1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pt.c: Intel Processor Trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/synthetic-events.h"
37 #include "time-utils.h"
38
39 #include "../arch/x86/include/uapi/asm/perf_regs.h"
40
41 #include "intel-pt-decoder/intel-pt-log.h"
42 #include "intel-pt-decoder/intel-pt-decoder.h"
43 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
44 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
45
46 #define MAX_TIMESTAMP (~0ULL)
47
48 struct range {
49 u64 start;
50 u64 end;
51 };
52
53 struct intel_pt {
54 struct auxtrace auxtrace;
55 struct auxtrace_queues queues;
56 struct auxtrace_heap heap;
57 u32 auxtrace_type;
58 struct perf_session *session;
59 struct machine *machine;
60 struct evsel *switch_evsel;
61 struct thread *unknown_thread;
62 bool timeless_decoding;
63 bool sampling_mode;
64 bool snapshot_mode;
65 bool per_cpu_mmaps;
66 bool have_tsc;
67 bool data_queued;
68 bool est_tsc;
69 bool sync_switch;
70 bool mispred_all;
71 int have_sched_switch;
72 u32 pmu_type;
73 u64 kernel_start;
74 u64 switch_ip;
75 u64 ptss_ip;
76
77 struct perf_tsc_conversion tc;
78 bool cap_user_time_zero;
79
80 struct itrace_synth_opts synth_opts;
81
82 bool sample_instructions;
83 u64 instructions_sample_type;
84 u64 instructions_id;
85
86 bool sample_branches;
87 u32 branches_filter;
88 u64 branches_sample_type;
89 u64 branches_id;
90
91 bool sample_transactions;
92 u64 transactions_sample_type;
93 u64 transactions_id;
94
95 bool sample_ptwrites;
96 u64 ptwrites_sample_type;
97 u64 ptwrites_id;
98
99 bool sample_pwr_events;
100 u64 pwr_events_sample_type;
101 u64 mwait_id;
102 u64 pwre_id;
103 u64 exstop_id;
104 u64 pwrx_id;
105 u64 cbr_id;
106
107 bool sample_pebs;
108 struct evsel *pebs_evsel;
109
110 u64 tsc_bit;
111 u64 mtc_bit;
112 u64 mtc_freq_bits;
113 u32 tsc_ctc_ratio_n;
114 u32 tsc_ctc_ratio_d;
115 u64 cyc_bit;
116 u64 noretcomp_bit;
117 unsigned max_non_turbo_ratio;
118 unsigned cbr2khz;
119
120 unsigned long num_events;
121
122 char *filter;
123 struct addr_filters filts;
124
125 struct range *time_ranges;
126 unsigned int range_cnt;
127 };
128
129 enum switch_state {
130 INTEL_PT_SS_NOT_TRACING,
131 INTEL_PT_SS_UNKNOWN,
132 INTEL_PT_SS_TRACING,
133 INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
134 INTEL_PT_SS_EXPECTING_SWITCH_IP,
135 };
136
137 struct intel_pt_queue {
138 struct intel_pt *pt;
139 unsigned int queue_nr;
140 struct auxtrace_buffer *buffer;
141 struct auxtrace_buffer *old_buffer;
142 void *decoder;
143 const struct intel_pt_state *state;
144 struct ip_callchain *chain;
145 struct branch_stack *last_branch;
146 struct branch_stack *last_branch_rb;
147 size_t last_branch_pos;
148 union perf_event *event_buf;
149 bool on_heap;
150 bool stop;
151 bool step_through_buffers;
152 bool use_buffer_pid_tid;
153 bool sync_switch;
154 pid_t pid, tid;
155 int cpu;
156 int switch_state;
157 pid_t next_tid;
158 struct thread *thread;
159 bool exclude_kernel;
160 bool have_sample;
161 u64 time;
162 u64 timestamp;
163 u64 sel_timestamp;
164 bool sel_start;
165 unsigned int sel_idx;
166 u32 flags;
167 u16 insn_len;
168 u64 last_insn_cnt;
169 u64 ipc_insn_cnt;
170 u64 ipc_cyc_cnt;
171 u64 last_in_insn_cnt;
172 u64 last_in_cyc_cnt;
173 u64 last_br_insn_cnt;
174 u64 last_br_cyc_cnt;
175 unsigned int cbr_seen;
176 char insn[INTEL_PT_INSN_BUF_SZ];
177 };
178
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)179 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
180 unsigned char *buf, size_t len)
181 {
182 struct intel_pt_pkt packet;
183 size_t pos = 0;
184 int ret, pkt_len, i;
185 char desc[INTEL_PT_PKT_DESC_MAX];
186 const char *color = PERF_COLOR_BLUE;
187 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
188
189 color_fprintf(stdout, color,
190 ". ... Intel Processor Trace data: size %zu bytes\n",
191 len);
192
193 while (len) {
194 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
195 if (ret > 0)
196 pkt_len = ret;
197 else
198 pkt_len = 1;
199 printf(".");
200 color_fprintf(stdout, color, " %08x: ", pos);
201 for (i = 0; i < pkt_len; i++)
202 color_fprintf(stdout, color, " %02x", buf[i]);
203 for (; i < 16; i++)
204 color_fprintf(stdout, color, " ");
205 if (ret > 0) {
206 ret = intel_pt_pkt_desc(&packet, desc,
207 INTEL_PT_PKT_DESC_MAX);
208 if (ret > 0)
209 color_fprintf(stdout, color, " %s\n", desc);
210 } else {
211 color_fprintf(stdout, color, " Bad packet!\n");
212 }
213 pos += pkt_len;
214 buf += pkt_len;
215 len -= pkt_len;
216 }
217 }
218
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)219 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
220 size_t len)
221 {
222 printf(".\n");
223 intel_pt_dump(pt, buf, len);
224 }
225
intel_pt_log_event(union perf_event * event)226 static void intel_pt_log_event(union perf_event *event)
227 {
228 FILE *f = intel_pt_log_fp();
229
230 if (!intel_pt_enable_logging || !f)
231 return;
232
233 perf_event__fprintf(event, f);
234 }
235
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)236 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
237 struct auxtrace_buffer *b)
238 {
239 bool consecutive = false;
240 void *start;
241
242 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
243 pt->have_tsc, &consecutive);
244 if (!start)
245 return -EINVAL;
246 b->use_size = b->data + b->size - start;
247 b->use_data = start;
248 if (b->use_size && consecutive)
249 b->consecutive = true;
250 return 0;
251 }
252
intel_pt_get_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer,struct auxtrace_buffer * old_buffer,struct intel_pt_buffer * b)253 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
254 struct auxtrace_buffer *buffer,
255 struct auxtrace_buffer *old_buffer,
256 struct intel_pt_buffer *b)
257 {
258 bool might_overlap;
259
260 if (!buffer->data) {
261 int fd = perf_data__fd(ptq->pt->session->data);
262
263 buffer->data = auxtrace_buffer__get_data(buffer, fd);
264 if (!buffer->data)
265 return -ENOMEM;
266 }
267
268 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
269 if (might_overlap && !buffer->consecutive && old_buffer &&
270 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
271 return -ENOMEM;
272
273 if (buffer->use_data) {
274 b->len = buffer->use_size;
275 b->buf = buffer->use_data;
276 } else {
277 b->len = buffer->size;
278 b->buf = buffer->data;
279 }
280 b->ref_timestamp = buffer->reference;
281
282 if (!old_buffer || (might_overlap && !buffer->consecutive)) {
283 b->consecutive = false;
284 b->trace_nr = buffer->buffer_nr + 1;
285 } else {
286 b->consecutive = true;
287 }
288
289 return 0;
290 }
291
292 /* Do not drop buffers with references - refer intel_pt_get_trace() */
intel_pt_lookahead_drop_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer)293 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
294 struct auxtrace_buffer *buffer)
295 {
296 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
297 return;
298
299 auxtrace_buffer__drop_data(buffer);
300 }
301
302 /* Must be serialized with respect to intel_pt_get_trace() */
intel_pt_lookahead(void * data,intel_pt_lookahead_cb_t cb,void * cb_data)303 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
304 void *cb_data)
305 {
306 struct intel_pt_queue *ptq = data;
307 struct auxtrace_buffer *buffer = ptq->buffer;
308 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
309 struct auxtrace_queue *queue;
310 int err = 0;
311
312 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
313
314 while (1) {
315 struct intel_pt_buffer b = { .len = 0 };
316
317 buffer = auxtrace_buffer__next(queue, buffer);
318 if (!buffer)
319 break;
320
321 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
322 if (err)
323 break;
324
325 if (b.len) {
326 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
327 old_buffer = buffer;
328 } else {
329 intel_pt_lookahead_drop_buffer(ptq, buffer);
330 continue;
331 }
332
333 err = cb(&b, cb_data);
334 if (err)
335 break;
336 }
337
338 if (buffer != old_buffer)
339 intel_pt_lookahead_drop_buffer(ptq, buffer);
340 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
341
342 return err;
343 }
344
345 /*
346 * This function assumes data is processed sequentially only.
347 * Must be serialized with respect to intel_pt_lookahead()
348 */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)349 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
350 {
351 struct intel_pt_queue *ptq = data;
352 struct auxtrace_buffer *buffer = ptq->buffer;
353 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
354 struct auxtrace_queue *queue;
355 int err;
356
357 if (ptq->stop) {
358 b->len = 0;
359 return 0;
360 }
361
362 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
363
364 buffer = auxtrace_buffer__next(queue, buffer);
365 if (!buffer) {
366 if (old_buffer)
367 auxtrace_buffer__drop_data(old_buffer);
368 b->len = 0;
369 return 0;
370 }
371
372 ptq->buffer = buffer;
373
374 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
375 if (err)
376 return err;
377
378 if (ptq->step_through_buffers)
379 ptq->stop = true;
380
381 if (b->len) {
382 if (old_buffer)
383 auxtrace_buffer__drop_data(old_buffer);
384 ptq->old_buffer = buffer;
385 } else {
386 auxtrace_buffer__drop_data(buffer);
387 return intel_pt_get_trace(b, data);
388 }
389
390 return 0;
391 }
392
393 struct intel_pt_cache_entry {
394 struct auxtrace_cache_entry entry;
395 u64 insn_cnt;
396 u64 byte_cnt;
397 enum intel_pt_insn_op op;
398 enum intel_pt_insn_branch branch;
399 int length;
400 int32_t rel;
401 char insn[INTEL_PT_INSN_BUF_SZ];
402 };
403
intel_pt_config_div(const char * var,const char * value,void * data)404 static int intel_pt_config_div(const char *var, const char *value, void *data)
405 {
406 int *d = data;
407 long val;
408
409 if (!strcmp(var, "intel-pt.cache-divisor")) {
410 val = strtol(value, NULL, 0);
411 if (val > 0 && val <= INT_MAX)
412 *d = val;
413 }
414
415 return 0;
416 }
417
intel_pt_cache_divisor(void)418 static int intel_pt_cache_divisor(void)
419 {
420 static int d;
421
422 if (d)
423 return d;
424
425 perf_config(intel_pt_config_div, &d);
426
427 if (!d)
428 d = 64;
429
430 return d;
431 }
432
intel_pt_cache_size(struct dso * dso,struct machine * machine)433 static unsigned int intel_pt_cache_size(struct dso *dso,
434 struct machine *machine)
435 {
436 off_t size;
437
438 size = dso__data_size(dso, machine);
439 size /= intel_pt_cache_divisor();
440 if (size < 1000)
441 return 10;
442 if (size > (1 << 21))
443 return 21;
444 return 32 - __builtin_clz(size);
445 }
446
intel_pt_cache(struct dso * dso,struct machine * machine)447 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
448 struct machine *machine)
449 {
450 struct auxtrace_cache *c;
451 unsigned int bits;
452
453 if (dso->auxtrace_cache)
454 return dso->auxtrace_cache;
455
456 bits = intel_pt_cache_size(dso, machine);
457
458 /* Ignoring cache creation failure */
459 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
460
461 dso->auxtrace_cache = c;
462
463 return c;
464 }
465
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)466 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
467 u64 offset, u64 insn_cnt, u64 byte_cnt,
468 struct intel_pt_insn *intel_pt_insn)
469 {
470 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
471 struct intel_pt_cache_entry *e;
472 int err;
473
474 if (!c)
475 return -ENOMEM;
476
477 e = auxtrace_cache__alloc_entry(c);
478 if (!e)
479 return -ENOMEM;
480
481 e->insn_cnt = insn_cnt;
482 e->byte_cnt = byte_cnt;
483 e->op = intel_pt_insn->op;
484 e->branch = intel_pt_insn->branch;
485 e->length = intel_pt_insn->length;
486 e->rel = intel_pt_insn->rel;
487 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
488
489 err = auxtrace_cache__add(c, offset, &e->entry);
490 if (err)
491 auxtrace_cache__free_entry(c, e);
492
493 return err;
494 }
495
496 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)497 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
498 {
499 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
500
501 if (!c)
502 return NULL;
503
504 return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
505 }
506
intel_pt_cpumode(struct intel_pt * pt,uint64_t ip)507 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
508 {
509 return ip >= pt->kernel_start ?
