1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/msr.h>
7 #include <asm/insn.h>
8
9 #include "../perf_event.h"
10
11 static const enum {
12 LBR_EIP_FLAGS = 1,
13 LBR_TSX = 2,
14 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
15 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
16 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
17 };
18
19 /*
20 * Intel LBR_SELECT bits
21 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
22 *
23 * Hardware branch filter (not available on all CPUs)
24 */
25 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
26 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
27 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
28 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
29 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
30 #define LBR_RETURN_BIT 5 /* do not capture near returns */
31 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
32 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
33 #define LBR_FAR_BIT 8 /* do not capture far branches */
34 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
35
36 /*
37 * Following bit only exists in Linux; we mask it out before writing it to
38 * the actual MSR. But it helps the constraint perf code to understand
39 * that this is a separate configuration.
40 */
41 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
42
43 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
44 #define LBR_USER (1 << LBR_USER_BIT)
45 #define LBR_JCC (1 << LBR_JCC_BIT)
46 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
47 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
48 #define LBR_RETURN (1 << LBR_RETURN_BIT)
49 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
50 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
51 #define LBR_FAR (1 << LBR_FAR_BIT)
52 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
53 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
54
55 #define LBR_PLM (LBR_KERNEL | LBR_USER)
56
57 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
58 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
59 #define LBR_IGN 0 /* ignored */
60
61 #define LBR_ANY \
62 (LBR_JCC |\
63 LBR_REL_CALL |\
64 LBR_IND_CALL |\
65 LBR_RETURN |\
66 LBR_REL_JMP |\
67 LBR_IND_JMP |\
68 LBR_FAR)
69
70 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
71 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
72 #define LBR_FROM_FLAG_ABORT BIT_ULL(61)
73
74 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
75
76 /*
77 * x86control flow change classification
78 * x86control flow changes include branches, interrupts, traps, faults
79 */
80 enum {
81 X86_BR_NONE = 0, /* unknown */
82
83 X86_BR_USER = 1 << 0, /* branch target is user */
84 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
85
86 X86_BR_CALL = 1 << 2, /* call */
87 X86_BR_RET = 1 << 3, /* return */
88 X86_BR_SYSCALL = 1 << 4, /* syscall */
89 X86_BR_SYSRET = 1 << 5, /* syscall return */
90 X86_BR_INT = 1 << 6, /* sw interrupt */
91 X86_BR_IRET = 1 << 7, /* return from interrupt */
92 X86_BR_JCC = 1 << 8, /* conditional */
93 X86_BR_JMP = 1 << 9, /* jump */
94 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
95 X86_BR_IND_CALL = 1 << 11,/* indirect calls */
96 X86_BR_ABORT = 1 << 12,/* transaction abort */
97 X86_BR_IN_TX = 1 << 13,/* in transaction */
98 X86_BR_NO_TX = 1 << 14,/* not in transaction */
99 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
100 X86_BR_CALL_STACK = 1 << 16,/* call stack */
101 X86_BR_IND_JMP = 1 << 17,/* indirect jump */
102
103 X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */
104
105 };
106
107 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
108 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
109
110 #define X86_BR_ANY \
111 (X86_BR_CALL |\
112 X86_BR_RET |\
113 X86_BR_SYSCALL |\
114 X86_BR_SYSRET |\
115 X86_BR_INT |\
116 X86_BR_IRET |\
117 X86_BR_JCC |\
118 X86_BR_JMP |\
119 X86_BR_IRQ |\
120 X86_BR_ABORT |\
121 X86_BR_IND_CALL |\
122 X86_BR_IND_JMP |\
123 X86_BR_ZERO_CALL)
124
125 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
126
127 #define X86_BR_ANY_CALL \
128 (X86_BR_CALL |\
129 X86_BR_IND_CALL |\
130 X86_BR_ZERO_CALL |\
131 X86_BR_SYSCALL |\
132 X86_BR_IRQ |\
133 X86_BR_INT)
134
135 /*
136 * Intel LBR_CTL bits
137 *
138 * Hardware branch filter for Arch LBR
139 */
140 #define ARCH_LBR_KERNEL_BIT 1 /* capture at ring0 */
141 #define ARCH_LBR_USER_BIT 2 /* capture at ring > 0 */
142 #define ARCH_LBR_CALL_STACK_BIT 3 /* enable call stack */
143 #define ARCH_LBR_JCC_BIT 16 /* capture conditional branches */
144 #define ARCH_LBR_REL_JMP_BIT 17 /* capture relative jumps */
145 #define ARCH_LBR_IND_JMP_BIT 18 /* capture indirect jumps */
146 #define ARCH_LBR_REL_CALL_BIT 19 /* capture relative calls */
147 #define ARCH_LBR_IND_CALL_BIT 20 /* capture indirect calls */
148 #define ARCH_LBR_RETURN_BIT 21 /* capture near returns */
149 #define ARCH_LBR_OTHER_BRANCH_BIT 22 /* capture other branches */
150
151 #define ARCH_LBR_KERNEL (1ULL << ARCH_LBR_KERNEL_BIT)
152 #define ARCH_LBR_USER (1ULL << ARCH_LBR_USER_BIT)
153 #define ARCH_LBR_CALL_STACK (1ULL << ARCH_LBR_CALL_STACK_BIT)
154 #define ARCH_LBR_JCC (1ULL << ARCH_LBR_JCC_BIT)
155 #define ARCH_LBR_REL_JMP (1ULL << ARCH_LBR_REL_JMP_BIT)
156 #define ARCH_LBR_IND_JMP (1ULL << ARCH_LBR_IND_JMP_BIT)
157 #define ARCH_LBR_REL_CALL (1ULL << ARCH_LBR_REL_CALL_BIT)
158 #define ARCH_LBR_IND_CALL (1ULL << ARCH_LBR_IND_CALL_BIT)
159 #define ARCH_LBR_RETURN (1ULL << ARCH_LBR_RETURN_BIT)
160 #define ARCH_LBR_OTHER_BRANCH (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
161
162 #define ARCH_LBR_ANY \
163 (ARCH_LBR_JCC |\
164 ARCH_LBR_REL_JMP |\
165 ARCH_LBR_IND_JMP |\
166 ARCH_LBR_REL_CALL |\
167 ARCH_LBR_IND_CALL |\
168 ARCH_LBR_RETURN |\
169 ARCH_LBR_OTHER_BRANCH)
170
171 #define ARCH_LBR_CTL_MASK 0x7f000e
172
173 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
174
is_lbr_call_stack_bit_set(u64 config)175 static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
176 {
177 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
178 return !!(config & ARCH_LBR_CALL_STACK);
179
180 return !!(config & LBR_CALL_STACK);
181 }
182
183 /*
184 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
185 * otherwise it becomes near impossible to get a reliable stack.
186 */
187
__intel_pmu_lbr_enable(bool pmi)188 static void __intel_pmu_lbr_enable(bool pmi)
189 {
190 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
191 u64 debugctl, lbr_select = 0, orig_debugctl;
192
193 /*
194 * No need to unfreeze manually, as v4 can do that as part
195 * of the GLOBAL_STATUS ack.
196 */
197 if (pmi && x86_pmu.version >= 4)
198 return;
199
200 /*
201 * No need to reprogram LBR_SELECT in a PMI, as it
202 * did not change.
