1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9
10 #include "gt/intel_context.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_gt.h"
13 #include "gt/intel_gt_pm.h"
14 #include "gt/intel_lrc_reg.h"
15 #include "intel_guc_submission.h"
16
17 #include "i915_drv.h"
18 #include "i915_trace.h"
19
20 enum {
21 GUC_PREEMPT_NONE = 0,
22 GUC_PREEMPT_INPROGRESS,
23 GUC_PREEMPT_FINISHED,
24 };
25 #define GUC_PREEMPT_BREADCRUMB_DWORDS 0x8
26 #define GUC_PREEMPT_BREADCRUMB_BYTES \
27 (sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
28
29 /**
30 * DOC: GuC-based command submission
31 *
32 * GuC client:
33 * A intel_guc_client refers to a submission path through GuC. Currently, there
34 * is only one client, which is charged with all submissions to the GuC. This
35 * struct is the owner of a doorbell, a process descriptor and a workqueue (all
36 * of them inside a single gem object that contains all required pages for these
37 * elements).
38 *
39 * GuC stage descriptor:
40 * During initialization, the driver allocates a static pool of 1024 such
41 * descriptors, and shares them with the GuC.
42 * Currently, there exists a 1:1 mapping between a intel_guc_client and a
43 * guc_stage_desc (via the client's stage_id), so effectively only one
44 * gets used. This stage descriptor lets the GuC know about the doorbell,
45 * workqueue and process descriptor. Theoretically, it also lets the GuC
46 * know about our HW contexts (context ID, etc...), but we actually
47 * employ a kind of submission where the GuC uses the LRCA sent via the work
48 * item instead (the single guc_stage_desc associated to execbuf client
49 * contains information about the default kernel context only, but this is
50 * essentially unused). This is called a "proxy" submission.
51 *
52 * The Scratch registers:
53 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
54 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
55 * triggers an interrupt on the GuC via another register write (0xC4C8).
56 * Firmware writes a success/fail code back to the action register after
57 * processes the request. The kernel driver polls waiting for this update and
58 * then proceeds.
59 * See intel_guc_send()
60 *
61 * Doorbells:
62 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
63 * mapped into process space.
64 *
65 * Work Items:
66 * There are several types of work items that the host may place into a
67 * workqueue, each with its own requirements and limitations. Currently only
68 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
69 * represents in-order queue. The kernel driver packs ring tail pointer and an
70 * ELSP context descriptor dword into Work Item.
71 * See guc_add_request()
72 *
73 */
74
to_priolist(struct rb_node * rb)75 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
76 {
77 return rb_entry(rb, struct i915_priolist, node);
78 }
79
is_high_priority(struct intel_guc_client * client)80 static inline bool is_high_priority(struct intel_guc_client *client)
81 {
82 return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
83 client->priority == GUC_CLIENT_PRIORITY_HIGH);
84 }
85
reserve_doorbell(struct intel_guc_client * client)86 static int reserve_doorbell(struct intel_guc_client *client)
87 {
88 unsigned long offset;
89 unsigned long end;
90 u16 id;
91
92 GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
93
94 /*
95 * The bitmap tracks which doorbell registers are currently in use.
96 * It is split into two halves; the first half is used for normal
97 * priority contexts, the second half for high-priority ones.
98 */
99 offset = 0;
100 end = GUC_NUM_DOORBELLS / 2;
101 if (is_high_priority(client)) {
102 offset = end;
103 end += offset;
104 }
105
106 id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
107 if (id == end)
108 return -ENOSPC;
109
110 __set_bit(id, client->guc->doorbell_bitmap);
111 client->doorbell_id = id;
112 DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
113 client->stage_id, yesno(is_high_priority(client)),
114 id);
115 return 0;
116 }
117
has_doorbell(struct intel_guc_client * client)118 static bool has_doorbell(struct intel_guc_client *client)
119 {
120 if (client->doorbell_id == GUC_DOORBELL_INVALID)
121 return false;
122
123 return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
124 }
125
unreserve_doorbell(struct intel_guc_client * client)126 static void unreserve_doorbell(struct intel_guc_client *client)
127 {
128 GEM_BUG_ON(!has_doorbell(client));
129
130 __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
131 client->doorbell_id = GUC_DOORBELL_INVALID;
132 }
133
134 /*
135 * Tell the GuC to allocate or deallocate a specific doorbell
136 */
137
__guc_allocate_doorbell(struct intel_guc * guc,u32 stage_id)138 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
139 {
140 u32 action[] = {
141 INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
142 stage_id
143 };
144
145 return intel_guc_send(guc, action, ARRAY_SIZE(action));
146 }
147
__guc_deallocate_doorbell(struct intel_guc * guc,u32 stage_id)148 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
149 {
150 u32 action[] = {
151 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
152 stage_id
153 };
154
155 return intel_guc_send(guc, action, ARRAY_SIZE(action));
156 }
157
__get_stage_desc(struct intel_guc_client * client)158 static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
159 {
160 struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
161
162 return &base[client->stage_id];
163 }
164
165 /*
166 * Initialise, update, or clear doorbell data shared with the GuC
167 *
