1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * DOC: Panel Self Refresh (PSR/SRD)
26 *
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
33 *
34 * Panel Self Refresh must be supported by both Hardware (source) and
35 * Panel (sink).
36 *
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
40 *
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
52 */
53
54 #include <drm/drmP.h>
55
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58
intel_psr_irq_control(struct drm_i915_private * dev_priv,bool debug)59 void intel_psr_irq_control(struct drm_i915_private *dev_priv, bool debug)
60 {
61 u32 debug_mask, mask;
62
63 mask = EDP_PSR_ERROR(TRANSCODER_EDP);
64 debug_mask = EDP_PSR_POST_EXIT(TRANSCODER_EDP) |
65 EDP_PSR_PRE_ENTRY(TRANSCODER_EDP);
66
67 if (INTEL_GEN(dev_priv) >= 8) {
68 mask |= EDP_PSR_ERROR(TRANSCODER_A) |
69 EDP_PSR_ERROR(TRANSCODER_B) |
70 EDP_PSR_ERROR(TRANSCODER_C);
71
72 debug_mask |= EDP_PSR_POST_EXIT(TRANSCODER_A) |
73 EDP_PSR_PRE_ENTRY(TRANSCODER_A) |
74 EDP_PSR_POST_EXIT(TRANSCODER_B) |
75 EDP_PSR_PRE_ENTRY(TRANSCODER_B) |
76 EDP_PSR_POST_EXIT(TRANSCODER_C) |
77 EDP_PSR_PRE_ENTRY(TRANSCODER_C);
78 }
79
80 if (debug)
81 mask |= debug_mask;
82
83 WRITE_ONCE(dev_priv->psr.debug, debug);
84 I915_WRITE(EDP_PSR_IMR, ~mask);
85 }
86
psr_event_print(u32 val,bool psr2_enabled)87 static void psr_event_print(u32 val, bool psr2_enabled)
88 {
89 DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
90 if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
91 DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
92 if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
93 DRM_DEBUG_KMS("\tPSR2 disabled\n");
94 if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
95 DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
96 if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
97 DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
98 if (val & PSR_EVENT_GRAPHICS_RESET)
99 DRM_DEBUG_KMS("\tGraphics reset\n");
100 if (val & PSR_EVENT_PCH_INTERRUPT)
101 DRM_DEBUG_KMS("\tPCH interrupt\n");
102 if (val & PSR_EVENT_MEMORY_UP)
103 DRM_DEBUG_KMS("\tMemory up\n");
104 if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
105 DRM_DEBUG_KMS("\tFront buffer modification\n");
106 if (val & PSR_EVENT_WD_TIMER_EXPIRE)
107 DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
108 if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
109 DRM_DEBUG_KMS("\tPIPE registers updated\n");
110 if (val & PSR_EVENT_REGISTER_UPDATE)
111 DRM_DEBUG_KMS("\tRegister updated\n");
112 if (val & PSR_EVENT_HDCP_ENABLE)
113 DRM_DEBUG_KMS("\tHDCP enabled\n");
114 if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
115 DRM_DEBUG_KMS("\tKVMR session enabled\n");
116 if (val & PSR_EVENT_VBI_ENABLE)
117 DRM_DEBUG_KMS("\tVBI enabled\n");
118 if (val & PSR_EVENT_LPSP_MODE_EXIT)
119 DRM_DEBUG_KMS("\tLPSP mode exited\n");
120 if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
121 DRM_DEBUG_KMS("\tPSR disabled\n");
122 }
123
intel_psr_irq_handler(struct drm_i915_private * dev_priv,u32 psr_iir)124 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
125 {
126 u32 transcoders = BIT(TRANSCODER_EDP);
127 enum transcoder cpu_transcoder;
128 ktime_t time_ns = ktime_get();
129
130 if (INTEL_GEN(dev_priv) >= 8)
131 transcoders |= BIT(TRANSCODER_A) |
132 BIT(TRANSCODER_B) |
133 BIT(TRANSCODER_C);
134
