1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10 #include <asm/io.h>
11
12 #include "../perf_event.h"
13
14 /* Waste a full page so it can be mapped into the cpu_entry_area */
15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16
17 /* The size of a BTS record in bytes: */
18 #define BTS_RECORD_SIZE 24
19
20 #define PEBS_FIXUP_SIZE PAGE_SIZE
21
22 /*
23 * pebs_record_32 for p4 and core not supported
24
25 struct pebs_record_32 {
26 u32 flags, ip;
27 u32 ax, bc, cx, dx;
28 u32 si, di, bp, sp;
29 };
30
31 */
32
33 union intel_x86_pebs_dse {
34 u64 val;
35 struct {
36 unsigned int ld_dse:4;
37 unsigned int ld_stlb_miss:1;
38 unsigned int ld_locked:1;
39 unsigned int ld_data_blk:1;
40 unsigned int ld_addr_blk:1;
41 unsigned int ld_reserved:24;
42 };
43 struct {
44 unsigned int st_l1d_hit:1;
45 unsigned int st_reserved1:3;
46 unsigned int st_stlb_miss:1;
47 unsigned int st_locked:1;
48 unsigned int st_reserved2:26;
49 };
50 struct {
51 unsigned int st_lat_dse:4;
52 unsigned int st_lat_stlb_miss:1;
53 unsigned int st_lat_locked:1;
54 unsigned int ld_reserved3:26;
55 };
56 };
57
58
59 /*
60 * Map PEBS Load Latency Data Source encodings to generic
61 * memory data source information
62 */
63 #define P(a, b) PERF_MEM_S(a, b)
64 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
65 #define LEVEL(x) P(LVLNUM, x)
66 #define REM P(REMOTE, REMOTE)
67 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
68
69 /* Version for Sandy Bridge and later */
70 static u64 pebs_data_source[] = {
71 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
72 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
73 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
74 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
75 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
76 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
77 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
78 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
79 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
80 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
81 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
82 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
83 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
84 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
85 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
86 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
87 };
88
89 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)90 void __init intel_pmu_pebs_data_source_nhm(void)
91 {
92 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
93 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
94 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
95 }
96
intel_pmu_pebs_data_source_skl(bool pmem)97 void __init intel_pmu_pebs_data_source_skl(bool pmem)
98 {
99 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
100
101 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
102 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
103 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
104 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
105 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
106 }
107
precise_store_data(u64 status)108 static u64 precise_store_data(u64 status)
109 {
110 union intel_x86_pebs_dse dse;
111 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
112
113 dse.val = status;
114
115 /*
116 * bit 4: TLB access
117 * 1 = stored missed 2nd level TLB
118 *
119 * so it either hit the walker or the OS
120 * otherwise hit 2nd level TLB
121 */
122 if (dse.st_stlb_miss)
123 val |= P(TLB, MISS);
124 else
125 val |= P(TLB, HIT);
126
127 /*
128 * bit 0: hit L1 data cache
129 * if not set, then all we know is that
130 * it missed L1D
131 */
132 if (dse.st_l1d_hit)
133 val |= P(LVL, HIT);
134 else
135 val |= P(LVL, MISS);
136
137 /*
138 * bit 5: Locked prefix
139 */
140 if (dse.st_locked)
141 val |= P(LOCK, LOCKED);
142
143 return val;
144 }
145
precise_datala_hsw(struct perf_event * event,u64 status)146 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
147 {
148 union perf_mem_data_src dse;
149
150 dse.val = PERF_MEM_NA;
151
152 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
153 dse.mem_op = PERF_MEM_OP_STORE;
154 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
155 dse.mem_op = PERF_MEM_OP_LOAD;
156
157 /*
158 * L1 info only valid for following events:
159 *
160 * MEM_UOPS_RETIRED.STLB_MISS_STORES
161 * MEM_UOPS_RETIRED.LOCK_STORES
162 * MEM_UOPS_RETIRED.SPLIT_STORES
163 * MEM_UOPS_RETIRED.ALL_STORES
164 */
165 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
166 if (status & 1)
167 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
168 else
169 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
170 }
171 return dse.val;
172 }
173
load_latency_data(u64 status)174 static u64 load_latency_data(u64 status)
175 {
176 union intel_x86_pebs_dse dse;
177 u64 val;
178
179 dse.val = status;
180
181 /*
182 * use the mapping table for bit 0-3
183 */
184 val = pebs_data_source[dse.ld_dse];
185
186 /*
187 * Nehalem models do not support TLB, Lock infos
188 */
189 if (x86_pmu.pebs_no_tlb) {
190 val |= P(TLB, NA) | P(LOCK, NA);
191 return val;
192 }
193 /*
194 * bit 4: TLB access
195 * 0 = did not miss 2nd level TLB
196 * 1 = missed 2nd level TLB
197 */
198 if (dse.ld_stlb_miss)
199 val |= P(TLB, MISS) | P(TLB, L2);
200 else
201 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
202
203 /*
204 * bit 5: locked prefix
205 */
206 if (dse.ld_locked)
207 val |= P(LOCK, LOCKED);
208
209 /*
210 * Ice Lake and earlier models do not support block infos.
211 */
212 if (!x86_pmu.pebs_block) {
213 val |= P(BLK, NA);
214 return val;
215 }
216 /*
217 * bit 6: load was blocked since its data could not be forwarded
218 * from a preceding store
219 */
220 if (dse.ld_data_blk)
221 val |= P(BLK, DATA);
222
223 /*
224 * bit 7: load was blocked due to potential address conflict with
225 * a preceding store
226 */
227 if (dse.ld_addr_blk)
228 val |= P(BLK, ADDR);
229
230 if (!dse.ld_data_blk && !dse.ld_addr_blk)
231 val |= P(BLK, NA);
232
233 return val;
234 }
235
store_latency_data(u64 status)236 static u64 store_latency_data(u64 status)
237 {
238 union intel_x86_pebs_dse dse;
239 u64 val;
240
241 dse.val = status;
242
243 /*
244 * use the mapping table for bit 0-3
245 */
246 val = pebs_data_source[dse.st_lat_dse];
247
248 /*
249 * bit 4: TLB access
250 * 0 = did not miss 2nd level TLB
251 * 1 = missed 2nd level TLB
252 */
253 if (dse.st_lat_stlb_miss)
254 val |= P(TLB, MISS) | P(TLB, L2);
255 else
256 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
257
258 /*
259 * bit 5: locked prefix
260 */
261 if (dse.st_lat_locked)
262 val |= P(LOCK, LOCKED);
263
264 val |= P(BLK, NA);
265
266 return val;
267 }
268
269 struct pebs_record_core {
270 u64 flags, ip;
271 u64 ax, bx, cx, dx;
272 u64 si, di, bp, sp;
273 u64 r8, r9, r10, r11;
274 u64 r12, r13, r14, r15;
275 };
276
277 struct pebs_record_nhm {
278 u64 flags, ip;
279 u64 ax, bx, cx, dx;
280 u64 si, di, bp, sp;
281 u64 r8, r9, r10, r11;
282 u64 r12, r13, r14, r15;
283 u64 status, dla, dse, lat;
284 };
285
286 /*
287 * Same as pebs_record_nhm, with two additional fields.
