SB_CCK));
1566 
1567 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1568 				   rps->rp1_freq | rps->min_freq) & 1,
1569 		      "Odd GPU freq values\n");
1570 }
1571 
vlv_c0_read(struct intel_uncore * uncore,struct intel_rps_ei * ei)1572 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1573 {
1574 	ei->ktime = ktime_get_raw();
1575 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1576 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1577 }
1578 
vlv_wa_c0_ei(struct intel_rps * rps,u32 pm_iir)1579 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1580 {
1581 	struct intel_uncore *uncore = rps_to_uncore(rps);
1582 	const struct intel_rps_ei *prev = &rps->ei;
1583 	struct intel_rps_ei now;
1584 	u32 events = 0;
1585 
1586 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1587 		return 0;
1588 
1589 	vlv_c0_read(uncore, &now);
1590 
1591 	if (prev->ktime) {
1592 		u64 time, c0;
1593 		u32 render, media;
1594 
1595 		time = ktime_us_delta(now.ktime, prev->ktime);
1596 
1597 		time *= rps_to_i915(rps)->czclk_freq;
1598 
1599 		/* Workload can be split between render + media,
1600 		 * e.g. SwapBuffers being blitted in X after being rendered in
1601 		 * mesa. To account for this we need to combine both engines
1602 		 * into our activity counter.
1603 		 */
1604 		render = now.render_c0 - prev->render_c0;
1605 		media = now.media_c0 - prev->media_c0;
1606 		c0 = max(render, media);
1607 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1608 
1609 		if (c0 > time * rps->power.up_threshold)
1610 			events = GEN6_PM_RP_UP_THRESHOLD;
1611 		else if (c0 < time * rps->power.down_threshold)
1612 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1613 	}
1614 
1615 	rps->ei = now;
1616 	return events;
1617 }
1618 
rps_work(struct work_struct * work)1619 static void rps_work(struct work_struct *work)
1620 {
1621 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1622 	struct intel_gt *gt = rps_to_gt(rps);
1623 	struct drm_i915_private *i915 = rps_to_i915(rps);
1624 	bool client_boost = false;
1625 	int new_freq, adj, min, max;
1626 	u32 pm_iir = 0;
1627 
1628 	spin_lock_irq(&gt->irq_lock);
1629 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1630 	client_boost = atomic_read(&rps->num_waiters);
1631 	spin_unlock_irq(&gt->irq_lock);
1632 
1633 	/* Make sure we didn't queue anything we're not going to process. */
1634 	if (!pm_iir && !client_boost)
1635 		goto out;
1636 
1637 	mutex_lock(&rps->lock);
1638 	if (!intel_rps_is_active(rps)) {
1639 		mutex_unlock(&rps->lock);
1640 		return;
1641 	}
1642 
1643 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1644 
1645 	adj = rps->last_adj;
1646 	new_freq = rps->cur_freq;
1647 	min = rps->min_freq_softlimit;
1648 	max = rps->max_freq_softlimit;
1649 	if (client_boost)
1650 		max = rps->max_freq;
1651 
1652 	GT_TRACE(gt,
1653 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1654 		 pm_iir, yesno(client_boost),
1655 		 adj, new_freq, min, max);
1656 
1657 	if (client_boost && new_freq < rps->boost_freq) {
1658 		new_freq = rps->boost_freq;
1659 		adj = 0;
1660 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1661 		if (adj > 0)
1662 			adj *= 2;
1663 		else /* CHV needs even encode values */
1664 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1665 
1666 		if (new_freq >= rps->max_freq_softlimit)
1667 			adj = 0;
1668 	} else if (client_boost) {
1669 		adj = 0;
1670 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1671 		if (rps->cur_freq > rps->efficient_freq)
1672 			new_freq = rps->efficient_freq;
1673 		else if (rps->cur_freq > rps->min_freq_softlimit)
1674 			new_freq = rps->min_freq_softlimit;
1675 		adj = 0;
1676 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1677 		if (adj < 0)
1678 			adj *= 2;
1679 		else /* CHV needs even encode values */
1680 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1681 
1682 		if (new_freq <= rps->min_freq_softlimit)
1683 			adj = 0;
1684 	} else { /* unknown event */
1685 		adj = 0;
1686 	}
1687 
1688 	/*
1689 	 * sysfs frequency limits may have snuck in while
1690 	 * servicing the interrupt
1691 	 */
1692 	new_freq += adj;
1693 	new_freq = clamp_t(int, new_freq, min, max);
1694 
1695 	if (intel_rps_set(rps, new_freq)) {
1696 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1697 		adj = 0;
1698 	}
1699 	rps->last_adj = adj;
1700 
1701 	mutex_unlock(&rps->lock);
1702 
1703 out:
1704 	spin_lock_irq(&gt->irq_lock);
