1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34
35 #include "i915_drv.h"
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42 * set-context and then emitting the batch.
43 */
44 #define LEGACY_REQUEST_SIZE 200
45
__intel_ring_space(unsigned int head,unsigned int tail,unsigned int size)46 static unsigned int __intel_ring_space(unsigned int head,
47 unsigned int tail,
48 unsigned int size)
49 {
50 /*
51 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52 * same cacheline, the Head Pointer must not be greater than the Tail
53 * Pointer."
54 */
55 GEM_BUG_ON(!is_power_of_2(size));
56 return (head - tail - CACHELINE_BYTES) & (size - 1);
57 }
58
intel_ring_update_space(struct intel_ring * ring)59 unsigned int intel_ring_update_space(struct intel_ring *ring)
60 {
61 unsigned int space;
62
63 space = __intel_ring_space(ring->head, ring->emit, ring->size);
64
65 ring->space = space;
66 return space;
67 }
68
69 static int
gen2_render_ring_flush(struct i915_request * rq,u32 mode)70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
71 {
72 u32 cmd, *cs;
73
74 cmd = MI_FLUSH;
75
76 if (mode & EMIT_INVALIDATE)
77 cmd |= MI_READ_FLUSH;
78
79 cs = intel_ring_begin(rq, 2);
80 if (IS_ERR(cs))
81 return PTR_ERR(cs);
82
83 *cs++ = cmd;
84 *cs++ = MI_NOOP;
85 intel_ring_advance(rq, cs);
86
87 return 0;
88 }
89
90 static int
gen4_render_ring_flush(struct i915_request * rq,u32 mode)91 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
92 {
93 u32 cmd, *cs;
94
95 /*
96 * read/write caches:
97 *
98 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
99 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
100 * also flushed at 2d versus 3d pipeline switches.
101 *
102 * read-only caches:
103 *
104 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
105 * MI_READ_FLUSH is set, and is always flushed on 965.
106 *
107 * I915_GEM_DOMAIN_COMMAND may not exist?
108 *
109 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
110 * invalidated when MI_EXE_FLUSH is set.
111 *
112 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
113 * invalidated with every MI_FLUSH.
114 *
115 * TLBs:
116 *
117 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
118 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
119 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
120 * are flushed at any MI_FLUSH.
121 */
122
123 cmd = MI_FLUSH;
124 if (mode & EMIT_INVALIDATE) {
125 cmd |= MI_EXE_FLUSH;
126 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
127 cmd |= MI_INVALIDATE_ISP;
128 }
129
130 cs = intel_ring_begin(rq, 2);
131 if (IS_ERR(cs))
132 return PTR_ERR(cs);
133
134 *cs++ = cmd;
135 *cs++ = MI_NOOP;
136 intel_ring_advance(rq, cs);
137
138 return 0;
139 }
140
141 /*
142 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
143 * implementing two workarounds on gen6. From section 1.4.7.1
144 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
145 *
146 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
147 * produced by non-pipelined state commands), software needs to first
148 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
149 * 0.
150 *
151 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
152 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
153 *
154 * And the workaround for these two requires this workaround first:
155 *
156 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
157 * BEFORE the pipe-control with a post-sync op and no write-cache
158 * flushes.
159 *
160 * And this last workaround is tricky because of the requirements on
161 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
162 * volume 2 part 1:
163 *
164 * "1 of the following must also be set:
165 * - Render Target Cache Flush Enable ([12] of DW1)
166 * - Depth Cache Flush Enable ([0] of DW1)
167 * - Stall at Pixel Scoreboard ([1] of DW1)
168 * - Depth Stall ([13] of DW1)
169 * - Post-Sync Operation ([13] of DW1)
170 * - Notify Enable ([8] of DW1)"
171 *
172 * The cache flushes require the workaround flush that triggered this
173 * one, so we can't use it. Depth stall would trigger the same.
174 * Post-sync nonzero is what triggered this second workaround, so we
175 * can't use that one either. Notify enable is IRQs, which aren't
176 * really our business. That leaves only stall at scoreboard.
177 */
178 static int
intel_emit_post_sync_nonzero_flush(struct i915_request * rq)179 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
180 {
181 u32 scratch_addr =
182 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
183 u32 *cs;
184
185 cs = intel_ring_begin(rq, 6);
186 if (IS_ERR(cs))
187 return PTR_ERR(cs);
188
189 *cs++ = GFX_OP_PIPE_CONTROL(5);
190 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
191 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
192 *cs++ = 0; /* low dword */
193 *cs++ = 0; /* high dword */
194 *cs++ = MI_NOOP;
195 intel_ring_advance(rq, cs);
196
197 cs = intel_ring_begin(rq, 6);
198 if (IS_ERR(cs))
199 return PTR_ERR(cs);
200
201 *cs++ = GFX_OP_PIPE_CONTROL(5);
202 *cs++ = PIPE_CONTROL_QW_WRITE;
203 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
204 *cs++ = 0;
205 *cs++ = 0;
206 *cs++ = MI_NOOP;
207 intel_ring_advance(rq, cs);
208
209 return 0;
210 }
211
212 static int
gen6_render_ring_flush(struct i915_request * rq,u32 mode)213 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
214 {
215 u32 scratch_addr =
216 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
217 u32 *cs, flags = 0;
218 int ret;
219
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(rq);
222 if (ret)
223 return ret;
224
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
227 * impact.
228 */
229 if (mode & EMIT_FLUSH) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 /*
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
235 */
236 flags |= PIPE_CONTROL_CS_STALL;
237 }
238 if (mode & EMIT_INVALIDATE) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 /*
246 * TLB invalidate requires a post-sync write.
247 */
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249 }
250
251 cs = intel_ring_begin(rq, 4);
252 if (IS_ERR(cs))
253 return PTR_ERR(cs);
254
255 *cs++ = GFX_OP_PIPE_CONTROL(4);
256 *cs++ = flags;
257 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
258 *cs++ = 0;
259 intel_ring_advance(rq, cs);
260
261 return 0;
262 }
263
264 static int
gen7_render_ring_cs_stall_wa(struct i915_request * rq)265 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
266 {
267 u32 *cs;
268
269 cs = intel_ring_begin(rq, 4);
270 if (IS_ERR(cs))
271 return PTR_ERR(cs);
272
273 *cs++ = GFX_OP_PIPE_CONTROL(4);
274 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
275 *cs++ = 0;
276 *cs++ = 0;
277 intel_ring_advance(rq, cs);
278
279 return 0;
280 }
281
282 static int
gen7_render_ring_flush(struct i915_request * rq,u32 mode)283 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
284 {
285 u32 scratch_addr =
286 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
287 u32 *cs, flags = 0;
288
289 /*
290 * Ensure that any following seqno writes only happen when the render
291 * cache is indeed flushed.
292 *
293 * Workaround: 4th PIPE_CONTROL command (except the ones with only
294 * read-cache invalidate bits set) must have the CS_STALL bit set. We
295 * don't try to be clever and just set it unconditionally.
296 */
297 flags |= PIPE_CONTROL_CS_STALL;
298
299 /* Just flush everything. Experiments have shown that reducing the
300 * number of bits based on the write domains has little performance
301 * impact.
302 */
303 if (mode & EMIT_FLUSH) {
304 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
305 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
306 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
307 flags |= PIPE_CONTROL_FLUSH_ENABLE;
308 }
309 if (mode & EMIT_INVALIDATE) {
310 flags |= PIPE_CONTROL_TLB_INVALIDATE;
311 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
312 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
313 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
314 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
315 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
317 /*
318 * TLB invalidate requires a post-sync write.
319 */
320 flags |= PIPE_CONTROL_QW_WRITE;
321 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
322
323 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
324
325 /* Workaround: we must issue a pipe_control with CS-stall bit
326 * set before a pipe_control command that has the state cache
327 * invalidate bit set. */
328 gen7_render_ring_cs_stall_wa(rq);
329 }
330
331 cs = intel_ring_begin(rq, 4);
332 if (IS_ERR(cs))
333 return PTR_ERR(cs);
334
335 *cs++ = GFX_OP_PIPE_CONTROL(4);
336 *cs++ = flags;
337 *cs++ = scratch_addr;
338 *cs++ = 0;
339 intel_ring_advance(rq, cs);
340
341 return 0;
342 }
343
ring_setup_phys_status_page(struct intel_engine_cs * engine)344 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
345 {
346 struct drm_i915_private *dev_priv = engine->i915;
347 u32 addr;
348
349 addr = dev_priv->status_page_dmah->busaddr;
350 if (INTEL_GEN(dev_priv) >= 4)
351 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
352 I915_WRITE(HWS_PGA, addr);
353 }
354
intel_ring_setup_status_page(struct intel_engine_cs * engine)355 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
356 {
357 struct drm_i915_private *dev_priv = engine->i915;
358 i915_reg_t mmio;
359
360 /* The ring status page addresses are no longer next to the rest of
361 * the ring registers as of gen7.
