1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pt.c: Intel Processor Trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 struct range {
50 u64 start;
51 u64 end;
52 };
53
54 struct intel_pt {
55 struct auxtrace auxtrace;
56 struct auxtrace_queues queues;
57 struct auxtrace_heap heap;
58 u32 auxtrace_type;
59 struct perf_session *session;
60 struct machine *machine;
61 struct evsel *switch_evsel;
62 struct thread *unknown_thread;
63 bool timeless_decoding;
64 bool sampling_mode;
65 bool snapshot_mode;
66 bool per_cpu_mmaps;
67 bool have_tsc;
68 bool data_queued;
69 bool est_tsc;
70 bool sync_switch;
71 bool mispred_all;
72 bool use_thread_stack;
73 bool callstack;
74 unsigned int br_stack_sz;
75 unsigned int br_stack_sz_plus;
76 int have_sched_switch;
77 u32 pmu_type;
78 u64 kernel_start;
79 u64 switch_ip;
80 u64 ptss_ip;
81 u64 first_timestamp;
82
83 struct perf_tsc_conversion tc;
84 bool cap_user_time_zero;
85
86 struct itrace_synth_opts synth_opts;
87
88 bool sample_instructions;
89 u64 instructions_sample_type;
90 u64 instructions_id;
91
92 bool sample_branches;
93 u32 branches_filter;
94 u64 branches_sample_type;
95 u64 branches_id;
96
97 bool sample_transactions;
98 u64 transactions_sample_type;
99 u64 transactions_id;
100
101 bool sample_ptwrites;
102 u64 ptwrites_sample_type;
103 u64 ptwrites_id;
104
105 bool sample_pwr_events;
106 u64 pwr_events_sample_type;
107 u64 mwait_id;
108 u64 pwre_id;
109 u64 exstop_id;
110 u64 pwrx_id;
111 u64 cbr_id;
112 u64 psb_id;
113
114 bool sample_pebs;
115 struct evsel *pebs_evsel;
116
117 u64 tsc_bit;
118 u64 mtc_bit;
119 u64 mtc_freq_bits;
120 u32 tsc_ctc_ratio_n;
121 u32 tsc_ctc_ratio_d;
122 u64 cyc_bit;
123 u64 noretcomp_bit;
124 unsigned max_non_turbo_ratio;
125 unsigned cbr2khz;
126 int max_loops;
127
128 unsigned long num_events;
129
130 char *filter;
131 struct addr_filters filts;
132
133 struct range *time_ranges;
134 unsigned int range_cnt;
135
136 struct ip_callchain *chain;
137 struct branch_stack *br_stack;
138
139 u64 dflt_tsc_offset;
140 struct rb_root vmcs_info;
141 };
142
143 enum switch_state {
144 INTEL_PT_SS_NOT_TRACING,
145 INTEL_PT_SS_UNKNOWN,
146 INTEL_PT_SS_TRACING,
147 INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
148 INTEL_PT_SS_EXPECTING_SWITCH_IP,
149 };
150
151 struct intel_pt_queue {
152 struct intel_pt *pt;
153 unsigned int queue_nr;
154 struct auxtrace_buffer *buffer;
155 struct auxtrace_buffer *old_buffer;
156 void *decoder;
157 const struct intel_pt_state *state;
158 struct ip_callchain *chain;
159 struct branch_stack *last_branch;
160 union perf_event *event_buf;
161 bool on_heap;
162 bool stop;
163 bool step_through_buffers;
164 bool use_buffer_pid_tid;
165 bool sync_switch;
166 pid_t pid, tid;
167 int cpu;
168 int switch_state;
169 pid_t next_tid;
170 struct thread *thread;
171 struct machine *guest_machine;
172 struct thread *unknown_guest_thread;
173 pid_t guest_machine_pid;
174 bool exclude_kernel;
175 bool have_sample;
176 u64 time;
177 u64 timestamp;
178 u64 sel_timestamp;
179 bool sel_start;
180 unsigned int sel_idx;
181 u32 flags;
182 u16 insn_len;
183 u64 last_insn_cnt;
184 u64 ipc_insn_cnt;
185 u64 ipc_cyc_cnt;
186 u64 last_in_insn_cnt;
187 u64 last_in_cyc_cnt;
188 u64 last_br_insn_cnt;
189 u64 last_br_cyc_cnt;
190 unsigned int cbr_seen;
191 char insn[INTEL_PT_INSN_BUF_SZ];
192 };
193
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)194 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
195 unsigned char *buf, size_t len)
196 {
197 struct intel_pt_pkt packet;
198 size_t pos = 0;
199 int ret, pkt_len, i;
200 char desc[INTEL_PT_PKT_DESC_MAX];
201 const char *color = PERF_COLOR_BLUE;
202 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
203
204 color_fprintf(stdout, color,
205 ". ... Intel Processor Trace data: size %zu bytes\n",
206 len);
207
208 while (len) {
209 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
210 if (ret > 0)
211 pkt_len = ret;
212 else
213 pkt_len = 1;
214 printf(".");
215 color_fprintf(stdout, color, " %08x: ", pos);
216 for (i = 0; i < pkt_len; i++)
217 color_fprintf(stdout, color, " %02x", buf[i]);
218 for (; i < 16; i++)
219 color_fprintf(stdout, color, " ");
220 if (ret > 0) {
221 ret = intel_pt_pkt_desc(&packet, desc,
222 INTEL_PT_PKT_DESC_MAX);
223 if (ret > 0)
224 color_fprintf(stdout, color, " %s\n", desc);
225 } else {
226 color_fprintf(stdout, color, " Bad packet!\n");
227 }
228 pos += pkt_len;
229 buf += pkt_len;
230 len -= pkt_len;
231 }
232 }
233
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)234 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
235 size_t len)
236 {
237 printf(".\n");
238 intel_pt_dump(pt, buf, len);
239 }
240
intel_pt_log_event(union perf_event * event)241 static void intel_pt_log_event(union perf_event *event)
242 {
243 FILE *f = intel_pt_log_fp();
244
245 if (!intel_pt_enable_logging || !f)
246 return;
247
248 perf_event__fprintf(event, NULL, f);
249 }
250
intel_pt_dump_sample(struct perf_session * session,struct perf_sample * sample)251 static void intel_pt_dump_sample(struct perf_session *session,
252 struct perf_sample *sample)
253 {
254 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
255 auxtrace);
256
257 printf("\n");
258 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
259 }
260
intel_pt_log_events(struct intel_pt * pt,u64 tm)261 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
262 {
263 struct perf_time_interval *range = pt->synth_opts.ptime_range;
264 int n = pt->synth_opts.range_num;
265
266 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
267 return true;
268
269 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
270 return false;
271
272 /* perf_time__ranges_skip_sample does not work if time is zero */
273 if (!tm)
274 tm = 1;
275
276 return !n || !perf_time__ranges_skip_sample(range, n, tm);
277 }
278
intel_pt_findnew_vmcs(struct rb_root * rb_root,u64 vmcs,u64 dflt_tsc_offset)279 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
280 u64 vmcs,
281 u64 dflt_tsc_offset)
282 {
283 struct rb_node **p = &rb_root->rb_node;
284 struct rb_node *parent = NULL;
285 struct intel_pt_vmcs_info *v;
286
287 while (*p) {
288 parent = *p;
289 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
290
291 if (v->vmcs == vmcs)
292 return v;
293
294 if (vmcs < v->vmcs)
295 p = &(*p)->rb_left;
296 else
297 p = &(*p)->rb_right;
298 }
299
300 v = zalloc(sizeof(*v));
301 if (v) {
302 v->vmcs = vmcs;
303 v->tsc_offset = dflt_tsc_offset;
304 v->reliable = dflt_tsc_offset;
305
306 rb_link_node(&v->rb_node, parent, p);
307 rb_insert_color(&v->rb_node, rb_root);
308 }
309
310 return v;
311 }
312
intel_pt_findnew_vmcs_info(void * data,uint64_t vmcs)313 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
314 {
315 struct intel_pt_queue *ptq = data;
316 struct intel_pt *pt = ptq->pt;
317
318 if (!vmcs && !pt->dflt_tsc_offset)
319 return NULL;
320
321 return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
322 }
323
intel_pt_free_vmcs_info(struct intel_pt * pt)324 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
325 {
326 struct intel_pt_vmcs_info *v;
327 struct rb_node *n;
328
329 n = rb_first(&pt->vmcs_info);
330 while (n) {
331 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
332 n = rb_next(n);
333 rb_erase(&v->rb_node, &pt->vmcs_info);
334 free(v);
335 }
336 }
337
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)338 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
339 struct auxtrace_buffer *b)
340 {
341 bool consecutive = false;
342 void *start;
343
344 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
345 pt->have_tsc, &consecutive,
346 pt->synth_opts.vm_time_correlation);
347 if (!start)
348 return -EINVAL;
349 /*
350 * In the case of vm_time_correlation, the overlap might contain TSC
351 * packets that will not be fixed, and that will then no longer work for
352 * overlap detection. Avoid that by zeroing out the overlap.
353 */
354 if (pt->synth_opts.vm_time_correlation)
355 memset(b->data, 0, start - b->data);
356 b->use_size = b->data + b->size - start;
357 b->use_data = start;
358 if (b->use_size && consecutive)
359 b->consecutive = true;
360 return 0;
361 }
362
intel_pt_get_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer,struct auxtrace_buffer * old_buffer,struct intel_pt_buffer * b)363 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
364 struct auxtrace_buffer *buffer,
365 struct auxtrace_buffer *old_buffer,
366 struct intel_pt_buffer *b)
367 {
368 bool might_overlap;
369
370 if (!buffer->data) {
371 int fd = perf_data__fd(ptq->pt->session->data);
372
373 buffer->data = auxtrace_buffer__get_data(buffer, fd);
374 if (!buffer->data)
375 return -ENOMEM;
376 }
377
378 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
379 if (might_overlap && !buffer->consecutive && old_buffer &&
380 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
381 return -ENOMEM;
382
383 if (buffer->use_data) {
384 b->len = buffer->use_size;
385 b->buf = buffer->use_data;
386 } else {
387 b->len = buffer->size;
388 b->buf = buffer->data;
389 }
390 b->ref_timestamp = buffer->reference;
391
392 if (!old_buffer || (might_overlap && !buffer->consecutive)) {
393 b->consecutive = false;
394 b->trace_nr = buffer->buffer_nr + 1;
395 } else {
396 b->consecutive = true;
397 }
398
399 return 0;
400 }
401
402 /* Do not drop buffers with references - refer intel_pt_get_trace() */
intel_pt_lookahead_drop_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer)403 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
404 struct auxtrace_buffer *buffer)
405 {
406 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
407 return;
408
409 auxtrace_buffer__drop_data(buffer);
410 }
411
412 /* Must be serialized with respect to intel_pt_get_trace() */
intel_pt_lookahead(void * data,intel_pt_lookahead_cb_t cb,void * cb_data)413 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
414 void *cb_data)
415 {
416 struct intel_pt_queue *ptq = data;
417 struct auxtrace_buffer *buffer = ptq->buffer;
418 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
419 struct auxtrace_queue *queue;
420 int err = 0;
421
422 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
423
424 while (1) {
425 struct intel_pt_buffer b = { .len = 0 };
426
427 buffer = auxtrace_buffer__next(queue, buffer);
428 if (!buffer)
429 break;
430
431 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
432 if (err)
433 break;
434
435 if (b.len) {
436 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
437 old_buffer = buffer;
438 } else {
439 intel_pt_lookahead_drop_buffer(ptq, buffer);
440 continue;
441 }
442
443 err = cb(&b, cb_data);
444 if (err)
445 break;
446 }
447
448 if (buffer != old_buffer)
449 intel_pt_lookahead_drop_buffer(ptq, buffer);
450 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
451
452 return err;
453 }
454
455 /*
456 * This function assumes data is processed sequentially only.
457 * Must be serialized with respect to intel_pt_lookahead()
458 */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)459 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
460 {
461 struct intel_pt_queue *ptq = data;
462 struct auxtrace_buffer *buffer = ptq->buffer;
463 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
464 struct auxtrace_queue *queue;
465 int err;
466
467 if (ptq->stop) {
468 b->len = 0;
469 return 0;
470 }
471
472 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
473
474 buffer = auxtrace_buffer__next(queue, buffer);
475 if (!buffer) {
476 if (old_buffer)
477 auxtrace_buffer__drop_data(old_buffer);
478 b->len = 0;
479 return 0;
480 }
481
482 ptq->buffer = buffer;
483
484 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
485 if (err)
486 return err;
487
488 if (ptq->step_through_buffers)
489 ptq->stop = true;
490
491 if (b->len) {
492 if (old_buffer)
493 auxtrace_buffer__drop_data(old_buffer);
494 ptq->old_buffer = buffer;
495 } else {
496 auxtrace_buffer__drop_data(buffer);
497 return intel_pt_get_trace(b, data);
498 }
499
500 return 0;
501 }
502
503 struct intel_pt_cache_entry {
504 struct auxtrace_cache_entry entry;
505 u64 insn_cnt;
506 u64 byte_cnt;
507 enum intel_pt_insn_op op;
508 enum intel_pt_insn_branch branch;
509 int length;
510 int32_t rel;
511 char insn[INTEL_PT_INSN_BUF_SZ];
512 };
513
intel_pt_config_div(const char * var,const char * value,void * data)514 static int intel_pt_config_div(const char *var, const char *value, void *data)
515 {
516 int *d = data;
517 long val;
518
519 if (!strcmp(var, "intel-pt.cache-divisor")) {
520 val = strtol(value, NULL, 0);
521 if (val > 0 && val <= INT_MAX)
522 *d = val;
523 }
524
525 return 0;
526 }
527
intel_pt_cache_divisor(void)528 static int intel_pt_cache_divisor(void)
529 {
530 static int d;
531
532 if (d)
533 return d;
534
535 perf_config(intel_pt_config_div, &d);
536
537 if (!d)
538 d = 64;
539
540 return d;
541 }
542
intel_pt_cache_size(struct dso * dso,struct machine * machine)543 static unsigned int intel_pt_cache_size(struct dso *dso,
544 struct machine *machine)
545 {
546 off_t size;
547
548 size = dso__data_size(dso, machine);
549 size /= intel_pt_cache_divisor();
550 if (size < 1000)
551 return 10;
552 if (size > (1 << 21))
553 return 21;
554 return 32 - __builtin_clz(size);
555 }
556
intel_pt_cache(struct dso * dso,struct machine * machine)557 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
558 struct machine *machine)
559 {
560 struct auxtrace_cache *c;
561 unsigned int bits;
562
563 if (dso->auxtrace_cache)
564 return dso->auxtrace_cache;
565
566 bits = intel_pt_cache_size(dso, machine);
567
568 /* Ignoring cache creation failure */
569 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
570
571 dso->auxtrace_cache = c;
572
573 return c;
574 }
575
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)576 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
577 u64 offset, u64 insn_cnt, u64 byte_cnt,
578 struct intel_pt_insn *intel_pt_insn)
579 {
580 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
581 struct intel_pt_cache_entry *e;
582 int err;
583
584 if (!c)
585 return -ENOMEM;
586
587 e = auxtrace_cache__alloc_entry(c);
588 if (!e)
589 return -ENOMEM;
590
591 e->insn_cnt = insn_cnt;
592 e->byte_cnt = byte_cnt;
593 e->op = intel_pt_insn->op;
594 e->branch = intel_pt_insn->branch;
595 e->length = intel_pt_insn->length;
596 e->rel = intel_pt_insn->rel;
597 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
598
599 err = auxtrace_cache__add(c, offset, &e->entry);
600 if (err)
601 auxtrace_cache__free_entry(c, e);
602
603 return err;
604 }
605
606 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)607 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
608 {
609 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
610
611 if (!c)
612 return NULL;
613
614 return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
615 }
616
intel_pt_cache_invalidate(struct dso * dso,struct machine * machine,u64 offset)617 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
618 u64 offset)
619 {
620 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
621
622 if (!c)
623 return;
624
625 auxtrace_cache__remove(dso->auxtrace_cache, offset);
626 }
627
intel_pt_guest_kernel_ip(uint64_t ip)628 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
629 {
630 /* Assumes 64-bit kernel */
631 return ip & (1ULL << 63);
632 }
633
intel_pt_nr_cpumode(struct intel_pt_queue * ptq,uint64_t ip,bool nr)634 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
635 {
636 if (nr) {
637 return intel_pt_guest_kernel_ip(ip) ?