135 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
136 /* FIXME: Exit PSR and link train manually when this happens. */
137 if (psr_iir & EDP_PSR_ERROR(cpu_transcoder))
138 DRM_DEBUG_KMS("[transcoder %s] PSR aux error\n",
139 transcoder_name(cpu_transcoder));
140
141 if (psr_iir & EDP_PSR_PRE_ENTRY(cpu_transcoder)) {
142 dev_priv->psr.last_entry_attempt = time_ns;
143 DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
144 transcoder_name(cpu_transcoder));
145 }
146
147 if (psr_iir & EDP_PSR_POST_EXIT(cpu_transcoder)) {
148 dev_priv->psr.last_exit = time_ns;
149 DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
150 transcoder_name(cpu_transcoder));
151
152 if (INTEL_GEN(dev_priv) >= 9) {
153 u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
154 bool psr2_enabled = dev_priv->psr.psr2_enabled;
155
156 I915_WRITE(PSR_EVENT(cpu_transcoder), val);
157 psr_event_print(val, psr2_enabled);
158 }
159 }
160 }
161 }
162
intel_dp_get_colorimetry_status(struct intel_dp * intel_dp)163 static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
164 {
165 uint8_t dprx = 0;
166
167 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
168 &dprx) != 1)
169 return false;
170 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
171 }
172
intel_dp_get_alpm_status(struct intel_dp * intel_dp)173 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
174 {
175 uint8_t alpm_caps = 0;
176
177 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
178 &alpm_caps) != 1)
179 return false;
180 return alpm_caps & DP_ALPM_CAP;
181 }
182
intel_dp_get_sink_sync_latency(struct intel_dp * intel_dp)183 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
184 {
185 u8 val = 8; /* assume the worst if we can't read the value */
186
187 if (drm_dp_dpcd_readb(&intel_dp->aux,
188 DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
189 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
190 else
191 DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
192 return val;
193 }
194
intel_psr_init_dpcd(struct intel_dp * intel_dp)195 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
196 {
197 struct drm_i915_private *dev_priv =
198 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
199
200 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
201 sizeof(intel_dp->psr_dpcd));
202
203 if (!intel_dp->psr_dpcd[0])
204 return;
205 DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
206 intel_dp->psr_dpcd[0]);
207
208 if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
209 DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
210 return;
211 }
212 dev_priv->psr.sink_support = true;
213 dev_priv->psr.sink_sync_latency =
214 intel_dp_get_sink_sync_latency(intel_dp);
215
216 if (INTEL_GEN(dev_priv) >= 9 &&
217 (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
218 bool y_req = intel_dp->psr_dpcd[1] &
219 DP_PSR2_SU_Y_COORDINATE_REQUIRED;
220 bool alpm = intel_dp_get_alpm_status(intel_dp);
221
222 /*
223 * All panels that supports PSR version 03h (PSR2 +
224 * Y-coordinate) can handle Y-coordinates in VSC but we are
225 * only sure that it is going to be used when required by the
226 * panel. This way panel is capable to do selective update
227 * without a aux frame sync.
228 *
229 * To support PSR version 02h and PSR version 03h without
230 * Y-coordinate requirement panels we would need to enable
231 * GTC first.
