1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include "gem/i915_gem_context.h"
137
138 #include "i915_drv.h"
139 #include "i915_perf.h"
140 #include "i915_trace.h"
141 #include "i915_vgpu.h"
142 #include "intel_engine_pm.h"
143 #include "intel_gt.h"
144 #include "intel_gt_pm.h"
145 #include "intel_lrc_reg.h"
146 #include "intel_mocs.h"
147 #include "intel_reset.h"
148 #include "intel_workarounds.h"
149
150 #define RING_EXECLIST_QFULL (1 << 0x2)
151 #define RING_EXECLIST1_VALID (1 << 0x3)
152 #define RING_EXECLIST0_VALID (1 << 0x4)
153 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
154 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
155 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
156
157 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
158 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
159 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
160 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
161 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
162 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
163
164 #define GEN8_CTX_STATUS_COMPLETED_MASK \
165 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
166
167 #define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
168
169 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */
170 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
171 #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15)
172 #define GEN12_IDLE_CTX_ID 0x7FF
173 #define GEN12_CSB_CTX_VALID(csb_dw) \
174 (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
175
176 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
177 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
178 #define WA_TAIL_DWORDS 2
179 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
180
181 struct virtual_engine {
182 struct intel_engine_cs base;
183 struct intel_context context;
184
185 /*
186 * We allow only a single request through the virtual engine at a time
187 * (each request in the timeline waits for the completion fence of
188 * the previous before being submitted). By restricting ourselves to
189 * only submitting a single request, each request is placed on to a
190 * physical to maximise load spreading (by virtue of the late greedy
191 * scheduling -- each real engine takes the next available request
192 * upon idling).
193 */
194 struct i915_request *request;
195
196 /*
197 * We keep a rbtree of available virtual engines inside each physical
198 * engine, sorted by priority. Here we preallocate the nodes we need
199 * for the virtual engine, indexed by physical_engine->id.
200 */
201 struct ve_node {
202 struct rb_node rb;
203 int prio;
204 } nodes[I915_NUM_ENGINES];
205
206 /*
207 * Keep track of bonded pairs -- restrictions upon on our selection
208 * of physical engines any particular request may be submitted to.
209 * If we receive a submit-fence from a master engine, we will only
210 * use one of sibling_mask physical engines.
211 */
212 struct ve_bond {
213 const struct intel_engine_cs *master;
214 intel_engine_mask_t sibling_mask;
215 } *bonds;
216 unsigned int num_bonds;
217
218 /* And finally, which physical engines this virtual engine maps onto. */
219 unsigned int num_siblings;
220 struct intel_engine_cs *siblings[0];
221 };
222
to_virtual_engine(struct intel_engine_cs * engine)223 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
224 {
225 GEM_BUG_ON(!intel_engine_is_virtual(engine));
226 return container_of(engine, struct virtual_engine, base);
227 }
228
229 static int __execlists_context_alloc(struct intel_context *ce,
230 struct intel_engine_cs *engine);
231
232 static void execlists_init_reg_state(u32 *reg_state,
233 struct intel_context *ce,
234 struct intel_engine_cs *engine,
235 struct intel_ring *ring);
236
mark_eio(struct i915_request * rq)237 static void mark_eio(struct i915_request *rq)
238 {
239 if (!i915_request_signaled(rq))
240 dma_fence_set_error(&rq->fence, -EIO);
241 i915_request_mark_complete(rq);
242 }
243
intel_hws_preempt_address(struct intel_engine_cs * engine)244 static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
245 {
246 return (i915_ggtt_offset(engine->status_page.vma) +
247 I915_GEM_HWS_PREEMPT_ADDR);
248 }
249
250 static inline void
ring_set_paused(const struct intel_engine_cs * engine,int state)251 ring_set_paused(const struct intel_engine_cs *engine, int state)
252 {
253 /*
254 * We inspect HWS_PREEMPT with a semaphore inside
255 * engine->emit_fini_breadcrumb. If the dword is true,
256 * the ring is paused as the semaphore will busywait
257 * until the dword is false.
258 */
259 engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
260 if (state)
261 wmb();
262 }
263
to_priolist(struct rb_node * rb)264 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
265 {
266 return rb_entry(rb, struct i915_priolist, node);
267 }
268
rq_prio(const struct i915_request * rq)269 static inline int rq_prio(const struct i915_request *rq)
270 {
271 return rq->sched.attr.priority;
272 }
273
effective_prio(const struct i915_request * rq)274 static int effective_prio(const struct i915_request *rq)
275 {
276 int prio = rq_prio(rq);
277
278 /*
279 * If this request is special and must not be interrupted at any
280 * cost, so be it. Note we are only checking the most recent request
281 * in the context and so may be masking an earlier vip request. It
282 * is hoped that under the conditions where nopreempt is used, this
283 * will not matter (i.e. all requests to that context will be
284 * nopreempt for as long as desired).
285 */
286 if (i915_request_has_nopreempt(rq))
287 prio = I915_PRIORITY_UNPREEMPTABLE;
288
289 /*
290 * On unwinding the active request, we give it a priority bump
291 * if it has completed waiting on any semaphore. If we know that
292 * the request has already started, we can prevent an unwanted
293 * preempt-to-idle cycle by taking that into account now.
294 */
295 if (__i915_request_has_started(rq))
296 prio |= I915_PRIORITY_NOSEMAPHORE;
297
298 /* Restrict mere WAIT boosts from triggering preemption */
299 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
300 return prio | __NO_PREEMPTION;
301 }
302
queue_prio(const struct intel_engine_execlists * execlists)303 static int queue_prio(const struct intel_engine_execlists *execlists)
304 {
305 struct i915_priolist *p;
306 struct rb_node *rb;
307
308 rb = rb_first_cached(&execlists->queue);
309 if (!rb)
310 return INT_MIN;
311
312 /*
313 * As the priolist[] are inverted, with the highest priority in [0],
314 * we have to flip the index value to become priority.
315 */
316 p = to_priolist(rb);
317 return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
318 }
319
need_preempt(const struct intel_engine_cs * engine,const struct i915_request * rq,struct rb_node * rb)320 static inline bool need_preempt(const struct intel_engine_cs *engine,
321 const struct i915_request *rq,
322 struct rb_node *rb)
323 {
324 int last_prio;
325
326 if (!intel_engine_has_semaphores(engine))
327 return false;
328
329 /*
330 * Check if the current priority hint merits a preemption attempt.
331 *
332 * We record the highest value priority we saw during rescheduling
333 * prior to this dequeue, therefore we know that if it is strictly
334 * less than the current tail of ESLP[0], we do not need to force
335 * a preempt-to-idle cycle.
336 *
337 * However, the priority hint is a mere hint that we may need to
338 * preempt. If that hint is stale or we may be trying to preempt
339 * ourselves, ignore the request.
340 */
341 last_prio = effective_prio(rq);
342 if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
343 last_prio))
344 return false;
345
346 /*
347 * Check against the first request in ELSP[1], it will, thanks to the
348 * power of PI, be the highest priority of that context.
349 */
350 if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
351 rq_prio(list_next_entry(rq, sched.link)) > last_prio)
352 return true;
353
354 if (rb) {
355 struct virtual_engine *ve =
356 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
357 bool preempt = false;
358
359 if (engine == ve->siblings[0]) { /* only preempt one sibling */
360 struct i915_request *next;
361
362 rcu_read_lock();
363 next = READ_ONCE(ve->request);
364 if (next)
365 preempt = rq_prio(next) > last_prio;
366 rcu_read_unlock();
367 }
368
369 if (preempt)
370 return preempt;
371 }
372
373 /*
374 * If the inflight context did not trigger the preemption, then maybe
375 * it was the set of queued requests? Pick the highest priority in
376 * the queue (the first active priolist) and see if it deserves to be
377 * running instead of ELSP[0].
378 *
379 * The highest priority request in the queue can not be either
380 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
381 * context, it's priority would not exceed ELSP[0] aka last_prio.
382 */
383 return queue_prio(&engine->execlists) > last_prio;
384 }
385
386 __maybe_unused static inline bool
assert_priority_queue(const struct i915_request * prev,const struct i915_request * next)387 assert_priority_queue(const struct i915_request *prev,
388 const struct i915_request *next)
389 {
390 /*
391 * Without preemption, the prev may refer to the still active element
392 * which we refuse to let go.
393 *
394 * Even with preemption, there are times when we think it is better not
395 * to preempt and leave an ostensibly lower priority request in flight.
396 */
397 if (i915_request_is_active(prev))
398 return true;
399
400 return rq_prio(prev) >= rq_prio(next);
401 }
402
403 /*
404 * The context descriptor encodes various attributes of a context,
405 * including its GTT address and some flags. Because it's fairly
406 * expensive to calculate, we'll just do it once and cache the result,
407 * which remains valid until the context is unpinned.
408 *
409 * This is what a descriptor looks like, from LSB to MSB::
410 *
411 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
412 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
413 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC)
414 * bits 53-54: mbz, reserved for use by hardware
415 * bits 55-63: group ID, currently unused and set to 0
416 *
417 * Starting from Gen11, the upper dword of the descriptor has a new format:
418 *
419 * bits 32-36: reserved
420 * bits 37-47: SW context ID
421 * bits 48:53: engine instance
422 * bit 54: mbz, reserved for use by hardware
423 * bits 55-60: SW counter
424 * bits 61-63: engine class
425 *
426 * engine info, SW context ID and SW counter need to form a unique number
427 * (Context ID) per lrc.
428 */
429 static u64
lrc_descriptor(struct intel_context * ce,struct intel_engine_cs * engine)430 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
431 {
432 struct i915_gem_context *ctx = ce->gem_context;
433 u64 desc;
434
435 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
436 BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
437
438 desc = INTEL_LEGACY_32B_CONTEXT;
439 if (i915_vm_is_4lvl(ce->vm))
440 desc = INTEL_LEGACY_64B_CONTEXT;
441 desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
442
443 desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
444 if (IS_GEN(engine->i915, 8))
445 desc |= GEN8_CTX_L3LLC_COHERENT;
446
447 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
448 /* bits 12-31 */
449 /*
450 * The following 32bits are copied into the OA reports (dword 2).
451 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
452 * anything below.
453 */
454 if (INTEL_GEN(engine->i915) >= 11) {
455 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
456 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
457 /* bits 37-47 */
458
459 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
460 /* bits 48-53 */
461
462 /* TODO: decide what to do with SW counter (bits 55-60) */
463
464 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
465 /* bits 61-63 */
466 } else {
467 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
468 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
469 }
470
471 return desc;
472 }
473
unwind_wa_tail(struct i915_request * rq)474 static void unwind_wa_tail(struct i915_request *rq)
475 {
476 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
477 assert_ring_tail_valid(rq->ring, rq->tail);
478 }
479
480 static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs * engine)481 __unwind_incomplete_requests(struct intel_engine_cs *engine)
482 {
483 struct i915_request *rq, *rn, *active = NULL;
484 struct list_head *uninitialized_var(pl);
485 int prio = I915_PRIORITY_INVALID;
486
487 lockdep_assert_held(&engine->active.lock);
488
489 list_for_each_entry_safe_reverse(rq, rn,
490 &engine->active.requests,
491 sched.link) {
492 struct intel_engine_cs *owner;
493
494 if (i915_request_completed(rq))
495 continue; /* XXX */
496
497 __i915_request_unsubmit(rq);
498 unwind_wa_tail(rq);
499
500 /*
501 * Push the request back into the queue for later resubmission.
502 * If this request is not native to this physical engine (i.e.
503 * it came from a virtual source), push it back onto the virtual
504 * engine so that it can be moved across onto another physical
505 * engine as load dictates.
506 */
507 owner = rq->hw_context->engine;
508 if (likely(owner == engine)) {
509 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
510 if (rq_prio(rq) != prio) {
511 prio = rq_prio(rq);
512 pl = i915_sched_lookup_priolist(engine, prio);
513 }
514 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
515
516 list_move(&rq->sched.link, pl);
517 active = rq;
518 } else {
519 /*
520 * Decouple the virtual breadcrumb before moving it
521 * back to the virtual engine -- we don't want the
522 * request to complete in the background and try
523 * and cancel the breadcrumb on the virtual engine
524 * (instead of the old engine where it is linked)!
525 */
526 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
527 &rq->fence.flags)) {
528 spin_lock(&rq->lock);
529 i915_request_cancel_breadcrumb(rq);
530 spin_unlock(&rq->lock);
531 }
532 rq->engine = owner;
533 owner->submit_request(rq);
534 active = NULL;
535 }
536 }
537
538 return active;
539 }
540
541 struct i915_request *
execlists_unwind_incomplete_requests(struct intel_engine_execlists * execlists)542 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
543 {
544 struct intel_engine_cs *engine =
545 container_of(execlists, typeof(*engine), execlists);
546
547 return __unwind_incomplete_requests(engine);
548 }
549
550 static inline void
execlists_context_status_change(struct i915_request * rq,unsigned long status)551 execlists_context_status_change(struct i915_request *rq, unsigned long status)
552 {
553 /*
554 * Only used when GVT-g is enabled now. When GVT-g is disabled,
555 * The compiler should eliminate this function as dead-code.
556 */
557 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
558 return;
559
560 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
561 status, rq);
562 }
563
564 static inline struct intel_engine_cs *
__execlists_schedule_in(struct i915_request * rq)565 __execlists_schedule_in(struct i915_request *rq)
566 {
567 struct intel_engine_cs * const engine = rq->engine;
568 struct intel_context * const ce = rq->hw_context;
569
570 intel_context_get(ce);
571
572 intel_gt_pm_get(engine->gt);
573 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
574 intel_engine_context_in(engine);
575
576 return engine;
577 }
578
579 static inline struct i915_request *
execlists_schedule_in(struct i915_request * rq,int idx)580 execlists_schedule_in(struct i915_request *rq, int idx)
581 {
582 struct intel_context * const ce = rq->hw_context;
583 struct intel_engine_cs *old;
584
585 GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
586 trace_i915_request_in(rq, idx);
587
588 old = READ_ONCE(ce->inflight);
589 do {
590 if (!old) {
591 WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
592 break;
593 }
594 } while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
595
596 GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
597 return i915_request_get(rq);
598 }
599
kick_siblings(struct i915_request * rq,struct intel_context * ce)600 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
601 {
602 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
603 struct i915_request *next = READ_ONCE(ve->request);
604
605 if (next && next->execution_mask & ~rq->execution_mask)
606 tasklet_schedule(&ve->base.execlists.tasklet);
607 }
608
609 static inline void
__execlists_schedule_out(struct i915_request * rq,struct intel_engine_cs * const engine)610 __execlists_schedule_out(struct i915_request *rq,
611 struct intel_engine_cs * const engine)
612 {
613 struct intel_context * const ce = rq->hw_context;
614
615 intel_engine_context_out(engine);
616 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
617 intel_gt_pm_put(engine->gt);
618
619 /*
620 * If this is part of a virtual engine, its next request may
621 * have been blocked waiting for access to the active context.
622 * We have to kick all the siblings again in case we need to
623 * switch (e.g. the next request is not runnable on this
624 * engine). Hopefully, we will already have submitted the next
625 * request before the tasklet runs and do not need to rebuild
626 * each virtual tree and kick everyone again.
627 */
628 if (ce->engine != engine)
629 kick_siblings(rq, ce);
630
631 intel_context_put(ce);
632 }
633
634 static inline void
execlists_schedule_out(struct i915_request * rq)635 execlists_schedule_out(struct i915_request *rq)
636 {
637 struct intel_context * const ce = rq->hw_context;
638 struct intel_engine_cs *cur, *old;
639
640 trace_i915_request_out(rq);
641
642 old = READ_ONCE(ce->inflight);
643 do
644 cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
645 while (!try_cmpxchg(&ce->inflight, &old, cur));
646 if (!cur)
647 __execlists_schedule_out(rq, old);
648
649 i915_request_put(rq);
650 }
651
execlists_update_context(const struct i915_request * rq)652 static u64 execlists_update_context(const struct i915_request *rq)
653 {
654 struct intel_context *ce = rq->hw_context;
655 u64 desc;
656
657 ce->lrc_reg_state[CTX_RING_TAIL + 1] =
658 intel_ring_set_tail(rq->ring, rq->tail);
659
660 /*
661 * Make sure the context image is complete before we submit it to HW.
