1 /*
2  * Copyright © 2014-2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/debugfs.h>
26 
27 #include "intel_guc_log.h"
28 #include "i915_drv.h"
29 
30 static void guc_log_capture_logs(struct intel_guc_log *log);
31 
32 /**
33  * DOC: GuC firmware log
34  *
35  * Firmware log is enabled by setting i915.guc_log_level to the positive level.
36  * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
37  * i915_guc_load_status will print out firmware loading status and scratch
38  * registers value.
39  */
40 
guc_action_flush_log_complete(struct intel_guc * guc)41 static int guc_action_flush_log_complete(struct intel_guc *guc)
42 {
43 	u32 action[] = {
44 		INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
45 	};
46 
47 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
48 }
49 
guc_action_flush_log(struct intel_guc * guc)50 static int guc_action_flush_log(struct intel_guc *guc)
51 {
52 	u32 action[] = {
53 		INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
54 		0
55 	};
56 
57 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
58 }
59 
guc_action_control_log(struct intel_guc * guc,bool enable,bool default_logging,u32 verbosity)60 static int guc_action_control_log(struct intel_guc *guc, bool enable,
61 				  bool default_logging, u32 verbosity)
62 {
63 	u32 action[] = {
64 		INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
65 		(enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
66 		(verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
67 		(default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
68 	};
69 
70 	GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
71 
72 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
73 }
74 
log_to_guc(struct intel_guc_log * log)75 static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
76 {
77 	return container_of(log, struct intel_guc, log);
78 }
79 
guc_log_enable_flush_events(struct intel_guc_log * log)80 static void guc_log_enable_flush_events(struct intel_guc_log *log)
81 {
82 	intel_guc_enable_msg(log_to_guc(log),
83 			     INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
84 			     INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
85 }
86 
guc_log_disable_flush_events(struct intel_guc_log * log)87 static void guc_log_disable_flush_events(struct intel_guc_log *log)
88 {
89 	intel_guc_disable_msg(log_to_guc(log),
90 			      INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
91 			      INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
92 }
93 
94 /*
95  * Sub buffer switch callback. Called whenever relay has to switch to a new
96  * sub buffer, relay stays on the same sub buffer if 0 is returned.
97  */
subbuf_start_callback(struct rchan_buf * buf,void * subbuf,void * prev_subbuf,size_t prev_padding)98 static int subbuf_start_callback(struct rchan_buf *buf,
99 				 void *subbuf,
100 				 void *prev_subbuf,
101 				 size_t prev_padding)
102 {
103 	/*
104 	 * Use no-overwrite mode by default, where relay will stop accepting
105 	 * new data if there are no empty sub buffers left.
106 	 * There is no strict synchronization enforced by relay between Consumer
107 	 * and Producer. In overwrite mode, there is a possibility of getting
108 	 * inconsistent/garbled data, the producer could be writing on to the
109 	 * same sub buffer from which Consumer is reading. This can't be avoided
110 	 * unless Consumer is fast enough and can always run in tandem with
111 	 * Producer.
112 	 */
113 	if (relay_buf_full(buf))
114 		return 0;
115 
116 	return 1;
117 }
118 
119 /*
120  * file_create() callback. Creates relay file in debugfs.
121  */
create_buf_file_callback(const char * filename,struct dentry * parent,umode_t mode,struct rchan_buf * buf,int * is_global)122 static struct dentry *create_buf_file_callback(const char *filename,
123 					       struct dentry *parent,
124 					       umode_t mode,
125 					       struct rchan_buf *buf,
126 					       int *is_global)
127 {
128 	struct dentry *buf_file;
129 
130 	/*
131 	 * This to enable the use of a single buffer for the relay channel and
132 	 * correspondingly have a single file exposed to User, through which
133 	 * it can collect the logs in order without any post-processing.
134 	 * Need to set 'is_global' even if parent is NULL for early logging.
135 	 */
136 	*is_global = 1;
137 
138 	if (!parent)
139 		return NULL;
140 
141 	buf_file = debugfs_create_file(filename, mode,
142 				       parent, buf, &relay_file_operations);
143 	return buf_file;
144 }
145 
146 /*
147  * file_remove() default callback. Removes relay file in debugfs.
