1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5 
6 #include "gt/intel_gt.h"
7 #include "intel_guc.h"
8 #include "intel_guc_ads.h"
9 #include "intel_guc_submission.h"
10 #include "i915_drv.h"
11 
gen8_guc_raise_irq(struct intel_guc * guc)12 static void gen8_guc_raise_irq(struct intel_guc *guc)
13 {
14 	struct intel_gt *gt = guc_to_gt(guc);
15 
16 	intel_uncore_write(gt->uncore, GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
17 }
18 
gen11_guc_raise_irq(struct intel_guc * guc)19 static void gen11_guc_raise_irq(struct intel_guc *guc)
20 {
21 	struct intel_gt *gt = guc_to_gt(guc);
22 
23 	intel_uncore_write(gt->uncore, GEN11_GUC_HOST_INTERRUPT, 0);
24 }
25 
guc_send_reg(struct intel_guc * guc,u32 i)26 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
27 {
28 	GEM_BUG_ON(!guc->send_regs.base);
29 	GEM_BUG_ON(!guc->send_regs.count);
30 	GEM_BUG_ON(i >= guc->send_regs.count);
31 
32 	return _MMIO(guc->send_regs.base + 4 * i);
33 }
34 
intel_guc_init_send_regs(struct intel_guc * guc)35 void intel_guc_init_send_regs(struct intel_guc *guc)
36 {
37 	struct intel_gt *gt = guc_to_gt(guc);
38 	enum forcewake_domains fw_domains = 0;
39 	unsigned int i;
40 
41 	if (INTEL_GEN(gt->i915) >= 11) {
42 		guc->send_regs.base =
43 				i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
44 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
45 	} else {
46 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
47 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
48 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
49 	}
50 
51 	for (i = 0; i < guc->send_regs.count; i++) {
52 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
53 					guc_send_reg(guc, i),
54 					FW_REG_READ | FW_REG_WRITE);
55 	}
56 	guc->send_regs.fw_domains = fw_domains;
57 }
58 
intel_guc_init_early(struct intel_guc * guc)59 void intel_guc_init_early(struct intel_guc *guc)
60 {
61 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
62 
63 	intel_guc_fw_init_early(guc);
64 	intel_guc_ct_init_early(&guc->ct);
65 	intel_guc_log_init_early(&guc->log);
66 	intel_guc_submission_init_early(guc);
67 
68 	mutex_init(&guc->send_mutex);
69 	spin_lock_init(&guc->irq_lock);
70 	guc->send = intel_guc_send_nop;
71 	guc->handler = intel_guc_to_host_event_handler_nop;
72 	if (INTEL_GEN(i915) >= 11) {
73 		guc->notify = gen11_guc_raise_irq;
74 		guc->interrupts.reset = gen11_reset_guc_interrupts;
75 		guc->interrupts.enable = gen11_enable_guc_interrupts;
76 		guc->interrupts.disable = gen11_disable_guc_interrupts;
77 	} else {
78 		guc->notify = gen8_guc_raise_irq;
79 		guc->interrupts.reset = gen9_reset_guc_interrupts;
80 		guc->interrupts.enable = gen9_enable_guc_interrupts;
81 		guc->interrupts.disable = gen9_disable_guc_interrupts;
82 	}
83 }
84 
guc_shared_data_create(struct intel_guc * guc)85 static int guc_shared_data_create(struct intel_guc *guc)
86 {
87 	struct i915_vma *vma;
88 	void *vaddr;
89 
90 	vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
91 	if (IS_ERR(vma))
92 		return PTR_ERR(vma);
93 
94 	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
95 	if (IS_ERR(vaddr)) {
96 		i915_vma_unpin_and_release(&vma, 0);
97 		return PTR_ERR(vaddr);
98 	}
99 
100 	guc->shared_data = vma;
101 	guc->shared_data_vaddr = vaddr;
102 
103 	return 0;
104 }
105 
guc_shared_data_destroy(struct intel_guc * guc)106 static void guc_shared_data_destroy(struct intel_guc *guc)
107 {
108 	i915_vma_unpin_and_release(&guc->shared_data, I915_VMA_RELEASE_MAP);
109 }
110 
guc_ctl_debug_flags(struct intel_guc * guc)111 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
112 {
113 	u32 level = intel_guc_log_get_level(&guc->log);
114 	u32 flags = 0;
115 
116 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
117 		flags |= GUC_LOG_DISABLED;
118 	else
119 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
120 			 GUC_LOG_VERBOSITY_SHIFT;
121 
122 	return flags;
123 }
124 
guc_ctl_feature_flags(struct intel_guc * guc)125 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
126 {
127 	u32 flags = 0;
128 
129 	if (!intel_guc_is_submission_supported(guc))
130 		flags |= GUC_CTL_DISABLE_SCHEDULER;
131 
132 	return flags;
133 }
134 
guc_ctl_ctxinfo_flags(struct intel_guc * guc)135 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
136 {
137 	u32 flags = 0;
138 
139 	if (intel_guc_is_submission_supported(guc)) {
140 		u32 ctxnum, base;
141 
142 		base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
143 		ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
144 
145 		base >>= PAGE_SHIFT;
146 		flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
147 			(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
148 	}
149 	return flags;
150 }
151 
guc_ctl_log_params_flags(struct intel_guc * guc)152 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
153 {
154 	u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
155 	u32 flags;
156 
157 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
158 	#define UNIT SZ_1M
159 	#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
160 	#else
161 	#define UNIT SZ_4K
162 	#define FLAG 0
163 	#endif
164 
165 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
166 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
167 	BUILD_BUG_ON(!DPC_BUFFER_SIZE);
168 	BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
169 	BUILD_BUG_ON(!ISR_BUFFER_SIZE);
170 	BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
171 