638 PERF_RECORD_MISC_GUEST_KERNEL :
639 PERF_RECORD_MISC_GUEST_USER;
640 }
641
642 return ip >= ptq->pt->kernel_start ?
643 PERF_RECORD_MISC_KERNEL :
644 PERF_RECORD_MISC_USER;
645 }
646
intel_pt_cpumode(struct intel_pt_queue * ptq,uint64_t from_ip,uint64_t to_ip)647 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
648 {
649 /* No support for non-zero CS base */
650 if (from_ip)
651 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
652 return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
653 }
654
intel_pt_get_guest(struct intel_pt_queue * ptq)655 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
656 {
657 struct machines *machines = &ptq->pt->session->machines;
658 struct machine *machine;
659 pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
660
661 if (ptq->guest_machine && pid == ptq->guest_machine_pid)
662 return 0;
663
664 ptq->guest_machine = NULL;
665 thread__zput(ptq->unknown_guest_thread);
666
667 machine = machines__find_guest(machines, pid);
668 if (!machine)
669 return -1;
670
671 ptq->unknown_guest_thread = machine__idle_thread(machine);
672 if (!ptq->unknown_guest_thread)
673 return -1;
674
675 ptq->guest_machine = machine;
676 ptq->guest_machine_pid = pid;
677
678 return 0;
679 }
680
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)681 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
682 uint64_t *insn_cnt_ptr, uint64_t *ip,
683 uint64_t to_ip, uint64_t max_insn_cnt,
684 void *data)
685 {
686 struct intel_pt_queue *ptq = data;
687 struct machine *machine = ptq->pt->machine;
688 struct thread *thread;
689 struct addr_location al;
690 unsigned char buf[INTEL_PT_INSN_BUF_SZ];
691 ssize_t len;
692 int x86_64;
693 u8 cpumode;
694 u64 offset, start_offset, start_ip;
695 u64 insn_cnt = 0;
696 bool one_map = true;
697 bool nr;
698
699 intel_pt_insn->length = 0;
700
701 if (to_ip && *ip == to_ip)
702 goto out_no_cache;
703
704 nr = ptq->state->to_nr;
705 cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
706
707 if (nr) {
708 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
709 intel_pt_get_guest(ptq))
710 return -EINVAL;
711 machine = ptq->guest_machine;
712 thread = ptq->unknown_guest_thread;
713 } else {
714 thread = ptq->thread;
715 if (!thread) {
716 if (cpumode != PERF_RECORD_MISC_KERNEL)
717 return -EINVAL;
718 thread = ptq->pt->unknown_thread;
719 }
720 }
721
722 while (1) {
723 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
724 return -EINVAL;
725
726 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
727 dso__data_status_seen(al.map->dso,
728 DSO_DATA_STATUS_SEEN_ITRACE))
729 return -ENOENT;
730
731 offset = al.map->map_ip(al.map, *ip);
732
733 if (!to_ip && one_map) {
734 struct intel_pt_cache_entry *e;
735
736 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
737 if (e &&
738 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
739 *insn_cnt_ptr = e->insn_cnt;
740 *ip += e->byte_cnt;
741 intel_pt_insn->op = e->op;
742 intel_pt_insn->branch = e->branch;
743 intel_pt_insn->length = e->length;
744 intel_pt_insn->rel = e->rel;
745 memcpy(intel_pt_insn->buf, e->insn,
746 INTEL_PT_INSN_BUF_SZ);
747 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
748 return 0;
749 }
750 }
751
752 start_offset = offset;
753 start_ip = *ip;
754
755 /* Load maps to ensure dso->is_64_bit has been updated */
756 map__load(al.map);
757
758 x86_64 = al.map->dso->is_64_bit;
759
760 while (1) {
761 len = dso__data_read_offset(al.map->dso, machine,
762 offset, buf,
763 INTEL_PT_INSN_BUF_SZ);
764 if (len <= 0)
765 return -EINVAL;
766
767 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
768 return -EINVAL;
769
770 intel_pt_log_insn(intel_pt_insn, *ip);
771
772 insn_cnt += 1;
773
774 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
775 goto out;
776
777 if (max_insn_cnt && insn_cnt >= max_insn_cnt)
778 goto out_no_cache;
779
780 *ip += intel_pt_insn->length;
781
782 if (to_ip && *ip == to_ip) {
783 intel_pt_insn->length = 0;
784 goto out_no_cache;
785 }
786
787 if (*ip >= al.map->end)
788 break;
789
790 offset += intel_pt_insn->length;
791 }
792 one_map = false;
793 }
794 out:
795 *insn_cnt_ptr = insn_cnt;
796
797 if (!one_map)
798 goto out_no_cache;
799
800 /*
801 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
802 * entries.
803 */
804 if (to_ip) {
805 struct intel_pt_cache_entry *e;
806
807 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
808 if (e)
809 return 0;
810 }
811
812 /* Ignore cache errors */
813 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
814 *ip - start_ip, intel_pt_insn);
815
816 return 0;
817
818 out_no_cache:
819 *insn_cnt_ptr = insn_cnt;
820 return 0;
821 }
822
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)823 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
824 uint64_t offset, const char *filename)
825 {
826 struct addr_filter *filt;
827 bool have_filter = false;
828 bool hit_tracestop = false;
829 bool hit_filter = false;
830
831 list_for_each_entry(filt, &pt->filts.head, list) {
832 if (filt->start)
833 have_filter = true;
834
835 if ((filename && !filt->filename) ||
836 (!filename && filt->filename) ||
837 (filename && strcmp(filename, filt->filename)))
838 continue;
839
840 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
841 continue;
842
843 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
844 ip, offset, filename ? filename : "[kernel]",
845 filt->start ? "filter" : "stop",
846 filt->addr, filt->size);
847
848 if (filt->start)
849 hit_filter = true;
850 else
851 hit_tracestop = true;
852 }
853
854 if (!hit_tracestop && !hit_filter)
855 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
856 ip, offset, filename ? filename : "[kernel]");
857
858 return hit_tracestop || (have_filter && !hit_filter);
859 }
860
__intel_pt_pgd_ip(uint64_t ip,void * data)861 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
862 {
863 struct intel_pt_queue *ptq = data;
864 struct thread *thread;
865 struct addr_location al;
866 u8 cpumode;
867 u64 offset;
868
869 if (ptq->state->to_nr) {
870 if (intel_pt_guest_kernel_ip(ip))
871 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
872 /* No support for decoding guest user space */
873 return -EINVAL;
874 } else if (ip >= ptq->pt->kernel_start) {
875 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
876 }
877
878 cpumode = PERF_RECORD_MISC_USER;
879
880 thread = ptq->thread;
881 if (!thread)
882 return -EINVAL;
883
884 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
885 return -EINVAL;
886
887 offset = al.map->map_ip(al.map, ip);
888
889 return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
890 al.map->dso->long_name);
891 }
892
intel_pt_pgd_ip(uint64_t ip,void * data)893 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
894 {
895 return __intel_pt_pgd_ip(ip, data) > 0;
896 }
897
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)898 static bool intel_pt_get_config(struct intel_pt *pt,
899 struct perf_event_attr *attr, u64 *config)
900 {
901 if (attr->type == pt->pmu_type) {
902 if (config)
903 *config = attr->config;
904 return true;
905 }
906
907 return false;
908 }
909
intel_pt_exclude_kernel(struct intel_pt * pt)910 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
911 {
912 struct evsel *evsel;
913
914 evlist__for_each_entry(pt->session->evlist, evsel) {
915 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
916 !evsel->core.attr.exclude_kernel)
917 return false;
918 }
919 return true;
920 }
921
intel_pt_return_compression(struct intel_pt * pt)922 static bool intel_pt_return_compression(struct intel_pt *pt)
923 {
924 struct evsel *evsel;
925 u64 config;
926
927 if (!pt->noretcomp_bit)
928 return true;
929
930 evlist__for_each_entry(pt->session->evlist, evsel) {
931 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
932 (config & pt->noretcomp_bit))
933 return false;
934 }
935 return true;
936 }
937
intel_pt_branch_enable(struct intel_pt * pt)938 static bool intel_pt_branch_enable(struct intel_pt *pt)
939 {
940 struct evsel *evsel;
941 u64 config;
942
943 evlist__for_each_entry(pt->session->evlist, evsel) {
944 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
945 (config & 1) && !(config & 0x2000))
946 return false;
947 }
948 return true;
949 }
950
intel_pt_mtc_period(struct intel_pt * pt)951 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
952 {
953 struct evsel *evsel;
954 unsigned int shift;
955 u64 config;
956
957 if (!pt->mtc_freq_bits)
958 return 0;
959
960 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
961 config >>= 1;
962
963 evlist__for_each_entry(pt->session->evlist, evsel) {
964 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
965 return (config & pt->mtc_freq_bits) >> shift;
966 }
967 return 0;
968 }
969
intel_pt_timeless_decoding(struct intel_pt * pt)970 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
971 {
972 struct evsel *evsel;
973 bool timeless_decoding = true;
974 u64 config;
975
976 if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
977 return true;
978
979 evlist__for_each_entry(pt->session->evlist, evsel) {
980 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
981 return true;
982 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
983 if (config & pt->tsc_bit)
984 timeless_decoding = false;
985 else
986 return true;
987 }
988 }
989 return timeless_decoding;
990 }
991
intel_pt_tracing_kernel(struct intel_pt * pt)992 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
993 {
994 struct evsel *evsel;
995
996 evlist__for_each_entry(pt->session->evlist, evsel) {
997 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
998 !evsel->core.attr.exclude_kernel)
999 return true;
1000 }
1001 return false;
1002 }
1003
intel_pt_have_tsc(struct intel_pt * pt)1004 static bool intel_pt_have_tsc(struct intel_pt *pt)
1005 {
1006 struct evsel *evsel;
1007 bool have_tsc = false;
1008 u64 config;
1009
1010 if (!pt->tsc_bit)
1011 return false;
1012
1013 evlist__for_each_entry(pt->session->evlist, evsel) {
1014 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1015 if (config & pt->tsc_bit)
1016 have_tsc = true;
1017 else
1018 return false;
1019 }
1020 }
1021 return have_tsc;
1022 }
1023
intel_pt_have_mtc(struct intel_pt * pt)1024 static bool intel_pt_have_mtc(struct intel_pt *pt)
1025 {
1026 struct evsel *evsel;
1027 u64 config;
1028
1029 evlist__for_each_entry(pt->session->evlist, evsel) {
1030 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1031 (config & pt->mtc_bit))
1032 return true;
1033 }
1034 return false;
1035 }
1036
intel_pt_sampling_mode(struct intel_pt * pt)1037 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1038 {
1039 struct evsel *evsel;
1040
1041 evlist__for_each_entry(pt->session->evlist, evsel) {
1042 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1043 evsel->core.attr.aux_sample_size)
1044 return true;
1045 }
1046 return false;
1047 }
1048
intel_pt_ctl(struct intel_pt * pt)1049 static u64 intel_pt_ctl(struct intel_pt *pt)
1050 {
1051 struct evsel *evsel;
1052 u64 config;
1053
1054 evlist__for_each_entry(pt->session->evlist, evsel) {
1055 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1056 return config;
1057 }
1058 return 0;
1059 }
1060
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)1061 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1062 {
1063 u64 quot, rem;
1064
1065 quot = ns / pt->tc.time_mult;
1066 rem = ns % pt->tc.time_mult;
1067 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1068 pt->tc.time_mult;
1069 }
1070
intel_pt_alloc_chain(struct intel_pt * pt)1071 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1072 {
1073 size_t sz = sizeof(struct ip_callchain);
1074
1075 /* Add 1 to callchain_sz for callchain context */
1076 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1077 return zalloc(sz);
1078 }
1079
intel_pt_callchain_init(struct intel_pt * pt)1080 static int intel_pt_callchain_init(struct intel_pt *pt)
1081 {
1082 struct evsel *evsel;
1083
1084 evlist__for_each_entry(pt->session->evlist, evsel) {
1085 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1086 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1087 }
1088
1089 pt->chain = intel_pt_alloc_chain(pt);
1090 if (!pt->chain)
1091 return -ENOMEM;
1092
1093 return 0;
1094 }
1095
intel_pt_add_callchain(struct intel_pt * pt,struct perf_sample * sample)1096 static void intel_pt_add_callchain(struct intel_pt *pt,
1097 struct perf_sample *sample)
1098 {
1099 struct thread *thread = machine__findnew_thread(pt->machine,
1100 sample->pid,
1101 sample->tid);
1102
1103 thread_stack__sample_late(thread, sample->cpu, pt->chain,
1104 pt->synth_opts.callchain_sz + 1, sample->ip,
1105 pt->kernel_start);
1106
1107 sample->callchain = pt->chain;
1108 }
1109
intel_pt_alloc_br_stack(unsigned int entry_cnt)1110 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1111 {
1112 size_t sz = sizeof(struct branch_stack);
1113
1114 sz += entry_cnt * sizeof(struct branch_entry);
1115 return zalloc(sz);
1116 }
1117
intel_pt_br_stack_init(struct intel_pt * pt)1118 static int intel_pt_br_stack_init(struct intel_pt *pt)
1119 {
1120 struct evsel *evsel;
1121
1122 evlist__for_each_entry(pt->session->evlist, evsel) {
1123 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1124 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1125 }
1126
