1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _INTEL_RINGBUFFER_H_
3 #define _INTEL_RINGBUFFER_H_
4
5 #include <linux/hashtable.h>
6 #include <linux/seqlock.h>
7
8 #include "i915_gem_batch_pool.h"
9
10 #include "i915_reg.h"
11 #include "i915_pmu.h"
12 #include "i915_request.h"
13 #include "i915_selftest.h"
14 #include "i915_timeline.h"
15 #include "intel_gpu_commands.h"
16
17 struct drm_printer;
18 struct i915_sched_attr;
19
20 #define I915_CMD_HASH_ORDER 9
21
22 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
23 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
24 * to give some inclination as to some of the magic values used in the various
25 * workarounds!
26 */
27 #define CACHELINE_BYTES 64
28 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
29
30 struct intel_hw_status_page {
31 struct i915_vma *vma;
32 u32 *page_addr;
33 u32 ggtt_offset;
34 };
35
36 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
37 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
38
39 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
40 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
41
42 #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
43 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
44
45 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
46 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
47
48 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
49 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
50
51 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
52 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
53
54 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
55 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
56 */
57 enum intel_engine_hangcheck_action {
58 ENGINE_IDLE = 0,
59 ENGINE_WAIT,
60 ENGINE_ACTIVE_SEQNO,
61 ENGINE_ACTIVE_HEAD,
62 ENGINE_ACTIVE_SUBUNITS,
63 ENGINE_WAIT_KICK,
64 ENGINE_DEAD,
65 };
66
67 static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)68 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
69 {
70 switch (a) {
71 case ENGINE_IDLE:
72 return "idle";
73 case ENGINE_WAIT:
74 return "wait";
75 case ENGINE_ACTIVE_SEQNO:
76 return "active seqno";
77 case ENGINE_ACTIVE_HEAD:
78 return "active head";
79 case ENGINE_ACTIVE_SUBUNITS:
80 return "active subunits";
81 case ENGINE_WAIT_KICK:
82 return "wait kick";
83 case ENGINE_DEAD:
84 return "dead";
85 }
86
87 return "unknown";
88 }
89
90 #define I915_MAX_SLICES 3
91 #define I915_MAX_SUBSLICES 8
92
93 #define instdone_slice_mask(dev_priv__) \
94 (INTEL_GEN(dev_priv__) == 7 ? \
95 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
96
97 #define instdone_subslice_mask(dev_priv__) \
98 (INTEL_GEN(dev_priv__) == 7 ? \
99 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0])
100
101 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
102 for ((slice__) = 0, (subslice__) = 0; \
103 (slice__) < I915_MAX_SLICES; \
104 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
105 (slice__) += ((subslice__) == 0)) \
106 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
107 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
108
109 struct intel_instdone {
110 u32 instdone;
111 /* The following exist only in the RCS engine */
112 u32 slice_common;
113 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
114 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
115 };
116
117 struct intel_engine_hangcheck {
118 u64 acthd;
119 u32 seqno;
120 enum intel_engine_hangcheck_action action;
121 unsigned long action_timestamp;
122 int deadlock;
123 struct intel_instdone instdone;
124 struct i915_request *active_request;
125 bool stalled:1;
126 bool wedged:1;
127 };
128
129 struct intel_ring {
130 struct i915_vma *vma;
131 void *vaddr;
132
133 struct i915_timeline *timeline;
134 struct list_head request_list;
135 struct list_head active_link;
136
137 u32 head;
138 u32 tail;
139 u32 emit;
140
141 u32 space;
142 u32 size;
143 u32 effective_size;
144 };
145
146 struct i915_gem_context;
147 struct drm_i915_reg_table;
148
149 /*
150 * we use a single page to load ctx workarounds so all of these
151 * values are referred in terms of dwords
152 *
153 * struct i915_wa_ctx_bb:
154 * offset: specifies batch starting position, also helpful in case
155 * if we want to have multiple batches at different offsets based on
156 * some criteria. It is not a requirement at the moment but provides
157 * an option for future use.
158 * size: size of the batch in DWORDS
159 */
160 struct i915_ctx_workarounds {
161 struct i915_wa_ctx_bb {
162 u32 offset;
163 u32 size;
164 } indirect_ctx, per_ctx;
165 struct i915_vma *vma;
166 };
167
168 struct i915_request;
169
170 #define I915_MAX_VCS 4
171 #define I915_MAX_VECS 2
172
173 /*
174 * Engine IDs definitions.
175 * Keep instances of the same type engine together.
