1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <drm/drm_managed.h>
7 #include <drm/intel-gtt.h>
8
9 #include "gem/i915_gem_internal.h"
10 #include "gem/i915_gem_lmem.h"
11 #include "pxp/intel_pxp.h"
12
13 #include "i915_drv.h"
14 #include "i915_perf_oa_regs.h"
15 #include "intel_context.h"
16 #include "intel_engine_pm.h"
17 #include "intel_engine_regs.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gt.h"
20 #include "intel_gt_buffer_pool.h"
21 #include "intel_gt_clock_utils.h"
22 #include "intel_gt_debugfs.h"
23 #include "intel_gt_mcr.h"
24 #include "intel_gt_pm.h"
25 #include "intel_gt_regs.h"
26 #include "intel_gt_requests.h"
27 #include "intel_migrate.h"
28 #include "intel_mocs.h"
29 #include "intel_pci_config.h"
30 #include "intel_pm.h"
31 #include "intel_rc6.h"
32 #include "intel_renderstate.h"
33 #include "intel_rps.h"
34 #include "intel_sa_media.h"
35 #include "intel_gt_sysfs.h"
36 #include "intel_uncore.h"
37 #include "shmem_utils.h"
38
intel_gt_common_init_early(struct intel_gt * gt)39 void intel_gt_common_init_early(struct intel_gt *gt)
40 {
41 spin_lock_init(gt->irq_lock);
42
43 INIT_LIST_HEAD(>->lmem_userfault_list);
44 mutex_init(>->lmem_userfault_lock);
45 INIT_LIST_HEAD(>->closed_vma);
46 spin_lock_init(>->closed_lock);
47
48 init_llist_head(>->watchdog.list);
49 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work);
50
51 intel_gt_init_buffer_pool(gt);
52 intel_gt_init_reset(gt);
53 intel_gt_init_requests(gt);
54 intel_gt_init_timelines(gt);
55 mutex_init(>->tlb.invalidate_lock);
56 seqcount_mutex_init(>->tlb.seqno, >->tlb.invalidate_lock);
57 intel_gt_pm_init_early(gt);
58
59 intel_uc_init_early(>->uc);
60 intel_rps_init_early(>->rps);
61 }
62
63 /* Preliminary initialization of Tile 0 */
intel_root_gt_init_early(struct drm_i915_private * i915)64 int intel_root_gt_init_early(struct drm_i915_private *i915)
65 {
66 struct intel_gt *gt = to_gt(i915);
67
68 gt->i915 = i915;
69 gt->uncore = &i915->uncore;
70 gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
71 if (!gt->irq_lock)
72 return -ENOMEM;
73
74 intel_gt_common_init_early(gt);
75
76 return 0;
77 }
78
intel_gt_probe_lmem(struct intel_gt * gt)79 static int intel_gt_probe_lmem(struct intel_gt *gt)
80 {
81 struct drm_i915_private *i915 = gt->i915;
82 unsigned int instance = gt->info.id;
83 int id = INTEL_REGION_LMEM_0 + instance;
84 struct intel_memory_region *mem;
85 int err;
86
87 mem = intel_gt_setup_lmem(gt);
88 if (IS_ERR(mem)) {
89 err = PTR_ERR(mem);
90 if (err == -ENODEV)
91 return 0;
92
93 drm_err(&i915->drm,
94 "Failed to setup region(%d) type=%d\n",
95 err, INTEL_MEMORY_LOCAL);
96 return err;
97 }
98
99 mem->id = id;
100 mem->instance = instance;
101
102 intel_memory_region_set_name(mem, "local%u", mem->instance);
103
104 GEM_BUG_ON(!HAS_REGION(i915, id));
105 GEM_BUG_ON(i915->mm.regions[id]);
106 i915->mm.regions[id] = mem;
107
108 return 0;
109 }
110
intel_gt_assign_ggtt(struct intel_gt * gt)111 int intel_gt_assign_ggtt(struct intel_gt *gt)
112 {
113 gt->ggtt = drmm_kzalloc(>->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL);
114
115 return gt->ggtt ? 0 : -ENOMEM;
116 }
117
intel_gt_init_mmio(struct intel_gt * gt)118 int intel_gt_init_mmio(struct intel_gt *gt)
119 {
120 intel_gt_init_clock_frequency(gt);
121
122 intel_uc_init_mmio(>->uc);
123 intel_sseu_info_init(gt);
124 intel_gt_mcr_init(gt);
125
126 return intel_engines_init_mmio(gt);
127 }
128
init_unused_ring(struct intel_gt * gt,u32 base)129 static void init_unused_ring(struct intel_gt *gt, u32 base)
130 {
131 struct intel_uncore *uncore = gt->uncore;
132
133 intel_uncore_write(uncore, RING_CTL(base), 0);
134 intel_uncore_write(uncore, RING_HEAD(base), 0);