288 */
289 struct pebs_record_hsw {
290 u64 flags, ip;
291 u64 ax, bx, cx, dx;
292 u64 si, di, bp, sp;
293 u64 r8, r9, r10, r11;
294 u64 r12, r13, r14, r15;
295 u64 status, dla, dse, lat;
296 u64 real_ip, tsx_tuning;
297 };
298
299 union hsw_tsx_tuning {
300 struct {
301 u32 cycles_last_block : 32,
302 hle_abort : 1,
303 rtm_abort : 1,
304 instruction_abort : 1,
305 non_instruction_abort : 1,
306 retry : 1,
307 data_conflict : 1,
308 capacity_writes : 1,
309 capacity_reads : 1;
310 };
311 u64 value;
312 };
313
314 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
315
316 /* Same as HSW, plus TSC */
317
318 struct pebs_record_skl {
319 u64 flags, ip;
320 u64 ax, bx, cx, dx;
321 u64 si, di, bp, sp;
322 u64 r8, r9, r10, r11;
323 u64 r12, r13, r14, r15;
324 u64 status, dla, dse, lat;
325 u64 real_ip, tsx_tuning;
326 u64 tsc;
327 };
328
init_debug_store_on_cpu(int cpu)329 void init_debug_store_on_cpu(int cpu)
330 {
331 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
332
333 if (!ds)
334 return;
335
336 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
337 (u32)((u64)(unsigned long)ds),
338 (u32)((u64)(unsigned long)ds >> 32));
339 }
340
fini_debug_store_on_cpu(int cpu)341 void fini_debug_store_on_cpu(int cpu)
342 {
343 if (!per_cpu(cpu_hw_events, cpu).ds)
344 return;
345
346 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
347 }
348
349 static DEFINE_PER_CPU(void *, insn_buffer);
350
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)351 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
352 {
353 unsigned long start = (unsigned long)cea;
354 phys_addr_t pa;
355 size_t msz = 0;
356
357 pa = virt_to_phys(addr);
358
359 preempt_disable();
360 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
361 cea_set_pte(cea, pa, prot);
362
363 /*
364 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
365 * all TLB entries for it.
366 */
367 flush_tlb_kernel_range(start, start + size);
368 preempt_enable();
369 }
370
ds_clear_cea(void * cea,size_t size)371 static void ds_clear_cea(void *cea, size_t size)
372 {
373 unsigned long start = (unsigned long)cea;
374 size_t msz = 0;
375
376 preempt_disable();
377 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
378 cea_set_pte(cea, 0, PAGE_NONE);
379
380 flush_tlb_kernel_range(start, start + size);
381 preempt_enable();
382 }
383
dsalloc_pages(size_t size,gfp_t flags,int cpu)384 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
385 {
386 unsigned int order = get_order(size);
387 int node = cpu_to_node(cpu);
388 struct page *page;
389
390 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
391 return page ? page_address(page) : NULL;
392 }
393
dsfree_pages(const void * buffer,size_t size)394 static void dsfree_pages(const void *buffer, size_t size)
395 {
396 if (buffer)
397 free_pages((unsigned long)buffer, get_order(size));
398 }
399
alloc_pebs_buffer(int cpu)400 static int alloc_pebs_buffer(int cpu)
401 {
402 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
403 struct debug_store *ds = hwev->ds;
404 size_t bsiz = x86_pmu.pebs_buffer_size;
405 int max, node = cpu_to_node(cpu);
406 void *buffer, *insn_buff, *cea;
407
408 if (!x86_pmu.pebs)
409 return 0;
410
411 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
412 if (unlikely(!buffer))
413 return -ENOMEM;
414
415 /*
416 * HSW+ already provides us the eventing ip; no need to allocate this
417 * buffer then.
418 */
419 if (x86_pmu.intel_cap.pebs_format < 2) {
420 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
421 if (!insn_buff) {
422 dsfree_pages(buffer, bsiz);
423 return -ENOMEM;
424 }
425 per_cpu(insn_buffer, cpu) = insn_buff;
426 }
427 hwev->ds_pebs_vaddr = buffer;
428 /* Update the cpu entry area mapping */
429 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
430 ds->pebs_buffer_base = (unsigned long) cea;
431 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
432 ds->pebs_index = ds->pebs_buffer_base;
433 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
434 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
435 return 0;
436 }
437
release_pebs_buffer(int cpu)438 static void release_pebs_buffer(int cpu)
439 {
440 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
441 void *cea;
442
443 if (!x86_pmu.pebs)
444 return;
445
446 kfree(per_cpu(insn_buffer, cpu));
447 per_cpu(insn_buffer, cpu) = NULL;
448
449 /* Clear the fixmap */
450 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
451 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
452 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
453 hwev->ds_pebs_vaddr = NULL;
454 }
455
alloc_bts_buffer(int cpu)456 static int alloc_bts_buffer(int cpu)
457 {
458 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
459 struct debug_store *ds = hwev->ds;
460 void *buffer, *cea;
461 int max;
462
463 if (!x86_pmu.bts)
464 return 0;
465
466 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
467 if (unlikely(!buffer)) {
468 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
469 return -ENOMEM;
470 }
471 hwev->ds_bts_vaddr = buffer;
472 /* Update the fixmap */
473 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
474 ds->bts_buffer_base = (unsigned long) cea;
475 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
476 ds->bts_index = ds->bts_buffer_base;
477 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
478 ds->bts_absolute_maximum = ds->bts_buffer_base +
479 max * BTS_RECORD_SIZE;
480 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
481 (max / 16) * BTS_RECORD_SIZE;
482 return 0;
483 }
484
release_bts_buffer(int cpu)485 static void release_bts_buffer(int cpu)
486 {
487 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
488 void *cea;
489
490 if (!x86_pmu.bts)
491 return;
492
493 /* Clear the fixmap */
494 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
495 ds_clear_cea(cea, BTS_BUFFER_SIZE);
496 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
497 hwev->ds_bts_vaddr = NULL;
498 }
499
alloc_ds_buffer(int cpu)500 static int alloc_ds_buffer(int cpu)
501 {
502 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
503
504 memset(ds, 0, sizeof(*ds));
505 per_cpu(cpu_hw_events, cpu).ds = ds;
506 return 0;
507 }
508
release_ds_buffer(int cpu)509 static void release_ds_buffer(int cpu)
510 {
511 per_cpu(cpu_hw_events, cpu).ds = NULL;
512 }
513
release_ds_buffers(void)514 void release_ds_buffers(void)
515 {
516 int cpu;
517
518 if (!x86_pmu.bts && !x86_pmu.pebs)
519 return;
520
521 for_each_possible_cpu(cpu)
522 release_ds_buffer(cpu);
523
524 for_each_possible_cpu(cpu) {
525 /*
526 * Again, ignore errors from offline CPUs, they will no longer
527 * observe cpu_hw_events.ds and not program the DS_AREA when
528 * they come up.
529 */
530 fini_debug_store_on_cpu(cpu);
531 }
532
533 for_each_possible_cpu(cpu) {
534 release_pebs_buffer(cpu);
535 release_bts_buffer(cpu);
536 }
537 }
538
reserve_ds_buffers(void)539 void reserve_ds_buffers(void)
540 {
541 int bts_err = 0, pebs_err = 0;
542 int cpu;
543
544 x86_pmu.bts_active = 0;
545 x86_pmu.pebs_active = 0;
546
547 if (!x86_pmu.bts && !x86_pmu.pebs)
548 return;
549
550 if (!x86_pmu.bts)
551 bts_err = 1;
552
553 if (!x86_pmu.pebs)
554 pebs_err = 1;
555
556 for_each_possible_cpu(cpu) {
557 if (alloc_ds_buffer(cpu)) {
558 bts_err = 1;
559 pebs_err = 1;
560 }
561
562 if (!bts_err && alloc_bts_buffer(cpu))
563 bts_err = 1;
564
565 if (!pebs_err && alloc_pebs_buffer(cpu))
566 pebs_err = 1;
567
568 if (bts_err && pebs_err)
569 break;
570 }
571
572 if (bts_err) {
573 for_each_possible_cpu(cpu)
574 release_bts_buffer(cpu);
575 }
576
577 if (pebs_err) {
578 for_each_possible_cpu(cpu)
579 release_pebs_buffer(cpu);
580 }
581
582 if (bts_err && pebs_err) {
583 for_each_possible_cpu(cpu)
584 release_ds_buffer(cpu);
585 } else {
586 if (x86_pmu.bts && !bts_err)
587 x86_pmu.bts_active = 1;
588
589 if (x86_pmu.pebs && !pebs_err)
590 x86_pmu.pebs_active = 1;
591
592 for_each_possible_cpu(cpu) {
593 /*
594 * Ignores wrmsr_on_cpu() errors for offline CPUs they
595 * will get this call through intel_pmu_cpu_starting().