510 PERF_RECORD_MISC_KERNEL :
511 PERF_RECORD_MISC_USER;
512 }
513
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)514 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
515 uint64_t *insn_cnt_ptr, uint64_t *ip,
516 uint64_t to_ip, uint64_t max_insn_cnt,
517 void *data)
518 {
519 struct intel_pt_queue *ptq = data;
520 struct machine *machine = ptq->pt->machine;
521 struct thread *thread;
522 struct addr_location al;
523 unsigned char buf[INTEL_PT_INSN_BUF_SZ];
524 ssize_t len;
525 int x86_64;
526 u8 cpumode;
527 u64 offset, start_offset, start_ip;
528 u64 insn_cnt = 0;
529 bool one_map = true;
530
531 intel_pt_insn->length = 0;
532
533 if (to_ip && *ip == to_ip)
534 goto out_no_cache;
535
536 cpumode = intel_pt_cpumode(ptq->pt, *ip);
537
538 thread = ptq->thread;
539 if (!thread) {
540 if (cpumode != PERF_RECORD_MISC_KERNEL)
541 return -EINVAL;
542 thread = ptq->pt->unknown_thread;
543 }
544
545 while (1) {
546 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
547 return -EINVAL;
548
549 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
550 dso__data_status_seen(al.map->dso,
551 DSO_DATA_STATUS_SEEN_ITRACE))
552 return -ENOENT;
553
554 offset = al.map->map_ip(al.map, *ip);
555
556 if (!to_ip && one_map) {
557 struct intel_pt_cache_entry *e;
558
559 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
560 if (e &&
561 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
562 *insn_cnt_ptr = e->insn_cnt;
563 *ip += e->byte_cnt;
564 intel_pt_insn->op = e->op;
565 intel_pt_insn->branch = e->branch;
566 intel_pt_insn->length = e->length;
567 intel_pt_insn->rel = e->rel;
568 memcpy(intel_pt_insn->buf, e->insn,
569 INTEL_PT_INSN_BUF_SZ);
570 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
571 return 0;
572 }
573 }
574
575 start_offset = offset;
576 start_ip = *ip;
577
578 /* Load maps to ensure dso->is_64_bit has been updated */
579 map__load(al.map);
580
581 x86_64 = al.map->dso->is_64_bit;
582
583 while (1) {
584 len = dso__data_read_offset(al.map->dso, machine,
585 offset, buf,
586 INTEL_PT_INSN_BUF_SZ);
587 if (len <= 0)
588 return -EINVAL;
589
590 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
591 return -EINVAL;
592
593 intel_pt_log_insn(intel_pt_insn, *ip);
594
595 insn_cnt += 1;
596
597 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
598 goto out;
599
600 if (max_insn_cnt && insn_cnt >= max_insn_cnt)
601 goto out_no_cache;
602
603 *ip += intel_pt_insn->length;
604
605 if (to_ip && *ip == to_ip)
606 goto out_no_cache;
607
608 if (*ip >= al.map->end)
609 break;
610
611 offset += intel_pt_insn->length;
612 }
613 one_map = false;
614 }
615 out:
616 *insn_cnt_ptr = insn_cnt;
617
618 if (!one_map)
619 goto out_no_cache;
620
621 /*
622 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
623 * entries.
624 */
625 if (to_ip) {
626 struct intel_pt_cache_entry *e;
627
628 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
629 if (e)
630 return 0;
631 }
632
633 /* Ignore cache errors */
634 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
635 *ip - start_ip, intel_pt_insn);
636
637 return 0;
638
639 out_no_cache:
640 *insn_cnt_ptr = insn_cnt;
641 return 0;
642 }
643
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)644 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
645 uint64_t offset, const char *filename)
646 {
647 struct addr_filter *filt;
648 bool have_filter = false;
649 bool hit_tracestop = false;
650 bool hit_filter = false;
651
652 list_for_each_entry(filt, &pt->filts.head, list) {
653 if (filt->start)
654 have_filter = true;
655
656 if ((filename && !filt->filename) ||
657 (!filename && filt->filename) ||
658 (filename && strcmp(filename, filt->filename)))
659 continue;
660
661 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
662 continue;
663
664 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
665 ip, offset, filename ? filename : "[kernel]",
666 filt->start ? "filter" : "stop",
667 filt->addr, filt->size);
668
669 if (filt->start)
670 hit_filter = true;
671 else
672 hit_tracestop = true;
673 }
674
675 if (!hit_tracestop && !hit_filter)
676 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
677 ip, offset, filename ? filename : "[kernel]");
678
679 return hit_tracestop || (have_filter && !hit_filter);
680 }
681
__intel_pt_pgd_ip(uint64_t ip,void * data)682 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
683 {
684 struct intel_pt_queue *ptq = data;
685 struct thread *thread;
686 struct addr_location al;
687 u8 cpumode;
688 u64 offset;
689
690 if (ip >= ptq->pt->kernel_start)
691 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
692
693 cpumode = PERF_RECORD_MISC_USER;
694
695 thread = ptq->thread;
696 if (!thread)
697 return -EINVAL;
698
699 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
700 return -EINVAL;
701
702 offset = al.map->map_ip(al.map, ip);
703
704 return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
705 al.map->dso->long_name);
706 }
707
intel_pt_pgd_ip(uint64_t ip,void * data)708 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
709 {
710 return __intel_pt_pgd_ip(ip, data) > 0;
711 }
712
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)713 static bool intel_pt_get_config(struct intel_pt *pt,
714 struct perf_event_attr *attr, u64 *config)
715 {
716 if (attr->type == pt->pmu_type) {
717 if (config)
718 *config = attr->config;
719 return true;
720 }
721
722 return false;
723 }
724
intel_pt_exclude_kernel(struct intel_pt * pt)725 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
726 {
727 struct evsel *evsel;
728
729 evlist__for_each_entry(pt->session->evlist, evsel) {
730 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
731 !evsel->core.attr.exclude_kernel)
732 return false;
733 }
734 return true;
735 }
736
intel_pt_return_compression(struct intel_pt * pt)737 static bool intel_pt_return_compression(struct intel_pt *pt)
738 {
739 struct evsel *evsel;
740 u64 config;
741
742 if (!pt->noretcomp_bit)
743 return true;
744
745 evlist__for_each_entry(pt->session->evlist, evsel) {
746 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
747 (config & pt->noretcomp_bit))
748 return false;
749 }
750 return true;
751 }
752
intel_pt_branch_enable(struct intel_pt * pt)753 static bool intel_pt_branch_enable(struct intel_pt *pt)
754 {
755 struct evsel *evsel;
756 u64 config;
757
758 evlist__for_each_entry(pt->session->evlist, evsel) {
759 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
760 (config & 1) && !(config & 0x2000))
761 return false;
762 }
763 return true;
764 }
765
intel_pt_mtc_period(struct intel_pt * pt)766 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
767 {
768 struct evsel *evsel;
769 unsigned int shift;
770 u64 config;
771
772 if (!pt->mtc_freq_bits)
773 return 0;
774
775 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
776 config >>= 1;
777
778 evlist__for_each_entry(pt->session->evlist, evsel) {
779 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
780 return (config & pt->mtc_freq_bits) >> shift;
781 }
782 return 0;
783 }
784
intel_pt_timeless_decoding(struct intel_pt * pt)785 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
786 {
787 struct evsel *evsel;
788 bool timeless_decoding = true;
789 u64 config;
790
791 if (!pt->tsc_bit || !pt->cap_user_time_zero)
792 return true;
793
794 evlist__for_each_entry(pt->session->evlist, evsel) {
795 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
796 return true;
797 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
798 if (config & pt->tsc_bit)
799 timeless_decoding = false;
800 else
801 return true;
802 }
803 }
804 return timeless_decoding;
805 }
806
intel_pt_tracing_kernel(struct intel_pt * pt)807 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
808 {
809 struct evsel *evsel;
810
811 evlist__for_each_entry(pt->session->evlist, evsel) {
812 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
813 !evsel->core.attr.exclude_kernel)
814 return true;
815 }
816 return false;
817 }
818
intel_pt_have_tsc(struct intel_pt * pt)819 static bool intel_pt_have_tsc(struct intel_pt *pt)
820 {
821 struct evsel *evsel;
822 bool have_tsc = false;
823 u64 config;
824
825 if (!pt->tsc_bit)
826 return false;
827
828 evlist__for_each_entry(pt->session->evlist, evsel) {
829 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
830 if (config & pt->tsc_bit)
831 have_tsc = true;
832 else
833 return false;
834 }
835 }
836 return have_tsc;
837 }
838
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)839 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
840 {
841 u64 quot, rem;
842
843 quot = ns / pt->tc.time_mult;
844 rem = ns % pt->tc.time_mult;
845 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
846 pt->tc.time_mult;
847 }
848
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)849 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
850 unsigned int queue_nr)
851 {
852 struct intel_pt_params params = { .get_trace = 0, };
853 struct perf_env *env = pt->machine->env;
854 struct intel_pt_queue *ptq;
855
856 ptq = zalloc(sizeof(struct intel_pt_queue));
857 if (!ptq)
858 return NULL;
859
860 if (pt->synth_opts.callchain) {
861 size_t sz = sizeof(struct ip_callchain);
862
863 /* Add 1 to callchain_sz for callchain context */
864 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
865 ptq->chain = zalloc(sz);
866 if (!ptq->chain)
867 goto out_free;
868 }
869
870 if (pt->synth_opts.last_branch) {
871 size_t sz = sizeof(struct branch_stack);
872
873 sz += pt->synth_opts.last_branch_sz *
874 sizeof(struct branch_entry);
875 ptq->last_branch = zalloc(sz);
876 if (!ptq->last_branch)
877 goto out_free;
878 ptq->last_branch_rb = zalloc(sz);
879 if (!ptq->last_branch_rb)
880 goto out_free;
881 }
882
883 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
884 if (!ptq->event_buf)
885 goto out_free;
886
887 ptq->pt = pt;
888 ptq->queue_nr = queue_nr;
889 ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
890 ptq->pid = -1;
891 ptq->tid = -1;
892 ptq->cpu = -1;
893 ptq->next_tid = -1;
894
895 params.get_trace = intel_pt_get_trace;
896 params.walk_insn = intel_pt_walk_next_insn;
897 params.lookahead = intel_pt_lookahead;
898 params.data = ptq;
899 params.return_compression = intel_pt_return_compression(pt);
900 params.branch_enable = intel_pt_branch_enable(pt);
901 params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
902 params.mtc_period = intel_pt_mtc_period(pt);
903 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
904 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
905
906 if (pt->filts.cnt > 0)
907 params.pgd_ip = intel_pt_pgd_ip;
908
909 if (pt->synth_opts.instructions) {
910 if (pt->synth_opts.period) {
911 switch (pt->synth_opts.period_type) {
912 case PERF_ITRACE_PERIOD_INSTRUCTIONS:
913 params.period_type =
914 INTEL_PT_PERIOD_INSTRUCTIONS;
915 params.period = pt->synth_opts.period;
916 break;
917 case PERF_ITRACE_PERIOD_TICKS:
918 params.period_type = INTEL_PT_PERIOD_TICKS;
919 params.period = pt->synth_opts.period;
920 break;
921 case PERF_ITRACE_PERIOD_NANOSECS:
922 params.period_type = INTEL_PT_PERIOD_TICKS;