662 *
663 * Ostensibly, writes (including the WCB) should be flushed prior to
664 * an uncached write such as our mmio register access, the empirical
665 * evidence (esp. on Braswell) suggests that the WC write into memory
666 * may not be visible to the HW prior to the completion of the UC
667 * register write and that we may begin execution from the context
668 * before its image is complete leading to invalid PD chasing.
669 *
670 * Furthermore, Braswell, at least, wants a full mb to be sure that
671 * the writes are coherent in memory (visible to the GPU) prior to
672 * execution, and not just visible to other CPUs (as is the result of
673 * wmb).
674 */
675 mb();
676
677 desc = ce->lrc_desc;
678 ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;
679
680 return desc;
681 }
682
write_desc(struct intel_engine_execlists * execlists,u64 desc,u32 port)683 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
684 {
685 if (execlists->ctrl_reg) {
686 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
687 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
688 } else {
689 writel(upper_32_bits(desc), execlists->submit_reg);
690 writel(lower_32_bits(desc), execlists->submit_reg);
691 }
692 }
693
694 static __maybe_unused void
trace_ports(const struct intel_engine_execlists * execlists,const char * msg,struct i915_request * const * ports)695 trace_ports(const struct intel_engine_execlists *execlists,
696 const char *msg,
697 struct i915_request * const *ports)
698 {
699 const struct intel_engine_cs *engine =
700 container_of(execlists, typeof(*engine), execlists);
701
702 GEM_TRACE("%s: %s { %llx:%lld%s, %llx:%lld }\n",
703 engine->name, msg,
704 ports[0]->fence.context,
705 ports[0]->fence.seqno,
706 i915_request_completed(ports[0]) ? "!" :
707 i915_request_started(ports[0]) ? "*" :
708 "",
709 ports[1] ? ports[1]->fence.context : 0,
710 ports[1] ? ports[1]->fence.seqno : 0);
711 }
712
713 static __maybe_unused bool
assert_pending_valid(const struct intel_engine_execlists * execlists,const char * msg)714 assert_pending_valid(const struct intel_engine_execlists *execlists,
715 const char *msg)
716 {
717 struct i915_request * const *port, *rq;
718 struct intel_context *ce = NULL;
719
720 trace_ports(execlists, msg, execlists->pending);
721
722 if (!execlists->pending[0])
723 return false;
724
725 if (execlists->pending[execlists_num_ports(execlists)])
726 return false;
727
728 for (port = execlists->pending; (rq = *port); port++) {
729 if (ce == rq->hw_context)
730 return false;
731
732 ce = rq->hw_context;
733 if (i915_request_completed(rq))
734 continue;
735
736 if (i915_active_is_idle(&ce->active))
737 return false;
738
739 if (!i915_vma_is_pinned(ce->state))
740 return false;
741 }
742
743 return ce;
744 }
745
execlists_submit_ports(struct intel_engine_cs * engine)746 static void execlists_submit_ports(struct intel_engine_cs *engine)
747 {
748 struct intel_engine_execlists *execlists = &engine->execlists;
749 unsigned int n;
750
751 GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
752
753 /*
754 * We can skip acquiring intel_runtime_pm_get() here as it was taken
755 * on our behalf by the request (see i915_gem_mark_busy()) and it will
756 * not be relinquished until the device is idle (see
757 * i915_gem_idle_work_handler()). As a precaution, we make sure
758 * that all ELSP are drained i.e. we have processed the CSB,
759 * before allowing ourselves to idle and calling intel_runtime_pm_put().
760 */
761 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
762
763 /*
764 * ELSQ note: the submit queue is not cleared after being submitted
765 * to the HW so we need to make sure we always clean it up. This is
766 * currently ensured by the fact that we always write the same number
767 * of elsq entries, keep this in mind before changing the loop below.
768 */
769 for (n = execlists_num_ports(execlists); n--; ) {
770 struct i915_request *rq = execlists->pending[n];
771
772 write_desc(execlists,
773 rq ? execlists_update_context(rq) : 0,
774 n);
775 }
776
777 /* we need to manually load the submit queue */
778 if (execlists->ctrl_reg)
779 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
780 }
781
ctx_single_port_submission(const struct intel_context * ce)782 static bool ctx_single_port_submission(const struct intel_context *ce)
783 {
784 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
785 i915_gem_context_force_single_submission(ce->gem_context));
786 }
787
can_merge_ctx(const struct intel_context * prev,const struct intel_context * next)788 static bool can_merge_ctx(const struct intel_context *prev,
789 const struct intel_context *next)
790 {
791 if (prev != next)
792 return false;
793
794 if (ctx_single_port_submission(prev))
795 return false;
796
797 return true;
798 }
799
can_merge_rq(const struct i915_request * prev,const struct i915_request * next)800 static bool can_merge_rq(const struct i915_request *prev,
801 const struct i915_request *next)
802 {
803 GEM_BUG_ON(prev == next);
804 GEM_BUG_ON(!assert_priority_queue(prev, next));
805
806 /*
807 * We do not submit known completed requests. Therefore if the next
808 * request is already completed, we can pretend to merge it in
809 * with the previous context (and we will skip updating the ELSP
810 * and tracking). Thus hopefully keeping the ELSP full with active
811 * contexts, despite the best efforts of preempt-to-busy to confuse
812 * us.
813 */
814 if (i915_request_completed(next))
815 return true;
816
817 if (!can_merge_ctx(prev->hw_context, next->hw_context))
818 return false;
819
820 return true;
821 }
822
virtual_update_register_offsets(u32 * regs,struct intel_engine_cs * engine)823 static void virtual_update_register_offsets(u32 *regs,
824 struct intel_engine_cs *engine)
825 {
826 u32 base = engine->mmio_base;
827
828 /* Must match execlists_init_reg_state()! */
829
830 regs[CTX_CONTEXT_CONTROL] =
831 i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
832 regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
833 regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
834 regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
835 regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
836
837 regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
838 regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
839 regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
840 regs[CTX_SECOND_BB_HEAD_U] =
841 i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
842 regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
843 regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
844
845 regs[CTX_CTX_TIMESTAMP] =
846 i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
847 regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
848 regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
849 regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
850 regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
851 regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
852 regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
853 regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
854 regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
855
856 if (engine->class == RENDER_CLASS) {
857 regs[CTX_RCS_INDIRECT_CTX] =
858 i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
859 regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
860 i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
861 regs[CTX_BB_PER_CTX_PTR] =
862 i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
863
864 regs[CTX_R_PWR_CLK_STATE] =
865 i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
866 }
867 }
868
virtual_matches(const struct virtual_engine * ve,const struct i915_request * rq,const struct intel_engine_cs * engine)869 static bool virtual_matches(const struct virtual_engine *ve,
870 const struct i915_request *rq,
871 const struct intel_engine_cs *engine)
872 {
873 const struct intel_engine_cs *inflight;
874
875 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
876 return false;
877
878 /*
879 * We track when the HW has completed saving the context image
880 * (i.e. when we have seen the final CS event switching out of
881 * the context) and must not overwrite the context image before
882 * then. This restricts us to only using the active engine
883 * while the previous virtualized request is inflight (so
884 * we reuse the register offsets). This is a very small
885 * hystersis on the greedy seelction algorithm.
886 */
887 inflight = intel_context_inflight(&ve->context);
888 if (inflight && inflight != engine)
889 return false;
890
891 return true;
892 }
893
virtual_xfer_breadcrumbs(struct virtual_engine * ve,struct intel_engine_cs * engine)894 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
895 struct intel_engine_cs *engine)
896 {
897 struct intel_engine_cs *old = ve->siblings[0];
898
899 /* All unattached (rq->engine == old) must already be completed */
900
901 spin_lock(&old->breadcrumbs.irq_lock);
902 if (!list_empty(&ve->context.signal_link)) {
903 list_move_tail(&ve->context.signal_link,
904 &engine->breadcrumbs.signalers);
905 intel_engine_queue_breadcrumbs(engine);
906 }
907 spin_unlock(&old->breadcrumbs.irq_lock);
908 }
909
910 static struct i915_request *
last_active(const struct intel_engine_execlists * execlists)911 last_active(const struct intel_engine_execlists *execlists)
912 {
913 struct i915_request * const *last = READ_ONCE(execlists->active);
914
915 while (*last && i915_request_completed(*last))
916 last++;
917
918 return *last;
919 }
920
defer_request(struct i915_request * rq,struct list_head * const pl)921 static void defer_request(struct i915_request *rq, struct list_head * const pl)
922 {
923 LIST_HEAD(list);
924
925 /*
926 * We want to move the interrupted request to the back of
927 * the round-robin list (i.e. its priority level), but
928 * in doing so, we must then move all requests that were in
929 * flight and were waiting for the interrupted request to
930 * be run after it again.
931 */
932 do {
933 struct i915_dependency *p;
934
935 GEM_BUG_ON(i915_request_is_active(rq));
936 list_move_tail(&rq->sched.link, pl);
937
938 list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
939 struct i915_request *w =
940 container_of(p->waiter, typeof(*w), sched);
941
942 /* Leave semaphores spinning on the other engines */
943 if (w->engine != rq->engine)
944 continue;
945
946 /* No waiter should start before its signaler */
947 GEM_BUG_ON(i915_request_started(w) &&
948 !i915_request_completed(rq));
949
950 GEM_BUG_ON(i915_request_is_active(w));
951 if (list_empty(&w->sched.link))
952 continue; /* Not yet submitted; unready */
953
954 if (rq_prio(w) < rq_prio(rq))
955 continue;
956
957 GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
958 list_move_tail(&w->sched.link, &list);
959 }
960
961 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
962 } while (rq);
963 }
964
defer_active(struct intel_engine_cs * engine)965 static void defer_active(struct intel_engine_cs *engine)
966 {
967 struct i915_request *rq;
968
969 rq = __unwind_incomplete_requests(engine);
970 if (!rq)
971 return;
972
973 defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
974 }
975
976 static bool
need_timeslice(struct intel_engine_cs * engine,const struct i915_request * rq)977 need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
978 {
979 int hint;
980
981 if (!intel_engine_has_semaphores(engine))
982 return false;
983
984 if (list_is_last(&rq->sched.link, &engine->active.requests))
985 return false;
986
987 hint = max(rq_prio(list_next_entry(rq, sched.link)),
988 engine->execlists.queue_priority_hint);
989
990 return hint >= effective_prio(rq);
991 }
992
993 static int
switch_prio(struct intel_engine_cs * engine,const struct i915_request * rq)994 switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
995 {
996 if (list_is_last(&rq->sched.link, &engine->active.requests))
997 return INT_MIN;
998
999 return rq_prio(list_next_entry(rq, sched.link));
1000 }
1001
1002 static bool
enable_timeslice(const struct intel_engine_execlists * execlists)1003 enable_timeslice(const struct intel_engine_execlists *execlists)
1004 {
1005 const struct i915_request *rq = *execlists->active;
1006
1007 if (i915_request_completed(rq))
1008 return false;
1009
1010 return execlists->switch_priority_hint >= effective_prio(rq);
1011 }
1012
record_preemption(struct intel_engine_execlists * execlists)1013 static void record_preemption(struct intel_engine_execlists *execlists)
1014 {
1015 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1016 }
1017
execlists_dequeue(struct intel_engine_cs * engine)1018 static void execlists_dequeue(struct intel_engine_cs *engine)
1019 {
1020 struct intel_engine_execlists * const execlists = &engine->execlists;
1021 struct i915_request **port = execlists->pending;
1022 struct i915_request ** const last_port = port + execlists->port_mask;
1023 struct i915_request *last;
1024 struct rb_node *rb;
1025 bool submit = false;
1026
1027 /*
1028 * Hardware submission is through 2 ports. Conceptually each port
1029 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1030 * static for a context, and unique to each, so we only execute
1031 * requests belonging to a single context from each ring. RING_HEAD
1032 * is maintained by the CS in the context image, it marks the place
1033 * where it got up to last time, and through RING_TAIL we tell the CS
1034 * where we want to execute up to this time.
1035 *
1036 * In this list the requests are in order of execution. Consecutive
1037 * requests from the same context are adjacent in the ringbuffer. We
1038 * can combine these requests into a single RING_TAIL update:
1039 *
1040 * RING_HEAD...req1...req2
1041 * ^- RING_TAIL
1042 * since to execute req2 the CS must first execute req1.
1043 *
1044 * Our goal then is to point each port to the end of a consecutive
1045 * sequence of requests as being the most optimal (fewest wake ups
1046 * and context switches) submission.
1047 */
1048
1049 for (rb = rb_first_cached(&execlists->virtual); rb; ) {
1050 struct virtual_engine *ve =
1051 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1052 struct i915_request *rq = READ_ONCE(ve->request);
1053
1054 if (!rq) { /* lazily cleanup after another engine handled rq */
1055 rb_erase_cached(rb, &execlists->virtual);
1056 RB_CLEAR_NODE(rb);
1057 rb = rb_first_cached(&execlists->virtual);
1058 continue;
1059 }
1060
1061 if (!virtual_matches(ve, rq, engine)) {
1062 rb = rb_next(rb);
1063 continue;
1064 }
1065
1066 break;
1067 }
1068
1069 /*
1070 * If the queue is higher priority than the last
1071 * request in the currently active context, submit afresh.
1072 * We will resubmit again afterwards in case we need to split
1073 * the active context to interject the preemption request,
1074 * i.e. we will retrigger preemption following the ack in case
1075 * of trouble.
1076 */
1077 last = last_active(execlists);
1078 if (last) {
1079 if (need_preempt(engine, last, rb)) {
1080 GEM_TRACE("%s: preempting last=%llx:%lld, prio=%d, hint=%d\n",
1081 engine->name,
1082 last->fence.context,
1083 last->fence.seqno,
1084 last->sched.attr.priority,
1085 execlists->queue_priority_hint);
1086 record_preemption(execlists);
1087
1088 /*
1089 * Don't let the RING_HEAD advance past the breadcrumb
1090 * as we unwind (and until we resubmit) so that we do
1091 * not accidentally tell it to go backwards.
1092 */
1093 ring_set_paused(engine, 1);
1094
1095 /*
1096 * Note that we have not stopped the GPU at this point,
1097 * so we are unwinding the incomplete requests as they
1098 * remain inflight and so by the time we do complete
1099 * the preemption, some of the unwound requests may
1100 * complete!
1101 */
1102 __unwind_incomplete_requests(engine);
1103
1104 /*
1105 * If we need to return to the preempted context, we
1106 * need to skip the lite-restore and force it to
1107 * reload the RING_TAIL. Otherwise, the HW has a
1108 * tendency to ignore us rewinding the TAIL to the
1109 * end of an earlier request.
1110 */
1111 last->hw_context->lrc_desc |= CTX_DESC_FORCE_RESTORE;
1112 last = NULL;
1113 } else if (need_timeslice(engine, last) &&
1114 !timer_pending(&engine->execlists.timer)) {
1115 GEM_TRACE("%s: expired last=%llx:%lld, prio=%d, hint=%d\n",
1116 engine->name,
1117 last->fence.context,
1118 last->fence.seqno,
1119 last->sched.attr.priority,
1120 execlists->queue_priority_hint);
1121
1122 ring_set_paused(engine, 1);
1123 defer_active(engine);
1124
1125 /*
1126 * Unlike for preemption, if we rewind and continue
1127 * executing the same context as previously active,
1128 * the order of execution will remain the same and
1129 * the tail will only advance. We do not need to
1130 * force a full context restore, as a lite-restore
1131 * is sufficient to resample the monotonic TAIL.