596 */
597 init_debug_store_on_cpu(cpu);
598 }
599 }
600 }
601
602 /*
603 * BTS
604 */
605
606 struct event_constraint bts_constraint =
607 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
608
intel_pmu_enable_bts(u64 config)609 void intel_pmu_enable_bts(u64 config)
610 {
611 unsigned long debugctlmsr;
612
613 debugctlmsr = get_debugctlmsr();
614
615 debugctlmsr |= DEBUGCTLMSR_TR;
616 debugctlmsr |= DEBUGCTLMSR_BTS;
617 if (config & ARCH_PERFMON_EVENTSEL_INT)
618 debugctlmsr |= DEBUGCTLMSR_BTINT;
619
620 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
621 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
622
623 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
624 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
625
626 update_debugctlmsr(debugctlmsr);
627 }
628
intel_pmu_disable_bts(void)629 void intel_pmu_disable_bts(void)
630 {
631 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
632 unsigned long debugctlmsr;
633
634 if (!cpuc->ds)
635 return;
636
637 debugctlmsr = get_debugctlmsr();
638
639 debugctlmsr &=
640 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
641 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
642
643 update_debugctlmsr(debugctlmsr);
644 }
645
intel_pmu_drain_bts_buffer(void)646 int intel_pmu_drain_bts_buffer(void)
647 {
648 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
649 struct debug_store *ds = cpuc->ds;
650 struct bts_record {
651 u64 from;
652 u64 to;
653 u64 flags;
654 };
655 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
656 struct bts_record *at, *base, *top;
657 struct perf_output_handle handle;
658 struct perf_event_header header;
659 struct perf_sample_data data;
660 unsigned long skip = 0;
661 struct pt_regs regs;
662
663 if (!event)
664 return 0;
665
666 if (!x86_pmu.bts_active)
667 return 0;
668
669 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
670 top = (struct bts_record *)(unsigned long)ds->bts_index;
671
672 if (top <= base)
673 return 0;
674
675 memset(®s, 0, sizeof(regs));
676
677 ds->bts_index = ds->bts_buffer_base;
678
679 perf_sample_data_init(&data, 0, event->hw.last_period);
680
681 /*
682 * BTS leaks kernel addresses in branches across the cpl boundary,
683 * such as traps or system calls, so unless the user is asking for
684 * kernel tracing (and right now it's not possible), we'd need to
685 * filter them out. But first we need to count how many of those we
686 * have in the current batch. This is an extra O(n) pass, however,
687 * it's much faster than the other one especially considering that
688 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
689 * alloc_bts_buffer()).
690 */
691 for (at = base; at < top; at++) {
692 /*
693 * Note that right now *this* BTS code only works if
694 * attr::exclude_kernel is set, but let's keep this extra
695 * check here in case that changes.
696 */
697 if (event->attr.exclude_kernel &&
698 (kernel_ip(at->from) || kernel_ip(at->to)))
699 skip++;
700 }
701
702 /*
703 * Prepare a generic sample, i.e. fill in the invariant fields.
704 * We will overwrite the from and to address before we output
705 * the sample.
706 */
707 rcu_read_lock();
708 perf_prepare_sample(&header, &data, event, ®s);
709
710 if (perf_output_begin(&handle, &data, event,
711 header.size * (top - base - skip)))
712 goto unlock;
713
714 for (at = base; at < top; at++) {
715 /* Filter out any records that contain kernel addresses. */
716 if (event->attr.exclude_kernel &&
717 (kernel_ip(at->from) || kernel_ip(at->to)))
718 continue;
719
720 data.ip = at->from;
721 data.addr = at->to;
722
723 perf_output_sample(&handle, &header, &data, event);
724 }
725
726 perf_output_end(&handle);
727
728 /* There's new data available. */
729 event->hw.interrupts++;
730 event->pending_kill = POLL_IN;
731 unlock:
732 rcu_read_unlock();
733 return 1;
734 }
735
intel_pmu_drain_pebs_buffer(void)736 static inline void intel_pmu_drain_pebs_buffer(void)
737 {
738 struct perf_sample_data data;
739
740 x86_pmu.drain_pebs(NULL, &data);
741 }
742
743 /*
744 * PEBS
745 */
746 struct event_constraint intel_core2_pebs_event_constraints[] = {
747 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
748 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
749 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
750 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
751 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
752 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
753 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
754 EVENT_CONSTRAINT_END
755 };
756
757 struct event_constraint intel_atom_pebs_event_constraints[] = {
758 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
759 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
760 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
761 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
762 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
763 /* Allow all events as PEBS with no flags */
764 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
765 EVENT_CONSTRAINT_END
766 };
767
768 struct event_constraint intel_slm_pebs_event_constraints[] = {
769 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
770 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
771 /* Allow all events as PEBS with no flags */
772 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
773 EVENT_CONSTRAINT_END
774 };
775
776 struct event_constraint intel_glm_pebs_event_constraints[] = {
777 /* Allow all events as PEBS with no flags */
778 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
779 EVENT_CONSTRAINT_END
780 };
781
782 struct event_constraint intel_grt_pebs_event_constraints[] = {
783 /* Allow all events as PEBS with no flags */
784 INTEL_PLD_CONSTRAINT(0x5d0, 0xf),
785 INTEL_PSD_CONSTRAINT(0x6d0, 0xf),
786 EVENT_CONSTRAINT_END
787 };
788
789 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
790 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
791 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
792 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
793 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
794 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
795 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
796 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
797 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
798 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
799 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
800 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
801 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
802 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
803 EVENT_CONSTRAINT_END
804 };
805
806 struct event_constraint intel_westmere_pebs_event_constraints[] = {
807 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
808 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
809 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
810 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
811 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
812 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
813 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
814 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
815 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
816 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
817 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
818 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
819 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
820 EVENT_CONSTRAINT_END
821 };
822
823 struct event_constraint intel_snb_pebs_event_constraints[] = {
824 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
825 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
826 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
827 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
828 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
829 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
830 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
831 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
832 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
833 /* Allow all events as PEBS with no flags */
834 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
835 EVENT_CONSTRAINT_END
836 };
837
838 struct event_constraint intel_ivb_pebs_event_constraints[] = {
839 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
840 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
841 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
842 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
843 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
844 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
845 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
846 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
847 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
848 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
849 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
850 /* Allow all events as PEBS with no flags */
851 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
852 EVENT_CONSTRAINT_END
853 };
854
855 struct event_constraint intel_hsw_pebs_event_constraints[] = {
856 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
857 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
858 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
859 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
860 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
861 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
862 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
863 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
864 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
865 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
866 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
867 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
868 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
869 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
870 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
871 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
872 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
873 /* Allow all events as PEBS with no flags */
874 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
875 EVENT_CONSTRAINT_END
876 };
877
878 struct event_constraint intel_bdw_pebs_event_constraints[] = {
879 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
880 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
881 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
882 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
883 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
884 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
885 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
886 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
887 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
888 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
889 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
890 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
891 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
892 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
893 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
894 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
895 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
896 /* Allow all events as PEBS with no flags */
897 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
898 EVENT_CONSTRAINT_END
899 };
900
901
902 struct event_constraint intel_skl_pebs_event_constraints[] = {
903 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
904 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
905 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
906 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
907 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
908 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
909 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
910 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
911 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
912 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
913 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
914 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
915 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
916 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
917 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
918 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
919 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
920 /* Allow all events as PEBS with no flags */
921 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
922 EVENT_CONSTRAINT_END
923 };
924
925 struct event_constraint intel_icl_pebs_event_constraints[] = {
926 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
927 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
928
929 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
930 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf), /* MEM_INST_RETIRED.LOAD */
931 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf), /* MEM_INST_RETIRED.STORE */
932
933 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
934
935 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
936
937 /*
938 * Everything else is handled by PMU_FL_PEBS_ALL, because we
939 * need the full constraints from the main table.