135 intel_uncore_write(uncore, RING_TAIL(base), 0);
136 intel_uncore_write(uncore, RING_START(base), 0);
137 }
138
init_unused_rings(struct intel_gt * gt)139 static void init_unused_rings(struct intel_gt *gt)
140 {
141 struct drm_i915_private *i915 = gt->i915;
142
143 if (IS_I830(i915)) {
144 init_unused_ring(gt, PRB1_BASE);
145 init_unused_ring(gt, SRB0_BASE);
146 init_unused_ring(gt, SRB1_BASE);
147 init_unused_ring(gt, SRB2_BASE);
148 init_unused_ring(gt, SRB3_BASE);
149 } else if (GRAPHICS_VER(i915) == 2) {
150 init_unused_ring(gt, SRB0_BASE);
151 init_unused_ring(gt, SRB1_BASE);
152 } else if (GRAPHICS_VER(i915) == 3) {
153 init_unused_ring(gt, PRB1_BASE);
154 init_unused_ring(gt, PRB2_BASE);
155 }
156 }
157
intel_gt_init_hw(struct intel_gt * gt)158 int intel_gt_init_hw(struct intel_gt *gt)
159 {
160 struct drm_i915_private *i915 = gt->i915;
161 struct intel_uncore *uncore = gt->uncore;
162 int ret;
163
164 gt->last_init_time = ktime_get();
165
166 /* Double layer security blanket, see i915_gem_init() */
167 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
168
169 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
170 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
171
172 if (IS_HASWELL(i915))
173 intel_uncore_write(uncore,
174 HSW_MI_PREDICATE_RESULT_2,
175 IS_HSW_GT3(i915) ?
176 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
177
178 /* Apply the GT workarounds... */
179 intel_gt_apply_workarounds(gt);
180 /* ...and determine whether they are sticking. */
181 intel_gt_verify_workarounds(gt, "init");
182
183 intel_gt_init_swizzling(gt);
184
185 /*
186 * At least 830 can leave some of the unused rings
187 * "active" (ie. head != tail) after resume which
188 * will prevent c3 entry. Makes sure all unused rings
189 * are totally idle.
190 */
191 init_unused_rings(gt);
192
193 ret = i915_ppgtt_init_hw(gt);
194 if (ret) {
195 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
196 goto out;
197 }
198
199 /* We can't enable contexts until all firmware is loaded */
200 ret = intel_uc_init_hw(>->uc);
201 if (ret) {
202 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
203 goto out;
204 }
205
206 intel_mocs_init(gt);
207
208 out:
209 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
210 return ret;
211 }
212
rmw_set(struct intel_uncore * uncore,i915_reg_t reg,u32 set)213 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
214 {
215 intel_uncore_rmw(uncore, reg, 0, set);
216 }
217
rmw_clear(struct intel_uncore * uncore,i915_reg_t reg,u32 clr)218 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
219 {
220 intel_uncore_rmw(uncore, reg, clr, 0);
221 }
222
clear_register(struct intel_uncore * uncore,i915_reg_t reg)223 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
224 {
225 intel_uncore_rmw(uncore, reg, 0, 0);
226 }
227
gen6_clear_engine_error_register(struct intel_engine_cs * engine)228 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
229 {
230 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
231 GEN6_RING_FAULT_REG_POSTING_READ(engine);
232 }
233
234 void
intel_gt_clear_error_registers(struct intel_gt * gt,intel_engine_mask_t engine_mask)235 intel_gt_clear_error_registers(struct intel_gt *gt,
236 intel_engine_mask_t engine_mask)
237 {
238 struct drm_i915_private *i915 = gt->i915;
239 struct intel_uncore *uncore = gt->uncore;
240 u32 eir;
241
242 if (GRAPHICS_VER(i915) != 2)
243 clear_register(uncore, PGTBL_ER);
244
245 if (GRAPHICS_VER(i915) < 4)
246 clear_register(uncore, IPEIR(RENDER_RING_BASE));
247 else
248 clear_register(uncore, IPEIR_I965);
249
250 clear_register(uncore, EIR);
251 eir = intel_uncore_read(uncore, EIR);
252 if (eir) {
253 /*
254 * some errors might have become stuck,
255 * mask them.