232 */
233 dev_priv->psr.sink_psr2_support = y_req && alpm;
234 DRM_DEBUG_KMS("PSR2 %ssupported\n",
235 dev_priv->psr.sink_psr2_support ? "" : "not ");
236
237 if (dev_priv->psr.sink_psr2_support) {
238 dev_priv->psr.colorimetry_support =
239 intel_dp_get_colorimetry_status(intel_dp);
240 }
241 }
242 }
243
intel_psr_setup_vsc(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)244 static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
245 const struct intel_crtc_state *crtc_state)
246 {
247 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
248 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
249 struct edp_vsc_psr psr_vsc;
250
251 if (dev_priv->psr.psr2_enabled) {
252 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
253 memset(&psr_vsc, 0, sizeof(psr_vsc));
254 psr_vsc.sdp_header.HB0 = 0;
255 psr_vsc.sdp_header.HB1 = 0x7;
256 if (dev_priv->psr.colorimetry_support) {
257 psr_vsc.sdp_header.HB2 = 0x5;
258 psr_vsc.sdp_header.HB3 = 0x13;
259 } else {
260 psr_vsc.sdp_header.HB2 = 0x4;
261 psr_vsc.sdp_header.HB3 = 0xe;
262 }
263 } else {
264 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
265 memset(&psr_vsc, 0, sizeof(psr_vsc));
266 psr_vsc.sdp_header.HB0 = 0;
267 psr_vsc.sdp_header.HB1 = 0x7;
268 psr_vsc.sdp_header.HB2 = 0x2;
269 psr_vsc.sdp_header.HB3 = 0x8;
270 }
271
272 intel_dig_port->write_infoframe(&intel_dig_port->base.base, crtc_state,
273 DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
274 }
275
hsw_psr_setup_aux(struct intel_dp * intel_dp)276 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
277 {
278 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
279 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
280 u32 aux_clock_divider, aux_ctl;
281 int i;
282 static const uint8_t aux_msg[] = {
283 [0] = DP_AUX_NATIVE_WRITE << 4,
284 [1] = DP_SET_POWER >> 8,
285 [2] = DP_SET_POWER & 0xff,
286 [3] = 1 - 1,
287 [4] = DP_SET_POWER_D0,
288 };
289 u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
290 EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
291 EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
292 EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
293
294 BUILD_BUG_ON(sizeof(aux_msg) > 20);
295 for (i = 0; i < sizeof(aux_msg); i += 4)
296 I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
297 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
298
299 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
300
301 /* Start with bits set for DDI_AUX_CTL register */
302 aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
303 aux_clock_divider);
304
305 /* Select only valid bits for SRD_AUX_CTL */
306 aux_ctl &= psr_aux_mask;
307 I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
308 }
309
intel_psr_enable_sink(struct intel_dp * intel_dp)310 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
311 {
312 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
313 struct drm_device *dev = dig_port->base.base.dev;
314 struct drm_i915_private *dev_priv = to_i915(dev);
315 u8 dpcd_val = DP_PSR_ENABLE;
316
317 /* Enable ALPM at sink for psr2 */
318 if (dev_priv->psr.psr2_enabled) {
319 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
320 DP_ALPM_ENABLE);
321 dpcd_val |= DP_PSR_ENABLE_PSR2;
322 }
323
324 if (dev_priv->psr.link_standby)
325 dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
326 if (!dev_priv->psr.psr2_enabled && INTEL_GEN(dev_priv) >= 8)
327 dpcd_val |= DP_PSR_CRC_VERIFICATION;
328 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
329
330 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
331 }
332
hsw_activate_psr1(struct intel_dp * intel_dp)333 static void hsw_activate_psr1(struct intel_dp *intel_dp)
334 {
335 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
336 struct drm_device *dev = dig_port->base.base.dev;
337 struct drm_i915_private *dev_priv = to_i915(dev);
338 u32 max_sleep_time = 0x1f;
339 u32 val = EDP_PSR_ENABLE;
340
341 /* Let's use 6 as the minimum to cover all known cases including the
342 * off-by-one issue that HW has in some cases.
343 */
344 int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
345
346 /* sink_sync_latency of 8 means source has to wait for more than 8
347 * frames, we'll go with 9 frames for now
348 */
349 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
350 val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
351
352 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
353 if (IS_HASWELL(dev_priv))
354 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
355
356 if (dev_priv->psr.link_standby)
357 val |= EDP_PSR_LINK_STANDBY;
358
359 if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
360 val |= EDP_PSR_TP1_TIME_0us;
361 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
362 val |= EDP_PSR_TP1_TIME_100us;
363 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
364 val |= EDP_PSR_TP1_TIME_500us;
365 else
366 val |= EDP_PSR_TP1_TIME_2500us;
367
368 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
369 val |= EDP_PSR_TP2_TP3_TIME_0us;
370 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
371 val |= EDP_PSR_TP2_TP3_TIME_100us;
372 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
373 val |= EDP_PSR_TP2_TP3_TIME_500us;
374 else
375 val |= EDP_PSR_TP2_TP3_TIME_2500us;
376
377 if (intel_dp_source_supports_hbr2(intel_dp) &&
378 drm_dp_tps3_supported(intel_dp->dpcd))
379 val |= EDP_PSR_TP1_TP3_SEL;
380 else
381 val |= EDP_PSR_TP1_TP2_SEL;
382
383 if (INTEL_GEN(dev_priv) >= 8)
384 val |= EDP_PSR_CRC_ENABLE;
385
386 val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
387 I915_WRITE(EDP_PSR_CTL, val);
388 }
389
hsw_activate_psr2(struct intel_dp * intel_dp)390 static void hsw_activate_psr2(struct intel_dp *intel_dp)
391 {
392 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
393 struct drm_device *dev = dig_port->base.base.dev;
394 struct drm_i915_private *dev_priv = to_i915(dev);
395 u32 val;
396
397 /* Let's use 6 as the minimum to cover all known cases including the
398 * off-by-one issue that HW has in some cases.