1705 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1706 	spin_unlock_irq(&gt->irq_lock);
1707 }
1708 
gen11_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1709 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1710 {
1711 	struct intel_gt *gt = rps_to_gt(rps);
1712 	const u32 events = rps->pm_events & pm_iir;
1713 
1714 	lockdep_assert_held(&gt->irq_lock);
1715 
1716 	if (unlikely(!events))
1717 		return;
1718 
1719 	GT_TRACE(gt, "irq events:%x\n", events);
1720 
1721 	gen6_gt_pm_mask_irq(gt, events);
1722 
1723 	rps->pm_iir |= events;
1724 	schedule_work(&rps->work);
1725 }
1726 
gen6_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1727 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1728 {
1729 	struct intel_gt *gt = rps_to_gt(rps);
1730 	u32 events;
1731 
1732 	events = pm_iir & rps->pm_events;
1733 	if (events) {
1734 		spin_lock(&gt->irq_lock);
1735 
1736 		GT_TRACE(gt, "irq events:%x\n", events);
1737 
1738 		gen6_gt_pm_mask_irq(gt, events);
1739 		rps->pm_iir |= events;
1740 
1741 		schedule_work(&rps->work);
1742 		spin_unlock(&gt->irq_lock);
1743 	}
1744 
1745 	if (INTEL_GEN(gt->i915) >= 8)
1746 		return;
1747 
1748 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1749 		intel_engine_signal_breadcrumbs(gt->engine[VECS0]);
1750 
1751 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1752 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1753 }
1754 
gen5_rps_irq_handler(struct intel_rps * rps)1755 void gen5_rps_irq_handler(struct intel_rps *rps)
1756 {
1757 	struct intel_uncore *uncore = rps_to_uncore(rps);
1758 	u32 busy_up, busy_down, max_avg, min_avg;
1759 	u8 new_freq;
1760 
1761 	spin_lock(&mchdev_lock);
1762 
1763 	intel_uncore_write16(uncore,
1764 			     MEMINTRSTS,
1765 			     intel_uncore_read(uncore, MEMINTRSTS));
1766 
1767 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1768 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1769 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1770 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1771 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1772 
1773 	/* Handle RCS change request from hw */
1774 	new_freq = rps->cur_freq;
1775 	if (busy_up > max_avg)
1776 		new_freq++;
1777 	else if (busy_down < min_avg)
1778 		new_freq--;
1779 	new_freq = clamp(new_freq,
1780 			 rps->min_freq_softlimit,
1781 			 rps->max_freq_softlimit);
1782 
1783 	if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq))
1784 		rps->cur_freq = new_freq;
1785 
1786 	spin_unlock(&mchdev_lock);
1787 }
1788 
intel_rps_init_early(struct intel_rps * rps)1789 void intel_rps_init_early(struct intel_rps *rps)
1790 {
1791 	mutex_init(&rps->lock);
1792 	mutex_init(&rps->power.mutex);
1793 
1794 	INIT_WORK(&rps->work, rps_work);
1795 	timer_setup(&rps->timer, rps_timer, 0);
1796 
1797 	atomic_set(&rps->num_waiters, 0);
1798 }
1799 
intel_rps_init(struct intel_rps * rps)1800 void intel_rps_init(struct intel_rps *rps)
1801 {
1802 	struct drm_i915_private *i915 = rps_to_i915(rps);
1803 
1804 	if (IS_CHERRYVIEW(i915))
1805 		chv_rps_init(rps);
1806 	else if (IS_VALLEYVIEW(i915))
1807 		vlv_rps_init(rps);
1808 	else if (INTEL_GEN(i915) >= 6)
1809 		gen6_rps_init(rps);
1810 	else if (IS_IRONLAKE_M(i915))
1811 		gen5_rps_init(rps);
1812 
1813 	/* Derive initial user preferences/limits from the hardware limits */
1814 	rps->max_freq_softlimit = rps->max_freq;
1815 	rps->min_freq_softlimit = rps->min_freq;
1816 
1817 	/* After setting max-softlimit, find the overclock max freq */
1818 	if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1819 		u32 params = 0;
1820 
1821 		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1822 				       &params, NULL);
1823 		if (params & BIT(31)) { /* OC supported */
1824 			drm_dbg(&i915->drm,
1825 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1826 				(rps->max_freq & 0xff) * 50,
1827 				(params & 0xff) * 50);
1828 			rps->max_freq = params & 0xff;
1829 		}
1830 	}
1831 
1832 	/* Finally allow us to boost to max by default */
1833 	rps->boost_freq = rps->max_freq;
1834 	rps->idle_freq = rps->min_freq;
1835 
1836 	/* Start in the middle, from here we will autotune based on workload */
1837 	rps->cur_freq = rps->efficient_freq;
1838 
1839 	rps->pm_intrmsk_mbz = 0;
1840 
1841 	/*
1842 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1843 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1844 	 *
1845 	 * TODO: verify if this can be reproduced on VLV,CHV.