256 */
257 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
258 rmw_set(uncore, EMR, eir);
259 intel_uncore_write(uncore, GEN2_IIR,
260 I915_MASTER_ERROR_INTERRUPT);
261 }
262
263 if (GRAPHICS_VER(i915) >= 12) {
264 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
265 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
266 } else if (GRAPHICS_VER(i915) >= 8) {
267 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
268 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
269 } else if (GRAPHICS_VER(i915) >= 6) {
270 struct intel_engine_cs *engine;
271 enum intel_engine_id id;
272
273 for_each_engine_masked(engine, gt, engine_mask, id)
274 gen6_clear_engine_error_register(engine);
275 }
276 }
277
gen6_check_faults(struct intel_gt * gt)278 static void gen6_check_faults(struct intel_gt *gt)
279 {
280 struct intel_engine_cs *engine;
281 enum intel_engine_id id;
282 u32 fault;
283
284 for_each_engine(engine, gt, id) {
285 fault = GEN6_RING_FAULT_REG_READ(engine);
286 if (fault & RING_FAULT_VALID) {
287 drm_dbg(&engine->i915->drm, "Unexpected fault\n"
288 "\tAddr: 0x%08lx\n"
289 "\tAddress space: %s\n"
290 "\tSource ID: %d\n"
291 "\tType: %d\n",
292 fault & PAGE_MASK,
293 fault & RING_FAULT_GTTSEL_MASK ?
294 "GGTT" : "PPGTT",
295 RING_FAULT_SRCID(fault),
296 RING_FAULT_FAULT_TYPE(fault));
297 }
298 }
299 }
300
gen8_check_faults(struct intel_gt * gt)301 static void gen8_check_faults(struct intel_gt *gt)
302 {
303 struct intel_uncore *uncore = gt->uncore;
304 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
305 u32 fault;
306
307 if (GRAPHICS_VER(gt->i915) >= 12) {
308 fault_reg = GEN12_RING_FAULT_REG;
309 fault_data0_reg = GEN12_FAULT_TLB_DATA0;
310 fault_data1_reg = GEN12_FAULT_TLB_DATA1;
311 } else {
312 fault_reg = GEN8_RING_FAULT_REG;
313 fault_data0_reg = GEN8_FAULT_TLB_DATA0;
314 fault_data1_reg = GEN8_FAULT_TLB_DATA1;
315 }
316
317 fault = intel_uncore_read(uncore, fault_reg);
318 if (fault & RING_FAULT_VALID) {
319 u32 fault_data0, fault_data1;
320 u64 fault_addr;
321
322 fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
323 fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
324
325 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
326 ((u64)fault_data0 << 12);
327
328 drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
329 "\tAddr: 0x%08x_%08x\n"
330 "\tAddress space: %s\n"
331 "\tEngine ID: %d\n"
332 "\tSource ID: %d\n"
333 "\tType: %d\n",
334 upper_32_bits(fault_addr), lower_32_bits(fault_addr),
335 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
336 GEN8_RING_FAULT_ENGINE_ID(fault),
337 RING_FAULT_SRCID(fault),
338 RING_FAULT_FAULT_TYPE(fault));
339 }
340 }
341
intel_gt_check_and_clear_faults(struct intel_gt * gt)342 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
343 {
344 struct drm_i915_private *i915 = gt->i915;
345
346 /* From GEN8 onwards we only have one 'All Engine Fault Register' */
347 if (GRAPHICS_VER(i915) >= 8)
348 gen8_check_faults(gt);
349 else if (GRAPHICS_VER(i915) >= 6)
350 gen6_check_faults(gt);
351 else
352 return;
353
354 intel_gt_clear_error_registers(gt, ALL_ENGINES);
355 }
356
intel_gt_flush_ggtt_writes(struct intel_gt * gt)357 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
358 {
359 struct intel_uncore *uncore = gt->uncore;
360 intel_wakeref_t wakeref;
361
362 /*
363 * No actual flushing is required for the GTT write domain for reads
364 * from the GTT domain. Writes to it "immediately" go to main memory
365 * as far as we know, so there's no chipset flush. It also doesn't
366 * land in the GPU render cache.
367 *
368 * However, we do have to enforce the order so that all writes through
369 * the GTT land before any writes to the device, such as updates to
370 * the GATT itself.
371 *
372 * We also have to wait a bit for the writes to land from the GTT.
373 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
374 * timing. This issue has only been observed when switching quickly
375 * between GTT writes and CPU reads from inside the kernel on recent hw,
376 * and it appears to only affect discrete GTT blocks (i.e. on LLC
377 * system agents we cannot reproduce this behaviour, until Cannonlake
378 * that was!).