176 */
177 enum intel_engine_id {
178 RCS = 0,
179 BCS,
180 VCS,
181 VCS2,
182 VCS3,
183 VCS4,
184 #define _VCS(n) (VCS + (n))
185 VECS,
186 VECS2
187 #define _VECS(n) (VECS + (n))
188 };
189
190 struct i915_priolist {
191 struct rb_node node;
192 struct list_head requests;
193 int priority;
194 };
195
196 struct st_preempt_hang {
197 struct completion completion;
198 bool inject_hang;
199 };
200
201 /**
202 * struct intel_engine_execlists - execlist submission queue and port state
203 *
204 * The struct intel_engine_execlists represents the combined logical state of
205 * driver and the hardware state for execlist mode of submission.
206 */
207 struct intel_engine_execlists {
208 /**
209 * @tasklet: softirq tasklet for bottom handler
210 */
211 struct tasklet_struct tasklet;
212
213 /**
214 * @default_priolist: priority list for I915_PRIORITY_NORMAL
215 */
216 struct i915_priolist default_priolist;
217
218 /**
219 * @no_priolist: priority lists disabled
220 */
221 bool no_priolist;
222
223 /**
224 * @submit_reg: gen-specific execlist submission register
225 * set to the ExecList Submission Port (elsp) register pre-Gen11 and to
226 * the ExecList Submission Queue Contents register array for Gen11+
227 */
228 u32 __iomem *submit_reg;
229
230 /**
231 * @ctrl_reg: the enhanced execlists control register, used to load the
232 * submit queue on the HW and to request preemptions to idle
233 */
234 u32 __iomem *ctrl_reg;
235
236 /**
237 * @port: execlist port states
238 *
239 * For each hardware ELSP (ExecList Submission Port) we keep
240 * track of the last request and the number of times we submitted
241 * that port to hw. We then count the number of times the hw reports
242 * a context completion or preemption. As only one context can
243 * be active on hw, we limit resubmission of context to port[0]. This
244 * is called Lite Restore, of the context.
245 */
246 struct execlist_port {
247 /**
248 * @request_count: combined request and submission count
249 */
250 struct i915_request *request_count;
251 #define EXECLIST_COUNT_BITS 2
252 #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
253 #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
254 #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
255 #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
256 #define port_set(p, packed) ((p)->request_count = (packed))
257 #define port_isset(p) ((p)->request_count)
258 #define port_index(p, execlists) ((p) - (execlists)->port)
259
260 /**
261 * @context_id: context ID for port
262 */
263 GEM_DEBUG_DECL(u32 context_id);
264
265 #define EXECLIST_MAX_PORTS 2
266 } port[EXECLIST_MAX_PORTS];
267
268 /**
269 * @active: is the HW active? We consider the HW as active after
270 * submitting any context for execution and until we have seen the
271 * last context completion event. After that, we do not expect any
272 * more events until we submit, and so can park the HW.
273 *
274 * As we have a small number of different sources from which we feed
275 * the HW, we track the state of each inside a single bitfield.
276 */
277 unsigned int active;
278 #define EXECLISTS_ACTIVE_USER 0
279 #define EXECLISTS_ACTIVE_PREEMPT 1
280 #define EXECLISTS_ACTIVE_HWACK 2
281
282 /**
283 * @port_mask: number of execlist ports - 1
284 */
285 unsigned int port_mask;
286
287 /**
288 * @queue_priority: Highest pending priority.
289 *
290 * When we add requests into the queue, or adjust the priority of
291 * executing requests, we compute the maximum priority of those
292 * pending requests. We can then use this value to determine if
293 * we need to preempt the executing requests to service the queue.
294 */
295 int queue_priority;
296
297 /**
298 * @queue: queue of requests, in priority lists
299 */
300 struct rb_root_cached queue;
301
302 /**
303 * @csb_read: control register for Context Switch buffer
304 *
305 * Note this register is always in mmio.
306 */
307 u32 __iomem *csb_read;
308
309 /**
310 * @csb_write: control register for Context Switch buffer
311 *
312 * Note this register may be either mmio or HWSP shadow.
313 */
314 u32 *csb_write;
315
316 /**
317 * @csb_status: status array for Context Switch buffer
318 *
319 * Note these register may be either mmio or HWSP shadow.
320 */
321 u32 *csb_status;
322
323 /**
324 * @preempt_complete_status: expected CSB upon completing preemption
325 */
326 u32 preempt_complete_status;
327
328 /**
329 * @csb_write_reset: reset value for CSB write pointer
330 *
331 * As the CSB write pointer maybe either in HWSP or as a field
332 * inside an mmio register, we want to reprogram it slightly
333 * differently to avoid later confusion.