203 */
204 if (cpuc->lbr_sel)
205 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
206 if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
207 wrmsrl(MSR_LBR_SELECT, lbr_select);
208
209 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
210 orig_debugctl = debugctl;
211
212 if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
213 debugctl |= DEBUGCTLMSR_LBR;
214 /*
215 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
216 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
217 * may cause superfluous increase/decrease of LBR_TOS.
218 */
219 if (is_lbr_call_stack_bit_set(lbr_select))
220 debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
221 else
222 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
223
224 if (orig_debugctl != debugctl)
225 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
226
227 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
228 wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
229 }
230
__intel_pmu_lbr_disable(void)231 static void __intel_pmu_lbr_disable(void)
232 {
233 u64 debugctl;
234
235 if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
236 wrmsrl(MSR_ARCH_LBR_CTL, 0);
237 return;
238 }
239
240 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
241 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
242 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
243 }
244
intel_pmu_lbr_reset_32(void)245 void intel_pmu_lbr_reset_32(void)
246 {
247 int i;
248
249 for (i = 0; i < x86_pmu.lbr_nr; i++)
250 wrmsrl(x86_pmu.lbr_from + i, 0);
251 }
252
intel_pmu_lbr_reset_64(void)253 void intel_pmu_lbr_reset_64(void)
254 {
255 int i;
256
257 for (i = 0; i < x86_pmu.lbr_nr; i++) {
258 wrmsrl(x86_pmu.lbr_from + i, 0);
259 wrmsrl(x86_pmu.lbr_to + i, 0);
260 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
261 wrmsrl(x86_pmu.lbr_info + i, 0);
262 }
263 }
264
intel_pmu_arch_lbr_reset(void)265 static void intel_pmu_arch_lbr_reset(void)
266 {
267 /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
268 wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
269 }
270
intel_pmu_lbr_reset(void)271 void intel_pmu_lbr_reset(void)
272 {
273 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
274
275 if (!x86_pmu.lbr_nr)
276 return;
277
278 x86_pmu.lbr_reset();
279
280 cpuc->last_task_ctx = NULL;
281 cpuc->last_log_id = 0;
282 }
283
284 /*
285 * TOS = most recently recorded branch
286 */
intel_pmu_lbr_tos(void)287 static inline u64 intel_pmu_lbr_tos(void)
288 {
289 u64 tos;
290
291 rdmsrl(x86_pmu.lbr_tos, tos);
292 return tos;
293 }
294
295 enum {
296 LBR_NONE,
297 LBR_VALID,
298 };
299
300 /*
301 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
302 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
303 * TSX is not supported they have no consistent behavior:
304 *
305 * - For wrmsr(), bits 61:62 are considered part of the sign extension.
306 * - For HW updates (branch captures) bits 61:62 are always OFF and are not
307 * part of the sign extension.
308 *
309 * Therefore, if:
310 *
311 * 1) LBR has TSX format
312 * 2) CPU has no TSX support enabled
313 *
314 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
315 * value from rdmsr() must be converted to have a 61 bits sign extension,
316 * ignoring the TSX flags.
317 */
lbr_from_signext_quirk_needed(void)318 static inline bool lbr_from_signext_quirk_needed(void)
319 {
320 int lbr_format = x86_pmu.intel_cap.lbr_format;
321 bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
322 boot_cpu_has(X86_FEATURE_RTM);
323
324 return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
325 }
326
327 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
328
329 /* If quirk is enabled, ensure sign extension is 63 bits: */
lbr_from_signext_quirk_wr(u64 val)330 inline u64 lbr_from_signext_quirk_wr(u64 val)
331 {
332 if (static_branch_unlikely(&lbr_from_quirk_key)) {
333 /*
334 * Sign extend into bits 61:62 while preserving bit 63.
335 *
336 * Quirk is enabled when TSX is disabled. Therefore TSX bits
337 * in val are always OFF and must be changed to be sign
338 * extension bits. Since bits 59:60 are guaranteed to be
339 * part of the sign extension bits, we can just copy them
340 * to 61:62.
341 */
342 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
343 }
344 return val;
345 }
346
347 /*
348 * If quirk is needed, ensure sign extension is 61 bits:
349 */
lbr_from_signext_quirk_rd(u64 val)350 static u64 lbr_from_signext_quirk_rd(u64 val)
351 {
352 if (static_branch_unlikely(&lbr_from_quirk_key)) {
353 /*
354 * Quirk is on when TSX is not enabled. Therefore TSX
355 * flags must be read as OFF.
356 */
357 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
358 }
359 return val;
360 }
361
wrlbr_from(unsigned int idx,u64 val)362 static __always_inline void wrlbr_from(unsigned int idx, u64 val)
363 {
364 val = lbr_from_signext_quirk_wr(val);
365 wrmsrl(x86_pmu.lbr_from + idx, val);
366 }
367
wrlbr_to(unsigned int idx,u64 val)368 static __always_inline void wrlbr_to(unsigned int idx, u64 val)
369 {
370 wrmsrl(x86_pmu.lbr_to + idx, val);
371 }
372
wrlbr_info(unsigned int idx,u64 val)373 static __always_inline void wrlbr_info(unsigned int idx, u64 val)
374 {
375 wrmsrl(x86_pmu.lbr_info + idx, val);
376 }
377
rdlbr_from(unsigned int idx,struct lbr_entry * lbr)378 static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
379 {
380 u64 val;
381
382 if (lbr)
383 return lbr->from;
384
385 rdmsrl(x86_pmu.lbr_from + idx, val);
386
387 return lbr_from_signext_quirk_rd(val);
388 }
389
rdlbr_to(unsigned int idx,struct lbr_entry * lbr)390 static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
391 {
392 u64 val;
393
394 if (lbr)
395 return lbr->to;
396
397 rdmsrl(x86_pmu.lbr_to + idx, val);
398
399 return val;
400 }
401
rdlbr_info(unsigned int idx,struct lbr_entry * lbr)402 static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
403 {
404 u64 val;
405
406 if (lbr)
407 return lbr->info;
408
409 rdmsrl(x86_pmu.lbr_info + idx, val);
410
411 return val;
412 }
413
414 static inline void
wrlbr_all(struct lbr_entry * lbr,unsigned int idx,bool need_info)415 wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
416 {
417 wrlbr_from(idx, lbr->from);
418 wrlbr_to(idx, lbr->to);
419 if (need_info)
420 wrlbr_info(idx, lbr->info);
421 }
422
423 static inline bool
rdlbr_all(struct lbr_entry * lbr,unsigned int idx,bool need_info)424 rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
425 {
426 u64 from = rdlbr_from(idx, NULL);
427
428 /* Don't read invalid entry */
429 if (!from)
430 return false;
431
432 lbr->from = from;
433 lbr->to = rdlbr_to(idx, NULL);
434 if (need_info)
435 lbr->info = rdlbr_info(idx, NULL);
436
437 return true;
438 }
439
intel_pmu_lbr_restore(void * ctx)440 void intel_pmu_lbr_restore(void *ctx)
441 {
442 bool need_info = x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO;
443 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
444 struct x86_perf_task_context *task_ctx = ctx;
445 int i;
446 unsigned lbr_idx, mask;
447 u64 tos = task_ctx->tos;
448
449 mask = x86_pmu.lbr_nr - 1;
450 for (i = 0; i < task_ctx->valid_lbrs; i++) {
451 lbr_idx = (tos - i) & mask;
452 wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
453 }
454
455 for (; i < x86_pmu.lbr_nr; i++) {
456 lbr_idx = (tos - i) & mask;
457 wrlbr_from(lbr_idx, 0);
458 wrlbr_to(lbr_idx, 0);
459 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
460 wrlbr_info(lbr_idx, 0);
461 }
462
463 wrmsrl(x86_pmu.lbr_tos, tos);
464
465 if (cpuc->lbr_select)
466 wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
467 }
468
intel_pmu_arch_lbr_restore(void * ctx)469 static void intel_pmu_arch_lbr_restore(void *ctx)
470 {
471 struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
472 struct lbr_entry *entries = task_ctx->entries;
473 int i;
474
475 /* Fast reset the LBRs before restore if the call stack is not full. */
476 if (!entries[x86_pmu.lbr_nr - 1].from)
477 intel_pmu_arch_lbr_reset();
478
479 for (i = 0; i < x86_pmu.lbr_nr; i++) {
480 if (!entries[i].from)
481 break;
482 wrlbr_all(&entries[i], i, true);
483 }
484 }
485
486 /*
487 * Restore the Architecture LBR state from the xsave area in the perf
488 * context data for the task via the XRSTORS instruction.