923 params.period = intel_pt_ns_to_ticks(pt,
924 pt->synth_opts.period);
925 break;
926 default:
927 break;
928 }
929 }
930
931 if (!params.period) {
932 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
933 params.period = 1;
934 }
935 }
936
937 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
938 params.flags |= INTEL_PT_FUP_WITH_NLIP;
939
940 ptq->decoder = intel_pt_decoder_new(¶ms);
941 if (!ptq->decoder)
942 goto out_free;
943
944 return ptq;
945
946 out_free:
947 zfree(&ptq->event_buf);
948 zfree(&ptq->last_branch);
949 zfree(&ptq->last_branch_rb);
950 zfree(&ptq->chain);
951 free(ptq);
952 return NULL;
953 }
954
intel_pt_free_queue(void * priv)955 static void intel_pt_free_queue(void *priv)
956 {
957 struct intel_pt_queue *ptq = priv;
958
959 if (!ptq)
960 return;
961 thread__zput(ptq->thread);
962 intel_pt_decoder_free(ptq->decoder);
963 zfree(&ptq->event_buf);
964 zfree(&ptq->last_branch);
965 zfree(&ptq->last_branch_rb);
966 zfree(&ptq->chain);
967 free(ptq);
968 }
969
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)970 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
971 struct auxtrace_queue *queue)
972 {
973 struct intel_pt_queue *ptq = queue->priv;
974
975 if (queue->tid == -1 || pt->have_sched_switch) {
976 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
977 thread__zput(ptq->thread);
978 }
979
980 if (!ptq->thread && ptq->tid != -1)
981 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
982
983 if (ptq->thread) {
984 ptq->pid = ptq->thread->pid_;
985 if (queue->cpu == -1)
986 ptq->cpu = ptq->thread->cpu;
987 }
988 }
989
intel_pt_sample_flags(struct intel_pt_queue * ptq)990 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
991 {
992 if (ptq->state->flags & INTEL_PT_ABORT_TX) {
993 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
994 } else if (ptq->state->flags & INTEL_PT_ASYNC) {
995 if (ptq->state->to_ip)
996 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
997 PERF_IP_FLAG_ASYNC |
998 PERF_IP_FLAG_INTERRUPT;
999 else
1000 ptq->flags = PERF_IP_FLAG_BRANCH |
1001 PERF_IP_FLAG_TRACE_END;
1002 ptq->insn_len = 0;
1003 } else {
1004 if (ptq->state->from_ip)
1005 ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1006 else
1007 ptq->flags = PERF_IP_FLAG_BRANCH |
1008 PERF_IP_FLAG_TRACE_BEGIN;
1009 if (ptq->state->flags & INTEL_PT_IN_TX)
1010 ptq->flags |= PERF_IP_FLAG_IN_TX;
1011 ptq->insn_len = ptq->state->insn_len;
1012 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1013 }
1014
1015 if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1016 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1017 if (ptq->state->type & INTEL_PT_TRACE_END)
1018 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1019 }
1020
intel_pt_setup_time_range(struct intel_pt * pt,struct intel_pt_queue * ptq)1021 static void intel_pt_setup_time_range(struct intel_pt *pt,
1022 struct intel_pt_queue *ptq)
1023 {
1024 if (!pt->range_cnt)
1025 return;
1026
1027 ptq->sel_timestamp = pt->time_ranges[0].start;
1028 ptq->sel_idx = 0;
1029
1030 if (ptq->sel_timestamp) {
1031 ptq->sel_start = true;
1032 } else {
1033 ptq->sel_timestamp = pt->time_ranges[0].end;
1034 ptq->sel_start = false;
1035 }
1036 }
1037
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)1038 static int intel_pt_setup_queue(struct intel_pt *pt,
1039 struct auxtrace_queue *queue,
1040 unsigned int queue_nr)
1041 {
1042 struct intel_pt_queue *ptq = queue->priv;
1043
1044 if (list_empty(&queue->head))
1045 return 0;
1046
1047 if (!ptq) {
1048 ptq = intel_pt_alloc_queue(pt, queue_nr);
1049 if (!ptq)
1050 return -ENOMEM;
1051 queue->priv = ptq;
1052
1053 if (queue->cpu != -1)
1054 ptq->cpu = queue->cpu;
1055 ptq->tid = queue->tid;
1056
1057 ptq->cbr_seen = UINT_MAX;
1058
1059 if (pt->sampling_mode && !pt->snapshot_mode &&
1060 pt->timeless_decoding)
1061 ptq->step_through_buffers = true;
1062
1063 ptq->sync_switch = pt->sync_switch;
1064
1065 intel_pt_setup_time_range(pt, ptq);
1066 }
1067
1068 if (!ptq->on_heap &&
1069 (!ptq->sync_switch ||
1070 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1071 const struct intel_pt_state *state;
1072 int ret;
1073
1074 if (pt->timeless_decoding)
1075 return 0;
1076
1077 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1078 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1079 queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1080
1081 if (ptq->sel_start && ptq->sel_timestamp) {
1082 ret = intel_pt_fast_forward(ptq->decoder,
1083 ptq->sel_timestamp);
1084 if (ret)
1085 return ret;
1086 }
1087
1088 while (1) {
1089 state = intel_pt_decode(ptq->decoder);
1090 if (state->err) {
1091 if (state->err == INTEL_PT_ERR_NODATA) {
1092 intel_pt_log("queue %u has no timestamp\n",
1093 queue_nr);
1094 return 0;
1095 }
1096 continue;
1097 }
1098 if (state->timestamp)
1099 break;
1100 }
1101
1102 ptq->timestamp = state->timestamp;
1103 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1104 queue_nr, ptq->timestamp);
1105 ptq->state = state;
1106 ptq->have_sample = true;
1107 if (ptq->sel_start && ptq->sel_timestamp &&
1108 ptq->timestamp < ptq->sel_timestamp)
1109 ptq->have_sample = false;
1110 intel_pt_sample_flags(ptq);
1111 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1112 if (ret)
1113 return ret;
1114 ptq->on_heap = true;
1115 }
1116
1117 return 0;
1118 }
1119
intel_pt_setup_queues(struct intel_pt * pt)1120 static int intel_pt_setup_queues(struct intel_pt *pt)
1121 {
1122 unsigned int i;
1123 int ret;
1124
1125 for (i = 0; i < pt->queues.nr_queues; i++) {
1126 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1127 if (ret)
1128 return ret;
1129 }
1130 return 0;
1131 }
1132
intel_pt_copy_last_branch_rb(struct intel_pt_queue * ptq)1133 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
1134 {
1135 struct branch_stack *bs_src = ptq->last_branch_rb;
1136 struct branch_stack *bs_dst = ptq->last_branch;
1137 size_t nr = 0;
1138
1139 bs_dst->nr = bs_src->nr;
1140
1141 if (!bs_src->nr)
1142 return;
1143
1144 nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1145 memcpy(&bs_dst->entries[0],
1146 &bs_src->entries[ptq->last_branch_pos],
1147 sizeof(struct branch_entry) * nr);
1148
1149 if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1150 memcpy(&bs_dst->entries[nr],
1151 &bs_src->entries[0],
1152 sizeof(struct branch_entry) * ptq->last_branch_pos);
1153 }
1154 }
1155
intel_pt_reset_last_branch_rb(struct intel_pt_queue * ptq)1156 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1157 {
1158 ptq->last_branch_pos = 0;
1159 ptq->last_branch_rb->nr = 0;
1160 }
1161
intel_pt_update_last_branch_rb(struct intel_pt_queue * ptq)1162 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1163 {
1164 const struct intel_pt_state *state = ptq->state;
1165 struct branch_stack *bs = ptq->last_branch_rb;
1166 struct branch_entry *be;
1167
1168 if (!ptq->last_branch_pos)
1169 ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1170
1171 ptq->last_branch_pos -= 1;
1172
1173 be = &bs->entries[ptq->last_branch_pos];
1174 be->from = state->from_ip;
1175 be->to = state->to_ip;
1176 be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1177 be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1178 /* No support for mispredict */
1179 be->flags.mispred = ptq->pt->mispred_all;
1180
1181 if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1182 bs->nr += 1;
1183 }
1184
intel_pt_skip_event(struct intel_pt * pt)1185 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1186 {
1187 return pt->synth_opts.initial_skip &&
1188 pt->num_events++ < pt->synth_opts.initial_skip;
1189 }
1190
1191 /*
1192 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1193 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1194 * from this decoder state.
1195 */
intel_pt_skip_cbr_event(struct intel_pt * pt)1196 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1197 {
1198 return pt->synth_opts.initial_skip &&
1199 pt->num_events + 4 < pt->synth_opts.initial_skip;
1200 }
1201
intel_pt_prep_a_sample(struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1202 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1203 union perf_event *event,
1204 struct perf_sample *sample)
1205 {
1206 event->sample.header.type = PERF_RECORD_SAMPLE;
1207 event->sample.header.size = sizeof(struct perf_event_header);
1208
1209 sample->pid = ptq->pid;
1210 sample->tid = ptq->tid;
1211 sample->cpu = ptq->cpu;
1212 sample->insn_len = ptq->insn_len;
1213 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1214 }
1215
intel_pt_prep_b_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1216 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1217 struct intel_pt_queue *ptq,
1218 union perf_event *event,
1219 struct perf_sample *sample)
1220 {
1221 intel_pt_prep_a_sample(ptq, event, sample);
1222
1223 if (!pt->timeless_decoding)
1224 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1225
1226 sample->ip = ptq->state->from_ip;
1227 sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1228 sample->addr = ptq->state->to_ip;
1229 sample->period = 1;
1230 sample->flags = ptq->flags;
1231
1232 event->sample.header.misc = sample->cpumode;
1233 }
1234
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1235 static int intel_pt_inject_event(union perf_event *event,
1236 struct perf_sample *sample, u64 type)
1237 {
1238 event->header.size = perf_event__sample_event_size(sample, type, 0);
1239 return perf_event__synthesize_sample(event, type, 0, sample);
1240 }
1241
intel_pt_opt_inject(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1242 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1243 union perf_event *event,
1244 struct perf_sample *sample, u64 type)
1245 {
1246 if (!pt->synth_opts.inject)
1247 return 0;
1248
1249 return intel_pt_inject_event(event, sample, type);
1250 }
1251
intel_pt_deliver_synth_b_event(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1252 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1253 union perf_event *event,
1254 struct perf_sample *sample, u64 type)
1255 {
1256 int ret;
1257
1258 ret = intel_pt_opt_inject(pt, event, sample, type);
1259 if (ret)
1260 return ret;
1261
1262 ret = perf_session__deliver_synth_event(pt->session, event, sample);
1263 if (ret)
1264 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1265
1266 return ret;
1267 }
1268
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1269 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1270 {
1271 struct intel_pt *pt = ptq->pt;
1272 union perf_event *event = ptq->event_buf;
1273 struct perf_sample sample = { .ip = 0, };
1274 struct dummy_branch_stack {
1275 u64 nr;
1276 struct branch_entry entries;
1277 } dummy_bs;
1278
1279 if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1280 return 0;
1281
1282 if (intel_pt_skip_event(pt))
1283 return 0;
1284
1285 intel_pt_prep_b_sample(pt, ptq, event, &sample);
1286
1287 sample.id = ptq->pt->branches_id;
1288 sample.stream_id = ptq->pt->branches_id;
1289
1290 /*
1291 * perf report cannot handle events without a branch stack when using
1292 * SORT_MODE__BRANCH so make a dummy one.