334 */
335 u32 csb_write_reset;
336
337 /**
338 * @csb_head: context status buffer head
339 */
340 u8 csb_head;
341
342 I915_SELFTEST_DECLARE(struct st_preempt_hang preempt_hang;)
343 };
344
345 #define INTEL_ENGINE_CS_MAX_NAME 8
346
347 struct intel_engine_cs {
348 struct drm_i915_private *i915;
349 char name[INTEL_ENGINE_CS_MAX_NAME];
350
351 enum intel_engine_id id;
352 unsigned int hw_id;
353 unsigned int guc_id;
354
355 u8 uabi_id;
356 u8 uabi_class;
357
358 u8 class;
359 u8 instance;
360 u32 context_size;
361 u32 mmio_base;
362
363 struct intel_ring *buffer;
364
365 struct i915_timeline timeline;
366
367 struct drm_i915_gem_object *default_state;
368 void *pinned_default_state;
369
370 unsigned long irq_posted;
371 #define ENGINE_IRQ_BREADCRUMB 0
372
373 /* Rather than have every client wait upon all user interrupts,
374 * with the herd waking after every interrupt and each doing the
375 * heavyweight seqno dance, we delegate the task (of being the
376 * bottom-half of the user interrupt) to the first client. After
377 * every interrupt, we wake up one client, who does the heavyweight
378 * coherent seqno read and either goes back to sleep (if incomplete),
379 * or wakes up all the completed clients in parallel, before then
380 * transferring the bottom-half status to the next client in the queue.
381 *
382 * Compared to walking the entire list of waiters in a single dedicated
383 * bottom-half, we reduce the latency of the first waiter by avoiding
384 * a context switch, but incur additional coherent seqno reads when
385 * following the chain of request breadcrumbs. Since it is most likely
386 * that we have a single client waiting on each seqno, then reducing
387 * the overhead of waking that client is much preferred.
388 */
389 struct intel_breadcrumbs {
390 spinlock_t irq_lock; /* protects irq_*; irqsafe */
391 struct intel_wait *irq_wait; /* oldest waiter by retirement */
392
393 spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
394 struct rb_root waiters; /* sorted by retirement, priority */
395 struct list_head signals; /* sorted by retirement */
396 struct task_struct *signaler; /* used for fence signalling */
397
398 struct timer_list fake_irq; /* used after a missed interrupt */
399 struct timer_list hangcheck; /* detect missed interrupts */
400
401 unsigned int hangcheck_interrupts;
402 unsigned int irq_enabled;
403 unsigned int irq_count;
404
405 bool irq_armed : 1;
406 I915_SELFTEST_DECLARE(bool mock : 1);
407 } breadcrumbs;
408
409 struct {
410 /**
411 * @enable: Bitmask of enable sample events on this engine.
412 *
413 * Bits correspond to sample event types, for instance
414 * I915_SAMPLE_QUEUED is bit 0 etc.
415 */
416 u32 enable;
417 /**
418 * @enable_count: Reference count for the enabled samplers.
419 *
420 * Index number corresponds to the bit number from @enable.
421 */
422 unsigned int enable_count[I915_PMU_SAMPLE_BITS];
423 /**
424 * @sample: Counter values for sampling events.
425 *
426 * Our internal timer stores the current counters in this field.
427 */
428 #define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
429 struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
430 } pmu;
431
432 /*
433 * A pool of objects to use as shadow copies of client batch buffers
434 * when the command parser is enabled. Prevents the client from
435 * modifying the batch contents after software parsing.
436 */
437 struct i915_gem_batch_pool batch_pool;
438
439 struct intel_hw_status_page status_page;
440 struct i915_ctx_workarounds wa_ctx;
441 struct i915_vma *scratch;
442
443 u32 irq_keep_mask; /* always keep these interrupts */
444 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
445 void (*irq_enable)(struct intel_engine_cs *engine);
446 void (*irq_disable)(struct intel_engine_cs *engine);
447
448 int (*init_hw)(struct intel_engine_cs *engine);
449
450 struct {
451 struct i915_request *(*prepare)(struct intel_engine_cs *engine);
452 void (*reset)(struct intel_engine_cs *engine,
453 struct i915_request *rq);
454 void (*finish)(struct intel_engine_cs *engine);
455 } reset;
456
457 void (*park)(struct intel_engine_cs *engine);
458 void (*unpark)(struct intel_engine_cs *engine);
459
460 void (*set_default_submission)(struct intel_engine_cs *engine);
461
462 struct intel_context *(*context_pin)(struct intel_engine_cs *engine,
463 struct i915_gem_context *ctx);
464
465 int (*request_alloc)(struct i915_request *rq);
466 int (*init_context)(struct i915_request *rq);
467
468 int (*emit_flush)(struct i915_request *request, u32 mode);
469 #define EMIT_INVALIDATE BIT(0)
470 #define EMIT_FLUSH BIT(1)
471 #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
472 int (*emit_bb_start)(struct i915_request *rq,
473 u64 offset, u32 length,
474 unsigned int dispatch_flags);
475 #define I915_DISPATCH_SECURE BIT(0)
476 #define I915_DISPATCH_PINNED BIT(1)
477 #define I915_DISPATCH_RS BIT(2)
478 void (*emit_breadcrumb)(struct i915_request *rq, u32 *cs);
479 int emit_breadcrumb_sz;
480
481 /* Pass the request to the hardware queue (e.g. directly into
482 * the legacy ringbuffer or to the end of an execlist).