168 * These functions modify shared data and so need access to the mapped
169 * client object which contains the page being used for the doorbell
170 */
171
__update_doorbell_desc(struct intel_guc_client * client,u16 new_id)172 static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
173 {
174 struct guc_stage_desc *desc;
175
176 /* Update the GuC's idea of the doorbell ID */
177 desc = __get_stage_desc(client);
178 desc->db_id = new_id;
179 }
180
__get_doorbell(struct intel_guc_client * client)181 static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
182 {
183 return client->vaddr + client->doorbell_offset;
184 }
185
__doorbell_valid(struct intel_guc * guc,u16 db_id)186 static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
187 {
188 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
189
190 GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
191 return intel_uncore_read(uncore, GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
192 }
193
__init_doorbell(struct intel_guc_client * client)194 static void __init_doorbell(struct intel_guc_client *client)
195 {
196 struct guc_doorbell_info *doorbell;
197
198 doorbell = __get_doorbell(client);
199 doorbell->db_status = GUC_DOORBELL_ENABLED;
200 doorbell->cookie = 0;
201 }
202
__fini_doorbell(struct intel_guc_client * client)203 static void __fini_doorbell(struct intel_guc_client *client)
204 {
205 struct guc_doorbell_info *doorbell;
206 u16 db_id = client->doorbell_id;
207
208 doorbell = __get_doorbell(client);
209 doorbell->db_status = GUC_DOORBELL_DISABLED;
210
211 /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
212 * to go to zero after updating db_status before we call the GuC to
213 * release the doorbell
214 */
215 if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
216 WARN_ONCE(true, "Doorbell never became invalid after disable\n");
217 }
218
create_doorbell(struct intel_guc_client * client)219 static int create_doorbell(struct intel_guc_client *client)
220 {
221 int ret;
222
223 if (WARN_ON(!has_doorbell(client)))
224 return -ENODEV; /* internal setup error, should never happen */
225
226 __update_doorbell_desc(client, client->doorbell_id);
227 __init_doorbell(client);
228
229 ret = __guc_allocate_doorbell(client->guc, client->stage_id);
230 if (ret) {
231 __fini_doorbell(client);
232 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
233 DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
234 client->stage_id, ret);
235 return ret;
236 }
237
238 return 0;
239 }
240
destroy_doorbell(struct intel_guc_client * client)241 static int destroy_doorbell(struct intel_guc_client *client)
242 {
243 int ret;
244
245 GEM_BUG_ON(!has_doorbell(client));
246
247 __fini_doorbell(client);
248 ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
249 if (ret)
250 DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
251 client->stage_id, ret);
252
253 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
254
255 return ret;
256 }
257
__select_cacheline(struct intel_guc * guc)258 static unsigned long __select_cacheline(struct intel_guc *guc)
259 {
260 unsigned long offset;
261
262 /* Doorbell uses a single cache line within a page */
263 offset = offset_in_page(guc->db_cacheline);
264
265 /* Moving to next cache line to reduce contention */
266 guc->db_cacheline += cache_line_size();
267
268 DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
269 offset, guc->db_cacheline, cache_line_size());
270 return offset;
271 }
272
273 static inline struct guc_process_desc *
__get_process_desc(struct intel_guc_client * client)274 __get_process_desc(struct intel_guc_client *client)
275 {
276 return client->vaddr + client->proc_desc_offset;
277 }
278
279 /*
280 * Initialise the process descriptor shared with the GuC firmware.
281 */
guc_proc_desc_init(struct intel_guc_client * client)282 static void guc_proc_desc_init(struct intel_guc_client *client)
283 {
284 struct guc_process_desc *desc;
285
286 desc = memset(__get_process_desc(client), 0, sizeof(*desc));
287
288 /*
289 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
290 * space for ring3 clients (set them as in mmap_ioctl) or kernel
291 * space for kernel clients (map on demand instead? May make debug
292 * easier to have it mapped).
293 */
294 desc->wq_base_addr = 0;
295 desc->db_base_addr = 0;
296
297 desc->stage_id = client->stage_id;
298 desc->wq_size_bytes = GUC_WQ_SIZE;
299 desc->wq_status = WQ_STATUS_ACTIVE;
300 desc->priority = client->priority;
301 }
302
guc_proc_desc_fini(struct intel_guc_client * client)303 static void guc_proc_desc_fini(struct intel_guc_client *client)
304 {
305 struct guc_process_desc *desc;
306
307 desc = __get_process_desc(client);
308 memset(desc, 0, sizeof(*desc));
309 }
310
guc_stage_desc_pool_create(struct intel_guc * guc)311 static int guc_stage_desc_pool_create(struct intel_guc *guc)
312 {
313 struct i915_vma *vma;
314 void *vaddr;
315
316 vma = intel_guc_allocate_vma(guc,
317 PAGE_ALIGN(sizeof(struct guc_stage_desc) *
318 GUC_MAX_STAGE_DESCRIPTORS));
319 if (IS_ERR(vma))
320 return PTR_ERR(vma);
321
322 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
323 if (IS_ERR(vaddr)) {
324 i915_vma_unpin_and_release(&vma, 0);
325 return PTR_ERR(vaddr);
326 }
327
328 guc->stage_desc_pool = vma;
329 guc->stage_desc_pool_vaddr = vaddr;
330 ida_init(&guc->stage_ids);
331
332 return 0;
333 }
334
guc_stage_desc_pool_destroy(struct intel_guc * guc)335 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
336 {
337 ida_destroy(&guc->stage_ids);
338 i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
339 }
340
341 /*
342 * Initialise/clear the stage descriptor shared with the GuC firmware.
