1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <drm/drm_atomic_helper.h>
25
26 #include "display/intel_dp.h"
27
28 #include "i915_drv.h"
29 #include "intel_display_types.h"
30 #include "intel_psr.h"
31 #include "intel_sprite.h"
32
33 /**
34 * DOC: Panel Self Refresh (PSR/SRD)
35 *
36 * Since Haswell Display controller supports Panel Self-Refresh on display
37 * panels witch have a remote frame buffer (RFB) implemented according to PSR
38 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
39 * when system is idle but display is on as it eliminates display refresh
40 * request to DDR memory completely as long as the frame buffer for that
41 * display is unchanged.
42 *
43 * Panel Self Refresh must be supported by both Hardware (source) and
44 * Panel (sink).
45 *
46 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
47 * to power down the link and memory controller. For DSI panels the same idea
48 * is called "manual mode".
49 *
50 * The implementation uses the hardware-based PSR support which automatically
51 * enters/exits self-refresh mode. The hardware takes care of sending the
52 * required DP aux message and could even retrain the link (that part isn't
53 * enabled yet though). The hardware also keeps track of any frontbuffer
54 * changes to know when to exit self-refresh mode again. Unfortunately that
55 * part doesn't work too well, hence why the i915 PSR support uses the
56 * software frontbuffer tracking to make sure it doesn't miss a screen
57 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
58 * get called by the frontbuffer tracking code. Note that because of locking
59 * issues the self-refresh re-enable code is done from a work queue, which
60 * must be correctly synchronized/cancelled when shutting down the pipe."
61 */
62
psr_global_enabled(u32 debug)63 static bool psr_global_enabled(u32 debug)
64 {
65 switch (debug & I915_PSR_DEBUG_MODE_MASK) {
66 case I915_PSR_DEBUG_DEFAULT:
67 return i915_modparams.enable_psr;
68 case I915_PSR_DEBUG_DISABLE:
69 return false;
70 default:
71 return true;
72 }
73 }
74
intel_psr2_enabled(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state)75 static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
76 const struct intel_crtc_state *crtc_state)
77 {
78 /* Cannot enable DSC and PSR2 simultaneously */
79 WARN_ON(crtc_state->dsc_params.compression_enable &&
80 crtc_state->has_psr2);
81
82 switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
83 case I915_PSR_DEBUG_DISABLE:
84 case I915_PSR_DEBUG_FORCE_PSR1:
85 return false;
86 default:
87 return crtc_state->has_psr2;
88 }
89 }
90
edp_psr_shift(enum transcoder cpu_transcoder)91 static int edp_psr_shift(enum transcoder cpu_transcoder)
92 {
93 switch (cpu_transcoder) {
94 case TRANSCODER_A:
95 return EDP_PSR_TRANSCODER_A_SHIFT;
96 case TRANSCODER_B:
97 return EDP_PSR_TRANSCODER_B_SHIFT;
98 case TRANSCODER_C:
99 return EDP_PSR_TRANSCODER_C_SHIFT;
100 default:
101 MISSING_CASE(cpu_transcoder);
102 /* fallthrough */
103 case TRANSCODER_EDP:
104 return EDP_PSR_TRANSCODER_EDP_SHIFT;
105 }
106 }
107
intel_psr_irq_control(struct drm_i915_private * dev_priv,u32 debug)108 void intel_psr_irq_control(struct drm_i915_private *dev_priv, u32 debug)
109 {
110 u32 debug_mask, mask;
111 enum transcoder cpu_transcoder;
112 u32 transcoders = BIT(TRANSCODER_EDP);
113
114 if (INTEL_GEN(dev_priv) >= 8)
115 transcoders |= BIT(TRANSCODER_A) |
116 BIT(TRANSCODER_B) |
117 BIT(TRANSCODER_C);
118
119 debug_mask = 0;
120 mask = 0;
121 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
122 int shift = edp_psr_shift(cpu_transcoder);
123
124 mask |= EDP_PSR_ERROR(shift);
125 debug_mask |= EDP_PSR_POST_EXIT(shift) |
126 EDP_PSR_PRE_ENTRY(shift);
127 }
128
129 if (debug & I915_PSR_DEBUG_IRQ)
130 mask |= debug_mask;
131
132 I915_WRITE(EDP_PSR_IMR, ~mask);
133 }
134
psr_event_print(u32 val,bool psr2_enabled)135 static void psr_event_print(u32 val, bool psr2_enabled)
136 {
137 DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
138 if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
139 DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
140 if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
141 DRM_DEBUG_KMS("\tPSR2 disabled\n");
142 if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
143 DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
144 if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
145 DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
146 if (val & PSR_EVENT_GRAPHICS_RESET)
147 DRM_DEBUG_KMS("\tGraphics reset\n");
148 if (val & PSR_EVENT_PCH_INTERRUPT)
149 DRM_DEBUG_KMS("\tPCH interrupt\n");
150 if (val & PSR_EVENT_MEMORY_UP)
151 DRM_DEBUG_KMS("\tMemory up\n");
152 if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
153 DRM_DEBUG_KMS("\tFront buffer modification\n");
154 if (val & PSR_EVENT_WD_TIMER_EXPIRE)
155 DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
156 if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
157 DRM_DEBUG_KMS("\tPIPE registers updated\n");
158 if (val & PSR_EVENT_REGISTER_UPDATE)
159 DRM_DEBUG_KMS("\tRegister updated\n");