483 *
484 * This is called from an atomic context with irqs disabled; must
485 * be irq safe.
486 */
487 void (*submit_request)(struct i915_request *rq);
488
489 /* Call when the priority on a request has changed and it and its
490 * dependencies may need rescheduling. Note the request itself may
491 * not be ready to run!
492 *
493 * Called under the struct_mutex.
494 */
495 void (*schedule)(struct i915_request *request,
496 const struct i915_sched_attr *attr);
497
498 /*
499 * Cancel all requests on the hardware, or queued for execution.
500 * This should only cancel the ready requests that have been
501 * submitted to the engine (via the engine->submit_request callback).
502 * This is called when marking the device as wedged.
503 */
504 void (*cancel_requests)(struct intel_engine_cs *engine);
505
506 /* Some chipsets are not quite as coherent as advertised and need
507 * an expensive kick to force a true read of the up-to-date seqno.
508 * However, the up-to-date seqno is not always required and the last
509 * seen value is good enough. Note that the seqno will always be
510 * monotonic, even if not coherent.
511 */
512 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
513 void (*cleanup)(struct intel_engine_cs *engine);
514
515 /* GEN8 signal/wait table - never trust comments!
516 * signal to signal to signal to signal to signal to
517 * RCS VCS BCS VECS VCS2
518 * --------------------------------------------------------------------
519 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
520 * |-------------------------------------------------------------------
521 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
522 * |-------------------------------------------------------------------
523 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
524 * |-------------------------------------------------------------------
525 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
526 * |-------------------------------------------------------------------
527 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
528 * |-------------------------------------------------------------------
529 *
530 * Generalization:
531 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
532 * ie. transpose of g(x, y)
533 *
534 * sync from sync from sync from sync from sync from
535 * RCS VCS BCS VECS VCS2
536 * --------------------------------------------------------------------
537 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
538 * |-------------------------------------------------------------------
539 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
540 * |-------------------------------------------------------------------
541 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
542 * |-------------------------------------------------------------------
543 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
544 * |-------------------------------------------------------------------
545 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
546 * |-------------------------------------------------------------------
547 *
548 * Generalization:
549 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
550 * ie. transpose of f(x, y)
551 */
552 struct {
553 #define GEN6_SEMAPHORE_LAST VECS_HW
554 #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
555 #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
556 struct {
557 /* our mbox written by others */
558 u32 wait[GEN6_NUM_SEMAPHORES];
559 /* mboxes this ring signals to */
560 i915_reg_t signal[GEN6_NUM_SEMAPHORES];
561 } mbox;
562
563 /* AKA wait() */
564 int (*sync_to)(struct i915_request *rq,
565 struct i915_request *signal);
566 u32 *(*signal)(struct i915_request *rq, u32 *cs);
567 } semaphore;
568
569 struct intel_engine_execlists execlists;
570
571 /* Contexts are pinned whilst they are active on the GPU. The last
572 * context executed remains active whilst the GPU is idle - the
573 * switch away and write to the context object only occurs on the
574 * next execution. Contexts are only unpinned on retirement of the
575 * following request ensuring that we can always write to the object
576 * on the context switch even after idling. Across suspend, we switch
577 * to the kernel context and trash it as the save may not happen
578 * before the hardware is powered down.
579 */
580 struct intel_context *last_retired_context;
581
582 /* status_notifier: list of callbacks for context-switch changes */
583 struct atomic_notifier_head context_status_notifier;
584
585 struct intel_engine_hangcheck hangcheck;
586
587 #define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
588 #define I915_ENGINE_SUPPORTS_STATS BIT(1)
589 #define I915_ENGINE_HAS_PREEMPTION BIT(2)
590 unsigned int flags;
591
592 /*
593 * Table of commands the command parser needs to know about
594 * for this engine.
595 */
596 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
597
598 /*
599 * Table of registers allowed in commands that read/write registers.
600 */
601 const struct drm_i915_reg_table *reg_tables;
602 int reg_table_count;
603
604 /*
605 * Returns the bitmask for the length field of the specified command.
606 * Return 0 for an unrecognized/invalid command.
607 *
608 * If the command parser finds an entry for a command in the engine's
609 * cmd_tables, it gets the command's length based on the table entry.
610 * If not, it calls this function to determine the per-engine length
611 * field encoding for the command (i.e. different opcode ranges use
612 * certain bits to encode the command length in the header).
