1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  *
5  * Authors:
6  * Sean Paul <seanpaul@chromium.org>
7  */
8 
9 #include <drm/drmP.h>
10 #include <drm/drm_hdcp.h>
11 #include <linux/i2c.h>
12 #include <linux/random.h>
13 
14 #include "intel_drv.h"
15 #include "i915_reg.h"
16 
17 #define KEY_LOAD_TRIES	5
18 
intel_hdcp_poll_ksv_fifo(struct intel_digital_port * intel_dig_port,const struct intel_hdcp_shim * shim)19 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
20 				    const struct intel_hdcp_shim *shim)
21 {
22 	int ret, read_ret;
23 	bool ksv_ready;
24 
25 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
26 	ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
27 							 &ksv_ready),
28 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
29 			 100 * 1000);
30 	if (ret)
31 		return ret;
32 	if (read_ret)
33 		return read_ret;
34 	if (!ksv_ready)
35 		return -ETIMEDOUT;
36 
37 	return 0;
38 }
39 
hdcp_key_loadable(struct drm_i915_private * dev_priv)40 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
41 {
42 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
43 	struct i915_power_well *power_well;
44 	enum i915_power_well_id id;
45 	bool enabled = false;
46 
47 	/*
48 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
49 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
50 	 */
51 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
52 		id = HSW_DISP_PW_GLOBAL;
53 	else
54 		id = SKL_DISP_PW_1;
55 
56 	mutex_lock(&power_domains->lock);
57 
58 	/* PG1 (power well #1) needs to be enabled */
59 	for_each_power_well(dev_priv, power_well) {
60 		if (power_well->id == id) {
61 			enabled = power_well->ops->is_enabled(dev_priv,
62 							      power_well);
63 			break;
64 		}
65 	}
66 	mutex_unlock(&power_domains->lock);
67 
68 	/*
69 	 * Another req for hdcp key loadability is enabled state of pll for
70 	 * cdclk. Without active crtc we wont land here. So we are assuming that
71 	 * cdclk is already on.
72 	 */
73 
74 	return enabled;
75 }
76 
intel_hdcp_clear_keys(struct drm_i915_private * dev_priv)77 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
78 {
79 	I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
80 	I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
81 		   HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
82 }
83 
intel_hdcp_load_keys(struct drm_i915_private * dev_priv)84 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
85 {
86 	int ret;
87 	u32 val;
88 
89 	val = I915_READ(HDCP_KEY_STATUS);
90 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
91 		return 0;
92 
93 	/*
94 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
95 	 * out of reset. So if Key is not already loaded, its an error state.
96 	 */
97 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
98 		if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
99 			return -ENXIO;
100 
101 	/*
102 	 * Initiate loading the HDCP key from fuses.
103 	 *
104 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only SKL and KBL
105 	 * differ in the key load trigger process from other platforms.
106 	 */
107 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
108 		mutex_lock(&dev_priv->pcu_lock);
109 		ret = sandybridge_pcode_write(dev_priv,
110 					      SKL_PCODE_LOAD_HDCP_KEYS, 1);
111 		mutex_unlock(&dev_priv->pcu_lock);
112 		if (ret) {
113 			DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
114 			          ret);
115 			return ret;
116 		}
117 	} else {
118 		I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
119 	}
120 
121 	/* Wait for the keys to load (500us) */
122 	ret = __intel_wait_for_register(dev_priv, HDCP_KEY_STATUS,
123 					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
124 					10, 1, &val);
125 	if (ret)
126 		return ret;
127 	else if (!(val & HDCP_KEY_LOAD_STATUS))
128 		return -ENXIO;
129 
130 	/* Send Aksv over to PCH display for use in authentication */
131 	I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
132 
133 	return 0;
134 }
135 
136 /* Returns updated SHA-1 index */
intel_write_sha_text(struct drm_i915_private * dev_priv,u32 sha_text)137 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
138 {
139 	I915_WRITE(HDCP_SHA_TEXT, sha_text);