489 */
intel_pmu_arch_lbr_xrstors(void * ctx)490 static void intel_pmu_arch_lbr_xrstors(void *ctx)
491 {
492 struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
493
494 xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
495 }
496
lbr_is_reset_in_cstate(void * ctx)497 static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
498 {
499 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
500 return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
501
502 return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
503 }
504
__intel_pmu_lbr_restore(void * ctx)505 static void __intel_pmu_lbr_restore(void *ctx)
506 {
507 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
508
509 if (task_context_opt(ctx)->lbr_callstack_users == 0 ||
510 task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
511 intel_pmu_lbr_reset();
512 return;
513 }
514
515 /*
516 * Does not restore the LBR registers, if
517 * - No one else touched them, and
518 * - Was not cleared in Cstate
519 */
520 if ((ctx == cpuc->last_task_ctx) &&
521 (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
522 !lbr_is_reset_in_cstate(ctx)) {
523 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
524 return;
525 }
526
527 x86_pmu.lbr_restore(ctx);
528
529 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
530 }
531
intel_pmu_lbr_save(void * ctx)532 void intel_pmu_lbr_save(void *ctx)
533 {
534 bool need_info = x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO;
535 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
536 struct x86_perf_task_context *task_ctx = ctx;
537 unsigned lbr_idx, mask;
538 u64 tos;
539 int i;
540
541 mask = x86_pmu.lbr_nr - 1;
542 tos = intel_pmu_lbr_tos();
543 for (i = 0; i < x86_pmu.lbr_nr; i++) {
544 lbr_idx = (tos - i) & mask;
545 if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
546 break;
547 }
548 task_ctx->valid_lbrs = i;
549 task_ctx->tos = tos;
550
551 if (cpuc->lbr_select)
552 rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
553 }
554
intel_pmu_arch_lbr_save(void * ctx)555 static void intel_pmu_arch_lbr_save(void *ctx)
556 {
557 struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
558 struct lbr_entry *entries = task_ctx->entries;
559 int i;
560
561 for (i = 0; i < x86_pmu.lbr_nr; i++) {
562 if (!rdlbr_all(&entries[i], i, true))
563 break;
564 }
565
566 /* LBR call stack is not full. Reset is required in restore. */
567 if (i < x86_pmu.lbr_nr)
568 entries[x86_pmu.lbr_nr - 1].from = 0;
569 }
570
571 /*
572 * Save the Architecture LBR state to the xsave area in the perf
573 * context data for the task via the XSAVES instruction.
574 */
intel_pmu_arch_lbr_xsaves(void * ctx)575 static void intel_pmu_arch_lbr_xsaves(void *ctx)
576 {
577 struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
578
579 xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
580 }
581
__intel_pmu_lbr_save(void * ctx)582 static void __intel_pmu_lbr_save(void *ctx)
583 {
584 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
585
586 if (task_context_opt(ctx)->lbr_callstack_users == 0) {
587 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
588 return;
589 }
590
591 x86_pmu.lbr_save(ctx);
592
593 task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
594
595 cpuc->last_task_ctx = ctx;
596 cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
597 }
598
intel_pmu_lbr_swap_task_ctx(struct perf_event_context * prev,struct perf_event_context * next)599 void intel_pmu_lbr_swap_task_ctx(struct perf_event_context *prev,
600 struct perf_event_context *next)
601 {
602 void *prev_ctx_data, *next_ctx_data;
603
604 swap(prev->task_ctx_data, next->task_ctx_data);
605
606 /*
607 * Architecture specific synchronization makes sense in
608 * case both prev->task_ctx_data and next->task_ctx_data
609 * pointers are allocated.
610 */
611
612 prev_ctx_data = next->task_ctx_data;
613 next_ctx_data = prev->task_ctx_data;
614
615 if (!prev_ctx_data || !next_ctx_data)
616 return;
617
618 swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
619 task_context_opt(next_ctx_data)->lbr_callstack_users);
620 }
621
intel_pmu_lbr_sched_task(struct perf_event_context * ctx,bool sched_in)622 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
623 {
624 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
625 void *task_ctx;
626
627 if (!cpuc->lbr_users)
628 return;
629
630 /*
631 * If LBR callstack feature is enabled and the stack was saved when
632 * the task was scheduled out, restore the stack. Otherwise flush
633 * the LBR stack.
634 */
635 task_ctx = ctx ? ctx->task_ctx_data : NULL;
636 if (task_ctx) {
637 if (sched_in)
638 __intel_pmu_lbr_restore(task_ctx);
639 else
640 __intel_pmu_lbr_save(task_ctx);
641 return;
642 }
643
644 /*
645 * Since a context switch can flip the address space and LBR entries
646 * are not tagged with an identifier, we need to wipe the LBR, even for
647 * per-cpu events. You simply cannot resolve the branches from the old
648 * address space.
649 */
650 if (sched_in)
651 intel_pmu_lbr_reset();
652 }
653
branch_user_callstack(unsigned br_sel)654 static inline bool branch_user_callstack(unsigned br_sel)
655 {
656 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
657 }
658
intel_pmu_lbr_add(struct perf_event * event)659 void intel_pmu_lbr_add(struct perf_event *event)
660 {
661 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
662
663 if (!x86_pmu.lbr_nr)
664 return;
665
666 if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
667 cpuc->lbr_select = 1;
668
669 cpuc->br_sel = event->hw.branch_reg.reg;
670
671 if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data)
672 task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users++;
673
674 /*
675 * Request pmu::sched_task() callback, which will fire inside the
676 * regular perf event scheduling, so that call will:
677 *
678 * - restore or wipe; when LBR-callstack,
679 * - wipe; otherwise,
680 *
681 * when this is from __perf_event_task_sched_in().
682 *
683 * However, if this is from perf_install_in_context(), no such callback
684 * will follow and we'll need to reset the LBR here if this is the
685 * first LBR event.
686 *
687 * The problem is, we cannot tell these cases apart... but we can
688 * exclude the biggest chunk of cases by looking at
689 * event->total_time_running. An event that has accrued runtime cannot
690 * be 'new'. Conversely, a new event can get installed through the
691 * context switch path for the first time.