379 */
380
381 wmb();
382
383 if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
384 return;
385
386 intel_gt_chipset_flush(gt);
387
388 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
389 unsigned long flags;
390
391 spin_lock_irqsave(&uncore->lock, flags);
392 intel_uncore_posting_read_fw(uncore,
393 RING_HEAD(RENDER_RING_BASE));
394 spin_unlock_irqrestore(&uncore->lock, flags);
395 }
396 }
397
intel_gt_chipset_flush(struct intel_gt * gt)398 void intel_gt_chipset_flush(struct intel_gt *gt)
399 {
400 wmb();
401 if (GRAPHICS_VER(gt->i915) < 6)
402 intel_ggtt_gmch_flush();
403 }
404
intel_gt_driver_register(struct intel_gt * gt)405 void intel_gt_driver_register(struct intel_gt *gt)
406 {
407 intel_gsc_init(>->gsc, gt->i915);
408
409 intel_rps_driver_register(>->rps);
410
411 intel_gt_debugfs_register(gt);
412 intel_gt_sysfs_register(gt);
413 }
414
intel_gt_init_scratch(struct intel_gt * gt,unsigned int size)415 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
416 {
417 struct drm_i915_private *i915 = gt->i915;
418 struct drm_i915_gem_object *obj;
419 struct i915_vma *vma;
420 int ret;
421
422 obj = i915_gem_object_create_lmem(i915, size,
423 I915_BO_ALLOC_VOLATILE |
424 I915_BO_ALLOC_GPU_ONLY);
425 if (IS_ERR(obj))
426 obj = i915_gem_object_create_stolen(i915, size);
427 if (IS_ERR(obj))
428 obj = i915_gem_object_create_internal(i915, size);
429 if (IS_ERR(obj)) {
430 drm_err(&i915->drm, "Failed to allocate scratch page\n");
431 return PTR_ERR(obj);
432 }
433
434 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
435 if (IS_ERR(vma)) {
436 ret = PTR_ERR(vma);
437 goto err_unref;
438 }
439
440 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
441 if (ret)
442 goto err_unref;
443
444 gt->scratch = i915_vma_make_unshrinkable(vma);
445
446 return 0;
447
448 err_unref:
449 i915_gem_object_put(obj);
450 return ret;
451 }
452
intel_gt_fini_scratch(struct intel_gt * gt)453 static void intel_gt_fini_scratch(struct intel_gt *gt)
454 {
455 i915_vma_unpin_and_release(>->scratch, 0);
456 }
457
kernel_vm(struct intel_gt * gt)458 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
459 {
460 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
461 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
462 else
463 return i915_vm_get(>->ggtt->vm);
464 }
465
__engines_record_defaults(struct intel_gt * gt)466 static int __engines_record_defaults(struct intel_gt *gt)
467 {
468 struct i915_request *requests[I915_NUM_ENGINES] = {};
469 struct intel_engine_cs *engine;
470 enum intel_engine_id id;
471 int err = 0;
472
473 /*
474 * As we reset the gpu during very early sanitisation, the current
475 * register state on the GPU should reflect its defaults values.
476 * We load a context onto the hw (with restore-inhibit), then switch
477 * over to a second context to save that default register state. We
478 * can then prime every new context with that state so they all start
479 * from the same default HW values.
480 */
481
482 for_each_engine(engine, gt, id) {
483 struct intel_renderstate so;
484 struct intel_context *ce;
485 struct i915_request *rq;
486
487 /* We must be able to switch to something! */
488 GEM_BUG_ON(!engine->kernel_context);
489
490 ce = intel_context_create(engine);
491 if (IS_ERR(ce)) {
492 err = PTR_ERR(ce);
493 goto out;
494 }
495
496 err = intel_renderstate_init(&so, ce);
497 if (err)
498 goto err;
499
500 rq = i915_request_create(ce);
501 if (IS_ERR(rq)) {
502 err = PTR_ERR(rq);
503 goto err_fini;
504 }
505
506 err = intel_engine_emit_ctx_wa(rq);
507 if (err)
508 goto err_rq;
509
510 err = intel_renderstate_emit(&so, rq);
511 if (err)
512 goto err_rq;
513
514 err_rq:
515 requests[id] = i915_request_get(rq);
516 i915_request_add(rq);
517 err_fini:
518 intel_renderstate_fini(&so, ce);
519 err:
520 if (err) {
521 intel_context_put(ce);
522 goto out;
523 }
524 }
525
526 /* Flush the default context image to memory, and enable powersaving. */
527 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
528 err = -EIO;
529 goto out;
530 }
531
532 for (id = 0; id < ARRAY_SIZE(requests); id++) {
533 struct i915_request *rq;
534 struct file *state;
535
536 rq = requests[id];
537 if (!rq)
538 continue;
539
540 if (rq->fence.error) {
541 err = -EIO;
542 goto out;
543 }
544
545 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
546 if (!rq->context->state)
547 continue;
548
549 /* Keep a copy of the state's backing pages; free the obj */
550 state = shmem_create_from_object(rq->context->state->obj);
551 if (IS_ERR(state)) {
552 err = PTR_ERR(state);
553 goto out;
554 }
555 rq->engine->default_state = state;
556 }
557
558 out:
559 /*
560 * If we have to abandon now, we expect the engines to be idle
561 * and ready to be torn-down. The quickest way we can accomplish
562 * this is by declaring ourselves wedged.