399 */
400 int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
401
402 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
403 val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
404
405 /* FIXME: selective update is probably totally broken because it doesn't
406 * mesh at all with our frontbuffer tracking. And the hw alone isn't
407 * good enough. */
408 val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
409 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
410 val |= EDP_Y_COORDINATE_ENABLE;
411
412 val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
413
414 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us >= 0 &&
415 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 50)
416 val |= EDP_PSR2_TP2_TIME_50us;
417 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
418 val |= EDP_PSR2_TP2_TIME_100us;
419 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
420 val |= EDP_PSR2_TP2_TIME_500us;
421 else
422 val |= EDP_PSR2_TP2_TIME_2500us;
423
424 I915_WRITE(EDP_PSR2_CTL, val);
425 }
426
intel_psr2_config_valid(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)427 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
428 struct intel_crtc_state *crtc_state)
429 {
430 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
431 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
432 int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
433 int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
434 int psr_max_h = 0, psr_max_v = 0;
435
436 /*
437 * FIXME psr2_support is messed up. It's both computed
438 * dynamically during PSR enable, and extracted from sink
439 * caps during eDP detection.
440 */
441 if (!dev_priv->psr.sink_psr2_support)
442 return false;
443
444 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
445 psr_max_h = 4096;
446 psr_max_v = 2304;
447 } else if (IS_GEN9(dev_priv)) {
448 psr_max_h = 3640;
449 psr_max_v = 2304;
450 }
451
452 if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
453 DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
454 crtc_hdisplay, crtc_vdisplay,
455 psr_max_h, psr_max_v);
456 return false;
457 }
458
459 return true;
460 }
461
intel_psr_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)462 void intel_psr_compute_config(struct intel_dp *intel_dp,
463 struct intel_crtc_state *crtc_state)
464 {
465 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
466 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
467 const struct drm_display_mode *adjusted_mode =
468 &crtc_state->base.adjusted_mode;
469 int psr_setup_time;
470
471 if (!CAN_PSR(dev_priv))
472 return;
473
474 if (!i915_modparams.enable_psr) {
475 DRM_DEBUG_KMS("PSR disable by flag\n");
476 return;
477 }
478
479 /*
480 * HSW spec explicitly says PSR is tied to port A.
481 * BDW+ platforms with DDI implementation of PSR have different
482 * PSR registers per transcoder and we only implement transcoder EDP
483 * ones. Since by Display design transcoder EDP is tied to port A
484 * we can safely escape based on the port A.
