1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Per core/cpu state
4 *
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28 * Intel PerfMon, used on Core and later.
29 */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
33 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
34 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
35 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
36 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
37 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
38 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
39 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122 /*
123 * When HT is off these events can only run on the bottom 4 counters
124 * When HT is on, they are impacted by the HT bug and require EXCL access
125 */
126 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131 EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150 /*
151 * When HT is off these events can only run on the bottom 4 counters
152 * When HT is on, they are impacted by the HT bug and require EXCL access
153 */
154 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159 EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
194 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
195 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
196 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
197
198 /*
199 * when HT is off, these can only run on the bottom 4 counters
200 */
201 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
203 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
204 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
205 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
206
207 EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 /*
237 * Note the low 8 bits eventsel code is not a continuous field, containing
238 * some #GPing bits. These are masked out.
239 */
240 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
246 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* INST_RETIRED.PREC_DIST */
247 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
248 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
249 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
250 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
257 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
260 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
263 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266 INTEL_EVENT_CONSTRAINT(0xef, 0xf),
267 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
268 EVENT_CONSTRAINT_END
269 };
270
271 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
272 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
273 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
274 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
275 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
276 EVENT_EXTRA_END
277 };
278
279 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
280 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
281 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
282 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
283 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
284 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
285 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
286 EVENT_EXTRA_END
287 };
288
289 static struct event_constraint intel_spr_event_constraints[] = {
290 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
291 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* INST_RETIRED.PREC_DIST */
292 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
293 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
294 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
295 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
296 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
297 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
298 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
299 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
300 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
301 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
302 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
303
304 INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
305 INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
306 /*
307 * Generally event codes < 0x90 are restricted to counters 0-3.
308 * The 0x2E and 0x3C are exception, which has no restriction.
309 */
310 INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
311
312 INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
313 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
314 INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
315 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
316 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
317 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
318 INTEL_EVENT_CONSTRAINT(0xce, 0x1),
319 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
320 /*
321 * Generally event codes >= 0x90 are likely to have no restrictions.
322 * The exception are defined as above.
323 */
324 INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
325
326 EVENT_CONSTRAINT_END
327 };
328
329
330 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
331 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
332 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
333
334 static struct attribute *nhm_mem_events_attrs[] = {
335 EVENT_PTR(mem_ld_nhm),
336 NULL,
337 };
338
339 /*
340 * topdown events for Intel Core CPUs.
341 *
342 * The events are all in slots, which is a free slot in a 4 wide
343 * pipeline. Some events are already reported in slots, for cycle
344 * events we multiply by the pipeline width (4).
345 *
346 * With Hyper Threading on, topdown metrics are either summed or averaged
347 * between the threads of a core: (count_t0 + count_t1).
348 *
349 * For the average case the metric is always scaled to pipeline width,
350 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
351 */
352
353 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
354 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
355 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
356 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
357 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
358 "event=0xe,umask=0x1"); /* uops_issued.any */
359 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
360 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