160 if (val & PSR_EVENT_HDCP_ENABLE)
161 DRM_DEBUG_KMS("\tHDCP enabled\n");
162 if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
163 DRM_DEBUG_KMS("\tKVMR session enabled\n");
164 if (val & PSR_EVENT_VBI_ENABLE)
165 DRM_DEBUG_KMS("\tVBI enabled\n");
166 if (val & PSR_EVENT_LPSP_MODE_EXIT)
167 DRM_DEBUG_KMS("\tLPSP mode exited\n");
168 if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
169 DRM_DEBUG_KMS("\tPSR disabled\n");
170 }
171
intel_psr_irq_handler(struct drm_i915_private * dev_priv,u32 psr_iir)172 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
173 {
174 u32 transcoders = BIT(TRANSCODER_EDP);
175 enum transcoder cpu_transcoder;
176 ktime_t time_ns = ktime_get();
177 u32 mask = 0;
178
179 if (INTEL_GEN(dev_priv) >= 8)
180 transcoders |= BIT(TRANSCODER_A) |
181 BIT(TRANSCODER_B) |
182 BIT(TRANSCODER_C);
183
184 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
185 int shift = edp_psr_shift(cpu_transcoder);
186
187 if (psr_iir & EDP_PSR_ERROR(shift)) {
188 DRM_WARN("[transcoder %s] PSR aux error\n",
189 transcoder_name(cpu_transcoder));
190
191 dev_priv->psr.irq_aux_error = true;
192
193 /*
194 * If this interruption is not masked it will keep
195 * interrupting so fast that it prevents the scheduled
196 * work to run.
197 * Also after a PSR error, we don't want to arm PSR
198 * again so we don't care about unmask the interruption
199 * or unset irq_aux_error.
200 */
201 mask |= EDP_PSR_ERROR(shift);
202 }
203
204 if (psr_iir & EDP_PSR_PRE_ENTRY(shift)) {
205 dev_priv->psr.last_entry_attempt = time_ns;
206 DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
207 transcoder_name(cpu_transcoder));
208 }
209
210 if (psr_iir & EDP_PSR_POST_EXIT(shift)) {
211 dev_priv->psr.last_exit = time_ns;
212 DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
213 transcoder_name(cpu_transcoder));
214
215 if (INTEL_GEN(dev_priv) >= 9) {
216 u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
217 bool psr2_enabled = dev_priv->psr.psr2_enabled;
218
219 I915_WRITE(PSR_EVENT(cpu_transcoder), val);
220 psr_event_print(val, psr2_enabled);
221 }
222 }
223 }
224
225 if (mask) {
226 mask |= I915_READ(EDP_PSR_IMR);
227 I915_WRITE(EDP_PSR_IMR, mask);
228
229 schedule_work(&dev_priv->psr.work);
230 }
231 }
232
intel_dp_get_alpm_status(struct intel_dp * intel_dp)233 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
234 {
235 u8 alpm_caps = 0;
236
237 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
238 &alpm_caps) != 1)
239 return false;
240 return alpm_caps & DP_ALPM_CAP;
241 }
242
intel_dp_get_sink_sync_latency(struct intel_dp * intel_dp)243 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
244 {
245 u8 val = 8; /* assume the worst if we can't read the value */
246
247 if (drm_dp_dpcd_readb(&intel_dp->aux,
248 DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
249 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
250 else
251 DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
252 return val;
253 }
254
intel_dp_get_su_x_granulartiy(struct intel_dp * intel_dp)255 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
256 {
257 u16 val;
258 ssize_t r;
259
260 /*
261 * Returning the default X granularity if granularity not required or
262 * if DPCD read fails
263 */
264 if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
265 return 4;
266
267 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
268 if (r != 2)
269 DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n");
270
271 /*
272 * Spec says that if the value read is 0 the default granularity should
273 * be used instead.
274 */
275 if (r != 2 || val == 0)
276 val = 4;
277
278 return val;
279 }
280
intel_psr_init_dpcd(struct intel_dp * intel_dp)281 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
282 {
283 struct drm_i915_private *dev_priv =
284 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
285
286 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
287 sizeof(intel_dp->psr_dpcd));
288
289 if (!intel_dp->psr_dpcd[0])
290 return;
291 DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
292 intel_dp->psr_dpcd[0]);
293
294 if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
295 DRM_DEBUG_KMS("PSR support not currently available for this panel\n");
296 return;
297 }
298
299 if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
300 DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
301 return;
302 }
303
304 dev_priv->psr.sink_support = true;
305 dev_priv->psr.sink_sync_latency =
306 intel_dp_get_sink_sync_latency(intel_dp);
307
308 WARN_ON(dev_priv->psr.dp);
309 dev_priv->psr.dp = intel_dp;
310
311 if (INTEL_GEN(dev_priv) >= 9 &&
312 (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
313 bool y_req = intel_dp->psr_dpcd[1] &
314 DP_PSR2_SU_Y_COORDINATE_REQUIRED;
315 bool alpm = intel_dp_get_alpm_status(intel_dp);
316
317 /*
318 * All panels that supports PSR version 03h (PSR2 +
319 * Y-coordinate) can handle Y-coordinates in VSC but we are
320 * only sure that it is going to be used when required by the
321 * panel. This way panel is capable to do selective update
322 * without a aux frame sync.