362 */
363 if (IS_GEN7(dev_priv)) {
364 switch (engine->id) {
365 /*
366 * No more rings exist on Gen7. Default case is only to shut up
367 * gcc switch check warning.
368 */
369 default:
370 GEM_BUG_ON(engine->id);
371 case RCS:
372 mmio = RENDER_HWS_PGA_GEN7;
373 break;
374 case BCS:
375 mmio = BLT_HWS_PGA_GEN7;
376 break;
377 case VCS:
378 mmio = BSD_HWS_PGA_GEN7;
379 break;
380 case VECS:
381 mmio = VEBOX_HWS_PGA_GEN7;
382 break;
383 }
384 } else if (IS_GEN6(dev_priv)) {
385 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
386 } else {
387 mmio = RING_HWS_PGA(engine->mmio_base);
388 }
389
390 if (INTEL_GEN(dev_priv) >= 6) {
391 u32 mask = ~0u;
392
393 /*
394 * Keep the render interrupt unmasked as this papers over
395 * lost interrupts following a reset.
396 */
397 if (engine->id == RCS)
398 mask &= ~BIT(0);
399
400 I915_WRITE(RING_HWSTAM(engine->mmio_base), mask);
401 }
402
403 I915_WRITE(mmio, engine->status_page.ggtt_offset);
404 POSTING_READ(mmio);
405
406 /* Flush the TLB for this page */
407 if (IS_GEN(dev_priv, 6, 7)) {
408 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
409
410 /* ring should be idle before issuing a sync flush*/
411 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
412
413 I915_WRITE(reg,
414 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
415 INSTPM_SYNC_FLUSH));
416 if (intel_wait_for_register(dev_priv,
417 reg, INSTPM_SYNC_FLUSH, 0,
418 1000))
419 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
420 engine->name);
421 }
422 }
423
stop_ring(struct intel_engine_cs * engine)424 static bool stop_ring(struct intel_engine_cs *engine)
425 {
426 struct drm_i915_private *dev_priv = engine->i915;
427
428 if (INTEL_GEN(dev_priv) > 2) {
429 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
430 if (intel_wait_for_register(dev_priv,
431 RING_MI_MODE(engine->mmio_base),
432 MODE_IDLE,
433 MODE_IDLE,
434 1000)) {
435 DRM_ERROR("%s : timed out trying to stop ring\n",
436 engine->name);
437 /* Sometimes we observe that the idle flag is not
438 * set even though the ring is empty. So double
439 * check before giving up.
440 */
441 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
442 return false;
443 }
444 }
445
446 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
447
448 I915_WRITE_HEAD(engine, 0);
449 I915_WRITE_TAIL(engine, 0);
450
451 /* The ring must be empty before it is disabled */
452 I915_WRITE_CTL(engine, 0);
453
454 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
455 }
456
init_ring_common(struct intel_engine_cs * engine)457 static int init_ring_common(struct intel_engine_cs *engine)
458 {
459 struct drm_i915_private *dev_priv = engine->i915;
460 struct intel_ring *ring = engine->buffer;
461 int ret = 0;
462
463 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
464
465 if (!stop_ring(engine)) {
466 /* G45 ring initialization often fails to reset head to zero */
467 DRM_DEBUG_DRIVER("%s head not reset to zero "
468 "ctl %08x head %08x tail %08x start %08x\n",
469 engine->name,
470 I915_READ_CTL(engine),
471 I915_READ_HEAD(engine),
472 I915_READ_TAIL(engine),
473 I915_READ_START(engine));
474
475 if (!stop_ring(engine)) {
476 DRM_ERROR("failed to set %s head to zero "
477 "ctl %08x head %08x tail %08x start %08x\n",
478 engine->name,
479 I915_READ_CTL(engine),
480 I915_READ_HEAD(engine),
481 I915_READ_TAIL(engine),
482 I915_READ_START(engine));
483 ret = -EIO;
484 goto out;
485 }
486 }
487
488 if (HWS_NEEDS_PHYSICAL(dev_priv))
489 ring_setup_phys_status_page(engine);
490 else
491 intel_ring_setup_status_page(engine);
492
493 intel_engine_reset_breadcrumbs(engine);
494
495 /* Enforce ordering by reading HEAD register back */
496 I915_READ_HEAD(engine);
497
498 /* Initialize the ring. This must happen _after_ we've cleared the ring
499 * registers with the above sequence (the readback of the HEAD registers
500 * also enforces ordering), otherwise the hw might lose the new ring
501 * register values. */
502 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
503
504 /* WaClearRingBufHeadRegAtInit:ctg,elk */
505 if (I915_READ_HEAD(engine))
506 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
507 engine->name, I915_READ_HEAD(engine));
508
509 /* Check that the ring offsets point within the ring! */
510 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
511 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
512
513 intel_ring_update_space(ring);
514 I915_WRITE_HEAD(engine, ring->head);
515 I915_WRITE_TAIL(engine, ring->tail);
516 (void)I915_READ_TAIL(engine);
517
518 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
519
520 /* If the head is still not zero, the ring is dead */
521 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
522 RING_VALID, RING_VALID,
523 50)) {
524 DRM_ERROR("%s initialization failed "
525 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
526 engine->name,
527 I915_READ_CTL(engine),
528 I915_READ_CTL(engine) & RING_VALID,
529 I915_READ_HEAD(engine), ring->head,
530 I915_READ_TAIL(engine), ring->tail,
531 I915_READ_START(engine),
532 i915_ggtt_offset(ring->vma));
533 ret = -EIO;
534 goto out;
535 }
536
537 if (INTEL_GEN(dev_priv) > 2)
538 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
539
540 out:
541 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
542
543 return ret;
544 }
545
reset_prepare(struct intel_engine_cs * engine)546 static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
547 {
548 intel_engine_stop_cs(engine);
549
550 if (engine->irq_seqno_barrier)
551 engine->irq_seqno_barrier(engine);
552
553 return i915_gem_find_active_request(engine);
554 }
555
skip_request(struct i915_request * rq)556 static void skip_request(struct i915_request *rq)
557 {
558 void *vaddr = rq->ring->vaddr;
559 u32 head;
560
561 head = rq->infix;
562 if (rq->postfix < head) {
563 memset32(vaddr + head, MI_NOOP,
564 (rq->ring->size - head) / sizeof(u32));
565 head = 0;
566 }
567 memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
568 }
569
reset_ring(struct intel_engine_cs * engine,struct i915_request * rq)570 static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
571 {
572 GEM_TRACE("%s seqno=%x\n", engine->name, rq ? rq->global_seqno : 0);
573
574 /*
575 * Try to restore the logical GPU state to match the continuation
576 * of the request queue. If we skip the context/PD restore, then
577 * the next request may try to execute assuming that its context
578 * is valid and loaded on the GPU and so may try to access invalid
579 * memory, prompting repeated GPU hangs.
580 *
581 * If the request was guilty, we still restore the logical state
582 * in case the next request requires it (e.g. the aliasing ppgtt),
583 * but skip over the hung batch.
584 *
585 * If the request was innocent, we try to replay the request with
586 * the restored context.
587 */
588 if (rq) {
589 /* If the rq hung, jump to its breadcrumb and skip the batch */
590 rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
591 if (rq->fence.error == -EIO)
592 skip_request(rq);
593 }
594 }
595
reset_finish(struct intel_engine_cs * engine)596 static void reset_finish(struct intel_engine_cs *engine)
597 {
598 }
599
intel_rcs_ctx_init(struct i915_request * rq)600 static int intel_rcs_ctx_init(struct i915_request *rq)
601 {
602 int ret;
603
604 ret = intel_ctx_workarounds_emit(rq);
605 if (ret != 0)
606 return ret;
607
608 ret = i915_gem_render_state_emit(rq);
609 if (ret)
610 return ret;
611
612 return 0;
613 }
614
init_render_ring(struct intel_engine_cs * engine)615 static int init_render_ring(struct intel_engine_cs *engine)
616 {
617 struct drm_i915_private *dev_priv = engine->i915;
618 int ret = init_ring_common(engine);
619 if (ret)
620 return ret;
621
622 intel_whitelist_workarounds_apply(engine);
623
624 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
625 if (IS_GEN(dev_priv, 4, 6))
626 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
627
628 /* We need to disable the AsyncFlip performance optimisations in order
629 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
630 * programmed to '1' on all products.