361 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
362 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
363 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
364 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
365 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
366 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
367 "4", "2");
368
369 EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
370 EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
371 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
372 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
373 EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
374 EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
375 EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
376 EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
377 EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
378
379 static struct attribute *snb_events_attrs[] = {
380 EVENT_PTR(td_slots_issued),
381 EVENT_PTR(td_slots_retired),
382 EVENT_PTR(td_fetch_bubbles),
383 EVENT_PTR(td_total_slots),
384 EVENT_PTR(td_total_slots_scale),
385 EVENT_PTR(td_recovery_bubbles),
386 EVENT_PTR(td_recovery_bubbles_scale),
387 NULL,
388 };
389
390 static struct attribute *snb_mem_events_attrs[] = {
391 EVENT_PTR(mem_ld_snb),
392 EVENT_PTR(mem_st_snb),
393 NULL,
394 };
395
396 static struct event_constraint intel_hsw_event_constraints[] = {
397 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
398 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
399 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
400 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
401 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
402 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
403 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
404 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
405 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
406 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
407 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
408 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
409
410 /*
411 * When HT is off these events can only run on the bottom 4 counters
412 * When HT is on, they are impacted by the HT bug and require EXCL access
413 */
414 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
415 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
416 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
417 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
418
419 EVENT_CONSTRAINT_END
420 };
421
422 static struct event_constraint intel_bdw_event_constraints[] = {
423 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
424 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
425 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
426 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
427 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
428 /*
429 * when HT is off, these can only run on the bottom 4 counters
430 */
431 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
432 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
433 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
434 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
435 EVENT_CONSTRAINT_END
436 };
437
intel_pmu_event_map(int hw_event)438 static u64 intel_pmu_event_map(int hw_event)
439 {
440 return intel_perfmon_event_map[hw_event];
441 }
442
443 static __initconst const u64 spr_hw_cache_event_ids
444 [PERF_COUNT_HW_CACHE_MAX]
445 [PERF_COUNT_HW_CACHE_OP_MAX]
446 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
447 {
448 [ C(L1D ) ] = {
449 [ C(OP_READ) ] = {
450 [ C(RESULT_ACCESS) ] = 0x81d0,
451 [ C(RESULT_MISS) ] = 0xe124,
452 },
453 [ C(OP_WRITE) ] = {
454 [ C(RESULT_ACCESS) ] = 0x82d0,
455 },
456 },
457 [ C(L1I ) ] = {
458 [ C(OP_READ) ] = {
459 [ C(RESULT_MISS) ] = 0xe424,
460 },
461 [ C(OP_WRITE) ] = {
462 [ C(RESULT_ACCESS) ] = -1,
463 [ C(RESULT_MISS) ] = -1,
464 },
465 },
466 [ C(LL ) ] = {
467 [ C(OP_READ) ] = {
468 [ C(RESULT_ACCESS) ] = 0x12a,
469 [ C(RESULT_MISS) ] = 0x12a,
470 },
471 [ C(OP_WRITE) ] = {
472 [ C(RESULT_ACCESS) ] = 0x12a,
473 [ C(RESULT_MISS) ] = 0x12a,
474 },
475 },
476 [ C(DTLB) ] = {
477 [ C(OP_READ) ] = {
478 [ C(RESULT_ACCESS) ] = 0x81d0,
479 [ C(RESULT_MISS) ] = 0xe12,
480 },
481 [ C(OP_WRITE) ] = {
482 [ C(RESULT_ACCESS) ] = 0x82d0,
483 [ C(RESULT_MISS) ] = 0xe13,
484 },
485 },
486 [ C(ITLB) ] = {
487 [ C(OP_READ) ] = {
488 [ C(RESULT_ACCESS) ] = -1,
489 [ C(RESULT_MISS) ] = 0xe11,
490 },
491 [ C(OP_WRITE) ] = {
492 [ C(RESULT_ACCESS) ] = -1,
493 [ C(RESULT_MISS) ] = -1,
494 },
495 [ C(OP_PREFETCH) ] = {
496 [ C(RESULT_ACCESS) ] = -1,
497 [ C(RESULT_MISS) ] = -1,
498 },
499 },
500 [ C(BPU ) ] = {
501 [ C(OP_READ) ] = {
502 [ C(RESULT_ACCESS) ] = 0x4c4,
503 [ C(RESULT_MISS) ] = 0x4c5,
504 },
505 [ C(OP_WRITE) ] = {
506 [ C(RESULT_ACCESS) ] = -1,
507 [ C(RESULT_MISS) ] = -1,
508 },
509 [ C(OP_PREFETCH) ] = {
510 [ C(RESULT_ACCESS) ] = -1,
511 [ C(RESULT_MISS) ] = -1,
512 },
513 },
514 [ C(NODE) ] = {
515 [ C(OP_READ) ] = {
516 [ C(RESULT_ACCESS) ] = 0x12a,
517 [ C(RESULT_MISS) ] = 0x12a,
518 },
519 },
520 };
521
522 static __initconst const u64 spr_hw_cache_extra_regs
523 [PERF_COUNT_HW_CACHE_MAX]
524 [PERF_COUNT_HW_CACHE_OP_MAX]
525 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
526 {
527 [ C(LL ) ] = {
528 [ C(OP_READ) ] = {
529 [ C(RESULT_ACCESS) ] = 0x10001,
530 [ C(RESULT_MISS) ] = 0x3fbfc00001,
531 },
532 [ C(OP_WRITE) ] = {
533 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
534 [ C(RESULT_MISS) ] = 0x3f3fc00002,
535 },
536 },
537 [ C(NODE) ] = {
538 [ C(OP_READ) ] = {
539 [ C(RESULT_ACCESS) ] = 0x10c000001,
540 [ C(RESULT_MISS) ] = 0x3fb3000001,
541 },
542 },
543 };
544
545 /*
546 * Notes on the events:
547 * - data reads do not include code reads (comparable to earlier tables)
548 * - data counts include speculative execution (except L1 write, dtlb, bpu)
549 * - remote node access includes remote memory, remote cache, remote mmio.
550 * - prefetches are not included in the counts.
551 * - icache miss does not include decoded icache
552 */
553
554 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
555 #define SKL_DEMAND_RFO BIT_ULL(1)
556 #define SKL_ANY_RESPONSE BIT_ULL(16)
557 #define SKL_SUPPLIER_NONE BIT_ULL(17)
558 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
559 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
560 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