323 *
324 * To support PSR version 02h and PSR version 03h without
325 * Y-coordinate requirement panels we would need to enable
326 * GTC first.
327 */
328 dev_priv->psr.sink_psr2_support = y_req && alpm;
329 DRM_DEBUG_KMS("PSR2 %ssupported\n",
330 dev_priv->psr.sink_psr2_support ? "" : "not ");
331
332 if (dev_priv->psr.sink_psr2_support) {
333 dev_priv->psr.colorimetry_support =
334 intel_dp_get_colorimetry_status(intel_dp);
335 dev_priv->psr.su_x_granularity =
336 intel_dp_get_su_x_granulartiy(intel_dp);
337 }
338 }
339 }
340
intel_psr_setup_vsc(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)341 static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
342 const struct intel_crtc_state *crtc_state)
343 {
344 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
345 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
346 struct dp_sdp psr_vsc;
347
348 if (dev_priv->psr.psr2_enabled) {
349 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
350 memset(&psr_vsc, 0, sizeof(psr_vsc));
351 psr_vsc.sdp_header.HB0 = 0;
352 psr_vsc.sdp_header.HB1 = 0x7;
353 if (dev_priv->psr.colorimetry_support) {
354 psr_vsc.sdp_header.HB2 = 0x5;
355 psr_vsc.sdp_header.HB3 = 0x13;
356 } else {
357 psr_vsc.sdp_header.HB2 = 0x4;
358 psr_vsc.sdp_header.HB3 = 0xe;
359 }
360 } else {
361 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
362 memset(&psr_vsc, 0, sizeof(psr_vsc));
363 psr_vsc.sdp_header.HB0 = 0;
364 psr_vsc.sdp_header.HB1 = 0x7;
365 psr_vsc.sdp_header.HB2 = 0x2;
366 psr_vsc.sdp_header.HB3 = 0x8;
367 }
368
369 intel_dig_port->write_infoframe(&intel_dig_port->base,
370 crtc_state,
371 DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
372 }
373
hsw_psr_setup_aux(struct intel_dp * intel_dp)374 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
375 {
376 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
377 u32 aux_clock_divider, aux_ctl;
378 int i;
379 static const u8 aux_msg[] = {
380 [0] = DP_AUX_NATIVE_WRITE << 4,
381 [1] = DP_SET_POWER >> 8,
382 [2] = DP_SET_POWER & 0xff,
383 [3] = 1 - 1,
384 [4] = DP_SET_POWER_D0,
385 };
386 u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
387 EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
388 EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
389 EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
390
391 BUILD_BUG_ON(sizeof(aux_msg) > 20);
392 for (i = 0; i < sizeof(aux_msg); i += 4)
393 I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
394 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
395
396 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
397
398 /* Start with bits set for DDI_AUX_CTL register */
399 aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
400 aux_clock_divider);
401
402 /* Select only valid bits for SRD_AUX_CTL */
403 aux_ctl &= psr_aux_mask;
404 I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
405 }
406
intel_psr_enable_sink(struct intel_dp * intel_dp)407 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
408 {
409 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
410 u8 dpcd_val = DP_PSR_ENABLE;
411
412 /* Enable ALPM at sink for psr2 */
413 if (dev_priv->psr.psr2_enabled) {
414 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
415 DP_ALPM_ENABLE);
416 dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
417 } else {
418 if (dev_priv->psr.link_standby)
419 dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
420
421 if (INTEL_GEN(dev_priv) >= 8)
422 dpcd_val |= DP_PSR_CRC_VERIFICATION;
423 }
424
425 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
426
427 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
428 }
429
intel_psr1_get_tp_time(struct intel_dp * intel_dp)430 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
431 {
432 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
433 u32 val = 0;
434
435 if (INTEL_GEN(dev_priv) >= 11)
436 val |= EDP_PSR_TP4_TIME_0US;
437
438 if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
439 val |= EDP_PSR_TP1_TIME_0us;
440 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
441 val |= EDP_PSR_TP1_TIME_100us;
442 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
443 val |= EDP_PSR_TP1_TIME_500us;
444 else
445 val |= EDP_PSR_TP1_TIME_2500us;
446
447 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
448 val |= EDP_PSR_TP2_TP3_TIME_0us;
449 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
450 val |= EDP_PSR_TP2_TP3_TIME_100us;
451 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
452 val |= EDP_PSR_TP2_TP3_TIME_500us;
453 else
454 val |= EDP_PSR_TP2_TP3_TIME_2500us;
455
456 if (intel_dp_source_supports_hbr2(intel_dp) &&
457 drm_dp_tps3_supported(intel_dp->dpcd))
458 val |= EDP_PSR_TP1_TP3_SEL;
459 else
460 val |= EDP_PSR_TP1_TP2_SEL;
461
462 return val;
463 }
464
hsw_activate_psr1(struct intel_dp * intel_dp)465 static void hsw_activate_psr1(struct intel_dp *intel_dp)
466 {
467 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
468 u32 max_sleep_time = 0x1f;
469 u32 val = EDP_PSR_ENABLE;
470
471 /* Let's use 6 as the minimum to cover all known cases including the
472 * off-by-one issue that HW has in some cases.