148  */
remove_buf_file_callback(struct dentry * dentry)149 static int remove_buf_file_callback(struct dentry *dentry)
150 {
151 	debugfs_remove(dentry);
152 	return 0;
153 }
154 
155 /* relay channel callbacks */
156 static struct rchan_callbacks relay_callbacks = {
157 	.subbuf_start = subbuf_start_callback,
158 	.create_buf_file = create_buf_file_callback,
159 	.remove_buf_file = remove_buf_file_callback,
160 };
161 
guc_move_to_next_buf(struct intel_guc_log * log)162 static void guc_move_to_next_buf(struct intel_guc_log *log)
163 {
164 	/*
165 	 * Make sure the updates made in the sub buffer are visible when
166 	 * Consumer sees the following update to offset inside the sub buffer.
167 	 */
168 	smp_wmb();
169 
170 	/* All data has been written, so now move the offset of sub buffer. */
171 	relay_reserve(log->relay.channel, log->vma->obj->base.size);
172 
173 	/* Switch to the next sub buffer */
174 	relay_flush(log->relay.channel);
175 }
176 
guc_get_write_buffer(struct intel_guc_log * log)177 static void *guc_get_write_buffer(struct intel_guc_log *log)
178 {
179 	/*
180 	 * Just get the base address of a new sub buffer and copy data into it
181 	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
182 	 * buffers are full. Could have used the relay_write() to indirectly
183 	 * copy the data, but that would have been bit convoluted, as we need to
184 	 * write to only certain locations inside a sub buffer which cannot be
185 	 * done without using relay_reserve() along with relay_write(). So its
186 	 * better to use relay_reserve() alone.
187 	 */
188 	return relay_reserve(log->relay.channel, 0);
189 }
190 
guc_check_log_buf_overflow(struct intel_guc_log * log,enum guc_log_buffer_type type,unsigned int full_cnt)191 static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
192 				       enum guc_log_buffer_type type,
193 				       unsigned int full_cnt)
194 {
195 	unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
196 	bool overflow = false;
197 
198 	if (full_cnt != prev_full_cnt) {
199 		overflow = true;
200 
201 		log->stats[type].overflow = full_cnt;
202 		log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
203 
204 		if (full_cnt < prev_full_cnt) {
205 			/* buffer_full_cnt is a 4 bit counter */
206 			log->stats[type].sampled_overflow += 16;
207 		}
208 		DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
209 	}
210 
211 	return overflow;
212 }
213 
guc_get_log_buffer_size(enum guc_log_buffer_type type)214 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
215 {
216 	switch (type) {
217 	case GUC_ISR_LOG_BUFFER:
218 		return ISR_BUFFER_SIZE;
219 	case GUC_DPC_LOG_BUFFER:
220 		return DPC_BUFFER_SIZE;
221 	case GUC_CRASH_DUMP_LOG_BUFFER:
222 		return CRASH_BUFFER_SIZE;
223 	default:
224 		MISSING_CASE(type);
225 	}
226 
227 	return 0;
228 }
229 
guc_read_update_log_buffer(struct intel_guc_log * log)230 static void guc_read_update_log_buffer(struct intel_guc_log *log)
231 {
232 	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
233 	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
234 	struct guc_log_buffer_state log_buf_state_local;
235 	enum guc_log_buffer_type type;
236 	void *src_data, *dst_data;
237 	bool new_overflow;
238 
239 	mutex_lock(&log->relay.lock);
240 
241 	if (WARN_ON(!intel_guc_log_relay_enabled(log)))
242 		goto out_unlock;
243 
244 	/* Get the pointer to shared GuC log buffer */
245 	log_buf_state = src_data = log->relay.buf_addr;
246 
247 	/* Get the pointer to local buffer to store the logs */
248 	log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
249 
250 	if (unlikely(!log_buf_snapshot_state)) {
251 		/*
252 		 * Used rate limited to avoid deluge of messages, logs might be
253 		 * getting consumed by User at a slow rate.
254 		 */
255 		DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
256 		log->relay.full_count++;
257 
258 		goto out_unlock;
259 	}
260 
261 	/* Actual logs are present from the 2nd page */
262 	src_data += PAGE_SIZE;
263 	dst_data += PAGE_SIZE;
264 
265 	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
266 		/*
267 		 * Make a copy of the state structure, inside GuC log buffer
268 		 * (which is uncached mapped), on the stack to avoid reading
269 		 * from it multiple times.