631 *
632 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
633 */
634 if (IS_GEN(dev_priv, 6, 7))
635 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
636
637 /* Required for the hardware to program scanline values for waiting */
638 /* WaEnableFlushTlbInvalidationMode:snb */
639 if (IS_GEN6(dev_priv))
640 I915_WRITE(GFX_MODE,
641 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
642
643 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
644 if (IS_GEN7(dev_priv))
645 I915_WRITE(GFX_MODE_GEN7,
646 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
647 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
648
649 if (IS_GEN6(dev_priv)) {
650 /* From the Sandybridge PRM, volume 1 part 3, page 24:
651 * "If this bit is set, STCunit will have LRA as replacement
652 * policy. [...] This bit must be reset. LRA replacement
653 * policy is not supported."
654 */
655 I915_WRITE(CACHE_MODE_0,
656 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
657 }
658
659 if (IS_GEN(dev_priv, 6, 7))
660 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
661
662 if (INTEL_GEN(dev_priv) >= 6)
663 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
664
665 return 0;
666 }
667
gen6_signal(struct i915_request * rq,u32 * cs)668 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
669 {
670 struct drm_i915_private *dev_priv = rq->i915;
671 struct intel_engine_cs *engine;
672 enum intel_engine_id id;
673 int num_rings = 0;
674
675 for_each_engine(engine, dev_priv, id) {
676 i915_reg_t mbox_reg;
677
678 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
679 continue;
680
681 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
682 if (i915_mmio_reg_valid(mbox_reg)) {
683 *cs++ = MI_LOAD_REGISTER_IMM(1);
684 *cs++ = i915_mmio_reg_offset(mbox_reg);
685 *cs++ = rq->global_seqno;
686 num_rings++;
687 }
688 }
689 if (num_rings & 1)
690 *cs++ = MI_NOOP;
691
692 return cs;
693 }
694
cancel_requests(struct intel_engine_cs * engine)695 static void cancel_requests(struct intel_engine_cs *engine)
696 {
697 struct i915_request *request;
698 unsigned long flags;
699
700 spin_lock_irqsave(&engine->timeline.lock, flags);
701
702 /* Mark all submitted requests as skipped. */
703 list_for_each_entry(request, &engine->timeline.requests, link) {
704 GEM_BUG_ON(!request->global_seqno);
705 if (!i915_request_completed(request))
706 dma_fence_set_error(&request->fence, -EIO);
707 }
708 /* Remaining _unready_ requests will be nop'ed when submitted */
709
710 spin_unlock_irqrestore(&engine->timeline.lock, flags);
711 }
712
i9xx_submit_request(struct i915_request * request)713 static void i9xx_submit_request(struct i915_request *request)
714 {
715 struct drm_i915_private *dev_priv = request->i915;
716
717 i915_request_submit(request);
718
719 I915_WRITE_TAIL(request->engine,
720 intel_ring_set_tail(request->ring, request->tail));
721 }
722
i9xx_emit_breadcrumb(struct i915_request * rq,u32 * cs)723 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
724 {
725 *cs++ = MI_STORE_DWORD_INDEX;
726 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
727 *cs++ = rq->global_seqno;
728 *cs++ = MI_USER_INTERRUPT;
729
730 rq->tail = intel_ring_offset(rq, cs);
731 assert_ring_tail_valid(rq->ring, rq->tail);
732 }
733
734 static const int i9xx_emit_breadcrumb_sz = 4;
735
gen6_sema_emit_breadcrumb(struct i915_request * rq,u32 * cs)736 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
737 {
738 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
739 }
740
741 static int
gen6_ring_sync_to(struct i915_request * rq,struct i915_request * signal)742 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
743 {
744 u32 dw1 = MI_SEMAPHORE_MBOX |
745 MI_SEMAPHORE_COMPARE |
746 MI_SEMAPHORE_REGISTER;
747 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
748 u32 *cs;
749
750 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
751
752 cs = intel_ring_begin(rq, 4);
753 if (IS_ERR(cs))
754 return PTR_ERR(cs);
755
756 *cs++ = dw1 | wait_mbox;
757 /* Throughout all of the GEM code, seqno passed implies our current
758 * seqno is >= the last seqno executed. However for hardware the
759 * comparison is strictly greater than.
760 */
761 *cs++ = signal->global_seqno - 1;
762 *cs++ = 0;
763 *cs++ = MI_NOOP;
764 intel_ring_advance(rq, cs);
765
766 return 0;
767 }
768
769 static void
gen5_seqno_barrier(struct intel_engine_cs * engine)770 gen5_seqno_barrier(struct intel_engine_cs *engine)
771 {
772 /* MI_STORE are internally buffered by the GPU and not flushed
773 * either by MI_FLUSH or SyncFlush or any other combination of
774 * MI commands.
775 *
776 * "Only the submission of the store operation is guaranteed.
777 * The write result will be complete (coherent) some time later
778 * (this is practically a finite period but there is no guaranteed
779 * latency)."
780 *
781 * Empirically, we observe that we need a delay of at least 75us to
782 * be sure that the seqno write is visible by the CPU.
783 */
784 usleep_range(125, 250);
785 }
786
787 static void
gen6_seqno_barrier(struct intel_engine_cs * engine)788 gen6_seqno_barrier(struct intel_engine_cs *engine)
789 {
790 struct drm_i915_private *dev_priv = engine->i915;
791
792 /* Workaround to force correct ordering between irq and seqno writes on
793 * ivb (and maybe also on snb) by reading from a CS register (like
794 * ACTHD) before reading the status page.
795 *
796 * Note that this effectively stalls the read by the time it takes to
797 * do a memory transaction, which more or less ensures that the write
798 * from the GPU has sufficient time to invalidate the CPU cacheline.
799 * Alternatively we could delay the interrupt from the CS ring to give
800 * the write time to land, but that would incur a delay after every
801 * batch i.e. much more frequent than a delay when waiting for the
802 * interrupt (with the same net latency).
803 *
804 * Also note that to prevent whole machine hangs on gen7, we have to
805 * take the spinlock to guard against concurrent cacheline access.
806 */
807 spin_lock_irq(&dev_priv->uncore.lock);
808 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
809 spin_unlock_irq(&dev_priv->uncore.lock);
810 }
811
812 static void
gen5_irq_enable(struct intel_engine_cs * engine)813 gen5_irq_enable(struct intel_engine_cs *engine)
814 {
815 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
816 }
817
818 static void
gen5_irq_disable(struct intel_engine_cs * engine)819 gen5_irq_disable(struct intel_engine_cs *engine)
820 {
821 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
822 }
823
824 static void
i9xx_irq_enable(struct intel_engine_cs * engine)825 i9xx_irq_enable(struct intel_engine_cs *engine)
826 {
827 struct drm_i915_private *dev_priv = engine->i915;
828
829 dev_priv->irq_mask &= ~engine->irq_enable_mask;
830 I915_WRITE(IMR, dev_priv->irq_mask);
831 POSTING_READ_FW(RING_IMR(engine->mmio_base));
832 }
833
834 static void
i9xx_irq_disable(struct intel_engine_cs * engine)835 i9xx_irq_disable(struct intel_engine_cs *engine)
836 {
837 struct drm_i915_private *dev_priv = engine->i915;
838
839 dev_priv->irq_mask |= engine->irq_enable_mask;
840 I915_WRITE(IMR, dev_priv->irq_mask);
841 }
842
843 static void
i8xx_irq_enable(struct intel_engine_cs * engine)844 i8xx_irq_enable(struct intel_engine_cs *engine)
845 {
846 struct drm_i915_private *dev_priv = engine->i915;
847
848 dev_priv->irq_mask &= ~engine->irq_enable_mask;
849 I915_WRITE16(IMR, dev_priv->irq_mask);
850 POSTING_READ16(RING_IMR(engine->mmio_base));
851 }
852
853 static void
i8xx_irq_disable(struct intel_engine_cs * engine)854 i8xx_irq_disable(struct intel_engine_cs *engine)
855 {
856 struct drm_i915_private *dev_priv = engine->i915;
857
858 dev_priv->irq_mask |= engine->irq_enable_mask;
859 I915_WRITE16(IMR, dev_priv->irq_mask);
860 }
861
862 static int
bsd_ring_flush(struct i915_request * rq,u32 mode)863 bsd_ring_flush(struct i915_request *rq, u32 mode)
864 {
865 u32 *cs;
866
867 cs = intel_ring_begin(rq, 2);
868 if (IS_ERR(cs))
869 return PTR_ERR(cs);
870
871 *cs++ = MI_FLUSH;
872 *cs++ = MI_NOOP;
873 intel_ring_advance(rq, cs);
874 return 0;
875 }
876
877 static void
gen6_irq_enable(struct intel_engine_cs * engine)878 gen6_irq_enable(struct intel_engine_cs *engine)
879 {
880 struct drm_i915_private *dev_priv = engine->i915;
881
882 I915_WRITE_IMR(engine,
883 ~(engine->irq_enable_mask |
884 engine->irq_keep_mask));
885 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
886 }
887
888 static void
gen6_irq_disable(struct intel_engine_cs * engine)889 gen6_irq_disable(struct intel_engine_cs *engine)
890 {
891 struct drm_i915_private *dev_priv = engine->i915;
892
893 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
894 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
895 }
896
897 static void
hsw_vebox_irq_enable(struct intel_engine_cs * engine)898 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
899 {
900 struct drm_i915_private *dev_priv = engine->i915;
901
902 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
903 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
904 }
905
906 static void
hsw_vebox_irq_disable(struct intel_engine_cs * engine)907 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
908 {
909 struct drm_i915_private *dev_priv = engine->i915;
910
911 I915_WRITE_IMR(engine, ~0);
912 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
913 }
914
915 static int
i965_emit_bb_start(struct i915_request * rq,u64 offset,u32 length,unsigned int dispatch_flags)916 i965_emit_bb_start(struct i915_request *rq,
917 u64 offset, u32 length,
918 unsigned int dispatch_flags)
919 {
920 u32 *cs;
921
922 cs = intel_ring_begin(rq, 2);
923 if (IS_ERR(cs))
924 return PTR_ERR(cs);
925
926 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
927 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
928 *cs++ = offset;
929 intel_ring_advance(rq, cs);
930
931 return 0;
932 }
933
934 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
935 #define I830_BATCH_LIMIT (256*1024)
936 #define I830_TLB_ENTRIES (2)
937 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
938 static int
i830_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)939 i830_emit_bb_start(struct i915_request *rq,
940 u64 offset, u32 len,
941 unsigned int dispatch_flags)
942 {
943 u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
944
945 cs = intel_ring_begin(rq, 6);
946 if (IS_ERR(cs))
947 return PTR_ERR(cs);
948
949 /* Evict the invalid PTE TLBs */
950 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
951 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
952 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
953 *cs++ = cs_offset;
954 *cs++ = 0xdeadbeef;
955 *cs++ = MI_NOOP;
956 intel_ring_advance(rq, cs);
957
958 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
959 if (len > I830_BATCH_LIMIT)
960 return -ENOSPC;
961
962 cs = intel_ring_begin(rq, 6 + 2);
963 if (IS_ERR(cs))
964 return PTR_ERR(cs);
965
966 /* Blit the batch (which has now all relocs applied) to the
967 * stable batch scratch bo area (so that the CS never
968 * stumbles over its tlb invalidation bug) ...