343 *
344 * This descriptor tells the GuC where (in GGTT space) to find the important
345 * data structures relating to this client (doorbell, process descriptor,
346 * write queue, etc).
347 */
guc_stage_desc_init(struct intel_guc_client * client)348 static void guc_stage_desc_init(struct intel_guc_client *client)
349 {
350 struct intel_guc *guc = client->guc;
351 struct guc_stage_desc *desc;
352 u32 gfx_addr;
353
354 desc = __get_stage_desc(client);
355 memset(desc, 0, sizeof(*desc));
356
357 desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
358 GUC_STAGE_DESC_ATTR_KERNEL;
359 if (is_high_priority(client))
360 desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
361 desc->stage_id = client->stage_id;
362 desc->priority = client->priority;
363 desc->db_id = client->doorbell_id;
364
365 /*
366 * The doorbell, process descriptor, and workqueue are all parts
367 * of the client object, which the GuC will reference via the GGTT
368 */
369 gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
370 desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
371 client->doorbell_offset;
372 desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
373 desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
374 desc->process_desc = gfx_addr + client->proc_desc_offset;
375 desc->wq_addr = gfx_addr + GUC_DB_SIZE;
376 desc->wq_size = GUC_WQ_SIZE;
377
378 desc->desc_private = ptr_to_u64(client);
379 }
380
guc_stage_desc_fini(struct intel_guc_client * client)381 static void guc_stage_desc_fini(struct intel_guc_client *client)
382 {
383 struct guc_stage_desc *desc;
384
385 desc = __get_stage_desc(client);
386 memset(desc, 0, sizeof(*desc));
387 }
388
389 /* Construct a Work Item and append it to the GuC's Work Queue */
guc_wq_item_append(struct intel_guc_client * client,u32 target_engine,u32 context_desc,u32 ring_tail,u32 fence_id)390 static void guc_wq_item_append(struct intel_guc_client *client,
391 u32 target_engine, u32 context_desc,
392 u32 ring_tail, u32 fence_id)
393 {
394 /* wqi_len is in DWords, and does not include the one-word header */
395 const size_t wqi_size = sizeof(struct guc_wq_item);
396 const u32 wqi_len = wqi_size / sizeof(u32) - 1;
397 struct guc_process_desc *desc = __get_process_desc(client);
398 struct guc_wq_item *wqi;
399 u32 wq_off;
400
401 lockdep_assert_held(&client->wq_lock);
402
403 /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
404 * should not have the case where structure wqi is across page, neither
405 * wrapped to the beginning. This simplifies the implementation below.
406 *
407 * XXX: if not the case, we need save data to a temp wqi and copy it to
408 * workqueue buffer dw by dw.
409 */
410 BUILD_BUG_ON(wqi_size != 16);
411
412 /* We expect the WQ to be active if we're appending items to it */
413 GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
414
415 /* Free space is guaranteed. */
416 wq_off = READ_ONCE(desc->tail);
417 GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
418 GUC_WQ_SIZE) < wqi_size);
419 GEM_BUG_ON(wq_off & (wqi_size - 1));
420
421 /* WQ starts from the page after doorbell / process_desc */
422 wqi = client->vaddr + wq_off + GUC_DB_SIZE;
423
424 if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
425 wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
426 } else {
427 /* Now fill in the 4-word work queue item */
428 wqi->header = WQ_TYPE_INORDER |
429 (wqi_len << WQ_LEN_SHIFT) |
430 (target_engine << WQ_TARGET_SHIFT) |
431 WQ_NO_WCFLUSH_WAIT;
432 wqi->context_desc = context_desc;
433 wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
434 GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
435 wqi->fence_id = fence_id;
436 }
437
438 /* Make the update visible to GuC */
439 WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
440 }
441
guc_ring_doorbell(struct intel_guc_client * client)442 static void guc_ring_doorbell(struct intel_guc_client *client)
443 {
444 struct guc_doorbell_info *db;
445 u32 cookie;
446
447 lockdep_assert_held(&client->wq_lock);
448
449 /* pointer of current doorbell cacheline */
450 db = __get_doorbell(client);
451
452 /*
453 * We're not expecting the doorbell cookie to change behind our back,
454 * we also need to treat 0 as a reserved value.