613 */
614 u32 (*get_cmd_length_mask)(u32 cmd_header);
615
616 struct {
617 /**
618 * @lock: Lock protecting the below fields.
619 */
620 seqlock_t lock;
621 /**
622 * @enabled: Reference count indicating number of listeners.
623 */
624 unsigned int enabled;
625 /**
626 * @active: Number of contexts currently scheduled in.
627 */
628 unsigned int active;
629 /**
630 * @enabled_at: Timestamp when busy stats were enabled.
631 */
632 ktime_t enabled_at;
633 /**
634 * @start: Timestamp of the last idle to active transition.
635 *
636 * Idle is defined as active == 0, active is active > 0.
637 */
638 ktime_t start;
639 /**
640 * @total: Total time this engine was busy.
641 *
642 * Accumulated time not counting the most recent block in cases
643 * where engine is currently busy (active > 0).
644 */
645 ktime_t total;
646 } stats;
647 };
648
649 static inline bool
intel_engine_needs_cmd_parser(const struct intel_engine_cs * engine)650 intel_engine_needs_cmd_parser(const struct intel_engine_cs *engine)
651 {
652 return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
653 }
654
655 static inline bool
intel_engine_supports_stats(const struct intel_engine_cs * engine)656 intel_engine_supports_stats(const struct intel_engine_cs *engine)
657 {
658 return engine->flags & I915_ENGINE_SUPPORTS_STATS;
659 }
660
661 static inline bool
intel_engine_has_preemption(const struct intel_engine_cs * engine)662 intel_engine_has_preemption(const struct intel_engine_cs *engine)
663 {
664 return engine->flags & I915_ENGINE_HAS_PREEMPTION;
665 }
666
__execlists_need_preempt(int prio,int last)667 static inline bool __execlists_need_preempt(int prio, int last)
668 {
669 return prio > max(0, last);
670 }
671
672 static inline void
execlists_set_active(struct intel_engine_execlists * execlists,unsigned int bit)673 execlists_set_active(struct intel_engine_execlists *execlists,
674 unsigned int bit)
675 {
676 __set_bit(bit, (unsigned long *)&execlists->active);
677 }
678
679 static inline bool
execlists_set_active_once(struct intel_engine_execlists * execlists,unsigned int bit)680 execlists_set_active_once(struct intel_engine_execlists *execlists,
681 unsigned int bit)
682 {
683 return !__test_and_set_bit(bit, (unsigned long *)&execlists->active);
684 }
685
686 static inline void
execlists_clear_active(struct intel_engine_execlists * execlists,unsigned int bit)687 execlists_clear_active(struct intel_engine_execlists *execlists,
688 unsigned int bit)
689 {
690 __clear_bit(bit, (unsigned long *)&execlists->active);
691 }
692
693 static inline void
execlists_clear_all_active(struct intel_engine_execlists * execlists)694 execlists_clear_all_active(struct intel_engine_execlists *execlists)
695 {
696 execlists->active = 0;
697 }
698
699 static inline bool
execlists_is_active(const struct intel_engine_execlists * execlists,unsigned int bit)700 execlists_is_active(const struct intel_engine_execlists *execlists,
701 unsigned int bit)
702 {
703 return test_bit(bit, (unsigned long *)&execlists->active);
704 }
705
706 void execlists_user_begin(struct intel_engine_execlists *execlists,
707 const struct execlist_port *port);
708 void execlists_user_end(struct intel_engine_execlists *execlists);
709
710 void
711 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
712
713 void
714 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
715
716 static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)717 execlists_num_ports(const struct intel_engine_execlists * const execlists)
718 {
719 return execlists->port_mask + 1;
720 }
721
722 static inline struct execlist_port *
execlists_port_complete(struct intel_engine_execlists * const execlists,struct execlist_port * const port)723 execlists_port_complete(struct intel_engine_execlists * const execlists,
724 struct execlist_port * const port)
725 {
726 const unsigned int m = execlists->port_mask;
727
728 GEM_BUG_ON(port_index(port, execlists) != 0);
729 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
730
731 memmove(port, port + 1, m * sizeof(struct execlist_port));
732 memset(port + m, 0, sizeof(struct execlist_port));
733
734 return port;
735 }
736
737 static inline unsigned int
intel_engine_flag(const struct intel_engine_cs * engine)738 intel_engine_flag(const struct intel_engine_cs *engine)
739 {
740 return BIT(engine->id);
741 }
742
743 static inline u32
intel_read_status_page(const struct intel_engine_cs * engine,int reg)744 intel_read_status_page(const struct intel_engine_cs *engine, int reg)
745 {
746 /* Ensure that the compiler doesn't optimize away the load. */
747 return READ_ONCE(engine->status_page.page_addr[reg]);
748 }
749
750 static inline void
intel_write_status_page(struct intel_engine_cs * engine,int reg,u32 value)751 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
752 {
753 /* Writing into the status page should be done sparingly. Since
754 * we do when we are uncertain of the device state, we take a bit
755 * of extra paranoia to try and ensure that the HWS takes the value
756 * we give and that it doesn't end up trapped inside the CPU!