172 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
173 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
174 	BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
175 			(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
176 	BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
177 			(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
178 
179 	flags = GUC_LOG_VALID |
180 		GUC_LOG_NOTIFY_ON_HALF_FULL |
181 		FLAG |
182 		((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
183 		((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
184 		((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
185 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
186 
187 	#undef UNIT
188 	#undef FLAG
189 
190 	return flags;
191 }
192 
guc_ctl_ads_flags(struct intel_guc * guc)193 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
194 {
195 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
196 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
197 
198 	return flags;
199 }
200 
201 /*
202  * Initialise the GuC parameter block before starting the firmware
203  * transfer. These parameters are read by the firmware on startup
204  * and cannot be changed thereafter.
205  */
guc_init_params(struct intel_guc * guc)206 static void guc_init_params(struct intel_guc *guc)
207 {
208 	u32 *params = guc->params;
209 	int i;
210 
211 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
212 
213 	params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
214 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
215 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
216 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
217 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
218 
219 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
220 		DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
221 }
222 
223 /*
224  * Initialise the GuC parameter block before starting the firmware
225  * transfer. These parameters are read by the firmware on startup
226  * and cannot be changed thereafter.
227  */
intel_guc_write_params(struct intel_guc * guc)228 void intel_guc_write_params(struct intel_guc *guc)
229 {
230 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
231 	int i;
232 
233 	/*
234 	 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
235 	 * they are power context saved so it's ok to release forcewake
236 	 * when we are done here and take it again at xfer time.
237 	 */
238 	intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);
239 
240 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
241 
242 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
243 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
244 
245 	intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
246 }
247 
intel_guc_init(struct intel_guc * guc)248 int intel_guc_init(struct intel_guc *guc)
249 {
250 	struct intel_gt *gt = guc_to_gt(guc);
251 	int ret;
252 
253 	ret = intel_uc_fw_init(&guc->fw);
254 	if (ret)
255 		goto err_fetch;
256 
257 	ret = guc_shared_data_create(guc);
258 	if (ret)
259 		goto err_fw;
260 	GEM_BUG_ON(!guc->shared_data);
261 
262 	ret = intel_guc_log_create(&guc->log);
263 	if (ret)
264 		goto err_shared;
265 
266 	ret = intel_guc_ads_create(guc);
267 	if (ret)
268 		goto err_log;
269 	GEM_BUG_ON(!guc->ads_vma);
270 
271 	ret = intel_guc_ct_init(&guc->ct);
272 	if (ret)
273 		goto err_ads;
274 
275 	if (intel_guc_is_submission_supported(guc)) {
276 		/*
277 		 * This is stuff we need to have available at fw load time
278 		 * if we are planning to enable submission later
279 		 */
280 		ret = intel_guc_submission_init(guc);
281 		if (ret)
282 			goto err_ct;
283 	}
284 
285 	/* now that everything is perma-pinned, initialize the parameters */
286 	guc_init_params(guc);
287 
288 	/* We need to notify the guc whenever we change the GGTT */
289 	i915_ggtt_enable_guc(gt->ggtt);
290 
291 	return 0;
292 
293 err_ct:
294 	intel_guc_ct_fini(&guc->ct);
295 err_ads:
296 	intel_guc_ads_destroy(guc);
297 err_log:
298 	intel_guc_log_destroy(&guc->log);
299 err_shared:
300 	guc_shared_data_destroy(guc);
301 err_fw:
302 	intel_uc_fw_fini(&guc->fw);
303 err_fetch:
304 	intel_uc_fw_cleanup_fetch(&guc->fw);
305 	DRM_DEV_DEBUG_DRIVER(gt->i915->drm.dev, "failed with %d\n", ret);
306 	return ret;
307 }
308 
intel_guc_fini(struct intel_guc * guc)309 void intel_guc_fini(struct intel_guc *guc)
310 {
311 	struct intel_gt *gt = guc_to_gt(guc);
312 
313 	if (!intel_uc_fw_is_available(&guc->fw))
314 		return;
315 
316 	i915_ggtt_disable_guc(gt->ggtt);
317 
318 	if (intel_guc_is_submission_supported(guc))
319 		intel_guc_submission_fini(guc);
320 
321 	intel_guc_ct_fini(&guc->ct);
322 
323 	intel_guc_ads_destroy(guc);
324 	intel_guc_log_destroy(&guc->log);
325 	guc_shared_data_destroy(guc);
326 	intel_uc_fw_fini(&guc->fw);
327 	intel_uc_fw_cleanup_fetch(&guc->fw);
328 }
329 
intel_guc_send_nop(struct intel_guc * guc,const u32 * action,u32 len,u32 * response_buf,u32 response_buf_size)330 int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
331 		       u32 *response_buf, u32 response_buf_size)
332 {
333 	WARN(1, "Unexpected send: action=%#x\n", *action);
334 	return -ENODEV;
335 }
336 
intel_guc_to_host_event_handler_nop(struct intel_guc * guc)337 void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
338 {
339 	WARN(1, "Unexpected event: no suitable handler\n");
340 }
341 
342 /*
343  * This function implements the MMIO based host to GuC interface.