473 */
474 int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
475
476 /* sink_sync_latency of 8 means source has to wait for more than 8
477 * frames, we'll go with 9 frames for now
478 */
479 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
480 val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
481
482 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
483 if (IS_HASWELL(dev_priv))
484 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
485
486 if (dev_priv->psr.link_standby)
487 val |= EDP_PSR_LINK_STANDBY;
488
489 val |= intel_psr1_get_tp_time(intel_dp);
490
491 if (INTEL_GEN(dev_priv) >= 8)
492 val |= EDP_PSR_CRC_ENABLE;
493
494 val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
495 I915_WRITE(EDP_PSR_CTL, val);
496 }
497
hsw_activate_psr2(struct intel_dp * intel_dp)498 static void hsw_activate_psr2(struct intel_dp *intel_dp)
499 {
500 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
501 u32 val;
502
503 /* Let's use 6 as the minimum to cover all known cases including the
504 * off-by-one issue that HW has in some cases.
505 */
506 int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
507
508 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
509 val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
510
511 val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
512 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
513 val |= EDP_Y_COORDINATE_ENABLE;
514
515 val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
516
517 if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
518 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
519 val |= EDP_PSR2_TP2_TIME_50us;
520 else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
521 val |= EDP_PSR2_TP2_TIME_100us;
522 else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
523 val |= EDP_PSR2_TP2_TIME_500us;
524 else
525 val |= EDP_PSR2_TP2_TIME_2500us;
526
527 /*
528 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
529 * recommending keep this bit unset while PSR2 is enabled.
530 */
531 I915_WRITE(EDP_PSR_CTL, 0);
532
533 I915_WRITE(EDP_PSR2_CTL, val);
534 }
535
intel_psr2_config_valid(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)536 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
537 struct intel_crtc_state *crtc_state)
538 {
539 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
540 int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
541 int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
542 int psr_max_h = 0, psr_max_v = 0;
543
544 if (!dev_priv->psr.sink_psr2_support)
545 return false;
546
547 /*
548 * DSC and PSR2 cannot be enabled simultaneously. If a requested
549 * resolution requires DSC to be enabled, priority is given to DSC
550 * over PSR2.
551 */
552 if (crtc_state->dsc_params.compression_enable) {
553 DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n");
554 return false;
555 }
556
557 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
558 psr_max_h = 4096;
559 psr_max_v = 2304;
560 } else if (IS_GEN(dev_priv, 9)) {
561 psr_max_h = 3640;
562 psr_max_v = 2304;
563 }
564
565 if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
566 DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
567 crtc_hdisplay, crtc_vdisplay,
568 psr_max_h, psr_max_v);
569 return false;
570 }
571
572 /*
573 * HW sends SU blocks of size four scan lines, which means the starting
574 * X coordinate and Y granularity requirements will always be met. We
575 * only need to validate the SU block width is a multiple of
576 * x granularity.
577 */
578 if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
579 DRM_DEBUG_KMS("PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
580 crtc_hdisplay, dev_priv->psr.su_x_granularity);
581 return false;
582 }
583
584 if (crtc_state->crc_enabled) {
585 DRM_DEBUG_KMS("PSR2 not enabled because it would inhibit pipe CRC calculation\n");
586 return false;
587 }
588
589 return true;
590 }
591
intel_psr_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)592 void intel_psr_compute_config(struct intel_dp *intel_dp,
593 struct intel_crtc_state *crtc_state)
594 {
595 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
596 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
597 const struct drm_display_mode *adjusted_mode =
598 &crtc_state->base.adjusted_mode;
599 int psr_setup_time;
600
601 if (!CAN_PSR(dev_priv))
602 return;
603
604 if (intel_dp != dev_priv->psr.dp)
605 return;
606
607 /*
608 * HSW spec explicitly says PSR is tied to port A.
609 * BDW+ platforms with DDI implementation of PSR have different
610 * PSR registers per transcoder and we only implement transcoder EDP
611 * ones. Since by Display design transcoder EDP is tied to port A
612 * we can safely escape based on the port A.