140 	if (intel_wait_for_register(dev_priv, HDCP_REP_CTL,
141 				    HDCP_SHA1_READY, HDCP_SHA1_READY, 1)) {
142 		DRM_ERROR("Timed out waiting for SHA1 ready\n");
143 		return -ETIMEDOUT;
144 	}
145 	return 0;
146 }
147 
148 static
intel_hdcp_get_repeater_ctl(struct intel_digital_port * intel_dig_port)149 u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port)
150 {
151 	enum port port = intel_dig_port->base.port;
152 	switch (port) {
153 	case PORT_A:
154 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
155 	case PORT_B:
156 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
157 	case PORT_C:
158 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
159 	case PORT_D:
160 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
161 	case PORT_E:
162 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
163 	default:
164 		break;
165 	}
166 	DRM_ERROR("Unknown port %d\n", port);
167 	return -EINVAL;
168 }
169 
170 static
intel_hdcp_is_ksv_valid(u8 * ksv)171 bool intel_hdcp_is_ksv_valid(u8 *ksv)
172 {
173 	int i, ones = 0;
174 	/* KSV has 20 1's and 20 0's */
175 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
176 		ones += hweight8(ksv[i]);
177 	if (ones != 20)
178 		return false;
179 	return true;
180 }
181 
182 static
intel_hdcp_validate_v_prime(struct intel_digital_port * intel_dig_port,const struct intel_hdcp_shim * shim,u8 * ksv_fifo,u8 num_downstream,u8 * bstatus)183 int intel_hdcp_validate_v_prime(struct intel_digital_port *intel_dig_port,
184 				const struct intel_hdcp_shim *shim,
185 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
186 {
187 	struct drm_i915_private *dev_priv;
188 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
189 	int ret, i, j, sha_idx;
190 
191 	dev_priv = intel_dig_port->base.base.dev->dev_private;
192 
193 	/* Process V' values from the receiver */
194 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
195 		ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
196 		if (ret)
197 			return ret;
198 		I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
199 	}
200 
201 	/*
202 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
203 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
204 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
205 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
206 	 * index will keep track of our progress through the 64 bytes as well as
207 	 * helping us work the 40-bit KSVs through our 32-bit register.
208 	 *
209 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
210 	 */
211 	sha_idx = 0;
212 	sha_text = 0;
213 	sha_leftovers = 0;
214 	rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port);
215 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
216 	for (i = 0; i < num_downstream; i++) {
217 		unsigned int sha_empty;
218 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
219 
220 		/* Fill up the empty slots in sha_text and write it out */
221 		sha_empty = sizeof(sha_text) - sha_leftovers;
222 		for (j = 0; j < sha_empty; j++)
223 			sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
224 
225 		ret = intel_write_sha_text(dev_priv, sha_text);
226 		if (ret < 0)
227 			return ret;
228 
229 		/* Programming guide writes this every 64 bytes */
230 		sha_idx += sizeof(sha_text);
231 		if (!(sha_idx % 64))
232 			I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
233 
234 		/* Store the leftover bytes from the ksv in sha_text */
235 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
236 		sha_text = 0;
237 		for (j = 0; j < sha_leftovers; j++)
238 			sha_text |= ksv[sha_empty + j] <<
239 					((sizeof(sha_text) - j - 1) * 8);
240 
241 		/*
242 		 * If we still have room in sha_text for more data, continue.
243 		 * Otherwise, write it out immediately.
244 		 */
245 		if (sizeof(sha_text) > sha_leftovers)
246 			continue;
247 
248 		ret = intel_write_sha_text(dev_priv, sha_text);
249 		if (ret < 0)
250 			return ret;
251 		sha_leftovers = 0;
252 		sha_text = 0;
253 		sha_idx += sizeof(sha_text);
254 	}
255 
256 	/*
257 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
258 	 * bytes are leftover from the last ksv, we might be able to fit them
259 	 * all in sha_text (first 2 cases), or we might need to split them up
260 	 * into 2 writes (last 2 cases).