757 */
758 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
759 mb();
760 clflush(&engine->status_page.page_addr[reg]);
761 engine->status_page.page_addr[reg] = value;
762 clflush(&engine->status_page.page_addr[reg]);
763 mb();
764 } else {
765 WRITE_ONCE(engine->status_page.page_addr[reg], value);
766 }
767 }
768
769 /*
770 * Reads a dword out of the status page, which is written to from the command
771 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
772 * MI_STORE_DATA_IMM.
773 *
774 * The following dwords have a reserved meaning:
775 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
776 * 0x04: ring 0 head pointer
777 * 0x05: ring 1 head pointer (915-class)
778 * 0x06: ring 2 head pointer (915-class)
779 * 0x10-0x1b: Context status DWords (GM45)
780 * 0x1f: Last written status offset. (GM45)
781 * 0x20-0x2f: Reserved (Gen6+)
782 *
783 * The area from dword 0x30 to 0x3ff is available for driver usage.
784 */
785 #define I915_GEM_HWS_INDEX 0x30
786 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
787 #define I915_GEM_HWS_PREEMPT_INDEX 0x32
788 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
789 #define I915_GEM_HWS_SCRATCH_INDEX 0x40
790 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
791
792 #define I915_HWS_CSB_BUF0_INDEX 0x10
793 #define I915_HWS_CSB_WRITE_INDEX 0x1f
794 #define CNL_HWS_CSB_WRITE_INDEX 0x2f
795
796 struct intel_ring *
797 intel_engine_create_ring(struct intel_engine_cs *engine,
798 struct i915_timeline *timeline,
799 int size);
800 int intel_ring_pin(struct intel_ring *ring,
801 struct drm_i915_private *i915,
802 unsigned int offset_bias);
803 void intel_ring_reset(struct intel_ring *ring, u32 tail);
804 unsigned int intel_ring_update_space(struct intel_ring *ring);
805 void intel_ring_unpin(struct intel_ring *ring);
806 void intel_ring_free(struct intel_ring *ring);
807
808 void intel_engine_stop(struct intel_engine_cs *engine);
809 void intel_engine_cleanup(struct intel_engine_cs *engine);
810
811 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
812
813 int __must_check intel_ring_cacheline_align(struct i915_request *rq);
814
815 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
816 u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
817
intel_ring_advance(struct i915_request * rq,u32 * cs)818 static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
819 {
820 /* Dummy function.
821 *
822 * This serves as a placeholder in the code so that the reader
823 * can compare against the preceding intel_ring_begin() and
824 * check that the number of dwords emitted matches the space
825 * reserved for the command packet (i.e. the value passed to
826 * intel_ring_begin()).
827 */
828 GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
829 }
830
intel_ring_wrap(const struct intel_ring * ring,u32 pos)831 static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
832 {
833 return pos & (ring->size - 1);
834 }
835
836 static inline bool
intel_ring_offset_valid(const struct intel_ring * ring,unsigned int pos)837 intel_ring_offset_valid(const struct intel_ring *ring,
838 unsigned int pos)
839 {
840 if (pos & -ring->size) /* must be strictly within the ring */
841 return false;
842
843 if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
844 return false;
845
846 return true;
847 }
848
intel_ring_offset(const struct i915_request * rq,void * addr)849 static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
850 {
851 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
852 u32 offset = addr - rq->ring->vaddr;
853 GEM_BUG_ON(offset > rq->ring->size);
854 return intel_ring_wrap(rq->ring, offset);
855 }
856
857 static inline void
assert_ring_tail_valid(const struct intel_ring * ring,unsigned int tail)858 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
859 {
860 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
861
862 /*
863 * "Ring Buffer Use"
864 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
865 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
866 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
867 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
868 * same cacheline, the Head Pointer must not be greater than the Tail
869 * Pointer."
870 *
871 * We use ring->head as the last known location of the actual RING_HEAD,
872 * it may have advanced but in the worst case it is equally the same
873 * as ring->head and so we should never program RING_TAIL to advance
874 * into the same cacheline as ring->head.
875 */
876 #define cacheline(a) round_down(a, CACHELINE_BYTES)
877 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
878 tail < ring->head);
879 #undef cacheline
880 }
881
882 static inline unsigned int
intel_ring_set_tail(struct intel_ring * ring,unsigned int tail)883 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
884 {
885 /* Whilst writes to the tail are strictly order, there is no
886 * serialisation between readers and the writers. The tail may be
887 * read by i915_request_retire() just as it is being updated
888 * by execlists, as although the breadcrumb is complete, the context
889 * switch hasn't been seen.