613 */
614 if (dig_port->base.port != PORT_A) {
615 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
616 return;
617 }
618
619 if (dev_priv->psr.sink_not_reliable) {
620 DRM_DEBUG_KMS("PSR sink implementation is not reliable\n");
621 return;
622 }
623
624 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
625 DRM_DEBUG_KMS("PSR condition failed: Interlaced mode enabled\n");
626 return;
627 }
628
629 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
630 if (psr_setup_time < 0) {
631 DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
632 intel_dp->psr_dpcd[1]);
633 return;
634 }
635
636 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
637 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
638 DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
639 psr_setup_time);
640 return;
641 }
642
643 crtc_state->has_psr = true;
644 crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
645 }
646
intel_psr_activate(struct intel_dp * intel_dp)647 static void intel_psr_activate(struct intel_dp *intel_dp)
648 {
649 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
650
651 if (INTEL_GEN(dev_priv) >= 9)
652 WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
653 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
654 WARN_ON(dev_priv->psr.active);
655 lockdep_assert_held(&dev_priv->psr.lock);
656
657 /* psr1 and psr2 are mutually exclusive.*/
658 if (dev_priv->psr.psr2_enabled)
659 hsw_activate_psr2(intel_dp);
660 else
661 hsw_activate_psr1(intel_dp);
662
663 dev_priv->psr.active = true;
664 }
665
gen9_chicken_trans_reg(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)666 static i915_reg_t gen9_chicken_trans_reg(struct drm_i915_private *dev_priv,
667 enum transcoder cpu_transcoder)
668 {
669 static const i915_reg_t regs[] = {
670 [TRANSCODER_A] = CHICKEN_TRANS_A,
671 [TRANSCODER_B] = CHICKEN_TRANS_B,
672 [TRANSCODER_C] = CHICKEN_TRANS_C,
673 [TRANSCODER_EDP] = CHICKEN_TRANS_EDP,
674 };
675
676 WARN_ON(INTEL_GEN(dev_priv) < 9);
677
678 if (WARN_ON(cpu_transcoder >= ARRAY_SIZE(regs) ||
679 !regs[cpu_transcoder].reg))
680 cpu_transcoder = TRANSCODER_A;
681
682 return regs[cpu_transcoder];
683 }
684
intel_psr_enable_source(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)685 static void intel_psr_enable_source(struct intel_dp *intel_dp,
686 const struct intel_crtc_state *crtc_state)
687 {
688 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
689 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
690 u32 mask;
691
692 /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
693 * use hardcoded values PSR AUX transactions
694 */
695 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
696 hsw_psr_setup_aux(intel_dp);
697
698 if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
699 !IS_GEMINILAKE(dev_priv))) {
700 i915_reg_t reg = gen9_chicken_trans_reg(dev_priv,
701 cpu_transcoder);
702 u32 chicken = I915_READ(reg);
703
704 chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
705 PSR2_ADD_VERTICAL_LINE_COUNT;
706 I915_WRITE(reg, chicken);
707 }
708
709 /*
710 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
711 * mask LPSP to avoid dependency on other drivers that might block
712 * runtime_pm besides preventing other hw tracking issues now we
713 * can rely on frontbuffer tracking.
714 */
715 mask = EDP_PSR_DEBUG_MASK_MEMUP |
716 EDP_PSR_DEBUG_MASK_HPD |
717 EDP_PSR_DEBUG_MASK_LPSP |
718 EDP_PSR_DEBUG_MASK_MAX_SLEEP;
719
720 if (INTEL_GEN(dev_priv) < 11)
721 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
722
723 I915_WRITE(EDP_PSR_DEBUG, mask);
724 }
725
intel_psr_enable_locked(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state)726 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
727 const struct intel_crtc_state *crtc_state)
728 {
729 struct intel_dp *intel_dp = dev_priv->psr.dp;
730
731 WARN_ON(dev_priv->psr.enabled);
732
733 dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
734 dev_priv->psr.busy_frontbuffer_bits = 0;
735 dev_priv->psr.pipe = to_intel_crtc(crtc_state->base.crtc)->pipe;
736
737 DRM_DEBUG_KMS("Enabling PSR%s\n",
738 dev_priv->psr.psr2_enabled ? "2" : "1");
739 intel_psr_setup_vsc(intel_dp, crtc_state);
740 intel_psr_enable_sink(intel_dp);
741 intel_psr_enable_source(intel_dp, crtc_state);
742 dev_priv->psr.enabled = true;
743
744 intel_psr_activate(intel_dp);
745 }
746
747 /**
748 * intel_psr_enable - Enable PSR
749 * @intel_dp: Intel DP
750 * @crtc_state: new CRTC state
751 *
752 * This function can only be called after the pipe is fully trained and enabled.
753 */
intel_psr_enable(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)754 void intel_psr_enable(struct intel_dp *intel_dp,
755 const struct intel_crtc_state *crtc_state)
756 {
757 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
758
759 if (!crtc_state->has_psr)
760 return;
761
762 if (WARN_ON(!CAN_PSR(dev_priv)))
763 return;
764
765 WARN_ON(dev_priv->drrs.dp);
766
767 mutex_lock(&dev_priv->psr.lock);
768
769 if (!psr_global_enabled(dev_priv->psr.debug)) {
770 DRM_DEBUG_KMS("PSR disabled by flag\n");
771 goto unlock;
772 }
773
774 intel_psr_enable_locked(dev_priv, crtc_state);
775
776 unlock:
777 mutex_unlock(&dev_priv->psr.lock);
778 }
779
intel_psr_exit(struct drm_i915_private * dev_priv)780 static void intel_psr_exit(struct drm_i915_private *dev_priv)
781 {
782 u32 val;
783
784 if (!dev_priv->psr.active) {
785 if (INTEL_GEN(dev_priv) >= 9)
786 WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
787 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
788 return;
789 }
790
791 if (dev_priv->psr.psr2_enabled) {
792 val = I915_READ(EDP_PSR2_CTL);
793 WARN_ON(!(val & EDP_PSR2_ENABLE));
794 I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
795 } else {
796 val = I915_READ(EDP_PSR_CTL);
797 WARN_ON(!(val & EDP_PSR_ENABLE));
798 I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
799 }
800 dev_priv->psr.active = false;
801 }
802
intel_psr_disable_locked(struct intel_dp * intel_dp)803 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
804 {
805 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
806 i915_reg_t psr_status;
807 u32 psr_status_mask;
808
809 lockdep_assert_held(&dev_priv->psr.lock);
810
811 if (!dev_priv->psr.enabled)
812 return;
813
814 DRM_DEBUG_KMS("Disabling PSR%s\n",
815 dev_priv->psr.psr2_enabled ? "2" : "1");
816
817 intel_psr_exit(dev_priv);
818
819 if (dev_priv->psr.psr2_enabled) {
820 psr_status = EDP_PSR2_STATUS;
821 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
822 } else {
823 psr_status = EDP_PSR_STATUS;
824 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
825 }
826
827 /* Wait till PSR is idle */
828 if (intel_de_wait_for_clear(dev_priv, psr_status,
829 psr_status_mask, 2000))
830 DRM_ERROR("Timed out waiting PSR idle state\n");
831
832 /* Disable PSR on Sink */
833 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
834
835 dev_priv->psr.enabled = false;
836 }
837
838 /**
839 * intel_psr_disable - Disable PSR
840 * @intel_dp: Intel DP
841 * @old_crtc_state: old CRTC state
842 *
843 * This function needs to be called before disabling pipe.