1132 *
1133 * If we switch to any other context, similarly we
1134 * will not rewind TAIL of current context, and
1135 * normal save/restore will preserve state and allow
1136 * us to later continue executing the same request.
1137 */
1138 last = NULL;
1139 } else {
1140 /*
1141 * Otherwise if we already have a request pending
1142 * for execution after the current one, we can
1143 * just wait until the next CS event before
1144 * queuing more. In either case we will force a
1145 * lite-restore preemption event, but if we wait
1146 * we hopefully coalesce several updates into a single
1147 * submission.
1148 */
1149 if (!list_is_last(&last->sched.link,
1150 &engine->active.requests))
1151 return;
1152
1153 /*
1154 * WaIdleLiteRestore:bdw,skl
1155 * Apply the wa NOOPs to prevent
1156 * ring:HEAD == rq:TAIL as we resubmit the
1157 * request. See gen8_emit_fini_breadcrumb() for
1158 * where we prepare the padding after the
1159 * end of the request.
1160 */
1161 last->tail = last->wa_tail;
1162 }
1163 }
1164
1165 while (rb) { /* XXX virtual is always taking precedence */
1166 struct virtual_engine *ve =
1167 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1168 struct i915_request *rq;
1169
1170 spin_lock(&ve->base.active.lock);
1171
1172 rq = ve->request;
1173 if (unlikely(!rq)) { /* lost the race to a sibling */
1174 spin_unlock(&ve->base.active.lock);
1175 rb_erase_cached(rb, &execlists->virtual);
1176 RB_CLEAR_NODE(rb);
1177 rb = rb_first_cached(&execlists->virtual);
1178 continue;
1179 }
1180
1181 GEM_BUG_ON(rq != ve->request);
1182 GEM_BUG_ON(rq->engine != &ve->base);
1183 GEM_BUG_ON(rq->hw_context != &ve->context);
1184
1185 if (rq_prio(rq) >= queue_prio(execlists)) {
1186 if (!virtual_matches(ve, rq, engine)) {
1187 spin_unlock(&ve->base.active.lock);
1188 rb = rb_next(rb);
1189 continue;
1190 }
1191
1192 if (last && !can_merge_rq(last, rq)) {
1193 spin_unlock(&ve->base.active.lock);
1194 return; /* leave this for another */
1195 }
1196
1197 GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
1198 engine->name,
1199 rq->fence.context,
1200 rq->fence.seqno,
1201 i915_request_completed(rq) ? "!" :
1202 i915_request_started(rq) ? "*" :
1203 "",
1204 yesno(engine != ve->siblings[0]));
1205
1206 ve->request = NULL;
1207 ve->base.execlists.queue_priority_hint = INT_MIN;
1208 rb_erase_cached(rb, &execlists->virtual);
1209 RB_CLEAR_NODE(rb);
1210
1211 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1212 rq->engine = engine;
1213
1214 if (engine != ve->siblings[0]) {
1215 u32 *regs = ve->context.lrc_reg_state;
1216 unsigned int n;
1217
1218 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1219 virtual_update_register_offsets(regs, engine);
1220
1221 if (!list_empty(&ve->context.signals))
1222 virtual_xfer_breadcrumbs(ve, engine);
1223
1224 /*
1225 * Move the bound engine to the top of the list
1226 * for future execution. We then kick this
1227 * tasklet first before checking others, so that
1228 * we preferentially reuse this set of bound
1229 * registers.
1230 */
1231 for (n = 1; n < ve->num_siblings; n++) {
1232 if (ve->siblings[n] == engine) {
1233 swap(ve->siblings[n],
1234 ve->siblings[0]);
1235 break;
1236 }
1237 }
1238
1239 GEM_BUG_ON(ve->siblings[0] != engine);
1240 }
1241
1242 if (__i915_request_submit(rq)) {
1243 submit = true;
1244 last = rq;
1245 }
1246 i915_request_put(rq);
1247
1248 /*
1249 * Hmm, we have a bunch of virtual engine requests,
1250 * but the first one was already completed (thanks
1251 * preempt-to-busy!). Keep looking at the veng queue
1252 * until we have no more relevant requests (i.e.
1253 * the normal submit queue has higher priority).
1254 */
1255 if (!submit) {
1256 spin_unlock(&ve->base.active.lock);
1257 rb = rb_first_cached(&execlists->virtual);
1258 continue;
1259 }
1260 }
1261
1262 spin_unlock(&ve->base.active.lock);
1263 break;
1264 }
1265
1266 while ((rb = rb_first_cached(&execlists->queue))) {
1267 struct i915_priolist *p = to_priolist(rb);
1268 struct i915_request *rq, *rn;
1269 int i;
1270
1271 priolist_for_each_request_consume(rq, rn, p, i) {
1272 bool merge = true;
1273
1274 /*
1275 * Can we combine this request with the current port?
1276 * It has to be the same context/ringbuffer and not
1277 * have any exceptions (e.g. GVT saying never to
1278 * combine contexts).
1279 *
1280 * If we can combine the requests, we can execute both
1281 * by updating the RING_TAIL to point to the end of the
1282 * second request, and so we never need to tell the
1283 * hardware about the first.
1284 */
1285 if (last && !can_merge_rq(last, rq)) {
1286 /*
1287 * If we are on the second port and cannot
1288 * combine this request with the last, then we
1289 * are done.
1290 */
1291 if (port == last_port)
1292 goto done;
1293
1294 /*
1295 * We must not populate both ELSP[] with the
1296 * same LRCA, i.e. we must submit 2 different
1297 * contexts if we submit 2 ELSP.
1298 */
1299 if (last->hw_context == rq->hw_context)
1300 goto done;
1301
1302 /*
1303 * If GVT overrides us we only ever submit
1304 * port[0], leaving port[1] empty. Note that we
1305 * also have to be careful that we don't queue
1306 * the same context (even though a different
1307 * request) to the second port.
1308 */
1309 if (ctx_single_port_submission(last->hw_context) ||
1310 ctx_single_port_submission(rq->hw_context))
1311 goto done;
1312
1313 merge = false;
1314 }
1315
1316 if (__i915_request_submit(rq)) {
1317 if (!merge) {
1318 *port = execlists_schedule_in(last, port - execlists->pending);
1319 port++;
1320 last = NULL;
1321 }
1322
1323 GEM_BUG_ON(last &&
1324 !can_merge_ctx(last->hw_context,
1325 rq->hw_context));
1326
1327 submit = true;
1328 last = rq;
1329 }
1330 }
1331
1332 rb_erase_cached(&p->node, &execlists->queue);
1333 i915_priolist_free(p);
1334 }
1335
1336 done:
1337 /*
1338 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1339 *
1340 * We choose the priority hint such that if we add a request of greater
1341 * priority than this, we kick the submission tasklet to decide on
1342 * the right order of submitting the requests to hardware. We must
1343 * also be prepared to reorder requests as they are in-flight on the
1344 * HW. We derive the priority hint then as the first "hole" in
1345 * the HW submission ports and if there are no available slots,
1346 * the priority of the lowest executing request, i.e. last.
1347 *
1348 * When we do receive a higher priority request ready to run from the
1349 * user, see queue_request(), the priority hint is bumped to that
1350 * request triggering preemption on the next dequeue (or subsequent
1351 * interrupt for secondary ports).
1352 */
1353 execlists->queue_priority_hint = queue_prio(execlists);
1354 GEM_TRACE("%s: queue_priority_hint:%d, submit:%s\n",
1355 engine->name, execlists->queue_priority_hint,
1356 yesno(submit));
1357
1358 if (submit) {
1359 *port = execlists_schedule_in(last, port - execlists->pending);
1360 memset(port + 1, 0, (last_port - port) * sizeof(*port));
1361 execlists->switch_priority_hint =
1362 switch_prio(engine, *execlists->pending);
1363 execlists_submit_ports(engine);
1364 } else {
1365 ring_set_paused(engine, 0);
1366 }
1367 }
1368
1369 static void
cancel_port_requests(struct intel_engine_execlists * const execlists)1370 cancel_port_requests(struct intel_engine_execlists * const execlists)
1371 {
1372 struct i915_request * const *port, *rq;
1373
1374 for (port = execlists->pending; (rq = *port); port++)
1375 execlists_schedule_out(rq);
1376 memset(execlists->pending, 0, sizeof(execlists->pending));
1377
1378 for (port = execlists->active; (rq = *port); port++)
1379 execlists_schedule_out(rq);
1380 execlists->active =
1381 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1382 }
1383
1384 static inline void
invalidate_csb_entries(const u32 * first,const u32 * last)1385 invalidate_csb_entries(const u32 *first, const u32 *last)
1386 {
1387 clflush((void *)first);
1388 clflush((void *)last);
1389 }
1390
1391 static inline bool
reset_in_progress(const struct intel_engine_execlists * execlists)1392 reset_in_progress(const struct intel_engine_execlists *execlists)
1393 {
1394 return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1395 }
1396
1397 enum csb_step {
1398 CSB_NOP,
1399 CSB_PROMOTE,
1400 CSB_PREEMPT,
1401 CSB_COMPLETE,
1402 };
1403
1404 /*
1405 * Starting with Gen12, the status has a new format:
1406 *
1407 * bit 0: switched to new queue
1408 * bit 1: reserved
1409 * bit 2: semaphore wait mode (poll or signal), only valid when
1410 * switch detail is set to "wait on semaphore"
1411 * bits 3-5: engine class
1412 * bits 6-11: engine instance
1413 * bits 12-14: reserved
1414 * bits 15-25: sw context id of the lrc the GT switched to
1415 * bits 26-31: sw counter of the lrc the GT switched to
1416 * bits 32-35: context switch detail
1417 * - 0: ctx complete
1418 * - 1: wait on sync flip
1419 * - 2: wait on vblank
1420 * - 3: wait on scanline
1421 * - 4: wait on semaphore
1422 * - 5: context preempted (not on SEMAPHORE_WAIT or
1423 * WAIT_FOR_EVENT)
1424 * bit 36: reserved
1425 * bits 37-43: wait detail (for switch detail 1 to 4)
1426 * bits 44-46: reserved
1427 * bits 47-57: sw context id of the lrc the GT switched away from
1428 * bits 58-63: sw counter of the lrc the GT switched away from
1429 */
1430 static inline enum csb_step
gen12_csb_parse(const struct intel_engine_execlists * execlists,const u32 * csb)1431 gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
1432 {
1433 u32 lower_dw = csb[0];
1434 u32 upper_dw = csb[1];
1435 bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
1436 bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
1437 bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
1438
1439 if (!ctx_away_valid && ctx_to_valid)
1440 return CSB_PROMOTE;
1441
1442 /*
1443 * The context switch detail is not guaranteed to be 5 when a preemption
1444 * occurs, so we can't just check for that. The check below works for
1445 * all the cases we care about, including preemptions of WAIT
1446 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1447 * would require some extra handling, but we don't support that.
1448 */
1449 if (new_queue && ctx_away_valid)
1450 return CSB_PREEMPT;
1451
1452 /*
1453 * switch detail = 5 is covered by the case above and we do not expect a
1454 * context switch on an unsuccessful wait instruction since we always
1455 * use polling mode.
1456 */
1457 GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));
1458
1459 if (*execlists->active) {
1460 GEM_BUG_ON(!ctx_away_valid);
1461 return CSB_COMPLETE;
1462 }
1463
1464 return CSB_NOP;
1465 }
1466
1467 static inline enum csb_step
gen8_csb_parse(const struct intel_engine_execlists * execlists,const u32 * csb)1468 gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
1469 {
1470 unsigned int status = *csb;
1471
1472 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
1473 return CSB_PROMOTE;
1474
1475 if (status & GEN8_CTX_STATUS_PREEMPTED)
1476 return CSB_PREEMPT;
1477
1478 if (*execlists->active)
1479 return CSB_COMPLETE;
1480
1481 return CSB_NOP;
1482 }
1483
process_csb(struct intel_engine_cs * engine)1484 static void process_csb(struct intel_engine_cs *engine)
1485 {
1486 struct intel_engine_execlists * const execlists = &engine->execlists;
1487 const u32 * const buf = execlists->csb_status;
1488 const u8 num_entries = execlists->csb_size;
1489 u8 head, tail;
1490
1491 GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1492
1493 /*
1494 * Note that csb_write, csb_status may be either in HWSP or mmio.
1495 * When reading from the csb_write mmio register, we have to be
1496 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1497 * the low 4bits. As it happens we know the next 4bits are always
1498 * zero and so we can simply masked off the low u8 of the register
1499 * and treat it identically to reading from the HWSP (without having
1500 * to use explicit shifting and masking, and probably bifurcating
1501 * the code to handle the legacy mmio read).
1502 */
1503 head = execlists->csb_head;
1504 tail = READ_ONCE(*execlists->csb_write);
1505 GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1506 if (unlikely(head == tail))
1507 return;
1508
1509 /*
1510 * Hopefully paired with a wmb() in HW!
1511 *
1512 * We must complete the read of the write pointer before any reads
1513 * from the CSB, so that we do not see stale values. Without an rmb
1514 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1515 * we perform the READ_ONCE(*csb_write).
1516 */
1517 rmb();
1518
1519 do {
1520 enum csb_step csb_step;
1521
1522 if (++head == num_entries)
1523 head = 0;
1524
1525 /*
1526 * We are flying near dragons again.
1527 *
1528 * We hold a reference to the request in execlist_port[]
1529 * but no more than that. We are operating in softirq
1530 * context and so cannot hold any mutex or sleep. That
1531 * prevents us stopping the requests we are processing
1532 * in port[] from being retired simultaneously (the
1533 * breadcrumb will be complete before we see the
1534 * context-switch). As we only hold the reference to the
1535 * request, any pointer chasing underneath the request
1536 * is subject to a potential use-after-free. Thus we
1537 * store all of the bookkeeping within port[] as
1538 * required, and avoid using unguarded pointers beneath
1539 * request itself. The same applies to the atomic
1540 * status notifier.
1541 */
1542
1543 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x\n",
1544 engine->name, head,
1545 buf[2 * head + 0], buf[2 * head + 1]);
1546
1547 if (INTEL_GEN(engine->i915) >= 12)
1548 csb_step = gen12_csb_parse(execlists, buf + 2 * head);
1549 else
1550 csb_step = gen8_csb_parse(execlists, buf + 2 * head);
1551
1552 switch (csb_step) {
1553 case CSB_PREEMPT: /* cancel old inflight, prepare for switch */
1554 trace_ports(execlists, "preempted", execlists->active);
1555
1556 while (*execlists->active)
1557 execlists_schedule_out(*execlists->active++);
1558
1559 /* fallthrough */
1560 case CSB_PROMOTE: /* switch pending to inflight */
1561 GEM_BUG_ON(*execlists->active);
1562 GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1563 execlists->active =
1564 memcpy(execlists->inflight,
1565 execlists->pending,
1566 execlists_num_ports(execlists) *
1567 sizeof(*execlists->pending));
1568
1569 if (enable_timeslice(execlists))
1570 mod_timer(&execlists->timer, jiffies + 1);
1571
1572 if (!inject_preempt_hang(execlists))
1573 ring_set_paused(engine, 0);
1574
1575 WRITE_ONCE(execlists->pending[0], NULL);
1576 break;
1577
1578 case CSB_COMPLETE: /* port0 completed, advanced to port1 */
1579 trace_ports(execlists, "completed", execlists->active);
1580
1581 /*
1582 * We rely on the hardware being strongly
1583 * ordered, that the breadcrumb write is
1584 * coherent (visible from the CPU) before the
1585 * user interrupt and CSB is processed.
1586 */
1587 GEM_BUG_ON(!i915_request_completed(*execlists->active) &&
1588 !reset_in_progress(execlists));
1589 execlists_schedule_out(*execlists->active++);
1590
1591 GEM_BUG_ON(execlists->active - execlists->inflight >
1592 execlists_num_ports(execlists));
1593 break;
1594
1595 case CSB_NOP:
1596 break;
1597 }
1598 } while (head != tail);
1599
1600 execlists->csb_head = head;
1601
1602 /*
1603 * Gen11 has proven to fail wrt global observation point between
1604 * entry and tail update, failing on the ordering and thus
1605 * we see an old entry in the context status buffer.