1293 */
1294 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1295 dummy_bs = (struct dummy_branch_stack){
1296 .nr = 1,
1297 .entries = {
1298 .from = sample.ip,
1299 .to = sample.addr,
1300 },
1301 };
1302 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1303 }
1304
1305 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1306 if (sample.cyc_cnt) {
1307 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1308 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1309 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1310 }
1311
1312 return intel_pt_deliver_synth_b_event(pt, event, &sample,
1313 pt->branches_sample_type);
1314 }
1315
intel_pt_prep_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1316 static void intel_pt_prep_sample(struct intel_pt *pt,
1317 struct intel_pt_queue *ptq,
1318 union perf_event *event,
1319 struct perf_sample *sample)
1320 {
1321 intel_pt_prep_b_sample(pt, ptq, event, sample);
1322
1323 if (pt->synth_opts.callchain) {
1324 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1325 pt->synth_opts.callchain_sz + 1,
1326 sample->ip, pt->kernel_start);
1327 sample->callchain = ptq->chain;
1328 }
1329
1330 if (pt->synth_opts.last_branch) {
1331 intel_pt_copy_last_branch_rb(ptq);
1332 sample->branch_stack = ptq->last_branch;
1333 }
1334 }
1335
intel_pt_deliver_synth_event(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample,u64 type)1336 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1337 struct intel_pt_queue *ptq,
1338 union perf_event *event,
1339 struct perf_sample *sample,
1340 u64 type)
1341 {
1342 int ret;
1343
1344 ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1345
1346 if (pt->synth_opts.last_branch)
1347 intel_pt_reset_last_branch_rb(ptq);
1348
1349 return ret;
1350 }
1351
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1352 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1353 {
1354 struct intel_pt *pt = ptq->pt;
1355 union perf_event *event = ptq->event_buf;
1356 struct perf_sample sample = { .ip = 0, };
1357
1358 if (intel_pt_skip_event(pt))
1359 return 0;
1360
1361 intel_pt_prep_sample(pt, ptq, event, &sample);
1362
1363 sample.id = ptq->pt->instructions_id;
1364 sample.stream_id = ptq->pt->instructions_id;
1365 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1366
1367 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1368 if (sample.cyc_cnt) {
1369 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1370 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1371 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1372 }
1373
1374 ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1375
1376 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1377 pt->instructions_sample_type);
1378 }
1379
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1380 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1381 {
1382 struct intel_pt *pt = ptq->pt;
1383 union perf_event *event = ptq->event_buf;
1384 struct perf_sample sample = { .ip = 0, };
1385
1386 if (intel_pt_skip_event(pt))
1387 return 0;
1388
1389 intel_pt_prep_sample(pt, ptq, event, &sample);
1390
1391 sample.id = ptq->pt->transactions_id;
1392 sample.stream_id = ptq->pt->transactions_id;
1393
1394 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1395 pt->transactions_sample_type);
1396 }
1397
intel_pt_prep_p_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1398 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1399 struct intel_pt_queue *ptq,
1400 union perf_event *event,
1401 struct perf_sample *sample)
1402 {
1403 intel_pt_prep_sample(pt, ptq, event, sample);
1404
1405 /*
1406 * Zero IP is used to mean "trace start" but that is not the case for
1407 * power or PTWRITE events with no IP, so clear the flags.
1408 */
1409 if (!sample->ip)
1410 sample->flags = 0;
1411 }
1412
intel_pt_synth_ptwrite_sample(struct intel_pt_queue * ptq)1413 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1414 {
1415 struct intel_pt *pt = ptq->pt;
1416 union perf_event *event = ptq->event_buf;
1417 struct perf_sample sample = { .ip = 0, };
1418 struct perf_synth_intel_ptwrite raw;
1419
1420 if (intel_pt_skip_event(pt))
1421 return 0;
1422
1423 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1424
1425 sample.id = ptq->pt->ptwrites_id;
1426 sample.stream_id = ptq->pt->ptwrites_id;
1427
1428 raw.flags = 0;
1429 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1430 raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1431
1432 sample.raw_size = perf_synth__raw_size(raw);
1433 sample.raw_data = perf_synth__raw_data(&raw);
1434
1435 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1436 pt->ptwrites_sample_type);
1437 }
1438
intel_pt_synth_cbr_sample(struct intel_pt_queue * ptq)1439 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1440 {
1441 struct intel_pt *pt = ptq->pt;
1442 union perf_event *event = ptq->event_buf;
1443 struct perf_sample sample = { .ip = 0, };
1444 struct perf_synth_intel_cbr raw;
1445 u32 flags;
1446
1447 if (intel_pt_skip_cbr_event(pt))
1448 return 0;
1449
1450 ptq->cbr_seen = ptq->state->cbr;
1451
1452 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1453
1454 sample.id = ptq->pt->cbr_id;
1455 sample.stream_id = ptq->pt->cbr_id;
1456
1457 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1458 raw.flags = cpu_to_le32(flags);
1459 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1460 raw.reserved3 = 0;
1461
1462 sample.raw_size = perf_synth__raw_size(raw);
1463 sample.raw_data = perf_synth__raw_data(&raw);
1464
1465 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1466 pt->pwr_events_sample_type);
1467 }
1468
intel_pt_synth_mwait_sample(struct intel_pt_queue * ptq)1469 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1470 {
1471 struct intel_pt *pt = ptq->pt;
1472 union perf_event *event = ptq->event_buf;
1473 struct perf_sample sample = { .ip = 0, };
1474 struct perf_synth_intel_mwait raw;
1475
1476 if (intel_pt_skip_event(pt))
1477 return 0;
1478
1479 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1480
1481 sample.id = ptq->pt->mwait_id;
1482 sample.stream_id = ptq->pt->mwait_id;
1483
1484 raw.reserved = 0;
1485 raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1486
1487 sample.raw_size = perf_synth__raw_size(raw);
1488 sample.raw_data = perf_synth__raw_data(&raw);
1489
1490 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1491 pt->pwr_events_sample_type);
1492 }
1493
intel_pt_synth_pwre_sample(struct intel_pt_queue * ptq)1494 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1495 {
1496 struct intel_pt *pt = ptq->pt;
1497 union perf_event *event = ptq->event_buf;
1498 struct perf_sample sample = { .ip = 0, };
1499 struct perf_synth_intel_pwre raw;
1500
1501 if (intel_pt_skip_event(pt))
1502 return 0;
1503
1504 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1505
1506 sample.id = ptq->pt->pwre_id;
1507 sample.stream_id = ptq->pt->pwre_id;
1508
1509 raw.reserved = 0;
1510 raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1511
1512 sample.raw_size = perf_synth__raw_size(raw);
1513 sample.raw_data = perf_synth__raw_data(&raw);
1514
1515 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1516 pt->pwr_events_sample_type);
1517 }
1518
intel_pt_synth_exstop_sample(struct intel_pt_queue * ptq)1519 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1520 {
1521 struct intel_pt *pt = ptq->pt;
1522 union perf_event *event = ptq->event_buf;
1523 struct perf_sample sample = { .ip = 0, };
1524 struct perf_synth_intel_exstop raw;
1525
1526 if (intel_pt_skip_event(pt))
1527 return 0;
1528
1529 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1530
1531 sample.id = ptq->pt->exstop_id;
1532 sample.stream_id = ptq->pt->exstop_id;
1533
1534 raw.flags = 0;
1535 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1536
1537 sample.raw_size = perf_synth__raw_size(raw);
1538 sample.raw_data = perf_synth__raw_data(&raw);
1539
1540 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1541 pt->pwr_events_sample_type);
1542 }
1543
intel_pt_synth_pwrx_sample(struct intel_pt_queue * ptq)1544 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1545 {
1546 struct intel_pt *pt = ptq->pt;
1547 union perf_event *event = ptq->event_buf;
1548 struct perf_sample sample = { .ip = 0, };
1549 struct perf_synth_intel_pwrx raw;
1550
1551 if (intel_pt_skip_event(pt))
1552 return 0;
1553
1554 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1555
1556 sample.id = ptq->pt->pwrx_id;
1557 sample.stream_id = ptq->pt->pwrx_id;
1558
1559 raw.reserved = 0;
1560 raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1561
1562 sample.raw_size = perf_synth__raw_size(raw);
1563 sample.raw_data = perf_synth__raw_data(&raw);
1564
1565 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1566 pt->pwr_events_sample_type);
1567 }
1568
1569 /*
1570 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1571 * intel_pt_add_gp_regs().
1572 */
1573 static const int pebs_gp_regs[] = {
1574 [PERF_REG_X86_FLAGS] = 1,
1575 [PERF_REG_X86_IP] = 2,
1576 [PERF_REG_X86_AX] = 3,
1577 [PERF_REG_X86_CX] = 4,
1578 [PERF_REG_X86_DX] = 5,
1579 [PERF_REG_X86_BX] = 6,
1580 [PERF_REG_X86_SP] = 7,
1581 [PERF_REG_X86_BP] = 8,
1582 [PERF_REG_X86_SI] = 9,
1583 [PERF_REG_X86_DI] = 10,
1584 [PERF_REG_X86_R8] = 11,
1585 [PERF_REG_X86_R9] = 12,
1586 [PERF_REG_X86_R10] = 13,
1587 [PERF_REG_X86_R11] = 14,
1588 [PERF_REG_X86_R12] = 15,
1589 [PERF_REG_X86_R13] = 16,
1590 [PERF_REG_X86_R14] = 17,
1591 [PERF_REG_X86_R15] = 18,
1592 };
1593
intel_pt_add_gp_regs(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)1594 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1595 const struct intel_pt_blk_items *items,
1596 u64 regs_mask)
1597 {
1598 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1599 u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1600 u32 bit;
1601 int i;
1602
1603 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1604 /* Get the PEBS gp_regs array index */
1605 int n = pebs_gp_regs[i] - 1;
1606
1607 if (n < 0)
1608 continue;
1609 /*
1610 * Add only registers that were requested (i.e. 'regs_mask') and
1611 * that were provided (i.e. 'mask'), and update the resulting
1612 * mask (i.e. 'intr_regs->mask') accordingly.
1613 */
1614 if (mask & 1 << n && regs_mask & bit) {
1615 intr_regs->mask |= bit;
1616 *pos++ = gp_regs[n];
1617 }
1618 }
1619
1620 return pos;
1621 }
1622
1623 #ifndef PERF_REG_X86_XMM0
1624 #define PERF_REG_X86_XMM0 32
1625 #endif
1626
intel_pt_add_xmm(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)1627 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1628 const struct intel_pt_blk_items *items,
1629 u64 regs_mask)
1630 {
1631 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1632 const u64 *xmm = items->xmm;
1633
1634 /*
1635 * If there are any XMM registers, then there should be all of them.
1636 * Nevertheless, follow the logic to add only registers that were
1637 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1638 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1639 */
1640 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1641
1642 for (; mask; mask >>= 1, xmm++) {
1643 if (mask & 1)
1644 *pos++ = *xmm;
1645 }
1646 }
1647
1648 #define LBR_INFO_MISPRED (1ULL << 63)
1649 #define LBR_INFO_IN_TX (1ULL << 62)
1650 #define LBR_INFO_ABORT (1ULL << 61)
1651 #define LBR_INFO_CYCLES 0xffff
1652
1653 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
intel_pt_lbr_flags(u64 info)1654 static u64 intel_pt_lbr_flags(u64 info)
1655 {
1656 union {
1657 struct branch_flags flags;
1658 u64 result;
1659 } u = {
1660 .flags = {
1661 .mispred = !!(info & LBR_INFO_MISPRED),
1662 .predicted = !(info & LBR_INFO_MISPRED),
1663 .in_tx = !!(info & LBR_INFO_IN_TX),
1664 .abort = !!(info & LBR_INFO_ABORT),
1665 .cycles = info & LBR_INFO_CYCLES,
1666 }
1667 };
1668
1669 return u.result;
1670 }
1671
intel_pt_add_lbrs(struct branch_stack * br_stack,const struct intel_pt_blk_items * items)1672 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1673 const struct intel_pt_blk_items *items)
1674 {
1675 u64 *to;
1676 int i;
1677
1678 br_stack->nr = 0;
1679
1680 to = &br_stack->entries[0].from;
1681
1682 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1683 u32 mask = items->mask[i];
1684 const u64 *from = items->val[i];
1685
1686 for (; mask; mask >>= 3, from += 3) {
1687 if ((mask & 7) == 7) {
1688 *to++ = from[0];
1689 *to++ = from[1];
1690 *to++ = intel_pt_lbr_flags(from[2]);
1691 br_stack->nr += 1;
1692 }
1693 }
1694 }
1695 }
1696
1697 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1698 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3)
1699
intel_pt_synth_pebs_sample(struct intel_pt_queue * ptq)1700 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1701 {
1702 const struct intel_pt_blk_items *items = &ptq->state->items;
1703 struct perf_sample sample = { .ip = 0, };
1704 union perf_event *event = ptq->event_buf;
1705 struct intel_pt *pt = ptq->pt;
1706 struct evsel *evsel = pt->pebs_evsel;
1707 u64 sample_type = evsel->core.attr.sample_type;
1708 u64 id = evsel->core.id[0];
1709 u8 cpumode;
1710
1711 if (intel_pt_skip_event(pt))
1712 return 0;
1713
1714 intel_pt_prep_a_sample(ptq, event, &sample);
1715
1716 sample.id = id;
1717 sample.stream_id = id;
1718
1719 if (!evsel->core.attr.freq)
1720 sample.period = evsel->core.attr.sample_period;
1721
1722 /* No support for non-zero CS base */
1723 if (items->has_ip)
1724 sample.ip = items->ip;
1725 else if (items->has_rip)
1726 sample.ip = items->rip;
1727 else
1728 sample.ip = ptq->state->from_ip;
1729
1730 /* No support for guest mode at this time */
1731 cpumode = sample.ip < ptq->pt->kernel_start ?