969 */
970 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
971 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
972 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
973 *cs++ = cs_offset;
974 *cs++ = 4096;
975 *cs++ = offset;
976
977 *cs++ = MI_FLUSH;
978 *cs++ = MI_NOOP;
979 intel_ring_advance(rq, cs);
980
981 /* ... and execute it. */
982 offset = cs_offset;
983 }
984
985 cs = intel_ring_begin(rq, 2);
986 if (IS_ERR(cs))
987 return PTR_ERR(cs);
988
989 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
990 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
991 MI_BATCH_NON_SECURE);
992 intel_ring_advance(rq, cs);
993
994 return 0;
995 }
996
997 static int
i915_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)998 i915_emit_bb_start(struct i915_request *rq,
999 u64 offset, u32 len,
1000 unsigned int dispatch_flags)
1001 {
1002 u32 *cs;
1003
1004 cs = intel_ring_begin(rq, 2);
1005 if (IS_ERR(cs))
1006 return PTR_ERR(cs);
1007
1008 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1009 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1010 MI_BATCH_NON_SECURE);
1011 intel_ring_advance(rq, cs);
1012
1013 return 0;
1014 }
1015
1016
1017
intel_ring_pin(struct intel_ring * ring,struct drm_i915_private * i915,unsigned int offset_bias)1018 int intel_ring_pin(struct intel_ring *ring,
1019 struct drm_i915_private *i915,
1020 unsigned int offset_bias)
1021 {
1022 enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1023 struct i915_vma *vma = ring->vma;
1024 unsigned int flags;
1025 void *addr;
1026 int ret;
1027
1028 GEM_BUG_ON(ring->vaddr);
1029
1030
1031 flags = PIN_GLOBAL;
1032 if (offset_bias)
1033 flags |= PIN_OFFSET_BIAS | offset_bias;
1034 if (vma->obj->stolen)
1035 flags |= PIN_MAPPABLE;
1036 else
1037 flags |= PIN_HIGH;
1038
1039 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1040 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1041 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1042 else
1043 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1044 if (unlikely(ret))
1045 return ret;
1046 }
1047
1048 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1049 if (unlikely(ret))
1050 return ret;
1051
1052 if (i915_vma_is_map_and_fenceable(vma))
1053 addr = (void __force *)i915_vma_pin_iomap(vma);
1054 else
1055 addr = i915_gem_object_pin_map(vma->obj, map);
1056 if (IS_ERR(addr))
1057 goto err;
1058
1059 vma->obj->pin_global++;
1060
1061 ring->vaddr = addr;
1062 return 0;
1063
1064 err:
1065 i915_vma_unpin(vma);
1066 return PTR_ERR(addr);
1067 }
1068
intel_ring_reset(struct intel_ring * ring,u32 tail)1069 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1070 {
1071 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1072
1073 ring->tail = tail;
1074 ring->head = tail;
1075 ring->emit = tail;
1076 intel_ring_update_space(ring);
1077 }
1078
intel_ring_unpin(struct intel_ring * ring)1079 void intel_ring_unpin(struct intel_ring *ring)
1080 {
1081 GEM_BUG_ON(!ring->vma);
1082 GEM_BUG_ON(!ring->vaddr);
1083
1084 /* Discard any unused bytes beyond that submitted to hw. */
1085 intel_ring_reset(ring, ring->tail);
1086
1087 if (i915_vma_is_map_and_fenceable(ring->vma))
1088 i915_vma_unpin_iomap(ring->vma);
1089 else
1090 i915_gem_object_unpin_map(ring->vma->obj);
1091 ring->vaddr = NULL;
1092
1093 ring->vma->obj->pin_global--;
1094 i915_vma_unpin(ring->vma);
1095 }
1096
1097 static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private * dev_priv,int size)1098 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1099 {
1100 struct i915_address_space *vm = &dev_priv->ggtt.vm;
1101 struct drm_i915_gem_object *obj;
1102 struct i915_vma *vma;
1103
1104 obj = i915_gem_object_create_stolen(dev_priv, size);
1105 if (!obj)
1106 obj = i915_gem_object_create_internal(dev_priv, size);
1107 if (IS_ERR(obj))
1108 return ERR_CAST(obj);
1109
1110 /*
1111 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1112 * if supported by the platform's GGTT.
1113 */
1114 if (vm->has_read_only)
1115 i915_gem_object_set_readonly(obj);
1116
1117 vma = i915_vma_instance(obj, vm, NULL);
1118 if (IS_ERR(vma))
1119 goto err;
1120
1121 return vma;
1122
1123 err:
1124 i915_gem_object_put(obj);
1125 return vma;
1126 }
1127
1128 struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs * engine,struct i915_timeline * timeline,int size)1129 intel_engine_create_ring(struct intel_engine_cs *engine,
1130 struct i915_timeline *timeline,
1131 int size)
1132 {
1133 struct intel_ring *ring;
1134 struct i915_vma *vma;
1135
1136 GEM_BUG_ON(!is_power_of_2(size));
1137 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1138 GEM_BUG_ON(timeline == &engine->timeline);
1139 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1140
1141 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1142 if (!ring)
1143 return ERR_PTR(-ENOMEM);
1144
1145 INIT_LIST_HEAD(&ring->request_list);
1146 ring->timeline = i915_timeline_get(timeline);
1147
1148 ring->size = size;
1149 /* Workaround an erratum on the i830 which causes a hang if
1150 * the TAIL pointer points to within the last 2 cachelines
1151 * of the buffer.