261 	 */
262 	if (sha_leftovers == 0) {
263 		/* Write 16 bits of text, 16 bits of M0 */
264 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
265 		ret = intel_write_sha_text(dev_priv,
266 					   bstatus[0] << 8 | bstatus[1]);
267 		if (ret < 0)
268 			return ret;
269 		sha_idx += sizeof(sha_text);
270 
271 		/* Write 32 bits of M0 */
272 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
273 		ret = intel_write_sha_text(dev_priv, 0);
274 		if (ret < 0)
275 			return ret;
276 		sha_idx += sizeof(sha_text);
277 
278 		/* Write 16 bits of M0 */
279 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
280 		ret = intel_write_sha_text(dev_priv, 0);
281 		if (ret < 0)
282 			return ret;
283 		sha_idx += sizeof(sha_text);
284 
285 	} else if (sha_leftovers == 1) {
286 		/* Write 24 bits of text, 8 bits of M0 */
287 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
288 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
289 		/* Only 24-bits of data, must be in the LSB */
290 		sha_text = (sha_text & 0xffffff00) >> 8;
291 		ret = intel_write_sha_text(dev_priv, sha_text);
292 		if (ret < 0)
293 			return ret;
294 		sha_idx += sizeof(sha_text);
295 
296 		/* Write 32 bits of M0 */
297 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
298 		ret = intel_write_sha_text(dev_priv, 0);
299 		if (ret < 0)
300 			return ret;
301 		sha_idx += sizeof(sha_text);
302 
303 		/* Write 24 bits of M0 */
304 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
305 		ret = intel_write_sha_text(dev_priv, 0);
306 		if (ret < 0)
307 			return ret;
308 		sha_idx += sizeof(sha_text);
309 
310 	} else if (sha_leftovers == 2) {
311 		/* Write 32 bits of text */
312 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
313 		sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
314 		ret = intel_write_sha_text(dev_priv, sha_text);
315 		if (ret < 0)
316 			return ret;
317 		sha_idx += sizeof(sha_text);
318 
319 		/* Write 64 bits of M0 */
320 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
321 		for (i = 0; i < 2; i++) {
322 			ret = intel_write_sha_text(dev_priv, 0);
323 			if (ret < 0)
324 				return ret;
325 			sha_idx += sizeof(sha_text);
326 		}
327 	} else if (sha_leftovers == 3) {
328 		/* Write 32 bits of text */
329 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
330 		sha_text |= bstatus[0] << 24;
331 		ret = intel_write_sha_text(dev_priv, sha_text);
332 		if (ret < 0)
333 			return ret;
334 		sha_idx += sizeof(sha_text);
335 
336 		/* Write 8 bits of text, 24 bits of M0 */
337 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
338 		ret = intel_write_sha_text(dev_priv, bstatus[1]);
339 		if (ret < 0)
340 			return ret;
341 		sha_idx += sizeof(sha_text);
342 
343 		/* Write 32 bits of M0 */
344 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
345 		ret = intel_write_sha_text(dev_priv, 0);
346 		if (ret < 0)
347 			return ret;
348 		sha_idx += sizeof(sha_text);
349 
350 		/* Write 8 bits of M0 */
351 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
352 		ret = intel_write_sha_text(dev_priv, 0);
353 		if (ret < 0)
354 			return ret;
355 		sha_idx += sizeof(sha_text);
356 	} else {
357 		DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
358 			      sha_leftovers);
359 		return -EINVAL;
360 	}
361 
362 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
363 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
364 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
365 		ret = intel_write_sha_text(dev_priv, 0);
366 		if (ret < 0)
367 			return ret;
368 		sha_idx += sizeof(sha_text);
369 	}
370 
371 	/*
372 	 * Last write gets the length of the concatenation in bits. That is:
373 	 *  - 5 bytes per device
374 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
375 	 */
376 	sha_text = (num_downstream * 5 + 10) * 8;
377 	ret = intel_write_sha_text(dev_priv, sha_text);
378 	if (ret < 0)
379 		return ret;
380 
381 	/* Tell the HW we're done with the hash and wait for it to ACK */
382 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
383 	if (intel_wait_for_register(dev_priv, HDCP_REP_CTL,
384 				    HDCP_SHA1_COMPLETE,
385 				    HDCP_SHA1_COMPLETE, 1)) {
386 		DRM_DEBUG_KMS("Timed out waiting for SHA1 complete\n");
387 		return -ETIMEDOUT;
388 	}
389 	if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
390 		DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
391 		return -ENXIO;
392 	}
393 
394 	return 0;
395 }
396 
397 /* Implements Part 2 of the HDCP authorization procedure */
398 static
intel_hdcp_auth_downstream(struct intel_digital_port * intel_dig_port,const struct intel_hdcp_shim * shim)399 int intel_hdcp_auth_downstream(struct intel_digital_port *intel_dig_port,
400 			       const struct intel_hdcp_shim *shim)
401 {
402 	u8 bstatus[2], num_downstream, *ksv_fifo;
403 	int ret, i, tries = 3;
404 
405 	ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
406 	if (ret) {
407 		DRM_ERROR("KSV list failed to become ready (%d)\n", ret);
408 		return ret;
409 	}
410 
411 	ret = shim->read_bstatus(intel_dig_port, bstatus);
412 	if (ret)
413 		return ret;
414 
415 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
416 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
417 		DRM_ERROR("Max Topology Limit Exceeded\n");
418 		return -EPERM;
419 	}
420 
421 	/*
422 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
423 	 * the HDCP encryption. That implies that repeater can't have its own
424 	 * display. As there is no consumption of encrypted content in the
425 	 * repeater with 0 downstream devices, we are failing the
426 	 * authentication.