1606 *
1607 * Forcibly evict out entries for the next gpu csb update,
1608 * to increase the odds that we get a fresh entries with non
1609 * working hardware. The cost for doing so comes out mostly with
1610 * the wash as hardware, working or not, will need to do the
1611 * invalidation before.
1612 */
1613 invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1614 }
1615
__execlists_submission_tasklet(struct intel_engine_cs * const engine)1616 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1617 {
1618 lockdep_assert_held(&engine->active.lock);
1619 if (!engine->execlists.pending[0]) {
1620 rcu_read_lock(); /* protect peeking at execlists->active */
1621 execlists_dequeue(engine);
1622 rcu_read_unlock();
1623 }
1624 }
1625
1626 /*
1627 * Check the unread Context Status Buffers and manage the submission of new
1628 * contexts to the ELSP accordingly.
1629 */
execlists_submission_tasklet(unsigned long data)1630 static void execlists_submission_tasklet(unsigned long data)
1631 {
1632 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1633 unsigned long flags;
1634
1635 process_csb(engine);
1636 if (!READ_ONCE(engine->execlists.pending[0])) {
1637 spin_lock_irqsave(&engine->active.lock, flags);
1638 __execlists_submission_tasklet(engine);
1639 spin_unlock_irqrestore(&engine->active.lock, flags);
1640 }
1641 }
1642
execlists_submission_timer(struct timer_list * timer)1643 static void execlists_submission_timer(struct timer_list *timer)
1644 {
1645 struct intel_engine_cs *engine =
1646 from_timer(engine, timer, execlists.timer);
1647
1648 /* Kick the tasklet for some interrupt coalescing and reset handling */
1649 tasklet_hi_schedule(&engine->execlists.tasklet);
1650 }
1651
queue_request(struct intel_engine_cs * engine,struct i915_sched_node * node,int prio)1652 static void queue_request(struct intel_engine_cs *engine,
1653 struct i915_sched_node *node,
1654 int prio)
1655 {
1656 GEM_BUG_ON(!list_empty(&node->link));
1657 list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1658 }
1659
__submit_queue_imm(struct intel_engine_cs * engine)1660 static void __submit_queue_imm(struct intel_engine_cs *engine)
1661 {
1662 struct intel_engine_execlists * const execlists = &engine->execlists;
1663
1664 if (reset_in_progress(execlists))
1665 return; /* defer until we restart the engine following reset */
1666
1667 if (execlists->tasklet.func == execlists_submission_tasklet)
1668 __execlists_submission_tasklet(engine);
1669 else
1670 tasklet_hi_schedule(&execlists->tasklet);
1671 }
1672
submit_queue(struct intel_engine_cs * engine,const struct i915_request * rq)1673 static void submit_queue(struct intel_engine_cs *engine,
1674 const struct i915_request *rq)
1675 {
1676 struct intel_engine_execlists *execlists = &engine->execlists;
1677
1678 if (rq_prio(rq) <= execlists->queue_priority_hint)
1679 return;
1680
1681 execlists->queue_priority_hint = rq_prio(rq);
1682 __submit_queue_imm(engine);
1683 }
1684
execlists_submit_request(struct i915_request * request)1685 static void execlists_submit_request(struct i915_request *request)
1686 {
1687 struct intel_engine_cs *engine = request->engine;
1688 unsigned long flags;
1689
1690 /* Will be called from irq-context when using foreign fences. */
1691 spin_lock_irqsave(&engine->active.lock, flags);
1692
1693 queue_request(engine, &request->sched, rq_prio(request));
1694
1695 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1696 GEM_BUG_ON(list_empty(&request->sched.link));
1697
1698 submit_queue(engine, request);
1699
1700 spin_unlock_irqrestore(&engine->active.lock, flags);
1701 }
1702
__execlists_context_fini(struct intel_context * ce)1703 static void __execlists_context_fini(struct intel_context *ce)
1704 {
1705 intel_ring_put(ce->ring);
1706 i915_vma_put(ce->state);
1707 }
1708
execlists_context_destroy(struct kref * kref)1709 static void execlists_context_destroy(struct kref *kref)
1710 {
1711 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1712
1713 GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1714 GEM_BUG_ON(intel_context_is_pinned(ce));
1715
1716 if (ce->state)
1717 __execlists_context_fini(ce);
1718
1719 intel_context_fini(ce);
1720 intel_context_free(ce);
1721 }
1722
1723 static void
set_redzone(void * vaddr,const struct intel_engine_cs * engine)1724 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
1725 {
1726 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1727 return;
1728
1729 vaddr += LRC_HEADER_PAGES * PAGE_SIZE;
1730 vaddr += engine->context_size;
1731
1732 memset(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE);
1733 }
1734
1735 static void
check_redzone(const void * vaddr,const struct intel_engine_cs * engine)1736 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
1737 {
1738 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1739 return;
1740
1741 vaddr += LRC_HEADER_PAGES * PAGE_SIZE;
1742 vaddr += engine->context_size;
1743
1744 if (memchr_inv(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE))
1745 dev_err_once(engine->i915->drm.dev,
1746 "%s context redzone overwritten!\n",
1747 engine->name);
1748 }
1749
execlists_context_unpin(struct intel_context * ce)1750 static void execlists_context_unpin(struct intel_context *ce)
1751 {
1752 check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE,
1753 ce->engine);
1754
1755 i915_gem_context_unpin_hw_id(ce->gem_context);
1756 i915_gem_object_unpin_map(ce->state->obj);
1757 intel_ring_reset(ce->ring, ce->ring->tail);
1758 }
1759
1760 static void
__execlists_update_reg_state(struct intel_context * ce,struct intel_engine_cs * engine)1761 __execlists_update_reg_state(struct intel_context *ce,
1762 struct intel_engine_cs *engine)
1763 {
1764 struct intel_ring *ring = ce->ring;
1765 u32 *regs = ce->lrc_reg_state;
1766
1767 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1768 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1769
1770 regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1771 regs[CTX_RING_HEAD + 1] = ring->head;
1772 regs[CTX_RING_TAIL + 1] = ring->tail;
1773
1774 /* RPCS */
1775 if (engine->class == RENDER_CLASS) {
1776 regs[CTX_R_PWR_CLK_STATE + 1] =
1777 intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1778
1779 i915_oa_init_reg_state(engine, ce, regs);
1780 }
1781 }
1782
1783 static int
__execlists_context_pin(struct intel_context * ce,struct intel_engine_cs * engine)1784 __execlists_context_pin(struct intel_context *ce,
1785 struct intel_engine_cs *engine)
1786 {
1787 void *vaddr;
1788 int ret;
1789
1790 GEM_BUG_ON(!ce->state);
1791
1792 ret = intel_context_active_acquire(ce);
1793 if (ret)
1794 goto err;
1795 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1796
1797 vaddr = i915_gem_object_pin_map(ce->state->obj,
1798 i915_coherent_map_type(engine->i915) |
1799 I915_MAP_OVERRIDE);
1800 if (IS_ERR(vaddr)) {
1801 ret = PTR_ERR(vaddr);
1802 goto unpin_active;
1803 }
1804
1805 ret = i915_gem_context_pin_hw_id(ce->gem_context);
1806 if (ret)
1807 goto unpin_map;
1808
1809 ce->lrc_desc = lrc_descriptor(ce, engine);
1810 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1811 __execlists_update_reg_state(ce, engine);
1812
1813 return 0;
1814
1815 unpin_map:
1816 i915_gem_object_unpin_map(ce->state->obj);
1817 unpin_active:
1818 intel_context_active_release(ce);
1819 err:
1820 return ret;
1821 }
1822
execlists_context_pin(struct intel_context * ce)1823 static int execlists_context_pin(struct intel_context *ce)
1824 {
1825 return __execlists_context_pin(ce, ce->engine);
1826 }
1827
execlists_context_alloc(struct intel_context * ce)1828 static int execlists_context_alloc(struct intel_context *ce)
1829 {
1830 return __execlists_context_alloc(ce, ce->engine);
1831 }
1832
execlists_context_reset(struct intel_context * ce)1833 static void execlists_context_reset(struct intel_context *ce)
1834 {
1835 /*
1836 * Because we emit WA_TAIL_DWORDS there may be a disparity
1837 * between our bookkeeping in ce->ring->head and ce->ring->tail and
1838 * that stored in context. As we only write new commands from
1839 * ce->ring->tail onwards, everything before that is junk. If the GPU
1840 * starts reading from its RING_HEAD from the context, it may try to
1841 * execute that junk and die.
1842 *
1843 * The contexts that are stilled pinned on resume belong to the
1844 * kernel, and are local to each engine. All other contexts will
1845 * have their head/tail sanitized upon pinning before use, so they
1846 * will never see garbage,
1847 *
1848 * So to avoid that we reset the context images upon resume. For
1849 * simplicity, we just zero everything out.
1850 */
1851 intel_ring_reset(ce->ring, 0);
1852 __execlists_update_reg_state(ce, ce->engine);
1853 }
1854
1855 static const struct intel_context_ops execlists_context_ops = {
1856 .alloc = execlists_context_alloc,
1857
1858 .pin = execlists_context_pin,
1859 .unpin = execlists_context_unpin,
1860
1861 .enter = intel_context_enter_engine,
1862 .exit = intel_context_exit_engine,
1863
1864 .reset = execlists_context_reset,
1865 .destroy = execlists_context_destroy,
1866 };
1867
gen8_emit_init_breadcrumb(struct i915_request * rq)1868 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1869 {
1870 u32 *cs;
1871
1872 GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1873
1874 cs = intel_ring_begin(rq, 6);
1875 if (IS_ERR(cs))
1876 return PTR_ERR(cs);
1877
1878 /*
1879 * Check if we have been preempted before we even get started.
1880 *
1881 * After this point i915_request_started() reports true, even if
1882 * we get preempted and so are no longer running.
1883 */
1884 *cs++ = MI_ARB_CHECK;
1885 *cs++ = MI_NOOP;
1886
1887 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1888 *cs++ = rq->timeline->hwsp_offset;
1889 *cs++ = 0;
1890 *cs++ = rq->fence.seqno - 1;
1891
1892 intel_ring_advance(rq, cs);
1893
1894 /* Record the updated position of the request's payload */
1895 rq->infix = intel_ring_offset(rq, cs);
1896
1897 return 0;
1898 }
1899
emit_pdps(struct i915_request * rq)1900 static int emit_pdps(struct i915_request *rq)
1901 {
1902 const struct intel_engine_cs * const engine = rq->engine;
1903 struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->hw_context->vm);
1904 int err, i;
1905 u32 *cs;
1906
1907 GEM_BUG_ON(intel_vgpu_active(rq->i915));
1908
1909 /*
1910 * Beware ye of the dragons, this sequence is magic!
1911 *
1912 * Small changes to this sequence can cause anything from
1913 * GPU hangs to forcewake errors and machine lockups!
1914 */
1915
1916 /* Flush any residual operations from the context load */
1917 err = engine->emit_flush(rq, EMIT_FLUSH);
1918 if (err)
1919 return err;
1920
1921 /* Magic required to prevent forcewake errors! */
1922 err = engine->emit_flush(rq, EMIT_INVALIDATE);
1923 if (err)
1924 return err;
1925
1926 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1927 if (IS_ERR(cs))
1928 return PTR_ERR(cs);
1929
1930 /* Ensure the LRI have landed before we invalidate & continue */
1931 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1932 for (i = GEN8_3LVL_PDPES; i--; ) {
1933 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1934 u32 base = engine->mmio_base;
1935
1936 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1937 *cs++ = upper_32_bits(pd_daddr);
1938 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1939 *cs++ = lower_32_bits(pd_daddr);
1940 }
1941 *cs++ = MI_NOOP;
1942
1943 intel_ring_advance(rq, cs);
1944
1945 /* Be doubly sure the LRI have landed before proceeding */
1946 err = engine->emit_flush(rq, EMIT_FLUSH);
1947 if (err)
1948 return err;
1949
1950 /* Re-invalidate the TLB for luck */
1951 return engine->emit_flush(rq, EMIT_INVALIDATE);
1952 }
1953
execlists_request_alloc(struct i915_request * request)1954 static int execlists_request_alloc(struct i915_request *request)
1955 {
1956 int ret;
1957
1958 GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1959
1960 /*
1961 * Flush enough space to reduce the likelihood of waiting after
1962 * we start building the request - in which case we will just
1963 * have to repeat work.
1964 */
1965 request->reserved_space += EXECLISTS_REQUEST_SIZE;
1966
1967 /*
1968 * Note that after this point, we have committed to using
1969 * this request as it is being used to both track the
1970 * state of engine initialisation and liveness of the
1971 * golden renderstate above. Think twice before you try
1972 * to cancel/unwind this request now.
1973 */
1974
1975 /* Unconditionally invalidate GPU caches and TLBs. */
1976 if (i915_vm_is_4lvl(request->hw_context->vm))
1977 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1978 else
1979 ret = emit_pdps(request);
1980 if (ret)
1981 return ret;
1982
1983 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1984 return 0;
1985 }
1986
1987 /*
1988 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1989 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1990 * but there is a slight complication as this is applied in WA batch where the
1991 * values are only initialized once so we cannot take register value at the
1992 * beginning and reuse it further; hence we save its value to memory, upload a
1993 * constant value with bit21 set and then we restore it back with the saved value.
1994 * To simplify the WA, a constant value is formed by using the default value
1995 * of this register. This shouldn't be a problem because we are only modifying
1996 * it for a short period and this batch in non-premptible. We can ofcourse
1997 * use additional instructions that read the actual value of the register
1998 * at that time and set our bit of interest but it makes the WA complicated.
1999 *
2000 * This WA is also required for Gen9 so extracting as a function avoids
2001 * code duplication.
2002 */
2003 static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs * engine,u32 * batch)2004 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
2005 {
2006 /* NB no one else is allowed to scribble over scratch + 256! */
2007 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
2008 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
2009 *batch++ = intel_gt_scratch_offset(engine->gt,
2010 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
2011 *batch++ = 0;
2012
2013 *batch++ = MI_LOAD_REGISTER_IMM(1);
2014 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
2015 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
2016
2017 batch = gen8_emit_pipe_control(batch,
2018 PIPE_CONTROL_CS_STALL |
2019 PIPE_CONTROL_DC_FLUSH_ENABLE,
2020 0);
2021
2022 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
2023 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
2024 *batch++ = intel_gt_scratch_offset(engine->gt,
2025 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
2026 *batch++ = 0;
2027
2028 return batch;
2029 }
2030
slm_offset(struct intel_engine_cs * engine)2031 static u32 slm_offset(struct intel_engine_cs *engine)
2032 {
2033 return intel_gt_scratch_offset(engine->gt,
2034 INTEL_GT_SCRATCH_FIELD_CLEAR_SLM_WA);
2035 }
2036
2037 /*
2038 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
2039 * initialized at the beginning and shared across all contexts but this field
2040 * helps us to have multiple batches at different offsets and select them based
2041 * on a criteria. At the moment this batch always start at the beginning of the page
2042 * and at this point we don't have multiple wa_ctx batch buffers.
2043 *
2044 * The number of WA applied are not known at the beginning; we use this field
2045 * to return the no of DWORDS written.
2046 *
2047 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
2048 * so it adds NOOPs as padding to make it cacheline aligned.
2049 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
2050 * makes a complete batch buffer.