561 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
562 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
563 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
564 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
565 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
566 #define SKL_SPL_HIT BIT_ULL(30)
567 #define SKL_SNOOP_NONE BIT_ULL(31)
568 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
569 #define SKL_SNOOP_MISS BIT_ULL(33)
570 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
571 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
572 #define SKL_SNOOP_HITM BIT_ULL(36)
573 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
574 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
575 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
576 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
577 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
578 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
579 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
580 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
581 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
582 SKL_SNOOP_HITM|SKL_SPL_HIT)
583 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
584 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
585 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
586 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
587 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
588
589 static __initconst const u64 skl_hw_cache_event_ids
590 [PERF_COUNT_HW_CACHE_MAX]
591 [PERF_COUNT_HW_CACHE_OP_MAX]
592 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
593 {
594 [ C(L1D ) ] = {
595 [ C(OP_READ) ] = {
596 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
597 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
598 },
599 [ C(OP_WRITE) ] = {
600 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
601 [ C(RESULT_MISS) ] = 0x0,
602 },
603 [ C(OP_PREFETCH) ] = {
604 [ C(RESULT_ACCESS) ] = 0x0,
605 [ C(RESULT_MISS) ] = 0x0,
606 },
607 },
608 [ C(L1I ) ] = {
609 [ C(OP_READ) ] = {
610 [ C(RESULT_ACCESS) ] = 0x0,
611 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
612 },
613 [ C(OP_WRITE) ] = {
614 [ C(RESULT_ACCESS) ] = -1,
615 [ C(RESULT_MISS) ] = -1,
616 },
617 [ C(OP_PREFETCH) ] = {
618 [ C(RESULT_ACCESS) ] = 0x0,
619 [ C(RESULT_MISS) ] = 0x0,
620 },
621 },
622 [ C(LL ) ] = {
623 [ C(OP_READ) ] = {
624 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
625 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
626 },
627 [ C(OP_WRITE) ] = {
628 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
629 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
630 },
631 [ C(OP_PREFETCH) ] = {
632 [ C(RESULT_ACCESS) ] = 0x0,
633 [ C(RESULT_MISS) ] = 0x0,
634 },
635 },
636 [ C(DTLB) ] = {
637 [ C(OP_READ) ] = {
638 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
639 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
640 },
641 [ C(OP_WRITE) ] = {
642 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
643 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
644 },
645 [ C(OP_PREFETCH) ] = {
646 [ C(RESULT_ACCESS) ] = 0x0,
647 [ C(RESULT_MISS) ] = 0x0,
648 },
649 },
650 [ C(ITLB) ] = {
651 [ C(OP_READ) ] = {
652 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
653 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
654 },
655 [ C(OP_WRITE) ] = {
656 [ C(RESULT_ACCESS) ] = -1,
657 [ C(RESULT_MISS) ] = -1,
658 },
659 [ C(OP_PREFETCH) ] = {
660 [ C(RESULT_ACCESS) ] = -1,
661 [ C(RESULT_MISS) ] = -1,
662 },
663 },
664 [ C(BPU ) ] = {
665 [ C(OP_READ) ] = {
666 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
667 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
668 },
669 [ C(OP_WRITE) ] = {
670 [ C(RESULT_ACCESS) ] = -1,
671 [ C(RESULT_MISS) ] = -1,
672 },
673 [ C(OP_PREFETCH) ] = {
674 [ C(RESULT_ACCESS) ] = -1,
675 [ C(RESULT_MISS) ] = -1,
676 },
677 },
678 [ C(NODE) ] = {
679 [ C(OP_READ) ] = {
680 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
681 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
682 },
683 [ C(OP_WRITE) ] = {
684 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
685 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
686 },
687 [ C(OP_PREFETCH) ] = {
688 [ C(RESULT_ACCESS) ] = 0x0,
689 [ C(RESULT_MISS) ] = 0x0,
690 },
691 },
692 };
693
694 static __initconst const u64 skl_hw_cache_extra_regs
695 [PERF_COUNT_HW_CACHE_MAX]
696 [PERF_COUNT_HW_CACHE_OP_MAX]
697 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
698 {
699 [ C(LL ) ] = {
700 [ C(OP_READ) ] = {
701 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
702 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
703 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
704 SKL_L3_MISS|SKL_ANY_SNOOP|
705 SKL_SUPPLIER_NONE,
706 },
707 [ C(OP_WRITE) ] = {
708 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
709 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
710 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
711 SKL_L3_MISS|SKL_ANY_SNOOP|
712 SKL_SUPPLIER_NONE,
713 },
714 [ C(OP_PREFETCH) ] = {
715 [ C(RESULT_ACCESS) ] = 0x0,
716 [ C(RESULT_MISS) ] = 0x0,
717 },
718 },
719 [ C(NODE) ] = {
720 [ C(OP_READ) ] = {
721 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
722 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
723 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
724 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
725 },
726 [ C(OP_WRITE) ] = {
727 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
728 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
729 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
730 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
731 },
732 [ C(OP_PREFETCH) ] = {
733 [ C(RESULT_ACCESS) ] = 0x0,
734 [ C(RESULT_MISS) ] = 0x0,
735 },
736 },
737 };
738
739 #define SNB_DMND_DATA_RD (1ULL << 0)
740 #define SNB_DMND_RFO (1ULL << 1)
741 #define SNB_DMND_IFETCH (1ULL << 2)
742 #define SNB_DMND_WB (1ULL << 3)
743 #define SNB_PF_DATA_RD (1ULL << 4)
744 #define SNB_PF_RFO (1ULL << 5)
745 #define SNB_PF_IFETCH (1ULL << 6)
746 #define SNB_LLC_DATA_RD (1ULL << 7)
747 #define SNB_LLC_RFO (1ULL << 8)
748 #define SNB_LLC_IFETCH (1ULL << 9)
749 #define SNB_BUS_LOCKS (1ULL << 10)
750 #define SNB_STRM_ST (1ULL << 11)
751 #define SNB_OTHER (1ULL << 15)
752 #define SNB_RESP_ANY (1ULL << 16)
753 #define SNB_NO_SUPP (1ULL << 17)
754 #define SNB_LLC_HITM (1ULL << 18)
755 #define SNB_LLC_HITE (1ULL << 19)