427 	 */
428 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
429 	if (num_downstream == 0)
430 		return -EINVAL;
431 
432 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
433 	if (!ksv_fifo)
434 		return -ENOMEM;
435 
436 	ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
437 	if (ret)
438 		goto err;
439 
440 	/*
441 	 * When V prime mismatches, DP Spec mandates re-read of
442 	 * V prime atleast twice.
443 	 */
444 	for (i = 0; i < tries; i++) {
445 		ret = intel_hdcp_validate_v_prime(intel_dig_port, shim,
446 						  ksv_fifo, num_downstream,
447 						  bstatus);
448 		if (!ret)
449 			break;
450 	}
451 
452 	if (i == tries) {
453 		DRM_ERROR("V Prime validation failed.(%d)\n", ret);
454 		goto err;
455 	}
456 
457 	DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
458 		      num_downstream);
459 	ret = 0;
460 err:
461 	kfree(ksv_fifo);
462 	return ret;
463 }
464 
465 /* Implements Part 1 of the HDCP authorization procedure */
intel_hdcp_auth(struct intel_digital_port * intel_dig_port,const struct intel_hdcp_shim * shim)466 static int intel_hdcp_auth(struct intel_digital_port *intel_dig_port,
467 			   const struct intel_hdcp_shim *shim)
468 {
469 	struct drm_i915_private *dev_priv;
470 	enum port port;
471 	unsigned long r0_prime_gen_start;
472 	int ret, i, tries = 2;
473 	union {
474 		u32 reg[2];
475 		u8 shim[DRM_HDCP_AN_LEN];
476 	} an;
477 	union {
478 		u32 reg[2];
479 		u8 shim[DRM_HDCP_KSV_LEN];
480 	} bksv;
481 	union {
482 		u32 reg;
483 		u8 shim[DRM_HDCP_RI_LEN];
484 	} ri;
485 	bool repeater_present, hdcp_capable;
486 
487 	dev_priv = intel_dig_port->base.base.dev->dev_private;
488 
489 	port = intel_dig_port->base.port;
490 
491 	/*
492 	 * Detects whether the display is HDCP capable. Although we check for
493 	 * valid Bksv below, the HDCP over DP spec requires that we check
494 	 * whether the display supports HDCP before we write An. For HDMI
495 	 * displays, this is not necessary.