1127 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1128 if (!pt->br_stack)
1129 return -ENOMEM;
1130
1131 return 0;
1132 }
1133
intel_pt_add_br_stack(struct intel_pt * pt,struct perf_sample * sample)1134 static void intel_pt_add_br_stack(struct intel_pt *pt,
1135 struct perf_sample *sample)
1136 {
1137 struct thread *thread = machine__findnew_thread(pt->machine,
1138 sample->pid,
1139 sample->tid);
1140
1141 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1142 pt->br_stack_sz, sample->ip,
1143 pt->kernel_start);
1144
1145 sample->branch_stack = pt->br_stack;
1146 }
1147
1148 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1149 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1150
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)1151 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1152 unsigned int queue_nr)
1153 {
1154 struct intel_pt_params params = { .get_trace = 0, };
1155 struct perf_env *env = pt->machine->env;
1156 struct intel_pt_queue *ptq;
1157
1158 ptq = zalloc(sizeof(struct intel_pt_queue));
1159 if (!ptq)
1160 return NULL;
1161
1162 if (pt->synth_opts.callchain) {
1163 ptq->chain = intel_pt_alloc_chain(pt);
1164 if (!ptq->chain)
1165 goto out_free;
1166 }
1167
1168 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1169 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1170
1171 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1172 if (!ptq->last_branch)
1173 goto out_free;
1174 }
1175
1176 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1177 if (!ptq->event_buf)
1178 goto out_free;
1179
1180 ptq->pt = pt;
1181 ptq->queue_nr = queue_nr;
1182 ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1183 ptq->pid = -1;
1184 ptq->tid = -1;
1185 ptq->cpu = -1;
1186 ptq->next_tid = -1;
1187
1188 params.get_trace = intel_pt_get_trace;
1189 params.walk_insn = intel_pt_walk_next_insn;
1190 params.lookahead = intel_pt_lookahead;
1191 params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1192 params.data = ptq;
1193 params.return_compression = intel_pt_return_compression(pt);
1194 params.branch_enable = intel_pt_branch_enable(pt);
1195 params.ctl = intel_pt_ctl(pt);
1196 params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1197 params.mtc_period = intel_pt_mtc_period(pt);
1198 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1199 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1200 params.quick = pt->synth_opts.quick;
1201 params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1202 params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1203 params.first_timestamp = pt->first_timestamp;
1204 params.max_loops = pt->max_loops;
1205
1206 if (pt->filts.cnt > 0)
1207 params.pgd_ip = intel_pt_pgd_ip;
1208
1209 if (pt->synth_opts.instructions) {
1210 if (pt->synth_opts.period) {
1211 switch (pt->synth_opts.period_type) {
1212 case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1213 params.period_type =
1214 INTEL_PT_PERIOD_INSTRUCTIONS;
1215 params.period = pt->synth_opts.period;
1216 break;
1217 case PERF_ITRACE_PERIOD_TICKS:
1218 params.period_type = INTEL_PT_PERIOD_TICKS;
1219 params.period = pt->synth_opts.period;
1220 break;
1221 case PERF_ITRACE_PERIOD_NANOSECS:
1222 params.period_type = INTEL_PT_PERIOD_TICKS;
1223 params.period = intel_pt_ns_to_ticks(pt,
1224 pt->synth_opts.period);
1225 break;
1226 default:
1227 break;
1228 }
1229 }
1230
1231 if (!params.period) {
1232 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1233 params.period = 1;
1234 }
1235 }
1236
1237 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1238 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1239
1240 ptq->decoder = intel_pt_decoder_new(¶ms);
1241 if (!ptq->decoder)
1242 goto out_free;
1243
1244 return ptq;
1245
1246 out_free:
1247 zfree(&ptq->event_buf);
1248 zfree(&ptq->last_branch);
1249 zfree(&ptq->chain);
1250 free(ptq);
1251 return NULL;
1252 }
1253
intel_pt_free_queue(void * priv)1254 static void intel_pt_free_queue(void *priv)
1255 {
1256 struct intel_pt_queue *ptq = priv;
1257
1258 if (!ptq)
1259 return;
1260 thread__zput(ptq->thread);
1261 thread__zput(ptq->unknown_guest_thread);
1262 intel_pt_decoder_free(ptq->decoder);
1263 zfree(&ptq->event_buf);
1264 zfree(&ptq->last_branch);
1265 zfree(&ptq->chain);
1266 free(ptq);
1267 }
1268
intel_pt_first_timestamp(struct intel_pt * pt,u64 timestamp)1269 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1270 {
1271 unsigned int i;
1272
1273 pt->first_timestamp = timestamp;
1274
1275 for (i = 0; i < pt->queues.nr_queues; i++) {
1276 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1277 struct intel_pt_queue *ptq = queue->priv;
1278
1279 if (ptq && ptq->decoder)
1280 intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1281 }
1282 }
1283
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)1284 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1285 struct auxtrace_queue *queue)
1286 {
1287 struct intel_pt_queue *ptq = queue->priv;
1288
1289 if (queue->tid == -1 || pt->have_sched_switch) {
1290 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1291 if (ptq->tid == -1)
1292 ptq->pid = -1;
1293 thread__zput(ptq->thread);
1294 }
1295
1296 if (!ptq->thread && ptq->tid != -1)
1297 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1298
1299 if (ptq->thread) {
1300 ptq->pid = ptq->thread->pid_;
1301 if (queue->cpu == -1)
1302 ptq->cpu = ptq->thread->cpu;
1303 }
1304 }
1305
intel_pt_sample_flags(struct intel_pt_queue * ptq)1306 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1307 {
1308 ptq->insn_len = 0;
1309 if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1310 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1311 } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1312 if (!ptq->state->to_ip)
1313 ptq->flags = PERF_IP_FLAG_BRANCH |
1314 PERF_IP_FLAG_TRACE_END;
1315 else if (ptq->state->from_nr && !ptq->state->to_nr)
1316 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1317 PERF_IP_FLAG_VMEXIT;
1318 else
1319 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1320 PERF_IP_FLAG_ASYNC |
1321 PERF_IP_FLAG_INTERRUPT;
1322 } else {
1323 if (ptq->state->from_ip)
1324 ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1325 else
1326 ptq->flags = PERF_IP_FLAG_BRANCH |
1327 PERF_IP_FLAG_TRACE_BEGIN;
1328 if (ptq->state->flags & INTEL_PT_IN_TX)
1329 ptq->flags |= PERF_IP_FLAG_IN_TX;
1330 ptq->insn_len = ptq->state->insn_len;
1331 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1332 }
1333
1334 if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1335 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1336 if (ptq->state->type & INTEL_PT_TRACE_END)
1337 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1338 }
1339
intel_pt_setup_time_range(struct intel_pt * pt,struct intel_pt_queue * ptq)1340 static void intel_pt_setup_time_range(struct intel_pt *pt,
1341 struct intel_pt_queue *ptq)
1342 {
1343 if (!pt->range_cnt)
1344 return;
1345
1346 ptq->sel_timestamp = pt->time_ranges[0].start;
1347 ptq->sel_idx = 0;
1348
1349 if (ptq->sel_timestamp) {
1350 ptq->sel_start = true;
1351 } else {
1352 ptq->sel_timestamp = pt->time_ranges[0].end;
1353 ptq->sel_start = false;
1354 }
1355 }
1356
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)1357 static int intel_pt_setup_queue(struct intel_pt *pt,
1358 struct auxtrace_queue *queue,
1359 unsigned int queue_nr)
1360 {
1361 struct intel_pt_queue *ptq = queue->priv;
1362
1363 if (list_empty(&queue->head))
1364 return 0;
1365
1366 if (!ptq) {
1367 ptq = intel_pt_alloc_queue(pt, queue_nr);
1368 if (!ptq)
1369 return -ENOMEM;
1370 queue->priv = ptq;
1371
1372 if (queue->cpu != -1)
1373 ptq->cpu = queue->cpu;
1374 ptq->tid = queue->tid;
1375
1376 ptq->cbr_seen = UINT_MAX;
1377
1378 if (pt->sampling_mode && !pt->snapshot_mode &&
1379 pt->timeless_decoding)
1380 ptq->step_through_buffers = true;
1381
1382 ptq->sync_switch = pt->sync_switch;
1383
1384 intel_pt_setup_time_range(pt, ptq);
1385 }
1386
1387 if (!ptq->on_heap &&
1388 (!ptq->sync_switch ||
1389 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1390 const struct intel_pt_state *state;
1391 int ret;
1392
1393 if (pt->timeless_decoding)
1394 return 0;
1395
1396 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1397 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1398 queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1399
1400 if (ptq->sel_start && ptq->sel_timestamp) {
1401 ret = intel_pt_fast_forward(ptq->decoder,
1402 ptq->sel_timestamp);
1403 if (ret)
1404 return ret;
1405 }
1406
1407 while (1) {
1408 state = intel_pt_decode(ptq->decoder);
1409 if (state->err) {
1410 if (state->err == INTEL_PT_ERR_NODATA) {
1411 intel_pt_log("queue %u has no timestamp\n",
1412 queue_nr);
1413 return 0;
1414 }
1415 continue;
1416 }
1417 if (state->timestamp)
1418 break;
1419 }
1420
1421 ptq->timestamp = state->timestamp;
1422 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1423 queue_nr, ptq->timestamp);
1424 ptq->state = state;
1425 ptq->have_sample = true;
1426 if (ptq->sel_start && ptq->sel_timestamp &&
1427 ptq->timestamp < ptq->sel_timestamp)
1428 ptq->have_sample = false;
1429 intel_pt_sample_flags(ptq);
1430 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1431 if (ret)
1432 return ret;
1433 ptq->on_heap = true;
1434 }
1435
1436 return 0;
1437 }
1438
intel_pt_setup_queues(struct intel_pt * pt)1439 static int intel_pt_setup_queues(struct intel_pt *pt)
1440 {
1441 unsigned int i;
1442 int ret;
1443
1444 for (i = 0; i < pt->queues.nr_queues; i++) {
1445 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1446 if (ret)
1447 return ret;
1448 }
1449 return 0;
1450 }
1451
intel_pt_skip_event(struct intel_pt * pt)1452 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1453 {
1454 return pt->synth_opts.initial_skip &&
1455 pt->num_events++ < pt->synth_opts.initial_skip;
1456 }
1457
1458 /*
1459 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1460 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1461 * from this decoder state.
1462 */
intel_pt_skip_cbr_event(struct intel_pt * pt)1463 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1464 {
1465 return pt->synth_opts.initial_skip &&
1466 pt->num_events + 4 < pt->synth_opts.initial_skip;
1467 }
1468
intel_pt_prep_a_sample(struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1469 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1470 union perf_event *event,
1471 struct perf_sample *sample)
1472 {
1473 event->sample.header.type = PERF_RECORD_SAMPLE;
1474 event->sample.header.size = sizeof(struct perf_event_header);
1475
1476 sample->pid = ptq->pid;
1477 sample->tid = ptq->tid;
1478 sample->cpu = ptq->cpu;
1479 sample->insn_len = ptq->insn_len;
1480 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1481 }
1482
intel_pt_prep_b_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1483 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1484 struct intel_pt_queue *ptq,
1485 union perf_event *event,
1486 struct perf_sample *sample)
1487 {
1488 intel_pt_prep_a_sample(ptq, event, sample);
1489
1490 if (!pt->timeless_decoding)
1491 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1492
1493 sample->ip = ptq->state->from_ip;
1494 sample->addr = ptq->state->to_ip;
1495 sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1496 sample->period = 1;
1497 sample->flags = ptq->flags;
1498
1499 event->sample.header.misc = sample->cpumode;
1500 }
1501
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1502 static int intel_pt_inject_event(union perf_event *event,
1503 struct perf_sample *sample, u64 type)
1504 {
1505 event->header.size = perf_event__sample_event_size(sample, type, 0);
1506 return perf_event__synthesize_sample(event, type, 0, sample);
1507 }
1508
intel_pt_opt_inject(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1509 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1510 union perf_event *event,
1511 struct perf_sample *sample, u64 type)
1512 {
1513 if (!pt->synth_opts.inject)
1514 return 0;
1515
1516 return intel_pt_inject_event(event, sample, type);
1517 }
1518
intel_pt_deliver_synth_event(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1519 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1520 union perf_event *event,
1521 struct perf_sample *sample, u64 type)
1522 {
1523 int ret;
1524
1525 ret = intel_pt_opt_inject(pt, event, sample, type);
1526 if (ret)
1527 return ret;
1528
1529 ret = perf_session__deliver_synth_event(pt->session, event, sample);
1530 if (ret)
1531 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1532
1533 return ret;
1534 }
1535
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1536 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1537 {
1538 struct intel_pt *pt = ptq->pt;
1539 union perf_event *event = ptq->event_buf;
1540 struct perf_sample sample = { .ip = 0, };
1541 struct dummy_branch_stack {
1542 u64 nr;
1543 u64 hw_idx;
1544 struct branch_entry entries;
1545 } dummy_bs;
1546
1547 if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1548 return 0;
1549
1550 if (intel_pt_skip_event(pt))
1551 return 0;
1552
1553 intel_pt_prep_b_sample(pt, ptq, event, &sample);
1554
1555 sample.id = ptq->pt->branches_id;
1556 sample.stream_id = ptq->pt->branches_id;
1557
1558 /*
1559 * perf report cannot handle events without a branch stack when using
1560 * SORT_MODE__BRANCH so make a dummy one.