756 #define SNB_LLC_HITS (1ULL << 20)
757 #define SNB_LLC_HITF (1ULL << 21)
758 #define SNB_LOCAL (1ULL << 22)
759 #define SNB_REMOTE (0xffULL << 23)
760 #define SNB_SNP_NONE (1ULL << 31)
761 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
762 #define SNB_SNP_MISS (1ULL << 33)
763 #define SNB_NO_FWD (1ULL << 34)
764 #define SNB_SNP_FWD (1ULL << 35)
765 #define SNB_HITM (1ULL << 36)
766 #define SNB_NON_DRAM (1ULL << 37)
767
768 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
769 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
770 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
771
772 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
773 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
774 SNB_HITM)
775
776 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
777 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
778
779 #define SNB_L3_ACCESS SNB_RESP_ANY
780 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
781
782 static __initconst const u64 snb_hw_cache_extra_regs
783 [PERF_COUNT_HW_CACHE_MAX]
784 [PERF_COUNT_HW_CACHE_OP_MAX]
785 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
786 {
787 [ C(LL ) ] = {
788 [ C(OP_READ) ] = {
789 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
790 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
791 },
792 [ C(OP_WRITE) ] = {
793 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
794 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
795 },
796 [ C(OP_PREFETCH) ] = {
797 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
798 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
799 },
800 },
801 [ C(NODE) ] = {
802 [ C(OP_READ) ] = {
803 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
804 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
805 },
806 [ C(OP_WRITE) ] = {
807 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
808 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
809 },
810 [ C(OP_PREFETCH) ] = {
811 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
812 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
813 },
814 },
815 };
816
817 static __initconst const u64 snb_hw_cache_event_ids
818 [PERF_COUNT_HW_CACHE_MAX]
819 [PERF_COUNT_HW_CACHE_OP_MAX]
820 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
821 {
822 [ C(L1D) ] = {
823 [ C(OP_READ) ] = {
824 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
825 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
826 },
827 [ C(OP_WRITE) ] = {
828 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
829 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
830 },
831 [ C(OP_PREFETCH) ] = {
832 [ C(RESULT_ACCESS) ] = 0x0,
833 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
834 },
835 },
836 [ C(L1I ) ] = {
837 [ C(OP_READ) ] = {
838 [ C(RESULT_ACCESS) ] = 0x0,
839 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
840 },
841 [ C(OP_WRITE) ] = {
842 [ C(RESULT_ACCESS) ] = -1,
843 [ C(RESULT_MISS) ] = -1,
844 },
845 [ C(OP_PREFETCH) ] = {
846 [ C(RESULT_ACCESS) ] = 0x0,
847 [ C(RESULT_MISS) ] = 0x0,
848 },
849 },
850 [ C(LL ) ] = {
851 [ C(OP_READ) ] = {
852 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
853 [ C(RESULT_ACCESS) ] = 0x01b7,
854 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
855 [ C(RESULT_MISS) ] = 0x01b7,
856 },
857 [ C(OP_WRITE) ] = {
858 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
859 [ C(RESULT_ACCESS) ] = 0x01b7,
860 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
861 [ C(RESULT_MISS) ] = 0x01b7,
862 },
863 [ C(OP_PREFETCH) ] = {
864 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
865 [ C(RESULT_ACCESS) ] = 0x01b7,
866 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
867 [ C(RESULT_MISS) ] = 0x01b7,
868 },
869 },
870 [ C(DTLB) ] = {
871 [ C(OP_READ) ] = {
872 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
873 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
874 },
875 [ C(OP_WRITE) ] = {
876 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
877 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
878 },
879 [ C(OP_PREFETCH) ] = {
880 [ C(RESULT_ACCESS) ] = 0x0,
881 [ C(RESULT_MISS) ] = 0x0,
882 },
883 },
884 [ C(ITLB) ] = {
885 [ C(OP_READ) ] = {
886 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
887 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
888 },
889 [ C(OP_WRITE) ] = {
890 [ C(RESULT_ACCESS) ] = -1,
891 [ C(RESULT_MISS) ] = -1,
892 },
893 [ C(OP_PREFETCH) ] = {
894 [ C(RESULT_ACCESS) ] = -1,
895 [ C(RESULT_MISS) ] = -1,
896 },
897 },
898 [ C(BPU ) ] = {
899 [ C(OP_READ) ] = {
900 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
901 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
902 },
903 [ C(OP_WRITE) ] = {
904 [ C(RESULT_ACCESS) ] = -1,
905 [ C(RESULT_MISS) ] = -1,
906 },
907 [ C(OP_PREFETCH) ] = {
908 [ C(RESULT_ACCESS) ] = -1,
909 [ C(RESULT_MISS) ] = -1,
910 },
911 },
912 [ C(NODE) ] = {
913 [ C(OP_READ) ] = {
914 [ C(RESULT_ACCESS) ] = 0x01b7,
915 [ C(RESULT_MISS) ] = 0x01b7,
916 },
917 [ C(OP_WRITE) ] = {
918 [ C(RESULT_ACCESS) ] = 0x01b7,
919 [ C(RESULT_MISS) ] = 0x01b7,
920 },
921 [ C(OP_PREFETCH) ] = {
922 [ C(RESULT_ACCESS) ] = 0x01b7,
923 [ C(RESULT_MISS) ] = 0x01b7,
924 },
925 },
926
927 };
928
929 /*
930 * Notes on the events:
931 * - data reads do not include code reads (comparable to earlier tables)
932 * - data counts include speculative execution (except L1 write, dtlb, bpu)
933 * - remote node access includes remote memory, remote cache, remote mmio.
934 * - prefetches are not included in the counts because they are not
935 * reliably counted.
936 */
937
938 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
939 #define HSW_DEMAND_RFO BIT_ULL(1)
940 #define HSW_ANY_RESPONSE BIT_ULL(16)
941 #define HSW_SUPPLIER_NONE BIT_ULL(17)
942 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
943 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
944 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
945 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
946 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
947 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
948 HSW_L3_MISS_REMOTE_HOP2P)
949 #define HSW_SNOOP_NONE BIT_ULL(31)
950 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
951 #define HSW_SNOOP_MISS BIT_ULL(33)
952 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
953 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
954 #define HSW_SNOOP_HITM BIT_ULL(36)
955 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