496 	 */
497 	if (shim->hdcp_capable) {
498 		ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
499 		if (ret)
500 			return ret;
501 		if (!hdcp_capable) {
502 			DRM_ERROR("Panel is not HDCP capable\n");
503 			return -EINVAL;
504 		}
505 	}
506 
507 	/* Initialize An with 2 random values and acquire it */
508 	for (i = 0; i < 2; i++)
509 		I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32());
510 	I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN);
511 
512 	/* Wait for An to be acquired */
513 	if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port),
514 				    HDCP_STATUS_AN_READY,
515 				    HDCP_STATUS_AN_READY, 1)) {
516 		DRM_ERROR("Timed out waiting for An\n");
517 		return -ETIMEDOUT;
518 	}
519 
520 	an.reg[0] = I915_READ(PORT_HDCP_ANLO(port));
521 	an.reg[1] = I915_READ(PORT_HDCP_ANHI(port));
522 	ret = shim->write_an_aksv(intel_dig_port, an.shim);
523 	if (ret)
524 		return ret;
525 
526 	r0_prime_gen_start = jiffies;
527 
528 	memset(&bksv, 0, sizeof(bksv));
529 
530 	/* HDCP spec states that we must retry the bksv if it is invalid */
531 	for (i = 0; i < tries; i++) {
532 		ret = shim->read_bksv(intel_dig_port, bksv.shim);
533 		if (ret)
534 			return ret;
535 		if (intel_hdcp_is_ksv_valid(bksv.shim))
536 			break;
537 	}
538 	if (i == tries) {
539 		DRM_ERROR("HDCP failed, Bksv is invalid\n");
540 		return -ENODEV;
541 	}
542 
543 	I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]);
544 	I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]);
545 
546 	ret = shim->repeater_present(intel_dig_port, &repeater_present);
547 	if (ret)
548 		return ret;
549 	if (repeater_present)
550 		I915_WRITE(HDCP_REP_CTL,
551 			   intel_hdcp_get_repeater_ctl(intel_dig_port));
552 
553 	ret = shim->toggle_signalling(intel_dig_port, true);
554 	if (ret)
555 		return ret;
556 
557 	I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC);
558 
559 	/* Wait for R0 ready */
560 	if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
561 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
562 		DRM_ERROR("Timed out waiting for R0 ready\n");
563 		return -ETIMEDOUT;
564 	}
565 
566 	/*
567 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
568 	 * some monitors can take longer than this. We'll set the timeout at
569 	 * 300ms just to be sure.
570 	 *
571 	 * On DP, there's an R0_READY bit available but no such bit
572 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
573 	 * the stupid thing instead of polling on one and not the other.
574 	 */
575 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
576 
577 	tries = 3;
578 
579 	/*
580 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
581 	 * of R0 mismatch.
582 	 */
583 	for (i = 0; i < tries; i++) {
584 		ri.reg = 0;
585 		ret = shim->read_ri_prime(intel_dig_port, ri.shim);
586 		if (ret)
587 			return ret;
588 		I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);
589 
590 		/* Wait for Ri prime match */
591 		if (!wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
592 		    (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
593 			break;
594 	}
595 
596 	if (i == tries) {
597 		DRM_ERROR("Timed out waiting for Ri prime match (%x)\n",
598 			  I915_READ(PORT_HDCP_STATUS(port)));
599 		return -ETIMEDOUT;
600 	}
601 
602 	/* Wait for encryption confirmation */
603 	if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port),
604 				    HDCP_STATUS_ENC, HDCP_STATUS_ENC, 20)) {
605 		DRM_ERROR("Timed out waiting for encryption\n");
606 		return -ETIMEDOUT;
607 	}
608 
609 	/*
610 	 * XXX: If we have MST-connected devices, we need to enable encryption
611 	 * on those as well.