940 */
941
942 EVENT_CONSTRAINT_END
943 };
944
945 struct event_constraint intel_spr_pebs_event_constraints[] = {
946 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL),
947 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
948
949 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
950 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
951 INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
952 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),
953 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),
954
955 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
956
957 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
958
959 /*
960 * Everything else is handled by PMU_FL_PEBS_ALL, because we
961 * need the full constraints from the main table.
962 */
963
964 EVENT_CONSTRAINT_END
965 };
966
intel_pebs_constraints(struct perf_event * event)967 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
968 {
969 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
970 struct event_constraint *c;
971
972 if (!event->attr.precise_ip)
973 return NULL;
974
975 if (pebs_constraints) {
976 for_each_event_constraint(c, pebs_constraints) {
977 if (constraint_match(c, event->hw.config)) {
978 event->hw.flags |= c->flags;
979 return c;
980 }
981 }
982 }
983
984 /*
985 * Extended PEBS support
986 * Makes the PEBS code search the normal constraints.
987 */
988 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
989 return NULL;
990
991 return &emptyconstraint;
992 }
993
994 /*
995 * We need the sched_task callback even for per-cpu events when we use
996 * the large interrupt threshold, such that we can provide PID and TID
997 * to PEBS samples.
998 */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)999 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1000 {
1001 if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1002 return false;
1003
1004 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1005 }
1006
intel_pmu_pebs_sched_task(struct perf_event_context * ctx,bool sched_in)1007 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
1008 {
1009 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1010
1011 if (!sched_in && pebs_needs_sched_cb(cpuc))
1012 intel_pmu_drain_pebs_buffer();
1013 }
1014
pebs_update_threshold(struct cpu_hw_events * cpuc)1015 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1016 {
1017 struct debug_store *ds = cpuc->ds;
1018 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1019 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1020 u64 threshold;
1021 int reserved;
1022
1023 if (cpuc->n_pebs_via_pt)
1024 return;
1025
1026 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1027 reserved = max_pebs_events + num_counters_fixed;
1028 else
1029 reserved = max_pebs_events;
1030
1031 if (cpuc->n_pebs == cpuc->n_large_pebs) {
1032 threshold = ds->pebs_absolute_maximum -
1033 reserved * cpuc->pebs_record_size;
1034 } else {
1035 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1036 }
1037
1038 ds->pebs_interrupt_threshold = threshold;
1039 }
1040
adaptive_pebs_record_size_update(void)1041 static void adaptive_pebs_record_size_update(void)
1042 {
1043 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1044 u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1045 int sz = sizeof(struct pebs_basic);
1046
1047 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1048 sz += sizeof(struct pebs_meminfo);
1049 if (pebs_data_cfg & PEBS_DATACFG_GP)
1050 sz += sizeof(struct pebs_gprs);
1051 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1052 sz += sizeof(struct pebs_xmm);
1053 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1054 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1055
1056 cpuc->pebs_record_size = sz;
1057 }
1058
1059 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
1060 PERF_SAMPLE_PHYS_ADDR | \
1061 PERF_SAMPLE_WEIGHT_TYPE | \
1062 PERF_SAMPLE_TRANSACTION | \
1063 PERF_SAMPLE_DATA_PAGE_SIZE)
1064
pebs_update_adaptive_cfg(struct perf_event * event)1065 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1066 {
1067 struct perf_event_attr *attr = &event->attr;
1068 u64 sample_type = attr->sample_type;
1069 u64 pebs_data_cfg = 0;
1070 bool gprs, tsx_weight;
1071
1072 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1073 attr->precise_ip > 1)
1074 return pebs_data_cfg;
1075
1076 if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1077 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1078
1079 /*
1080 * We need GPRs when:
1081 * + user requested them
1082 * + precise_ip < 2 for the non event IP
1083 * + For RTM TSX weight we need GPRs for the abort code.
1084 */
1085 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1086 (attr->sample_regs_intr & PEBS_GP_REGS);
1087
1088 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1089 ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1090 x86_pmu.rtm_abort_event);
1091
1092 if (gprs || (attr->precise_ip < 2) || tsx_weight)
1093 pebs_data_cfg |= PEBS_DATACFG_GP;
1094
1095 if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1096 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1097 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1098
1099 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1100 /*
1101 * For now always log all LBRs. Could configure this
1102 * later.
1103 */
1104 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1105 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1106 }
1107
1108 return pebs_data_cfg;
1109 }
1110
1111 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1112 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1113 struct perf_event *event, bool add)
1114 {
1115 struct pmu *pmu = event->ctx->pmu;
1116 /*
1117 * Make sure we get updated with the first PEBS
1118 * event. It will trigger also during removal, but
1119 * that does not hurt:
1120 */
1121 bool update = cpuc->n_pebs == 1;
1122
1123 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1124 if (!needed_cb)
1125 perf_sched_cb_inc(pmu);
1126 else
1127 perf_sched_cb_dec(pmu);
1128
1129 update = true;
1130 }
1131
1132 /*
1133 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1134 * iterating all remaining PEBS events to reconstruct the config.
1135 */
1136 if (x86_pmu.intel_cap.pebs_baseline && add) {
1137 u64 pebs_data_cfg;
1138
1139 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1140 if (cpuc->n_pebs == 1) {
1141 cpuc->pebs_data_cfg = 0;
1142 cpuc->pebs_record_size = sizeof(struct pebs_basic);
1143 }
1144
1145 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1146
1147 /* Update pebs_record_size if new event requires more data. */
1148 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1149 cpuc->pebs_data_cfg |= pebs_data_cfg;
1150 adaptive_pebs_record_size_update();
1151 update = true;
1152 }
1153 }
1154
1155 if (update)
1156 pebs_update_threshold(cpuc);
1157 }
1158
intel_pmu_pebs_add(struct perf_event * event)1159 void intel_pmu_pebs_add(struct perf_event *event)
1160 {
1161 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1162 struct hw_perf_event *hwc = &event->hw;
1163 bool needed_cb = pebs_needs_sched_cb(cpuc);
1164
1165 cpuc->n_pebs++;
1166 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1167 cpuc->n_large_pebs++;
1168 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1169 cpuc->n_pebs_via_pt++;
1170
1171 pebs_update_state(needed_cb, cpuc, event, true);
1172 }
1173
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1174 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1175 {
1176 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1177
1178 if (!is_pebs_pt(event))
1179 return;
1180
1181 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1182 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1183 }
1184
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1185 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1186 {
1187 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1188 struct hw_perf_event *hwc = &event->hw;
1189 struct debug_store *ds = cpuc->ds;
1190 u64 value = ds->pebs_event_reset[hwc->idx];
1191 u32 base = MSR_RELOAD_PMC0;
1192 unsigned int idx = hwc->idx;
1193
1194 if (!is_pebs_pt(event))
1195 return;
1196
1197 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1198 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1199
1200 cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1201
1202 if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1203 base = MSR_RELOAD_FIXED_CTR0;
1204 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1205 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1206 }
1207 wrmsrl(base + idx, value);
1208 }
1209
intel_pmu_pebs_enable(struct perf_event * event)1210 void intel_pmu_pebs_enable(struct perf_event *event)
1211 {
1212 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1213 struct hw_perf_event *hwc = &event->hw;
1214 struct debug_store *ds = cpuc->ds;
1215 unsigned int idx = hwc->idx;
1216
1217 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1218
1219 cpuc->pebs_enabled |= 1ULL << hwc->idx;
1220
1221 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1222 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1223 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1224 cpuc->pebs_enabled |= 1ULL << 63;
1225
1226 if (x86_pmu.intel_cap.pebs_baseline) {
1227 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1228 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1229 wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1230 cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1231 }
1232 }
1233
1234 if (idx >= INTEL_PMC_IDX_FIXED)
1235 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1236
1237 /*
1238 * Use auto-reload if possible to save a MSR write in the PMI.