1561 */
1562 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1563 dummy_bs = (struct dummy_branch_stack){
1564 .nr = 1,
1565 .hw_idx = -1ULL,
1566 .entries = {
1567 .from = sample.ip,
1568 .to = sample.addr,
1569 },
1570 };
1571 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1572 }
1573
1574 if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1575 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1576 if (sample.cyc_cnt) {
1577 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1578 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1579 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1580 }
1581
1582 return intel_pt_deliver_synth_event(pt, event, &sample,
1583 pt->branches_sample_type);
1584 }
1585
intel_pt_prep_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1586 static void intel_pt_prep_sample(struct intel_pt *pt,
1587 struct intel_pt_queue *ptq,
1588 union perf_event *event,
1589 struct perf_sample *sample)
1590 {
1591 intel_pt_prep_b_sample(pt, ptq, event, sample);
1592
1593 if (pt->synth_opts.callchain) {
1594 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1595 pt->synth_opts.callchain_sz + 1,
1596 sample->ip, pt->kernel_start);
1597 sample->callchain = ptq->chain;
1598 }
1599
1600 if (pt->synth_opts.last_branch) {
1601 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1602 pt->br_stack_sz);
1603 sample->branch_stack = ptq->last_branch;
1604 }
1605 }
1606
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1607 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1608 {
1609 struct intel_pt *pt = ptq->pt;
1610 union perf_event *event = ptq->event_buf;
1611 struct perf_sample sample = { .ip = 0, };
1612
1613 if (intel_pt_skip_event(pt))
1614 return 0;
1615
1616 intel_pt_prep_sample(pt, ptq, event, &sample);
1617
1618 sample.id = ptq->pt->instructions_id;
1619 sample.stream_id = ptq->pt->instructions_id;
1620 if (pt->synth_opts.quick)
1621 sample.period = 1;
1622 else
1623 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1624
1625 if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1626 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1627 if (sample.cyc_cnt) {
1628 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1629 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1630 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1631 }
1632
1633 ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1634
1635 return intel_pt_deliver_synth_event(pt, event, &sample,
1636 pt->instructions_sample_type);
1637 }
1638
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1639 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1640 {
1641 struct intel_pt *pt = ptq->pt;
1642 union perf_event *event = ptq->event_buf;
1643 struct perf_sample sample = { .ip = 0, };
1644
1645 if (intel_pt_skip_event(pt))
1646 return 0;
1647
1648 intel_pt_prep_sample(pt, ptq, event, &sample);
1649
1650 sample.id = ptq->pt->transactions_id;
1651 sample.stream_id = ptq->pt->transactions_id;
1652
1653 return intel_pt_deliver_synth_event(pt, event, &sample,
1654 pt->transactions_sample_type);
1655 }
1656
intel_pt_prep_p_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1657 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1658 struct intel_pt_queue *ptq,
1659 union perf_event *event,
1660 struct perf_sample *sample)
1661 {
1662 intel_pt_prep_sample(pt, ptq, event, sample);
1663
1664 /*
1665 * Zero IP is used to mean "trace start" but that is not the case for
1666 * power or PTWRITE events with no IP, so clear the flags.
1667 */
1668 if (!sample->ip)
1669 sample->flags = 0;
1670 }
1671
intel_pt_synth_ptwrite_sample(struct intel_pt_queue * ptq)1672 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1673 {
1674 struct intel_pt *pt = ptq->pt;
1675 union perf_event *event = ptq->event_buf;
1676 struct perf_sample sample = { .ip = 0, };
1677 struct perf_synth_intel_ptwrite raw;
1678
1679 if (intel_pt_skip_event(pt))
1680 return 0;
1681
1682 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1683
1684 sample.id = ptq->pt->ptwrites_id;
1685 sample.stream_id = ptq->pt->ptwrites_id;
1686
1687 raw.flags = 0;
1688 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1689 raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1690
1691 sample.raw_size = perf_synth__raw_size(raw);
1692 sample.raw_data = perf_synth__raw_data(&raw);
1693
1694 return intel_pt_deliver_synth_event(pt, event, &sample,
1695 pt->ptwrites_sample_type);
1696 }
1697
intel_pt_synth_cbr_sample(struct intel_pt_queue * ptq)1698 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1699 {
1700 struct intel_pt *pt = ptq->pt;
1701 union perf_event *event = ptq->event_buf;
1702 struct perf_sample sample = { .ip = 0, };
1703 struct perf_synth_intel_cbr raw;
1704 u32 flags;
1705
1706 if (intel_pt_skip_cbr_event(pt))
1707 return 0;
1708
1709 ptq->cbr_seen = ptq->state->cbr;
1710
1711 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1712
1713 sample.id = ptq->pt->cbr_id;
1714 sample.stream_id = ptq->pt->cbr_id;
1715
1716 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1717 raw.flags = cpu_to_le32(flags);
1718 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1719 raw.reserved3 = 0;
1720
1721 sample.raw_size = perf_synth__raw_size(raw);
1722 sample.raw_data = perf_synth__raw_data(&raw);
1723
1724 return intel_pt_deliver_synth_event(pt, event, &sample,
1725 pt->pwr_events_sample_type);
1726 }
1727
intel_pt_synth_psb_sample(struct intel_pt_queue * ptq)1728 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1729 {
1730 struct intel_pt *pt = ptq->pt;
1731 union perf_event *event = ptq->event_buf;
1732 struct perf_sample sample = { .ip = 0, };
1733 struct perf_synth_intel_psb raw;
1734
1735 if (intel_pt_skip_event(pt))
1736 return 0;
1737
1738 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1739
1740 sample.id = ptq->pt->psb_id;
1741 sample.stream_id = ptq->pt->psb_id;
1742 sample.flags = 0;
1743
1744 raw.reserved = 0;
1745 raw.offset = ptq->state->psb_offset;
1746
1747 sample.raw_size = perf_synth__raw_size(raw);
1748 sample.raw_data = perf_synth__raw_data(&raw);
1749
1750 return intel_pt_deliver_synth_event(pt, event, &sample,
1751 pt->pwr_events_sample_type);
1752 }
1753
intel_pt_synth_mwait_sample(struct intel_pt_queue * ptq)1754 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1755 {
1756 struct intel_pt *pt = ptq->pt;
1757 union perf_event *event = ptq->event_buf;
1758 struct perf_sample sample = { .ip = 0, };
1759 struct perf_synth_intel_mwait raw;
1760
1761 if (intel_pt_skip_event(pt))
1762 return 0;
1763
1764 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1765
1766 sample.id = ptq->pt->mwait_id;
1767 sample.stream_id = ptq->pt->mwait_id;
1768
1769 raw.reserved = 0;
1770 raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1771
1772 sample.raw_size = perf_synth__raw_size(raw);
1773 sample.raw_data = perf_synth__raw_data(&raw);
1774
1775 return intel_pt_deliver_synth_event(pt, event, &sample,
1776 pt->pwr_events_sample_type);
1777 }
1778
intel_pt_synth_pwre_sample(struct intel_pt_queue * ptq)1779 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1780 {
1781 struct intel_pt *pt = ptq->pt;
1782 union perf_event *event = ptq->event_buf;
1783 struct perf_sample sample = { .ip = 0, };
1784 struct perf_synth_intel_pwre raw;
1785
1786 if (intel_pt_skip_event(pt))
1787 return 0;
1788
1789 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1790
1791 sample.id = ptq->pt->pwre_id;
1792 sample.stream_id = ptq->pt->pwre_id;
1793
1794 raw.reserved = 0;
1795 raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1796
1797 sample.raw_size = perf_synth__raw_size(raw);
1798 sample.raw_data = perf_synth__raw_data(&raw);
1799
1800 return intel_pt_deliver_synth_event(pt, event, &sample,
1801 pt->pwr_events_sample_type);
1802 }
1803
intel_pt_synth_exstop_sample(struct intel_pt_queue * ptq)1804 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1805 {
1806 struct intel_pt *pt = ptq->pt;
1807 union perf_event *event = ptq->event_buf;
1808 struct perf_sample sample = { .ip = 0, };
1809 struct perf_synth_intel_exstop raw;
1810
1811 if (intel_pt_skip_event(pt))
1812 return 0;
1813
1814 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1815
1816 sample.id = ptq->pt->exstop_id;
1817 sample.stream_id = ptq->pt->exstop_id;
1818
1819 raw.flags = 0;
1820 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1821
1822 sample.raw_size = perf_synth__raw_size(raw);
1823 sample.raw_data = perf_synth__raw_data(&raw);
1824
1825 return intel_pt_deliver_synth_event(pt, event, &sample,
1826 pt->pwr_events_sample_type);
1827 }
1828
intel_pt_synth_pwrx_sample(struct intel_pt_queue * ptq)1829 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1830 {
1831 struct intel_pt *pt = ptq->pt;
1832 union perf_event *event = ptq->event_buf;
1833 struct perf_sample sample = { .ip = 0, };
1834 struct perf_synth_intel_pwrx raw;
1835
1836 if (intel_pt_skip_event(pt))
1837 return 0;
1838
1839 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1840
1841 sample.id = ptq->pt->pwrx_id;
1842 sample.stream_id = ptq->pt->pwrx_id;
1843
1844 raw.reserved = 0;
1845 raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1846
1847 sample.raw_size = perf_synth__raw_size(raw);
1848 sample.raw_data = perf_synth__raw_data(&raw);
1849
1850 return intel_pt_deliver_synth_event(pt, event, &sample,
1851 pt->pwr_events_sample_type);
1852 }
1853
1854 /*
1855 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1856 * intel_pt_add_gp_regs().
1857 */
1858 static const int pebs_gp_regs[] = {
1859 [PERF_REG_X86_FLAGS] = 1,
1860 [PERF_REG_X86_IP] = 2,
1861 [PERF_REG_X86_AX] = 3,
1862 [PERF_REG_X86_CX] = 4,
1863 [PERF_REG_X86_DX] = 5,
1864 [PERF_REG_X86_BX] = 6,
1865 [PERF_REG_X86_SP] = 7,
1866 [PERF_REG_X86_BP] = 8,
1867 [PERF_REG_X86_SI] = 9,
1868 [PERF_REG_X86_DI] = 10,
1869 [PERF_REG_X86_R8] = 11,
1870 [PERF_REG_X86_R9] = 12,
1871 [PERF_REG_X86_R10] = 13,
1872 [PERF_REG_X86_R11] = 14,
1873 [PERF_REG_X86_R12] = 15,
1874 [PERF_REG_X86_R13] = 16,
1875 [PERF_REG_X86_R14] = 17,
1876 [PERF_REG_X86_R15] = 18,
1877 };
1878
intel_pt_add_gp_regs(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)1879 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1880 const struct intel_pt_blk_items *items,
1881 u64 regs_mask)
1882 {
1883 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1884 u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1885 u32 bit;
1886 int i;
1887
1888 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1889 /* Get the PEBS gp_regs array index */
1890 int n = pebs_gp_regs[i] - 1;
1891
1892 if (n < 0)
1893 continue;
1894 /*
1895 * Add only registers that were requested (i.e. 'regs_mask') and
1896 * that were provided (i.e. 'mask'), and update the resulting
1897 * mask (i.e. 'intr_regs->mask') accordingly.
1898 */
1899 if (mask & 1 << n && regs_mask & bit) {
1900 intr_regs->mask |= bit;
1901 *pos++ = gp_regs[n];
1902 }
1903 }
1904
1905 return pos;
1906 }
1907
1908 #ifndef PERF_REG_X86_XMM0
1909 #define PERF_REG_X86_XMM0 32
1910 #endif
1911
intel_pt_add_xmm(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)1912 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1913 const struct intel_pt_blk_items *items,
1914 u64 regs_mask)
1915 {
1916 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1917 const u64 *xmm = items->xmm;
1918
1919 /*
1920 * If there are any XMM registers, then there should be all of them.
1921 * Nevertheless, follow the logic to add only registers that were
1922 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1923 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1924 */
1925 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1926
1927 for (; mask; mask >>= 1, xmm++) {
1928 if (mask & 1)
1929 *pos++ = *xmm;
1930 }
1931 }
1932
1933 #define LBR_INFO_MISPRED (1ULL << 63)
1934 #define LBR_INFO_IN_TX (1ULL << 62)
1935 #define LBR_INFO_ABORT (1ULL << 61)
1936 #define LBR_INFO_CYCLES 0xffff
1937
1938 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
intel_pt_lbr_flags(u64 info)1939 static u64 intel_pt_lbr_flags(u64 info)
1940 {
1941 union {
1942 struct branch_flags flags;
1943 u64 result;
1944 } u;
1945
1946 u.result = 0;
1947 u.flags.mispred = !!(info & LBR_INFO_MISPRED);
1948 u.flags.predicted = !(info & LBR_INFO_MISPRED);
1949 u.flags.in_tx = !!(info & LBR_INFO_IN_TX);
1950 u.flags.abort = !!(info & LBR_INFO_ABORT);
1951 u.flags.cycles = info & LBR_INFO_CYCLES;
1952
1953 return u.result;
1954 }
1955
intel_pt_add_lbrs(struct branch_stack * br_stack,const struct intel_pt_blk_items * items)1956 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1957 const struct intel_pt_blk_items *items)
1958 {
1959 u64 *to;
1960 int i;
1961
1962 br_stack->nr = 0;
1963
1964 to = &br_stack->entries[0].from;
1965
1966 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1967 u32 mask = items->mask[i];
1968 const u64 *from = items->val[i];
1969
1970 for (; mask; mask >>= 3, from += 3) {
1971 if ((mask & 7) == 7) {
1972 *to++ = from[0];
1973 *to++ = from[1];
1974 *to++ = intel_pt_lbr_flags(from[2]);
1975 br_stack->nr += 1;
1976 }
1977 }
1978 }
1979 }
1980
intel_pt_synth_pebs_sample(struct intel_pt_queue * ptq)1981 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1982 {
1983 const struct intel_pt_blk_items *items = &ptq->state->items;
1984 struct perf_sample sample = { .ip = 0, };
1985 union perf_event *event = ptq->event_buf;
1986 struct intel_pt *pt = ptq->pt;
1987 struct evsel *evsel = pt->pebs_evsel;
1988 u64 sample_type = evsel->core.attr.sample_type;
1989 u64 id = evsel->core.id[0];
1990 u8 cpumode;
1991 u64 regs[8 * sizeof(sample.intr_regs.mask)];
1992
1993 if (intel_pt_skip_event(pt))
1994 return 0;
1995
1996 intel_pt_prep_a_sample(ptq, event, &sample);
1997
1998 sample.id = id;
1999 sample.stream_id = id;
2000
2001 if (!evsel->core.attr.freq)
2002 sample.period = evsel->core.attr.sample_period;
2003
2004 /* No support for non-zero CS base */
2005 if (items->has_ip)
2006 sample.ip = items->ip;
2007 else if (items->has_rip)
2008 sample.ip = items->rip;
2009 else
2010 sample.ip = ptq->state->from_ip;
2011
2012 cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2013
2014 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2015
2016 sample.cpumode = cpumode;
2017
2018 if (sample_type & PERF_SAMPLE_TIME) {
2019 u64 timestamp = 0;
2020
2021 if (items->has_timestamp)
2022 timestamp = items->timestamp;
2023 else if (!pt->timeless_decoding)
2024 timestamp = ptq->timestamp;
2025 if (timestamp)
2026 sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2027 }
2028
2029 if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2030 pt->synth_opts.callchain) {
2031 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2032 pt->synth_opts.callchain_sz, sample.ip,
2033 pt->kernel_start);
2034 sample.callchain = ptq->chain;
2035 }
2036
2037 if (sample_type & PERF_SAMPLE_REGS_INTR &&
2038 (items->mask[INTEL_PT_GP_REGS_POS] ||
2039 items->mask[INTEL_PT_XMM_POS])) {
2040 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2041 u64 *pos;
2042
2043 sample.intr_regs.abi = items->is_32_bit ?