612 	 */
613 
614 	if (repeater_present)
615 		return intel_hdcp_auth_downstream(intel_dig_port, shim);
616 
617 	DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
618 	return 0;
619 }
620 
621 static
conn_to_dig_port(struct intel_connector * connector)622 struct intel_digital_port *conn_to_dig_port(struct intel_connector *connector)
623 {
624 	return enc_to_dig_port(&intel_attached_encoder(&connector->base)->base);
625 }
626 
_intel_hdcp_disable(struct intel_connector * connector)627 static int _intel_hdcp_disable(struct intel_connector *connector)
628 {
629 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
630 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
631 	enum port port = intel_dig_port->base.port;
632 	int ret;
633 
634 	DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
635 		      connector->base.name, connector->base.base.id);
636 
637 	I915_WRITE(PORT_HDCP_CONF(port), 0);
638 	if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), ~0, 0,
639 				    20)) {
640 		DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
641 		return -ETIMEDOUT;
642 	}
643 
644 	ret = connector->hdcp_shim->toggle_signalling(intel_dig_port, false);
645 	if (ret) {
646 		DRM_ERROR("Failed to disable HDCP signalling\n");
647 		return ret;
648 	}
649 
650 	DRM_DEBUG_KMS("HDCP is disabled\n");
651 	return 0;
652 }
653 
_intel_hdcp_enable(struct intel_connector * connector)654 static int _intel_hdcp_enable(struct intel_connector *connector)
655 {
656 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
657 	int i, ret, tries = 3;
658 
659 	DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
660 		      connector->base.name, connector->base.base.id);
661 
662 	if (!hdcp_key_loadable(dev_priv)) {
663 		DRM_ERROR("HDCP key Load is not possible\n");
664 		return -ENXIO;
665 	}
666 
667 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
668 		ret = intel_hdcp_load_keys(dev_priv);
669 		if (!ret)
670 			break;
671 		intel_hdcp_clear_keys(dev_priv);
672 	}
673 	if (ret) {
674 		DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
675 		return ret;
676 	}
677 
678 	/* Incase of authentication failures, HDCP spec expects reauth. */
679 	for (i = 0; i < tries; i++) {
680 		ret = intel_hdcp_auth(conn_to_dig_port(connector),
681 				      connector->hdcp_shim);
682 		if (!ret)
683 			return 0;
684 
685 		DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
686 
687 		/* Ensuring HDCP encryption and signalling are stopped. */
688 		_intel_hdcp_disable(connector);
689 	}
690 
691 	DRM_ERROR("HDCP authentication failed (%d tries/%d)\n", tries, ret);
692 	return ret;
693 }
694 
intel_hdcp_check_work(struct work_struct * work)695 static void intel_hdcp_check_work(struct work_struct *work)
696 {
697 	struct intel_connector *connector = container_of(to_delayed_work(work),
698 							 struct intel_connector,
699 							 hdcp_check_work);
700 	if (!intel_hdcp_check_link(connector))
701 		schedule_delayed_work(&connector->hdcp_check_work,
702 				      DRM_HDCP_CHECK_PERIOD_MS);
703 }
704 
intel_hdcp_prop_work(struct work_struct * work)705 static void intel_hdcp_prop_work(struct work_struct *work)
706 {
707 	struct intel_connector *connector = container_of(work,
708 							 struct intel_connector,
709 							 hdcp_prop_work);
710 	struct drm_device *dev = connector->base.dev;
711 	struct drm_connector_state *state;
712 
713 	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
714 	mutex_lock(&connector->hdcp_mutex);
715 
716 	/*
717 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
718 	 * those to UNDESIRED is handled by core. If hdcp_value == UNDESIRED,
719 	 * we're running just after hdcp has been disabled, so just exit
720 	 */
721 	if (connector->hdcp_value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
722 		state = connector->base.state;
723 		state->content_protection = connector->hdcp_value;
724 	}
725 
726 	mutex_unlock(&connector->hdcp_mutex);
727 	drm_modeset_unlock(&dev->mode_config.connection_mutex);
728 }
729 
is_hdcp_supported(struct drm_i915_private * dev_priv,enum port port)730 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
731 {
732 	/* PORT E doesn't have HDCP, and PORT F is disabled */
733 	return ((INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
734 		!IS_CHERRYVIEW(dev_priv) && port < PORT_E);
735 }
736 
intel_hdcp_init(struct intel_connector * connector,const struct intel_hdcp_shim * hdcp_shim)737 int intel_hdcp_init(struct intel_connector *connector,
738 		    const struct intel_hdcp_shim *hdcp_shim)
739 {
740 	int ret;
741 
742 	ret = drm_connector_attach_content_protection_property(
743 			&connector->base);
744 	if (ret)
745 		return ret;
746 
747 	connector->hdcp_shim = hdcp_shim;