344  */
intel_guc_send_mmio(struct intel_guc * guc,const u32 * action,u32 len,u32 * response_buf,u32 response_buf_size)345 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
346 			u32 *response_buf, u32 response_buf_size)
347 {
348 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
349 	u32 status;
350 	int i;
351 	int ret;
352 
353 	GEM_BUG_ON(!len);
354 	GEM_BUG_ON(len > guc->send_regs.count);
355 
356 	/* We expect only action code */
357 	GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
358 
359 	/* If CT is available, we expect to use MMIO only during init/fini */
360 	GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
361 		   *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
362 
363 	mutex_lock(&guc->send_mutex);
364 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
365 
366 	for (i = 0; i < len; i++)
367 		intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
368 
369 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
370 
371 	intel_guc_notify(guc);
372 
373 	/*
374 	 * No GuC command should ever take longer than 10ms.
375 	 * Fast commands should still complete in 10us.
376 	 */
377 	ret = __intel_wait_for_register_fw(uncore,
378 					   guc_send_reg(guc, 0),
379 					   INTEL_GUC_MSG_TYPE_MASK,
380 					   INTEL_GUC_MSG_TYPE_RESPONSE <<
381 					   INTEL_GUC_MSG_TYPE_SHIFT,
382 					   10, 10, &status);
383 	/* If GuC explicitly returned an error, convert it to -EIO */
384 	if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
385 		ret = -EIO;
386 
387 	if (ret) {
388 		DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
389 			  action[0], ret, status);
390 		goto out;
391 	}
392 
393 	if (response_buf) {
394 		int count = min(response_buf_size, guc->send_regs.count - 1);
395 
396 		for (i = 0; i < count; i++)
397 			response_buf[i] = intel_uncore_read(uncore,
398 							    guc_send_reg(guc, i + 1));
399 	}
400 
401 	/* Use data from the GuC response as our return value */
402 	ret = INTEL_GUC_MSG_TO_DATA(status);
403 
404 out:
405 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
406 	mutex_unlock(&guc->send_mutex);
407 
408 	return ret;
409 }
410 
intel_guc_to_host_process_recv_msg(struct intel_guc * guc,const u32 * payload,u32 len)411 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
412 				       const u32 *payload, u32 len)
413 {
414 	u32 msg;
415 
416 	if (unlikely(!len))
417 		return -EPROTO;
418 
419 	/* Make sure to handle only enabled messages */
420 	msg = payload[0] & guc->msg_enabled_mask;
421 
422 	if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
423 		   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
424 		intel_guc_log_handle_flush_event(&guc->log);
425 
426 	return 0;
427 }
428 
intel_guc_sample_forcewake(struct intel_guc * guc)429 int intel_guc_sample_forcewake(struct intel_guc *guc)
430 {
431 	struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
432 	u32 action[2];
433 
434 	action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
435 	/* WaRsDisableCoarsePowerGating:skl,cnl */
436 	if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
437 		action[1] = 0;
438 	else
439 		/* bit 0 and 1 are for Render and Media domain separately */
440 		action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
441 
442 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
443 }
444 
445 /**
446  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
447  * @guc: intel_guc structure
448  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
449  *
450  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
451  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
452  * intel_huc_auth().