1152 */
1153 ring->effective_size = size;
1154 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1155 ring->effective_size -= 2 * CACHELINE_BYTES;
1156
1157 intel_ring_update_space(ring);
1158
1159 vma = intel_ring_create_vma(engine->i915, size);
1160 if (IS_ERR(vma)) {
1161 kfree(ring);
1162 return ERR_CAST(vma);
1163 }
1164 ring->vma = vma;
1165
1166 return ring;
1167 }
1168
1169 void
intel_ring_free(struct intel_ring * ring)1170 intel_ring_free(struct intel_ring *ring)
1171 {
1172 struct drm_i915_gem_object *obj = ring->vma->obj;
1173
1174 i915_vma_close(ring->vma);
1175 __i915_gem_object_release_unless_active(obj);
1176
1177 i915_timeline_put(ring->timeline);
1178 kfree(ring);
1179 }
1180
intel_ring_context_destroy(struct intel_context * ce)1181 static void intel_ring_context_destroy(struct intel_context *ce)
1182 {
1183 GEM_BUG_ON(ce->pin_count);
1184
1185 if (!ce->state)
1186 return;
1187
1188 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1189 i915_gem_object_put(ce->state->obj);
1190 }
1191
__context_pin_ppgtt(struct i915_gem_context * ctx)1192 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1193 {
1194 struct i915_hw_ppgtt *ppgtt;
1195 int err = 0;
1196
1197 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1198 if (ppgtt)
1199 err = gen6_ppgtt_pin(ppgtt);
1200
1201 return err;
1202 }
1203
__context_unpin_ppgtt(struct i915_gem_context * ctx)1204 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1205 {
1206 struct i915_hw_ppgtt *ppgtt;
1207
1208 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1209 if (ppgtt)
1210 gen6_ppgtt_unpin(ppgtt);
1211 }
1212
__context_pin(struct intel_context * ce)1213 static int __context_pin(struct intel_context *ce)
1214 {
1215 struct i915_vma *vma;
1216 int err;
1217
1218 vma = ce->state;
1219 if (!vma)
1220 return 0;
1221
1222 /*
1223 * Clear this page out of any CPU caches for coherent swap-in/out.
1224 * We only want to do this on the first bind so that we do not stall
1225 * on an active context (which by nature is already on the GPU).
1226 */
1227 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1228 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1229 if (err)
1230 return err;
1231 }
1232
1233 err = i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1234 PIN_GLOBAL | PIN_HIGH);
1235 if (err)
1236 return err;
1237
1238 /*
1239 * And mark is as a globally pinned object to let the shrinker know
1240 * it cannot reclaim the object until we release it.
1241 */
1242 vma->obj->pin_global++;
1243
1244 return 0;
1245 }
1246
__context_unpin(struct intel_context * ce)1247 static void __context_unpin(struct intel_context *ce)
1248 {
1249 struct i915_vma *vma;
1250
1251 vma = ce->state;
1252 if (!vma)
1253 return;
1254
1255 vma->obj->pin_global--;
1256 i915_vma_unpin(vma);
1257 }
1258
intel_ring_context_unpin(struct intel_context * ce)1259 static void intel_ring_context_unpin(struct intel_context *ce)
1260 {
1261 __context_unpin_ppgtt(ce->gem_context);
1262 __context_unpin(ce);
1263
1264 i915_gem_context_put(ce->gem_context);
1265 }
1266
1267 static struct i915_vma *
alloc_context_vma(struct intel_engine_cs * engine)1268 alloc_context_vma(struct intel_engine_cs *engine)
1269 {
1270 struct drm_i915_private *i915 = engine->i915;
1271 struct drm_i915_gem_object *obj;
1272 struct i915_vma *vma;
1273 int err;
1274
1275 obj = i915_gem_object_create(i915, engine->context_size);
1276 if (IS_ERR(obj))
1277 return ERR_CAST(obj);
1278
1279 if (engine->default_state) {
1280 void *defaults, *vaddr;
1281
1282 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1283 if (IS_ERR(vaddr)) {
1284 err = PTR_ERR(vaddr);
1285 goto err_obj;
1286 }
1287
1288 defaults = i915_gem_object_pin_map(engine->default_state,
1289 I915_MAP_WB);
1290 if (IS_ERR(defaults)) {
1291 err = PTR_ERR(defaults);
1292 goto err_map;
1293 }
1294
1295 memcpy(vaddr, defaults, engine->context_size);
1296
1297 i915_gem_object_unpin_map(engine->default_state);
1298 i915_gem_object_unpin_map(obj);
1299 }
1300
1301 /*
1302 * Try to make the context utilize L3 as well as LLC.
1303 *
1304 * On VLV we don't have L3 controls in the PTEs so we
1305 * shouldn't touch the cache level, especially as that
1306 * would make the object snooped which might have a
1307 * negative performance impact.
1308 *
1309 * Snooping is required on non-llc platforms in execlist
1310 * mode, but since all GGTT accesses use PAT entry 0 we
1311 * get snooping anyway regardless of cache_level.
1312 *
1313 * This is only applicable for Ivy Bridge devices since
1314 * later platforms don't have L3 control bits in the PTE.
1315 */
1316 if (IS_IVYBRIDGE(i915)) {
1317 /* Ignore any error, regard it as a simple optimisation */
1318 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1319 }
1320
1321 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1322 if (IS_ERR(vma)) {
1323 err = PTR_ERR(vma);
1324 goto err_obj;
1325 }
1326
1327 return vma;
1328
1329 err_map:
1330 i915_gem_object_unpin_map(obj);
1331 err_obj:
1332 i915_gem_object_put(obj);
1333 return ERR_PTR(err);
1334 }
1335
1336 static struct intel_context *
__ring_context_pin(struct intel_engine_cs * engine,struct i915_gem_context * ctx,struct intel_context * ce)1337 __ring_context_pin(struct intel_engine_cs *engine,
1338 struct i915_gem_context *ctx,
1339 struct intel_context *ce)
1340 {
1341 int err;
1342
1343 if (!ce->state && engine->context_size) {
1344 struct i915_vma *vma;
1345
1346 vma = alloc_context_vma(engine);
1347 if (IS_ERR(vma)) {
1348 err = PTR_ERR(vma);
1349 goto err;
1350 }
1351
1352 ce->state = vma;
1353 }
1354
1355 err = __context_pin(ce);
1356 if (err)
1357 goto err;
1358
1359 err = __context_pin_ppgtt(ce->gem_context);
1360 if (err)
1361 goto err_unpin;
1362
1363 i915_gem_context_get(ctx);
1364
1365 /* One ringbuffer to rule them all */
1366 GEM_BUG_ON(!engine->buffer);
1367 ce->ring = engine->buffer;
1368
1369 return ce;
1370
1371 err_unpin:
1372 __context_unpin(ce);
1373 err:
1374 ce->pin_count = 0;
1375 return ERR_PTR(err);
1376 }
1377
1378 static const struct intel_context_ops ring_context_ops = {
1379 .unpin = intel_ring_context_unpin,
1380 .destroy = intel_ring_context_destroy,
1381 };
1382
1383 static struct intel_context *
intel_ring_context_pin(struct intel_engine_cs * engine,struct i915_gem_context * ctx)1384 intel_ring_context_pin(struct intel_engine_cs *engine,
1385 struct i915_gem_context *ctx)
1386 {
1387 struct intel_context *ce = to_intel_context(ctx, engine);
1388
1389 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1390
1391 if (likely(ce->pin_count++))
1392 return ce;
1393 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1394
1395 ce->ops = &ring_context_ops;
1396
1397 return __ring_context_pin(engine, ctx, ce);
1398 }
1399
intel_init_ring_buffer(struct intel_engine_cs * engine)1400 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1401 {
1402 struct i915_timeline *timeline;
1403 struct intel_ring *ring;
1404 unsigned int size;
1405 int err;
1406
1407 intel_engine_setup_common(engine);
1408
1409 timeline = i915_timeline_create(engine->i915, engine->name);
1410 if (IS_ERR(timeline)) {
1411 err = PTR_ERR(timeline);
1412 goto err;
1413 }
1414
1415 ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1416 i915_timeline_put(timeline);
1417 if (IS_ERR(ring)) {
1418 err = PTR_ERR(ring);
1419 goto err;
1420 }
1421
1422 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1423 err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1424 if (err)
1425 goto err_ring;
1426
1427 GEM_BUG_ON(engine->buffer);
1428 engine->buffer = ring;
1429
1430 size = PAGE_SIZE;
1431 if (HAS_BROKEN_CS_TLB(engine->i915))
1432 size = I830_WA_SIZE;
1433 err = intel_engine_create_scratch(engine, size);
1434 if (err)
1435 goto err_unpin;
1436
1437 err = intel_engine_init_common(engine);
1438 if (err)
1439 goto err_scratch;
1440
1441 return 0;
1442
1443 err_scratch:
1444 intel_engine_cleanup_scratch(engine);
1445 err_unpin:
1446 intel_ring_unpin(ring);
1447 err_ring:
1448 intel_ring_free(ring);
1449 err:
1450 intel_engine_cleanup_common(engine);
1451 return err;
1452 }
1453
intel_engine_cleanup(struct intel_engine_cs * engine)1454 void intel_engine_cleanup(struct intel_engine_cs *engine)
1455 {
1456 struct drm_i915_private *dev_priv = engine->i915;
1457
1458 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1459 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1460