485 */
486 if (dig_port->base.port != PORT_A) {
487 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
488 return;
489 }
490
491 if (IS_HASWELL(dev_priv) &&
492 I915_READ(HSW_STEREO_3D_CTL(crtc_state->cpu_transcoder)) &
493 S3D_ENABLE) {
494 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
495 return;
496 }
497
498 if (IS_HASWELL(dev_priv) &&
499 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
500 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
501 return;
502 }
503
504 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
505 if (psr_setup_time < 0) {
506 DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
507 intel_dp->psr_dpcd[1]);
508 return;
509 }
510
511 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
512 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
513 DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
514 psr_setup_time);
515 return;
516 }
517
518 crtc_state->has_psr = true;
519 crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
520 DRM_DEBUG_KMS("Enabling PSR%s\n", crtc_state->has_psr2 ? "2" : "");
521 }
522
intel_psr_activate(struct intel_dp * intel_dp)523 static void intel_psr_activate(struct intel_dp *intel_dp)
524 {
525 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
526 struct drm_device *dev = intel_dig_port->base.base.dev;
527 struct drm_i915_private *dev_priv = to_i915(dev);
528
529 if (INTEL_GEN(dev_priv) >= 9)
530 WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
531 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
532 WARN_ON(dev_priv->psr.active);
533 lockdep_assert_held(&dev_priv->psr.lock);
534
535 /* psr1 and psr2 are mutually exclusive.*/
536 if (dev_priv->psr.psr2_enabled)
537 hsw_activate_psr2(intel_dp);
538 else
539 hsw_activate_psr1(intel_dp);
540
541 dev_priv->psr.active = true;
542 }
543
intel_psr_enable_source(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)544 static void intel_psr_enable_source(struct intel_dp *intel_dp,
545 const struct intel_crtc_state *crtc_state)
546 {
547 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
548 struct drm_device *dev = dig_port->base.base.dev;
549 struct drm_i915_private *dev_priv = to_i915(dev);
550 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551
552 /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
553 * use hardcoded values PSR AUX transactions
554 */
555 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
556 hsw_psr_setup_aux(intel_dp);
557
558 if (dev_priv->psr.psr2_enabled) {
559 u32 chicken = I915_READ(CHICKEN_TRANS(cpu_transcoder));
560
561 if (INTEL_GEN(dev_priv) == 9 && !IS_GEMINILAKE(dev_priv))
562 chicken |= (PSR2_VSC_ENABLE_PROG_HEADER
563 | PSR2_ADD_VERTICAL_LINE_COUNT);
564
565 else
566 chicken &= ~VSC_DATA_SEL_SOFTWARE_CONTROL;
567 I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken);
568
569 I915_WRITE(EDP_PSR_DEBUG,
570 EDP_PSR_DEBUG_MASK_MEMUP |
571 EDP_PSR_DEBUG_MASK_HPD |
572 EDP_PSR_DEBUG_MASK_LPSP |
573 EDP_PSR_DEBUG_MASK_MAX_SLEEP |
574 EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
575 } else {
576 /*
577 * Per Spec: Avoid continuous PSR exit by masking MEMUP
578 * and HPD. also mask LPSP to avoid dependency on other
579 * drivers that might block runtime_pm besides
580 * preventing other hw tracking issues now we can rely
581 * on frontbuffer tracking.
582 */
583 I915_WRITE(EDP_PSR_DEBUG,
584 EDP_PSR_DEBUG_MASK_MEMUP |
585 EDP_PSR_DEBUG_MASK_HPD |
586 EDP_PSR_DEBUG_MASK_LPSP |
587 EDP_PSR_DEBUG_MASK_DISP_REG_WRITE |
588 EDP_PSR_DEBUG_MASK_MAX_SLEEP);
589 }
590 }
591
592 /**
593 * intel_psr_enable - Enable PSR
594 * @intel_dp: Intel DP
595 * @crtc_state: new CRTC state
596 *
597 * This function can only be called after the pipe is fully trained and enabled.
598 */
intel_psr_enable(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)599 void intel_psr_enable(struct intel_dp *intel_dp,
600 const struct intel_crtc_state *crtc_state)
601 {
602 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
603 struct drm_device *dev = intel_dig_port->base.base.dev;
604 struct drm_i915_private *dev_priv = to_i915(dev);
605
606 if (!crtc_state->has_psr)
607 return;
608
609 if (WARN_ON(!CAN_PSR(dev_priv)))
610 return;
611
612 WARN_ON(dev_priv->drrs.dp);
613 mutex_lock(&dev_priv->psr.lock);
614 if (dev_priv->psr.enabled) {