1239 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1240 */
1241 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1242 ds->pebs_event_reset[idx] =
1243 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1244 } else {
1245 ds->pebs_event_reset[idx] = 0;
1246 }
1247
1248 intel_pmu_pebs_via_pt_enable(event);
1249 }
1250
intel_pmu_pebs_del(struct perf_event * event)1251 void intel_pmu_pebs_del(struct perf_event *event)
1252 {
1253 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1254 struct hw_perf_event *hwc = &event->hw;
1255 bool needed_cb = pebs_needs_sched_cb(cpuc);
1256
1257 cpuc->n_pebs--;
1258 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1259 cpuc->n_large_pebs--;
1260 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1261 cpuc->n_pebs_via_pt--;
1262
1263 pebs_update_state(needed_cb, cpuc, event, false);
1264 }
1265
intel_pmu_pebs_disable(struct perf_event * event)1266 void intel_pmu_pebs_disable(struct perf_event *event)
1267 {
1268 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1269 struct hw_perf_event *hwc = &event->hw;
1270
1271 if (cpuc->n_pebs == cpuc->n_large_pebs &&
1272 cpuc->n_pebs != cpuc->n_pebs_via_pt)
1273 intel_pmu_drain_pebs_buffer();
1274
1275 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1276
1277 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1278 (x86_pmu.version < 5))
1279 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1280 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1281 cpuc->pebs_enabled &= ~(1ULL << 63);
1282
1283 intel_pmu_pebs_via_pt_disable(event);
1284
1285 if (cpuc->enabled)
1286 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1287
1288 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1289 }
1290
intel_pmu_pebs_enable_all(void)1291 void intel_pmu_pebs_enable_all(void)
1292 {
1293 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1294
1295 if (cpuc->pebs_enabled)
1296 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1297 }
1298
intel_pmu_pebs_disable_all(void)1299 void intel_pmu_pebs_disable_all(void)
1300 {
1301 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1302
1303 if (cpuc->pebs_enabled)
1304 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1305 }
1306
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1307 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1308 {
1309 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1310 unsigned long from = cpuc->lbr_entries[0].from;
1311 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1312 unsigned long ip = regs->ip;
1313 int is_64bit = 0;
1314 void *kaddr;
1315 int size;
1316
1317 /*
1318 * We don't need to fixup if the PEBS assist is fault like
1319 */
1320 if (!x86_pmu.intel_cap.pebs_trap)
1321 return 1;
1322
1323 /*
1324 * No LBR entry, no basic block, no rewinding
1325 */
1326 if (!cpuc->lbr_stack.nr || !from || !to)
1327 return 0;
1328
1329 /*
1330 * Basic blocks should never cross user/kernel boundaries
1331 */
1332 if (kernel_ip(ip) != kernel_ip(to))
1333 return 0;
1334
1335 /*
1336 * unsigned math, either ip is before the start (impossible) or
1337 * the basic block is larger than 1 page (sanity)
1338 */
1339 if ((ip - to) > PEBS_FIXUP_SIZE)
1340 return 0;
1341
1342 /*
1343 * We sampled a branch insn, rewind using the LBR stack
1344 */
1345 if (ip == to) {
1346 set_linear_ip(regs, from);
1347 return 1;
1348 }
1349
1350 size = ip - to;
1351 if (!kernel_ip(ip)) {
1352 int bytes;
1353 u8 *buf = this_cpu_read(insn_buffer);
1354
1355 /* 'size' must fit our buffer, see above */
1356 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1357 if (bytes != 0)
1358 return 0;
1359
1360 kaddr = buf;
1361 } else {
1362 kaddr = (void *)to;
1363 }
1364
1365 do {
1366 struct insn insn;
1367
1368 old_to = to;
1369
1370 #ifdef CONFIG_X86_64
1371 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1372 #endif
1373 insn_init(&insn, kaddr, size, is_64bit);
1374
1375 /*
1376 * Make sure there was not a problem decoding the instruction.
1377 * This is doubly important because we have an infinite loop if
1378 * insn.length=0.
1379 */
1380 if (insn_get_length(&insn))
1381 break;
1382
1383 to += insn.length;
1384 kaddr += insn.length;
1385 size -= insn.length;
1386 } while (to < ip);
1387
1388 if (to == ip) {
1389 set_linear_ip(regs, old_to);
1390 return 1;
1391 }
1392
1393 /*
1394 * Even though we decoded the basic block, the instruction stream
1395 * never matched the given IP, either the TO or the IP got corrupted.
1396 */
1397 return 0;
1398 }
1399
intel_get_tsx_weight(u64 tsx_tuning)1400 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1401 {
1402 if (tsx_tuning) {
1403 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1404 return tsx.cycles_last_block;
1405 }
1406 return 0;
1407 }
1408
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1409 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1410 {
1411 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1412
1413 /* For RTM XABORTs also log the abort code from AX */
1414 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1415 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1416 return txn;
1417 }
1418
get_pebs_status(void * n)1419 static inline u64 get_pebs_status(void *n)
1420 {
1421 if (x86_pmu.intel_cap.pebs_format < 4)
1422 return ((struct pebs_record_nhm *)n)->status;
1423 return ((struct pebs_basic *)n)->applicable_counters;
1424 }
1425
1426 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1427 (PERF_X86_EVENT_PEBS_ST_HSW | \
1428 PERF_X86_EVENT_PEBS_LD_HSW | \
1429 PERF_X86_EVENT_PEBS_NA_HSW)
1430
get_data_src(struct perf_event * event,u64 aux)1431 static u64 get_data_src(struct perf_event *event, u64 aux)
1432 {
1433 u64 val = PERF_MEM_NA;
1434 int fl = event->hw.flags;
1435 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1436
1437 if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1438 val = load_latency_data(aux);
1439 else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1440 val = store_latency_data(aux);
1441 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1442 val = precise_datala_hsw(event, aux);
1443 else if (fst)
1444 val = precise_store_data(aux);
1445 return val;
1446 }
1447
1448 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
1449 PERF_SAMPLE_PHYS_ADDR | \
1450 PERF_SAMPLE_DATA_PAGE_SIZE)
1451
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1452 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1453 struct pt_regs *iregs, void *__pebs,
1454 struct perf_sample_data *data,
1455 struct pt_regs *regs)
1456 {
1457 /*
1458 * We cast to the biggest pebs_record but are careful not to
1459 * unconditionally access the 'extra' entries.
1460 */
1461 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1462 struct pebs_record_skl *pebs = __pebs;
1463 u64 sample_type;
1464 int fll;
1465
1466 if (pebs == NULL)
1467 return;
1468
1469 sample_type = event->attr.sample_type;
1470 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1471
1472 perf_sample_data_init(data, 0, event->hw.last_period);
1473
1474 data->period = event->hw.last_period;
1475
1476 /*
1477 * Use latency for weight (only avail with PEBS-LL)
1478 */
1479 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE))
1480 data->weight.full = pebs->lat;
1481
1482 /*
1483 * data.data_src encodes the data source
1484 */
1485 if (sample_type & PERF_SAMPLE_DATA_SRC)
1486 data->data_src.val = get_data_src(event, pebs->dse);
1487
1488 /*
1489 * We must however always use iregs for the unwinder to stay sane; the
1490 * record BP,SP,IP can point into thin air when the record is from a
1491 * previous PMI context or an (I)RET happened between the record and
1492 * PMI.