1461 intel_ring_unpin(engine->buffer);
1462 intel_ring_free(engine->buffer);
1463
1464 if (engine->cleanup)
1465 engine->cleanup(engine);
1466
1467 intel_engine_cleanup_common(engine);
1468
1469 dev_priv->engine[engine->id] = NULL;
1470 kfree(engine);
1471 }
1472
intel_legacy_submission_resume(struct drm_i915_private * dev_priv)1473 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1474 {
1475 struct intel_engine_cs *engine;
1476 enum intel_engine_id id;
1477
1478 /* Restart from the beginning of the rings for convenience */
1479 for_each_engine(engine, dev_priv, id)
1480 intel_ring_reset(engine->buffer, 0);
1481 }
1482
load_pd_dir(struct i915_request * rq,const struct i915_hw_ppgtt * ppgtt)1483 static int load_pd_dir(struct i915_request *rq,
1484 const struct i915_hw_ppgtt *ppgtt)
1485 {
1486 const struct intel_engine_cs * const engine = rq->engine;
1487 u32 *cs;
1488
1489 cs = intel_ring_begin(rq, 6);
1490 if (IS_ERR(cs))
1491 return PTR_ERR(cs);
1492
1493 *cs++ = MI_LOAD_REGISTER_IMM(1);
1494 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1495 *cs++ = PP_DIR_DCLV_2G;
1496
1497 *cs++ = MI_LOAD_REGISTER_IMM(1);
1498 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1499 *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1500
1501 intel_ring_advance(rq, cs);
1502
1503 return 0;
1504 }
1505
flush_pd_dir(struct i915_request * rq)1506 static int flush_pd_dir(struct i915_request *rq)
1507 {
1508 const struct intel_engine_cs * const engine = rq->engine;
1509 u32 *cs;
1510
1511 cs = intel_ring_begin(rq, 4);
1512 if (IS_ERR(cs))
1513 return PTR_ERR(cs);
1514
1515 /* Stall until the page table load is complete */
1516 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1517 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1518 *cs++ = i915_ggtt_offset(engine->scratch);
1519 *cs++ = MI_NOOP;
1520
1521 intel_ring_advance(rq, cs);
1522 return 0;
1523 }
1524
mi_set_context(struct i915_request * rq,u32 flags)1525 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1526 {
1527 struct drm_i915_private *i915 = rq->i915;
1528 struct intel_engine_cs *engine = rq->engine;
1529 enum intel_engine_id id;
1530 const int num_rings =
1531 /* Use an extended w/a on gen7 if signalling from other rings */
1532 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1533 INTEL_INFO(i915)->num_rings - 1 :
1534 0;
1535 bool force_restore = false;
1536 int len;
1537 u32 *cs;
1538
1539 flags |= MI_MM_SPACE_GTT;
1540 if (IS_HASWELL(i915))
1541 /* These flags are for resource streamer on HSW+ */
1542 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1543 else
1544 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1545
1546 len = 4;
1547 if (IS_GEN7(i915))
1548 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1549 if (flags & MI_FORCE_RESTORE) {
1550 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1551 flags &= ~MI_FORCE_RESTORE;
1552 force_restore = true;
1553 len += 2;
1554 }
1555
1556 cs = intel_ring_begin(rq, len);
1557 if (IS_ERR(cs))
1558 return PTR_ERR(cs);
1559
1560 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1561 if (IS_GEN7(i915)) {
1562 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1563 if (num_rings) {
1564 struct intel_engine_cs *signaller;
1565
1566 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1567 for_each_engine(signaller, i915, id) {
1568 if (signaller == engine)
1569 continue;
1570
1571 *cs++ = i915_mmio_reg_offset(
1572 RING_PSMI_CTL(signaller->mmio_base));
1573 *cs++ = _MASKED_BIT_ENABLE(
1574 GEN6_PSMI_SLEEP_MSG_DISABLE);
1575 }
1576 }
1577 }
1578
1579 if (force_restore) {
1580 /*
1581 * The HW doesn't handle being told to restore the current
1582 * context very well. Quite often it likes goes to go off and
1583 * sulk, especially when it is meant to be reloading PP_DIR.
1584 * A very simple fix to force the reload is to simply switch
1585 * away from the current context and back again.
1586 *
1587 * Note that the kernel_context will contain random state
1588 * following the INHIBIT_RESTORE. We accept this since we
1589 * never use the kernel_context state; it is merely a
1590 * placeholder we use to flush other contexts.
1591 */
1592 *cs++ = MI_SET_CONTEXT;
1593 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1594 engine)->state) |
1595 MI_MM_SPACE_GTT |
1596 MI_RESTORE_INHIBIT;
1597 }
1598
1599 *cs++ = MI_NOOP;
1600 *cs++ = MI_SET_CONTEXT;
1601 *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1602 /*
1603 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1604 * WaMiSetContext_Hang:snb,ivb,vlv
1605 */
1606 *cs++ = MI_NOOP;
1607
1608 if (IS_GEN7(i915)) {
1609 if (num_rings) {
1610 struct intel_engine_cs *signaller;
1611 i915_reg_t last_reg = {}; /* keep gcc quiet */
1612
1613 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1614 for_each_engine(signaller, i915, id) {
1615 if (signaller == engine)
1616 continue;
1617
1618 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1619 *cs++ = i915_mmio_reg_offset(last_reg);
1620 *cs++ = _MASKED_BIT_DISABLE(
1621 GEN6_PSMI_SLEEP_MSG_DISABLE);
1622 }
1623
1624 /* Insert a delay before the next switch! */
1625 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1626 *cs++ = i915_mmio_reg_offset(last_reg);
1627 *cs++ = i915_ggtt_offset(engine->scratch);
1628 *cs++ = MI_NOOP;
1629 }
1630 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1631 }
1632
1633 intel_ring_advance(rq, cs);
1634
1635 return 0;
1636 }
1637
remap_l3(struct i915_request * rq,int slice)1638 static int remap_l3(struct i915_request *rq, int slice)
1639 {
1640 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1641 int i;
1642
1643 if (!remap_info)
1644 return 0;
1645
1646 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1647 if (IS_ERR(cs))
1648 return PTR_ERR(cs);
1649
1650 /*
1651 * Note: We do not worry about the concurrent register cacheline hang
1652 * here because no other code should access these registers other than
1653 * at initialization time.
1654 */
1655 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1656 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1657 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1658 *cs++ = remap_info[i];
1659 }
1660 *cs++ = MI_NOOP;
1661 intel_ring_advance(rq, cs);
1662
1663 return 0;
1664 }
1665
switch_context(struct i915_request * rq)1666 static int switch_context(struct i915_request *rq)
1667 {
1668 struct intel_engine_cs *engine = rq->engine;
1669 struct i915_gem_context *ctx = rq->gem_context;
1670 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1671 unsigned int unwind_mm = 0;
1672 u32 hw_flags = 0;
1673 int ret, i;
1674
1675 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1676 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1677
1678 if (ppgtt) {
1679 ret = load_pd_dir(rq, ppgtt);
1680 if (ret)
1681 goto err;
1682
1683 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1684 unwind_mm = intel_engine_flag(engine);
1685 ppgtt->pd_dirty_rings &= ~unwind_mm;
1686 hw_flags = MI_FORCE_RESTORE;
1687 }
1688 }
1689
1690 if (rq->hw_context->state) {
1691 GEM_BUG_ON(engine->id != RCS);
1692
1693 /*
1694 * The kernel context(s) is treated as pure scratch and is not
1695 * expected to retain any state (as we sacrifice it during
1696 * suspend and on resume it may be corrupted). This is ok,
1697 * as nothing actually executes using the kernel context; it
1698 * is purely used for flushing user contexts.
1699 */
1700 if (i915_gem_context_is_kernel(ctx))
1701 hw_flags = MI_RESTORE_INHIBIT;
1702
1703 ret = mi_set_context(rq, hw_flags);
1704 if (ret)
1705 goto err_mm;
1706 }
1707
1708 if (ppgtt) {
1709 ret = flush_pd_dir(rq);
1710 if (ret)
1711 goto err_mm;
1712 }
1713
1714 if (ctx->remap_slice) {
1715 for (i = 0; i < MAX_L3_SLICES; i++) {
1716 if (!(ctx->remap_slice & BIT(i)))
1717 continue;
1718
1719 ret = remap_l3(rq, i);
1720 if (ret)
1721 goto err_mm;
1722 }
1723
1724 ctx->remap_slice = 0;
1725 }
1726
1727 return 0;
1728
1729 err_mm:
1730 if (unwind_mm)
1731 ppgtt->pd_dirty_rings |= unwind_mm;
1732 err:
1733 return ret;
1734 }
1735
ring_request_alloc(struct i915_request * request)1736 static int ring_request_alloc(struct i915_request *request)
1737 {
1738 int ret;
1739
1740 GEM_BUG_ON(!request->hw_context->pin_count);
1741
1742 /* Flush enough space to reduce the likelihood of waiting after
1743 * we start building the request - in which case we will just
1744 * have to repeat work.