615 DRM_DEBUG_KMS("PSR already in use\n");
616 goto unlock;
617 }
618
619 dev_priv->psr.psr2_enabled = crtc_state->has_psr2;
620 dev_priv->psr.busy_frontbuffer_bits = 0;
621
622 intel_psr_setup_vsc(intel_dp, crtc_state);
623 intel_psr_enable_sink(intel_dp);
624 intel_psr_enable_source(intel_dp, crtc_state);
625 dev_priv->psr.enabled = intel_dp;
626
627 intel_psr_activate(intel_dp);
628
629 unlock:
630 mutex_unlock(&dev_priv->psr.lock);
631 }
632
633 static void
intel_psr_disable_source(struct intel_dp * intel_dp)634 intel_psr_disable_source(struct intel_dp *intel_dp)
635 {
636 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
637 struct drm_device *dev = intel_dig_port->base.base.dev;
638 struct drm_i915_private *dev_priv = to_i915(dev);
639
640 if (dev_priv->psr.active) {
641 i915_reg_t psr_status;
642 u32 psr_status_mask;
643
644 if (dev_priv->psr.psr2_enabled) {
645 psr_status = EDP_PSR2_STATUS;
646 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
647
648 I915_WRITE(EDP_PSR2_CTL,
649 I915_READ(EDP_PSR2_CTL) &
650 ~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE));
651
652 } else {
653 psr_status = EDP_PSR_STATUS;
654 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
655
656 I915_WRITE(EDP_PSR_CTL,
657 I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
658 }
659
660 /* Wait till PSR is idle */
661 if (intel_wait_for_register(dev_priv,
662 psr_status, psr_status_mask, 0,
663 2000))
664 DRM_ERROR("Timed out waiting for PSR Idle State\n");
665
666 dev_priv->psr.active = false;
667 } else {
668 if (dev_priv->psr.psr2_enabled)
669 WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
670 else
671 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
672 }
673 }
674
intel_psr_disable_locked(struct intel_dp * intel_dp)675 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
676 {
677 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
678 struct drm_device *dev = intel_dig_port->base.base.dev;
679 struct drm_i915_private *dev_priv = to_i915(dev);
680
681 lockdep_assert_held(&dev_priv->psr.lock);
682
683 if (!dev_priv->psr.enabled)
684 return;
685
686 intel_psr_disable_source(intel_dp);
687
688 /* Disable PSR on Sink */
689 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
690
691 dev_priv->psr.enabled = NULL;
692 }
693
694 /**
695 * intel_psr_disable - Disable PSR
696 * @intel_dp: Intel DP
697 * @old_crtc_state: old CRTC state
698 *
699 * This function needs to be called before disabling pipe.
700 */
intel_psr_disable(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)701 void intel_psr_disable(struct intel_dp *intel_dp,
702 const struct intel_crtc_state *old_crtc_state)
703 {
704 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
705 struct drm_device *dev = intel_dig_port->base.base.dev;
706 struct drm_i915_private *dev_priv = to_i915(dev);
707
708 if (!old_crtc_state->has_psr)
709 return;
710
711 if (WARN_ON(!CAN_PSR(dev_priv)))
712 return;
713
714 mutex_lock(&dev_priv->psr.lock);
715 intel_psr_disable_locked(intel_dp);
716 mutex_unlock(&dev_priv->psr.lock);
717 cancel_work_sync(&dev_priv->psr.work);
718 }
719
intel_psr_wait_for_idle(const struct intel_crtc_state * new_crtc_state)720 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state)
721 {
722 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
723 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
724 i915_reg_t reg;
725 u32 mask;
726
727 if (!new_crtc_state->has_psr)
728 return 0;
729
730 /*
731 * The sole user right now is intel_pipe_update_start(),
732 * which won't race with psr_enable/disable, which is
733 * where psr2_enabled is written to. So, we don't need
734 * to acquire the psr.lock. More importantly, we want the
735 * latency inside intel_pipe_update_start() to be as low
736 * as possible, so no need to acquire psr.lock when it is
737 * not needed and will induce latencies in the atomic
738 * update path.
739 */
740 if (dev_priv->psr.psr2_enabled) {
741 reg = EDP_PSR2_STATUS;
742 mask = EDP_PSR2_STATUS_STATE_MASK;
743 } else {
744 reg = EDP_PSR_STATUS;
745 mask = EDP_PSR_STATUS_STATE_MASK;
746 }
747
748 /*
749 * Max time for PSR to idle = Inverse of the refresh rate +
750 * 6 ms of exit training time + 1.5 ms of aux channel
751 * handshake. 50 msec is defesive enough to cover everything.