2044 PERF_SAMPLE_REGS_ABI_32 :
2045 PERF_SAMPLE_REGS_ABI_64;
2046 sample.intr_regs.regs = regs;
2047
2048 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2049
2050 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2051 }
2052
2053 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2054 if (items->mask[INTEL_PT_LBR_0_POS] ||
2055 items->mask[INTEL_PT_LBR_1_POS] ||
2056 items->mask[INTEL_PT_LBR_2_POS]) {
2057 intel_pt_add_lbrs(ptq->last_branch, items);
2058 } else if (pt->synth_opts.last_branch) {
2059 thread_stack__br_sample(ptq->thread, ptq->cpu,
2060 ptq->last_branch,
2061 pt->br_stack_sz);
2062 } else {
2063 ptq->last_branch->nr = 0;
2064 }
2065 sample.branch_stack = ptq->last_branch;
2066 }
2067
2068 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2069 sample.addr = items->mem_access_address;
2070
2071 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2072 /*
2073 * Refer kernel's setup_pebs_adaptive_sample_data() and
2074 * intel_hsw_weight().
2075 */
2076 if (items->has_mem_access_latency) {
2077 u64 weight = items->mem_access_latency >> 32;
2078
2079 /*
2080 * Starts from SPR, the mem access latency field
2081 * contains both cache latency [47:32] and instruction
2082 * latency [15:0]. The cache latency is the same as the
2083 * mem access latency on previous platforms.
2084 *
2085 * In practice, no memory access could last than 4G
2086 * cycles. Use latency >> 32 to distinguish the
2087 * different format of the mem access latency field.
2088 */
2089 if (weight > 0) {
2090 sample.weight = weight & 0xffff;
2091 sample.ins_lat = items->mem_access_latency & 0xffff;
2092 } else
2093 sample.weight = items->mem_access_latency;
2094 }
2095 if (!sample.weight && items->has_tsx_aux_info) {
2096 /* Cycles last block */
2097 sample.weight = (u32)items->tsx_aux_info;
2098 }
2099 }
2100
2101 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2102 u64 ax = items->has_rax ? items->rax : 0;
2103 /* Refer kernel's intel_hsw_transaction() */
2104 u64 txn = (u8)(items->tsx_aux_info >> 32);
2105
2106 /* For RTM XABORTs also log the abort code from AX */
2107 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2108 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2109 sample.transaction = txn;
2110 }
2111
2112 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2113 }
2114
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip,u64 timestamp)2115 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2116 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2117 {
2118 union perf_event event;
2119 char msg[MAX_AUXTRACE_ERROR_MSG];
2120 int err;
2121
2122 if (pt->synth_opts.error_minus_flags) {
2123 if (code == INTEL_PT_ERR_OVR &&
2124 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2125 return 0;
2126 if (code == INTEL_PT_ERR_LOST &&
2127 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2128 return 0;
2129 }
2130
2131 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2132
2133 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2134 code, cpu, pid, tid, ip, msg, timestamp);
2135
2136 err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2137 if (err)
2138 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2139 err);
2140
2141 return err;
2142 }
2143
intel_ptq_synth_error(struct intel_pt_queue * ptq,const struct intel_pt_state * state)2144 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2145 const struct intel_pt_state *state)
2146 {
2147 struct intel_pt *pt = ptq->pt;
2148 u64 tm = ptq->timestamp;
2149
2150 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2151
2152 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2153 ptq->tid, state->from_ip, tm);
2154 }
2155
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)2156 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2157 {
2158 struct auxtrace_queue *queue;
2159 pid_t tid = ptq->next_tid;
2160 int err;
2161
2162 if (tid == -1)
2163 return 0;
2164
2165 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2166
2167 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2168
2169 queue = &pt->queues.queue_array[ptq->queue_nr];
2170 intel_pt_set_pid_tid_cpu(pt, queue);
2171
2172 ptq->next_tid = -1;
2173
2174 return err;
2175 }
2176
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)2177 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2178 {
2179 struct intel_pt *pt = ptq->pt;
2180
2181 return ip == pt->switch_ip &&
2182 (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2183 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2184 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2185 }
2186
2187 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2188 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2189
intel_pt_sample(struct intel_pt_queue * ptq)2190 static int intel_pt_sample(struct intel_pt_queue *ptq)
2191 {
2192 const struct intel_pt_state *state = ptq->state;
2193 struct intel_pt *pt = ptq->pt;
2194 int err;
2195
2196 if (!ptq->have_sample)
2197 return 0;
2198
2199 ptq->have_sample = false;
2200
2201 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2202 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2203
2204 /*
2205 * Do PEBS first to allow for the possibility that the PEBS timestamp
2206 * precedes the current timestamp.
2207 */
2208 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2209 err = intel_pt_synth_pebs_sample(ptq);
2210 if (err)
2211 return err;
2212 }
2213
2214 if (pt->sample_pwr_events) {
2215 if (state->type & INTEL_PT_PSB_EVT) {
2216 err = intel_pt_synth_psb_sample(ptq);
2217 if (err)
2218 return err;
2219 }
2220 if (ptq->state->cbr != ptq->cbr_seen) {
2221 err = intel_pt_synth_cbr_sample(ptq);
2222 if (err)
2223 return err;
2224 }
2225 if (state->type & INTEL_PT_PWR_EVT) {
2226 if (state->type & INTEL_PT_MWAIT_OP) {
2227 err = intel_pt_synth_mwait_sample(ptq);
2228 if (err)
2229 return err;
2230 }
2231 if (state->type & INTEL_PT_PWR_ENTRY) {
2232 err = intel_pt_synth_pwre_sample(ptq);
2233 if (err)
2234 return err;
2235 }
2236 if (state->type & INTEL_PT_EX_STOP) {
2237 err = intel_pt_synth_exstop_sample(ptq);
2238 if (err)
2239 return err;
2240 }
2241 if (state->type & INTEL_PT_PWR_EXIT) {
2242 err = intel_pt_synth_pwrx_sample(ptq);
2243 if (err)
2244 return err;
2245 }
2246 }
2247 }
2248
2249 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2250 err = intel_pt_synth_instruction_sample(ptq);
2251 if (err)
2252 return err;
2253 }
2254
2255 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2256 err = intel_pt_synth_transaction_sample(ptq);
2257 if (err)
2258 return err;
2259 }
2260
2261 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2262 err = intel_pt_synth_ptwrite_sample(ptq);
2263 if (err)
2264 return err;
2265 }
2266
2267 if (!(state->type & INTEL_PT_BRANCH))
2268 return 0;
2269
2270 if (pt->use_thread_stack) {
2271 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2272 state->from_ip, state->to_ip, ptq->insn_len,
2273 state->trace_nr, pt->callstack,
2274 pt->br_stack_sz_plus,
2275 pt->mispred_all);
2276 } else {
2277 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2278 }
2279
2280 if (pt->sample_branches) {
2281 if (state->from_nr != state->to_nr &&
2282 state->from_ip && state->to_ip) {
2283 struct intel_pt_state *st = (struct intel_pt_state *)state;
2284 u64 to_ip = st->to_ip;
2285 u64 from_ip = st->from_ip;
2286
2287 /*
2288 * perf cannot handle having different machines for ip
2289 * and addr, so create 2 branches.
2290 */
2291 st->to_ip = 0;
2292 err = intel_pt_synth_branch_sample(ptq);
2293 if (err)
2294 return err;
2295 st->from_ip = 0;
2296 st->to_ip = to_ip;
2297 err = intel_pt_synth_branch_sample(ptq);
2298 st->from_ip = from_ip;
2299 } else {
2300 err = intel_pt_synth_branch_sample(ptq);
2301 }
2302 if (err)
2303 return err;
2304 }
2305
2306 if (!ptq->sync_switch)
2307 return 0;
2308
2309 if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2310 switch (ptq->switch_state) {
2311 case INTEL_PT_SS_NOT_TRACING:
2312 case INTEL_PT_SS_UNKNOWN:
2313 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2314 err = intel_pt_next_tid(pt, ptq);
2315 if (err)
2316 return err;
2317 ptq->switch_state = INTEL_PT_SS_TRACING;
2318 break;
2319 default:
2320 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2321 return 1;
2322 }
2323 } else if (!state->to_ip) {
2324 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2325 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2326 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2327 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2328 state->to_ip == pt->ptss_ip &&
2329 (ptq->flags & PERF_IP_FLAG_CALL)) {
2330 ptq->switch_state = INTEL_PT_SS_TRACING;
2331 }
2332
2333 return 0;
2334 }
2335
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)2336 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2337 {
2338 struct machine *machine = pt->machine;
2339 struct map *map;
2340 struct symbol *sym, *start;
2341 u64 ip, switch_ip = 0;
2342 const char *ptss;
2343
2344 if (ptss_ip)
2345 *ptss_ip = 0;
2346
2347 map = machine__kernel_map(machine);
2348 if (!map)
2349 return 0;
2350
2351 if (map__load(map))
2352 return 0;
2353
2354 start = dso__first_symbol(map->dso);
2355
2356 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2357 if (sym->binding == STB_GLOBAL &&
2358 !strcmp(sym->name, "__switch_to")) {
2359 ip = map->unmap_ip(map, sym->start);
2360 if (ip >= map->start && ip < map->end) {
2361 switch_ip = ip;
2362 break;
2363 }
2364 }
2365 }
2366
2367 if (!switch_ip || !ptss_ip)
2368 return 0;
2369
2370 if (pt->have_sched_switch == 1)
2371 ptss = "perf_trace_sched_switch";
2372 else
2373 ptss = "__perf_event_task_sched_out";
2374
2375 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2376 if (!strcmp(sym->name, ptss)) {
2377 ip = map->unmap_ip(map, sym->start);
2378 if (ip >= map->start && ip < map->end) {
2379 *ptss_ip = ip;
2380 break;
2381 }
2382 }
2383 }
2384
2385 return switch_ip;
2386 }
2387
intel_pt_enable_sync_switch(struct intel_pt * pt)2388 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2389 {
2390 unsigned int i;
2391
2392 pt->sync_switch = true;
2393
2394 for (i = 0; i < pt->queues.nr_queues; i++) {
2395 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2396 struct intel_pt_queue *ptq = queue->priv;
2397
2398 if (ptq)
2399 ptq->sync_switch = true;
2400 }
2401 }
2402
2403 /*
2404 * To filter against time ranges, it is only necessary to look at the next start
2405 * or end time.