270 		 */
271 		memcpy(&log_buf_state_local, log_buf_state,
272 		       sizeof(struct guc_log_buffer_state));
273 		buffer_size = guc_get_log_buffer_size(type);
274 		read_offset = log_buf_state_local.read_ptr;
275 		write_offset = log_buf_state_local.sampled_write_ptr;
276 		full_cnt = log_buf_state_local.buffer_full_cnt;
277 
278 		/* Bookkeeping stuff */
279 		log->stats[type].flush += log_buf_state_local.flush_to_file;
280 		new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
281 
282 		/* Update the state of shared log buffer */
283 		log_buf_state->read_ptr = write_offset;
284 		log_buf_state->flush_to_file = 0;
285 		log_buf_state++;
286 
287 		/* First copy the state structure in snapshot buffer */
288 		memcpy(log_buf_snapshot_state, &log_buf_state_local,
289 		       sizeof(struct guc_log_buffer_state));
290 
291 		/*
292 		 * The write pointer could have been updated by GuC firmware,
293 		 * after sending the flush interrupt to Host, for consistency
294 		 * set write pointer value to same value of sampled_write_ptr
295 		 * in the snapshot buffer.
296 		 */
297 		log_buf_snapshot_state->write_ptr = write_offset;
298 		log_buf_snapshot_state++;
299 
300 		/* Now copy the actual logs. */
301 		if (unlikely(new_overflow)) {
302 			/* copy the whole buffer in case of overflow */
303 			read_offset = 0;
304 			write_offset = buffer_size;
305 		} else if (unlikely((read_offset > buffer_size) ||
306 				    (write_offset > buffer_size))) {
307 			DRM_ERROR("invalid log buffer state\n");
308 			/* copy whole buffer as offsets are unreliable */
309 			read_offset = 0;
310 			write_offset = buffer_size;
311 		}
312 
313 		/* Just copy the newly written data */
314 		if (read_offset > write_offset) {
315 			i915_memcpy_from_wc(dst_data, src_data, write_offset);
316 			bytes_to_copy = buffer_size - read_offset;
317 		} else {
318 			bytes_to_copy = write_offset - read_offset;
319 		}
320 		i915_memcpy_from_wc(dst_data + read_offset,
321 				    src_data + read_offset, bytes_to_copy);
322 
323 		src_data += buffer_size;
324 		dst_data += buffer_size;
325 	}
326 
327 	guc_move_to_next_buf(log);
328 
329 out_unlock:
330 	mutex_unlock(&log->relay.lock);
331 }
332 
capture_logs_work(struct work_struct * work)333 static void capture_logs_work(struct work_struct *work)
334 {
335 	struct intel_guc_log *log =
336 		container_of(work, struct intel_guc_log, relay.flush_work);
337 
338 	guc_log_capture_logs(log);
339 }
340 
guc_log_map(struct intel_guc_log * log)341 static int guc_log_map(struct intel_guc_log *log)
342 {
343 	struct intel_guc *guc = log_to_guc(log);
344 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
345 	void *vaddr;
346 	int ret;
347 
348 	lockdep_assert_held(&log->relay.lock);
349 
350 	if (!log->vma)
351 		return -ENODEV;
352 
353 	mutex_lock(&dev_priv->drm.struct_mutex);
354 	ret = i915_gem_object_set_to_wc_domain(log->vma->obj, true);
355 	mutex_unlock(&dev_priv->drm.struct_mutex);
356 	if (ret)
357 		return ret;
358 
359 	/*
360 	 * Create a WC (Uncached for read) vmalloc mapping of log
361 	 * buffer pages, so that we can directly get the data
362 	 * (up-to-date) from memory.