752 */
753 return intel_wait_for_register(dev_priv, reg, mask,
754 EDP_PSR_STATUS_STATE_IDLE, 50);
755 }
756
__psr_wait_for_idle_locked(struct drm_i915_private * dev_priv)757 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
758 {
759 struct intel_dp *intel_dp;
760 i915_reg_t reg;
761 u32 mask;
762 int err;
763
764 intel_dp = dev_priv->psr.enabled;
765 if (!intel_dp)
766 return false;
767
768 if (dev_priv->psr.psr2_enabled) {
769 reg = EDP_PSR2_STATUS;
770 mask = EDP_PSR2_STATUS_STATE_MASK;
771 } else {
772 reg = EDP_PSR_STATUS;
773 mask = EDP_PSR_STATUS_STATE_MASK;
774 }
775
776 mutex_unlock(&dev_priv->psr.lock);
777
778 err = intel_wait_for_register(dev_priv, reg, mask, 0, 50);
779 if (err)
780 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
781
782 /* After the unlocked wait, verify that PSR is still wanted! */
783 mutex_lock(&dev_priv->psr.lock);
784 return err == 0 && dev_priv->psr.enabled;
785 }
786
intel_psr_work(struct work_struct * work)787 static void intel_psr_work(struct work_struct *work)
788 {
789 struct drm_i915_private *dev_priv =
790 container_of(work, typeof(*dev_priv), psr.work);
791
792 mutex_lock(&dev_priv->psr.lock);
793
794 if (!dev_priv->psr.enabled)
795 goto unlock;
796
797 /*
798 * We have to make sure PSR is ready for re-enable
799 * otherwise it keeps disabled until next full enable/disable cycle.
800 * PSR might take some time to get fully disabled
801 * and be ready for re-enable.
802 */
803 if (!__psr_wait_for_idle_locked(dev_priv))
804 goto unlock;
805
806 /*
807 * The delayed work can race with an invalidate hence we need to
808 * recheck. Since psr_flush first clears this and then reschedules we
809 * won't ever miss a flush when bailing out here.
810 */
811 if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
812 goto unlock;
813
814 intel_psr_activate(dev_priv->psr.enabled);
815 unlock:
816 mutex_unlock(&dev_priv->psr.lock);
817 }
818
intel_psr_exit(struct drm_i915_private * dev_priv)819 static void intel_psr_exit(struct drm_i915_private *dev_priv)
820 {
821 u32 val;
822
823 if (!dev_priv->psr.active)
824 return;
825
826 if (dev_priv->psr.psr2_enabled) {
827 val = I915_READ(EDP_PSR2_CTL);
828 WARN_ON(!(val & EDP_PSR2_ENABLE));
829 I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
830 } else {
831 val = I915_READ(EDP_PSR_CTL);
832 WARN_ON(!(val & EDP_PSR_ENABLE));
833 I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
834 }
835 dev_priv->psr.active = false;
836 }
837
838 /**
839 * intel_psr_invalidate - Invalidade PSR
840 * @dev_priv: i915 device
841 * @frontbuffer_bits: frontbuffer plane tracking bits
842 * @origin: which operation caused the invalidate
843 *
844 * Since the hardware frontbuffer tracking has gaps we need to integrate
845 * with the software frontbuffer tracking. This function gets called every
846 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
847 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
848 *
849 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
850 */
intel_psr_invalidate(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits,enum fb_op_origin origin)851 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
852 unsigned frontbuffer_bits, enum fb_op_origin origin)
853 {
854 struct drm_crtc *crtc;
855 enum pipe pipe;
856
857 if (!CAN_PSR(dev_priv))
858 return;
859
860 if (origin == ORIGIN_FLIP)
861 return;
862
863 mutex_lock(&dev_priv->psr.lock);
864 if (!dev_priv->psr.enabled) {
865 mutex_unlock(&dev_priv->psr.lock);
866 return;
867 }
868
869 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
870 pipe = to_intel_crtc(crtc)->pipe;
871
872 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
873 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
874
875 if (frontbuffer_bits)
876 intel_psr_exit(dev_priv);
877
878 mutex_unlock(&dev_priv->psr.lock);
879 }
880
881 /**
882 * intel_psr_flush - Flush PSR
883 * @dev_priv: i915 device
884 * @frontbuffer_bits: frontbuffer plane tracking bits
885 * @origin: which operation caused the flush
886 *
887 * Since the hardware frontbuffer tracking has gaps we need to integrate
888 * with the software frontbuffer tracking. This function gets called every
889 * time frontbuffer rendering has completed and flushed out to memory. PSR
890 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
891 *
892 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
893 */
intel_psr_flush(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits,enum fb_op_origin origin)894 void intel_psr_flush(struct drm_i915_private *dev_priv,
895 unsigned frontbuffer_bits, enum fb_op_origin origin)
896 {
897 struct drm_crtc *crtc;
898 enum pipe pipe;
899
900 if (!CAN_PSR(dev_priv))
901 return;
902
903 if (origin == ORIGIN_FLIP)
904 return;
905
906 mutex_lock(&dev_priv->psr.lock);
907 if (!dev_priv->psr.enabled) {
908 mutex_unlock(&dev_priv->psr.lock);
909 return;
910 }
911
912 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
913 pipe = to_intel_crtc(crtc)->pipe;
914
915 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
916 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
917
918 /* By definition flush = invalidate + flush */
919 if (frontbuffer_bits) {
920 if (dev_priv->psr.psr2_enabled) {
921 intel_psr_exit(dev_priv);
922 } else {
923 /*
924 * Display WA #0884: all
925 * This documented WA for bxt can be safely applied
926 * broadly so we can force HW tracking to exit PSR
927 * instead of disabling and re-enabling.