2406 */
intel_pt_next_time(struct intel_pt_queue * ptq)2407 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2408 {
2409 struct intel_pt *pt = ptq->pt;
2410
2411 if (ptq->sel_start) {
2412 /* Next time is an end time */
2413 ptq->sel_start = false;
2414 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2415 return true;
2416 } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2417 /* Next time is a start time */
2418 ptq->sel_start = true;
2419 ptq->sel_idx += 1;
2420 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2421 return true;
2422 }
2423
2424 /* No next time */
2425 return false;
2426 }
2427
intel_pt_time_filter(struct intel_pt_queue * ptq,u64 * ff_timestamp)2428 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2429 {
2430 int err;
2431
2432 while (1) {
2433 if (ptq->sel_start) {
2434 if (ptq->timestamp >= ptq->sel_timestamp) {
2435 /* After start time, so consider next time */
2436 intel_pt_next_time(ptq);
2437 if (!ptq->sel_timestamp) {
2438 /* No end time */
2439 return 0;
2440 }
2441 /* Check against end time */
2442 continue;
2443 }
2444 /* Before start time, so fast forward */
2445 ptq->have_sample = false;
2446 if (ptq->sel_timestamp > *ff_timestamp) {
2447 if (ptq->sync_switch) {
2448 intel_pt_next_tid(ptq->pt, ptq);
2449 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2450 }
2451 *ff_timestamp = ptq->sel_timestamp;
2452 err = intel_pt_fast_forward(ptq->decoder,
2453 ptq->sel_timestamp);
2454 if (err)
2455 return err;
2456 }
2457 return 0;
2458 } else if (ptq->timestamp > ptq->sel_timestamp) {
2459 /* After end time, so consider next time */
2460 if (!intel_pt_next_time(ptq)) {
2461 /* No next time range, so stop decoding */
2462 ptq->have_sample = false;
2463 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2464 return 1;
2465 }
2466 /* Check against next start time */
2467 continue;
2468 } else {
2469 /* Before end time */
2470 return 0;
2471 }
2472 }
2473 }
2474
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)2475 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2476 {
2477 const struct intel_pt_state *state = ptq->state;
2478 struct intel_pt *pt = ptq->pt;
2479 u64 ff_timestamp = 0;
2480 int err;
2481
2482 if (!pt->kernel_start) {
2483 pt->kernel_start = machine__kernel_start(pt->machine);
2484 if (pt->per_cpu_mmaps &&
2485 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2486 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2487 !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2488 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2489 if (pt->switch_ip) {
2490 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2491 pt->switch_ip, pt->ptss_ip);
2492 intel_pt_enable_sync_switch(pt);
2493 }
2494 }
2495 }
2496
2497 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2498 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2499 while (1) {
2500 err = intel_pt_sample(ptq);
2501 if (err)
2502 return err;
2503
2504 state = intel_pt_decode(ptq->decoder);
2505 if (state->err) {
2506 if (state->err == INTEL_PT_ERR_NODATA)
2507 return 1;
2508 if (ptq->sync_switch &&
2509 state->from_ip >= pt->kernel_start) {
2510 ptq->sync_switch = false;
2511 intel_pt_next_tid(pt, ptq);
2512 }
2513 if (pt->synth_opts.errors) {
2514 err = intel_ptq_synth_error(ptq, state);
2515 if (err)
2516 return err;
2517 }
2518 continue;
2519 }
2520
2521 ptq->state = state;
2522 ptq->have_sample = true;
2523 intel_pt_sample_flags(ptq);
2524
2525 /* Use estimated TSC upon return to user space */
2526 if (pt->est_tsc &&
2527 (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2528 state->to_ip && state->to_ip < pt->kernel_start) {
2529 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2530 state->timestamp, state->est_timestamp);
2531 ptq->timestamp = state->est_timestamp;
2532 /* Use estimated TSC in unknown switch state */
2533 } else if (ptq->sync_switch &&
2534 ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2535 intel_pt_is_switch_ip(ptq, state->to_ip) &&
2536 ptq->next_tid == -1) {
2537 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2538 state->timestamp, state->est_timestamp);
2539 ptq->timestamp = state->est_timestamp;
2540 } else if (state->timestamp > ptq->timestamp) {
2541 ptq->timestamp = state->timestamp;
2542 }
2543
2544 if (ptq->sel_timestamp) {
2545 err = intel_pt_time_filter(ptq, &ff_timestamp);
2546 if (err)
2547 return err;
2548 }
2549
2550 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2551 *timestamp = ptq->timestamp;
2552 return 0;
2553 }
2554 }
2555 return 0;
2556 }
2557
intel_pt_update_queues(struct intel_pt * pt)2558 static inline int intel_pt_update_queues(struct intel_pt *pt)
2559 {
2560 if (pt->queues.new_data) {
2561 pt->queues.new_data = false;
2562 return intel_pt_setup_queues(pt);
2563 }
2564 return 0;
2565 }
2566
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)2567 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2568 {
2569 unsigned int queue_nr;
2570 u64 ts;
2571 int ret;
2572
2573 while (1) {
2574 struct auxtrace_queue *queue;
2575 struct intel_pt_queue *ptq;
2576
2577 if (!pt->heap.heap_cnt)
2578 return 0;
2579
2580 if (pt->heap.heap_array[0].ordinal >= timestamp)
2581 return 0;
2582
2583 queue_nr = pt->heap.heap_array[0].queue_nr;
2584 queue = &pt->queues.queue_array[queue_nr];
2585 ptq = queue->priv;
2586
2587 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2588 queue_nr, pt->heap.heap_array[0].ordinal,
2589 timestamp);
2590
2591 auxtrace_heap__pop(&pt->heap);
2592
2593 if (pt->heap.heap_cnt) {
2594 ts = pt->heap.heap_array[0].ordinal + 1;
2595 if (ts > timestamp)
2596 ts = timestamp;
2597 } else {
2598 ts = timestamp;
2599 }
2600
2601 intel_pt_set_pid_tid_cpu(pt, queue);
2602
2603 ret = intel_pt_run_decoder(ptq, &ts);
2604
2605 if (ret < 0) {
2606 auxtrace_heap__add(&pt->heap, queue_nr, ts);
2607 return ret;
2608 }
2609
2610 if (!ret) {
2611 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2612 if (ret < 0)
2613 return ret;
2614 } else {
2615 ptq->on_heap = false;
2616 }
2617 }
2618
2619 return 0;
2620 }
2621
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)2622 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2623 u64 time_)
2624 {
2625 struct auxtrace_queues *queues = &pt->queues;
2626 unsigned int i;
2627 u64 ts = 0;
2628
2629 for (i = 0; i < queues->nr_queues; i++) {
2630 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2631 struct intel_pt_queue *ptq = queue->priv;
2632
2633 if (ptq && (tid == -1 || ptq->tid == tid)) {
2634 ptq->time = time_;
2635 intel_pt_set_pid_tid_cpu(pt, queue);
2636 intel_pt_run_decoder(ptq, &ts);
2637 }
2638 }
2639 return 0;
2640 }
2641
intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue * ptq,struct auxtrace_queue * queue,struct perf_sample * sample)2642 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2643 struct auxtrace_queue *queue,
2644 struct perf_sample *sample)
2645 {
2646 struct machine *m = ptq->pt->machine;
2647
2648 ptq->pid = sample->pid;
2649 ptq->tid = sample->tid;
2650 ptq->cpu = queue->cpu;
2651
2652 intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2653 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2654
2655 thread__zput(ptq->thread);
2656
2657 if (ptq->tid == -1)
2658 return;
2659
2660 if (ptq->pid == -1) {
2661 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2662 if (ptq->thread)
2663 ptq->pid = ptq->thread->pid_;
2664 return;
2665 }
2666
2667 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2668 }
2669
intel_pt_process_timeless_sample(struct intel_pt * pt,struct perf_sample * sample)2670 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2671 struct perf_sample *sample)
2672 {
2673 struct auxtrace_queue *queue;
2674 struct intel_pt_queue *ptq;
2675 u64 ts = 0;
2676
2677 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2678 if (!queue)
2679 return -EINVAL;
2680
2681 ptq = queue->priv;
2682 if (!ptq)
2683 return 0;
2684
2685 ptq->stop = false;
2686 ptq->time = sample->time;
2687 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2688 intel_pt_run_decoder(ptq, &ts);
2689 return 0;
2690 }
2691
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)2692 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2693 {
2694 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2695 sample->pid, sample->tid, 0, sample->time);
2696 }
2697
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)2698 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2699 {
2700 unsigned i, j;
2701
2702 if (cpu < 0 || !pt->queues.nr_queues)
2703 return NULL;
2704
2705 if ((unsigned)cpu >= pt->queues.nr_queues)
2706 i = pt->queues.nr_queues - 1;
2707 else
2708 i = cpu;
2709
2710 if (pt->queues.queue_array[i].cpu == cpu)
2711 return pt->queues.queue_array[i].priv;
2712
2713 for (j = 0; i > 0; j++) {
2714 if (pt->queues.queue_array[--i].cpu == cpu)
2715 return pt->queues.queue_array[i].priv;
2716 }
2717
2718 for (; j < pt->queues.nr_queues; j++) {
2719 if (pt->queues.queue_array[j].cpu == cpu)
2720 return pt->queues.queue_array[j].priv;
2721 }
2722
2723 return NULL;
2724 }
2725
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)2726 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2727 u64 timestamp)
2728 {
2729 struct intel_pt_queue *ptq;
2730 int err;
2731
2732 if (!pt->sync_switch)
2733 return 1;
2734
2735 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2736 if (!ptq || !ptq->sync_switch)
2737 return 1;
2738
2739 switch (ptq->switch_state) {
2740 case INTEL_PT_SS_NOT_TRACING:
2741 break;
2742 case INTEL_PT_SS_UNKNOWN:
2743 case INTEL_PT_SS_TRACING:
2744 ptq->next_tid = tid;
2745 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2746 return 0;
2747 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2748 if (!ptq->on_heap) {
2749 ptq->timestamp = perf_time_to_tsc(timestamp,
2750 &pt->tc);
2751 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2752 ptq->timestamp);
2753 if (err)
2754 return err;
2755 ptq->on_heap = true;
2756 }
2757 ptq->switch_state = INTEL_PT_SS_TRACING;
2758 break;
2759 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2760 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2761 break;
2762 default:
2763 break;
2764 }
2765
2766 ptq->next_tid = -1;
2767
2768 return 1;
2769 }
2770
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)2771 static int intel_pt_process_switch(struct intel_pt *pt,
2772 struct perf_sample *sample)
2773 {
2774 pid_t tid;
2775 int cpu, ret;
2776 struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2777
2778 if (evsel != pt->switch_evsel)
2779 return 0;
2780
2781 tid = evsel__intval(evsel, sample, "next_pid");
2782 cpu = sample->cpu;
2783
2784 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2785 cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2786 &pt->tc));
2787
2788 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2789 if (ret <= 0)
2790 return ret;
2791
2792 return machine__set_current_tid(pt->machine, cpu, -1, tid);
2793 }
2794
intel_pt_context_switch_in(struct intel_pt * pt,struct perf_sample * sample)2795 static int intel_pt_context_switch_in(struct intel_pt *pt,
2796 struct perf_sample *sample)
2797 {
2798 pid_t pid = sample->pid;
2799 pid_t tid = sample->tid;
2800 int cpu = sample->cpu;
2801
2802 if (pt->sync_switch) {
2803 struct intel_pt_queue *ptq;
2804
2805 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2806 if (ptq && ptq->sync_switch) {
2807 ptq->next_tid = -1;
2808 switch (ptq->switch_state) {
2809 case INTEL_PT_SS_NOT_TRACING:
2810 case INTEL_PT_SS_UNKNOWN:
2811 case INTEL_PT_SS_TRACING:
2812 break;
2813 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2814 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2815 ptq->switch_state = INTEL_PT_SS_TRACING;
2816 break;
2817 default:
2818 break;
2819 }
2820 }
2821 }
2822
2823 /*
2824 * If the current tid has not been updated yet, ensure it is now that
2825 * a "switch in" event has occurred.
2826 */
2827 if (machine__get_current_tid(pt->machine, cpu) == tid)
2828 return 0;
2829
2830 return machine__set_current_tid(pt->machine, cpu, pid, tid);
2831 }
2832
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)2833 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2834 struct perf_sample *sample)
2835 {
2836 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2837 pid_t pid, tid;
2838 int cpu, ret;
2839
2840 cpu = sample->cpu;
2841
2842 if (pt->have_sched_switch == 3) {
2843 if (!out)
2844 return intel_pt_context_switch_in(pt, sample);
2845 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2846 pr_err("Expecting CPU-wide context switch event\n");
2847 return -EINVAL;
2848 }
2849 pid = event->context_switch.next_prev_pid;
2850 tid = event->context_switch.next_prev_tid;
2851 } else {
2852 if (out)
2853 return 0;
2854 pid = sample->pid;
2855 tid = sample->tid;
2856 }
2857
2858 if (tid == -1)
2859 intel_pt_log("context_switch event has no tid\n");
2860
2861 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2862 if (ret <= 0)
2863 return ret;
2864
2865 return machine__set_current_tid(pt->machine, cpu, pid, tid);
2866 }
2867
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)2868 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2869 union perf_event *event,
2870 struct perf_sample *sample)
2871 {
2872 if (!pt->per_cpu_mmaps)
2873 return 0;
2874
2875 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2876 sample->cpu, event->itrace_start.pid,
2877 event->itrace_start.tid, sample->time,
2878 perf_time_to_tsc(sample->time, &pt->tc));
2879
2880 return machine__set_current_tid(pt->machine, sample->cpu,
2881 event->itrace_start.pid,
2882 event->itrace_start.tid);
2883 }
2884
intel_pt_find_map(struct thread * thread,u8 cpumode,u64 addr,struct addr_location * al)2885 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2886 struct addr_location *al)
2887 {
2888 if (!al->map || addr < al->map->start || addr >= al->map->end) {
2889 if (!thread__find_map(thread, cpumode, addr, al))
2890 return -1;
2891 }
2892
2893 return 0;
2894 }
2895
2896 /* Invalidate all instruction cache entries that overlap the text poke */
intel_pt_text_poke(struct intel_pt * pt,union perf_event * event)2897 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2898 {
2899 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2900 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2901 /* Assume text poke begins in a basic block no more than 4096 bytes */
2902 int cnt = 4096 + event->text_poke.new_len;
2903 struct thread *thread = pt->unknown_thread;
2904 struct addr_location al = { .map = NULL };
2905 struct machine *machine = pt->machine;
2906 struct intel_pt_cache_entry *e;
2907 u64 offset;
2908
2909 if (!event->text_poke.new_len)
2910 return 0;
2911
2912 for (; cnt; cnt--, addr--) {
2913 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2914 if (addr < event->text_poke.addr)
2915 return 0;
2916 continue;
2917 }
2918
2919 if (!al.map->dso || !al.map->dso->auxtrace_cache)
2920 continue;
2921
2922 offset = al.map->map_ip(al.map, addr);
2923
2924 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2925 if (!e)
2926 continue;
2927
2928 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2929 /*
2930 * No overlap. Working backwards there cannot be another
2931 * basic block that overlaps the text poke if there is a
2932 * branch instruction before the text poke address.