563 */
564 if (err)
565 intel_gt_set_wedged(gt);
566
567 for (id = 0; id < ARRAY_SIZE(requests); id++) {
568 struct intel_context *ce;
569 struct i915_request *rq;
570
571 rq = requests[id];
572 if (!rq)
573 continue;
574
575 ce = rq->context;
576 i915_request_put(rq);
577 intel_context_put(ce);
578 }
579 return err;
580 }
581
__engines_verify_workarounds(struct intel_gt * gt)582 static int __engines_verify_workarounds(struct intel_gt *gt)
583 {
584 struct intel_engine_cs *engine;
585 enum intel_engine_id id;
586 int err = 0;
587
588 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
589 return 0;
590
591 for_each_engine(engine, gt, id) {
592 if (intel_engine_verify_workarounds(engine, "load"))
593 err = -EIO;
594 }
595
596 /* Flush and restore the kernel context for safety */
597 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
598 err = -EIO;
599
600 return err;
601 }
602
__intel_gt_disable(struct intel_gt * gt)603 static void __intel_gt_disable(struct intel_gt *gt)
604 {
605 intel_gt_set_wedged_on_fini(gt);
606
607 intel_gt_suspend_prepare(gt);
608 intel_gt_suspend_late(gt);
609
610 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
611 }
612
intel_gt_wait_for_idle(struct intel_gt * gt,long timeout)613 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
614 {
615 long remaining_timeout;
616
617 /* If the device is asleep, we have no requests outstanding */
618 if (!intel_gt_pm_is_awake(gt))
619 return 0;
620
621 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
622 &remaining_timeout)) > 0) {
623 cond_resched();
624 if (signal_pending(current))
625 return -EINTR;
626 }
627
628 if (timeout)
629 return timeout;
630
631 if (remaining_timeout < 0)
632 remaining_timeout = 0;
633
634 return intel_uc_wait_for_idle(>->uc, remaining_timeout);
635 }
636
intel_gt_init(struct intel_gt * gt)637 int intel_gt_init(struct intel_gt *gt)
638 {
639 int err;
640
641 err = i915_inject_probe_error(gt->i915, -ENODEV);
642 if (err)
643 return err;
644
645 intel_gt_init_workarounds(gt);
646
647 /*
648 * This is just a security blanket to placate dragons.
649 * On some systems, we very sporadically observe that the first TLBs
650 * used by the CS may be stale, despite us poking the TLB reset. If
651 * we hold the forcewake during initialisation these problems
652 * just magically go away.