1846 	 */
1847 	if (INTEL_GEN(i915) <= 7)
1848 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1849 
1850 	if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11)
1851 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1852 }
1853 
intel_rps_sanitize(struct intel_rps * rps)1854 void intel_rps_sanitize(struct intel_rps *rps)
1855 {
1856 	if (INTEL_GEN(rps_to_i915(rps)) >= 6)
1857 		rps_disable_interrupts(rps);
1858 }
1859 
intel_rps_get_cagf(struct intel_rps * rps,u32 rpstat)1860 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1861 {
1862 	struct drm_i915_private *i915 = rps_to_i915(rps);
1863 	u32 cagf;
1864 
1865 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1866 		cagf = (rpstat >> 8) & 0xff;
1867 	else if (INTEL_GEN(i915) >= 9)
1868 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1869 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1870 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1871 	else
1872 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1873 
1874 	return cagf;
1875 }
1876 
read_cagf(struct intel_rps * rps)1877 static u32 read_cagf(struct intel_rps *rps)
1878 {
1879 	struct drm_i915_private *i915 = rps_to_i915(rps);
1880 	u32 freq;
1881 
1882 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1883 		vlv_punit_get(i915);
1884 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1885 		vlv_punit_put(i915);
1886 	} else {
1887 		freq = intel_uncore_read(rps_to_uncore(rps), GEN6_RPSTAT1);
1888 	}
1889 
1890 	return intel_rps_get_cagf(rps, freq);
1891 }
1892 
intel_rps_read_actual_frequency(struct intel_rps * rps)1893 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1894 {
1895 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1896 	intel_wakeref_t wakeref;
1897 	u32 freq = 0;
1898 
1899 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
1900 		freq = intel_gpu_freq(rps, read_cagf(rps));
1901 
1902 	return freq;
1903 }
1904 
1905 /* External interface for intel_ips.ko */
1906 
1907 static struct drm_i915_private __rcu *ips_mchdev;
1908 
1909 /**
1910  * Tells the intel_ips driver that the i915 driver is now loaded, if
1911  * IPS got loaded first.
1912  *
1913  * This awkward dance is so that neither module has to depend on the
1914  * other in order for IPS to do the appropriate communication of
1915  * GPU turbo limits to i915.
1916  */
1917 static void
ips_ping_for_i915_load(void)1918 ips_ping_for_i915_load(void)
1919 {
1920 	void (*link)(void);
1921 
1922 	link = symbol_get(ips_link_to_i915_driver);
1923 	if (link) {
1924 		link();
1925 		symbol_put(ips_link_to_i915_driver);
1926 	}
1927 }
1928 
intel_rps_driver_register(struct intel_rps * rps)1929 void intel_rps_driver_register(struct intel_rps *rps)
1930 {
1931 	struct intel_gt *gt = rps_to_gt(rps);
1932 
1933 	/*
1934 	 * We only register the i915 ips part with intel-ips once everything is
1935 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
1936 	 */
1937 	if (IS_GEN(gt->i915, 5)) {
1938 		GEM_BUG_ON(ips_mchdev);
1939 		rcu_assign_pointer(ips_mchdev, gt->i915);
1940 		ips_ping_for_i915_load();
1941 	}
1942 }
1943 
intel_rps_driver_unregister(struct intel_rps * rps)1944 void intel_rps_driver_unregister(struct intel_rps *rps)
1945 {
1946 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
1947 		rcu_assign_pointer(ips_mchdev, NULL);
1948 }
1949 
mchdev_get(void)1950 static struct drm_i915_private *mchdev_get(void)
1951 {
1952 	struct drm_i915_private *i915;
1953 
1954 	rcu_read_lock();
1955 	i915 = rcu_dereference(ips_mchdev);
1956 	if (!kref_get_unless_zero(&i915->drm.ref))
1957 		i915 = NULL;
1958 	rcu_read_unlock();
1959 
1960 	return i915;
1961 }
1962 
1963 /**
1964  * i915_read_mch_val - return value for IPS use
1965  *
1966  * Calculate and return a value for the IPS driver to use when deciding whether
1967  * we have thermal and power headroom to increase CPU or GPU power budget.