844 */
intel_psr_disable(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)845 void intel_psr_disable(struct intel_dp *intel_dp,
846 const struct intel_crtc_state *old_crtc_state)
847 {
848 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
849
850 if (!old_crtc_state->has_psr)
851 return;
852
853 if (WARN_ON(!CAN_PSR(dev_priv)))
854 return;
855
856 mutex_lock(&dev_priv->psr.lock);
857
858 intel_psr_disable_locked(intel_dp);
859
860 mutex_unlock(&dev_priv->psr.lock);
861 cancel_work_sync(&dev_priv->psr.work);
862 }
863
psr_force_hw_tracking_exit(struct drm_i915_private * dev_priv)864 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
865 {
866 if (INTEL_GEN(dev_priv) >= 9)
867 /*
868 * Display WA #0884: skl+
869 * This documented WA for bxt can be safely applied
870 * broadly so we can force HW tracking to exit PSR
871 * instead of disabling and re-enabling.
872 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
873 * but it makes more sense write to the current active
874 * pipe.
875 */
876 I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0);
877 else
878 /*
879 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
880 * on older gens so doing the manual exit instead.
881 */
882 intel_psr_exit(dev_priv);
883 }
884
885 /**
886 * intel_psr_update - Update PSR state
887 * @intel_dp: Intel DP
888 * @crtc_state: new CRTC state
889 *
890 * This functions will update PSR states, disabling, enabling or switching PSR
891 * version when executing fastsets. For full modeset, intel_psr_disable() and
892 * intel_psr_enable() should be called instead.
893 */
intel_psr_update(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)894 void intel_psr_update(struct intel_dp *intel_dp,
895 const struct intel_crtc_state *crtc_state)
896 {
897 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
898 struct i915_psr *psr = &dev_priv->psr;
899 bool enable, psr2_enable;
900
901 if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
902 return;
903
904 mutex_lock(&dev_priv->psr.lock);
905
906 enable = crtc_state->has_psr && psr_global_enabled(psr->debug);
907 psr2_enable = intel_psr2_enabled(dev_priv, crtc_state);
908
909 if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
910 /* Force a PSR exit when enabling CRC to avoid CRC timeouts */
911 if (crtc_state->crc_enabled && psr->enabled)
912 psr_force_hw_tracking_exit(dev_priv);
913 else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
914 /*
915 * Activate PSR again after a force exit when enabling
916 * CRC in older gens
917 */
918 if (!dev_priv->psr.active &&
919 !dev_priv->psr.busy_frontbuffer_bits)
920 schedule_work(&dev_priv->psr.work);
921 }
922
923 goto unlock;
924 }
925
926 if (psr->enabled)
927 intel_psr_disable_locked(intel_dp);
928
929 if (enable)
930 intel_psr_enable_locked(dev_priv, crtc_state);
931
932 unlock:
933 mutex_unlock(&dev_priv->psr.lock);
934 }
935
936 /**
937 * intel_psr_wait_for_idle - wait for PSR1 to idle
938 * @new_crtc_state: new CRTC state
939 * @out_value: PSR status in case of failure
940 *
941 * This function is expected to be called from pipe_update_start() where it is
942 * not expected to race with PSR enable or disable.
943 *
944 * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
945 */
intel_psr_wait_for_idle(const struct intel_crtc_state * new_crtc_state,u32 * out_value)946 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
947 u32 *out_value)
948 {
949 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
950 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
951
952 if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
953 return 0;
954
955 /* FIXME: Update this for PSR2 if we need to wait for idle */
956 if (READ_ONCE(dev_priv->psr.psr2_enabled))
957 return 0;
958
959 /*
960 * From bspec: Panel Self Refresh (BDW+)
961 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
962 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
963 * defensive enough to cover everything.