453  *
454  * Return:	non-zero code on error
455  */
intel_guc_auth_huc(struct intel_guc * guc,u32 rsa_offset)456 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
457 {
458 	u32 action[] = {
459 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
460 		rsa_offset
461 	};
462 
463 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
464 }
465 
466 /**
467  * intel_guc_suspend() - notify GuC entering suspend state
468  * @guc:	the guc
469  */
intel_guc_suspend(struct intel_guc * guc)470 int intel_guc_suspend(struct intel_guc *guc)
471 {
472 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
473 	int ret;
474 	u32 status;
475 	u32 action[] = {
476 		INTEL_GUC_ACTION_ENTER_S_STATE,
477 		GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
478 	};
479 
480 	/*
481 	 * The ENTER_S_STATE action queues the save/restore operation in GuC FW
482 	 * and then returns, so waiting on the H2G is not enough to guarantee
483 	 * GuC is done. When all the processing is done, GuC writes
484 	 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
485 	 * on that. Note that GuC does not ensure that the value in the register
486 	 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
487 	 * in progress so we need to take care of that ourselves as well.
488 	 */
489 
490 	intel_uncore_write(uncore, SOFT_SCRATCH(14),
491 			   INTEL_GUC_SLEEP_STATE_INVALID_MASK);
492 
493 	ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
494 	if (ret)
495 		return ret;
496 
497 	ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
498 					INTEL_GUC_SLEEP_STATE_INVALID_MASK,
499 					0, 0, 10, &status);
500 	if (ret)
501 		return ret;
502 
503 	if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
504 		DRM_ERROR("GuC failed to change sleep state. "
505 			  "action=0x%x, err=%u\n",
506 			  action[0], status);
507 		return -EIO;
508 	}
509 
510 	return 0;
511 }
512 
513 /**
514  * intel_guc_reset_engine() - ask GuC to reset an engine
515  * @guc:	intel_guc structure
516  * @engine:	engine to be reset
517  */
intel_guc_reset_engine(struct intel_guc * guc,struct intel_engine_cs * engine)518 int intel_guc_reset_engine(struct intel_guc *guc,
519 			   struct intel_engine_cs *engine)
520 {
521 	u32 data[7];
522 
523 	GEM_BUG_ON(!guc->execbuf_client);
524 
525 	data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET;
526 	data[1] = engine->guc_id;
527 	data[2] = 0;
528 	data[3] = 0;
529 	data[4] = 0;
530 	data[5] = guc->execbuf_client->stage_id;
531 	data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
532 
533 	return intel_guc_send(guc, data, ARRAY_SIZE(data));
534 }
535 
536 /**
537  * intel_guc_resume() - notify GuC resuming from suspend state
538  * @guc:	the guc
539  */
intel_guc_resume(struct intel_guc * guc)540 int intel_guc_resume(struct intel_guc *guc)
541 {
542 	u32 action[] = {
543 		INTEL_GUC_ACTION_EXIT_S_STATE,
544 		GUC_POWER_D0,
545 	};
546 
547 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
548 }
549 
550 /**
551  * DOC: GuC Address Space
552  *
553  * The layout of GuC address space is shown below:
554  *
555  * ::
556  *
557  *     +===========> +====================+ <== FFFF_FFFF
558  *     ^             |      Reserved      |
559  *     |             +====================+ <== GUC_GGTT_TOP
560  *     |             |                    |
561  *     |             |        DRAM        |
562  *    GuC            |                    |
563  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
564  *   Space     ^     |                    |
565  *     |       |     |                    |
566  *     |      GuC    |        GuC         |
567  *     |     WOPCM   |       WOPCM        |
568  *     |      Size   |                    |
569  *     |       |     |                    |
570  *     v       v     |                    |
571  *     +=======+===> +====================+ <== 0000_0000
572  *
573  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
574  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
575  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
576  */
577 
578 /**
579  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
580  * @guc:	the guc
581  * @size:	size of area to allocate (both virtual space and memory)
582  *
583  * This is a wrapper to create an object for use with the GuC. In order to
584  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
585  * both some backing storage and a range inside the Global GTT. We must pin
586  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
587  * range is reserved inside GuC.
588  *
589  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
590  */
intel_guc_allocate_vma(struct intel_guc * guc,u32 size)591 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
592 {
593 	struct intel_gt *gt = guc_to_gt(guc);
594 	struct drm_i915_gem_object *obj;
595 	struct i915_vma *vma;
596 	u64 flags;
597 	int ret;
598 
599 	obj = i915_gem_object_create_shmem(gt->i915, size);
600 	if (IS_ERR(obj))
601 		return ERR_CAST(obj);
602 
603 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
604 	if (IS_ERR(vma))
605 		goto err;
606 
607 	flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
608 	ret = i915_vma_pin(vma, 0, 0, flags);
609 	if (ret) {
610 		vma = ERR_PTR(ret);
611 		goto err;
612 	}
613 
614 	return i915_vma_make_unshrinkable(vma);
615 
616 err:
617 	i915_gem_object_put(obj);
618 	return vma;
619 }
620