2933 */
2934 if (e->branch != INTEL_PT_BR_NO_BRANCH)
2935 return 0;
2936 } else {
2937 intel_pt_cache_invalidate(al.map->dso, machine, offset);
2938 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2939 al.map->dso->long_name, addr);
2940 }
2941 }
2942
2943 return 0;
2944 }
2945
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2946 static int intel_pt_process_event(struct perf_session *session,
2947 union perf_event *event,
2948 struct perf_sample *sample,
2949 struct perf_tool *tool)
2950 {
2951 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2952 auxtrace);
2953 u64 timestamp;
2954 int err = 0;
2955
2956 if (dump_trace)
2957 return 0;
2958
2959 if (!tool->ordered_events) {
2960 pr_err("Intel Processor Trace requires ordered events\n");
2961 return -EINVAL;
2962 }
2963
2964 if (sample->time && sample->time != (u64)-1)
2965 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2966 else
2967 timestamp = 0;
2968
2969 if (timestamp || pt->timeless_decoding) {
2970 err = intel_pt_update_queues(pt);
2971 if (err)
2972 return err;
2973 }
2974
2975 if (pt->timeless_decoding) {
2976 if (pt->sampling_mode) {
2977 if (sample->aux_sample.size)
2978 err = intel_pt_process_timeless_sample(pt,
2979 sample);
2980 } else if (event->header.type == PERF_RECORD_EXIT) {
2981 err = intel_pt_process_timeless_queues(pt,
2982 event->fork.tid,
2983 sample->time);
2984 }
2985 } else if (timestamp) {
2986 if (!pt->first_timestamp)
2987 intel_pt_first_timestamp(pt, timestamp);
2988 err = intel_pt_process_queues(pt, timestamp);
2989 }
2990 if (err)
2991 return err;
2992
2993 if (event->header.type == PERF_RECORD_SAMPLE) {
2994 if (pt->synth_opts.add_callchain && !sample->callchain)
2995 intel_pt_add_callchain(pt, sample);
2996 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2997 intel_pt_add_br_stack(pt, sample);
2998 }
2999
3000 if (event->header.type == PERF_RECORD_AUX &&
3001 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3002 pt->synth_opts.errors) {
3003 err = intel_pt_lost(pt, sample);
3004 if (err)
3005 return err;
3006 }
3007
3008 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3009 err = intel_pt_process_switch(pt, sample);
3010 else if (event->header.type == PERF_RECORD_ITRACE_START)
3011 err = intel_pt_process_itrace_start(pt, event, sample);
3012 else if (event->header.type == PERF_RECORD_SWITCH ||
3013 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3014 err = intel_pt_context_switch(pt, event, sample);
3015
3016 if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3017 err = intel_pt_text_poke(pt, event);
3018
3019 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3020 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3021 event->header.type, sample->cpu, sample->time, timestamp);
3022 intel_pt_log_event(event);
3023 }
3024
3025 return err;
3026 }
3027
intel_pt_flush(struct perf_session * session,struct perf_tool * tool)3028 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3029 {
3030 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3031 auxtrace);
3032 int ret;
3033
3034 if (dump_trace)
3035 return 0;
3036
3037 if (!tool->ordered_events)
3038 return -EINVAL;
3039
3040 ret = intel_pt_update_queues(pt);
3041 if (ret < 0)
3042 return ret;
3043
3044 if (pt->timeless_decoding)
3045 return intel_pt_process_timeless_queues(pt, -1,
3046 MAX_TIMESTAMP - 1);
3047
3048 return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3049 }
3050
intel_pt_free_events(struct perf_session * session)3051 static void intel_pt_free_events(struct perf_session *session)
3052 {
3053 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3054 auxtrace);
3055 struct auxtrace_queues *queues = &pt->queues;
3056 unsigned int i;
3057
3058 for (i = 0; i < queues->nr_queues; i++) {
3059 intel_pt_free_queue(queues->queue_array[i].priv);
3060 queues->queue_array[i].priv = NULL;
3061 }
3062 intel_pt_log_disable();
3063 auxtrace_queues__free(queues);
3064 }
3065
intel_pt_free(struct perf_session * session)3066 static void intel_pt_free(struct perf_session *session)
3067 {
3068 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3069 auxtrace);
3070
3071 auxtrace_heap__free(&pt->heap);
3072 intel_pt_free_events(session);
3073 session->auxtrace = NULL;
3074 intel_pt_free_vmcs_info(pt);
3075 thread__put(pt->unknown_thread);
3076 addr_filters__exit(&pt->filts);
3077 zfree(&pt->chain);
3078 zfree(&pt->filter);
3079 zfree(&pt->time_ranges);
3080 free(pt);
3081 }
3082
intel_pt_evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)3083 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3084 struct evsel *evsel)
3085 {
3086 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3087 auxtrace);
3088
3089 return evsel->core.attr.type == pt->pmu_type;
3090 }
3091
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)3092 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3093 union perf_event *event,
3094 struct perf_tool *tool __maybe_unused)
3095 {
3096 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3097 auxtrace);
3098
3099 if (!pt->data_queued) {
3100 struct auxtrace_buffer *buffer;
3101 off_t data_offset;
3102 int fd = perf_data__fd(session->data);
3103 int err;
3104
3105 if (perf_data__is_pipe(session->data)) {
3106 data_offset = 0;
3107 } else {
3108 data_offset = lseek(fd, 0, SEEK_CUR);
3109 if (data_offset == -1)
3110 return -errno;
3111 }
3112
3113 err = auxtrace_queues__add_event(&pt->queues, session, event,
3114 data_offset, &buffer);
3115 if (err)
3116 return err;
3117
3118 /* Dump here now we have copied a piped trace out of the pipe */
3119 if (dump_trace) {
3120 if (auxtrace_buffer__get_data(buffer, fd)) {
3121 intel_pt_dump_event(pt, buffer->data,
3122 buffer->size);
3123 auxtrace_buffer__put_data(buffer);
3124 }
3125 }
3126 }
3127
3128 return 0;
3129 }
3130
intel_pt_queue_data(struct perf_session * session,struct perf_sample * sample,union perf_event * event,u64 data_offset)3131 static int intel_pt_queue_data(struct perf_session *session,
3132 struct perf_sample *sample,
3133 union perf_event *event, u64 data_offset)
3134 {
3135 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3136 auxtrace);
3137 u64 timestamp;
3138
3139 if (event) {
3140 return auxtrace_queues__add_event(&pt->queues, session, event,
3141 data_offset, NULL);
3142 }
3143
3144 if (sample->time && sample->time != (u64)-1)
3145 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3146 else
3147 timestamp = 0;
3148
3149 return auxtrace_queues__add_sample(&pt->queues, session, sample,
3150 data_offset, timestamp);
3151 }
3152
3153 struct intel_pt_synth {
3154 struct perf_tool dummy_tool;
3155 struct perf_session *session;
3156 };
3157
intel_pt_event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)3158 static int intel_pt_event_synth(struct perf_tool *tool,
3159 union perf_event *event,
3160 struct perf_sample *sample __maybe_unused,
3161 struct machine *machine __maybe_unused)
3162 {
3163 struct intel_pt_synth *intel_pt_synth =
3164 container_of(tool, struct intel_pt_synth, dummy_tool);
3165
3166 return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3167 NULL);
3168 }
3169
intel_pt_synth_event(struct perf_session * session,const char * name,struct perf_event_attr * attr,u64 id)3170 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3171 struct perf_event_attr *attr, u64 id)
3172 {
3173 struct intel_pt_synth intel_pt_synth;
3174 int err;
3175
3176 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3177 name, id, (u64)attr->sample_type);
3178
3179 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3180 intel_pt_synth.session = session;
3181
3182 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3183 &id, intel_pt_event_synth);
3184 if (err)
3185 pr_err("%s: failed to synthesize '%s' event type\n",
3186 __func__, name);
3187
3188 return err;
3189 }
3190
intel_pt_set_event_name(struct evlist * evlist,u64 id,const char * name)3191 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3192 const char *name)
3193 {
3194 struct evsel *evsel;
3195
3196 evlist__for_each_entry(evlist, evsel) {
3197 if (evsel->core.id && evsel->core.id[0] == id) {
3198 if (evsel->name)
3199 zfree(&evsel->name);
3200 evsel->name = strdup(name);
3201 break;
3202 }
3203 }
3204 }
3205
intel_pt_evsel(struct intel_pt * pt,struct evlist * evlist)3206 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3207 struct evlist *evlist)
3208 {
3209 struct evsel *evsel;
3210
3211 evlist__for_each_entry(evlist, evsel) {
3212 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3213 return evsel;
3214 }
3215
3216 return NULL;
3217 }
3218
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)3219 static int intel_pt_synth_events(struct intel_pt *pt,
3220 struct perf_session *session)
3221 {
3222 struct evlist *evlist = session->evlist;
3223 struct evsel *evsel = intel_pt_evsel(pt, evlist);
3224 struct perf_event_attr attr;
3225 u64 id;
3226 int err;
3227
3228 if (!evsel) {
3229 pr_debug("There are no selected events with Intel Processor Trace data\n");
3230 return 0;
3231 }
3232
3233 memset(&attr, 0, sizeof(struct perf_event_attr));
3234 attr.size = sizeof(struct perf_event_attr);
3235 attr.type = PERF_TYPE_HARDWARE;
3236 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3237 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3238 PERF_SAMPLE_PERIOD;
3239 if (pt->timeless_decoding)
3240 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3241 else
3242 attr.sample_type |= PERF_SAMPLE_TIME;
3243 if (!pt->per_cpu_mmaps)
3244 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3245 attr.exclude_user = evsel->core.attr.exclude_user;
3246 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3247 attr.exclude_hv = evsel->core.attr.exclude_hv;
3248 attr.exclude_host = evsel->core.attr.exclude_host;
3249 attr.exclude_guest = evsel->core.attr.exclude_guest;
3250 attr.sample_id_all = evsel->core.attr.sample_id_all;
3251 attr.read_format = evsel->core.attr.read_format;
3252
3253 id = evsel->core.id[0] + 1000000000;
3254 if (!id)
3255 id = 1;
3256
3257 if (pt->synth_opts.branches) {
3258 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3259 attr.sample_period = 1;
3260 attr.sample_type |= PERF_SAMPLE_ADDR;
3261 err = intel_pt_synth_event(session, "branches", &attr, id);
3262 if (err)
3263 return err;
3264 pt->sample_branches = true;
3265 pt->branches_sample_type = attr.sample_type;
3266 pt->branches_id = id;
3267 id += 1;
3268 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3269 }
3270
3271 if (pt->synth_opts.callchain)
3272 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3273 if (pt->synth_opts.last_branch) {
3274 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3275 /*
3276 * We don't use the hardware index, but the sample generation
3277 * code uses the new format branch_stack with this field,
3278 * so the event attributes must indicate that it's present.
3279 */
3280 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3281 }
3282
3283 if (pt->synth_opts.instructions) {
3284 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3285 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3286 attr.sample_period =
3287 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3288 else
3289 attr.sample_period = pt->synth_opts.period;
3290 err = intel_pt_synth_event(session, "instructions", &attr, id);
3291 if (err)
3292 return err;
3293 pt->sample_instructions = true;
3294 pt->instructions_sample_type = attr.sample_type;
3295 pt->instructions_id = id;
3296 id += 1;
3297 }
3298
3299 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3300 attr.sample_period = 1;
3301
3302 if (pt->synth_opts.transactions) {
3303 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3304 err = intel_pt_synth_event(session, "transactions", &attr, id);
3305 if (err)
3306 return err;
3307 pt->sample_transactions = true;
3308 pt->transactions_sample_type = attr.sample_type;
3309 pt->transactions_id = id;
3310 intel_pt_set_event_name(evlist, id, "transactions");
3311 id += 1;
3312 }
3313
3314 attr.type = PERF_TYPE_SYNTH;
3315 attr.sample_type |= PERF_SAMPLE_RAW;
3316
3317 if (pt->synth_opts.ptwrites) {
3318 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3319 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3320 if (err)
3321 return err;
3322 pt->sample_ptwrites = true;
3323 pt->ptwrites_sample_type = attr.sample_type;
3324 pt->ptwrites_id = id;
3325 intel_pt_set_event_name(evlist, id, "ptwrite");
3326 id += 1;
3327 }
3328
3329 if (pt->synth_opts.pwr_events) {
3330 pt->sample_pwr_events = true;
3331 pt->pwr_events_sample_type = attr.sample_type;
3332
3333 attr.config = PERF_SYNTH_INTEL_CBR;
3334 err = intel_pt_synth_event(session, "cbr", &attr, id);
3335 if (err)
3336 return err;
3337 pt->cbr_id = id;
3338 intel_pt_set_event_name(evlist, id, "cbr");
3339 id += 1;
3340
3341 attr.config = PERF_SYNTH_INTEL_PSB;
3342 err = intel_pt_synth_event(session, "psb", &attr, id);
3343 if (err)
3344 return err;
3345 pt->psb_id = id;
3346 intel_pt_set_event_name(evlist, id, "psb");
3347 id += 1;
3348 }
3349
3350 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3351 attr.config = PERF_SYNTH_INTEL_MWAIT;
3352 err = intel_pt_synth_event(session, "mwait", &attr, id);
3353 if (err)
3354 return err;
3355 pt->mwait_id = id;
3356 intel_pt_set_event_name(evlist, id, "mwait");
3357 id += 1;
3358
3359 attr.config = PERF_SYNTH_INTEL_PWRE;
3360 err = intel_pt_synth_event(session, "pwre", &attr, id);
3361 if (err)
3362 return err;
3363 pt->pwre_id = id;
3364 intel_pt_set_event_name(evlist, id, "pwre");
3365 id += 1;
3366
3367 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3368 err = intel_pt_synth_event(session, "exstop", &attr, id);
3369 if (err)
3370 return err;
3371 pt->exstop_id = id;
3372 intel_pt_set_event_name(evlist, id, "exstop");
3373 id += 1;
3374
3375 attr.config = PERF_SYNTH_INTEL_PWRX;
3376 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3377 if (err)
3378 return err;
3379 pt->pwrx_id = id;
3380 intel_pt_set_event_name(evlist, id, "pwrx");
3381 id += 1;
3382 }
3383
3384 return 0;
3385 }
3386
intel_pt_setup_pebs_events(struct intel_pt * pt)3387 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3388 {
3389 struct evsel *evsel;
3390
3391 if (!pt->synth_opts.other_events)
3392 return;
3393
3394 evlist__for_each_entry(pt->session->evlist, evsel) {
3395 if (evsel->core.attr.aux_output && evsel->core.id) {
3396 pt->sample_pebs = true;
3397 pt->pebs_evsel = evsel;
3398 return;
3399 }
3400 }
3401 }
3402
intel_pt_find_sched_switch(struct evlist * evlist)3403 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3404 {
3405 struct evsel *evsel;
3406
3407 evlist__for_each_entry_reverse(evlist, evsel) {
3408 const char *name = evsel__name(evsel);
3409
3410 if (!strcmp(name, "sched:sched_switch"))
3411 return evsel;
3412 }
3413
3414 return NULL;
3415 }
3416
intel_pt_find_switch(struct evlist * evlist)3417 static bool intel_pt_find_switch(struct evlist *evlist)
3418 {
3419 struct evsel *evsel;
3420
3421 evlist__for_each_entry(evlist, evsel) {
3422 if (evsel->core.attr.context_switch)
3423 return true;
3424 }
3425
3426 return false;
3427 }
3428
intel_pt_perf_config(const char * var,const char * value,void * data)3429 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3430 {
3431 struct intel_pt *pt = data;
3432
3433 if (!strcmp(var, "intel-pt.mispred-all"))
3434 pt->mispred_all = perf_config_bool(var, value);
3435
3436 if (!strcmp(var, "intel-pt.max-loops"))
3437 perf_config_int(&pt->max_loops, var, value);
3438
3439 return 0;
3440 }
3441
3442 /* Find least TSC which converts to ns or later */
intel_pt_tsc_start(u64 ns,struct intel_pt * pt)3443 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3444 {
3445 u64 tsc, tm;
3446
3447 tsc = perf_time_to_tsc(ns, &pt->tc);
3448
3449 while (1) {
3450 tm = tsc_to_perf_time(tsc, &pt->tc);
3451 if (tm < ns)
3452 break;
3453 tsc -= 1;
3454 }
3455
3456 while (tm < ns)
3457 tm = tsc_to_perf_time(++tsc, &pt->tc);
3458
3459 return tsc;
3460 }
3461
3462 /* Find greatest TSC which converts to ns or earlier */
intel_pt_tsc_end(u64 ns,struct intel_pt * pt)3463 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3464 {
3465 u64 tsc, tm;
3466
3467 tsc = perf_time_to_tsc(ns, &pt->tc);
3468
3469 while (1) {
3470 tm = tsc_to_perf_time(tsc, &pt->tc);
3471 if (tm > ns)
3472 break;
3473 tsc += 1;
3474 }
3475
3476 while (tm > ns)
3477 tm = tsc_to_perf_time(--tsc, &pt->tc);
3478
3479 return tsc;
3480 }
3481
intel_pt_setup_time_ranges(struct intel_pt * pt,struct itrace_synth_opts * opts)3482 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3483 struct itrace_synth_opts *opts)
3484 {
3485 struct perf_time_interval *p = opts->ptime_range;
3486 int n = opts->range_num;
3487 int i;
3488
3489 if (!n || !p || pt->timeless_decoding)
3490 return 0;
3491
3492 pt->time_ranges = calloc(n, sizeof(struct range));
3493 if (!pt->time_ranges)
3494 return -ENOMEM;
3495
3496 pt->range_cnt = n;
3497
3498 intel_pt_log("%s: %u range(s)\n", __func__, n);
3499
3500 for (i = 0; i < n; i++) {
3501 struct range *r = &pt->time_ranges[i];
3502 u64 ts = p[i].start;
3503 u64 te = p[i].end;
3504
3505 /*
3506 * Take care to ensure the TSC range matches the perf-time range
3507 * when converted back to perf-time.