1732 PERF_RECORD_MISC_USER :
1733 PERF_RECORD_MISC_KERNEL;
1734
1735 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1736
1737 sample.cpumode = cpumode;
1738
1739 if (sample_type & PERF_SAMPLE_TIME) {
1740 u64 timestamp = 0;
1741
1742 if (items->has_timestamp)
1743 timestamp = items->timestamp;
1744 else if (!pt->timeless_decoding)
1745 timestamp = ptq->timestamp;
1746 if (timestamp)
1747 sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1748 }
1749
1750 if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1751 pt->synth_opts.callchain) {
1752 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1753 pt->synth_opts.callchain_sz, sample.ip,
1754 pt->kernel_start);
1755 sample.callchain = ptq->chain;
1756 }
1757
1758 if (sample_type & PERF_SAMPLE_REGS_INTR &&
1759 items->mask[INTEL_PT_GP_REGS_POS]) {
1760 u64 regs[sizeof(sample.intr_regs.mask)];
1761 u64 regs_mask = evsel->core.attr.sample_regs_intr;
1762 u64 *pos;
1763
1764 sample.intr_regs.abi = items->is_32_bit ?
1765 PERF_SAMPLE_REGS_ABI_32 :
1766 PERF_SAMPLE_REGS_ABI_64;
1767 sample.intr_regs.regs = regs;
1768
1769 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1770
1771 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1772 }
1773
1774 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1775 struct {
1776 struct branch_stack br_stack;
1777 struct branch_entry entries[LBRS_MAX];
1778 } br;
1779
1780 if (items->mask[INTEL_PT_LBR_0_POS] ||
1781 items->mask[INTEL_PT_LBR_1_POS] ||
1782 items->mask[INTEL_PT_LBR_2_POS]) {
1783 intel_pt_add_lbrs(&br.br_stack, items);
1784 sample.branch_stack = &br.br_stack;
1785 } else if (pt->synth_opts.last_branch) {
1786 intel_pt_copy_last_branch_rb(ptq);
1787 sample.branch_stack = ptq->last_branch;
1788 } else {
1789 br.br_stack.nr = 0;
1790 sample.branch_stack = &br.br_stack;
1791 }
1792 }
1793
1794 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1795 sample.addr = items->mem_access_address;
1796
1797 if (sample_type & PERF_SAMPLE_WEIGHT) {
1798 /*
1799 * Refer kernel's setup_pebs_adaptive_sample_data() and
1800 * intel_hsw_weight().
1801 */
1802 if (items->has_mem_access_latency)
1803 sample.weight = items->mem_access_latency;
1804 if (!sample.weight && items->has_tsx_aux_info) {
1805 /* Cycles last block */
1806 sample.weight = (u32)items->tsx_aux_info;
1807 }
1808 }
1809
1810 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1811 u64 ax = items->has_rax ? items->rax : 0;
1812 /* Refer kernel's intel_hsw_transaction() */
1813 u64 txn = (u8)(items->tsx_aux_info >> 32);
1814
1815 /* For RTM XABORTs also log the abort code from AX */
1816 if (txn & PERF_TXN_TRANSACTION && ax & 1)
1817 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1818 sample.transaction = txn;
1819 }
1820
1821 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, sample_type);
1822 }
1823
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip,u64 timestamp)1824 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1825 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1826 {
1827 union perf_event event;
1828 char msg[MAX_AUXTRACE_ERROR_MSG];
1829 int err;
1830
1831 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1832
1833 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1834 code, cpu, pid, tid, ip, msg, timestamp);
1835
1836 err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1837 if (err)
1838 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1839 err);
1840
1841 return err;
1842 }
1843
intel_ptq_synth_error(struct intel_pt_queue * ptq,const struct intel_pt_state * state)1844 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1845 const struct intel_pt_state *state)
1846 {
1847 struct intel_pt *pt = ptq->pt;
1848 u64 tm = ptq->timestamp;
1849
1850 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1851
1852 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1853 ptq->tid, state->from_ip, tm);
1854 }
1855
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)1856 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1857 {
1858 struct auxtrace_queue *queue;
1859 pid_t tid = ptq->next_tid;
1860 int err;
1861
1862 if (tid == -1)
1863 return 0;
1864
1865 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1866
1867 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1868
1869 queue = &pt->queues.queue_array[ptq->queue_nr];
1870 intel_pt_set_pid_tid_cpu(pt, queue);
1871
1872 ptq->next_tid = -1;
1873
1874 return err;
1875 }
1876
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)1877 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1878 {
1879 struct intel_pt *pt = ptq->pt;
1880
1881 return ip == pt->switch_ip &&
1882 (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1883 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1884 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1885 }
1886
1887 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1888 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1889
intel_pt_sample(struct intel_pt_queue * ptq)1890 static int intel_pt_sample(struct intel_pt_queue *ptq)
1891 {
1892 const struct intel_pt_state *state = ptq->state;
1893 struct intel_pt *pt = ptq->pt;
1894 int err;
1895
1896 if (!ptq->have_sample)
1897 return 0;
1898
1899 ptq->have_sample = false;
1900
1901 if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1902 /*
1903 * Cycle count and instruction count only go together to create
1904 * a valid IPC ratio when the cycle count changes.
1905 */
1906 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1907 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1908 }
1909
1910 /*
1911 * Do PEBS first to allow for the possibility that the PEBS timestamp
1912 * precedes the current timestamp.
1913 */
1914 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1915 err = intel_pt_synth_pebs_sample(ptq);
1916 if (err)
1917 return err;
1918 }
1919
1920 if (pt->sample_pwr_events) {
1921 if (ptq->state->cbr != ptq->cbr_seen) {
1922 err = intel_pt_synth_cbr_sample(ptq);
1923 if (err)
1924 return err;
1925 }
1926 if (state->type & INTEL_PT_PWR_EVT) {
1927 if (state->type & INTEL_PT_MWAIT_OP) {
1928 err = intel_pt_synth_mwait_sample(ptq);
1929 if (err)
1930 return err;
1931 }
1932 if (state->type & INTEL_PT_PWR_ENTRY) {
1933 err = intel_pt_synth_pwre_sample(ptq);
1934 if (err)
1935 return err;
1936 }
1937 if (state->type & INTEL_PT_EX_STOP) {
1938 err = intel_pt_synth_exstop_sample(ptq);
1939 if (err)
1940 return err;
1941 }
1942 if (state->type & INTEL_PT_PWR_EXIT) {
1943 err = intel_pt_synth_pwrx_sample(ptq);
1944 if (err)
1945 return err;
1946 }
1947 }
1948 }
1949
1950 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1951 err = intel_pt_synth_instruction_sample(ptq);
1952 if (err)
1953 return err;
1954 }
1955
1956 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1957 err = intel_pt_synth_transaction_sample(ptq);
1958 if (err)
1959 return err;
1960 }
1961
1962 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1963 err = intel_pt_synth_ptwrite_sample(ptq);
1964 if (err)
1965 return err;
1966 }
1967
1968 if (!(state->type & INTEL_PT_BRANCH))
1969 return 0;
1970
1971 if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1972 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip,
1973 state->to_ip, ptq->insn_len,
1974 state->trace_nr);
1975 else
1976 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
1977
1978 if (pt->sample_branches) {
1979 err = intel_pt_synth_branch_sample(ptq);
1980 if (err)
1981 return err;
1982 }
1983
1984 if (pt->synth_opts.last_branch)
1985 intel_pt_update_last_branch_rb(ptq);
1986
1987 if (!ptq->sync_switch)
1988 return 0;
1989
1990 if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1991 switch (ptq->switch_state) {
1992 case INTEL_PT_SS_NOT_TRACING:
1993 case INTEL_PT_SS_UNKNOWN:
1994 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1995 err = intel_pt_next_tid(pt, ptq);
1996 if (err)
1997 return err;
1998 ptq->switch_state = INTEL_PT_SS_TRACING;
1999 break;
2000 default:
2001 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2002 return 1;
2003 }
2004 } else if (!state->to_ip) {
2005 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2006 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2007 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2008 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2009 state->to_ip == pt->ptss_ip &&
2010 (ptq->flags & PERF_IP_FLAG_CALL)) {
2011 ptq->switch_state = INTEL_PT_SS_TRACING;
2012 }
2013
2014 return 0;
2015 }
2016
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)2017 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2018 {
2019 struct machine *machine = pt->machine;
2020 struct map *map;
2021 struct symbol *sym, *start;
2022 u64 ip, switch_ip = 0;
2023 const char *ptss;
2024
2025 if (ptss_ip)
2026 *ptss_ip = 0;
2027
2028 map = machine__kernel_map(machine);
2029 if (!map)
2030 return 0;
2031
2032 if (map__load(map))
2033 return 0;
2034
2035 start = dso__first_symbol(map->dso);
2036
2037 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2038 if (sym->binding == STB_GLOBAL &&
2039 !strcmp(sym->name, "__switch_to")) {
2040 ip = map->unmap_ip(map, sym->start);
2041 if (ip >= map->start && ip < map->end) {
2042 switch_ip = ip;
2043 break;
2044 }
2045 }
2046 }
2047
2048 if (!switch_ip || !ptss_ip)
2049 return 0;
2050
2051 if (pt->have_sched_switch == 1)
2052 ptss = "perf_trace_sched_switch";
2053 else
2054 ptss = "__perf_event_task_sched_out";
2055
2056 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2057 if (!strcmp(sym->name, ptss)) {
2058 ip = map->unmap_ip(map, sym->start);
2059 if (ip >= map->start && ip < map->end) {
2060 *ptss_ip = ip;
2061 break;
2062 }
2063 }
2064 }
2065
2066 return switch_ip;
2067 }
2068
intel_pt_enable_sync_switch(struct intel_pt * pt)2069 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2070 {
2071 unsigned int i;
2072
2073 pt->sync_switch = true;
2074
2075 for (i = 0; i < pt->queues.nr_queues; i++) {
2076 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2077 struct intel_pt_queue *ptq = queue->priv;
2078
2079 if (ptq)
2080 ptq->sync_switch = true;
2081 }
2082 }
2083
2084 /*
2085 * To filter against time ranges, it is only necessary to look at the next start
2086 * or end time.