455 */
456 cookie = READ_ONCE(db->cookie);
457 WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
458
459 /* XXX: doorbell was lost and need to acquire it again */
460 GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
461 }
462
guc_add_request(struct intel_guc * guc,struct i915_request * rq)463 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
464 {
465 struct intel_guc_client *client = guc->execbuf_client;
466 struct intel_engine_cs *engine = rq->engine;
467 u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
468 u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
469
470 guc_wq_item_append(client, engine->guc_id, ctx_desc,
471 ring_tail, rq->fence.seqno);
472 guc_ring_doorbell(client);
473 }
474
475 /*
476 * When we're doing submissions using regular execlists backend, writing to
477 * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
478 * pinned in mappable aperture portion of GGTT are visible to command streamer.
479 * Writes done by GuC on our behalf are not guaranteeing such ordering,
480 * therefore, to ensure the flush, we're issuing a POSTING READ.
481 */
flush_ggtt_writes(struct i915_vma * vma)482 static void flush_ggtt_writes(struct i915_vma *vma)
483 {
484 struct drm_i915_private *i915 = vma->vm->i915;
485
486 if (i915_vma_is_map_and_fenceable(vma))
487 intel_uncore_posting_read_fw(&i915->uncore, GUC_STATUS);
488 }
489
guc_submit(struct intel_engine_cs * engine,struct i915_request ** out,struct i915_request ** end)490 static void guc_submit(struct intel_engine_cs *engine,
491 struct i915_request **out,
492 struct i915_request **end)
493 {
494 struct intel_guc *guc = &engine->gt->uc.guc;
495 struct intel_guc_client *client = guc->execbuf_client;
496
497 spin_lock(&client->wq_lock);
498
499 do {
500 struct i915_request *rq = *out++;
501
502 flush_ggtt_writes(rq->ring->vma);
503 guc_add_request(guc, rq);
504 } while (out != end);
505
506 spin_unlock(&client->wq_lock);
507 }
508
rq_prio(const struct i915_request * rq)509 static inline int rq_prio(const struct i915_request *rq)
510 {
511 return rq->sched.attr.priority | __NO_PREEMPTION;
512 }
513
schedule_in(struct i915_request * rq,int idx)514 static struct i915_request *schedule_in(struct i915_request *rq, int idx)
515 {
516 trace_i915_request_in(rq, idx);
517
518 /*
519 * Currently we are not tracking the rq->context being inflight
520 * (ce->inflight = rq->engine). It is only used by the execlists
521 * backend at the moment, a similar counting strategy would be
522 * required if we generalise the inflight tracking.
523 */
524
525 intel_gt_pm_get(rq->engine->gt);
526 return i915_request_get(rq);
527 }
528
schedule_out(struct i915_request * rq)529 static void schedule_out(struct i915_request *rq)
530 {
531 trace_i915_request_out(rq);
532
533 intel_gt_pm_put(rq->engine->gt);
534 i915_request_put(rq);
535 }
536
__guc_dequeue(struct intel_engine_cs * engine)537 static void __guc_dequeue(struct intel_engine_cs *engine)
538 {
539 struct intel_engine_execlists * const execlists = &engine->execlists;
540 struct i915_request **first = execlists->inflight;
541 struct i915_request ** const last_port = first + execlists->port_mask;
542 struct i915_request *last = first[0];
543 struct i915_request **port;
544 bool submit = false;
545 struct rb_node *rb;
546
547 lockdep_assert_held(&engine->active.lock);
548
549 if (last) {
550 if (*++first)
551 return;
552
553 last = NULL;
554 }
555
556 /*
557 * We write directly into the execlists->inflight queue and don't use
558 * the execlists->pending queue, as we don't have a distinct switch
559 * event.
560 */
561 port = first;
562 while ((rb = rb_first_cached(&execlists->queue))) {
563 struct i915_priolist *p = to_priolist(rb);
564 struct i915_request *rq, *rn;
565 int i;
566
567 priolist_for_each_request_consume(rq, rn, p, i) {
568 if (last && rq->hw_context != last->hw_context) {
569 if (port == last_port)
570 goto done;
571
572 *port = schedule_in(last,
573 port - execlists->inflight);
574 port++;
575 }
576
577 list_del_init(&rq->sched.link);
578 __i915_request_submit(rq);
579 submit = true;
580 last = rq;
581 }
582
583 rb_erase_cached(&p->node, &execlists->queue);
584 i915_priolist_free(p);
585 }
586 done:
587 execlists->queue_priority_hint =
588 rb ? to_priolist(rb)->priority : INT_MIN;
589 if (submit) {
590 *port = schedule_in(last, port - execlists->inflight);
591 *++port = NULL;
592 guc_submit(engine, first, port);
593 }
594 execlists->active = execlists->inflight;
595 }
596
guc_submission_tasklet(unsigned long data)597 static void guc_submission_tasklet(unsigned long data)
598 {
599 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
600 struct intel_engine_execlists * const execlists = &engine->execlists;
601 struct i915_request **port, *rq;
602 unsigned long flags;
603
604 spin_lock_irqsave(&engine->active.lock, flags);
605
606 for (port = execlists->inflight; (rq = *port); port++) {
607 if (!i915_request_completed(rq))
608 break;
609
610 schedule_out(rq);
611 }
612 if (port != execlists->inflight) {
613 int idx = port - execlists->inflight;
614 int rem = ARRAY_SIZE(execlists->inflight) - idx;
615 memmove(execlists->inflight, port, rem * sizeof(*port));
616 }
617
618 __guc_dequeue(engine);
619
620 spin_unlock_irqrestore(&engine->active.lock, flags);
621 }
622
guc_reset_prepare(struct intel_engine_cs * engine)623 static void guc_reset_prepare(struct intel_engine_cs *engine)
624 {
625 struct intel_engine_execlists * const execlists = &engine->execlists;
626
627 GEM_TRACE("%s\n", engine->name);
628
629 /*
630 * Prevent request submission to the hardware until we have
631 * completed the reset in i915_gem_reset_finish(). If a request
632 * is completed by one engine, it may then queue a request
633 * to a second via its execlists->tasklet *just* as we are
634 * calling engine->init_hw() and also writing the ELSP.