653 */
654 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
655
656 err = intel_gt_init_scratch(gt,
657 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
658 if (err)
659 goto out_fw;
660
661 intel_gt_pm_init(gt);
662
663 gt->vm = kernel_vm(gt);
664 if (!gt->vm) {
665 err = -ENOMEM;
666 goto err_pm;
667 }
668
669 intel_set_mocs_index(gt);
670
671 err = intel_engines_init(gt);
672 if (err)
673 goto err_engines;
674
675 err = intel_uc_init(>->uc);
676 if (err)
677 goto err_engines;
678
679 err = intel_gt_resume(gt);
680 if (err)
681 goto err_uc_init;
682
683 err = intel_gt_init_hwconfig(gt);
684 if (err)
685 drm_err(>->i915->drm, "Failed to retrieve hwconfig table: %pe\n",
686 ERR_PTR(err));
687
688 err = __engines_record_defaults(gt);
689 if (err)
690 goto err_gt;
691
692 err = __engines_verify_workarounds(gt);
693 if (err)
694 goto err_gt;
695
696 intel_uc_init_late(>->uc);
697
698 err = i915_inject_probe_error(gt->i915, -EIO);
699 if (err)
700 goto err_gt;
701
702 intel_migrate_init(>->migrate, gt);
703
704 intel_pxp_init(>->pxp);
705
706 goto out_fw;
707 err_gt:
708 __intel_gt_disable(gt);
709 intel_uc_fini_hw(>->uc);
710 err_uc_init:
711 intel_uc_fini(>->uc);
712 err_engines:
713 intel_engines_release(gt);
714 i915_vm_put(fetch_and_zero(>->vm));
715 err_pm:
716 intel_gt_pm_fini(gt);
717 intel_gt_fini_scratch(gt);
718 out_fw:
719 if (err)
720 intel_gt_set_wedged_on_init(gt);
721 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
722 return err;
723 }
724
intel_gt_driver_remove(struct intel_gt * gt)725 void intel_gt_driver_remove(struct intel_gt *gt)
726 {
727 __intel_gt_disable(gt);
728
729 intel_migrate_fini(>->migrate);
730 intel_uc_driver_remove(>->uc);
731
732 intel_engines_release(gt);
733
734 intel_gt_flush_buffer_pool(gt);
735 }
736
intel_gt_driver_unregister(struct intel_gt * gt)737 void intel_gt_driver_unregister(struct intel_gt *gt)
738 {
739 intel_wakeref_t wakeref;
740
741 intel_gt_sysfs_unregister(gt);
742 intel_rps_driver_unregister(>->rps);
743 intel_gsc_fini(>->gsc);
744
745 intel_pxp_fini(>->pxp);
746
747 /*
748 * Upon unregistering the device to prevent any new users, cancel
749 * all in-flight requests so that we can quickly unbind the active
750 * resources.
751 */
752 intel_gt_set_wedged_on_fini(gt);
753
754 /* Scrub all HW state upon release */
755 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
756 __intel_gt_reset(gt, ALL_ENGINES);
757 }
758
intel_gt_driver_release(struct intel_gt * gt)759 void intel_gt_driver_release(struct intel_gt *gt)
760 {
761 struct i915_address_space *vm;
762
763 vm = fetch_and_zero(>->vm);
764 if (vm) /* FIXME being called twice on error paths :( */
765 i915_vm_put(vm);
766
767 intel_wa_list_free(>->wa_list);
768 intel_gt_pm_fini(gt);
769 intel_gt_fini_scratch(gt);
770 intel_gt_fini_buffer_pool(gt);
771 intel_gt_fini_hwconfig(gt);
772 }
773
intel_gt_driver_late_release_all(struct drm_i915_private * i915)774 void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
775 {
776 struct intel_gt *gt;
777 unsigned int id;
778
779 /* We need to wait for inflight RCU frees to release their grip */
780 rcu_barrier();
781
782 for_each_gt(gt, i915, id) {
783 intel_uc_driver_late_release(>->uc);
784 intel_gt_fini_requests(gt);
785 intel_gt_fini_reset(gt);
786 intel_gt_fini_timelines(gt);
787 mutex_destroy(>->tlb.invalidate_lock);
788 intel_engines_free(gt);
789 }
790 }
791
intel_gt_tile_setup(struct intel_gt * gt,phys_addr_t phys_addr)792 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
793 {
794 int ret;
795
796 if (!gt_is_root(gt)) {
797 struct intel_uncore *uncore;
798 spinlock_t *irq_lock;
799
800 uncore = drmm_kzalloc(>->i915->drm, sizeof(*uncore), GFP_KERNEL);
801 if (!uncore)
802 return -ENOMEM;
803
804 irq_lock = drmm_kzalloc(>->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
805 if (!irq_lock)
806 return -ENOMEM;
807
808 gt->uncore = uncore;
809 gt->irq_lock = irq_lock;
810
811 intel_gt_common_init_early(gt);
812 }
813
814 intel_uncore_init_early(gt->uncore, gt);
815 intel_wakeref_auto_init(>->userfault_wakeref, gt->uncore->rpm);
816
817 ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
818 if (ret)
819 return ret;
820
821 gt->phys_addr = phys_addr;
822
823 return 0;
824 }
825
intel_gt_probe_all(struct drm_i915_private * i915)826 int intel_gt_probe_all(struct drm_i915_private *i915)
827 {
828 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
829 struct intel_gt *gt = &i915->gt0;
830 const struct intel_gt_definition *gtdef;
831 phys_addr_t phys_addr;
832 unsigned int mmio_bar;
833 unsigned int i;
834 int ret;
835
836 mmio_bar = GRAPHICS_VER(i915) == 2 ? GEN2_GTTMMADR_BAR : GTTMMADR_BAR;