1493 */
1494 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1495 data->callchain = perf_callchain(event, iregs);
1496
1497 /*
1498 * We use the interrupt regs as a base because the PEBS record does not
1499 * contain a full regs set, specifically it seems to lack segment
1500 * descriptors, which get used by things like user_mode().
1501 *
1502 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1503 */
1504 *regs = *iregs;
1505
1506 /*
1507 * Initialize regs_>flags from PEBS,
1508 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1509 * i.e., do not rely on it being zero:
1510 */
1511 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1512
1513 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1514 regs->ax = pebs->ax;
1515 regs->bx = pebs->bx;
1516 regs->cx = pebs->cx;
1517 regs->dx = pebs->dx;
1518 regs->si = pebs->si;
1519 regs->di = pebs->di;
1520
1521 regs->bp = pebs->bp;
1522 regs->sp = pebs->sp;
1523
1524 #ifndef CONFIG_X86_32
1525 regs->r8 = pebs->r8;
1526 regs->r9 = pebs->r9;
1527 regs->r10 = pebs->r10;
1528 regs->r11 = pebs->r11;
1529 regs->r12 = pebs->r12;
1530 regs->r13 = pebs->r13;
1531 regs->r14 = pebs->r14;
1532 regs->r15 = pebs->r15;
1533 #endif
1534 }
1535
1536 if (event->attr.precise_ip > 1) {
1537 /*
1538 * Haswell and later processors have an 'eventing IP'
1539 * (real IP) which fixes the off-by-1 skid in hardware.
1540 * Use it when precise_ip >= 2 :
1541 */
1542 if (x86_pmu.intel_cap.pebs_format >= 2) {
1543 set_linear_ip(regs, pebs->real_ip);
1544 regs->flags |= PERF_EFLAGS_EXACT;
1545 } else {
1546 /* Otherwise, use PEBS off-by-1 IP: */
1547 set_linear_ip(regs, pebs->ip);
1548
1549 /*
1550 * With precise_ip >= 2, try to fix up the off-by-1 IP
1551 * using the LBR. If successful, the fixup function
1552 * corrects regs->ip and calls set_linear_ip() on regs:
1553 */
1554 if (intel_pmu_pebs_fixup_ip(regs))
1555 regs->flags |= PERF_EFLAGS_EXACT;
1556 }
1557 } else {
1558 /*
1559 * When precise_ip == 1, return the PEBS off-by-1 IP,
1560 * no fixup attempted:
1561 */
1562 set_linear_ip(regs, pebs->ip);
1563 }
1564
1565
1566 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1567 x86_pmu.intel_cap.pebs_format >= 1)
1568 data->addr = pebs->dla;
1569
1570 if (x86_pmu.intel_cap.pebs_format >= 2) {
1571 /* Only set the TSX weight when no memory weight. */
1572 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll)
1573 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1574
1575 if (sample_type & PERF_SAMPLE_TRANSACTION)
1576 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1577 pebs->ax);
1578 }
1579
1580 /*
1581 * v3 supplies an accurate time stamp, so we use that
1582 * for the time stamp.
1583 *
1584 * We can only do this for the default trace clock.
1585 */
1586 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1587 event->attr.use_clockid == 0)
1588 data->time = native_sched_clock_from_tsc(pebs->tsc);
1589
1590 if (has_branch_stack(event))
1591 data->br_stack = &cpuc->lbr_stack;
1592 }
1593
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1594 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1595 struct pebs_gprs *gprs)
1596 {
1597 regs->ax = gprs->ax;
1598 regs->bx = gprs->bx;
1599 regs->cx = gprs->cx;
1600 regs->dx = gprs->dx;
1601 regs->si = gprs->si;
1602 regs->di = gprs->di;
1603 regs->bp = gprs->bp;
1604 regs->sp = gprs->sp;
1605 #ifndef CONFIG_X86_32
1606 regs->r8 = gprs->r8;
1607 regs->r9 = gprs->r9;
1608 regs->r10 = gprs->r10;
1609 regs->r11 = gprs->r11;
1610 regs->r12 = gprs->r12;
1611 regs->r13 = gprs->r13;
1612 regs->r14 = gprs->r14;
1613 regs->r15 = gprs->r15;
1614 #endif
1615 }
1616
1617 #define PEBS_LATENCY_MASK 0xffff
1618 #define PEBS_CACHE_LATENCY_OFFSET 32
1619
1620 /*
1621 * With adaptive PEBS the layout depends on what fields are configured.
1622 */
1623
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1624 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1625 struct pt_regs *iregs, void *__pebs,
1626 struct perf_sample_data *data,
1627 struct pt_regs *regs)
1628 {
1629 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1630 struct pebs_basic *basic = __pebs;
1631 void *next_record = basic + 1;
1632 u64 sample_type;
1633 u64 format_size;
1634 struct pebs_meminfo *meminfo = NULL;
1635 struct pebs_gprs *gprs = NULL;
1636 struct x86_perf_regs *perf_regs;
1637
1638 if (basic == NULL)
1639 return;
1640
1641 perf_regs = container_of(regs, struct x86_perf_regs, regs);
1642 perf_regs->xmm_regs = NULL;
1643
1644 sample_type = event->attr.sample_type;
1645 format_size = basic->format_size;
1646 perf_sample_data_init(data, 0, event->hw.last_period);
1647 data->period = event->hw.last_period;
1648
1649 if (event->attr.use_clockid == 0)
1650 data->time = native_sched_clock_from_tsc(basic->tsc);
1651
1652 /*
1653 * We must however always use iregs for the unwinder to stay sane; the
1654 * record BP,SP,IP can point into thin air when the record is from a
1655 * previous PMI context or an (I)RET happened between the record and
1656 * PMI.
1657 */
1658 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1659 data->callchain = perf_callchain(event, iregs);
1660
1661 *regs = *iregs;
1662 /* The ip in basic is EventingIP */
1663 set_linear_ip(regs, basic->ip);
1664 regs->flags = PERF_EFLAGS_EXACT;
1665
1666 /*
1667 * The record for MEMINFO is in front of GP
1668 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1669 * Save the pointer here but process later.
1670 */
1671 if (format_size & PEBS_DATACFG_MEMINFO) {
1672 meminfo = next_record;
1673 next_record = meminfo + 1;
1674 }
1675
1676 if (format_size & PEBS_DATACFG_GP) {
1677 gprs = next_record;
1678 next_record = gprs + 1;
1679
1680 if (event->attr.precise_ip < 2) {
1681 set_linear_ip(regs, gprs->ip);
1682 regs->flags &= ~PERF_EFLAGS_EXACT;
1683 }
1684
1685 if (sample_type & PERF_SAMPLE_REGS_INTR)
1686 adaptive_pebs_save_regs(regs, gprs);
1687 }
1688
1689 if (format_size & PEBS_DATACFG_MEMINFO) {
1690 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1691 u64 weight = meminfo->latency;
1692
1693 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1694 data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1695 weight >>= PEBS_CACHE_LATENCY_OFFSET;
1696 }
1697
1698 /*
1699 * Although meminfo::latency is defined as a u64,
1700 * only the lower 32 bits include the valid data
1701 * in practice on Ice Lake and earlier platforms.