635 * Turning off the execlists->tasklet until the reset is over
636 * prevents the race.
637 */
638 __tasklet_disable_sync_once(&execlists->tasklet);
639 }
640
641 static void
cancel_port_requests(struct intel_engine_execlists * const execlists)642 cancel_port_requests(struct intel_engine_execlists * const execlists)
643 {
644 struct i915_request * const *port, *rq;
645
646 /* Note we are only using the inflight and not the pending queue */
647
648 for (port = execlists->active; (rq = *port); port++)
649 schedule_out(rq);
650 execlists->active =
651 memset(execlists->inflight, 0, sizeof(execlists->inflight));
652 }
653
guc_reset(struct intel_engine_cs * engine,bool stalled)654 static void guc_reset(struct intel_engine_cs *engine, bool stalled)
655 {
656 struct intel_engine_execlists * const execlists = &engine->execlists;
657 struct i915_request *rq;
658 unsigned long flags;
659
660 spin_lock_irqsave(&engine->active.lock, flags);
661
662 cancel_port_requests(execlists);
663
664 /* Push back any incomplete requests for replay after the reset. */
665 rq = execlists_unwind_incomplete_requests(execlists);
666 if (!rq)
667 goto out_unlock;
668
669 if (!i915_request_started(rq))
670 stalled = false;
671
672 __i915_request_reset(rq, stalled);
673 intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled);
674
675 out_unlock:
676 spin_unlock_irqrestore(&engine->active.lock, flags);
677 }
678
guc_cancel_requests(struct intel_engine_cs * engine)679 static void guc_cancel_requests(struct intel_engine_cs *engine)
680 {
681 struct intel_engine_execlists * const execlists = &engine->execlists;
682 struct i915_request *rq, *rn;
683 struct rb_node *rb;
684 unsigned long flags;
685
686 GEM_TRACE("%s\n", engine->name);
687
688 /*
689 * Before we call engine->cancel_requests(), we should have exclusive
690 * access to the submission state. This is arranged for us by the
691 * caller disabling the interrupt generation, the tasklet and other
692 * threads that may then access the same state, giving us a free hand
693 * to reset state. However, we still need to let lockdep be aware that
694 * we know this state may be accessed in hardirq context, so we
695 * disable the irq around this manipulation and we want to keep
696 * the spinlock focused on its duties and not accidentally conflate
697 * coverage to the submission's irq state. (Similarly, although we
698 * shouldn't need to disable irq around the manipulation of the
699 * submission's irq state, we also wish to remind ourselves that
700 * it is irq state.)
701 */
702 spin_lock_irqsave(&engine->active.lock, flags);
703
704 /* Cancel the requests on the HW and clear the ELSP tracker. */
705 cancel_port_requests(execlists);
706
707 /* Mark all executing requests as skipped. */
708 list_for_each_entry(rq, &engine->active.requests, sched.link) {
709 if (!i915_request_signaled(rq))
710 dma_fence_set_error(&rq->fence, -EIO);
711
712 i915_request_mark_complete(rq);
713 }
714
715 /* Flush the queued requests to the timeline list (for retiring). */
716 while ((rb = rb_first_cached(&execlists->queue))) {
717 struct i915_priolist *p = to_priolist(rb);
718 int i;
719
720 priolist_for_each_request_consume(rq, rn, p, i) {
721 list_del_init(&rq->sched.link);
722 __i915_request_submit(rq);
723 dma_fence_set_error(&rq->fence, -EIO);
724 i915_request_mark_complete(rq);
725 }
726
727 rb_erase_cached(&p->node, &execlists->queue);
728 i915_priolist_free(p);
729 }
730
731 /* Remaining _unready_ requests will be nop'ed when submitted */
732
733 execlists->queue_priority_hint = INT_MIN;
734 execlists->queue = RB_ROOT_CACHED;
735
736 spin_unlock_irqrestore(&engine->active.lock, flags);
737 }
738
guc_reset_finish(struct intel_engine_cs * engine)739 static void guc_reset_finish(struct intel_engine_cs *engine)
740 {
741 struct intel_engine_execlists * const execlists = &engine->execlists;
742
743 if (__tasklet_enable(&execlists->tasklet))
744 /* And kick in case we missed a new request submission. */
745 tasklet_hi_schedule(&execlists->tasklet);
746
747 GEM_TRACE("%s: depth->%d\n", engine->name,
748 atomic_read(&execlists->tasklet.count));
749 }
750
751 /*
752 * Everything below here is concerned with setup & teardown, and is
753 * therefore not part of the somewhat time-critical batch-submission
754 * path of guc_submit() above.