2087 */
intel_pt_next_time(struct intel_pt_queue * ptq)2088 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2089 {
2090 struct intel_pt *pt = ptq->pt;
2091
2092 if (ptq->sel_start) {
2093 /* Next time is an end time */
2094 ptq->sel_start = false;
2095 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2096 return true;
2097 } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2098 /* Next time is a start time */
2099 ptq->sel_start = true;
2100 ptq->sel_idx += 1;
2101 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2102 return true;
2103 }
2104
2105 /* No next time */
2106 return false;
2107 }
2108
intel_pt_time_filter(struct intel_pt_queue * ptq,u64 * ff_timestamp)2109 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2110 {
2111 int err;
2112
2113 while (1) {
2114 if (ptq->sel_start) {
2115 if (ptq->timestamp >= ptq->sel_timestamp) {
2116 /* After start time, so consider next time */
2117 intel_pt_next_time(ptq);
2118 if (!ptq->sel_timestamp) {
2119 /* No end time */
2120 return 0;
2121 }
2122 /* Check against end time */
2123 continue;
2124 }
2125 /* Before start time, so fast forward */
2126 ptq->have_sample = false;
2127 if (ptq->sel_timestamp > *ff_timestamp) {
2128 if (ptq->sync_switch) {
2129 intel_pt_next_tid(ptq->pt, ptq);
2130 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2131 }
2132 *ff_timestamp = ptq->sel_timestamp;
2133 err = intel_pt_fast_forward(ptq->decoder,
2134 ptq->sel_timestamp);
2135 if (err)
2136 return err;
2137 }
2138 return 0;
2139 } else if (ptq->timestamp > ptq->sel_timestamp) {
2140 /* After end time, so consider next time */
2141 if (!intel_pt_next_time(ptq)) {
2142 /* No next time range, so stop decoding */
2143 ptq->have_sample = false;
2144 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2145 return 1;
2146 }
2147 /* Check against next start time */
2148 continue;
2149 } else {
2150 /* Before end time */
2151 return 0;
2152 }
2153 }
2154 }
2155
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)2156 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2157 {
2158 const struct intel_pt_state *state = ptq->state;
2159 struct intel_pt *pt = ptq->pt;
2160 u64 ff_timestamp = 0;
2161 int err;
2162
2163 if (!pt->kernel_start) {
2164 pt->kernel_start = machine__kernel_start(pt->machine);
2165 if (pt->per_cpu_mmaps &&
2166 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2167 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2168 !pt->sampling_mode) {
2169 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2170 if (pt->switch_ip) {
2171 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2172 pt->switch_ip, pt->ptss_ip);
2173 intel_pt_enable_sync_switch(pt);
2174 }
2175 }
2176 }
2177
2178 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2179 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2180 while (1) {
2181 err = intel_pt_sample(ptq);
2182 if (err)
2183 return err;
2184
2185 state = intel_pt_decode(ptq->decoder);
2186 if (state->err) {
2187 if (state->err == INTEL_PT_ERR_NODATA)
2188 return 1;
2189 if (ptq->sync_switch &&
2190 state->from_ip >= pt->kernel_start) {
2191 ptq->sync_switch = false;
2192 intel_pt_next_tid(pt, ptq);
2193 }
2194 if (pt->synth_opts.errors) {
2195 err = intel_ptq_synth_error(ptq, state);
2196 if (err)
2197 return err;
2198 }
2199 continue;
2200 }
2201
2202 ptq->state = state;
2203 ptq->have_sample = true;
2204 intel_pt_sample_flags(ptq);
2205
2206 /* Use estimated TSC upon return to user space */
2207 if (pt->est_tsc &&
2208 (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2209 state->to_ip && state->to_ip < pt->kernel_start) {
2210 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2211 state->timestamp, state->est_timestamp);
2212 ptq->timestamp = state->est_timestamp;
2213 /* Use estimated TSC in unknown switch state */
2214 } else if (ptq->sync_switch &&
2215 ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2216 intel_pt_is_switch_ip(ptq, state->to_ip) &&
2217 ptq->next_tid == -1) {
2218 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2219 state->timestamp, state->est_timestamp);
2220 ptq->timestamp = state->est_timestamp;
2221 } else if (state->timestamp > ptq->timestamp) {
2222 ptq->timestamp = state->timestamp;
2223 }
2224
2225 if (ptq->sel_timestamp) {
2226 err = intel_pt_time_filter(ptq, &ff_timestamp);
2227 if (err)
2228 return err;
2229 }
2230
2231 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2232 *timestamp = ptq->timestamp;
2233 return 0;
2234 }
2235 }
2236 return 0;
2237 }
2238
intel_pt_update_queues(struct intel_pt * pt)2239 static inline int intel_pt_update_queues(struct intel_pt *pt)
2240 {
2241 if (pt->queues.new_data) {
2242 pt->queues.new_data = false;
2243 return intel_pt_setup_queues(pt);
2244 }
2245 return 0;
2246 }
2247
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)2248 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2249 {
2250 unsigned int queue_nr;
2251 u64 ts;
2252 int ret;
2253
2254 while (1) {
2255 struct auxtrace_queue *queue;
2256 struct intel_pt_queue *ptq;
2257
2258 if (!pt->heap.heap_cnt)
2259 return 0;
2260
2261 if (pt->heap.heap_array[0].ordinal >= timestamp)
2262 return 0;
2263
2264 queue_nr = pt->heap.heap_array[0].queue_nr;
2265 queue = &pt->queues.queue_array[queue_nr];
2266 ptq = queue->priv;
2267
2268 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2269 queue_nr, pt->heap.heap_array[0].ordinal,
2270 timestamp);
2271
2272 auxtrace_heap__pop(&pt->heap);
2273
2274 if (pt->heap.heap_cnt) {
2275 ts = pt->heap.heap_array[0].ordinal + 1;
2276 if (ts > timestamp)
2277 ts = timestamp;
2278 } else {
2279 ts = timestamp;
2280 }
2281
2282 intel_pt_set_pid_tid_cpu(pt, queue);
2283
2284 ret = intel_pt_run_decoder(ptq, &ts);
2285
2286 if (ret < 0) {
2287 auxtrace_heap__add(&pt->heap, queue_nr, ts);
2288 return ret;
2289 }
2290
2291 if (!ret) {
2292 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2293 if (ret < 0)
2294 return ret;
2295 } else {
2296 ptq->on_heap = false;
2297 }
2298 }
2299
2300 return 0;
2301 }
2302
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)2303 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2304 u64 time_)
2305 {
2306 struct auxtrace_queues *queues = &pt->queues;
2307 unsigned int i;
2308 u64 ts = 0;
2309
2310 for (i = 0; i < queues->nr_queues; i++) {
2311 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2312 struct intel_pt_queue *ptq = queue->priv;
2313
2314 if (ptq && (tid == -1 || ptq->tid == tid)) {
2315 ptq->time = time_;
2316 intel_pt_set_pid_tid_cpu(pt, queue);
2317 intel_pt_run_decoder(ptq, &ts);
2318 }
2319 }
2320 return 0;
2321 }
2322
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)2323 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2324 {
2325 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2326 sample->pid, sample->tid, 0, sample->time);
2327 }
2328
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)2329 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2330 {
2331 unsigned i, j;
2332
2333 if (cpu < 0 || !pt->queues.nr_queues)
2334 return NULL;
2335
2336 if ((unsigned)cpu >= pt->queues.nr_queues)
2337 i = pt->queues.nr_queues - 1;
2338 else
2339 i = cpu;
2340
2341 if (pt->queues.queue_array[i].cpu == cpu)
2342 return pt->queues.queue_array[i].priv;
2343
2344 for (j = 0; i > 0; j++) {
2345 if (pt->queues.queue_array[--i].cpu == cpu)
2346 return pt->queues.queue_array[i].priv;
2347 }
2348
2349 for (; j < pt->queues.nr_queues; j++) {
2350 if (pt->queues.queue_array[j].cpu == cpu)
2351 return pt->queues.queue_array[j].priv;
2352 }
2353
2354 return NULL;
2355 }
2356
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)2357 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2358 u64 timestamp)
2359 {
2360 struct intel_pt_queue *ptq;
2361 int err;
2362
2363 if (!pt->sync_switch)
2364 return 1;
2365
2366 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2367 if (!ptq || !ptq->sync_switch)
2368 return 1;
2369
2370 switch (ptq->switch_state) {
2371 case INTEL_PT_SS_NOT_TRACING:
2372 break;
2373 case INTEL_PT_SS_UNKNOWN:
2374 case INTEL_PT_SS_TRACING:
2375 ptq->next_tid = tid;
2376 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2377 return 0;
2378 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2379 if (!ptq->on_heap) {
2380 ptq->timestamp = perf_time_to_tsc(timestamp,
2381 &pt->tc);
2382 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2383 ptq->timestamp);
2384 if (err)
2385 return err;
2386 ptq->on_heap = true;
2387 }
2388 ptq->switch_state = INTEL_PT_SS_TRACING;
2389 break;
2390 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2391 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2392 break;
2393 default:
2394 break;
2395 }
2396
2397 ptq->next_tid = -1;
2398
2399 return 1;
2400 }
2401
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)2402 static int intel_pt_process_switch(struct intel_pt *pt,
2403 struct perf_sample *sample)
2404 {
2405 struct evsel *evsel;
2406 pid_t tid;
2407 int cpu, ret;
2408
2409 evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2410 if (evsel != pt->switch_evsel)
2411 return 0;
2412
2413 tid = perf_evsel__intval(evsel, sample, "next_pid");
2414 cpu = sample->cpu;
2415
2416 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2417 cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2418 &pt->tc));
2419
2420 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2421 if (ret <= 0)
2422 return ret;
2423
2424 return machine__set_current_tid(pt->machine, cpu, -1, tid);
2425 }
2426
intel_pt_context_switch_in(struct intel_pt * pt,struct perf_sample * sample)2427 static int intel_pt_context_switch_in(struct intel_pt *pt,
2428 struct perf_sample *sample)
2429 {
2430 pid_t pid = sample->pid;
2431 pid_t tid = sample->tid;
2432 int cpu = sample->cpu;
2433
2434 if (pt->sync_switch) {
2435 struct intel_pt_queue *ptq;
2436
2437 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2438 if (ptq && ptq->sync_switch) {
2439 ptq->next_tid = -1;
2440 switch (ptq->switch_state) {
2441 case INTEL_PT_SS_NOT_TRACING:
2442 case INTEL_PT_SS_UNKNOWN:
2443 case INTEL_PT_SS_TRACING:
2444 break;
2445 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2446 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2447 ptq->switch_state = INTEL_PT_SS_TRACING;
2448 break;
2449 default:
2450 break;
2451 }
2452 }
2453 }
2454
2455 /*
2456 * If the current tid has not been updated yet, ensure it is now that
2457 * a "switch in" event has occurred.