1968  */
i915_read_mch_val(void)1969 unsigned long i915_read_mch_val(void)
1970 {
1971 	struct drm_i915_private *i915;
1972 	unsigned long chipset_val = 0;
1973 	unsigned long graphics_val = 0;
1974 	intel_wakeref_t wakeref;
1975 
1976 	i915 = mchdev_get();
1977 	if (!i915)
1978 		return 0;
1979 
1980 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
1981 		struct intel_ips *ips = &i915->gt.rps.ips;
1982 
1983 		spin_lock_irq(&mchdev_lock);
1984 		chipset_val = __ips_chipset_val(ips);
1985 		graphics_val = __ips_gfx_val(ips);
1986 		spin_unlock_irq(&mchdev_lock);
1987 	}
1988 
1989 	drm_dev_put(&i915->drm);
1990 	return chipset_val + graphics_val;
1991 }
1992 EXPORT_SYMBOL_GPL(i915_read_mch_val);
1993 
1994 /**
1995  * i915_gpu_raise - raise GPU frequency limit
1996  *
1997  * Raise the limit; IPS indicates we have thermal headroom.
1998  */
i915_gpu_raise(void)1999 bool i915_gpu_raise(void)
2000 {
2001 	struct drm_i915_private *i915;
2002 	struct intel_rps *rps;
2003 
2004 	i915 = mchdev_get();
2005 	if (!i915)
2006 		return false;
2007 
2008 	rps = &i915->gt.rps;
2009 
2010 	spin_lock_irq(&mchdev_lock);
2011 	if (rps->max_freq_softlimit < rps->max_freq)
2012 		rps->max_freq_softlimit++;
2013 	spin_unlock_irq(&mchdev_lock);
2014 
2015 	drm_dev_put(&i915->drm);
2016 	return true;
2017 }
2018 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2019 
2020 /**
2021  * i915_gpu_lower - lower GPU frequency limit
2022  *
2023  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2024  * frequency maximum.
2025  */
i915_gpu_lower(void)2026 bool i915_gpu_lower(void)
2027 {
2028 	struct drm_i915_private *i915;
2029 	struct intel_rps *rps;
2030 
2031 	i915 = mchdev_get();
2032 	if (!i915)
2033 		return false;
2034 
2035 	rps = &i915->gt.rps;
2036 
2037 	spin_lock_irq(&mchdev_lock);
2038 	if (rps->max_freq_softlimit > rps->min_freq)
2039 		rps->max_freq_softlimit--;
2040 	spin_unlock_irq(&mchdev_lock);
2041 
2042 	drm_dev_put(&i915->drm);
2043 	return true;
2044 }
2045 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2046 
2047 /**
2048  * i915_gpu_busy - indicate GPU business to IPS
2049  *
2050  * Tell the IPS driver whether or not the GPU is busy.
2051  */
i915_gpu_busy(void)2052 bool i915_gpu_busy(void)
2053 {
2054 	struct drm_i915_private *i915;
2055 	bool ret;
2056 
2057 	i915 = mchdev_get();
2058 	if (!i915)
2059 		return false;
2060 
2061 	ret = i915->gt.awake;
2062 
2063 	drm_dev_put(&i915->drm);
2064 	return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2067 
2068 /**
2069  * i915_gpu_turbo_disable - disable graphics turbo
2070  *
2071  * Disable graphics turbo by resetting the max frequency and setting the
2072  * current frequency to the default.
2073  */
i915_gpu_turbo_disable(void)2074 bool i915_gpu_turbo_disable(void)
2075 {
2076 	struct drm_i915_private *i915;
2077 	struct intel_rps *rps;
2078 	bool ret;
2079 
2080 	i915 = mchdev_get();
2081 	if (!i915)
2082 		return false;
2083 
2084 	rps = &i915->gt.rps;
2085 
2086 	spin_lock_irq(&mchdev_lock);
2087 	rps->max_freq_softlimit = rps->min_freq;
2088 	ret = gen5_rps_set(&i915->gt.rps, rps->min_freq);
2089 	spin_unlock_irq(&mchdev_lock);
2090 
2091 	drm_dev_put(&i915->drm);
2092 	return ret;
2093 }
2094 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2095 
2096 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2097 #include "selftest_rps.c"
2098 #endif
2099