1702 */
1703 if (sample_type & PERF_SAMPLE_WEIGHT) {
1704 data->weight.full = weight ?:
1705 intel_get_tsx_weight(meminfo->tsx_tuning);
1706 } else {
1707 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1708 intel_get_tsx_weight(meminfo->tsx_tuning);
1709 }
1710 }
1711
1712 if (sample_type & PERF_SAMPLE_DATA_SRC)
1713 data->data_src.val = get_data_src(event, meminfo->aux);
1714
1715 if (sample_type & PERF_SAMPLE_ADDR_TYPE)
1716 data->addr = meminfo->address;
1717
1718 if (sample_type & PERF_SAMPLE_TRANSACTION)
1719 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1720 gprs ? gprs->ax : 0);
1721 }
1722
1723 if (format_size & PEBS_DATACFG_XMMS) {
1724 struct pebs_xmm *xmm = next_record;
1725
1726 next_record = xmm + 1;
1727 perf_regs->xmm_regs = xmm->xmm;
1728 }
1729
1730 if (format_size & PEBS_DATACFG_LBRS) {
1731 struct lbr_entry *lbr = next_record;
1732 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1733 & 0xff) + 1;
1734 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1735
1736 if (has_branch_stack(event)) {
1737 intel_pmu_store_pebs_lbrs(lbr);
1738 data->br_stack = &cpuc->lbr_stack;
1739 }
1740 }
1741
1742 WARN_ONCE(next_record != __pebs + (format_size >> 48),
1743 "PEBS record size %llu, expected %llu, config %llx\n",
1744 format_size >> 48,
1745 (u64)(next_record - __pebs),
1746 basic->format_size);
1747 }
1748
1749 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)1750 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1751 {
1752 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1753 void *at;
1754 u64 pebs_status;
1755
1756 /*
1757 * fmt0 does not have a status bitfield (does not use
1758 * perf_record_nhm format)
1759 */
1760 if (x86_pmu.intel_cap.pebs_format < 1)
1761 return base;
1762
1763 if (base == NULL)
1764 return NULL;
1765
1766 for (at = base; at < top; at += cpuc->pebs_record_size) {
1767 unsigned long status = get_pebs_status(at);
1768
1769 if (test_bit(bit, (unsigned long *)&status)) {
1770 /* PEBS v3 has accurate status bits */
1771 if (x86_pmu.intel_cap.pebs_format >= 3)
1772 return at;
1773
1774 if (status == (1 << bit))
1775 return at;
1776
1777 /* clear non-PEBS bit and re-check */
1778 pebs_status = status & cpuc->pebs_enabled;
1779 pebs_status &= PEBS_COUNTER_MASK;
1780 if (pebs_status == (1 << bit))
1781 return at;
1782 }
1783 }
1784 return NULL;
1785 }
1786
intel_pmu_auto_reload_read(struct perf_event * event)1787 void intel_pmu_auto_reload_read(struct perf_event *event)
1788 {
1789 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1790
1791 perf_pmu_disable(event->pmu);
1792 intel_pmu_drain_pebs_buffer();
1793 perf_pmu_enable(event->pmu);
1794 }
1795
1796 /*
1797 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1798 */
1799 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)1800 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1801 {
1802 struct hw_perf_event *hwc = &event->hw;
1803 int shift = 64 - x86_pmu.cntval_bits;
1804 u64 period = hwc->sample_period;
1805 u64 prev_raw_count, new_raw_count;
1806 s64 new, old;
1807
1808 WARN_ON(!period);
1809
1810 /*
1811 * drain_pebs() only happens when the PMU is disabled.
1812 */
1813 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1814
1815 prev_raw_count = local64_read(&hwc->prev_count);
1816 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1817 local64_set(&hwc->prev_count, new_raw_count);
1818
1819 /*
1820 * Since the counter increments a negative counter value and
1821 * overflows on the sign switch, giving the interval:
1822 *
1823 * [-period, 0]
1824 *
1825 * the difference between two consecutive reads is:
1826 *
1827 * A) value2 - value1;
1828 * when no overflows have happened in between,
1829 *
1830 * B) (0 - value1) + (value2 - (-period));
1831 * when one overflow happened in between,
1832 *
1833 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1834 * when @n overflows happened in between.
1835 *
1836 * Here A) is the obvious difference, B) is the extension to the
1837 * discrete interval, where the first term is to the top of the
1838 * interval and the second term is from the bottom of the next
1839 * interval and C) the extension to multiple intervals, where the
1840 * middle term is the whole intervals covered.
1841 *
1842 * An equivalent of C, by reduction, is:
1843 *
1844 * value2 - value1 + n * period
1845 */
1846 new = ((s64)(new_raw_count << shift) >> shift);
1847 old = ((s64)(prev_raw_count << shift) >> shift);
1848 local64_add(new - old + count * period, &event->count);
1849
1850 local64_set(&hwc->period_left, -new);
1851
1852 perf_event_update_userpage(event);
1853
1854 return 0;
1855 }
1856
1857 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,void (* setup_sample)(struct perf_event *,struct pt_regs *,void *,struct perf_sample_data *,struct pt_regs *))1858 __intel_pmu_pebs_event(struct perf_event *event,
1859 struct pt_regs *iregs,
1860 struct perf_sample_data *data,
1861 void *base, void *top,
1862 int bit, int count,
1863 void (*setup_sample)(struct perf_event *,
1864 struct pt_regs *,
1865 void *,
1866 struct perf_sample_data *,
1867 struct pt_regs *))
1868 {
1869 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1870 struct hw_perf_event *hwc = &event->hw;
1871 struct x86_perf_regs perf_regs;
1872 struct pt_regs *regs = &perf_regs.regs;
1873 void *at = get_next_pebs_record_by_bit(base, top, bit);
1874 static struct pt_regs dummy_iregs;
1875
1876 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1877 /*
1878 * Now, auto-reload is only enabled in fixed period mode.
1879 * The reload value is always hwc->sample_period.
1880 * May need to change it, if auto-reload is enabled in
1881 * freq mode later.
1882 */
1883 intel_pmu_save_and_restart_reload(event, count);
1884 } else if (!intel_pmu_save_and_restart(event))
1885 return;
1886
1887 if (!iregs)
1888 iregs = &dummy_iregs;
1889
1890 while (count > 1) {
1891 setup_sample(event, iregs, at, data, regs);
1892 perf_event_output(event, data, regs);
1893 at += cpuc->pebs_record_size;
1894 at = get_next_pebs_record_by_bit(at, top, bit);
1895 count--;
1896 }
1897
1898 setup_sample(event, iregs, at, data, regs);
1899 if (iregs == &dummy_iregs) {
1900 /*
1901 * The PEBS records may be drained in the non-overflow context,
1902 * e.g., large PEBS + context switch. Perf should treat the
1903 * last record the same as other PEBS records, and doesn't
1904 * invoke the generic overflow handler.
1905 */
1906 perf_event_output(event, data, regs);
1907 } else {
1908 /*
1909 * All but the last records are processed.
1910 * The last one is left to be able to call the overflow handler.
1911 */
1912 if (perf_event_overflow(event, data, regs))
1913 x86_pmu_stop(event, 0);
1914 }
1915 }
1916
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)1917 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
1918 {
1919 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1920 struct debug_store *ds = cpuc->ds;
1921 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1922 struct pebs_record_core *at, *top;
1923 int n;
1924
1925 if (!x86_pmu.pebs_active)
1926 return;
1927
1928 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1929 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1930
1931 /*
1932 * Whatever else happens, drain the thing
1933 */
1934 ds->pebs_index = ds->pebs_buffer_base;
1935
1936 if (!test_bit(0, cpuc->active_mask))
1937 return;
1938
1939 WARN_ON_ONCE(!event);
1940
1941 if (!event->attr.precise_ip)
1942 return;
1943
1944 n = top - at;
1945 if (n <= 0) {
1946 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1947 intel_pmu_save_and_restart_reload(event, 0);
1948 return;
1949 }
1950
1951 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
1952 setup_pebs_fixed_sample_data);
1953 }
1954
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,int size)1955 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
1956 {
1957 struct perf_event *event;
1958 int bit;
1959
1960 /*
1961 * The drain_pebs() could be called twice in a short period
1962 * for auto-reload event in pmu::read(). There are no
1963 * overflows have happened in between.