2051 */
gen8_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)2052 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
2053 {
2054 /* WaDisableCtxRestoreArbitration:bdw,chv */
2055 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2056
2057 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
2058 if (IS_BROADWELL(engine->i915))
2059 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
2060
2061 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
2062 /* Actual scratch location is at 128 bytes offset */
2063 batch = gen8_emit_pipe_control(batch,
2064 PIPE_CONTROL_FLUSH_L3 |
2065 PIPE_CONTROL_GLOBAL_GTT_IVB |
2066 PIPE_CONTROL_CS_STALL |
2067 PIPE_CONTROL_QW_WRITE,
2068 slm_offset(engine));
2069
2070 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2071
2072 /* Pad to end of cacheline */
2073 while ((unsigned long)batch % CACHELINE_BYTES)
2074 *batch++ = MI_NOOP;
2075
2076 /*
2077 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
2078 * execution depends on the length specified in terms of cache lines
2079 * in the register CTX_RCS_INDIRECT_CTX
2080 */
2081
2082 return batch;
2083 }
2084
2085 struct lri {
2086 i915_reg_t reg;
2087 u32 value;
2088 };
2089
emit_lri(u32 * batch,const struct lri * lri,unsigned int count)2090 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
2091 {
2092 GEM_BUG_ON(!count || count > 63);
2093
2094 *batch++ = MI_LOAD_REGISTER_IMM(count);
2095 do {
2096 *batch++ = i915_mmio_reg_offset(lri->reg);
2097 *batch++ = lri->value;
2098 } while (lri++, --count);
2099 *batch++ = MI_NOOP;
2100
2101 return batch;
2102 }
2103
gen9_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)2104 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
2105 {
2106 static const struct lri lri[] = {
2107 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
2108 {
2109 COMMON_SLICE_CHICKEN2,
2110 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
2111 0),
2112 },
2113
2114 /* BSpec: 11391 */
2115 {
2116 FF_SLICE_CHICKEN,
2117 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
2118 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
2119 },
2120
2121 /* BSpec: 11299 */
2122 {
2123 _3D_CHICKEN3,
2124 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
2125 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
2126 }
2127 };
2128
2129 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2130
2131 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
2132 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
2133
2134 batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
2135
2136 /* WaMediaPoolStateCmdInWABB:bxt,glk */
2137 if (HAS_POOLED_EU(engine->i915)) {
2138 /*
2139 * EU pool configuration is setup along with golden context
2140 * during context initialization. This value depends on
2141 * device type (2x6 or 3x6) and needs to be updated based
2142 * on which subslice is disabled especially for 2x6
2143 * devices, however it is safe to load default
2144 * configuration of 3x6 device instead of masking off
2145 * corresponding bits because HW ignores bits of a disabled
2146 * subslice and drops down to appropriate config. Please
2147 * see render_state_setup() in i915_gem_render_state.c for
2148 * possible configurations, to avoid duplication they are
2149 * not shown here again.
2150 */
2151 *batch++ = GEN9_MEDIA_POOL_STATE;
2152 *batch++ = GEN9_MEDIA_POOL_ENABLE;
2153 *batch++ = 0x00777000;
2154 *batch++ = 0;
2155 *batch++ = 0;
2156 *batch++ = 0;
2157 }
2158
2159 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2160
2161 /* Pad to end of cacheline */
2162 while ((unsigned long)batch % CACHELINE_BYTES)
2163 *batch++ = MI_NOOP;
2164
2165 return batch;
2166 }
2167
2168 static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)2169 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
2170 {
2171 int i;
2172
2173 /*
2174 * WaPipeControlBefore3DStateSamplePattern: cnl
2175 *
2176 * Ensure the engine is idle prior to programming a
2177 * 3DSTATE_SAMPLE_PATTERN during a context restore.
2178 */
2179 batch = gen8_emit_pipe_control(batch,
2180 PIPE_CONTROL_CS_STALL,
2181 0);
2182 /*
2183 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
2184 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
2185 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
2186 * confusing. Since gen8_emit_pipe_control() already advances the
2187 * batch by 6 dwords, we advance the other 10 here, completing a
2188 * cacheline. It's not clear if the workaround requires this padding
2189 * before other commands, or if it's just the regular padding we would
2190 * already have for the workaround bb, so leave it here for now.
2191 */
2192 for (i = 0; i < 10; i++)
2193 *batch++ = MI_NOOP;
2194
2195 /* Pad to end of cacheline */
2196 while ((unsigned long)batch % CACHELINE_BYTES)
2197 *batch++ = MI_NOOP;
2198
2199 return batch;
2200 }
2201
2202 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
2203
lrc_setup_wa_ctx(struct intel_engine_cs * engine)2204 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
2205 {
2206 struct drm_i915_gem_object *obj;
2207 struct i915_vma *vma;
2208 int err;
2209
2210 obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
2211 if (IS_ERR(obj))
2212 return PTR_ERR(obj);
2213
2214 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
2215 if (IS_ERR(vma)) {
2216 err = PTR_ERR(vma);
2217 goto err;
2218 }
2219
2220 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2221 if (err)
2222 goto err;
2223
2224 engine->wa_ctx.vma = vma;
2225 return 0;
2226
2227 err:
2228 i915_gem_object_put(obj);
2229 return err;
2230 }
2231
lrc_destroy_wa_ctx(struct intel_engine_cs * engine)2232 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
2233 {
2234 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
2235 }
2236
2237 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
2238
intel_init_workaround_bb(struct intel_engine_cs * engine)2239 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
2240 {
2241 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2242 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
2243 &wa_ctx->per_ctx };
2244 wa_bb_func_t wa_bb_fn[2];
2245 struct page *page;
2246 void *batch, *batch_ptr;
2247 unsigned int i;
2248 int ret;
2249
2250 if (engine->class != RENDER_CLASS)
2251 return 0;
2252
2253 switch (INTEL_GEN(engine->i915)) {
2254 case 12:
2255 case 11:
2256 return 0;
2257 case 10:
2258 wa_bb_fn[0] = gen10_init_indirectctx_bb;
2259 wa_bb_fn[1] = NULL;
2260 break;
2261 case 9:
2262 wa_bb_fn[0] = gen9_init_indirectctx_bb;
2263 wa_bb_fn[1] = NULL;
2264 break;
2265 case 8:
2266 wa_bb_fn[0] = gen8_init_indirectctx_bb;
2267 wa_bb_fn[1] = NULL;
2268 break;
2269 default:
2270 MISSING_CASE(INTEL_GEN(engine->i915));
2271 return 0;
2272 }
2273
2274 ret = lrc_setup_wa_ctx(engine);
2275 if (ret) {
2276 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
2277 return ret;
2278 }
2279
2280 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
2281 batch = batch_ptr = kmap_atomic(page);
2282
2283 /*
2284 * Emit the two workaround batch buffers, recording the offset from the
2285 * start of the workaround batch buffer object for each and their
2286 * respective sizes.
2287 */
2288 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
2289 wa_bb[i]->offset = batch_ptr - batch;
2290 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
2291 CACHELINE_BYTES))) {
2292 ret = -EINVAL;
2293 break;
2294 }
2295 if (wa_bb_fn[i])
2296 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2297 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2298 }
2299
2300 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
2301
2302 kunmap_atomic(batch);
2303 if (ret)
2304 lrc_destroy_wa_ctx(engine);
2305
2306 return ret;
2307 }
2308
enable_execlists(struct intel_engine_cs * engine)2309 static void enable_execlists(struct intel_engine_cs *engine)
2310 {
2311 u32 mode;
2312
2313 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2314
2315 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2316
2317 if (INTEL_GEN(engine->i915) >= 11)
2318 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2319 else
2320 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2321 ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2322
2323 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2324
2325 ENGINE_WRITE_FW(engine,
2326 RING_HWS_PGA,
2327 i915_ggtt_offset(engine->status_page.vma));
2328 ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2329 }
2330
unexpected_starting_state(struct intel_engine_cs * engine)2331 static bool unexpected_starting_state(struct intel_engine_cs *engine)
2332 {
2333 bool unexpected = false;
2334
2335 if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
2336 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
2337 unexpected = true;
2338 }
2339
2340 return unexpected;
2341 }
2342
execlists_resume(struct intel_engine_cs * engine)2343 static int execlists_resume(struct intel_engine_cs *engine)
2344 {
2345 intel_engine_apply_workarounds(engine);
2346 intel_engine_apply_whitelist(engine);
2347
2348 intel_mocs_init_engine(engine);
2349
2350 intel_engine_reset_breadcrumbs(engine);
2351
2352 if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2353 struct drm_printer p = drm_debug_printer(__func__);
2354
2355 intel_engine_dump(engine, &p, NULL);
2356 }
2357
2358 enable_execlists(engine);
2359
2360 return 0;
2361 }
2362
execlists_reset_prepare(struct intel_engine_cs * engine)2363 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2364 {
2365 struct intel_engine_execlists * const execlists = &engine->execlists;
2366 unsigned long flags;
2367
2368 GEM_TRACE("%s: depth<-%d\n", engine->name,
2369 atomic_read(&execlists->tasklet.count));
2370
2371 /*
2372 * Prevent request submission to the hardware until we have
2373 * completed the reset in i915_gem_reset_finish(). If a request
2374 * is completed by one engine, it may then queue a request
2375 * to a second via its execlists->tasklet *just* as we are
2376 * calling engine->resume() and also writing the ELSP.
2377 * Turning off the execlists->tasklet until the reset is over
2378 * prevents the race.
2379 */
2380 __tasklet_disable_sync_once(&execlists->tasklet);
2381 GEM_BUG_ON(!reset_in_progress(execlists));
2382
2383 /* And flush any current direct submission. */
2384 spin_lock_irqsave(&engine->active.lock, flags);
2385 spin_unlock_irqrestore(&engine->active.lock, flags);
2386
2387 /*
2388 * We stop engines, otherwise we might get failed reset and a
2389 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2390 * from system hang if batchbuffer is progressing when
2391 * the reset is issued, regardless of READY_TO_RESET ack.
2392 * Thus assume it is best to stop engines on all gens
2393 * where we have a gpu reset.
2394 *
2395 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2396 *
2397 * FIXME: Wa for more modern gens needs to be validated
2398 */
2399 intel_engine_stop_cs(engine);
2400 }
2401
reset_csb_pointers(struct intel_engine_cs * engine)2402 static void reset_csb_pointers(struct intel_engine_cs *engine)
2403 {
2404 struct intel_engine_execlists * const execlists = &engine->execlists;
2405 const unsigned int reset_value = execlists->csb_size - 1;
2406
2407 ring_set_paused(engine, 0);
2408
2409 /*
2410 * After a reset, the HW starts writing into CSB entry [0]. We
2411 * therefore have to set our HEAD pointer back one entry so that
2412 * the *first* entry we check is entry 0. To complicate this further,
2413 * as we don't wait for the first interrupt after reset, we have to
2414 * fake the HW write to point back to the last entry so that our
2415 * inline comparison of our cached head position against the last HW
2416 * write works even before the first interrupt.
2417 */
2418 execlists->csb_head = reset_value;
2419 WRITE_ONCE(*execlists->csb_write, reset_value);
2420 wmb(); /* Make sure this is visible to HW (paranoia?) */
2421
2422 invalidate_csb_entries(&execlists->csb_status[0],
2423 &execlists->csb_status[reset_value]);
2424 }
2425
active_request(struct i915_request * rq)2426 static struct i915_request *active_request(struct i915_request *rq)
2427 {
2428 const struct intel_context * const ce = rq->hw_context;
2429 struct i915_request *active = NULL;
2430 struct list_head *list;
2431
2432 if (!i915_request_is_active(rq)) /* unwound, but incomplete! */
2433 return rq;
2434
2435 list = &rq->timeline->requests;
2436 list_for_each_entry_from_reverse(rq, list, link) {
2437 if (i915_request_completed(rq))
2438 break;
2439
2440 if (rq->hw_context != ce)
2441 break;
2442
2443 active = rq;
2444 }
2445
2446 return active;
2447 }
2448
__execlists_reset(struct intel_engine_cs * engine,bool stalled)2449 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2450 {
2451 struct intel_engine_execlists * const execlists = &engine->execlists;
2452 struct intel_context *ce;
2453 struct i915_request *rq;
2454 u32 *regs;
2455
2456 process_csb(engine); /* drain preemption events */
2457
2458 /* Following the reset, we need to reload the CSB read/write pointers */
2459 reset_csb_pointers(engine);
2460
2461 /*
2462 * Save the currently executing context, even if we completed
2463 * its request, it was still running at the time of the
2464 * reset and will have been clobbered.
2465 */
2466 rq = execlists_active(execlists);
2467 if (!rq)
2468 goto unwind;
2469
2470 ce = rq->hw_context;
2471 GEM_BUG_ON(i915_active_is_idle(&ce->active));
2472 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2473 rq = active_request(rq);
2474 if (!rq) {
2475 ce->ring->head = ce->ring->tail;
2476 goto out_replay;
2477 }
2478
2479 ce->ring->head = intel_ring_wrap(ce->ring, rq->head);
2480
2481 /*
2482 * If this request hasn't started yet, e.g. it is waiting on a
2483 * semaphore, we need to avoid skipping the request or else we
2484 * break the signaling chain. However, if the context is corrupt
2485 * the request will not restart and we will be stuck with a wedged
2486 * device. It is quite often the case that if we issue a reset
2487 * while the GPU is loading the context image, that the context
2488 * image becomes corrupt.
2489 *
2490 * Otherwise, if we have not started yet, the request should replay
2491 * perfectly and we do not need to flag the result as being erroneous.
2492 */
2493 if (!i915_request_started(rq))
2494 goto out_replay;
2495
2496 /*
2497 * If the request was innocent, we leave the request in the ELSP
2498 * and will try to replay it on restarting. The context image may
2499 * have been corrupted by the reset, in which case we may have
2500 * to service a new GPU hang, but more likely we can continue on
2501 * without impact.
2502 *
2503 * If the request was guilty, we presume the context is corrupt
2504 * and have to at least restore the RING register in the context
2505 * image back to the expected values to skip over the guilty request.
2506 */
2507 __i915_request_reset(rq, stalled);
2508 if (!stalled)
2509 goto out_replay;
2510
2511 /*
2512 * We want a simple context + ring to execute the breadcrumb update.
2513 * We cannot rely on the context being intact across the GPU hang,
2514 * so clear it and rebuild just what we need for the breadcrumb.
2515 * All pending requests for this context will be zapped, and any
2516 * future request will be after userspace has had the opportunity
2517 * to recreate its own state.
2518 */
2519 regs = ce->lrc_reg_state;
2520 if (engine->pinned_default_state) {
2521 memcpy(regs, /* skip restoring the vanilla PPHWSP */
2522 engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2523 engine->context_size - PAGE_SIZE);
2524 }
2525 execlists_init_reg_state(regs, ce, engine, ce->ring);
2526
2527 out_replay:
2528 GEM_TRACE("%s replay {head:%04x, tail:%04x\n",
2529 engine->name, ce->ring->head, ce->ring->tail);
2530 intel_ring_update_space(ce->ring);
2531 __execlists_update_reg_state(ce, engine);
2532
2533 unwind:
2534 /* Push back any incomplete requests for replay after the reset. */
2535 cancel_port_requests(execlists);
2536 __unwind_incomplete_requests(engine);
2537 }
2538
execlists_reset(struct intel_engine_cs * engine,bool stalled)2539 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2540 {
2541 unsigned long flags;
2542
2543 GEM_TRACE("%s\n", engine->name);
2544
2545 spin_lock_irqsave(&engine->active.lock, flags);
2546
2547 __execlists_reset(engine, stalled);
2548
2549 spin_unlock_irqrestore(&engine->active.lock, flags);
2550 }
2551
nop_submission_tasklet(unsigned long data)2552 static void nop_submission_tasklet(unsigned long data)
2553 {
2554 /* The driver is wedged; don't process any more events. */
2555 }
2556
execlists_cancel_requests(struct intel_engine_cs * engine)2557 static void execlists_cancel_requests(struct intel_engine_cs *engine)
2558 {
2559 struct intel_engine_execlists * const execlists = &engine->execlists;
2560 struct i915_request *rq, *rn;
2561 struct rb_node *rb;
2562 unsigned long flags;
2563
2564 GEM_TRACE("%s\n", engine->name);
2565
2566 /*
2567 * Before we call engine->cancel_requests(), we should have exclusive
2568 * access to the submission state. This is arranged for us by the
2569 * caller disabling the interrupt generation, the tasklet and other
2570 * threads that may then access the same state, giving us a free hand
2571 * to reset state. However, we still need to let lockdep be aware that
2572 * we know this state may be accessed in hardirq context, so we
2573 * disable the irq around this manipulation and we want to keep
2574 * the spinlock focused on its duties and not accidentally conflate
2575 * coverage to the submission's irq state. (Similarly, although we
2576 * shouldn't need to disable irq around the manipulation of the
2577 * submission's irq state, we also wish to remind ourselves that
2578 * it is irq state.)