928 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
929 * but it makes more sense write to the current active
930 * pipe.
931 */
932 I915_WRITE(CURSURFLIVE(pipe), 0);
933 }
934 }
935
936 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
937 schedule_work(&dev_priv->psr.work);
938 mutex_unlock(&dev_priv->psr.lock);
939 }
940
941 /**
942 * intel_psr_init - Init basic PSR work and mutex.
943 * @dev_priv: i915 device private
944 *
945 * This function is called only once at driver load to initialize basic
946 * PSR stuff.
947 */
intel_psr_init(struct drm_i915_private * dev_priv)948 void intel_psr_init(struct drm_i915_private *dev_priv)
949 {
950 if (!HAS_PSR(dev_priv))
951 return;
952
953 dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
954 HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
955
956 if (!dev_priv->psr.sink_support)
957 return;
958
959 if (i915_modparams.enable_psr == -1) {
960 i915_modparams.enable_psr = dev_priv->vbt.psr.enable;
961
962 /* Per platform default: all disabled. */
963 i915_modparams.enable_psr = 0;
964 }
965
966 /* Set link_standby x link_off defaults */
967 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
968 /* HSW and BDW require workarounds that we don't implement. */
969 dev_priv->psr.link_standby = false;
970 else
971 /* For new platforms let's respect VBT back again */
972 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
973
974 INIT_WORK(&dev_priv->psr.work, intel_psr_work);
975 mutex_init(&dev_priv->psr.lock);
976 }
977
intel_psr_short_pulse(struct intel_dp * intel_dp)978 void intel_psr_short_pulse(struct intel_dp *intel_dp)
979 {
980 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981 struct drm_device *dev = intel_dig_port->base.base.dev;
982 struct drm_i915_private *dev_priv = to_i915(dev);
983 struct i915_psr *psr = &dev_priv->psr;
984 u8 val;
985 const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
986 DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
987 DP_PSR_LINK_CRC_ERROR;
988
989 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
990 return;
991
992 mutex_lock(&psr->lock);
993
994 if (psr->enabled != intel_dp)
995 goto exit;
996
997 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
998 DRM_ERROR("PSR_STATUS dpcd read failed\n");
999 goto exit;
1000 }
1001
1002 if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
1003 DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
1004 intel_psr_disable_locked(intel_dp);
1005 }
1006
1007 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
1008 DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
1009 goto exit;
1010 }
1011
1012 if (val & DP_PSR_RFB_STORAGE_ERROR)
1013 DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
1014 if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1015 DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
1016 if (val & DP_PSR_LINK_CRC_ERROR)
1017 DRM_ERROR("PSR Link CRC error, disabling PSR\n");
1018
1019 if (val & ~errors)
1020 DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
1021 val & ~errors);
1022 if (val & errors)
1023 intel_psr_disable_locked(intel_dp);
1024 /* clear status register */
1025 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
1026
1027 /* TODO: handle PSR2 errors */
1028 exit:
1029 mutex_unlock(&psr->lock);
1030 }
1031