964 */
965
966 return __intel_wait_for_register(&dev_priv->uncore, EDP_PSR_STATUS,
967 EDP_PSR_STATUS_STATE_MASK,
968 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
969 out_value);
970 }
971
__psr_wait_for_idle_locked(struct drm_i915_private * dev_priv)972 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
973 {
974 i915_reg_t reg;
975 u32 mask;
976 int err;
977
978 if (!dev_priv->psr.enabled)
979 return false;
980
981 if (dev_priv->psr.psr2_enabled) {
982 reg = EDP_PSR2_STATUS;
983 mask = EDP_PSR2_STATUS_STATE_MASK;
984 } else {
985 reg = EDP_PSR_STATUS;
986 mask = EDP_PSR_STATUS_STATE_MASK;
987 }
988
989 mutex_unlock(&dev_priv->psr.lock);
990
991 err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
992 if (err)
993 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
994
995 /* After the unlocked wait, verify that PSR is still wanted! */
996 mutex_lock(&dev_priv->psr.lock);
997 return err == 0 && dev_priv->psr.enabled;
998 }
999
intel_psr_fastset_force(struct drm_i915_private * dev_priv)1000 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1001 {
1002 struct drm_device *dev = &dev_priv->drm;
1003 struct drm_modeset_acquire_ctx ctx;
1004 struct drm_atomic_state *state;
1005 struct drm_crtc *crtc;
1006 int err;
1007
1008 state = drm_atomic_state_alloc(dev);
1009 if (!state)
1010 return -ENOMEM;
1011
1012 drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1013 state->acquire_ctx = &ctx;
1014
1015 retry:
1016 drm_for_each_crtc(crtc, dev) {
1017 struct drm_crtc_state *crtc_state;
1018 struct intel_crtc_state *intel_crtc_state;
1019
1020 crtc_state = drm_atomic_get_crtc_state(state, crtc);
1021 if (IS_ERR(crtc_state)) {
1022 err = PTR_ERR(crtc_state);
1023 goto error;
1024 }
1025
1026 intel_crtc_state = to_intel_crtc_state(crtc_state);
1027
1028 if (crtc_state->active && intel_crtc_state->has_psr) {
1029 /* Mark mode as changed to trigger a pipe->update() */
1030 crtc_state->mode_changed = true;
1031 break;
1032 }
1033 }
1034
1035 err = drm_atomic_commit(state);
1036
1037 error:
1038 if (err == -EDEADLK) {
1039 drm_atomic_state_clear(state);
1040 err = drm_modeset_backoff(&ctx);
1041 if (!err)
1042 goto retry;
1043 }
1044
1045 drm_modeset_drop_locks(&ctx);
1046 drm_modeset_acquire_fini(&ctx);
1047 drm_atomic_state_put(state);
1048
1049 return err;
1050 }
1051
intel_psr_debug_set(struct drm_i915_private * dev_priv,u64 val)1052 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1053 {
1054 const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1055 u32 old_mode;
1056 int ret;
1057
1058 if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1059 mode > I915_PSR_DEBUG_FORCE_PSR1) {
1060 DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
1061 return -EINVAL;
1062 }
1063
1064 ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1065 if (ret)
1066 return ret;
1067
1068 old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1069 dev_priv->psr.debug = val;
1070 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
1071
1072 mutex_unlock(&dev_priv->psr.lock);
1073
1074 if (old_mode != mode)
1075 ret = intel_psr_fastset_force(dev_priv);
1076
1077 return ret;
1078 }
1079
intel_psr_handle_irq(struct drm_i915_private * dev_priv)1080 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1081 {
1082 struct i915_psr *psr = &dev_priv->psr;
1083
1084 intel_psr_disable_locked(psr->dp);
1085 psr->sink_not_reliable = true;
1086 /* let's make sure that sink is awaken */
1087 drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1088 }
1089
intel_psr_work(struct work_struct * work)1090 static void intel_psr_work(struct work_struct *work)
1091 {
1092 struct drm_i915_private *dev_priv =
1093 container_of(work, typeof(*dev_priv), psr.work);
1094
1095 mutex_lock(&dev_priv->psr.lock);
1096
1097 if (!dev_priv->psr.enabled)
1098 goto unlock;
1099
1100 if (READ_ONCE(dev_priv->psr.irq_aux_error))
1101 intel_psr_handle_irq(dev_priv);
1102
1103 /*
1104 * We have to make sure PSR is ready for re-enable
1105 * otherwise it keeps disabled until next full enable/disable cycle.
1106 * PSR might take some time to get fully disabled
1107 * and be ready for re-enable.
1108 */
1109 if (!__psr_wait_for_idle_locked(dev_priv))
1110 goto unlock;
1111
1112 /*
1113 * The delayed work can race with an invalidate hence we need to
1114 * recheck. Since psr_flush first clears this and then reschedules we
1115 * won't ever miss a flush when bailing out here.