890 */
891 assert_ring_tail_valid(ring, tail);
892 ring->tail = tail;
893 return tail;
894 }
895
896 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
897
898 void intel_engine_setup_common(struct intel_engine_cs *engine);
899 int intel_engine_init_common(struct intel_engine_cs *engine);
900 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
901
902 int intel_engine_create_scratch(struct intel_engine_cs *engine,
903 unsigned int size);
904 void intel_engine_cleanup_scratch(struct intel_engine_cs *engine);
905
906 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
907 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
908 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
909 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
910
911 int intel_engine_stop_cs(struct intel_engine_cs *engine);
912
913 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
914 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
915
intel_engine_get_seqno(struct intel_engine_cs * engine)916 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
917 {
918 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
919 }
920
intel_engine_last_submit(struct intel_engine_cs * engine)921 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
922 {
923 /* We are only peeking at the tail of the submit queue (and not the
924 * queue itself) in order to gain a hint as to the current active
925 * state of the engine. Callers are not expected to be taking
926 * engine->timeline->lock, nor are they expected to be concerned
927 * wtih serialising this hint with anything, so document it as
928 * a hint and nothing more.
929 */
930 return READ_ONCE(engine->timeline.seqno);
931 }
932
933 void intel_engine_get_instdone(struct intel_engine_cs *engine,
934 struct intel_instdone *instdone);
935
936 /*
937 * Arbitrary size for largest possible 'add request' sequence. The code paths
938 * are complex and variable. Empirical measurement shows that the worst case
939 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
940 * we need to allocate double the largest single packet within that emission
941 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
942 */
943 #define MIN_SPACE_FOR_ADD_REQUEST 336
944
intel_hws_seqno_address(struct intel_engine_cs * engine)945 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
946 {
947 return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
948 }
949
intel_hws_preempt_done_address(struct intel_engine_cs * engine)950 static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
951 {
952 return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
953 }
954
955 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
956 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
957
intel_wait_init(struct intel_wait * wait)958 static inline void intel_wait_init(struct intel_wait *wait)
959 {
960 wait->tsk = current;
961 wait->request = NULL;
962 }
963
intel_wait_init_for_seqno(struct intel_wait * wait,u32 seqno)964 static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
965 {
966 wait->tsk = current;
967 wait->seqno = seqno;
968 }
969
intel_wait_has_seqno(const struct intel_wait * wait)970 static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
971 {
972 return wait->seqno;
973 }
974
975 static inline bool
intel_wait_update_seqno(struct intel_wait * wait,u32 seqno)976 intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
977 {
978 wait->seqno = seqno;
979 return intel_wait_has_seqno(wait);
980 }
981
982 static inline bool
intel_wait_update_request(struct intel_wait * wait,const struct i915_request * rq)983 intel_wait_update_request(struct intel_wait *wait,
984 const struct i915_request *rq)
985 {
986 return intel_wait_update_seqno(wait, i915_request_global_seqno(rq));
987 }
988
989 static inline bool
intel_wait_check_seqno(const struct intel_wait * wait,u32 seqno)990 intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
991 {
992 return wait->seqno == seqno;
993 }
994
995 static inline bool
intel_wait_check_request(const struct intel_wait * wait,const struct i915_request * rq)996 intel_wait_check_request(const struct intel_wait *wait,
997 const struct i915_request *rq)
998 {
999 return intel_wait_check_seqno(wait, i915_request_global_seqno(rq));
1000 }
1001
intel_wait_complete(const struct intel_wait * wait)1002 static inline bool intel_wait_complete(const struct intel_wait *wait)
1003 {
1004 return RB_EMPTY_NODE(&wait->node);
1005 }
1006
1007 bool intel_engine_add_wait(struct intel_engine_cs *engine,
1008 struct intel_wait *wait);
1009 void intel_engine_remove_wait(struct intel_engine_cs *engine,
1010 struct intel_wait *wait);
1011 bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup);
1012 void intel_engine_cancel_signaling(struct i915_request *request);
1013
intel_engine_has_waiter(const struct intel_engine_cs * engine)1014 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
1015 {
1016 return READ_ONCE(engine->breadcrumbs.irq_wait);
1017 }
1018
1019 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
1020 #define ENGINE_WAKEUP_WAITER BIT(0)
1021 #define ENGINE_WAKEUP_ASLEEP BIT(1)
1022
1023 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
1024 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
1025
1026 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
1027 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
1028
1029 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
1030 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
1031
gen8_emit_pipe_control(u32 * batch,u32 flags,u32 offset)1032 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
1033 {
1034 memset(batch, 0, 6 * sizeof(u32));
1035
1036 batch[0] = GFX_OP_PIPE_CONTROL(6);
1037 batch[1] = flags;
1038 batch[2] = offset;
1039
1040 return batch + 6;
1041 }
1042
1043 static inline u32 *
gen8_emit_ggtt_write_rcs(u32 * cs,u32 value,u32 gtt_offset)1044 gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
1045 {
1046 /* We're using qword write, offset should be aligned to 8 bytes. */
1047 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
1048
1049 /* w/a for post sync ops following a GPGPU operation we
1050 * need a prior CS_STALL, which is emitted by the flush
1051 * following the batch.