748 	mutex_init(&connector->hdcp_mutex);
749 	INIT_DELAYED_WORK(&connector->hdcp_check_work, intel_hdcp_check_work);
750 	INIT_WORK(&connector->hdcp_prop_work, intel_hdcp_prop_work);
751 	return 0;
752 }
753 
intel_hdcp_enable(struct intel_connector * connector)754 int intel_hdcp_enable(struct intel_connector *connector)
755 {
756 	int ret;
757 
758 	if (!connector->hdcp_shim)
759 		return -ENOENT;
760 
761 	mutex_lock(&connector->hdcp_mutex);
762 
763 	ret = _intel_hdcp_enable(connector);
764 	if (ret)
765 		goto out;
766 
767 	connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
768 	schedule_work(&connector->hdcp_prop_work);
769 	schedule_delayed_work(&connector->hdcp_check_work,
770 			      DRM_HDCP_CHECK_PERIOD_MS);
771 out:
772 	mutex_unlock(&connector->hdcp_mutex);
773 	return ret;
774 }
775 
intel_hdcp_disable(struct intel_connector * connector)776 int intel_hdcp_disable(struct intel_connector *connector)
777 {
778 	int ret = 0;
779 
780 	if (!connector->hdcp_shim)
781 		return -ENOENT;
782 
783 	mutex_lock(&connector->hdcp_mutex);
784 
785 	if (connector->hdcp_value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
786 		connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
787 		ret = _intel_hdcp_disable(connector);
788 	}
789 
790 	mutex_unlock(&connector->hdcp_mutex);
791 	cancel_delayed_work_sync(&connector->hdcp_check_work);
792 	return ret;
793 }
794 
intel_hdcp_atomic_check(struct drm_connector * connector,struct drm_connector_state * old_state,struct drm_connector_state * new_state)795 void intel_hdcp_atomic_check(struct drm_connector *connector,
796 			     struct drm_connector_state *old_state,
797 			     struct drm_connector_state *new_state)
798 {
799 	uint64_t old_cp = old_state->content_protection;
800 	uint64_t new_cp = new_state->content_protection;
801 	struct drm_crtc_state *crtc_state;
802 
803 	if (!new_state->crtc) {
804 		/*
805 		 * If the connector is being disabled with CP enabled, mark it
806 		 * desired so it's re-enabled when the connector is brought back
807 		 */
808 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
809 			new_state->content_protection =
810 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
811 		return;
812 	}
813 
814 	/*
815 	 * Nothing to do if the state didn't change, or HDCP was activated since
816 	 * the last commit
817 	 */
818 	if (old_cp == new_cp ||
819 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
820 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED))
821 		return;
822 
823 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
824 						   new_state->crtc);
825 	crtc_state->mode_changed = true;
826 }
827 
828 /* Implements Part 3 of the HDCP authorization procedure */
intel_hdcp_check_link(struct intel_connector * connector)829 int intel_hdcp_check_link(struct intel_connector *connector)
830 {
831 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
832 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
833 	enum port port = intel_dig_port->base.port;
834 	int ret = 0;
835 
836 	if (!connector->hdcp_shim)
837 		return -ENOENT;
838 
839 	mutex_lock(&connector->hdcp_mutex);
840 
841 	if (connector->hdcp_value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
842 		goto out;
843 
844 	if (!(I915_READ(PORT_HDCP_STATUS(port)) & HDCP_STATUS_ENC)) {
845 		DRM_ERROR("%s:%d HDCP check failed: link is not encrypted,%x\n",
846 			  connector->base.name, connector->base.base.id,
847 			  I915_READ(PORT_HDCP_STATUS(port)));
848 		ret = -ENXIO;
849 		connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
850 		schedule_work(&connector->hdcp_prop_work);
851 		goto out;
852 	}
853 
854 	if (connector->hdcp_shim->check_link(intel_dig_port)) {
855 		if (connector->hdcp_value !=
856 		    DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
857 			connector->hdcp_value =
858 				DRM_MODE_CONTENT_PROTECTION_ENABLED;
859 			schedule_work(&connector->hdcp_prop_work);
860 		}
861 		goto out;
862 	}
863 
864 	DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
865 		      connector->base.name, connector->base.base.id);
866 
867 	ret = _intel_hdcp_disable(connector);
868 	if (ret) {
869 		DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
870 		connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
871 		schedule_work(&connector->hdcp_prop_work);
872 		goto out;
873 	}
874 
875 	ret = _intel_hdcp_enable(connector);
876 	if (ret) {
877 		DRM_ERROR("Failed to enable hdcp (%d)\n", ret);
878 		connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
879 		schedule_work(&connector->hdcp_prop_work);
880 		goto out;
881 	}
882 
883 out:
884 	mutex_unlock(&connector->hdcp_mutex);
885 	return ret;
886 }
887