1964 * It needs to call intel_pmu_save_and_restart_reload() to
1965 * update the event->count for this case.
1966 */
1967 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
1968 event = cpuc->events[bit];
1969 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1970 intel_pmu_save_and_restart_reload(event, 0);
1971 }
1972 }
1973
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)1974 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
1975 {
1976 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1977 struct debug_store *ds = cpuc->ds;
1978 struct perf_event *event;
1979 void *base, *at, *top;
1980 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1981 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1982 int bit, i, size;
1983 u64 mask;
1984
1985 if (!x86_pmu.pebs_active)
1986 return;
1987
1988 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1989 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1990
1991 ds->pebs_index = ds->pebs_buffer_base;
1992
1993 mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1994 size = x86_pmu.max_pebs_events;
1995 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1996 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1997 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1998 }
1999
2000 if (unlikely(base >= top)) {
2001 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2002 return;
2003 }
2004
2005 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2006 struct pebs_record_nhm *p = at;
2007 u64 pebs_status;
2008
2009 pebs_status = p->status & cpuc->pebs_enabled;
2010 pebs_status &= mask;
2011
2012 /* PEBS v3 has more accurate status bits */
2013 if (x86_pmu.intel_cap.pebs_format >= 3) {
2014 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2015 counts[bit]++;
2016
2017 continue;
2018 }
2019
2020 /*
2021 * On some CPUs the PEBS status can be zero when PEBS is
2022 * racing with clearing of GLOBAL_STATUS.
2023 *
2024 * Normally we would drop that record, but in the
2025 * case when there is only a single active PEBS event
2026 * we can assume it's for that event.
2027 */
2028 if (!pebs_status && cpuc->pebs_enabled &&
2029 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2030 pebs_status = p->status = cpuc->pebs_enabled;
2031
2032 bit = find_first_bit((unsigned long *)&pebs_status,
2033 x86_pmu.max_pebs_events);
2034 if (bit >= x86_pmu.max_pebs_events)
2035 continue;
2036
2037 /*
2038 * The PEBS hardware does not deal well with the situation
2039 * when events happen near to each other and multiple bits
2040 * are set. But it should happen rarely.
2041 *
2042 * If these events include one PEBS and multiple non-PEBS
2043 * events, it doesn't impact PEBS record. The record will
2044 * be handled normally. (slow path)
2045 *
2046 * If these events include two or more PEBS events, the
2047 * records for the events can be collapsed into a single
2048 * one, and it's not possible to reconstruct all events
2049 * that caused the PEBS record. It's called collision.
2050 * If collision happened, the record will be dropped.
2051 */
2052 if (pebs_status != (1ULL << bit)) {
2053 for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2054 error[i]++;
2055 continue;
2056 }
2057
2058 counts[bit]++;
2059 }
2060
2061 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2062 if ((counts[bit] == 0) && (error[bit] == 0))
2063 continue;
2064
2065 event = cpuc->events[bit];
2066 if (WARN_ON_ONCE(!event))
2067 continue;
2068
2069 if (WARN_ON_ONCE(!event->attr.precise_ip))
2070 continue;
2071
2072 /* log dropped samples number */
2073 if (error[bit]) {
2074 perf_log_lost_samples(event, error[bit]);
2075
2076 if (iregs && perf_event_account_interrupt(event))
2077 x86_pmu_stop(event, 0);
2078 }
2079
2080 if (counts[bit]) {
2081 __intel_pmu_pebs_event(event, iregs, data, base,
2082 top, bit, counts[bit],
2083 setup_pebs_fixed_sample_data);
2084 }
2085 }
2086 }
2087
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2088 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2089 {
2090 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2091 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2092 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2093 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2094 struct debug_store *ds = cpuc->ds;
2095 struct perf_event *event;
2096 void *base, *at, *top;
2097 int bit, size;
2098 u64 mask;
2099
2100 if (!x86_pmu.pebs_active)
2101 return;
2102
2103 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2104 top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2105
2106 ds->pebs_index = ds->pebs_buffer_base;
2107
2108 mask = ((1ULL << max_pebs_events) - 1) |
2109 (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2110 size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2111
2112 if (unlikely(base >= top)) {
2113 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2114 return;
2115 }
2116
2117 for (at = base; at < top; at += cpuc->pebs_record_size) {
2118 u64 pebs_status;
2119
2120 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2121 pebs_status &= mask;
2122
2123 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2124 counts[bit]++;
2125 }
2126
2127 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2128 if (counts[bit] == 0)
2129 continue;
2130
2131 event = cpuc->events[bit];
2132 if (WARN_ON_ONCE(!event))
2133 continue;
2134
2135 if (WARN_ON_ONCE(!event->attr.precise_ip))
2136 continue;
2137
2138 __intel_pmu_pebs_event(event, iregs, data, base,
2139 top, bit, counts[bit],
2140 setup_pebs_adaptive_sample_data);
2141 }
2142 }
2143
2144 /*
2145 * BTS, PEBS probe and setup
2146 */
2147
intel_ds_init(void)2148 void __init intel_ds_init(void)
2149 {
2150 /*
2151 * No support for 32bit formats
2152 */
2153 if (!boot_cpu_has(X86_FEATURE_DTES64))
2154 return;
2155
2156 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
2157 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2158 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2159 if (x86_pmu.version <= 4)
2160 x86_pmu.pebs_no_isolation = 1;
2161
2162 if (x86_pmu.pebs) {
2163 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
2164 char *pebs_qual = "";
2165 int format = x86_pmu.intel_cap.pebs_format;
2166
2167 if (format < 4)
2168 x86_pmu.intel_cap.pebs_baseline = 0;
2169
2170 switch (format) {
2171 case 0:
2172 pr_cont("PEBS fmt0%c, ", pebs_type);
2173 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2174 /*
2175 * Using >PAGE_SIZE buffers makes the WRMSR to
2176 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2177 * mysteriously hang on Core2.
2178 *
2179 * As a workaround, we don't do this.
2180 */
2181 x86_pmu.pebs_buffer_size = PAGE_SIZE;
2182 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2183 break;
2184
2185 case 1:
2186 pr_cont("PEBS fmt1%c, ", pebs_type);
2187 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2188 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2189 break;
2190
2191 case 2:
2192 pr_cont("PEBS fmt2%c, ", pebs_type);
2193 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2194 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2195 break;
2196
2197 case 3:
2198 pr_cont("PEBS fmt3%c, ", pebs_type);
2199 x86_pmu.pebs_record_size =
2200 sizeof(struct pebs_record_skl);
2201 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2202 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2203 break;
2204
2205 case 4:
2206 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2207 x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2208 if (x86_pmu.intel_cap.pebs_baseline) {
2209 x86_pmu.large_pebs_flags |=
2210 PERF_SAMPLE_BRANCH_STACK |
2211 PERF_SAMPLE_TIME;
2212 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2213 pebs_qual = "-baseline";
2214 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2215 } else {
2216 /* Only basic record supported */
2217 x86_pmu.large_pebs_flags &=
2218 ~(PERF_SAMPLE_ADDR |
2219 PERF_SAMPLE_TIME |
2220 PERF_SAMPLE_DATA_SRC |
2221 PERF_SAMPLE_TRANSACTION |
2222 PERF_SAMPLE_REGS_USER |
2223 PERF_SAMPLE_REGS_INTR);
2224 }
2225 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2226
2227 if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2228 pr_cont("PEBS-via-PT, ");
2229 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2230 }
2231
2232 break;
2233
2234 default:
2235 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2236 x86_pmu.pebs = 0;
2237 }
2238 }
2239 }
2240
perf_restore_debug_store(void)2241 void perf_restore_debug_store(void)
2242 {
2243 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2244
2245 if (!x86_pmu.bts && !x86_pmu.pebs)
2246 return;
2247
2248 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2249 }
2250