755 */
756
757 /* Check that a doorbell register is in the expected state */
doorbell_ok(struct intel_guc * guc,u16 db_id)758 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
759 {
760 bool valid;
761
762 GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
763
764 valid = __doorbell_valid(guc, db_id);
765
766 if (test_bit(db_id, guc->doorbell_bitmap) == valid)
767 return true;
768
769 DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
770 db_id, yesno(valid));
771
772 return false;
773 }
774
guc_verify_doorbells(struct intel_guc * guc)775 static bool guc_verify_doorbells(struct intel_guc *guc)
776 {
777 bool doorbells_ok = true;
778 u16 db_id;
779
780 for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
781 if (!doorbell_ok(guc, db_id))
782 doorbells_ok = false;
783
784 return doorbells_ok;
785 }
786
787 /**
788 * guc_client_alloc() - Allocate an intel_guc_client
789 * @guc: the intel_guc structure
790 * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
791 * The kernel client to replace ExecList submission is created with
792 * NORMAL priority. Priority of a client for scheduler can be HIGH,
793 * while a preemption context can use CRITICAL.
794 *
795 * Return: An intel_guc_client object if success, else NULL.
796 */
797 static struct intel_guc_client *
guc_client_alloc(struct intel_guc * guc,u32 priority)798 guc_client_alloc(struct intel_guc *guc, u32 priority)
799 {
800 struct intel_guc_client *client;
801 struct i915_vma *vma;
802 void *vaddr;
803 int ret;
804
805 client = kzalloc(sizeof(*client), GFP_KERNEL);
806 if (!client)
807 return ERR_PTR(-ENOMEM);
808
809 client->guc = guc;
810 client->priority = priority;
811 client->doorbell_id = GUC_DOORBELL_INVALID;
812 spin_lock_init(&client->wq_lock);
813
814 ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
815 GFP_KERNEL);
816 if (ret < 0)
817 goto err_client;
818
819 client->stage_id = ret;
820
821 /* The first page is doorbell/proc_desc. Two followed pages are wq. */
822 vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
823 if (IS_ERR(vma)) {
824 ret = PTR_ERR(vma);
825 goto err_id;
826 }
827
828 /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
829 client->vma = vma;
830
831 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
832 if (IS_ERR(vaddr)) {
833 ret = PTR_ERR(vaddr);
834 goto err_vma;
835 }
836 client->vaddr = vaddr;
837
838 ret = reserve_doorbell(client);
839 if (ret)
840 goto err_vaddr;
841
842 client->doorbell_offset = __select_cacheline(guc);
843
844 /*
845 * Since the doorbell only requires a single cacheline, we can save
846 * space by putting the application process descriptor in the same
847 * page. Use the half of the page that doesn't include the doorbell.
848 */
849 if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
850 client->proc_desc_offset = 0;
851 else
852 client->proc_desc_offset = (GUC_DB_SIZE / 2);
853
854 DRM_DEBUG_DRIVER("new priority %u client %p: stage_id %u\n",
855 priority, client, client->stage_id);
856 DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
857 client->doorbell_id, client->doorbell_offset);
858
859 return client;
860
861 err_vaddr:
862 i915_gem_object_unpin_map(client->vma->obj);
863 err_vma:
864 i915_vma_unpin_and_release(&client->vma, 0);
865 err_id:
866 ida_simple_remove(&guc->stage_ids, client->stage_id);
867 err_client:
868 kfree(client);
869 return ERR_PTR(ret);
870 }
871
guc_client_free(struct intel_guc_client * client)872 static void guc_client_free(struct intel_guc_client *client)
873 {
874 unreserve_doorbell(client);
875 i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
876 ida_simple_remove(&client->guc->stage_ids, client->stage_id);
877 kfree(client);
878 }
879
ctx_save_restore_disabled(struct intel_context * ce)880 static inline bool ctx_save_restore_disabled(struct intel_context *ce)
881 {
882 u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
883
884 #define SR_DISABLED \
885 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
886 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
887
888 return (sr & SR_DISABLED) == SR_DISABLED;
889
890 #undef SR_DISABLED
891 }
892
guc_clients_create(struct intel_guc * guc)893 static int guc_clients_create(struct intel_guc *guc)
894 {
895 struct intel_guc_client *client;
896
897 GEM_BUG_ON(guc->execbuf_client);
898
899 client = guc_client_alloc(guc, GUC_CLIENT_PRIORITY_KMD_NORMAL);
900 if (IS_ERR(client)) {
901 DRM_ERROR("Failed to create GuC client for submission!\n");
902 return PTR_ERR(client);
903 }
904 guc->execbuf_client = client;
905
906 return 0;
907 }
908
guc_clients_destroy(struct intel_guc * guc)909 static void guc_clients_destroy(struct intel_guc *guc)
910 {
911 struct intel_guc_client *client;
912
913 client = fetch_and_zero(&guc->execbuf_client);
914 if (client)
915 guc_client_free(client);
916 }
917
__guc_client_enable(struct intel_guc_client * client)918 static int __guc_client_enable(struct intel_guc_client *client)
919 {
920 int ret;
921
922 guc_proc_desc_init(client);
923 guc_stage_desc_init(client);
924
925 ret = create_doorbell(client);
926 if (ret)
927 goto fail;
928
929 return 0;
930
931 fail:
932 guc_stage_desc_fini(client);
933 guc_proc_desc_fini(client);
934 return ret;
935 }
936
__guc_client_disable(struct intel_guc_client * client)937 static void __guc_client_disable(struct intel_guc_client *client)
938 {
939 /*
940 * By the time we're here, GuC may have already been reset. if that is
941 * the case, instead of trying (in vain) to communicate with it, let's
942 * just cleanup the doorbell HW and our internal state.