2579 */
2580 spin_lock_irqsave(&engine->active.lock, flags);
2581
2582 __execlists_reset(engine, true);
2583
2584 /* Mark all executing requests as skipped. */
2585 list_for_each_entry(rq, &engine->active.requests, sched.link)
2586 mark_eio(rq);
2587
2588 /* Flush the queued requests to the timeline list (for retiring). */
2589 while ((rb = rb_first_cached(&execlists->queue))) {
2590 struct i915_priolist *p = to_priolist(rb);
2591 int i;
2592
2593 priolist_for_each_request_consume(rq, rn, p, i) {
2594 mark_eio(rq);
2595 __i915_request_submit(rq);
2596 }
2597
2598 rb_erase_cached(&p->node, &execlists->queue);
2599 i915_priolist_free(p);
2600 }
2601
2602 /* Cancel all attached virtual engines */
2603 while ((rb = rb_first_cached(&execlists->virtual))) {
2604 struct virtual_engine *ve =
2605 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2606
2607 rb_erase_cached(rb, &execlists->virtual);
2608 RB_CLEAR_NODE(rb);
2609
2610 spin_lock(&ve->base.active.lock);
2611 rq = fetch_and_zero(&ve->request);
2612 if (rq) {
2613 mark_eio(rq);
2614
2615 rq->engine = engine;
2616 __i915_request_submit(rq);
2617 i915_request_put(rq);
2618
2619 ve->base.execlists.queue_priority_hint = INT_MIN;
2620 }
2621 spin_unlock(&ve->base.active.lock);
2622 }
2623
2624 /* Remaining _unready_ requests will be nop'ed when submitted */
2625
2626 execlists->queue_priority_hint = INT_MIN;
2627 execlists->queue = RB_ROOT_CACHED;
2628
2629 GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2630 execlists->tasklet.func = nop_submission_tasklet;
2631
2632 spin_unlock_irqrestore(&engine->active.lock, flags);
2633 }
2634
execlists_reset_finish(struct intel_engine_cs * engine)2635 static void execlists_reset_finish(struct intel_engine_cs *engine)
2636 {
2637 struct intel_engine_execlists * const execlists = &engine->execlists;
2638
2639 /*
2640 * After a GPU reset, we may have requests to replay. Do so now while
2641 * we still have the forcewake to be sure that the GPU is not allowed
2642 * to sleep before we restart and reload a context.
2643 */
2644 GEM_BUG_ON(!reset_in_progress(execlists));
2645 if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2646 execlists->tasklet.func(execlists->tasklet.data);
2647
2648 if (__tasklet_enable(&execlists->tasklet))
2649 /* And kick in case we missed a new request submission. */
2650 tasklet_hi_schedule(&execlists->tasklet);
2651 GEM_TRACE("%s: depth->%d\n", engine->name,
2652 atomic_read(&execlists->tasklet.count));
2653 }
2654
gen8_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)2655 static int gen8_emit_bb_start(struct i915_request *rq,
2656 u64 offset, u32 len,
2657 const unsigned int flags)
2658 {
2659 u32 *cs;
2660
2661 cs = intel_ring_begin(rq, 4);
2662 if (IS_ERR(cs))
2663 return PTR_ERR(cs);
2664
2665 /*
2666 * WaDisableCtxRestoreArbitration:bdw,chv
2667 *
2668 * We don't need to perform MI_ARB_ENABLE as often as we do (in
2669 * particular all the gen that do not need the w/a at all!), if we
2670 * took care to make sure that on every switch into this context
2671 * (both ordinary and for preemption) that arbitrartion was enabled
2672 * we would be fine. However, for gen8 there is another w/a that
2673 * requires us to not preempt inside GPGPU execution, so we keep
2674 * arbitration disabled for gen8 batches. Arbitration will be
2675 * re-enabled before we close the request
2676 * (engine->emit_fini_breadcrumb).
2677 */
2678 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2679
2680 /* FIXME(BDW+): Address space and security selectors. */
2681 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2682 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2683 *cs++ = lower_32_bits(offset);
2684 *cs++ = upper_32_bits(offset);
2685
2686 intel_ring_advance(rq, cs);
2687
2688 return 0;
2689 }
2690
gen9_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)2691 static int gen9_emit_bb_start(struct i915_request *rq,
2692 u64 offset, u32 len,
2693 const unsigned int flags)
2694 {
2695 u32 *cs;
2696
2697 cs = intel_ring_begin(rq, 6);
2698 if (IS_ERR(cs))
2699 return PTR_ERR(cs);
2700
2701 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2702
2703 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2704 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2705 *cs++ = lower_32_bits(offset);
2706 *cs++ = upper_32_bits(offset);
2707
2708 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2709 *cs++ = MI_NOOP;
2710
2711 intel_ring_advance(rq, cs);
2712
2713 return 0;
2714 }
2715
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)2716 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2717 {
2718 ENGINE_WRITE(engine, RING_IMR,
2719 ~(engine->irq_enable_mask | engine->irq_keep_mask));
2720 ENGINE_POSTING_READ(engine, RING_IMR);
2721 }
2722
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)2723 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2724 {
2725 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2726 }
2727
gen8_emit_flush(struct i915_request * request,u32 mode)2728 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2729 {
2730 u32 cmd, *cs;
2731
2732 cs = intel_ring_begin(request, 4);
2733 if (IS_ERR(cs))
2734 return PTR_ERR(cs);
2735
2736 cmd = MI_FLUSH_DW + 1;
2737
2738 /* We always require a command barrier so that subsequent
2739 * commands, such as breadcrumb interrupts, are strictly ordered
2740 * wrt the contents of the write cache being flushed to memory
2741 * (and thus being coherent from the CPU).
2742 */
2743 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2744
2745 if (mode & EMIT_INVALIDATE) {
2746 cmd |= MI_INVALIDATE_TLB;
2747 if (request->engine->class == VIDEO_DECODE_CLASS)
2748 cmd |= MI_INVALIDATE_BSD;
2749 }
2750
2751 *cs++ = cmd;
2752 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2753 *cs++ = 0; /* upper addr */
2754 *cs++ = 0; /* value */
2755 intel_ring_advance(request, cs);
2756
2757 return 0;
2758 }
2759
gen8_emit_flush_render(struct i915_request * request,u32 mode)2760 static int gen8_emit_flush_render(struct i915_request *request,
2761 u32 mode)
2762 {
2763 struct intel_engine_cs *engine = request->engine;
2764 u32 scratch_addr =
2765 intel_gt_scratch_offset(engine->gt,
2766 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
2767 bool vf_flush_wa = false, dc_flush_wa = false;
2768 u32 *cs, flags = 0;
2769 int len;
2770
2771 flags |= PIPE_CONTROL_CS_STALL;
2772
2773 if (mode & EMIT_FLUSH) {
2774 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2775 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2776 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2777 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2778 }
2779
2780 if (mode & EMIT_INVALIDATE) {
2781 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2782 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2783 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2784 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2785 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2786 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2787 flags |= PIPE_CONTROL_QW_WRITE;
2788 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2789
2790 /*
2791 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2792 * pipe control.
2793 */
2794 if (IS_GEN(request->i915, 9))
2795 vf_flush_wa = true;
2796
2797 /* WaForGAMHang:kbl */
2798 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2799 dc_flush_wa = true;
2800 }
2801
2802 len = 6;
2803
2804 if (vf_flush_wa)
2805 len += 6;
2806
2807 if (dc_flush_wa)
2808 len += 12;
2809
2810 cs = intel_ring_begin(request, len);
2811 if (IS_ERR(cs))
2812 return PTR_ERR(cs);
2813
2814 if (vf_flush_wa)
2815 cs = gen8_emit_pipe_control(cs, 0, 0);
2816
2817 if (dc_flush_wa)
2818 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2819 0);
2820
2821 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2822
2823 if (dc_flush_wa)
2824 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2825
2826 intel_ring_advance(request, cs);
2827
2828 return 0;
2829 }
2830
gen11_emit_flush_render(struct i915_request * request,u32 mode)2831 static int gen11_emit_flush_render(struct i915_request *request,
2832 u32 mode)
2833 {
2834 struct intel_engine_cs *engine = request->engine;
2835 const u32 scratch_addr =
2836 intel_gt_scratch_offset(engine->gt,
2837 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
2838
2839 if (mode & EMIT_FLUSH) {
2840 u32 *cs;
2841 u32 flags = 0;
2842
2843 flags |= PIPE_CONTROL_CS_STALL;
2844
2845 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
2846 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2847 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2848 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2849 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2850 flags |= PIPE_CONTROL_QW_WRITE;
2851 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2852
2853 cs = intel_ring_begin(request, 6);
2854 if (IS_ERR(cs))
2855 return PTR_ERR(cs);
2856
2857 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2858 intel_ring_advance(request, cs);
2859 }
2860
2861 if (mode & EMIT_INVALIDATE) {
2862 u32 *cs;
2863 u32 flags = 0;
2864
2865 flags |= PIPE_CONTROL_CS_STALL;
2866
2867 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
2868 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2869 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2870 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2871 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2872 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2873 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2874 flags |= PIPE_CONTROL_QW_WRITE;
2875 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2876
2877 cs = intel_ring_begin(request, 6);
2878 if (IS_ERR(cs))
2879 return PTR_ERR(cs);
2880
2881 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2882 intel_ring_advance(request, cs);
2883 }
2884
2885 return 0;
2886 }
2887
2888 /*
2889 * Reserve space for 2 NOOPs at the end of each request to be
2890 * used as a workaround for not being allowed to do lite
2891 * restore with HEAD==TAIL (WaIdleLiteRestore).
2892 */
gen8_emit_wa_tail(struct i915_request * request,u32 * cs)2893 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2894 {
2895 /* Ensure there's always at least one preemption point per-request. */
2896 *cs++ = MI_ARB_CHECK;
2897 *cs++ = MI_NOOP;
2898 request->wa_tail = intel_ring_offset(request, cs);
2899
2900 return cs;
2901 }
2902
emit_preempt_busywait(struct i915_request * request,u32 * cs)2903 static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
2904 {
2905 *cs++ = MI_SEMAPHORE_WAIT |
2906 MI_SEMAPHORE_GLOBAL_GTT |
2907 MI_SEMAPHORE_POLL |
2908 MI_SEMAPHORE_SAD_EQ_SDD;
2909 *cs++ = 0;
2910 *cs++ = intel_hws_preempt_address(request->engine);
2911 *cs++ = 0;
2912
2913 return cs;
2914 }
2915
2916 static __always_inline u32*
gen8_emit_fini_breadcrumb_footer(struct i915_request * request,u32 * cs)2917 gen8_emit_fini_breadcrumb_footer(struct i915_request *request,
2918 u32 *cs)
2919 {
2920 *cs++ = MI_USER_INTERRUPT;
2921
2922 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2923 if (intel_engine_has_semaphores(request->engine))
2924 cs = emit_preempt_busywait(request, cs);
2925
2926 request->tail = intel_ring_offset(request, cs);
2927 assert_ring_tail_valid(request->ring, request->tail);
2928
2929 return gen8_emit_wa_tail(request, cs);
2930 }
2931
gen8_emit_fini_breadcrumb(struct i915_request * request,u32 * cs)2932 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2933 {
2934 cs = gen8_emit_ggtt_write(cs,
2935 request->fence.seqno,
2936 request->timeline->hwsp_offset,
2937 0);
2938
2939 return gen8_emit_fini_breadcrumb_footer(request, cs);
2940 }
2941
gen8_emit_fini_breadcrumb_rcs(struct i915_request * request,u32 * cs)2942 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2943 {
2944 cs = gen8_emit_ggtt_write_rcs(cs,
2945 request->fence.seqno,
2946 request->timeline->hwsp_offset,
2947 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2948 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2949 PIPE_CONTROL_DC_FLUSH_ENABLE);
2950
2951 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2952 cs = gen8_emit_pipe_control(cs,
2953 PIPE_CONTROL_FLUSH_ENABLE |
2954 PIPE_CONTROL_CS_STALL,
2955 0);
2956
2957 return gen8_emit_fini_breadcrumb_footer(request, cs);
2958 }
2959
gen11_emit_fini_breadcrumb_rcs(struct i915_request * request,u32 * cs)2960 static u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *request,
2961 u32 *cs)
2962 {
2963 cs = gen8_emit_ggtt_write_rcs(cs,
2964 request->fence.seqno,
2965 request->timeline->hwsp_offset,
2966 PIPE_CONTROL_CS_STALL |
2967 PIPE_CONTROL_TILE_CACHE_FLUSH |
2968 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2969 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2970 PIPE_CONTROL_DC_FLUSH_ENABLE |
2971 PIPE_CONTROL_FLUSH_ENABLE);
2972
2973 return gen8_emit_fini_breadcrumb_footer(request, cs);
2974 }
2975
execlists_park(struct intel_engine_cs * engine)2976 static void execlists_park(struct intel_engine_cs *engine)
2977 {
2978 del_timer(&engine->execlists.timer);
2979 }
2980
intel_execlists_set_default_submission(struct intel_engine_cs * engine)2981 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2982 {
2983 engine->submit_request = execlists_submit_request;
2984 engine->cancel_requests = execlists_cancel_requests;
2985 engine->schedule = i915_schedule;
2986 engine->execlists.tasklet.func = execlists_submission_tasklet;
2987
2988 engine->reset.prepare = execlists_reset_prepare;
2989 engine->reset.reset = execlists_reset;
2990 engine->reset.finish = execlists_reset_finish;
2991
2992 engine->park = execlists_park;
2993 engine->unpark = NULL;
2994
2995 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2996 if (!intel_vgpu_active(engine->i915)) {
2997 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2998 if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2999 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3000 }
3001 }
3002
execlists_destroy(struct intel_engine_cs * engine)3003 static void execlists_destroy(struct intel_engine_cs *engine)
3004 {
3005 intel_engine_cleanup_common(engine);
3006 lrc_destroy_wa_ctx(engine);
3007 kfree(engine);
3008 }
3009
3010 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)3011 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3012 {
3013 /* Default vfuncs which can be overriden by each engine. */
3014
3015 engine->destroy = execlists_destroy;
3016 engine->resume = execlists_resume;
3017
3018 engine->reset.prepare = execlists_reset_prepare;
3019 engine->reset.reset = execlists_reset;
3020 engine->reset.finish = execlists_reset_finish;
3021
3022 engine->cops = &execlists_context_ops;
3023 engine->request_alloc = execlists_request_alloc;
3024
3025 engine->emit_flush = gen8_emit_flush;
3026 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3027 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
3028
3029 engine->set_default_submission = intel_execlists_set_default_submission;
3030
3031 if (INTEL_GEN(engine->i915) < 11) {
3032 engine->irq_enable = gen8_logical_ring_enable_irq;
3033 engine->irq_disable = gen8_logical_ring_disable_irq;
3034 } else {
3035 /*
3036 * TODO: On Gen11 interrupt masks need to be clear
3037 * to allow C6 entry. Keep interrupts enabled at
3038 * and take the hit of generating extra interrupts
3039 * until a more refined solution exists.