837 phys_addr = pci_resource_start(pdev, mmio_bar);
838
839 /*
840 * We always have at least one primary GT on any device
841 * and it has been already initialized early during probe
842 * in i915_driver_probe()
843 */
844 gt->i915 = i915;
845 gt->name = "Primary GT";
846 gt->info.engine_mask = RUNTIME_INFO(i915)->platform_engine_mask;
847
848 drm_dbg(&i915->drm, "Setting up %s\n", gt->name);
849 ret = intel_gt_tile_setup(gt, phys_addr);
850 if (ret)
851 return ret;
852
853 i915->gt[0] = gt;
854
855 if (!HAS_EXTRA_GT_LIST(i915))
856 return 0;
857
858 for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
859 gtdef->name != NULL;
860 i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
861 gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
862 if (!gt) {
863 ret = -ENOMEM;
864 goto err;
865 }
866
867 gt->i915 = i915;
868 gt->name = gtdef->name;
869 gt->type = gtdef->type;
870 gt->info.engine_mask = gtdef->engine_mask;
871 gt->info.id = i;
872
873 drm_dbg(&i915->drm, "Setting up %s\n", gt->name);
874 if (GEM_WARN_ON(range_overflows_t(resource_size_t,
875 gtdef->mapping_base,
876 SZ_16M,
877 pci_resource_len(pdev, mmio_bar)))) {
878 ret = -ENODEV;
879 goto err;
880 }
881
882 switch (gtdef->type) {
883 case GT_TILE:
884 ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
885 break;
886
887 case GT_MEDIA:
888 ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
889 gtdef->gsi_offset);
890 break;
891
892 case GT_PRIMARY:
893 /* Primary GT should not appear in extra GT list */
894 default:
895 MISSING_CASE(gtdef->type);
896 ret = -ENODEV;
897 }
898
899 if (ret)
900 goto err;
901
902 i915->gt[i] = gt;
903 }
904
905 return 0;
906
907 err:
908 i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
909 intel_gt_release_all(i915);
910
911 return ret;
912 }
913
intel_gt_tiles_init(struct drm_i915_private * i915)914 int intel_gt_tiles_init(struct drm_i915_private *i915)
915 {
916 struct intel_gt *gt;
917 unsigned int id;
918 int ret;
919
920 for_each_gt(gt, i915, id) {
921 ret = intel_gt_probe_lmem(gt);
922 if (ret)
923 return ret;
924 }
925
926 return 0;
927 }
928
intel_gt_release_all(struct drm_i915_private * i915)929 void intel_gt_release_all(struct drm_i915_private *i915)
930 {
931 struct intel_gt *gt;
932 unsigned int id;
933
934 for_each_gt(gt, i915, id)
935 i915->gt[id] = NULL;
936 }
937
intel_gt_info_print(const struct intel_gt_info * info,struct drm_printer * p)938 void intel_gt_info_print(const struct intel_gt_info *info,
939 struct drm_printer *p)
940 {
941 drm_printf(p, "available engines: %x\n", info->engine_mask);
942
943 intel_sseu_dump(&info->sseu, p);
944 }
945
946 struct reg_and_bit {
947 i915_reg_t reg;
948 u32 bit;
949 };
950
951 static struct reg_and_bit
get_reg_and_bit(const struct intel_engine_cs * engine,const bool gen8,const i915_reg_t * regs,const unsigned int num)952 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
953 const i915_reg_t *regs, const unsigned int num)
954 {
955 const unsigned int class = engine->class;
956 struct reg_and_bit rb = { };
957
958 if (drm_WARN_ON_ONCE(&engine->i915->drm,
959 class >= num || !regs[class].reg))
960 return rb;
961
962 rb.reg = regs[class];
963 if (gen8 && class == VIDEO_DECODE_CLASS)
964 rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
965 else
966 rb.bit = engine->instance;
967
968 rb.bit = BIT(rb.bit);
969
970 return rb;
971 }
972
mmio_invalidate_full(struct intel_gt * gt)973 static void mmio_invalidate_full(struct intel_gt *gt)
974 {
975 static const i915_reg_t gen8_regs[] = {
976 [RENDER_CLASS] = GEN8_RTCR,
977 [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */
978 [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR,
979 [COPY_ENGINE_CLASS] = GEN8_BTCR,
980 };
981 static const i915_reg_t gen12_regs[] = {
982 [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR,
983 [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR,
984 [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR,
985 [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR,
986 [COMPUTE_CLASS] = GEN12_COMPCTX_TLB_INV_CR,
987 };
988 struct drm_i915_private *i915 = gt->i915;
989 struct intel_uncore *uncore = gt->uncore;
990 struct intel_engine_cs *engine;
991 intel_engine_mask_t awake, tmp;
992 enum intel_engine_id id;
993 const i915_reg_t *regs;
994 unsigned int num = 0;
995
996 if (GRAPHICS_VER(i915) == 12) {
997 regs = gen12_regs;
998 num = ARRAY_SIZE(gen12_regs);
999 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1000 regs = gen8_regs;
1001 num = ARRAY_SIZE(gen8_regs);
1002 } else if (GRAPHICS_VER(i915) < 8) {
1003 return;
1004 }
1005
1006 if (drm_WARN_ONCE(&i915->drm, !num,
1007 "Platform does not implement TLB invalidation!"))