1052 */
1053 *cs++ = GFX_OP_PIPE_CONTROL(6);
1054 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1055 PIPE_CONTROL_QW_WRITE;
1056 *cs++ = gtt_offset;
1057 *cs++ = 0;
1058 *cs++ = value;
1059 /* We're thrashing one dword of HWS. */
1060 *cs++ = 0;
1061
1062 return cs;
1063 }
1064
1065 static inline u32 *
gen8_emit_ggtt_write(u32 * cs,u32 value,u32 gtt_offset)1066 gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
1067 {
1068 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1069 GEM_BUG_ON(gtt_offset & (1 << 5));
1070 /* Offset should be aligned to 8 bytes for both (QW/DW) write types */
1071 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
1072
1073 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1074 *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
1075 *cs++ = 0;
1076 *cs++ = value;
1077
1078 return cs;
1079 }
1080
1081 void intel_engines_sanitize(struct drm_i915_private *i915);
1082
1083 bool intel_engine_is_idle(struct intel_engine_cs *engine);
1084 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
1085
1086 bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
1087 void intel_engine_lost_context(struct intel_engine_cs *engine);
1088
1089 void intel_engines_park(struct drm_i915_private *i915);
1090 void intel_engines_unpark(struct drm_i915_private *i915);
1091
1092 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
1093 unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
1094
1095 bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
1096
1097 __printf(3, 4)
1098 void intel_engine_dump(struct intel_engine_cs *engine,
1099 struct drm_printer *m,
1100 const char *header, ...);
1101
1102 struct intel_engine_cs *
1103 intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);
1104
intel_engine_context_in(struct intel_engine_cs * engine)1105 static inline void intel_engine_context_in(struct intel_engine_cs *engine)
1106 {
1107 unsigned long flags;
1108
1109 if (READ_ONCE(engine->stats.enabled) == 0)
1110 return;
1111
1112 write_seqlock_irqsave(&engine->stats.lock, flags);
1113
1114 if (engine->stats.enabled > 0) {
1115 if (engine->stats.active++ == 0)
1116 engine->stats.start = ktime_get();
1117 GEM_BUG_ON(engine->stats.active == 0);
1118 }
1119
1120 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1121 }
1122
intel_engine_context_out(struct intel_engine_cs * engine)1123 static inline void intel_engine_context_out(struct intel_engine_cs *engine)
1124 {
1125 unsigned long flags;
1126
1127 if (READ_ONCE(engine->stats.enabled) == 0)
1128 return;
1129
1130 write_seqlock_irqsave(&engine->stats.lock, flags);
1131
1132 if (engine->stats.enabled > 0) {
1133 ktime_t last;
1134
1135 if (engine->stats.active && --engine->stats.active == 0) {
1136 /*
1137 * Decrement the active context count and in case GPU
1138 * is now idle add up to the running total.
1139 */
1140 last = ktime_sub(ktime_get(), engine->stats.start);
1141
1142 engine->stats.total = ktime_add(engine->stats.total,
1143 last);
1144 } else if (engine->stats.active == 0) {
1145 /*
1146 * After turning on engine stats, context out might be
1147 * the first event in which case we account from the
1148 * time stats gathering was turned on.
1149 */
1150 last = ktime_sub(ktime_get(), engine->stats.enabled_at);
1151
1152 engine->stats.total = ktime_add(engine->stats.total,
1153 last);
1154 }
1155 }
1156
1157 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1158 }
1159
1160 int intel_enable_engine_stats(struct intel_engine_cs *engine);
1161 void intel_disable_engine_stats(struct intel_engine_cs *engine);
1162
1163 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
1164
1165 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1166
inject_preempt_hang(struct intel_engine_execlists * execlists)1167 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
1168 {
1169 if (!execlists->preempt_hang.inject_hang)
1170 return false;
1171
1172 complete(&execlists->preempt_hang.completion);
1173 return true;
1174 }
1175
1176 #else
1177
inject_preempt_hang(struct intel_engine_execlists * execlists)1178 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
1179 {
1180 return false;
1181 }
1182
1183 #endif
1184
1185 #endif /* _INTEL_RINGBUFFER_H_ */
1186