692 */
693 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
694 cpuc->lbr_pebs_users++;
695 perf_sched_cb_inc(event->ctx->pmu);
696 if (!cpuc->lbr_users++ && !event->total_time_running)
697 intel_pmu_lbr_reset();
698 }
699
release_lbr_buffers(void)700 void release_lbr_buffers(void)
701 {
702 struct kmem_cache *kmem_cache;
703 struct cpu_hw_events *cpuc;
704 int cpu;
705
706 if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
707 return;
708
709 for_each_possible_cpu(cpu) {
710 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
711 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
712 if (kmem_cache && cpuc->lbr_xsave) {
713 kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
714 cpuc->lbr_xsave = NULL;
715 }
716 }
717 }
718
reserve_lbr_buffers(void)719 void reserve_lbr_buffers(void)
720 {
721 struct kmem_cache *kmem_cache;
722 struct cpu_hw_events *cpuc;
723 int cpu;
724
725 if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
726 return;
727
728 for_each_possible_cpu(cpu) {
729 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
730 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
731 if (!kmem_cache || cpuc->lbr_xsave)
732 continue;
733
734 cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
735 GFP_KERNEL | __GFP_ZERO,
736 cpu_to_node(cpu));
737 }
738 }
739
intel_pmu_lbr_del(struct perf_event * event)740 void intel_pmu_lbr_del(struct perf_event *event)
741 {
742 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
743
744 if (!x86_pmu.lbr_nr)
745 return;
746
747 if (branch_user_callstack(cpuc->br_sel) &&
748 event->ctx->task_ctx_data)
749 task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users--;
750
751 if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
752 cpuc->lbr_select = 0;
753
754 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
755 cpuc->lbr_pebs_users--;
756 cpuc->lbr_users--;
757 WARN_ON_ONCE(cpuc->lbr_users < 0);
758 WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
759 perf_sched_cb_dec(event->ctx->pmu);
760 }
761
vlbr_exclude_host(void)762 static inline bool vlbr_exclude_host(void)
763 {
764 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
765
766 return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
767 (unsigned long *)&cpuc->intel_ctrl_guest_mask);
768 }
769
intel_pmu_lbr_enable_all(bool pmi)770 void intel_pmu_lbr_enable_all(bool pmi)
771 {
772 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
773
774 if (cpuc->lbr_users && !vlbr_exclude_host())
775 __intel_pmu_lbr_enable(pmi);
776 }
777
intel_pmu_lbr_disable_all(void)778 void intel_pmu_lbr_disable_all(void)
779 {
780 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
781
782 if (cpuc->lbr_users && !vlbr_exclude_host())
783 __intel_pmu_lbr_disable();
784 }
785
intel_pmu_lbr_read_32(struct cpu_hw_events * cpuc)786 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
787 {
788 unsigned long mask = x86_pmu.lbr_nr - 1;
789 u64 tos = intel_pmu_lbr_tos();
790 int i;
791
792 for (i = 0; i < x86_pmu.lbr_nr; i++) {
793 unsigned long lbr_idx = (tos - i) & mask;
794 union {
795 struct {
796 u32 from;
797 u32 to;
798 };
799 u64 lbr;
800 } msr_lastbranch;
801
802 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
803
804 cpuc->lbr_entries[i].from = msr_lastbranch.from;
805 cpuc->lbr_entries[i].to = msr_lastbranch.to;
806 cpuc->lbr_entries[i].mispred = 0;
807 cpuc->lbr_entries[i].predicted = 0;
808 cpuc->lbr_entries[i].in_tx = 0;
809 cpuc->lbr_entries[i].abort = 0;
810 cpuc->lbr_entries[i].cycles = 0;
811 cpuc->lbr_entries[i].type = 0;
812 cpuc->lbr_entries[i].reserved = 0;
813 }
814 cpuc->lbr_stack.nr = i;
815 cpuc->lbr_stack.hw_idx = tos;
816 }
817
818 /*
819 * Due to lack of segmentation in Linux the effective address (offset)
820 * is the same as the linear address, allowing us to merge the LIP and EIP
821 * LBR formats.
822 */
intel_pmu_lbr_read_64(struct cpu_hw_events * cpuc)823 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
824 {
825 bool need_info = false, call_stack = false;
826 unsigned long mask = x86_pmu.lbr_nr - 1;
827 int lbr_format = x86_pmu.intel_cap.lbr_format;
828 u64 tos = intel_pmu_lbr_tos();
829 int i;
830 int out = 0;
831 int num = x86_pmu.lbr_nr;
832
833 if (cpuc->lbr_sel) {
834 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
835 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
836 call_stack = true;
837 }
838
839 for (i = 0; i < num; i++) {
840 unsigned long lbr_idx = (tos - i) & mask;
841 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
842 int skip = 0;
843 u16 cycles = 0;
844 int lbr_flags = lbr_desc[lbr_format];
845
846 from = rdlbr_from(lbr_idx, NULL);
847 to = rdlbr_to(lbr_idx, NULL);
848
849 /*
850 * Read LBR call stack entries
851 * until invalid entry (0s) is detected.
852 */
853 if (call_stack && !from)
854 break;
855
856 if (lbr_format == LBR_FORMAT_INFO && need_info) {
857 u64 info;
858
859 info = rdlbr_info(lbr_idx, NULL);
860 mis = !!(info & LBR_INFO_MISPRED);
861 pred = !mis;
862 in_tx = !!(info & LBR_INFO_IN_TX);
863 abort = !!(info & LBR_INFO_ABORT);
864 cycles = (info & LBR_INFO_CYCLES);
865 }
866
867 if (lbr_format == LBR_FORMAT_TIME) {
868 mis = !!(from & LBR_FROM_FLAG_MISPRED);
869 pred = !mis;
870 skip = 1;
871 cycles = ((to >> 48) & LBR_INFO_CYCLES);
872
873 to = (u64)((((s64)to) << 16) >> 16);
874 }
875
876 if (lbr_flags & LBR_EIP_FLAGS) {
877 mis = !!(from & LBR_FROM_FLAG_MISPRED);
878 pred = !mis;
879 skip = 1;
880 }
881 if (lbr_flags & LBR_TSX) {
882 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
883 abort = !!(from & LBR_FROM_FLAG_ABORT);
884 skip = 3;
885 }
886 from = (u64)((((s64)from) << skip) >> skip);
887
888 /*
889 * Some CPUs report duplicated abort records,
890 * with the second entry not having an abort bit set.
891 * Skip them here. This loop runs backwards,
892 * so we need to undo the previous record.
893 * If the abort just happened outside the window
894 * the extra entry cannot be removed.