956 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
957 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
958 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
959 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
960 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
961 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
962 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
963 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
964 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
965 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
966
967 #define BDW_L3_MISS_LOCAL BIT(26)
968 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
969 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
970 HSW_L3_MISS_REMOTE_HOP2P)
971
972
973 static __initconst const u64 hsw_hw_cache_event_ids
974 [PERF_COUNT_HW_CACHE_MAX]
975 [PERF_COUNT_HW_CACHE_OP_MAX]
976 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
977 {
978 [ C(L1D ) ] = {
979 [ C(OP_READ) ] = {
980 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
981 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
982 },
983 [ C(OP_WRITE) ] = {
984 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
985 [ C(RESULT_MISS) ] = 0x0,
986 },
987 [ C(OP_PREFETCH) ] = {
988 [ C(RESULT_ACCESS) ] = 0x0,
989 [ C(RESULT_MISS) ] = 0x0,
990 },
991 },
992 [ C(L1I ) ] = {
993 [ C(OP_READ) ] = {
994 [ C(RESULT_ACCESS) ] = 0x0,
995 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
996 },
997 [ C(OP_WRITE) ] = {
998 [ C(RESULT_ACCESS) ] = -1,
999 [ C(RESULT_MISS) ] = -1,
1000 },
1001 [ C(OP_PREFETCH) ] = {
1002 [ C(RESULT_ACCESS) ] = 0x0,
1003 [ C(RESULT_MISS) ] = 0x0,
1004 },
1005 },
1006 [ C(LL ) ] = {
1007 [ C(OP_READ) ] = {
1008 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1009 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1010 },
1011 [ C(OP_WRITE) ] = {
1012 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1013 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1014 },
1015 [ C(OP_PREFETCH) ] = {
1016 [ C(RESULT_ACCESS) ] = 0x0,
1017 [ C(RESULT_MISS) ] = 0x0,
1018 },
1019 },
1020 [ C(DTLB) ] = {
1021 [ C(OP_READ) ] = {
1022 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1023 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1024 },
1025 [ C(OP_WRITE) ] = {
1026 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1027 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1028 },
1029 [ C(OP_PREFETCH) ] = {
1030 [ C(RESULT_ACCESS) ] = 0x0,
1031 [ C(RESULT_MISS) ] = 0x0,
1032 },
1033 },
1034 [ C(ITLB) ] = {
1035 [ C(OP_READ) ] = {
1036 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
1037 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1038 },
1039 [ C(OP_WRITE) ] = {
1040 [ C(RESULT_ACCESS) ] = -1,
1041 [ C(RESULT_MISS) ] = -1,
1042 },
1043 [ C(OP_PREFETCH) ] = {
1044 [ C(RESULT_ACCESS) ] = -1,
1045 [ C(RESULT_MISS) ] = -1,
1046 },
1047 },
1048 [ C(BPU ) ] = {
1049 [ C(OP_READ) ] = {
1050 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
1051 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1052 },
1053 [ C(OP_WRITE) ] = {
1054 [ C(RESULT_ACCESS) ] = -1,
1055 [ C(RESULT_MISS) ] = -1,
1056 },
1057 [ C(OP_PREFETCH) ] = {
1058 [ C(RESULT_ACCESS) ] = -1,
1059 [ C(RESULT_MISS) ] = -1,
1060 },
1061 },
1062 [ C(NODE) ] = {
1063 [ C(OP_READ) ] = {
1064 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1065 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1066 },
1067 [ C(OP_WRITE) ] = {
1068 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1069 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1070 },
1071 [ C(OP_PREFETCH) ] = {
1072 [ C(RESULT_ACCESS) ] = 0x0,
1073 [ C(RESULT_MISS) ] = 0x0,
1074 },
1075 },
1076 };
1077
1078 static __initconst const u64 hsw_hw_cache_extra_regs
1079 [PERF_COUNT_HW_CACHE_MAX]
1080 [PERF_COUNT_HW_CACHE_OP_MAX]
1081 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1082 {
1083 [ C(LL ) ] = {
1084 [ C(OP_READ) ] = {
1085 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1086 HSW_LLC_ACCESS,
1087 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1088 HSW_L3_MISS|HSW_ANY_SNOOP,
1089 },
1090 [ C(OP_WRITE) ] = {
1091 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1092 HSW_LLC_ACCESS,
1093 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1094 HSW_L3_MISS|HSW_ANY_SNOOP,
1095 },
1096 [ C(OP_PREFETCH) ] = {
1097 [ C(RESULT_ACCESS) ] = 0x0,
1098 [ C(RESULT_MISS) ] = 0x0,
1099 },
1100 },
1101 [ C(NODE) ] = {
1102 [ C(OP_READ) ] = {
1103 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1104 HSW_L3_MISS_LOCAL_DRAM|
1105 HSW_SNOOP_DRAM,
1106 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1107 HSW_L3_MISS_REMOTE|
1108 HSW_SNOOP_DRAM,
1109 },
1110 [ C(OP_WRITE) ] = {
1111 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1112 HSW_L3_MISS_LOCAL_DRAM|
1113 HSW_SNOOP_DRAM,
1114 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1115 HSW_L3_MISS_REMOTE|
1116 HSW_SNOOP_DRAM,
1117 },
1118 [ C(OP_PREFETCH) ] = {
1119 [ C(RESULT_ACCESS) ] = 0x0,
1120 [ C(RESULT_MISS) ] = 0x0,
1121 },
1122 },
1123 };
1124
1125 static __initconst const u64 westmere_hw_cache_event_ids
1126 [PERF_COUNT_HW_CACHE_MAX]
1127 [PERF_COUNT_HW_CACHE_OP_MAX]
1128 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1129 {
1130 [ C(L1D) ] = {
1131 [ C(OP_READ) ] = {
1132 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1133 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1134 },
1135 [ C(OP_WRITE) ] = {
1136 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1137 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1138 },
1139 [ C(OP_PREFETCH) ] = {
1140 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1141 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1142 },
1143 },
1144 [ C(L1I ) ] = {
1145 [ C(OP_READ) ] = {
1146 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1147 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1148 },
1149 [ C(OP_WRITE) ] = {
1150 [ C(RESULT_ACCESS) ] = -1,
1151 [ C(RESULT_MISS) ] = -1,
1152 },
1153 [ C(OP_PREFETCH) ] = {
1154 [ C(RESULT_ACCESS) ] = 0x0,
1155 [ C(RESULT_MISS) ] = 0x0,
1156 },
1157 },
1158 [ C(LL ) ] = {
1159 [ C(OP_READ) ] = {
1160 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1161 [ C(RESULT_ACCESS) ] = 0x01b7,
1162 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1163 [ C(RESULT_MISS) ] = 0x01b7,
1164 },
1165 /*
1166 * Use RFO, not WRITEBACK, because a write miss would typically occur
1167 * on RFO.