3040 */
3041 }
3042 if (IS_GEN(engine->i915, 8))
3043 engine->emit_bb_start = gen8_emit_bb_start;
3044 else
3045 engine->emit_bb_start = gen9_emit_bb_start;
3046 }
3047
3048 static inline void
logical_ring_default_irqs(struct intel_engine_cs * engine)3049 logical_ring_default_irqs(struct intel_engine_cs *engine)
3050 {
3051 unsigned int shift = 0;
3052
3053 if (INTEL_GEN(engine->i915) < 11) {
3054 const u8 irq_shifts[] = {
3055 [RCS0] = GEN8_RCS_IRQ_SHIFT,
3056 [BCS0] = GEN8_BCS_IRQ_SHIFT,
3057 [VCS0] = GEN8_VCS0_IRQ_SHIFT,
3058 [VCS1] = GEN8_VCS1_IRQ_SHIFT,
3059 [VECS0] = GEN8_VECS_IRQ_SHIFT,
3060 };
3061
3062 shift = irq_shifts[engine->id];
3063 }
3064
3065 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3066 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3067 }
3068
rcs_submission_override(struct intel_engine_cs * engine)3069 static void rcs_submission_override(struct intel_engine_cs *engine)
3070 {
3071 switch (INTEL_GEN(engine->i915)) {
3072 case 12:
3073 case 11:
3074 engine->emit_flush = gen11_emit_flush_render;
3075 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3076 break;
3077 default:
3078 engine->emit_flush = gen8_emit_flush_render;
3079 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3080 break;
3081 }
3082 }
3083
intel_execlists_submission_setup(struct intel_engine_cs * engine)3084 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3085 {
3086 tasklet_init(&engine->execlists.tasklet,
3087 execlists_submission_tasklet, (unsigned long)engine);
3088 timer_setup(&engine->execlists.timer, execlists_submission_timer, 0);
3089
3090 logical_ring_default_vfuncs(engine);
3091 logical_ring_default_irqs(engine);
3092
3093 if (engine->class == RENDER_CLASS)
3094 rcs_submission_override(engine);
3095
3096 return 0;
3097 }
3098
intel_execlists_submission_init(struct intel_engine_cs * engine)3099 int intel_execlists_submission_init(struct intel_engine_cs *engine)
3100 {
3101 struct intel_engine_execlists * const execlists = &engine->execlists;
3102 struct drm_i915_private *i915 = engine->i915;
3103 struct intel_uncore *uncore = engine->uncore;
3104 u32 base = engine->mmio_base;
3105 int ret;
3106
3107 ret = intel_engine_init_common(engine);
3108 if (ret)
3109 return ret;
3110
3111 if (intel_init_workaround_bb(engine))
3112 /*
3113 * We continue even if we fail to initialize WA batch
3114 * because we only expect rare glitches but nothing
3115 * critical to prevent us from using GPU
3116 */
3117 DRM_ERROR("WA batch buffer initialization failed\n");
3118
3119 if (HAS_LOGICAL_RING_ELSQ(i915)) {
3120 execlists->submit_reg = uncore->regs +
3121 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3122 execlists->ctrl_reg = uncore->regs +
3123 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3124 } else {
3125 execlists->submit_reg = uncore->regs +
3126 i915_mmio_reg_offset(RING_ELSP(base));
3127 }
3128
3129 execlists->csb_status =
3130 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3131
3132 execlists->csb_write =
3133 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
3134
3135 if (INTEL_GEN(i915) < 11)
3136 execlists->csb_size = GEN8_CSB_ENTRIES;
3137 else
3138 execlists->csb_size = GEN11_CSB_ENTRIES;
3139
3140 reset_csb_pointers(engine);
3141
3142 return 0;
3143 }
3144
intel_lr_indirect_ctx_offset(struct intel_engine_cs * engine)3145 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
3146 {
3147 u32 indirect_ctx_offset;
3148
3149 switch (INTEL_GEN(engine->i915)) {
3150 default:
3151 MISSING_CASE(INTEL_GEN(engine->i915));
3152 /* fall through */
3153 case 12:
3154 indirect_ctx_offset =
3155 GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3156 break;
3157 case 11:
3158 indirect_ctx_offset =
3159 GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3160 break;
3161 case 10:
3162 indirect_ctx_offset =
3163 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3164 break;
3165 case 9:
3166 indirect_ctx_offset =
3167 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3168 break;
3169 case 8:
3170 indirect_ctx_offset =
3171 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3172 break;
3173 }
3174
3175 return indirect_ctx_offset;
3176 }
3177
execlists_init_reg_state(u32 * regs,struct intel_context * ce,struct intel_engine_cs * engine,struct intel_ring * ring)3178 static void execlists_init_reg_state(u32 *regs,
3179 struct intel_context *ce,
3180 struct intel_engine_cs *engine,
3181 struct intel_ring *ring)
3182 {
3183 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
3184 bool rcs = engine->class == RENDER_CLASS;
3185 u32 base = engine->mmio_base;
3186
3187 /*
3188 * A context is actually a big batch buffer with several
3189 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
3190 * values we are setting here are only for the first context restore:
3191 * on a subsequent save, the GPU will recreate this batchbuffer with new
3192 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
3193 * we are not initializing here).
3194 *
3195 * Must keep consistent with virtual_update_register_offsets().
3196 */
3197 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
3198 MI_LRI_FORCE_POSTED;
3199
3200 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
3201 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
3202 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
3203 if (INTEL_GEN(engine->i915) < 11) {
3204 regs[CTX_CONTEXT_CONTROL + 1] |=
3205 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
3206 CTX_CTRL_RS_CTX_ENABLE);
3207 }
3208 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
3209 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
3210 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
3211 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
3212 RING_CTL_SIZE(ring->size) | RING_VALID);
3213 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
3214 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
3215 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
3216 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
3217 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
3218 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
3219 if (rcs) {
3220 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
3221
3222 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
3223 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
3224 RING_INDIRECT_CTX_OFFSET(base), 0);
3225 if (wa_ctx->indirect_ctx.size) {
3226 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
3227
3228 regs[CTX_RCS_INDIRECT_CTX + 1] =
3229 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
3230 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
3231
3232 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
3233 intel_lr_indirect_ctx_offset(engine) << 6;
3234 }
3235
3236 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
3237 if (wa_ctx->per_ctx.size) {
3238 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
3239
3240 regs[CTX_BB_PER_CTX_PTR + 1] =
3241 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
3242 }
3243 }
3244
3245 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
3246
3247 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
3248 /* PDP values well be assigned later if needed */
3249 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
3250 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
3251 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
3252 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
3253 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
3254 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
3255 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
3256 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
3257
3258 if (i915_vm_is_4lvl(&ppgtt->vm)) {
3259 /* 64b PPGTT (48bit canonical)
3260 * PDP0_DESCRIPTOR contains the base address to PML4 and
3261 * other PDP Descriptors are ignored.
3262 */
3263 ASSIGN_CTX_PML4(ppgtt, regs);
3264 } else {
3265 ASSIGN_CTX_PDP(ppgtt, regs, 3);
3266 ASSIGN_CTX_PDP(ppgtt, regs, 2);
3267 ASSIGN_CTX_PDP(ppgtt, regs, 1);
3268 ASSIGN_CTX_PDP(ppgtt, regs, 0);
3269 }
3270
3271 if (rcs) {
3272 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
3273 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
3274 }
3275
3276 regs[CTX_END] = MI_BATCH_BUFFER_END;
3277 if (INTEL_GEN(engine->i915) >= 10)
3278 regs[CTX_END] |= BIT(0);
3279 }
3280
3281 static int
populate_lr_context(struct intel_context * ce,struct drm_i915_gem_object * ctx_obj,struct intel_engine_cs * engine,struct intel_ring * ring)3282 populate_lr_context(struct intel_context *ce,
3283 struct drm_i915_gem_object *ctx_obj,
3284 struct intel_engine_cs *engine,
3285 struct intel_ring *ring)
3286 {
3287 void *vaddr;
3288 u32 *regs;
3289 int ret;
3290
3291 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
3292 if (IS_ERR(vaddr)) {
3293 ret = PTR_ERR(vaddr);
3294 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
3295 return ret;
3296 }
3297
3298 set_redzone(vaddr, engine);
3299
3300 if (engine->default_state) {
3301 /*
3302 * We only want to copy over the template context state;
3303 * skipping over the headers reserved for GuC communication,
3304 * leaving those as zero.
3305 */
3306 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
3307 void *defaults;
3308
3309 defaults = i915_gem_object_pin_map(engine->default_state,
3310 I915_MAP_WB);
3311 if (IS_ERR(defaults)) {
3312 ret = PTR_ERR(defaults);
3313 goto err_unpin_ctx;
3314 }
3315
3316 memcpy(vaddr + start, defaults + start, engine->context_size);
3317 i915_gem_object_unpin_map(engine->default_state);
3318 }
3319
3320 /* The second page of the context object contains some fields which must
3321 * be set up prior to the first execution. */
3322 regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
3323 execlists_init_reg_state(regs, ce, engine, ring);
3324 if (!engine->default_state)
3325 regs[CTX_CONTEXT_CONTROL + 1] |=
3326 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
3327
3328 ret = 0;
3329 err_unpin_ctx:
3330 __i915_gem_object_flush_map(ctx_obj,
3331 LRC_HEADER_PAGES * PAGE_SIZE,
3332 engine->context_size);
3333 i915_gem_object_unpin_map(ctx_obj);
3334 return ret;
3335 }
3336
__execlists_context_alloc(struct intel_context * ce,struct intel_engine_cs * engine)3337 static int __execlists_context_alloc(struct intel_context *ce,
3338 struct intel_engine_cs *engine)
3339 {
3340 struct drm_i915_gem_object *ctx_obj;
3341 struct intel_ring *ring;
3342 struct i915_vma *vma;
3343 u32 context_size;
3344 int ret;
3345
3346 GEM_BUG_ON(ce->state);
3347 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3348
3349 /*
3350 * Before the actual start of the context image, we insert a few pages
3351 * for our own use and for sharing with the GuC.
3352 */
3353 context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3354 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3355 context_size += I915_GTT_PAGE_SIZE; /* for redzone */
3356
3357 ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3358 if (IS_ERR(ctx_obj))
3359 return PTR_ERR(ctx_obj);
3360
3361 vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
3362 if (IS_ERR(vma)) {
3363 ret = PTR_ERR(vma);
3364 goto error_deref_obj;
3365 }
3366
3367 if (!ce->timeline) {
3368 struct intel_timeline *tl;
3369
3370 tl = intel_timeline_create(engine->gt, NULL);
3371 if (IS_ERR(tl)) {
3372 ret = PTR_ERR(tl);
3373 goto error_deref_obj;
3374 }
3375
3376 ce->timeline = tl;
3377 }
3378
3379 ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
3380 if (IS_ERR(ring)) {
3381 ret = PTR_ERR(ring);
3382 goto error_deref_obj;
3383 }
3384
3385 ret = populate_lr_context(ce, ctx_obj, engine, ring);
3386 if (ret) {
3387 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3388 goto error_ring_free;
3389 }
3390
3391 ce->ring = ring;
3392 ce->state = vma;
3393
3394 return 0;
3395
3396 error_ring_free:
3397 intel_ring_put(ring);
3398 error_deref_obj:
3399 i915_gem_object_put(ctx_obj);
3400 return ret;
3401 }
3402
virtual_queue(struct virtual_engine * ve)3403 static struct list_head *virtual_queue(struct virtual_engine *ve)
3404 {
3405 return &ve->base.execlists.default_priolist.requests[0];
3406 }
3407
virtual_context_destroy(struct kref * kref)3408 static void virtual_context_destroy(struct kref *kref)
3409 {
3410 struct virtual_engine *ve =
3411 container_of(kref, typeof(*ve), context.ref);
3412 unsigned int n;
3413
3414 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3415 GEM_BUG_ON(ve->request);
3416 GEM_BUG_ON(ve->context.inflight);
3417
3418 for (n = 0; n < ve->num_siblings; n++) {
3419 struct intel_engine_cs *sibling = ve->siblings[n];
3420 struct rb_node *node = &ve->nodes[sibling->id].rb;
3421
3422 if (RB_EMPTY_NODE(node))
3423 continue;
3424
3425 spin_lock_irq(&sibling->active.lock);
3426
3427 /* Detachment is lazily performed in the execlists tasklet */
3428 if (!RB_EMPTY_NODE(node))
3429 rb_erase_cached(node, &sibling->execlists.virtual);
3430
3431 spin_unlock_irq(&sibling->active.lock);
3432 }
3433 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3434
3435 if (ve->context.state)
3436 __execlists_context_fini(&ve->context);
3437 intel_context_fini(&ve->context);
3438
3439 kfree(ve->bonds);
3440 kfree(ve);
3441 }
3442
virtual_engine_initial_hint(struct virtual_engine * ve)3443 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3444 {
3445 int swp;
3446
3447 /*
3448 * Pick a random sibling on starting to help spread the load around.
3449 *
3450 * New contexts are typically created with exactly the same order
3451 * of siblings, and often started in batches. Due to the way we iterate
3452 * the array of sibling when submitting requests, sibling[0] is
3453 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3454 * randomised across the system, we also help spread the load by the
3455 * first engine we inspect being different each time.
3456 *
3457 * NB This does not force us to execute on this engine, it will just
3458 * typically be the first we inspect for submission.
3459 */
3460 swp = prandom_u32_max(ve->num_siblings);
3461 if (!swp)
3462 return;
3463
3464 swap(ve->siblings[swp], ve->siblings[0]);
3465 virtual_update_register_offsets(ve->context.lrc_reg_state,
3466 ve->siblings[0]);
3467 }
3468
virtual_context_pin(struct intel_context * ce)3469 static int virtual_context_pin(struct intel_context *ce)
3470 {
3471 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3472 int err;
3473
3474 /* Note: we must use a real engine class for setting up reg state */
3475 err = __execlists_context_pin(ce, ve->siblings[0]);
3476 if (err)
3477 return err;
3478
3479 virtual_engine_initial_hint(ve);
3480 return 0;
3481 }
3482
virtual_context_enter(struct intel_context * ce)3483 static void virtual_context_enter(struct intel_context *ce)
3484 {
3485 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3486 unsigned int n;
3487
3488 for (n = 0; n < ve->num_siblings; n++)
3489 intel_engine_pm_get(ve->siblings[n]);
3490
3491 intel_timeline_enter(ce->timeline);
3492 }
3493
virtual_context_exit(struct intel_context * ce)3494 static void virtual_context_exit(struct intel_context *ce)
3495 {
3496 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3497 unsigned int n;
3498
3499 intel_timeline_exit(ce->timeline);
3500
3501 for (n = 0; n < ve->num_siblings; n++)
3502 intel_engine_pm_put(ve->siblings[n]);
3503 }
3504
3505 static const struct intel_context_ops virtual_context_ops = {
3506 .pin = virtual_context_pin,
3507 .unpin = execlists_context_unpin,
3508
3509 .enter = virtual_context_enter,
3510 .exit = virtual_context_exit,
3511
3512 .destroy = virtual_context_destroy,
3513 };
3514
virtual_submission_mask(struct virtual_engine * ve)3515 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3516 {
3517 struct i915_request *rq;
3518 intel_engine_mask_t mask;
3519
3520 rq = READ_ONCE(ve->request);
3521 if (!rq)
3522 return 0;
3523
3524 /* The rq is ready for submission; rq->execution_mask is now stable. */
3525 mask = rq->execution_mask;
3526 if (unlikely(!mask)) {
3527 /* Invalid selection, submit to a random engine in error */
3528 i915_request_skip(rq, -ENODEV);
3529 mask = ve->siblings[0]->mask;
3530 }
3531
3532 GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3533 ve->base.name,
3534 rq->fence.context, rq->fence.seqno,
3535 mask, ve->base.execlists.queue_priority_hint);
3536
3537 return mask;
3538 }
3539
virtual_submission_tasklet(unsigned long data)3540 static void virtual_submission_tasklet(unsigned long data)
3541 {
3542 struct virtual_engine * const ve = (struct virtual_engine *)data;
3543 const int prio = ve->base.execlists.queue_priority_hint;
3544 intel_engine_mask_t mask;
3545 unsigned int n;
3546
3547 rcu_read_lock();
3548 mask = virtual_submission_mask(ve);
3549 rcu_read_unlock();
3550 if (unlikely(!mask))
3551 return;
3552
3553 local_irq_disable();
3554 for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3555 struct intel_engine_cs *sibling = ve->siblings[n];
3556 struct ve_node * const node = &ve->nodes[sibling->id];
3557 struct rb_node **parent, *rb;
3558 bool first;
3559
3560 if (unlikely(!(mask & sibling->mask))) {
3561 if (!RB_EMPTY_NODE(&node->rb)) {
3562 spin_lock(&sibling->active.lock);
3563 rb_erase_cached(&node->rb,
3564 &sibling->execlists.virtual);
3565 RB_CLEAR_NODE(&node->rb);
3566 spin_unlock(&sibling->active.lock);
3567 }
3568 continue;
3569 }
3570
3571 spin_lock(&sibling->active.lock);
3572
3573 if (!RB_EMPTY_NODE(&node->rb)) {
3574 /*
3575 * Cheat and avoid rebalancing the tree if we can
3576 * reuse this node in situ.