895 */
896 if (abort && x86_pmu.lbr_double_abort && out > 0)
897 out--;
898
899 cpuc->lbr_entries[out].from = from;
900 cpuc->lbr_entries[out].to = to;
901 cpuc->lbr_entries[out].mispred = mis;
902 cpuc->lbr_entries[out].predicted = pred;
903 cpuc->lbr_entries[out].in_tx = in_tx;
904 cpuc->lbr_entries[out].abort = abort;
905 cpuc->lbr_entries[out].cycles = cycles;
906 cpuc->lbr_entries[out].type = 0;
907 cpuc->lbr_entries[out].reserved = 0;
908 out++;
909 }
910 cpuc->lbr_stack.nr = out;
911 cpuc->lbr_stack.hw_idx = tos;
912 }
913
get_lbr_br_type(u64 info)914 static __always_inline int get_lbr_br_type(u64 info)
915 {
916 if (!static_cpu_has(X86_FEATURE_ARCH_LBR) || !x86_pmu.lbr_br_type)
917 return 0;
918
919 return (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
920 }
921
get_lbr_mispred(u64 info)922 static __always_inline bool get_lbr_mispred(u64 info)
923 {
924 if (static_cpu_has(X86_FEATURE_ARCH_LBR) && !x86_pmu.lbr_mispred)
925 return 0;
926
927 return !!(info & LBR_INFO_MISPRED);
928 }
929
get_lbr_predicted(u64 info)930 static __always_inline bool get_lbr_predicted(u64 info)
931 {
932 if (static_cpu_has(X86_FEATURE_ARCH_LBR) && !x86_pmu.lbr_mispred)
933 return 0;
934
935 return !(info & LBR_INFO_MISPRED);
936 }
937
get_lbr_cycles(u64 info)938 static __always_inline u16 get_lbr_cycles(u64 info)
939 {
940 if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
941 !(x86_pmu.lbr_timed_lbr && info & LBR_INFO_CYC_CNT_VALID))
942 return 0;
943
944 return info & LBR_INFO_CYCLES;
945 }
946
intel_pmu_store_lbr(struct cpu_hw_events * cpuc,struct lbr_entry * entries)947 static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
948 struct lbr_entry *entries)
949 {
950 struct perf_branch_entry *e;
951 struct lbr_entry *lbr;
952 u64 from, to, info;
953 int i;
954
955 for (i = 0; i < x86_pmu.lbr_nr; i++) {
956 lbr = entries ? &entries[i] : NULL;
957 e = &cpuc->lbr_entries[i];
958
959 from = rdlbr_from(i, lbr);
960 /*
961 * Read LBR entries until invalid entry (0s) is detected.
962 */
963 if (!from)
964 break;
965
966 to = rdlbr_to(i, lbr);
967 info = rdlbr_info(i, lbr);
968
969 e->from = from;
970 e->to = to;
971 e->mispred = get_lbr_mispred(info);
972 e->predicted = get_lbr_predicted(info);
973 e->in_tx = !!(info & LBR_INFO_IN_TX);
974 e->abort = !!(info & LBR_INFO_ABORT);
975 e->cycles = get_lbr_cycles(info);
976 e->type = get_lbr_br_type(info);
977 e->reserved = 0;
978 }
979
980 cpuc->lbr_stack.nr = i;
981 }
982
intel_pmu_arch_lbr_read(struct cpu_hw_events * cpuc)983 static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
984 {
985 intel_pmu_store_lbr(cpuc, NULL);
986 }
987
intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events * cpuc)988 static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
989 {
990 struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
991
992 if (!xsave) {
993 intel_pmu_store_lbr(cpuc, NULL);
994 return;
995 }
996 xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
997
998 intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
999 }
1000
intel_pmu_lbr_read(void)1001 void intel_pmu_lbr_read(void)
1002 {
1003 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1004
1005 /*
1006 * Don't read when all LBRs users are using adaptive PEBS.
1007 *
1008 * This could be smarter and actually check the event,
1009 * but this simple approach seems to work for now.
1010 */
1011 if (!cpuc->lbr_users || vlbr_exclude_host() ||
1012 cpuc->lbr_users == cpuc->lbr_pebs_users)
1013 return;
1014
1015 x86_pmu.lbr_read(cpuc);
1016
1017 intel_pmu_lbr_filter(cpuc);
1018 }
1019
1020 /*
1021 * SW filter is used:
1022 * - in case there is no HW filter
1023 * - in case the HW filter has errata or limitations
1024 */
intel_pmu_setup_sw_lbr_filter(struct perf_event * event)1025 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
1026 {
1027 u64 br_type = event->attr.branch_sample_type;
1028 int mask = 0;
1029
1030 if (br_type & PERF_SAMPLE_BRANCH_USER)
1031 mask |= X86_BR_USER;
1032
1033 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
1034 mask |= X86_BR_KERNEL;
1035
1036 /* we ignore BRANCH_HV here */
1037
1038 if (br_type & PERF_SAMPLE_BRANCH_ANY)
1039 mask |= X86_BR_ANY;
1040
1041 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
1042 mask |= X86_BR_ANY_CALL;
1043
1044 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
1045 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
1046
1047 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
1048 mask |= X86_BR_IND_CALL;
1049
1050 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
1051 mask |= X86_BR_ABORT;
1052
1053 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
1054 mask |= X86_BR_IN_TX;
1055
1056 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
1057 mask |= X86_BR_NO_TX;
1058
1059 if (br_type & PERF_SAMPLE_BRANCH_COND)
1060 mask |= X86_BR_JCC;
1061
1062 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
1063 if (!x86_pmu_has_lbr_callstack())
1064 return -EOPNOTSUPP;
1065 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
1066 return -EINVAL;
1067 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
1068 X86_BR_CALL_STACK;
1069 }
1070
1071 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
1072 mask |= X86_BR_IND_JMP;
1073
1074 if (br_type & PERF_SAMPLE_BRANCH_CALL)
1075 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
1076
1077 if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1078 mask |= X86_BR_TYPE_SAVE;
1079
1080 /*
1081 * stash actual user request into reg, it may
1082 * be used by fixup code for some CPU
1083 */
1084 event->hw.branch_reg.reg = mask;
1085 return 0;
1086 }
1087
1088 /*
1089 * setup the HW LBR filter
1090 * Used only when available, may not be enough to disambiguate
1091 * all branches, may need the help of the SW filter
1092 */
intel_pmu_setup_hw_lbr_filter(struct perf_event * event)1093 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1094 {
1095 struct hw_perf_event_extra *reg;
1096 u64 br_type = event->attr.branch_sample_type;
1097 u64 mask = 0, v;
1098 int i;
1099
1100 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1101 if (!(br_type & (1ULL << i)))
1102 continue;
1103
1104 v = x86_pmu.lbr_sel_map[i];
1105 if (v == LBR_NOT_SUPP)
1106 return -EOPNOTSUPP;
1107
1108 if (v != LBR_IGN)
1109 mask |= v;
1110 }
1111
1112 reg = &event->hw.branch_reg;
1113 reg->idx = EXTRA_REG_LBR;
1114
1115 if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1116 reg->config = mask;
1117 return 0;
1118 }
1119
1120 /*
1121 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1122 * in suppress mode. So LBR_SELECT should be set to
1123 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1124 * But the 10th bit LBR_CALL_STACK does not operate
1125 * in suppress mode.
1126 */
1127 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1128
1129 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1130 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1131 (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
1132 reg->config |= LBR_NO_INFO;
1133
1134 return 0;
1135 }
1136
intel_pmu_setup_lbr_filter(struct perf_event * event)1137 int intel_pmu_setup_lbr_filter(struct perf_event *event)
1138 {
1139 int ret = 0;
1140
1141 /*
1142 * no LBR on this PMU
1143 */
1144 if (!x86_pmu.lbr_nr)
1145 return -EOPNOTSUPP;
1146
1147 /*
1148 * setup SW LBR filter
1149 */
1150 ret = intel_pmu_setup_sw_lbr_filter(event);
1151 if (ret)
1152 return ret;
1153
1154 /*
1155 * setup HW LBR filter, if any
1156 */
1157 if (x86_pmu.lbr_sel_map)
1158 ret = intel_pmu_setup_hw_lbr_filter(event);
1159
1160 return ret;
1161 }
1162
1163 /*
1164 * return the type of control flow change at address "from"
1165 * instruction is not necessarily a branch (in case of interrupt).
1166 *
1167 * The branch type returned also includes the priv level of the
1168 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
1169 *
1170 * If a branch type is unknown OR the instruction cannot be
1171 * decoded (e.g., text page not present), then X86_BR_NONE is
1172 * returned.