363 	 */
364 	vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
365 	if (IS_ERR(vaddr)) {
366 		DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
367 		return PTR_ERR(vaddr);
368 	}
369 
370 	log->relay.buf_addr = vaddr;
371 
372 	return 0;
373 }
374 
guc_log_unmap(struct intel_guc_log * log)375 static void guc_log_unmap(struct intel_guc_log *log)
376 {
377 	lockdep_assert_held(&log->relay.lock);
378 
379 	i915_gem_object_unpin_map(log->vma->obj);
380 	log->relay.buf_addr = NULL;
381 }
382 
intel_guc_log_init_early(struct intel_guc_log * log)383 void intel_guc_log_init_early(struct intel_guc_log *log)
384 {
385 	mutex_init(&log->relay.lock);
386 	INIT_WORK(&log->relay.flush_work, capture_logs_work);
387 }
388 
guc_log_relay_create(struct intel_guc_log * log)389 static int guc_log_relay_create(struct intel_guc_log *log)
390 {
391 	struct intel_guc *guc = log_to_guc(log);
392 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
393 	struct rchan *guc_log_relay_chan;
394 	size_t n_subbufs, subbuf_size;
395 	int ret;
396 
397 	lockdep_assert_held(&log->relay.lock);
398 
399 	 /* Keep the size of sub buffers same as shared log buffer */
400 	subbuf_size = log->vma->size;
401 
402 	/*
403 	 * Store up to 8 snapshots, which is large enough to buffer sufficient
404 	 * boot time logs and provides enough leeway to User, in terms of
405 	 * latency, for consuming the logs from relay. Also doesn't take
406 	 * up too much memory.
407 	 */
408 	n_subbufs = 8;
409 
410 	guc_log_relay_chan = relay_open("guc_log",
411 					dev_priv->drm.primary->debugfs_root,
412 					subbuf_size, n_subbufs,
413 					&relay_callbacks, dev_priv);
414 	if (!guc_log_relay_chan) {
415 		DRM_ERROR("Couldn't create relay chan for GuC logging\n");
416 
417 		ret = -ENOMEM;
418 		return ret;
419 	}
420 
421 	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
422 	log->relay.channel = guc_log_relay_chan;
423 
424 	return 0;
425 }
426 
guc_log_relay_destroy(struct intel_guc_log * log)427 static void guc_log_relay_destroy(struct intel_guc_log *log)
428 {
429 	lockdep_assert_held(&log->relay.lock);
430 
431 	relay_close(log->relay.channel);
432 	log->relay.channel = NULL;
433 }
434 
guc_log_capture_logs(struct intel_guc_log * log)435 static void guc_log_capture_logs(struct intel_guc_log *log)
436 {
437 	struct intel_guc *guc = log_to_guc(log);
438 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
439 
440 	guc_read_update_log_buffer(log);
441 
442 	/*
443 	 * Generally device is expected to be active only at this
444 	 * time, so get/put should be really quick.
445 	 */
446 	intel_runtime_pm_get(dev_priv);
447 	guc_action_flush_log_complete(guc);
448 	intel_runtime_pm_put(dev_priv);
449 }
450 
intel_guc_log_create(struct intel_guc_log * log)451 int intel_guc_log_create(struct intel_guc_log *log)
452 {
453 	struct intel_guc *guc = log_to_guc(log);
454 	struct i915_vma *vma;
455 	u32 guc_log_size;
456 	int ret;
457 
458 	GEM_BUG_ON(log->vma);
459 
460 	/*
461 	 *  GuC Log buffer Layout
462 	 *
463 	 *  +===============================+ 00B
464 	 *  |    Crash dump state header    |
465 	 *  +-------------------------------+ 32B
466 	 *  |       DPC state header        |
467 	 *  +-------------------------------+ 64B
468 	 *  |       ISR state header        |
469 	 *  +-------------------------------+ 96B
470 	 *  |                               |
471 	 *  +===============================+ PAGE_SIZE (4KB)
472 	 *  |        Crash Dump logs        |
473 	 *  +===============================+ + CRASH_SIZE
474 	 *  |           DPC logs            |
475 	 *  +===============================+ + DPC_SIZE
476 	 *  |           ISR logs            |
477 	 *  +===============================+ + ISR_SIZE
478 	 */
479 	guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE +
480 			ISR_BUFFER_SIZE;
481 
482 	vma = intel_guc_allocate_vma(guc, guc_log_size);
483 	if (IS_ERR(vma)) {
484 		ret = PTR_ERR(vma);
485 		goto err;
486 	}
487 
488 	log->vma = vma;
489 
490 	log->level = i915_modparams.guc_log_level;
491 
492 	return 0;
493 
494 err:
495 	DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret);
496 	return ret;
497 }
498 
intel_guc_log_destroy(struct intel_guc_log * log)499 void intel_guc_log_destroy(struct intel_guc_log *log)
500 {
501 	i915_vma_unpin_and_release(&log->vma);
502 }
503 
intel_guc_log_set_level(struct intel_guc_log * log,u32 level)504 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
505 {
506 	struct intel_guc *guc = log_to_guc(log);
507 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
508 	int ret;
509 
510 	BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
511 	GEM_BUG_ON(!log->vma);
512 
513 	/*
514 	 * GuC is recognizing log levels starting from 0 to max, we're using 0
515 	 * as indication that logging should be disabled.