1745 */
1746 request->reserved_space += LEGACY_REQUEST_SIZE;
1747
1748 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1749 if (ret)
1750 return ret;
1751
1752 ret = switch_context(request);
1753 if (ret)
1754 return ret;
1755
1756 request->reserved_space -= LEGACY_REQUEST_SIZE;
1757 return 0;
1758 }
1759
wait_for_space(struct intel_ring * ring,unsigned int bytes)1760 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1761 {
1762 struct i915_request *target;
1763 long timeout;
1764
1765 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1766
1767 if (intel_ring_update_space(ring) >= bytes)
1768 return 0;
1769
1770 GEM_BUG_ON(list_empty(&ring->request_list));
1771 list_for_each_entry(target, &ring->request_list, ring_link) {
1772 /* Would completion of this request free enough space? */
1773 if (bytes <= __intel_ring_space(target->postfix,
1774 ring->emit, ring->size))
1775 break;
1776 }
1777
1778 if (WARN_ON(&target->ring_link == &ring->request_list))
1779 return -ENOSPC;
1780
1781 timeout = i915_request_wait(target,
1782 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1783 MAX_SCHEDULE_TIMEOUT);
1784 if (timeout < 0)
1785 return timeout;
1786
1787 i915_request_retire_upto(target);
1788
1789 intel_ring_update_space(ring);
1790 GEM_BUG_ON(ring->space < bytes);
1791 return 0;
1792 }
1793
intel_ring_wait_for_space(struct intel_ring * ring,unsigned int bytes)1794 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1795 {
1796 GEM_BUG_ON(bytes > ring->effective_size);
1797 if (unlikely(bytes > ring->effective_size - ring->emit))
1798 bytes += ring->size - ring->emit;
1799
1800 if (unlikely(bytes > ring->space)) {
1801 int ret = wait_for_space(ring, bytes);
1802 if (unlikely(ret))
1803 return ret;
1804 }
1805
1806 GEM_BUG_ON(ring->space < bytes);
1807 return 0;
1808 }
1809
intel_ring_begin(struct i915_request * rq,unsigned int num_dwords)1810 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1811 {
1812 struct intel_ring *ring = rq->ring;
1813 const unsigned int remain_usable = ring->effective_size - ring->emit;
1814 const unsigned int bytes = num_dwords * sizeof(u32);
1815 unsigned int need_wrap = 0;
1816 unsigned int total_bytes;
1817 u32 *cs;
1818
1819 /* Packets must be qword aligned. */
1820 GEM_BUG_ON(num_dwords & 1);
1821
1822 total_bytes = bytes + rq->reserved_space;
1823 GEM_BUG_ON(total_bytes > ring->effective_size);
1824
1825 if (unlikely(total_bytes > remain_usable)) {
1826 const int remain_actual = ring->size - ring->emit;
1827
1828 if (bytes > remain_usable) {
1829 /*
1830 * Not enough space for the basic request. So need to
1831 * flush out the remainder and then wait for
1832 * base + reserved.
1833 */
1834 total_bytes += remain_actual;
1835 need_wrap = remain_actual | 1;
1836 } else {
1837 /*
1838 * The base request will fit but the reserved space
1839 * falls off the end. So we don't need an immediate
1840 * wrap and only need to effectively wait for the
1841 * reserved size from the start of ringbuffer.
1842 */
1843 total_bytes = rq->reserved_space + remain_actual;
1844 }
1845 }
1846
1847 if (unlikely(total_bytes > ring->space)) {
1848 int ret;
1849
1850 /*
1851 * Space is reserved in the ringbuffer for finalising the
1852 * request, as that cannot be allowed to fail. During request
1853 * finalisation, reserved_space is set to 0 to stop the
1854 * overallocation and the assumption is that then we never need
1855 * to wait (which has the risk of failing with EINTR).
1856 *
1857 * See also i915_request_alloc() and i915_request_add().
1858 */
1859 GEM_BUG_ON(!rq->reserved_space);
1860
1861 ret = wait_for_space(ring, total_bytes);
1862 if (unlikely(ret))
1863 return ERR_PTR(ret);
1864 }
1865
1866 if (unlikely(need_wrap)) {
1867 need_wrap &= ~1;
1868 GEM_BUG_ON(need_wrap > ring->space);
1869 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1870 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1871
1872 /* Fill the tail with MI_NOOP */
1873 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1874 ring->space -= need_wrap;
1875 ring->emit = 0;
1876 }
1877
1878 GEM_BUG_ON(ring->emit > ring->size - bytes);
1879 GEM_BUG_ON(ring->space < bytes);
1880 cs = ring->vaddr + ring->emit;
1881 GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1882 ring->emit += bytes;
1883 ring->space -= bytes;
1884
1885 return cs;
1886 }
1887
1888 /* Align the ring tail to a cacheline boundary */
intel_ring_cacheline_align(struct i915_request * rq)1889 int intel_ring_cacheline_align(struct i915_request *rq)
1890 {
1891 int num_dwords;
1892 void *cs;
1893
1894 num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1895 if (num_dwords == 0)
1896 return 0;
1897
1898 num_dwords = CACHELINE_DWORDS - num_dwords;
1899 GEM_BUG_ON(num_dwords & 1);
1900
1901 cs = intel_ring_begin(rq, num_dwords);
1902 if (IS_ERR(cs))
1903 return PTR_ERR(cs);
1904
1905 memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1906 intel_ring_advance(rq, cs);
1907
1908 GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1909 return 0;
1910 }
1911
gen6_bsd_submit_request(struct i915_request * request)1912 static void gen6_bsd_submit_request(struct i915_request *request)
1913 {
1914 struct drm_i915_private *dev_priv = request->i915;
1915
1916 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1917
1918 /* Every tail move must follow the sequence below */
1919
1920 /* Disable notification that the ring is IDLE. The GT
1921 * will then assume that it is busy and bring it out of rc6.
1922 */
1923 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1924 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1925
1926 /* Clear the context id. Here be magic! */
1927 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1928
1929 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1930 if (__intel_wait_for_register_fw(dev_priv,
1931 GEN6_BSD_SLEEP_PSMI_CONTROL,
1932 GEN6_BSD_SLEEP_INDICATOR,
1933 0,
1934 1000, 0, NULL))
1935 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1936
1937 /* Now that the ring is fully powered up, update the tail */
1938 i9xx_submit_request(request);
1939
1940 /* Let the ring send IDLE messages to the GT again,
1941 * and so let it sleep to conserve power when idle.
1942 */
1943 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1944 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1945
1946 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1947 }
1948
gen6_bsd_ring_flush(struct i915_request * rq,u32 mode)1949 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1950 {
1951 u32 cmd, *cs;
1952
1953 cs = intel_ring_begin(rq, 4);
1954 if (IS_ERR(cs))
1955 return PTR_ERR(cs);
1956
1957 cmd = MI_FLUSH_DW;
1958
1959 /* We always require a command barrier so that subsequent
1960 * commands, such as breadcrumb interrupts, are strictly ordered
1961 * wrt the contents of the write cache being flushed to memory
1962 * (and thus being coherent from the CPU).
1963 */
1964 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1965
1966 /*
1967 * Bspec vol 1c.5 - video engine command streamer:
1968 * "If ENABLED, all TLBs will be invalidated once the flush
1969 * operation is complete. This bit is only valid when the
1970 * Post-Sync Operation field is a value of 1h or 3h."
1971 */
1972 if (mode & EMIT_INVALIDATE)
1973 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1974
1975 *cs++ = cmd;
1976 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1977 *cs++ = 0;
1978 *cs++ = MI_NOOP;
1979 intel_ring_advance(rq, cs);
1980 return 0;
1981 }
1982
1983 static int
hsw_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)1984 hsw_emit_bb_start(struct i915_request *rq,
1985 u64 offset, u32 len,
1986 unsigned int dispatch_flags)
1987 {
1988 u32 *cs;
1989
1990 cs = intel_ring_begin(rq, 2);
1991 if (IS_ERR(cs))
1992 return PTR_ERR(cs);
1993
1994 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1995 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1996 (dispatch_flags & I915_DISPATCH_RS ?
1997 MI_BATCH_RESOURCE_STREAMER : 0);
1998 /* bit0-7 is the length on GEN6+ */
1999 *cs++ = offset;
2000 intel_ring_advance(rq, cs);
2001
2002 return 0;
2003 }
2004
2005 static int
gen6_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)2006 gen6_emit_bb_start(struct i915_request *rq,
2007 u64 offset, u32 len,
2008 unsigned int dispatch_flags)
2009 {
2010 u32 *cs;
2011
2012 cs = intel_ring_begin(rq, 2);
2013 if (IS_ERR(cs))
2014 return PTR_ERR(cs);
2015
2016 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2017 0 : MI_BATCH_NON_SECURE_I965);
2018 /* bit0-7 is the length on GEN6+ */
2019 *cs++ = offset;
2020 intel_ring_advance(rq, cs);
2021
2022 return 0;
2023 }
2024
2025 /* Blitter support (SandyBridge+) */
2026
gen6_ring_flush(struct i915_request * rq,u32 mode)2027 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2028 {
2029 u32 cmd, *cs;
2030
2031 cs = intel_ring_begin(rq, 4);
2032 if (IS_ERR(cs))
2033 return PTR_ERR(cs);
2034
2035 cmd = MI_FLUSH_DW;
2036
2037 /* We always require a command barrier so that subsequent
2038 * commands, such as breadcrumb interrupts, are strictly ordered
2039 * wrt the contents of the write cache being flushed to memory
2040 * (and thus being coherent from the CPU).