2458 */
2459 if (machine__get_current_tid(pt->machine, cpu) == tid)
2460 return 0;
2461
2462 return machine__set_current_tid(pt->machine, cpu, pid, tid);
2463 }
2464
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)2465 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2466 struct perf_sample *sample)
2467 {
2468 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2469 pid_t pid, tid;
2470 int cpu, ret;
2471
2472 cpu = sample->cpu;
2473
2474 if (pt->have_sched_switch == 3) {
2475 if (!out)
2476 return intel_pt_context_switch_in(pt, sample);
2477 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2478 pr_err("Expecting CPU-wide context switch event\n");
2479 return -EINVAL;
2480 }
2481 pid = event->context_switch.next_prev_pid;
2482 tid = event->context_switch.next_prev_tid;
2483 } else {
2484 if (out)
2485 return 0;
2486 pid = sample->pid;
2487 tid = sample->tid;
2488 }
2489
2490 if (tid == -1) {
2491 pr_err("context_switch event has no tid\n");
2492 return -EINVAL;
2493 }
2494
2495 intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2496 cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
2497 &pt->tc));
2498
2499 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2500 if (ret <= 0)
2501 return ret;
2502
2503 return machine__set_current_tid(pt->machine, cpu, pid, tid);
2504 }
2505
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)2506 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2507 union perf_event *event,
2508 struct perf_sample *sample)
2509 {
2510 if (!pt->per_cpu_mmaps)
2511 return 0;
2512
2513 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2514 sample->cpu, event->itrace_start.pid,
2515 event->itrace_start.tid, sample->time,
2516 perf_time_to_tsc(sample->time, &pt->tc));
2517
2518 return machine__set_current_tid(pt->machine, sample->cpu,
2519 event->itrace_start.pid,
2520 event->itrace_start.tid);
2521 }
2522
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2523 static int intel_pt_process_event(struct perf_session *session,
2524 union perf_event *event,
2525 struct perf_sample *sample,
2526 struct perf_tool *tool)
2527 {
2528 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2529 auxtrace);
2530 u64 timestamp;
2531 int err = 0;
2532
2533 if (dump_trace)
2534 return 0;
2535
2536 if (!tool->ordered_events) {
2537 pr_err("Intel Processor Trace requires ordered events\n");
2538 return -EINVAL;
2539 }
2540
2541 if (sample->time && sample->time != (u64)-1)
2542 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2543 else
2544 timestamp = 0;
2545
2546 if (timestamp || pt->timeless_decoding) {
2547 err = intel_pt_update_queues(pt);
2548 if (err)
2549 return err;
2550 }
2551
2552 if (pt->timeless_decoding) {
2553 if (event->header.type == PERF_RECORD_EXIT) {
2554 err = intel_pt_process_timeless_queues(pt,
2555 event->fork.tid,
2556 sample->time);
2557 }
2558 } else if (timestamp) {
2559 err = intel_pt_process_queues(pt, timestamp);
2560 }
2561 if (err)
2562 return err;
2563
2564 if (event->header.type == PERF_RECORD_AUX &&
2565 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2566 pt->synth_opts.errors) {
2567 err = intel_pt_lost(pt, sample);
2568 if (err)
2569 return err;
2570 }
2571
2572 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2573 err = intel_pt_process_switch(pt, sample);
2574 else if (event->header.type == PERF_RECORD_ITRACE_START)
2575 err = intel_pt_process_itrace_start(pt, event, sample);
2576 else if (event->header.type == PERF_RECORD_SWITCH ||
2577 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2578 err = intel_pt_context_switch(pt, event, sample);
2579
2580 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2581 event->header.type, sample->cpu, sample->time, timestamp);
2582 intel_pt_log_event(event);
2583
2584 return err;
2585 }
2586
intel_pt_flush(struct perf_session * session,struct perf_tool * tool)2587 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2588 {
2589 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2590 auxtrace);
2591 int ret;
2592
2593 if (dump_trace)
2594 return 0;
2595
2596 if (!tool->ordered_events)
2597 return -EINVAL;
2598
2599 ret = intel_pt_update_queues(pt);
2600 if (ret < 0)
2601 return ret;
2602
2603 if (pt->timeless_decoding)
2604 return intel_pt_process_timeless_queues(pt, -1,
2605 MAX_TIMESTAMP - 1);
2606
2607 return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2608 }
2609
intel_pt_free_events(struct perf_session * session)2610 static void intel_pt_free_events(struct perf_session *session)
2611 {
2612 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2613 auxtrace);
2614 struct auxtrace_queues *queues = &pt->queues;
2615 unsigned int i;
2616
2617 for (i = 0; i < queues->nr_queues; i++) {
2618 intel_pt_free_queue(queues->queue_array[i].priv);
2619 queues->queue_array[i].priv = NULL;
2620 }
2621 intel_pt_log_disable();
2622 auxtrace_queues__free(queues);
2623 }
2624
intel_pt_free(struct perf_session * session)2625 static void intel_pt_free(struct perf_session *session)
2626 {
2627 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2628 auxtrace);
2629
2630 auxtrace_heap__free(&pt->heap);
2631 intel_pt_free_events(session);
2632 session->auxtrace = NULL;
2633 thread__put(pt->unknown_thread);
2634 addr_filters__exit(&pt->filts);
2635 zfree(&pt->filter);
2636 zfree(&pt->time_ranges);
2637 free(pt);
2638 }
2639
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)2640 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2641 union perf_event *event,
2642 struct perf_tool *tool __maybe_unused)
2643 {
2644 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2645 auxtrace);
2646
2647 if (!pt->data_queued) {
2648 struct auxtrace_buffer *buffer;
2649 off_t data_offset;
2650 int fd = perf_data__fd(session->data);
2651 int err;
2652
2653 if (perf_data__is_pipe(session->data)) {
2654 data_offset = 0;
2655 } else {
2656 data_offset = lseek(fd, 0, SEEK_CUR);
2657 if (data_offset == -1)
2658 return -errno;
2659 }
2660
2661 err = auxtrace_queues__add_event(&pt->queues, session, event,
2662 data_offset, &buffer);
2663 if (err)
2664 return err;
2665
2666 /* Dump here now we have copied a piped trace out of the pipe */
2667 if (dump_trace) {
2668 if (auxtrace_buffer__get_data(buffer, fd)) {
2669 intel_pt_dump_event(pt, buffer->data,
2670 buffer->size);
2671 auxtrace_buffer__put_data(buffer);
2672 }
2673 }
2674 }
2675
2676 return 0;
2677 }
2678
2679 struct intel_pt_synth {
2680 struct perf_tool dummy_tool;
2681 struct perf_session *session;
2682 };
2683
intel_pt_event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)2684 static int intel_pt_event_synth(struct perf_tool *tool,
2685 union perf_event *event,
2686 struct perf_sample *sample __maybe_unused,
2687 struct machine *machine __maybe_unused)
2688 {
2689 struct intel_pt_synth *intel_pt_synth =
2690 container_of(tool, struct intel_pt_synth, dummy_tool);
2691
2692 return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2693 NULL);
2694 }
2695
intel_pt_synth_event(struct perf_session * session,const char * name,struct perf_event_attr * attr,u64 id)2696 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2697 struct perf_event_attr *attr, u64 id)
2698 {
2699 struct intel_pt_synth intel_pt_synth;
2700 int err;
2701
2702 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2703 name, id, (u64)attr->sample_type);
2704
2705 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2706 intel_pt_synth.session = session;
2707
2708 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2709 &id, intel_pt_event_synth);
2710 if (err)
2711 pr_err("%s: failed to synthesize '%s' event type\n",
2712 __func__, name);
2713
2714 return err;
2715 }
2716
intel_pt_set_event_name(struct evlist * evlist,u64 id,const char * name)2717 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2718 const char *name)
2719 {
2720 struct evsel *evsel;
2721
2722 evlist__for_each_entry(evlist, evsel) {
2723 if (evsel->core.id && evsel->core.id[0] == id) {
2724 if (evsel->name)
2725 zfree(&evsel->name);
2726 evsel->name = strdup(name);
2727 break;
2728 }
2729 }
2730 }
2731
intel_pt_evsel(struct intel_pt * pt,struct evlist * evlist)2732 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2733 struct evlist *evlist)
2734 {
2735 struct evsel *evsel;
2736
2737 evlist__for_each_entry(evlist, evsel) {
2738 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2739 return evsel;
2740 }
2741
2742 return NULL;
2743 }
2744
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)2745 static int intel_pt_synth_events(struct intel_pt *pt,
2746 struct perf_session *session)
2747 {
2748 struct evlist *evlist = session->evlist;
2749 struct evsel *evsel = intel_pt_evsel(pt, evlist);
2750 struct perf_event_attr attr;
2751 u64 id;
2752 int err;
2753
2754 if (!evsel) {
2755 pr_debug("There are no selected events with Intel Processor Trace data\n");
2756 return 0;
2757 }
2758
2759 memset(&attr, 0, sizeof(struct perf_event_attr));
2760 attr.size = sizeof(struct perf_event_attr);
2761 attr.type = PERF_TYPE_HARDWARE;
2762 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2763 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2764 PERF_SAMPLE_PERIOD;
2765 if (pt->timeless_decoding)
2766 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2767 else
2768 attr.sample_type |= PERF_SAMPLE_TIME;
2769 if (!pt->per_cpu_mmaps)
2770 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2771 attr.exclude_user = evsel->core.attr.exclude_user;
2772 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2773 attr.exclude_hv = evsel->core.attr.exclude_hv;
2774 attr.exclude_host = evsel->core.attr.exclude_host;
2775 attr.exclude_guest = evsel->core.attr.exclude_guest;
2776 attr.sample_id_all = evsel->core.attr.sample_id_all;
2777 attr.read_format = evsel->core.attr.read_format;
2778
2779 id = evsel->core.id[0] + 1000000000;
2780 if (!id)
2781 id = 1;
2782
2783 if (pt->synth_opts.branches) {
2784 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2785 attr.sample_period = 1;
2786 attr.sample_type |= PERF_SAMPLE_ADDR;
2787 err = intel_pt_synth_event(session, "branches", &attr, id);
2788 if (err)
2789 return err;
2790 pt->sample_branches = true;
2791 pt->branches_sample_type = attr.sample_type;
2792 pt->branches_id = id;
2793 id += 1;
2794 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2795 }
2796
2797 if (pt->synth_opts.callchain)
2798 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2799 if (pt->synth_opts.last_branch)
2800 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2801
2802 if (pt->synth_opts.instructions) {
2803 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2804 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2805 attr.sample_period =
2806 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2807 else
2808 attr.sample_period = pt->synth_opts.period;
2809 err = intel_pt_synth_event(session, "instructions", &attr, id);
2810 if (err)
2811 return err;
2812 pt->sample_instructions = true;
2813 pt->instructions_sample_type = attr.sample_type;
2814 pt->instructions_id = id;
2815 id += 1;
2816 }
2817
2818 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2819 attr.sample_period = 1;
2820
2821 if (pt->synth_opts.transactions) {
2822 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2823 err = intel_pt_synth_event(session, "transactions", &attr, id);
2824 if (err)
2825 return err;
2826 pt->sample_transactions = true;
2827 pt->transactions_sample_type = attr.sample_type;
2828 pt->transactions_id = id;
2829 intel_pt_set_event_name(evlist, id, "transactions");
2830 id += 1;
2831 }
2832
2833 attr.type = PERF_TYPE_SYNTH;
2834 attr.sample_type |= PERF_SAMPLE_RAW;
2835
2836 if (pt->synth_opts.ptwrites) {
2837 attr.config = PERF_SYNTH_INTEL_PTWRITE;
2838 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2839 if (err)
2840 return err;
2841 pt->sample_ptwrites = true;
2842 pt->ptwrites_sample_type = attr.sample_type;
2843 pt->ptwrites_id = id;
2844 intel_pt_set_event_name(evlist, id, "ptwrite");
2845 id += 1;
2846 }
2847
2848 if (pt->synth_opts.pwr_events) {
2849 pt->sample_pwr_events = true;
2850 pt->pwr_events_sample_type = attr.sample_type;
2851
2852 attr.config = PERF_SYNTH_INTEL_CBR;
2853 err = intel_pt_synth_event(session, "cbr", &attr, id);
2854 if (err)
2855 return err;
2856 pt->cbr_id = id;
2857 intel_pt_set_event_name(evlist, id, "cbr");
2858 id += 1;
2859 }
2860
2861 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
2862 attr.config = PERF_SYNTH_INTEL_MWAIT;
2863 err = intel_pt_synth_event(session, "mwait", &attr, id);
2864 if (err)
2865 return err;
2866 pt->mwait_id = id;
2867 intel_pt_set_event_name(evlist, id, "mwait");
2868 id += 1;
2869
2870 attr.config = PERF_SYNTH_INTEL_PWRE;
2871 err = intel_pt_synth_event(session, "pwre", &attr, id);
2872 if (err)
2873 return err;
2874 pt->pwre_id = id;
2875 intel_pt_set_event_name(evlist, id, "pwre");
2876 id += 1;
2877
2878 attr.config = PERF_SYNTH_INTEL_EXSTOP;
2879 err = intel_pt_synth_event(session, "exstop", &attr, id);
2880 if (err)
2881 return err;
2882 pt->exstop_id = id;
2883 intel_pt_set_event_name(evlist, id, "exstop");
2884 id += 1;
2885
2886 attr.config = PERF_SYNTH_INTEL_PWRX;
2887 err = intel_pt_synth_event(session, "pwrx", &attr, id);
2888 if (err)
2889 return err;
2890 pt->pwrx_id = id;
2891 intel_pt_set_event_name(evlist, id, "pwrx");
2892 id += 1;
2893 }
2894
2895 return 0;
2896 }
2897
intel_pt_setup_pebs_events(struct intel_pt * pt)2898 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
2899 {
2900 struct evsel *evsel;
2901
2902 if (!pt->synth_opts.other_events)
2903 return;
2904
2905 evlist__for_each_entry(pt->session->evlist, evsel) {
2906 if (evsel->core.attr.aux_output && evsel->core.id) {
2907 pt->sample_pebs = true;
2908 pt->pebs_evsel = evsel;
2909 return;
2910 }
2911 }
2912 }
2913
intel_pt_find_sched_switch(struct evlist * evlist)2914 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
2915 {
2916 struct evsel *evsel;
2917
2918 evlist__for_each_entry_reverse(evlist, evsel) {
2919 const char *name = perf_evsel__name(evsel);
2920
2921 if (!strcmp(name, "sched:sched_switch"))
2922 return evsel;
2923 }
2924
2925 return NULL;
2926 }
2927
intel_pt_find_switch(struct evlist * evlist)2928 static bool intel_pt_find_switch(struct evlist *evlist)
2929 {
2930 struct evsel *evsel;
2931
2932 evlist__for_each_entry(evlist, evsel) {
2933 if (evsel->core.attr.context_switch)
2934 return true;
2935 }
2936
2937 return false;
2938 }
2939
intel_pt_perf_config(const char * var,const char * value,void * data)2940 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2941 {
2942 struct intel_pt *pt = data;
2943
2944 if (!strcmp(var, "intel-pt.mispred-all"))
2945 pt->mispred_all = perf_config_bool(var, value);
2946
2947 return 0;
2948 }
2949
2950 /* Find least TSC which converts to ns or later */
intel_pt_tsc_start(u64 ns,struct intel_pt * pt)2951 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
2952 {
2953 u64 tsc, tm;
2954
2955 tsc = perf_time_to_tsc(ns, &pt->tc);
2956
2957 while (1) {
2958 tm = tsc_to_perf_time(tsc, &pt->tc);
2959 if (tm < ns)
2960 break;
2961 tsc -= 1;
2962 }
2963
2964 while (tm < ns)
2965 tm = tsc_to_perf_time(++tsc, &pt->tc);
2966
2967 return tsc;
2968 }
2969
2970 /* Find greatest TSC which converts to ns or earlier */
intel_pt_tsc_end(u64 ns,struct intel_pt * pt)2971 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
2972 {
2973 u64 tsc, tm;
2974
2975 tsc = perf_time_to_tsc(ns, &pt->tc);
2976
2977 while (1) {
2978 tm = tsc_to_perf_time(tsc, &pt->tc);
2979 if (tm > ns)
2980 break;
2981 tsc += 1;
2982 }
2983
2984 while (tm > ns)
2985 tm = tsc_to_perf_time(--tsc, &pt->tc);
2986
2987 return tsc;
2988 }
2989
intel_pt_setup_time_ranges(struct intel_pt * pt,struct itrace_synth_opts * opts)2990 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
2991 struct itrace_synth_opts *opts)
2992 {
2993 struct perf_time_interval *p = opts->ptime_range;
2994 int n = opts->range_num;
2995 int i;
2996
2997 if (!n || !p || pt->timeless_decoding)
2998 return 0;
2999
3000 pt->time_ranges = calloc(n, sizeof(struct range));
3001 if (!pt->time_ranges)
3002 return -ENOMEM;
3003
3004 pt->range_cnt = n;
3005
3006 intel_pt_log("%s: %u range(s)\n", __func__, n);
3007
3008 for (i = 0; i < n; i++) {
3009 struct range *r = &pt->time_ranges[i];
3010 u64 ts = p[i].start;
3011 u64 te = p[i].end;
3012
3013 /*
3014 * Take care to ensure the TSC range matches the perf-time range
3015 * when converted back to perf-time.