943 */
944 if (intel_guc_is_running(client->guc))
945 destroy_doorbell(client);
946 else
947 __fini_doorbell(client);
948
949 guc_stage_desc_fini(client);
950 guc_proc_desc_fini(client);
951 }
952
guc_clients_enable(struct intel_guc * guc)953 static int guc_clients_enable(struct intel_guc *guc)
954 {
955 return __guc_client_enable(guc->execbuf_client);
956 }
957
guc_clients_disable(struct intel_guc * guc)958 static void guc_clients_disable(struct intel_guc *guc)
959 {
960 if (guc->execbuf_client)
961 __guc_client_disable(guc->execbuf_client);
962 }
963
964 /*
965 * Set up the memory resources to be shared with the GuC (via the GGTT)
966 * at firmware loading time.
967 */
intel_guc_submission_init(struct intel_guc * guc)968 int intel_guc_submission_init(struct intel_guc *guc)
969 {
970 int ret;
971
972 if (guc->stage_desc_pool)
973 return 0;
974
975 ret = guc_stage_desc_pool_create(guc);
976 if (ret)
977 return ret;
978 /*
979 * Keep static analysers happy, let them know that we allocated the
980 * vma after testing that it didn't exist earlier.
981 */
982 GEM_BUG_ON(!guc->stage_desc_pool);
983
984 WARN_ON(!guc_verify_doorbells(guc));
985 ret = guc_clients_create(guc);
986 if (ret)
987 goto err_pool;
988
989 return 0;
990
991 err_pool:
992 guc_stage_desc_pool_destroy(guc);
993 return ret;
994 }
995
intel_guc_submission_fini(struct intel_guc * guc)996 void intel_guc_submission_fini(struct intel_guc *guc)
997 {
998 guc_clients_destroy(guc);
999 WARN_ON(!guc_verify_doorbells(guc));
1000
1001 if (guc->stage_desc_pool)
1002 guc_stage_desc_pool_destroy(guc);
1003 }
1004
guc_interrupts_capture(struct intel_gt * gt)1005 static void guc_interrupts_capture(struct intel_gt *gt)
1006 {
1007 struct intel_rps *rps = >->i915->gt_pm.rps;
1008 struct intel_uncore *uncore = gt->uncore;
1009 struct intel_engine_cs *engine;
1010 enum intel_engine_id id;
1011 int irqs;
1012
1013 /* tell all command streamers to forward interrupts (but not vblank)
1014 * to GuC
1015 */
1016 irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1017 for_each_engine(engine, gt->i915, id)
1018 ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1019
1020 /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1021 irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1022 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1023 /* These three registers have the same bit definitions */
1024 intel_uncore_write(uncore, GUC_BCS_RCS_IER, ~irqs);
1025 intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, ~irqs);
1026 intel_uncore_write(uncore, GUC_WD_VECS_IER, ~irqs);
1027
1028 /*
1029 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1030 * (unmasked) PM interrupts to the GuC. All other bits of this
1031 * register *disable* generation of a specific interrupt.
1032 *
1033 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1034 * writing to the PM interrupt mask register, i.e. interrupts
1035 * that must not be disabled.
1036 *
1037 * If the GuC is handling these interrupts, then we must not let
1038 * the PM code disable ANY interrupt that the GuC is expecting.
1039 * So for each ENABLED (0) bit in this register, we must SET the
1040 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1041 * GuC needs ARAT expired interrupt unmasked hence it is set in
1042 * pm_intrmsk_mbz.
1043 *
1044 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1045 * result in the register bit being left SET!