1168 */
1169 [ C(OP_WRITE) ] = {
1170 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1171 [ C(RESULT_ACCESS) ] = 0x01b7,
1172 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1173 [ C(RESULT_MISS) ] = 0x01b7,
1174 },
1175 [ C(OP_PREFETCH) ] = {
1176 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1177 [ C(RESULT_ACCESS) ] = 0x01b7,
1178 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1179 [ C(RESULT_MISS) ] = 0x01b7,
1180 },
1181 },
1182 [ C(DTLB) ] = {
1183 [ C(OP_READ) ] = {
1184 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1185 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1186 },
1187 [ C(OP_WRITE) ] = {
1188 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1189 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1190 },
1191 [ C(OP_PREFETCH) ] = {
1192 [ C(RESULT_ACCESS) ] = 0x0,
1193 [ C(RESULT_MISS) ] = 0x0,
1194 },
1195 },
1196 [ C(ITLB) ] = {
1197 [ C(OP_READ) ] = {
1198 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1199 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1200 },
1201 [ C(OP_WRITE) ] = {
1202 [ C(RESULT_ACCESS) ] = -1,
1203 [ C(RESULT_MISS) ] = -1,
1204 },
1205 [ C(OP_PREFETCH) ] = {
1206 [ C(RESULT_ACCESS) ] = -1,
1207 [ C(RESULT_MISS) ] = -1,
1208 },
1209 },
1210 [ C(BPU ) ] = {
1211 [ C(OP_READ) ] = {
1212 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1213 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1214 },
1215 [ C(OP_WRITE) ] = {
1216 [ C(RESULT_ACCESS) ] = -1,
1217 [ C(RESULT_MISS) ] = -1,
1218 },
1219 [ C(OP_PREFETCH) ] = {
1220 [ C(RESULT_ACCESS) ] = -1,
1221 [ C(RESULT_MISS) ] = -1,
1222 },
1223 },
1224 [ C(NODE) ] = {
1225 [ C(OP_READ) ] = {
1226 [ C(RESULT_ACCESS) ] = 0x01b7,
1227 [ C(RESULT_MISS) ] = 0x01b7,
1228 },
1229 [ C(OP_WRITE) ] = {
1230 [ C(RESULT_ACCESS) ] = 0x01b7,
1231 [ C(RESULT_MISS) ] = 0x01b7,
1232 },
1233 [ C(OP_PREFETCH) ] = {
1234 [ C(RESULT_ACCESS) ] = 0x01b7,
1235 [ C(RESULT_MISS) ] = 0x01b7,
1236 },
1237 },
1238 };
1239
1240 /*
1241 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1242 * See IA32 SDM Vol 3B 30.6.1.3
1243 */
1244
1245 #define NHM_DMND_DATA_RD (1 << 0)
1246 #define NHM_DMND_RFO (1 << 1)
1247 #define NHM_DMND_IFETCH (1 << 2)
1248 #define NHM_DMND_WB (1 << 3)
1249 #define NHM_PF_DATA_RD (1 << 4)
1250 #define NHM_PF_DATA_RFO (1 << 5)
1251 #define NHM_PF_IFETCH (1 << 6)
1252 #define NHM_OFFCORE_OTHER (1 << 7)
1253 #define NHM_UNCORE_HIT (1 << 8)
1254 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1255 #define NHM_OTHER_CORE_HITM (1 << 10)
1256 /* reserved */
1257 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1258 #define NHM_REMOTE_DRAM (1 << 13)
1259 #define NHM_LOCAL_DRAM (1 << 14)
1260 #define NHM_NON_DRAM (1 << 15)
1261
1262 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1263 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1264
1265 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1266 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1267 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1268
1269 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1270 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1271 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1272
1273 static __initconst const u64 nehalem_hw_cache_extra_regs
1274 [PERF_COUNT_HW_CACHE_MAX]
1275 [PERF_COUNT_HW_CACHE_OP_MAX]
1276 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1277 {
1278 [ C(LL ) ] = {
1279 [ C(OP_READ) ] = {
1280 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1281 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1282 },
1283 [ C(OP_WRITE) ] = {
1284 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1285 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1286 },
1287 [ C(OP_PREFETCH) ] = {
1288 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1289 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1290 },
1291 },
1292 [ C(NODE) ] = {
1293 [ C(OP_READ) ] = {
1294 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1295 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1296 },
1297 [ C(OP_WRITE) ] = {
1298 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1299 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1300 },
1301 [ C(OP_PREFETCH) ] = {
1302 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1303 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1304 },
1305 },
1306 };
1307
1308 static __initconst const u64 nehalem_hw_cache_event_ids
1309 [PERF_COUNT_HW_CACHE_MAX]
1310 [PERF_COUNT_HW_CACHE_OP_MAX]
1311 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1312 {
1313 [ C(L1D) ] = {
1314 [ C(OP_READ) ] = {
1315 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1316 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1317 },
1318 [ C(OP_WRITE) ] = {
1319 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1320 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1321 },
1322 [ C(OP_PREFETCH) ] = {
1323 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1324 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1325 },
1326 },
1327 [ C(L1I ) ] = {
1328 [ C(OP_READ) ] = {
1329 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1330 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1331 },
1332 [ C(OP_WRITE) ] = {
1333 [ C(RESULT_ACCESS) ] = -1,
1334 [ C(RESULT_MISS) ] = -1,
1335 },
1336 [ C(OP_PREFETCH) ] = {
1337 [ C(RESULT_ACCESS) ] = 0x0,
1338 [ C(RESULT_MISS) ] = 0x0,
1339 },
1340 },
1341 [ C(LL ) ] = {
1342 [ C(OP_READ) ] = {
1343 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1344 [ C(RESULT_ACCESS) ] = 0x01b7,
1345 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1346 [ C(RESULT_MISS) ] = 0x01b7,
1347 },
1348 /*
1349 * Use RFO, not WRITEBACK, because a write miss would typically occur
1350 * on RFO.