3016 */
3017 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3018 r->end = te ? intel_pt_tsc_end(te, pt) : 0;
3019
3020 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3021 i, ts, te);
3022 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3023 i, r->start, r->end);
3024 }
3025
3026 return 0;
3027 }
3028
3029 static const char * const intel_pt_info_fmts[] = {
3030 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
3031 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
3032 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
3033 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
3034 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
3035 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
3036 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
3037 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
3038 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
3039 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
3040 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
3041 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
3042 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
3043 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
3044 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n",
3045 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n",
3046 };
3047
intel_pt_print_info(__u64 * arr,int start,int finish)3048 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3049 {
3050 int i;
3051
3052 if (!dump_trace)
3053 return;
3054
3055 for (i = start; i <= finish; i++)
3056 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3057 }
3058
intel_pt_print_info_str(const char * name,const char * str)3059 static void intel_pt_print_info_str(const char *name, const char *str)
3060 {
3061 if (!dump_trace)
3062 return;
3063
3064 fprintf(stdout, " %-20s%s\n", name, str ? str : "");
3065 }
3066
intel_pt_has(struct perf_record_auxtrace_info * auxtrace_info,int pos)3067 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3068 {
3069 return auxtrace_info->header.size >=
3070 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3071 }
3072
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)3073 int intel_pt_process_auxtrace_info(union perf_event *event,
3074 struct perf_session *session)
3075 {
3076 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3077 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3078 struct intel_pt *pt;
3079 void *info_end;
3080 __u64 *info;
3081 int err;
3082
3083 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3084 min_sz)
3085 return -EINVAL;
3086
3087 pt = zalloc(sizeof(struct intel_pt));
3088 if (!pt)
3089 return -ENOMEM;
3090
3091 addr_filters__init(&pt->filts);
3092
3093 err = perf_config(intel_pt_perf_config, pt);
3094 if (err)
3095 goto err_free;
3096
3097 err = auxtrace_queues__init(&pt->queues);
3098 if (err)
3099 goto err_free;
3100
3101 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3102
3103 pt->session = session;
3104 pt->machine = &session->machines.host; /* No kvm support */
3105 pt->auxtrace_type = auxtrace_info->type;
3106 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3107 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3108 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3109 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3110 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3111 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3112 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3113 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3114 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3115 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3116 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3117 INTEL_PT_PER_CPU_MMAPS);
3118
3119 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3120 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3121 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3122 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3123 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3124 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3125 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3126 INTEL_PT_CYC_BIT);
3127 }
3128
3129 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3130 pt->max_non_turbo_ratio =
3131 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3132 intel_pt_print_info(&auxtrace_info->priv[0],
3133 INTEL_PT_MAX_NONTURBO_RATIO,
3134 INTEL_PT_MAX_NONTURBO_RATIO);
3135 }
3136
3137 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3138 info_end = (void *)info + auxtrace_info->header.size;
3139
3140 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3141 size_t len;
3142
3143 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3144 intel_pt_print_info(&auxtrace_info->priv[0],
3145 INTEL_PT_FILTER_STR_LEN,
3146 INTEL_PT_FILTER_STR_LEN);
3147 if (len) {
3148 const char *filter = (const char *)info;
3149
3150 len = roundup(len + 1, 8);
3151 info += len >> 3;
3152 if ((void *)info > info_end) {
3153 pr_err("%s: bad filter string length\n", __func__);
3154 err = -EINVAL;
3155 goto err_free_queues;
3156 }
3157 pt->filter = memdup(filter, len);
3158 if (!pt->filter) {
3159 err = -ENOMEM;
3160 goto err_free_queues;
3161 }
3162 if (session->header.needs_swap)
3163 mem_bswap_64(pt->filter, len);
3164 if (pt->filter[len - 1]) {
3165 pr_err("%s: filter string not null terminated\n", __func__);
3166 err = -EINVAL;
3167 goto err_free_queues;
3168 }
3169 err = addr_filters__parse_bare_filter(&pt->filts,
3170 filter);
3171 if (err)
3172 goto err_free_queues;
3173 }
3174 intel_pt_print_info_str("Filter string", pt->filter);
3175 }
3176
3177 pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3178 if (pt->timeless_decoding && !pt->tc.time_mult)
3179 pt->tc.time_mult = 1;
3180 pt->have_tsc = intel_pt_have_tsc(pt);
3181 pt->sampling_mode = false;
3182 pt->est_tsc = !pt->timeless_decoding;
3183
3184 pt->unknown_thread = thread__new(999999999, 999999999);
3185 if (!pt->unknown_thread) {
3186 err = -ENOMEM;
3187 goto err_free_queues;
3188 }
3189
3190 /*
3191 * Since this thread will not be kept in any rbtree not in a
3192 * list, initialize its list node so that at thread__put() the
3193 * current thread lifetime assuption is kept and we don't segfault
3194 * at list_del_init().
3195 */
3196 INIT_LIST_HEAD(&pt->unknown_thread->node);
3197
3198 err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3199 if (err)
3200 goto err_delete_thread;
3201 if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
3202 err = -ENOMEM;
3203 goto err_delete_thread;
3204 }
3205
3206 pt->auxtrace.process_event = intel_pt_process_event;
3207 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3208 pt->auxtrace.flush_events = intel_pt_flush;
3209 pt->auxtrace.free_events = intel_pt_free_events;
3210 pt->auxtrace.free = intel_pt_free;
3211 session->auxtrace = &pt->auxtrace;
3212
3213 if (dump_trace)
3214 return 0;
3215
3216 if (pt->have_sched_switch == 1) {
3217 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3218 if (!pt->switch_evsel) {
3219 pr_err("%s: missing sched_switch event\n", __func__);
3220 err = -EINVAL;
3221 goto err_delete_thread;
3222 }
3223 } else if (pt->have_sched_switch == 2 &&
3224 !intel_pt_find_switch(session->evlist)) {
3225 pr_err("%s: missing context_switch attribute flag\n", __func__);
3226 err = -EINVAL;
3227 goto err_delete_thread;
3228 }
3229
3230 if (session->itrace_synth_opts->set) {
3231 pt->synth_opts = *session->itrace_synth_opts;
3232 } else {
3233 itrace_synth_opts__set_default(&pt->synth_opts,
3234 session->itrace_synth_opts->default_no_sample);
3235 if (!session->itrace_synth_opts->default_no_sample &&
3236 !session->itrace_synth_opts->inject) {
3237 pt->synth_opts.branches = false;
3238 pt->synth_opts.callchain = true;
3239 }
3240 pt->synth_opts.thread_stack =
3241 session->itrace_synth_opts->thread_stack;
3242 }
3243
3244 if (pt->synth_opts.log)
3245 intel_pt_log_enable();
3246
3247 /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3248 if (pt->tc.time_mult) {
3249 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3250
3251 if (!pt->max_non_turbo_ratio)
3252 pt->max_non_turbo_ratio =
3253 (tsc_freq + 50000000) / 100000000;
3254 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3255 intel_pt_log("Maximum non-turbo ratio %u\n",
3256 pt->max_non_turbo_ratio);
3257 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3258 }
3259
3260 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3261 if (err)
3262 goto err_delete_thread;
3263
3264 if (pt->synth_opts.calls)
3265 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3266 PERF_IP_FLAG_TRACE_END;
3267 if (pt->synth_opts.returns)
3268 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3269 PERF_IP_FLAG_TRACE_BEGIN;
3270
3271 if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
3272 symbol_conf.use_callchain = true;
3273 if (callchain_register_param(&callchain_param) < 0) {
3274 symbol_conf.use_callchain = false;
3275 pt->synth_opts.callchain = false;
3276 }
3277 }
3278
3279 err = intel_pt_synth_events(pt, session);
3280 if (err)
3281 goto err_delete_thread;
3282
3283 intel_pt_setup_pebs_events(pt);
3284
3285 err = auxtrace_queues__process_index(&pt->queues, session);
3286 if (err)
3287 goto err_delete_thread;
3288
3289 if (pt->queues.populated)
3290 pt->data_queued = true;
3291
3292 if (pt->timeless_decoding)
3293 pr_debug2("Intel PT decoding without timestamps\n");
3294
3295 return 0;
3296
3297 err_delete_thread:
3298 thread__zput(pt->unknown_thread);
3299 err_free_queues:
3300 intel_pt_log_disable();
3301 auxtrace_queues__free(&pt->queues);
3302 session->auxtrace = NULL;
3303 err_free:
3304 addr_filters__exit(&pt->filts);
3305 zfree(&pt->filter);
3306 zfree(&pt->time_ranges);
3307 free(pt);
3308 return err;
3309 }
3310