3577 */
3578 first = rb_first_cached(&sibling->execlists.virtual) ==
3579 &node->rb;
3580 if (prio == node->prio || (prio > node->prio && first))
3581 goto submit_engine;
3582
3583 rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3584 }
3585
3586 rb = NULL;
3587 first = true;
3588 parent = &sibling->execlists.virtual.rb_root.rb_node;
3589 while (*parent) {
3590 struct ve_node *other;
3591
3592 rb = *parent;
3593 other = rb_entry(rb, typeof(*other), rb);
3594 if (prio > other->prio) {
3595 parent = &rb->rb_left;
3596 } else {
3597 parent = &rb->rb_right;
3598 first = false;
3599 }
3600 }
3601
3602 rb_link_node(&node->rb, rb, parent);
3603 rb_insert_color_cached(&node->rb,
3604 &sibling->execlists.virtual,
3605 first);
3606
3607 submit_engine:
3608 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3609 node->prio = prio;
3610 if (first && prio > sibling->execlists.queue_priority_hint) {
3611 sibling->execlists.queue_priority_hint = prio;
3612 tasklet_hi_schedule(&sibling->execlists.tasklet);
3613 }
3614
3615 spin_unlock(&sibling->active.lock);
3616 }
3617 local_irq_enable();
3618 }
3619
virtual_submit_request(struct i915_request * rq)3620 static void virtual_submit_request(struct i915_request *rq)
3621 {
3622 struct virtual_engine *ve = to_virtual_engine(rq->engine);
3623 struct i915_request *old;
3624 unsigned long flags;
3625
3626 GEM_TRACE("%s: rq=%llx:%lld\n",
3627 ve->base.name,
3628 rq->fence.context,
3629 rq->fence.seqno);
3630
3631 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3632
3633 spin_lock_irqsave(&ve->base.active.lock, flags);
3634
3635 old = ve->request;
3636 if (old) { /* background completion event from preempt-to-busy */
3637 GEM_BUG_ON(!i915_request_completed(old));
3638 __i915_request_submit(old);
3639 i915_request_put(old);
3640 }
3641
3642 if (i915_request_completed(rq)) {
3643 __i915_request_submit(rq);
3644
3645 ve->base.execlists.queue_priority_hint = INT_MIN;
3646 ve->request = NULL;
3647 } else {
3648 ve->base.execlists.queue_priority_hint = rq_prio(rq);
3649 ve->request = i915_request_get(rq);
3650
3651 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3652 list_move_tail(&rq->sched.link, virtual_queue(ve));
3653
3654 tasklet_schedule(&ve->base.execlists.tasklet);
3655 }
3656
3657 spin_unlock_irqrestore(&ve->base.active.lock, flags);
3658 }
3659
3660 static struct ve_bond *
virtual_find_bond(struct virtual_engine * ve,const struct intel_engine_cs * master)3661 virtual_find_bond(struct virtual_engine *ve,
3662 const struct intel_engine_cs *master)
3663 {
3664 int i;
3665
3666 for (i = 0; i < ve->num_bonds; i++) {
3667 if (ve->bonds[i].master == master)
3668 return &ve->bonds[i];
3669 }
3670
3671 return NULL;
3672 }
3673
3674 static void
virtual_bond_execute(struct i915_request * rq,struct dma_fence * signal)3675 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3676 {
3677 struct virtual_engine *ve = to_virtual_engine(rq->engine);
3678 intel_engine_mask_t allowed, exec;
3679 struct ve_bond *bond;
3680
3681 allowed = ~to_request(signal)->engine->mask;
3682
3683 bond = virtual_find_bond(ve, to_request(signal)->engine);
3684 if (bond)
3685 allowed &= bond->sibling_mask;
3686
3687 /* Restrict the bonded request to run on only the available engines */
3688 exec = READ_ONCE(rq->execution_mask);
3689 while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
3690 ;
3691
3692 /* Prevent the master from being re-run on the bonded engines */
3693 to_request(signal)->execution_mask &= ~allowed;
3694 }
3695
3696 struct intel_context *
intel_execlists_create_virtual(struct i915_gem_context * ctx,struct intel_engine_cs ** siblings,unsigned int count)3697 intel_execlists_create_virtual(struct i915_gem_context *ctx,
3698 struct intel_engine_cs **siblings,
3699 unsigned int count)
3700 {
3701 struct virtual_engine *ve;
3702 unsigned int n;
3703 int err;
3704
3705 if (count == 0)
3706 return ERR_PTR(-EINVAL);
3707
3708 if (count == 1)
3709 return intel_context_create(ctx, siblings[0]);
3710
3711 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3712 if (!ve)
3713 return ERR_PTR(-ENOMEM);
3714
3715 ve->base.i915 = ctx->i915;
3716 ve->base.gt = siblings[0]->gt;
3717 ve->base.id = -1;
3718 ve->base.class = OTHER_CLASS;
3719 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3720 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3721
3722 /*
3723 * The decision on whether to submit a request using semaphores
3724 * depends on the saturated state of the engine. We only compute
3725 * this during HW submission of the request, and we need for this
3726 * state to be globally applied to all requests being submitted
3727 * to this engine. Virtual engines encompass more than one physical
3728 * engine and so we cannot accurately tell in advance if one of those
3729 * engines is already saturated and so cannot afford to use a semaphore
3730 * and be pessimized in priority for doing so -- if we are the only
3731 * context using semaphores after all other clients have stopped, we
3732 * will be starved on the saturated system. Such a global switch for
3733 * semaphores is less than ideal, but alas is the current compromise.
3734 */
3735 ve->base.saturated = ALL_ENGINES;
3736
3737 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3738
3739 intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3740
3741 intel_engine_init_execlists(&ve->base);
3742
3743 ve->base.cops = &virtual_context_ops;
3744 ve->base.request_alloc = execlists_request_alloc;
3745
3746 ve->base.schedule = i915_schedule;
3747 ve->base.submit_request = virtual_submit_request;
3748 ve->base.bond_execute = virtual_bond_execute;
3749
3750 INIT_LIST_HEAD(virtual_queue(ve));
3751 ve->base.execlists.queue_priority_hint = INT_MIN;
3752 tasklet_init(&ve->base.execlists.tasklet,
3753 virtual_submission_tasklet,
3754 (unsigned long)ve);
3755
3756 intel_context_init(&ve->context, ctx, &ve->base);
3757
3758 for (n = 0; n < count; n++) {
3759 struct intel_engine_cs *sibling = siblings[n];
3760
3761 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3762 if (sibling->mask & ve->base.mask) {
3763 DRM_DEBUG("duplicate %s entry in load balancer\n",
3764 sibling->name);
3765 err = -EINVAL;
3766 goto err_put;
3767 }
3768
3769 /*
3770 * The virtual engine implementation is tightly coupled to
3771 * the execlists backend -- we push out request directly
3772 * into a tree inside each physical engine. We could support
3773 * layering if we handle cloning of the requests and
3774 * submitting a copy into each backend.
3775 */
3776 if (sibling->execlists.tasklet.func !=
3777 execlists_submission_tasklet) {
3778 err = -ENODEV;
3779 goto err_put;
3780 }
3781
3782 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3783 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3784
3785 ve->siblings[ve->num_siblings++] = sibling;
3786 ve->base.mask |= sibling->mask;
3787
3788 /*
3789 * All physical engines must be compatible for their emission
3790 * functions (as we build the instructions during request
3791 * construction and do not alter them before submission
3792 * on the physical engine). We use the engine class as a guide
3793 * here, although that could be refined.
3794 */
3795 if (ve->base.class != OTHER_CLASS) {
3796 if (ve->base.class != sibling->class) {
3797 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3798 sibling->class, ve->base.class);
3799 err = -EINVAL;
3800 goto err_put;
3801 }
3802 continue;
3803 }
3804
3805 ve->base.class = sibling->class;
3806 ve->base.uabi_class = sibling->uabi_class;
3807 snprintf(ve->base.name, sizeof(ve->base.name),
3808 "v%dx%d", ve->base.class, count);
3809 ve->base.context_size = sibling->context_size;
3810
3811 ve->base.emit_bb_start = sibling->emit_bb_start;
3812 ve->base.emit_flush = sibling->emit_flush;
3813 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3814 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3815 ve->base.emit_fini_breadcrumb_dw =
3816 sibling->emit_fini_breadcrumb_dw;
3817
3818 ve->base.flags = sibling->flags;
3819 }
3820
3821 ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3822
3823 err = __execlists_context_alloc(&ve->context, siblings[0]);
3824 if (err)
3825 goto err_put;
3826
3827 __set_bit(CONTEXT_ALLOC_BIT, &ve->context.flags);
3828
3829 return &ve->context;
3830
3831 err_put:
3832 intel_context_put(&ve->context);
3833 return ERR_PTR(err);
3834 }
3835
3836 struct intel_context *
intel_execlists_clone_virtual(struct i915_gem_context * ctx,struct intel_engine_cs * src)3837 intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3838 struct intel_engine_cs *src)
3839 {
3840 struct virtual_engine *se = to_virtual_engine(src);
3841 struct intel_context *dst;
3842
3843 dst = intel_execlists_create_virtual(ctx,
3844 se->siblings,
3845 se->num_siblings);
3846 if (IS_ERR(dst))
3847 return dst;
3848
3849 if (se->num_bonds) {
3850 struct virtual_engine *de = to_virtual_engine(dst->engine);
3851
3852 de->bonds = kmemdup(se->bonds,
3853 sizeof(*se->bonds) * se->num_bonds,
3854 GFP_KERNEL);
3855 if (!de->bonds) {
3856 intel_context_put(dst);
3857 return ERR_PTR(-ENOMEM);
3858 }
3859
3860 de->num_bonds = se->num_bonds;
3861 }
3862
3863 return dst;
3864 }
3865
intel_virtual_engine_attach_bond(struct intel_engine_cs * engine,const struct intel_engine_cs * master,const struct intel_engine_cs * sibling)3866 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3867 const struct intel_engine_cs *master,
3868 const struct intel_engine_cs *sibling)
3869 {
3870 struct virtual_engine *ve = to_virtual_engine(engine);
3871 struct ve_bond *bond;
3872 int n;
3873
3874 /* Sanity check the sibling is part of the virtual engine */
3875 for (n = 0; n < ve->num_siblings; n++)
3876 if (sibling == ve->siblings[n])
3877 break;
3878 if (n == ve->num_siblings)
3879 return -EINVAL;
3880
3881 bond = virtual_find_bond(ve, master);
3882 if (bond) {
3883 bond->sibling_mask |= sibling->mask;
3884 return 0;
3885 }
3886
3887 bond = krealloc(ve->bonds,
3888 sizeof(*bond) * (ve->num_bonds + 1),
3889 GFP_KERNEL);
3890 if (!bond)
3891 return -ENOMEM;
3892
3893 bond[ve->num_bonds].master = master;
3894 bond[ve->num_bonds].sibling_mask = sibling->mask;
3895
3896 ve->bonds = bond;
3897 ve->num_bonds++;
3898
3899 return 0;
3900 }
3901
intel_execlists_show_requests(struct intel_engine_cs * engine,struct drm_printer * m,void (* show_request)(struct drm_printer * m,struct i915_request * rq,const char * prefix),unsigned int max)3902 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3903 struct drm_printer *m,
3904 void (*show_request)(struct drm_printer *m,
3905 struct i915_request *rq,
3906 const char *prefix),
3907 unsigned int max)
3908 {
3909 const struct intel_engine_execlists *execlists = &engine->execlists;
3910 struct i915_request *rq, *last;
3911 unsigned long flags;
3912 unsigned int count;
3913 struct rb_node *rb;
3914
3915 spin_lock_irqsave(&engine->active.lock, flags);
3916
3917 last = NULL;
3918 count = 0;
3919 list_for_each_entry(rq, &engine->active.requests, sched.link) {
3920 if (count++ < max - 1)
3921 show_request(m, rq, "\t\tE ");
3922 else
3923 last = rq;
3924 }
3925 if (last) {
3926 if (count > max) {
3927 drm_printf(m,
3928 "\t\t...skipping %d executing requests...\n",
3929 count - max);
3930 }
3931 show_request(m, last, "\t\tE ");
3932 }
3933
3934 last = NULL;
3935 count = 0;
3936 if (execlists->queue_priority_hint != INT_MIN)
3937 drm_printf(m, "\t\tQueue priority hint: %d\n",
3938 execlists->queue_priority_hint);
3939 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3940 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3941 int i;
3942
3943 priolist_for_each_request(rq, p, i) {
3944 if (count++ < max - 1)
3945 show_request(m, rq, "\t\tQ ");
3946 else
3947 last = rq;
3948 }
3949 }
3950 if (last) {
3951 if (count > max) {
3952 drm_printf(m,
3953 "\t\t...skipping %d queued requests...\n",
3954 count - max);
3955 }
3956 show_request(m, last, "\t\tQ ");
3957 }
3958
3959 last = NULL;
3960 count = 0;
3961 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3962 struct virtual_engine *ve =
3963 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3964 struct i915_request *rq = READ_ONCE(ve->request);
3965
3966 if (rq) {
3967 if (count++ < max - 1)
3968 show_request(m, rq, "\t\tV ");
3969 else
3970 last = rq;
3971 }
3972 }
3973 if (last) {
3974 if (count > max) {
3975 drm_printf(m,
3976 "\t\t...skipping %d virtual requests...\n",
3977 count - max);
3978 }
3979 show_request(m, last, "\t\tV ");
3980 }
3981
3982 spin_unlock_irqrestore(&engine->active.lock, flags);
3983 }
3984
intel_lr_context_reset(struct intel_engine_cs * engine,struct intel_context * ce,u32 head,bool scrub)3985 void intel_lr_context_reset(struct intel_engine_cs *engine,
3986 struct intel_context *ce,
3987 u32 head,
3988 bool scrub)
3989 {
3990 /*
3991 * We want a simple context + ring to execute the breadcrumb update.
3992 * We cannot rely on the context being intact across the GPU hang,
3993 * so clear it and rebuild just what we need for the breadcrumb.
3994 * All pending requests for this context will be zapped, and any
3995 * future request will be after userspace has had the opportunity
3996 * to recreate its own state.
3997 */
3998 if (scrub) {
3999 u32 *regs = ce->lrc_reg_state;
4000
4001 if (engine->pinned_default_state) {
4002 memcpy(regs, /* skip restoring the vanilla PPHWSP */
4003 engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
4004 engine->context_size - PAGE_SIZE);
4005 }
4006 execlists_init_reg_state(regs, ce, engine, ce->ring);
4007 }
4008
4009 /* Rerun the request; its payload has been neutered (if guilty). */
4010 ce->ring->head = head;
4011 intel_ring_update_space(ce->ring);
4012
4013 __execlists_update_reg_state(ce, engine);
4014 }
4015
4016 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4017 #include "selftest_lrc.c"
4018 #endif
4019