516 	 */
517 	if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
518 		return -EINVAL;
519 
520 	mutex_lock(&dev_priv->drm.struct_mutex);
521 
522 	if (log->level == level) {
523 		ret = 0;
524 		goto out_unlock;
525 	}
526 
527 	intel_runtime_pm_get(dev_priv);
528 	ret = guc_action_control_log(guc, GUC_LOG_LEVEL_IS_VERBOSE(level),
529 				     GUC_LOG_LEVEL_IS_ENABLED(level),
530 				     GUC_LOG_LEVEL_TO_VERBOSITY(level));
531 	intel_runtime_pm_put(dev_priv);
532 	if (ret) {
533 		DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
534 		goto out_unlock;
535 	}
536 
537 	log->level = level;
538 
539 out_unlock:
540 	mutex_unlock(&dev_priv->drm.struct_mutex);
541 
542 	return ret;
543 }
544 
intel_guc_log_relay_enabled(const struct intel_guc_log * log)545 bool intel_guc_log_relay_enabled(const struct intel_guc_log *log)
546 {
547 	return log->relay.buf_addr;
548 }
549 
intel_guc_log_relay_open(struct intel_guc_log * log)550 int intel_guc_log_relay_open(struct intel_guc_log *log)
551 {
552 	int ret;
553 
554 	mutex_lock(&log->relay.lock);
555 
556 	if (intel_guc_log_relay_enabled(log)) {
557 		ret = -EEXIST;
558 		goto out_unlock;
559 	}
560 
561 	/*
562 	 * We require SSE 4.1 for fast reads from the GuC log buffer and
563 	 * it should be present on the chipsets supporting GuC based
564 	 * submisssions.
565 	 */
566 	if (!i915_has_memcpy_from_wc()) {
567 		ret = -ENXIO;
568 		goto out_unlock;
569 	}
570 
571 	ret = guc_log_relay_create(log);
572 	if (ret)
573 		goto out_unlock;
574 
575 	ret = guc_log_map(log);
576 	if (ret)
577 		goto out_relay;
578 
579 	mutex_unlock(&log->relay.lock);
580 
581 	guc_log_enable_flush_events(log);
582 
583 	/*
584 	 * When GuC is logging without us relaying to userspace, we're ignoring
585 	 * the flush notification. This means that we need to unconditionally
586 	 * flush on relay enabling, since GuC only notifies us once.
587 	 */
588 	queue_work(log->relay.flush_wq, &log->relay.flush_work);
589 
590 	return 0;
591 
592 out_relay:
593 	guc_log_relay_destroy(log);
594 out_unlock:
595 	mutex_unlock(&log->relay.lock);
596 
597 	return ret;
598 }
599 
intel_guc_log_relay_flush(struct intel_guc_log * log)600 void intel_guc_log_relay_flush(struct intel_guc_log *log)
601 {
602 	struct intel_guc *guc = log_to_guc(log);
603 	struct drm_i915_private *i915 = guc_to_i915(guc);
604 
605 	/*
606 	 * Before initiating the forceful flush, wait for any pending/ongoing
607 	 * flush to complete otherwise forceful flush may not actually happen.
608 	 */
609 	flush_work(&log->relay.flush_work);
610 
611 	intel_runtime_pm_get(i915);
612 	guc_action_flush_log(guc);
613 	intel_runtime_pm_put(i915);
614 
615 	/* GuC would have updated log buffer by now, so capture it */
616 	guc_log_capture_logs(log);
617 }
618 
intel_guc_log_relay_close(struct intel_guc_log * log)619 void intel_guc_log_relay_close(struct intel_guc_log *log)
620 {
621 	guc_log_disable_flush_events(log);
622 	flush_work(&log->relay.flush_work);
623 
624 	mutex_lock(&log->relay.lock);
625 	GEM_BUG_ON(!intel_guc_log_relay_enabled(log));
626 	guc_log_unmap(log);
627 	guc_log_relay_destroy(log);
628 	mutex_unlock(&log->relay.lock);
629 }
630 
intel_guc_log_handle_flush_event(struct intel_guc_log * log)631 void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
632 {
633 	queue_work(log->relay.flush_wq, &log->relay.flush_work);
634 }
635