1173 */
branch_type(unsigned long from,unsigned long to,int abort)1174 static int branch_type(unsigned long from, unsigned long to, int abort)
1175 {
1176 struct insn insn;
1177 void *addr;
1178 int bytes_read, bytes_left;
1179 int ret = X86_BR_NONE;
1180 int ext, to_plm, from_plm;
1181 u8 buf[MAX_INSN_SIZE];
1182 int is64 = 0;
1183
1184 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1185 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
1186
1187 /*
1188 * maybe zero if lbr did not fill up after a reset by the time
1189 * we get a PMU interrupt
1190 */
1191 if (from == 0 || to == 0)
1192 return X86_BR_NONE;
1193
1194 if (abort)
1195 return X86_BR_ABORT | to_plm;
1196
1197 if (from_plm == X86_BR_USER) {
1198 /*
1199 * can happen if measuring at the user level only
1200 * and we interrupt in a kernel thread, e.g., idle.
1201 */
1202 if (!current->mm)
1203 return X86_BR_NONE;
1204
1205 /* may fail if text not present */
1206 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
1207 MAX_INSN_SIZE);
1208 bytes_read = MAX_INSN_SIZE - bytes_left;
1209 if (!bytes_read)
1210 return X86_BR_NONE;
1211
1212 addr = buf;
1213 } else {
1214 /*
1215 * The LBR logs any address in the IP, even if the IP just
1216 * faulted. This means userspace can control the from address.
1217 * Ensure we don't blindly read any address by validating it is
1218 * a known text address.
1219 */
1220 if (kernel_text_address(from)) {
1221 addr = (void *)from;
1222 /*
1223 * Assume we can get the maximum possible size
1224 * when grabbing kernel data. This is not
1225 * _strictly_ true since we could possibly be
1226 * executing up next to a memory hole, but
1227 * it is very unlikely to be a problem.
1228 */
1229 bytes_read = MAX_INSN_SIZE;
1230 } else {
1231 return X86_BR_NONE;
1232 }
1233 }
1234
1235 /*
1236 * decoder needs to know the ABI especially
1237 * on 64-bit systems running 32-bit apps
1238 */
1239 #ifdef CONFIG_X86_64
1240 is64 = kernel_ip((unsigned long)addr) || any_64bit_mode(current_pt_regs());
1241 #endif
1242 insn_init(&insn, addr, bytes_read, is64);
1243 if (insn_get_opcode(&insn))
1244 return X86_BR_ABORT;
1245
1246 switch (insn.opcode.bytes[0]) {
1247 case 0xf:
1248 switch (insn.opcode.bytes[1]) {
1249 case 0x05: /* syscall */
1250 case 0x34: /* sysenter */
1251 ret = X86_BR_SYSCALL;
1252 break;
1253 case 0x07: /* sysret */
1254 case 0x35: /* sysexit */
1255 ret = X86_BR_SYSRET;
1256 break;
1257 case 0x80 ... 0x8f: /* conditional */
1258 ret = X86_BR_JCC;
1259 break;
1260 default:
1261 ret = X86_BR_NONE;
1262 }
1263 break;
1264 case 0x70 ... 0x7f: /* conditional */
1265 ret = X86_BR_JCC;
1266 break;
1267 case 0xc2: /* near ret */
1268 case 0xc3: /* near ret */
1269 case 0xca: /* far ret */
1270 case 0xcb: /* far ret */
1271 ret = X86_BR_RET;
1272 break;
1273 case 0xcf: /* iret */
1274 ret = X86_BR_IRET;
1275 break;
1276 case 0xcc ... 0xce: /* int */
1277 ret = X86_BR_INT;
1278 break;
1279 case 0xe8: /* call near rel */
1280 if (insn_get_immediate(&insn) || insn.immediate1.value == 0) {
1281 /* zero length call */
1282 ret = X86_BR_ZERO_CALL;
1283 break;
1284 }
1285 fallthrough;
1286 case 0x9a: /* call far absolute */
1287 ret = X86_BR_CALL;
1288 break;
1289 case 0xe0 ... 0xe3: /* loop jmp */
1290 ret = X86_BR_JCC;
1291 break;
1292 case 0xe9 ... 0xeb: /* jmp */
1293 ret = X86_BR_JMP;
1294 break;
1295 case 0xff: /* call near absolute, call far absolute ind */
1296 if (insn_get_modrm(&insn))
1297 return X86_BR_ABORT;
1298
1299 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
1300 switch (ext) {
1301 case 2: /* near ind call */
1302 case 3: /* far ind call */
1303 ret = X86_BR_IND_CALL;
1304 break;
1305 case 4:
1306 case 5:
1307 ret = X86_BR_IND_JMP;
1308 break;
1309 }
1310 break;
1311 default:
1312 ret = X86_BR_NONE;
1313 }
1314 /*
1315 * interrupts, traps, faults (and thus ring transition) may
1316 * occur on any instructions. Thus, to classify them correctly,
1317 * we need to first look at the from and to priv levels. If they
1318 * are different and to is in the kernel, then it indicates
1319 * a ring transition. If the from instruction is not a ring
1320 * transition instr (syscall, systenter, int), then it means
1321 * it was a irq, trap or fault.
1322 *
1323 * we have no way of detecting kernel to kernel faults.
1324 */
1325 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
1326 && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
1327 ret = X86_BR_IRQ;
1328
1329 /*
1330 * branch priv level determined by target as
1331 * is done by HW when LBR_SELECT is implemented
1332 */
1333 if (ret != X86_BR_NONE)
1334 ret |= to_plm;
1335
1336 return ret;
1337 }
1338
1339 #define X86_BR_TYPE_MAP_MAX 16
1340
1341 static int branch_map[X86_BR_TYPE_MAP_MAX] = {
1342 PERF_BR_CALL, /* X86_BR_CALL */
1343 PERF_BR_RET, /* X86_BR_RET */
1344 PERF_BR_SYSCALL, /* X86_BR_SYSCALL */
1345 PERF_BR_SYSRET, /* X86_BR_SYSRET */
1346 PERF_BR_UNKNOWN, /* X86_BR_INT */
1347 PERF_BR_UNKNOWN, /* X86_BR_IRET */
1348 PERF_BR_COND, /* X86_BR_JCC */
1349 PERF_BR_UNCOND, /* X86_BR_JMP */
1350 PERF_BR_UNKNOWN, /* X86_BR_IRQ */
1351 PERF_BR_IND_CALL, /* X86_BR_IND_CALL */
1352 PERF_BR_UNKNOWN, /* X86_BR_ABORT */
1353 PERF_BR_UNKNOWN, /* X86_BR_IN_TX */
1354 PERF_BR_UNKNOWN, /* X86_BR_NO_TX */
1355 PERF_BR_CALL, /* X86_BR_ZERO_CALL */
1356 PERF_BR_UNKNOWN, /* X86_BR_CALL_STACK */
1357 PERF_BR_IND, /* X86_BR_IND_JMP */
1358 };
1359
1360 static int
common_branch_type(int type)1361 common_branch_type(int type)
1362 {
1363 int i;
1364
1365 type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
1366
1367 if (type) {
1368 i = __ffs(type);
1369 if (i < X86_BR_TYPE_MAP_MAX)
1370 return branch_map[i];
1371 }
1372
1373 return PERF_BR_UNKNOWN;
1374 }
1375
1376 enum {
1377 ARCH_LBR_BR_TYPE_JCC = 0,
1378 ARCH_LBR_BR_TYPE_NEAR_IND_JMP = 1,
1379 ARCH_LBR_BR_TYPE_NEAR_REL_JMP = 2,
1380 ARCH_LBR_BR_TYPE_NEAR_IND_CALL = 3,
1381 ARCH_LBR_BR_TYPE_NEAR_REL_CALL = 4,
1382 ARCH_LBR_BR_TYPE_NEAR_RET = 5,
1383 ARCH_LBR_BR_TYPE_KNOWN_MAX = ARCH_LBR_BR_TYPE_NEAR_RET,
1384
1385 ARCH_LBR_BR_TYPE_MAP_MAX = 16,
1386 };
1387
1388 static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1389 [ARCH_LBR_BR_TYPE_JCC] = X86_BR_JCC,
1390 [ARCH_LBR_BR_TYPE_NEAR_IND_JMP] = X86_BR_IND_JMP,
1391 [ARCH_LBR_BR_TYPE_NEAR_REL_JMP] = X86_BR_JMP,
1392 [ARCH_LBR_BR_TYPE_NEAR_IND_CALL] = X86_BR_IND_CALL,
1393 [ARCH_LBR_BR_TYPE_NEAR_REL_CALL] = X86_BR_CALL,
1394 [ARCH_LBR_BR_TYPE_NEAR_RET] = X86_BR_RET,
1395 };
1396
1397 /*
1398 * implement actual branch filter based on user demand.