1116 */
1117 if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1118 goto unlock;
1119
1120 intel_psr_activate(dev_priv->psr.dp);
1121 unlock:
1122 mutex_unlock(&dev_priv->psr.lock);
1123 }
1124
1125 /**
1126 * intel_psr_invalidate - Invalidade PSR
1127 * @dev_priv: i915 device
1128 * @frontbuffer_bits: frontbuffer plane tracking bits
1129 * @origin: which operation caused the invalidate
1130 *
1131 * Since the hardware frontbuffer tracking has gaps we need to integrate
1132 * with the software frontbuffer tracking. This function gets called every
1133 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1134 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1135 *
1136 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1137 */
intel_psr_invalidate(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits,enum fb_op_origin origin)1138 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1139 unsigned frontbuffer_bits, enum fb_op_origin origin)
1140 {
1141 if (!CAN_PSR(dev_priv))
1142 return;
1143
1144 if (origin == ORIGIN_FLIP)
1145 return;
1146
1147 mutex_lock(&dev_priv->psr.lock);
1148 if (!dev_priv->psr.enabled) {
1149 mutex_unlock(&dev_priv->psr.lock);
1150 return;
1151 }
1152
1153 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1154 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1155
1156 if (frontbuffer_bits)
1157 intel_psr_exit(dev_priv);
1158
1159 mutex_unlock(&dev_priv->psr.lock);
1160 }
1161
1162 /**
1163 * intel_psr_flush - Flush PSR
1164 * @dev_priv: i915 device
1165 * @frontbuffer_bits: frontbuffer plane tracking bits
1166 * @origin: which operation caused the flush
1167 *
1168 * Since the hardware frontbuffer tracking has gaps we need to integrate
1169 * with the software frontbuffer tracking. This function gets called every
1170 * time frontbuffer rendering has completed and flushed out to memory. PSR
1171 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1172 *
1173 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1174 */
intel_psr_flush(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits,enum fb_op_origin origin)1175 void intel_psr_flush(struct drm_i915_private *dev_priv,
1176 unsigned frontbuffer_bits, enum fb_op_origin origin)
1177 {
1178 if (!CAN_PSR(dev_priv))
1179 return;
1180
1181 if (origin == ORIGIN_FLIP)
1182 return;
1183
1184 mutex_lock(&dev_priv->psr.lock);
1185 if (!dev_priv->psr.enabled) {
1186 mutex_unlock(&dev_priv->psr.lock);
1187 return;
1188 }
1189
1190 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1191 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1192
1193 /* By definition flush = invalidate + flush */
1194 if (frontbuffer_bits)
1195 psr_force_hw_tracking_exit(dev_priv);
1196
1197 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1198 schedule_work(&dev_priv->psr.work);
1199 mutex_unlock(&dev_priv->psr.lock);
1200 }
1201
1202 /**
1203 * intel_psr_init - Init basic PSR work and mutex.
1204 * @dev_priv: i915 device private
1205 *
1206 * This function is called only once at driver load to initialize basic
1207 * PSR stuff.
1208 */
intel_psr_init(struct drm_i915_private * dev_priv)1209 void intel_psr_init(struct drm_i915_private *dev_priv)
1210 {
1211 u32 val;
1212
1213 if (!HAS_PSR(dev_priv))
1214 return;
1215
1216 dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
1217 HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
1218
1219 if (!dev_priv->psr.sink_support)
1220 return;
1221
1222 if (i915_modparams.enable_psr == -1)
1223 if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1224 i915_modparams.enable_psr = 0;
1225
1226 /*
1227 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1228 * will still keep the error set even after the reset done in the
1229 * irq_preinstall and irq_uninstall hooks.
1230 * And enabling in this situation cause the screen to freeze in the
1231 * first time that PSR HW tries to activate so lets keep PSR disabled
1232 * to avoid any rendering problems.
1233 */
1234 val = I915_READ(EDP_PSR_IIR);
1235 val &= EDP_PSR_ERROR(edp_psr_shift(TRANSCODER_EDP));
1236 if (val) {
1237 DRM_DEBUG_KMS("PSR interruption error set\n");
1238 dev_priv->psr.sink_not_reliable = true;
1239 }
1240
1241 /* Set link_standby x link_off defaults */
1242 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1243 /* HSW and BDW require workarounds that we don't implement. */
1244 dev_priv->psr.link_standby = false;
1245 else
1246 /* For new platforms let's respect VBT back again */
1247 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1248
1249 INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1250 mutex_init(&dev_priv->psr.lock);
1251 }
1252
intel_psr_short_pulse(struct intel_dp * intel_dp)1253 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1254 {
1255 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1256 struct i915_psr *psr = &dev_priv->psr;
1257 u8 val;
1258 const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1259 DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1260 DP_PSR_LINK_CRC_ERROR;
1261
1262 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1263 return;
1264
1265 mutex_lock(&psr->lock);
1266
1267 if (!psr->enabled || psr->dp != intel_dp)
1268 goto exit;
1269
1270 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
1271 DRM_ERROR("PSR_STATUS dpcd read failed\n");
1272 goto exit;
1273 }
1274
1275 if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
1276 DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
1277 intel_psr_disable_locked(intel_dp);
1278 psr->sink_not_reliable = true;
1279 }
1280
1281 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
1282 DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
1283 goto exit;
1284 }
1285
1286 if (val & DP_PSR_RFB_STORAGE_ERROR)
1287 DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
1288 if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1289 DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
1290 if (val & DP_PSR_LINK_CRC_ERROR)
1291 DRM_ERROR("PSR Link CRC error, disabling PSR\n");
1292
1293 if (val & ~errors)
1294 DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
1295 val & ~errors);
1296 if (val & errors) {
1297 intel_psr_disable_locked(intel_dp);
1298 psr->sink_not_reliable = true;
1299 }
1300 /* clear status register */
1301 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
1302 exit:
1303 mutex_unlock(&psr->lock);
1304 }
1305
intel_psr_enabled(struct intel_dp * intel_dp)1306 bool intel_psr_enabled(struct intel_dp *intel_dp)
1307 {
1308 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1309 bool ret;
1310
1311 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1312 return false;
1313
1314 mutex_lock(&dev_priv->psr.lock);
1315 ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1316 mutex_unlock(&dev_priv->psr.lock);
1317
1318 return ret;
1319 }
1320