1351 */
1352 [ C(OP_WRITE) ] = {
1353 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1354 [ C(RESULT_ACCESS) ] = 0x01b7,
1355 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1356 [ C(RESULT_MISS) ] = 0x01b7,
1357 },
1358 [ C(OP_PREFETCH) ] = {
1359 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1360 [ C(RESULT_ACCESS) ] = 0x01b7,
1361 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1362 [ C(RESULT_MISS) ] = 0x01b7,
1363 },
1364 },
1365 [ C(DTLB) ] = {
1366 [ C(OP_READ) ] = {
1367 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1368 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1369 },
1370 [ C(OP_WRITE) ] = {
1371 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1372 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1373 },
1374 [ C(OP_PREFETCH) ] = {
1375 [ C(RESULT_ACCESS) ] = 0x0,
1376 [ C(RESULT_MISS) ] = 0x0,
1377 },
1378 },
1379 [ C(ITLB) ] = {
1380 [ C(OP_READ) ] = {
1381 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1382 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1383 },
1384 [ C(OP_WRITE) ] = {
1385 [ C(RESULT_ACCESS) ] = -1,
1386 [ C(RESULT_MISS) ] = -1,
1387 },
1388 [ C(OP_PREFETCH) ] = {
1389 [ C(RESULT_ACCESS) ] = -1,
1390 [ C(RESULT_MISS) ] = -1,
1391 },
1392 },
1393 [ C(BPU ) ] = {
1394 [ C(OP_READ) ] = {
1395 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1396 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1397 },
1398 [ C(OP_WRITE) ] = {
1399 [ C(RESULT_ACCESS) ] = -1,
1400 [ C(RESULT_MISS) ] = -1,
1401 },
1402 [ C(OP_PREFETCH) ] = {
1403 [ C(RESULT_ACCESS) ] = -1,
1404 [ C(RESULT_MISS) ] = -1,
1405 },
1406 },
1407 [ C(NODE) ] = {
1408 [ C(OP_READ) ] = {
1409 [ C(RESULT_ACCESS) ] = 0x01b7,
1410 [ C(RESULT_MISS) ] = 0x01b7,
1411 },
1412 [ C(OP_WRITE) ] = {
1413 [ C(RESULT_ACCESS) ] = 0x01b7,
1414 [ C(RESULT_MISS) ] = 0x01b7,
1415 },
1416 [ C(OP_PREFETCH) ] = {
1417 [ C(RESULT_ACCESS) ] = 0x01b7,
1418 [ C(RESULT_MISS) ] = 0x01b7,
1419 },
1420 },
1421 };
1422
1423 static __initconst const u64 core2_hw_cache_event_ids
1424 [PERF_COUNT_HW_CACHE_MAX]
1425 [PERF_COUNT_HW_CACHE_OP_MAX]
1426 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1427 {
1428 [ C(L1D) ] = {
1429 [ C(OP_READ) ] = {
1430 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1431 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1432 },
1433 [ C(OP_WRITE) ] = {
1434 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1435 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1436 },
1437 [ C(OP_PREFETCH) ] = {
1438 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1439 [ C(RESULT_MISS) ] = 0,
1440 },
1441 },
1442 [ C(L1I ) ] = {
1443 [ C(OP_READ) ] = {
1444 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1445 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1446 },
1447 [ C(OP_WRITE) ] = {
1448 [ C(RESULT_ACCESS) ] = -1,
1449 [ C(RESULT_MISS) ] = -1,
1450 },
1451 [ C(OP_PREFETCH) ] = {
1452 [ C(RESULT_ACCESS) ] = 0,
1453 [ C(RESULT_MISS) ] = 0,
1454 },
1455 },
1456 [ C(LL ) ] = {
1457 [ C(OP_READ) ] = {
1458 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1459 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1460 },
1461 [ C(OP_WRITE) ] = {
1462 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1463 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1464 },
1465 [ C(OP_PREFETCH) ] = {
1466 [ C(RESULT_ACCESS) ] = 0,
1467 [ C(RESULT_MISS) ] = 0,
1468 },
1469 },
1470 [ C(DTLB) ] = {
1471 [ C(OP_READ) ] = {
1472 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1473 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1474 },
1475 [ C(OP_WRITE) ] = {
1476 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1477 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1478 },
1479 [ C(OP_PREFETCH) ] = {
1480 [ C(RESULT_ACCESS) ] = 0,
1481 [ C(RESULT_MISS) ] = 0,
1482 },
1483 },
1484 [ C(ITLB) ] = {
1485 [ C(OP_READ) ] = {
1486 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1487 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1488 },
1489 [ C(OP_WRITE) ] = {
1490 [ C(RESULT_ACCESS) ] = -1,
1491 [ C(RESULT_MISS) ] = -1,
1492 },
1493 [ C(OP_PREFETCH) ] = {
1494 [ C(RESULT_ACCESS) ] = -1,
1495 [ C(RESULT_MISS) ] = -1,
1496 },
1497 },
1498 [ C(BPU ) ] = {
1499 [ C(OP_READ) ] = {
1500 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1501 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1502 },
1503 [ C(OP_WRITE) ] = {
1504 [ C(RESULT_ACCESS) ] = -1,
1505 [ C(RESULT_MISS) ] = -1,
1506 },
1507 [ C(OP_PREFETCH) ] = {
1508 [ C(RESULT_ACCESS) ] = -1,
1509 [ C(RESULT_MISS) ] = -1,
1510 },
1511 },
1512 };
1513
1514 static __initconst const u64 atom_hw_cache_event_ids
1515 [PERF_COUNT_HW_CACHE_MAX]
1516 [PERF_COUNT_HW_CACHE_OP_MAX]
1517 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1518 {
1519 [ C(L1D) ] = {
1520 [ C(OP_READ) ] = {
1521 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1522 [ C(RESULT_MISS) ] = 0,
1523 },
1524 [ C(OP_WRITE) ] = {
1525 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1526 [ C(RESULT_MISS) ] = 0,
1527 },
1528 [ C(OP_PREFETCH) ] = {
1529 [ C(RESULT_ACCESS) ] = 0x0,
1530 [ C(RESULT_MISS) ] = 0,
1531 },
1532 },
1533 [ C(L1I ) ] = {
1534 [ C(OP_READ) ] = {