1399 * Hardware may not exactly satisfy that request, thus
1400 * we need to inspect opcodes. Mismatched branches are
1401 * discarded. Therefore, the number of branches returned
1402 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1403 */
1404 static void
intel_pmu_lbr_filter(struct cpu_hw_events * cpuc)1405 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1406 {
1407 u64 from, to;
1408 int br_sel = cpuc->br_sel;
1409 int i, j, type, to_plm;
1410 bool compress = false;
1411
1412 /* if sampling all branches, then nothing to filter */
1413 if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1414 ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1415 return;
1416
1417 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1418
1419 from = cpuc->lbr_entries[i].from;
1420 to = cpuc->lbr_entries[i].to;
1421 type = cpuc->lbr_entries[i].type;
1422
1423 /*
1424 * Parse the branch type recorded in LBR_x_INFO MSR.
1425 * Doesn't support OTHER_BRANCH decoding for now.
1426 * OTHER_BRANCH branch type still rely on software decoding.
1427 */
1428 if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1429 type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1430 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1431 type = arch_lbr_br_type_map[type] | to_plm;
1432 } else
1433 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1434 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1435 if (cpuc->lbr_entries[i].in_tx)
1436 type |= X86_BR_IN_TX;
1437 else
1438 type |= X86_BR_NO_TX;
1439 }
1440
1441 /* if type does not correspond, then discard */
1442 if (type == X86_BR_NONE || (br_sel & type) != type) {
1443 cpuc->lbr_entries[i].from = 0;
1444 compress = true;
1445 }
1446
1447 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1448 cpuc->lbr_entries[i].type = common_branch_type(type);
1449 }
1450
1451 if (!compress)
1452 return;
1453
1454 /* remove all entries with from=0 */
1455 for (i = 0; i < cpuc->lbr_stack.nr; ) {
1456 if (!cpuc->lbr_entries[i].from) {
1457 j = i;
1458 while (++j < cpuc->lbr_stack.nr)
1459 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1460 cpuc->lbr_stack.nr--;
1461 if (!cpuc->lbr_entries[i].from)
1462 continue;
1463 }
1464 i++;
1465 }
1466 }
1467
intel_pmu_store_pebs_lbrs(struct lbr_entry * lbr)1468 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1469 {
1470 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1471
1472 /* Cannot get TOS for large PEBS and Arch LBR */
1473 if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1474 (cpuc->n_pebs == cpuc->n_large_pebs))
1475 cpuc->lbr_stack.hw_idx = -1ULL;
1476 else
1477 cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1478
1479 intel_pmu_store_lbr(cpuc, lbr);
1480 intel_pmu_lbr_filter(cpuc);
1481 }
1482
1483 /*
1484 * Map interface branch filters onto LBR filters
1485 */
1486 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1487 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1488 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1489 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1490 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1491 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
1492 | LBR_IND_JMP | LBR_FAR,
1493 /*
1494 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1495 */
1496 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1497 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1498 /*
1499 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1500 */
1501 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1502 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1503 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1504 };
1505
1506 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1507 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1508 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1509 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1510 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1511 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1512 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1513 | LBR_FAR,
1514 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1515 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1516 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1517 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1518 };
1519
1520 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1521 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1522 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1523 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1524 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1525 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1526 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1527 | LBR_FAR,
1528 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1529 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1530 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1531 | LBR_RETURN | LBR_CALL_STACK,
1532 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1533 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1534 };
1535
1536 static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1537 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = ARCH_LBR_ANY,
1538 [PERF_SAMPLE_BRANCH_USER_SHIFT] = ARCH_LBR_USER,
1539 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = ARCH_LBR_KERNEL,
1540 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1541 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = ARCH_LBR_RETURN |
1542 ARCH_LBR_OTHER_BRANCH,
1543 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = ARCH_LBR_REL_CALL |
1544 ARCH_LBR_IND_CALL |
1545 ARCH_LBR_OTHER_BRANCH,
1546 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = ARCH_LBR_IND_CALL,
1547 [PERF_SAMPLE_BRANCH_COND_SHIFT] = ARCH_LBR_JCC,
1548 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = ARCH_LBR_REL_CALL |
1549 ARCH_LBR_IND_CALL |
1550 ARCH_LBR_RETURN |
1551 ARCH_LBR_CALL_STACK,
1552 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = ARCH_LBR_IND_JMP,
1553 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = ARCH_LBR_REL_CALL,
1554 };
1555
1556 /* core */
intel_pmu_lbr_init_core(void)1557 void __init intel_pmu_lbr_init_core(void)
1558 {
1559 x86_pmu.lbr_nr = 4;
1560 x86_pmu.lbr_tos = MSR_LBR_TOS;
1561 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1562 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1563
1564 /*
1565 * SW branch filter usage:
1566 * - compensate for lack of HW filter
1567 */
1568 }
1569
1570 /* nehalem/westmere */
intel_pmu_lbr_init_nhm(void)1571 void __init intel_pmu_lbr_init_nhm(void)
1572 {
1573 x86_pmu.lbr_nr = 16;
1574 x86_pmu.lbr_tos = MSR_LBR_TOS;
1575 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1576 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1577
1578 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1579 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1580
1581 /*
1582 * SW branch filter usage:
1583 * - workaround LBR_SEL errata (see above)
1584 * - support syscall, sysret capture.
1585 * That requires LBR_FAR but that means far
1586 * jmp need to be filtered out
1587 */
1588 }
1589
1590 /* sandy bridge */
intel_pmu_lbr_init_snb(void)1591 void __init intel_pmu_lbr_init_snb(void)
1592 {
1593 x86_pmu.lbr_nr = 16;
1594 x86_pmu.lbr_tos = MSR_LBR_TOS;
1595 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1596 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1597
1598 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1599 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1600
1601 /*
1602 * SW branch filter usage:
1603 * - support syscall, sysret capture.