1008 return;
1009
1010 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1011
1012 spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */
1013
1014 awake = 0;
1015 for_each_engine(engine, gt, id) {
1016 struct reg_and_bit rb;
1017
1018 if (!intel_engine_pm_is_awake(engine))
1019 continue;
1020
1021 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1022 if (!i915_mmio_reg_offset(rb.reg))
1023 continue;
1024
1025 if (GRAPHICS_VER(i915) == 12 && (engine->class == VIDEO_DECODE_CLASS ||
1026 engine->class == VIDEO_ENHANCEMENT_CLASS ||
1027 engine->class == COMPUTE_CLASS))
1028 rb.bit = _MASKED_BIT_ENABLE(rb.bit);
1029
1030 intel_uncore_write_fw(uncore, rb.reg, rb.bit);
1031 awake |= engine->mask;
1032 }
1033
1034 GT_TRACE(gt, "invalidated engines %08x\n", awake);
1035
1036 /* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */
1037 if (awake &&
1038 (IS_TIGERLAKE(i915) ||
1039 IS_DG1(i915) ||
1040 IS_ROCKETLAKE(i915) ||
1041 IS_ALDERLAKE_S(i915) ||
1042 IS_ALDERLAKE_P(i915)))
1043 intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1);
1044
1045 spin_unlock_irq(&uncore->lock);
1046
1047 for_each_engine_masked(engine, gt, awake, tmp) {
1048 struct reg_and_bit rb;
1049
1050 /*
1051 * HW architecture suggest typical invalidation time at 40us,
1052 * with pessimistic cases up to 100us and a recommendation to
1053 * cap at 1ms. We go a bit higher just in case.
1054 */
1055 const unsigned int timeout_us = 100;
1056 const unsigned int timeout_ms = 4;
1057
1058 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1059 if (__intel_wait_for_register_fw(uncore,
1060 rb.reg, rb.bit, 0,
1061 timeout_us, timeout_ms,
1062 NULL))
1063 drm_err_ratelimited(>->i915->drm,
1064 "%s TLB invalidation did not complete in %ums!\n",
1065 engine->name, timeout_ms);
1066 }
1067
1068 /*
1069 * Use delayed put since a) we mostly expect a flurry of TLB
1070 * invalidations so it is good to avoid paying the forcewake cost and
1071 * b) it works around a bug in Icelake which cannot cope with too rapid
1072 * transitions.
1073 */
1074 intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
1075 }
1076
tlb_seqno_passed(const struct intel_gt * gt,u32 seqno)1077 static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno)
1078 {
1079 u32 cur = intel_gt_tlb_seqno(gt);
1080
1081 /* Only skip if a *full* TLB invalidate barrier has passed */
1082 return (s32)(cur - ALIGN(seqno, 2)) > 0;
1083 }
1084
intel_gt_invalidate_tlb(struct intel_gt * gt,u32 seqno)1085 void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno)
1086 {
1087 intel_wakeref_t wakeref;
1088
1089 if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
1090 return;
1091
1092 if (intel_gt_is_wedged(gt))
1093 return;
1094
1095 if (tlb_seqno_passed(gt, seqno))
1096 return;
1097
1098 with_intel_gt_pm_if_awake(gt, wakeref) {
1099 mutex_lock(>->tlb.invalidate_lock);
1100 if (tlb_seqno_passed(gt, seqno))
1101 goto unlock;
1102
1103 mmio_invalidate_full(gt);
1104
1105 write_seqcount_invalidate(>->tlb.seqno);
1106 unlock:
1107 mutex_unlock(>->tlb.invalidate_lock);
1108 }
1109 }
1110