2041 */
2042 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2043
2044 /*
2045 * Bspec vol 1c.3 - blitter engine command streamer:
2046 * "If ENABLED, all TLBs will be invalidated once the flush
2047 * operation is complete. This bit is only valid when the
2048 * Post-Sync Operation field is a value of 1h or 3h."
2049 */
2050 if (mode & EMIT_INVALIDATE)
2051 cmd |= MI_INVALIDATE_TLB;
2052 *cs++ = cmd;
2053 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2054 *cs++ = 0;
2055 *cs++ = MI_NOOP;
2056 intel_ring_advance(rq, cs);
2057
2058 return 0;
2059 }
2060
intel_ring_init_semaphores(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2061 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2062 struct intel_engine_cs *engine)
2063 {
2064 int i;
2065
2066 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2067 return;
2068
2069 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2070 engine->semaphore.sync_to = gen6_ring_sync_to;
2071 engine->semaphore.signal = gen6_signal;
2072
2073 /*
2074 * The current semaphore is only applied on pre-gen8
2075 * platform. And there is no VCS2 ring on the pre-gen8
2076 * platform. So the semaphore between RCS and VCS2 is
2077 * initialized as INVALID.
2078 */
2079 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2080 static const struct {
2081 u32 wait_mbox;
2082 i915_reg_t mbox_reg;
2083 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2084 [RCS_HW] = {
2085 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2086 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2087 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2088 },
2089 [VCS_HW] = {
2090 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2091 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2092 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2093 },
2094 [BCS_HW] = {
2095 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2096 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2097 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2098 },
2099 [VECS_HW] = {
2100 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2101 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2102 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2103 },
2104 };
2105 u32 wait_mbox;
2106 i915_reg_t mbox_reg;
2107
2108 if (i == engine->hw_id) {
2109 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2110 mbox_reg = GEN6_NOSYNC;
2111 } else {
2112 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2113 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2114 }
2115
2116 engine->semaphore.mbox.wait[i] = wait_mbox;
2117 engine->semaphore.mbox.signal[i] = mbox_reg;
2118 }
2119 }
2120
intel_ring_init_irq(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2121 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2122 struct intel_engine_cs *engine)
2123 {
2124 if (INTEL_GEN(dev_priv) >= 6) {
2125 engine->irq_enable = gen6_irq_enable;
2126 engine->irq_disable = gen6_irq_disable;
2127 engine->irq_seqno_barrier = gen6_seqno_barrier;
2128 } else if (INTEL_GEN(dev_priv) >= 5) {
2129 engine->irq_enable = gen5_irq_enable;
2130 engine->irq_disable = gen5_irq_disable;
2131 engine->irq_seqno_barrier = gen5_seqno_barrier;
2132 } else if (INTEL_GEN(dev_priv) >= 3) {
2133 engine->irq_enable = i9xx_irq_enable;
2134 engine->irq_disable = i9xx_irq_disable;
2135 } else {
2136 engine->irq_enable = i8xx_irq_enable;
2137 engine->irq_disable = i8xx_irq_disable;
2138 }
2139 }
2140
i9xx_set_default_submission(struct intel_engine_cs * engine)2141 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2142 {
2143 engine->submit_request = i9xx_submit_request;
2144 engine->cancel_requests = cancel_requests;
2145
2146 engine->park = NULL;
2147 engine->unpark = NULL;
2148 }
2149
gen6_bsd_set_default_submission(struct intel_engine_cs * engine)2150 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2151 {
2152 i9xx_set_default_submission(engine);
2153 engine->submit_request = gen6_bsd_submit_request;
2154 }
2155
intel_ring_default_vfuncs(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2156 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2157 struct intel_engine_cs *engine)
2158 {
2159 /* gen8+ are only supported with execlists */
2160 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2161
2162 intel_ring_init_irq(dev_priv, engine);
2163 intel_ring_init_semaphores(dev_priv, engine);
2164
2165 engine->init_hw = init_ring_common;
2166 engine->reset.prepare = reset_prepare;
2167 engine->reset.reset = reset_ring;
2168 engine->reset.finish = reset_finish;
2169
2170 engine->context_pin = intel_ring_context_pin;
2171 engine->request_alloc = ring_request_alloc;
2172
2173 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2174 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2175 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2176 int num_rings;
2177
2178 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2179
2180 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2181 engine->emit_breadcrumb_sz += num_rings * 3;
2182 if (num_rings & 1)
2183 engine->emit_breadcrumb_sz++;
2184 }
2185
2186 engine->set_default_submission = i9xx_set_default_submission;
2187
2188 if (INTEL_GEN(dev_priv) >= 6)
2189 engine->emit_bb_start = gen6_emit_bb_start;
2190 else if (INTEL_GEN(dev_priv) >= 4)
2191 engine->emit_bb_start = i965_emit_bb_start;
2192 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2193 engine->emit_bb_start = i830_emit_bb_start;
2194 else
2195 engine->emit_bb_start = i915_emit_bb_start;
2196 }
2197
intel_init_render_ring_buffer(struct intel_engine_cs * engine)2198 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2199 {
2200 struct drm_i915_private *dev_priv = engine->i915;
2201 int ret;
2202
2203 intel_ring_default_vfuncs(dev_priv, engine);
2204
2205 if (HAS_L3_DPF(dev_priv))
2206 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2207
2208 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2209
2210 if (INTEL_GEN(dev_priv) >= 6) {
2211 engine->init_context = intel_rcs_ctx_init;
2212 engine->emit_flush = gen7_render_ring_flush;
2213 if (IS_GEN6(dev_priv))
2214 engine->emit_flush = gen6_render_ring_flush;
2215 } else if (IS_GEN5(dev_priv)) {
2216 engine->emit_flush = gen4_render_ring_flush;
2217 } else {
2218 if (INTEL_GEN(dev_priv) < 4)
2219 engine->emit_flush = gen2_render_ring_flush;
2220 else
2221 engine->emit_flush = gen4_render_ring_flush;
2222 engine->irq_enable_mask = I915_USER_INTERRUPT;
2223 }
2224
2225 if (IS_HASWELL(dev_priv))
2226 engine->emit_bb_start = hsw_emit_bb_start;
2227
2228 engine->init_hw = init_render_ring;
2229
2230 ret = intel_init_ring_buffer(engine);
2231 if (ret)
2232 return ret;
2233
2234 return 0;
2235 }
2236
intel_init_bsd_ring_buffer(struct intel_engine_cs * engine)2237 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2238 {
2239 struct drm_i915_private *dev_priv = engine->i915;
2240
2241 intel_ring_default_vfuncs(dev_priv, engine);
2242
2243 if (INTEL_GEN(dev_priv) >= 6) {
2244 /* gen6 bsd needs a special wa for tail updates */
2245 if (IS_GEN6(dev_priv))
2246 engine->set_default_submission = gen6_bsd_set_default_submission;
2247 engine->emit_flush = gen6_bsd_ring_flush;
2248 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2249 } else {
2250 engine->emit_flush = bsd_ring_flush;
2251 if (IS_GEN5(dev_priv))
2252 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2253 else
2254 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2255 }
2256
2257 return intel_init_ring_buffer(engine);
2258 }
2259
intel_init_blt_ring_buffer(struct intel_engine_cs * engine)2260 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2261 {
2262 struct drm_i915_private *dev_priv = engine->i915;
2263
2264 intel_ring_default_vfuncs(dev_priv, engine);
2265
2266 engine->emit_flush = gen6_ring_flush;
2267 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2268
2269 return intel_init_ring_buffer(engine);
2270 }
2271
intel_init_vebox_ring_buffer(struct intel_engine_cs * engine)2272 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2273 {
2274 struct drm_i915_private *dev_priv = engine->i915;
2275
2276 intel_ring_default_vfuncs(dev_priv, engine);
2277
2278 engine->emit_flush = gen6_ring_flush;
2279 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2280 engine->irq_enable = hsw_vebox_irq_enable;
2281 engine->irq_disable = hsw_vebox_irq_disable;
2282
2283 return intel_init_ring_buffer(engine);
2284 }
2285