1604 * That requires LBR_FAR but that means far
1605 * jmp need to be filtered out
1606 */
1607 }
1608
1609 static inline struct kmem_cache *
create_lbr_kmem_cache(size_t size,size_t align)1610 create_lbr_kmem_cache(size_t size, size_t align)
1611 {
1612 return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1613 }
1614
1615 /* haswell */
intel_pmu_lbr_init_hsw(void)1616 void intel_pmu_lbr_init_hsw(void)
1617 {
1618 size_t size = sizeof(struct x86_perf_task_context);
1619
1620 x86_pmu.lbr_nr = 16;
1621 x86_pmu.lbr_tos = MSR_LBR_TOS;
1622 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1623 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1624
1625 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1626 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1627
1628 x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1629
1630 if (lbr_from_signext_quirk_needed())
1631 static_branch_enable(&lbr_from_quirk_key);
1632 }
1633
1634 /* skylake */
intel_pmu_lbr_init_skl(void)1635 __init void intel_pmu_lbr_init_skl(void)
1636 {
1637 size_t size = sizeof(struct x86_perf_task_context);
1638
1639 x86_pmu.lbr_nr = 32;
1640 x86_pmu.lbr_tos = MSR_LBR_TOS;
1641 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1642 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1643 x86_pmu.lbr_info = MSR_LBR_INFO_0;
1644
1645 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1646 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1647
1648 x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1649
1650 /*
1651 * SW branch filter usage:
1652 * - support syscall, sysret capture.
1653 * That requires LBR_FAR but that means far
1654 * jmp need to be filtered out
1655 */
1656 }
1657
1658 /* atom */
intel_pmu_lbr_init_atom(void)1659 void __init intel_pmu_lbr_init_atom(void)
1660 {
1661 /*
1662 * only models starting at stepping 10 seems
1663 * to have an operational LBR which can freeze
1664 * on PMU interrupt
1665 */
1666 if (boot_cpu_data.x86_model == 28
1667 && boot_cpu_data.x86_stepping < 10) {
1668 pr_cont("LBR disabled due to erratum");
1669 return;
1670 }
1671
1672 x86_pmu.lbr_nr = 8;
1673 x86_pmu.lbr_tos = MSR_LBR_TOS;
1674 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1675 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1676
1677 /*
1678 * SW branch filter usage:
1679 * - compensate for lack of HW filter
1680 */
1681 }
1682
1683 /* slm */
intel_pmu_lbr_init_slm(void)1684 void __init intel_pmu_lbr_init_slm(void)
1685 {
1686 x86_pmu.lbr_nr = 8;
1687 x86_pmu.lbr_tos = MSR_LBR_TOS;
1688 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1689 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1690
1691 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1692 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1693
1694 /*
1695 * SW branch filter usage:
1696 * - compensate for lack of HW filter
1697 */
1698 pr_cont("8-deep LBR, ");
1699 }
1700
1701 /* Knights Landing */
intel_pmu_lbr_init_knl(void)1702 void intel_pmu_lbr_init_knl(void)
1703 {
1704 x86_pmu.lbr_nr = 8;
1705 x86_pmu.lbr_tos = MSR_LBR_TOS;
1706 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1707 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1708
1709 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1710 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1711
1712 /* Knights Landing does have MISPREDICT bit */
1713 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1714 x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1715 }
1716
1717 /*
1718 * LBR state size is variable based on the max number of registers.
1719 * This calculates the expected state size, which should match
1720 * what the hardware enumerates for the size of XFEATURE_LBR.
1721 */
get_lbr_state_size(void)1722 static inline unsigned int get_lbr_state_size(void)
1723 {
1724 return sizeof(struct arch_lbr_state) +
1725 x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1726 }
1727
is_arch_lbr_xsave_available(void)1728 static bool is_arch_lbr_xsave_available(void)
1729 {
1730 if (!boot_cpu_has(X86_FEATURE_XSAVES))
1731 return false;
1732
1733 /*
1734 * Check the LBR state with the corresponding software structure.
1735 * Disable LBR XSAVES support if the size doesn't match.
1736 */
1737 if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1738 return false;
1739
1740 return true;
1741 }
1742
intel_pmu_arch_lbr_init(void)1743 void __init intel_pmu_arch_lbr_init(void)
1744 {
1745 struct pmu *pmu = x86_get_pmu(smp_processor_id());
1746 union cpuid28_eax eax;
1747 union cpuid28_ebx ebx;
1748 union cpuid28_ecx ecx;
1749 unsigned int unused_edx;
1750 bool arch_lbr_xsave;
1751 size_t size;
1752 u64 lbr_nr;
1753
1754 /* Arch LBR Capabilities */
1755 cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1756
1757 lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1758 if (!lbr_nr)
1759 goto clear_arch_lbr;
1760
1761 /* Apply the max depth of Arch LBR */
1762 if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1763 goto clear_arch_lbr;
1764
1765 x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1766 x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1767 x86_pmu.lbr_lip = eax.split.lbr_lip;
1768 x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1769 x86_pmu.lbr_filter = ebx.split.lbr_filter;
1770 x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1771 x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1772 x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1773 x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1774 x86_pmu.lbr_nr = lbr_nr;
1775
1776
1777 arch_lbr_xsave = is_arch_lbr_xsave_available();
1778 if (arch_lbr_xsave) {
1779 size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1780 get_lbr_state_size();
1781 pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1782 XSAVE_ALIGNMENT);
1783 }
1784
1785 if (!pmu->task_ctx_cache) {
1786 arch_lbr_xsave = false;
1787
1788 size = sizeof(struct x86_perf_task_context_arch_lbr) +
1789 lbr_nr * sizeof(struct lbr_entry);
1790 pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1791 }
1792
1793 x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1794 x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1795 x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1796
1797 /* LBR callstack requires both CPL and Branch Filtering support */
1798 if (!x86_pmu.lbr_cpl ||
1799 !x86_pmu.lbr_filter ||
1800 !x86_pmu.lbr_call_stack)
1801 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1802
1803 if (!x86_pmu.lbr_cpl) {
1804 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1805 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1806 } else if (!x86_pmu.lbr_filter) {
1807 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1808 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1809 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1810 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1811 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1812 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1813 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1814 }
1815
1816 x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1817 x86_pmu.lbr_ctl_map = arch_lbr_ctl_map;
1818
1819 if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1820 x86_pmu.lbr_ctl_map = NULL;
1821
1822 x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1823 if (arch_lbr_xsave) {
1824 x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1825 x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1826 x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1827 pr_cont("XSAVE ");
1828 } else {
1829 x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1830 x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1831 x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1832 }
1833
1834 pr_cont("Architectural LBR, ");
1835
1836 return;
1837
1838 clear_arch_lbr:
1839 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_ARCH_LBR);
1840 }
1841
1842 /**
1843 * x86_perf_get_lbr - get the LBR records information
1844 *
1845 * @lbr: the caller's memory to store the LBR records information
1846 *
1847 * Returns: 0 indicates the LBR info has been successfully obtained
1848 */
x86_perf_get_lbr(struct x86_pmu_lbr * lbr)1849 int x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1850 {
1851 int lbr_fmt = x86_pmu.intel_cap.lbr_format;
1852
1853 lbr->nr = x86_pmu.lbr_nr;
1854 lbr->from = x86_pmu.lbr_from;
1855 lbr->to = x86_pmu.lbr_to;
1856 lbr->info = (lbr_fmt == LBR_FORMAT_INFO) ? x86_pmu.lbr_info : 0;
1857
1858 return 0;
1859 }
1860 EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1861
1862 struct event_constraint vlbr_constraint =
1863 __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1864 FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);
1865