3508 */
3509 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3510 r->end = te ? intel_pt_tsc_end(te, pt) : 0;
3511
3512 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3513 i, ts, te);
3514 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3515 i, r->start, r->end);
3516 }
3517
3518 return 0;
3519 }
3520
intel_pt_parse_vm_tm_corr_arg(struct intel_pt * pt,char ** args)3521 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3522 {
3523 struct intel_pt_vmcs_info *vmcs_info;
3524 u64 tsc_offset, vmcs;
3525 char *p = *args;
3526
3527 errno = 0;
3528
3529 p = skip_spaces(p);
3530 if (!*p)
3531 return 1;
3532
3533 tsc_offset = strtoull(p, &p, 0);
3534 if (errno)
3535 return -errno;
3536 p = skip_spaces(p);
3537 if (*p != ':') {
3538 pt->dflt_tsc_offset = tsc_offset;
3539 *args = p;
3540 return 0;
3541 }
3542 while (1) {
3543 vmcs = strtoull(p, &p, 0);
3544 if (errno)
3545 return -errno;
3546 if (!vmcs)
3547 return -EINVAL;
3548 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3549 if (!vmcs_info)
3550 return -ENOMEM;
3551 p = skip_spaces(p);
3552 if (*p != ',')
3553 break;
3554 p += 1;
3555 }
3556 *args = p;
3557 return 0;
3558 }
3559
intel_pt_parse_vm_tm_corr_args(struct intel_pt * pt)3560 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3561 {
3562 char *args = pt->synth_opts.vm_tm_corr_args;
3563 int ret;
3564
3565 if (!args)
3566 return 0;
3567
3568 do {
3569 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3570 } while (!ret);
3571
3572 if (ret < 0) {
3573 pr_err("Failed to parse VM Time Correlation options\n");
3574 return ret;
3575 }
3576
3577 return 0;
3578 }
3579
3580 static const char * const intel_pt_info_fmts[] = {
3581 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
3582 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
3583 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
3584 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
3585 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
3586 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
3587 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
3588 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
3589 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
3590 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
3591 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
3592 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
3593 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
3594 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
3595 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n",
3596 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n",
3597 };
3598
intel_pt_print_info(__u64 * arr,int start,int finish)3599 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3600 {
3601 int i;
3602
3603 if (!dump_trace)
3604 return;
3605
3606 for (i = start; i <= finish; i++)
3607 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3608 }
3609
intel_pt_print_info_str(const char * name,const char * str)3610 static void intel_pt_print_info_str(const char *name, const char *str)
3611 {
3612 if (!dump_trace)
3613 return;
3614
3615 fprintf(stdout, " %-20s%s\n", name, str ? str : "");
3616 }
3617
intel_pt_has(struct perf_record_auxtrace_info * auxtrace_info,int pos)3618 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3619 {
3620 return auxtrace_info->header.size >=
3621 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3622 }
3623
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)3624 int intel_pt_process_auxtrace_info(union perf_event *event,
3625 struct perf_session *session)
3626 {
3627 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3628 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3629 struct intel_pt *pt;
3630 void *info_end;
3631 __u64 *info;
3632 int err;
3633
3634 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3635 min_sz)
3636 return -EINVAL;
3637
3638 pt = zalloc(sizeof(struct intel_pt));
3639 if (!pt)
3640 return -ENOMEM;
3641
3642 pt->vmcs_info = RB_ROOT;
3643
3644 addr_filters__init(&pt->filts);
3645
3646 err = perf_config(intel_pt_perf_config, pt);
3647 if (err)
3648 goto err_free;
3649
3650 err = auxtrace_queues__init(&pt->queues);
3651 if (err)
3652 goto err_free;
3653
3654 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3655
3656 if (session->itrace_synth_opts->set) {
3657 pt->synth_opts = *session->itrace_synth_opts;
3658 } else {
3659 struct itrace_synth_opts *opts = session->itrace_synth_opts;
3660
3661 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3662 if (!opts->default_no_sample && !opts->inject) {
3663 pt->synth_opts.branches = false;
3664 pt->synth_opts.callchain = true;
3665 pt->synth_opts.add_callchain = true;
3666 }
3667 pt->synth_opts.thread_stack = opts->thread_stack;
3668 }
3669
3670 pt->session = session;
3671 pt->machine = &session->machines.host; /* No kvm support */
3672 pt->auxtrace_type = auxtrace_info->type;
3673 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3674 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3675 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3676 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3677 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3678 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3679 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3680 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3681 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3682 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3683 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3684 INTEL_PT_PER_CPU_MMAPS);
3685
3686 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3687 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3688 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3689 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3690 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3691 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3692 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3693 INTEL_PT_CYC_BIT);
3694 }
3695
3696 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3697 pt->max_non_turbo_ratio =
3698 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3699 intel_pt_print_info(&auxtrace_info->priv[0],
3700 INTEL_PT_MAX_NONTURBO_RATIO,
3701 INTEL_PT_MAX_NONTURBO_RATIO);
3702 }
3703
3704 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3705 info_end = (void *)info + auxtrace_info->header.size;
3706
3707 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3708 size_t len;
3709
3710 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3711 intel_pt_print_info(&auxtrace_info->priv[0],
3712 INTEL_PT_FILTER_STR_LEN,
3713 INTEL_PT_FILTER_STR_LEN);
3714 if (len) {
3715 const char *filter = (const char *)info;
3716
3717 len = roundup(len + 1, 8);
3718 info += len >> 3;
3719 if ((void *)info > info_end) {
3720 pr_err("%s: bad filter string length\n", __func__);
3721 err = -EINVAL;
3722 goto err_free_queues;
3723 }
3724 pt->filter = memdup(filter, len);
3725 if (!pt->filter) {
3726 err = -ENOMEM;
3727 goto err_free_queues;
3728 }
3729 if (session->header.needs_swap)
3730 mem_bswap_64(pt->filter, len);
3731 if (pt->filter[len - 1]) {
3732 pr_err("%s: filter string not null terminated\n", __func__);
3733 err = -EINVAL;
3734 goto err_free_queues;
3735 }
3736 err = addr_filters__parse_bare_filter(&pt->filts,
3737 filter);
3738 if (err)
3739 goto err_free_queues;
3740 }
3741 intel_pt_print_info_str("Filter string", pt->filter);
3742 }
3743
3744 pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3745 if (pt->timeless_decoding && !pt->tc.time_mult)
3746 pt->tc.time_mult = 1;
3747 pt->have_tsc = intel_pt_have_tsc(pt);
3748 pt->sampling_mode = intel_pt_sampling_mode(pt);
3749 pt->est_tsc = !pt->timeless_decoding;
3750
3751 if (pt->synth_opts.vm_time_correlation) {
3752 if (pt->timeless_decoding) {
3753 pr_err("Intel PT has no time information for VM Time Correlation\n");
3754 err = -EINVAL;
3755 goto err_free_queues;
3756 }
3757 if (session->itrace_synth_opts->ptime_range) {
3758 pr_err("Time ranges cannot be specified with VM Time Correlation\n");
3759 err = -EINVAL;
3760 goto err_free_queues;
3761 }
3762 /* Currently TSC Offset is calculated using MTC packets */
3763 if (!intel_pt_have_mtc(pt)) {
3764 pr_err("MTC packets must have been enabled for VM Time Correlation\n");
3765 err = -EINVAL;
3766 goto err_free_queues;
3767 }
3768 err = intel_pt_parse_vm_tm_corr_args(pt);
3769 if (err)
3770 goto err_free_queues;
3771 }
3772
3773 pt->unknown_thread = thread__new(999999999, 999999999);
3774 if (!pt->unknown_thread) {
3775 err = -ENOMEM;
3776 goto err_free_queues;
3777 }
3778
3779 /*
3780 * Since this thread will not be kept in any rbtree not in a
3781 * list, initialize its list node so that at thread__put() the
3782 * current thread lifetime assumption is kept and we don't segfault
3783 * at list_del_init().
3784 */
3785 INIT_LIST_HEAD(&pt->unknown_thread->node);
3786
3787 err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3788 if (err)
3789 goto err_delete_thread;
3790 if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3791 err = -ENOMEM;
3792 goto err_delete_thread;
3793 }
3794
3795 pt->auxtrace.process_event = intel_pt_process_event;
3796 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3797 pt->auxtrace.queue_data = intel_pt_queue_data;
3798 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3799 pt->auxtrace.flush_events = intel_pt_flush;
3800 pt->auxtrace.free_events = intel_pt_free_events;
3801 pt->auxtrace.free = intel_pt_free;
3802 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3803 session->auxtrace = &pt->auxtrace;
3804
3805 if (dump_trace)
3806 return 0;
3807
3808 if (pt->have_sched_switch == 1) {
3809 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3810 if (!pt->switch_evsel) {
3811 pr_err("%s: missing sched_switch event\n", __func__);
3812 err = -EINVAL;
3813 goto err_delete_thread;
3814 }
3815 } else if (pt->have_sched_switch == 2 &&
3816 !intel_pt_find_switch(session->evlist)) {
3817 pr_err("%s: missing context_switch attribute flag\n", __func__);
3818 err = -EINVAL;
3819 goto err_delete_thread;
3820 }
3821
3822 if (pt->synth_opts.log)
3823 intel_pt_log_enable();
3824
3825 /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3826 if (pt->tc.time_mult) {
3827 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3828
3829 if (!pt->max_non_turbo_ratio)
3830 pt->max_non_turbo_ratio =
3831 (tsc_freq + 50000000) / 100000000;
3832 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3833 intel_pt_log("Maximum non-turbo ratio %u\n",
3834 pt->max_non_turbo_ratio);
3835 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3836 }
3837
3838 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3839 if (err)
3840 goto err_delete_thread;
3841
3842 if (pt->synth_opts.calls)
3843 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3844 PERF_IP_FLAG_TRACE_END;
3845 if (pt->synth_opts.returns)
3846 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3847 PERF_IP_FLAG_TRACE_BEGIN;
3848
3849 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3850 !symbol_conf.use_callchain) {
3851 symbol_conf.use_callchain = true;
3852 if (callchain_register_param(&callchain_param) < 0) {
3853 symbol_conf.use_callchain = false;
3854 pt->synth_opts.callchain = false;
3855 pt->synth_opts.add_callchain = false;
3856 }
3857 }
3858
3859 if (pt->synth_opts.add_callchain) {
3860 err = intel_pt_callchain_init(pt);
3861 if (err)
3862 goto err_delete_thread;
3863 }
3864
3865 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3866 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3867 pt->br_stack_sz_plus = pt->br_stack_sz;
3868 }
3869
3870 if (pt->synth_opts.add_last_branch) {
3871 err = intel_pt_br_stack_init(pt);
3872 if (err)
3873 goto err_delete_thread;
3874 /*
3875 * Additional branch stack size to cater for tracing from the
3876 * actual sample ip to where the sample time is recorded.
3877 * Measured at about 200 branches, but generously set to 1024.
3878 * If kernel space is not being traced, then add just 1 for the
3879 * branch to kernel space.
3880 */
3881 if (intel_pt_tracing_kernel(pt))
3882 pt->br_stack_sz_plus += 1024;
3883 else
3884 pt->br_stack_sz_plus += 1;
3885 }
3886
3887 pt->use_thread_stack = pt->synth_opts.callchain ||
3888 pt->synth_opts.add_callchain ||
3889 pt->synth_opts.thread_stack ||
3890 pt->synth_opts.last_branch ||
3891 pt->synth_opts.add_last_branch;
3892
3893 pt->callstack = pt->synth_opts.callchain ||
3894 pt->synth_opts.add_callchain ||
3895 pt->synth_opts.thread_stack;
3896
3897 err = intel_pt_synth_events(pt, session);
3898 if (err)
3899 goto err_delete_thread;
3900
3901 intel_pt_setup_pebs_events(pt);
3902
3903 if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3904 err = auxtrace_queue_data(session, true, true);
3905 else
3906 err = auxtrace_queues__process_index(&pt->queues, session);
3907 if (err)
3908 goto err_delete_thread;
3909
3910 if (pt->queues.populated)
3911 pt->data_queued = true;
3912
3913 if (pt->timeless_decoding)
3914 pr_debug2("Intel PT decoding without timestamps\n");
3915
3916 return 0;
3917
3918 err_delete_thread:
3919 zfree(&pt->chain);
3920 thread__zput(pt->unknown_thread);
3921 err_free_queues:
3922 intel_pt_log_disable();
3923 auxtrace_queues__free(&pt->queues);
3924 session->auxtrace = NULL;
3925 err_free:
3926 addr_filters__exit(&pt->filts);
3927 zfree(&pt->filter);
3928 zfree(&pt->time_ranges);
3929 free(pt);
3930 return err;
3931 }
3932