1046 */
1047 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1048 rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1049 }
1050
guc_interrupts_release(struct intel_gt * gt)1051 static void guc_interrupts_release(struct intel_gt *gt)
1052 {
1053 struct intel_rps *rps = >->i915->gt_pm.rps;
1054 struct intel_uncore *uncore = gt->uncore;
1055 struct intel_engine_cs *engine;
1056 enum intel_engine_id id;
1057 int irqs;
1058
1059 /*
1060 * tell all command streamers NOT to forward interrupts or vblank
1061 * to GuC.
1062 */
1063 irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1064 irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1065 for_each_engine(engine, gt->i915, id)
1066 ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1067
1068 /* route all GT interrupts to the host */
1069 intel_uncore_write(uncore, GUC_BCS_RCS_IER, 0);
1070 intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, 0);
1071 intel_uncore_write(uncore, GUC_WD_VECS_IER, 0);
1072
1073 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1074 rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1075 }
1076
guc_set_default_submission(struct intel_engine_cs * engine)1077 static void guc_set_default_submission(struct intel_engine_cs *engine)
1078 {
1079 /*
1080 * We inherit a bunch of functions from execlists that we'd like
1081 * to keep using:
1082 *
1083 * engine->submit_request = execlists_submit_request;
1084 * engine->cancel_requests = execlists_cancel_requests;
1085 * engine->schedule = execlists_schedule;
1086 *
1087 * But we need to override the actual submission backend in order
1088 * to talk to the GuC.
1089 */
1090 intel_execlists_set_default_submission(engine);
1091
1092 engine->execlists.tasklet.func = guc_submission_tasklet;
1093
1094 /* do not use execlists park/unpark */
1095 engine->park = engine->unpark = NULL;
1096
1097 engine->reset.prepare = guc_reset_prepare;
1098 engine->reset.reset = guc_reset;
1099 engine->reset.finish = guc_reset_finish;
1100
1101 engine->cancel_requests = guc_cancel_requests;
1102
1103 engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
1104 engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1105
1106 /*
1107 * For the breadcrumb irq to work we need the interrupts to stay
1108 * enabled. However, on all platforms on which we'll have support for
1109 * GuC submission we don't allow disabling the interrupts at runtime, so
1110 * we're always safe with the current flow.
1111 */
1112 GEM_BUG_ON(engine->irq_enable || engine->irq_disable);
1113 }
1114
intel_guc_submission_enable(struct intel_guc * guc)1115 int intel_guc_submission_enable(struct intel_guc *guc)
1116 {
1117 struct intel_gt *gt = guc_to_gt(guc);
1118 struct intel_engine_cs *engine;
1119 enum intel_engine_id id;
1120 int err;
1121
1122 err = i915_inject_load_error(gt->i915, -ENXIO);
1123 if (err)
1124 return err;
1125
1126 /*
1127 * We're using GuC work items for submitting work through GuC. Since
1128 * we're coalescing multiple requests from a single context into a
1129 * single work item prior to assigning it to execlist_port, we can
1130 * never have more work items than the total number of ports (for all
1131 * engines). The GuC firmware is controlling the HEAD of work queue,
1132 * and it is guaranteed that it will remove the work item from the
1133 * queue before our request is completed.
1134 */
1135 BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) *
1136 sizeof(struct guc_wq_item) *
1137 I915_NUM_ENGINES > GUC_WQ_SIZE);
1138
1139 GEM_BUG_ON(!guc->execbuf_client);
1140
1141 err = guc_clients_enable(guc);
1142 if (err)
1143 return err;
1144
1145 /* Take over from manual control of ELSP (execlists) */
1146 guc_interrupts_capture(gt);
1147
1148 for_each_engine(engine, gt->i915, id) {
1149 engine->set_default_submission = guc_set_default_submission;
1150 engine->set_default_submission(engine);
1151 }
1152
1153 return 0;
1154 }
1155
intel_guc_submission_disable(struct intel_guc * guc)1156 void intel_guc_submission_disable(struct intel_guc *guc)
1157 {
1158 struct intel_gt *gt = guc_to_gt(guc);
1159
1160 GEM_BUG_ON(gt->awake); /* GT should be parked first */
1161
1162 guc_interrupts_release(gt);
1163 guc_clients_disable(guc);
1164 }
1165
__guc_submission_support(struct intel_guc * guc)1166 static bool __guc_submission_support(struct intel_guc *guc)
1167 {
1168 /* XXX: GuC submission is unavailable for now */
1169 return false;
1170
1171 if (!intel_guc_is_supported(guc))
1172 return false;
1173
1174 return i915_modparams.enable_guc & ENABLE_GUC_SUBMISSION;
1175 }
1176
intel_guc_submission_init_early(struct intel_guc * guc)1177 void intel_guc_submission_init_early(struct intel_guc *guc)
1178 {
1179 guc->submission_supported = __guc_submission_support(guc);
1180 }
1181
1182 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1183 #include "selftest_guc.c"
1184 #endif
1185