1535 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1536 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1537 },
1538 [ C(OP_WRITE) ] = {
1539 [ C(RESULT_ACCESS) ] = -1,
1540 [ C(RESULT_MISS) ] = -1,
1541 },
1542 [ C(OP_PREFETCH) ] = {
1543 [ C(RESULT_ACCESS) ] = 0,
1544 [ C(RESULT_MISS) ] = 0,
1545 },
1546 },
1547 [ C(LL ) ] = {
1548 [ C(OP_READ) ] = {
1549 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1550 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1551 },
1552 [ C(OP_WRITE) ] = {
1553 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1554 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1555 },
1556 [ C(OP_PREFETCH) ] = {
1557 [ C(RESULT_ACCESS) ] = 0,
1558 [ C(RESULT_MISS) ] = 0,
1559 },
1560 },
1561 [ C(DTLB) ] = {
1562 [ C(OP_READ) ] = {
1563 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1564 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1565 },
1566 [ C(OP_WRITE) ] = {
1567 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1568 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1569 },
1570 [ C(OP_PREFETCH) ] = {
1571 [ C(RESULT_ACCESS) ] = 0,
1572 [ C(RESULT_MISS) ] = 0,
1573 },
1574 },
1575 [ C(ITLB) ] = {
1576 [ C(OP_READ) ] = {
1577 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1578 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1579 },
1580 [ C(OP_WRITE) ] = {
1581 [ C(RESULT_ACCESS) ] = -1,
1582 [ C(RESULT_MISS) ] = -1,
1583 },
1584 [ C(OP_PREFETCH) ] = {
1585 [ C(RESULT_ACCESS) ] = -1,
1586 [ C(RESULT_MISS) ] = -1,
1587 },
1588 },
1589 [ C(BPU ) ] = {
1590 [ C(OP_READ) ] = {
1591 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1592 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1593 },
1594 [ C(OP_WRITE) ] = {
1595 [ C(RESULT_ACCESS) ] = -1,
1596 [ C(RESULT_MISS) ] = -1,
1597 },
1598 [ C(OP_PREFETCH) ] = {
1599 [ C(RESULT_ACCESS) ] = -1,
1600 [ C(RESULT_MISS) ] = -1,
1601 },
1602 },
1603 };
1604
1605 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1606 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1607 /* no_alloc_cycles.not_delivered */
1608 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1609 "event=0xca,umask=0x50");
1610 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1611 /* uops_retired.all */
1612 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1613 "event=0xc2,umask=0x10");
1614 /* uops_retired.all */
1615 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1616 "event=0xc2,umask=0x10");
1617
1618 static struct attribute *slm_events_attrs[] = {
1619 EVENT_PTR(td_total_slots_slm),
1620 EVENT_PTR(td_total_slots_scale_slm),
1621 EVENT_PTR(td_fetch_bubbles_slm),
1622 EVENT_PTR(td_fetch_bubbles_scale_slm),
1623 EVENT_PTR(td_slots_issued_slm),
1624 EVENT_PTR(td_slots_retired_slm),
1625 NULL
1626 };
1627
1628 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1629 {
1630 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1631 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1632 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1633 EVENT_EXTRA_END
1634 };
1635
1636 #define SLM_DMND_READ SNB_DMND_DATA_RD
1637 #define SLM_DMND_WRITE SNB_DMND_RFO
1638 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1639
1640 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1641 #define SLM_LLC_ACCESS SNB_RESP_ANY
1642 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1643
1644 static __initconst const u64 slm_hw_cache_extra_regs
1645 [PERF_COUNT_HW_CACHE_MAX]
1646 [PERF_COUNT_HW_CACHE_OP_MAX]
1647 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1648 {
1649 [ C(LL ) ] = {
1650 [ C(OP_READ) ] = {
1651 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1652 [ C(RESULT_MISS) ] = 0,
1653 },
1654 [ C(OP_WRITE) ] = {
1655 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1656 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1657 },
1658 [ C(OP_PREFETCH) ] = {
1659 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1660 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1661 },
1662 },
1663 };
1664
1665 static __initconst const u64 slm_hw_cache_event_ids
1666 [PERF_COUNT_HW_CACHE_MAX]
1667 [PERF_COUNT_HW_CACHE_OP_MAX]
1668 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1669 {
1670 [ C(L1D) ] = {
1671 [ C(OP_READ) ] = {
1672 [ C(RESULT_ACCESS) ] = 0,
1673 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1674 },
1675 [ C(OP_WRITE) ] = {
1676 [ C(RESULT_ACCESS) ] = 0,
1677 [ C(RESULT_MISS) ] = 0,
1678 },
1679 [ C(OP_PREFETCH) ] = {
1680 [ C(RESULT_ACCESS) ] = 0,
1681 [ C(RESULT_MISS) ] = 0,
1682 },
1683 },
1684 [ C(L1I ) ] = {
1685 [ C(OP_READ) ] = {
1686 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1687 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1688 },
1689 [ C(OP_WRITE) ] = {
1690 [ C(RESULT_ACCESS) ] = -1,
1691 [ C(RESULT_MISS) ] = -1,
1692 },
1693 [ C(OP_PREFETCH) ] = {
1694 [ C(RESULT_ACCESS) ] = 0,
1695 [ C(RESULT_MISS) ] = 0,
1696 },
1697 },
1698 [ C(LL ) ] = {
1699 [ C(OP_READ) ] = {
1700 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1701 [ C(RESULT_ACCESS) ] = 0x01b7,
1702 [ C(RESULT_MISS) ] = 0,
1703 },
1704 [ C(OP_WRITE) ] = {
1705 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1706 [ C(RESULT_ACCESS) ] = 0x01b7,
1707 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1708 [ C(RESULT_MISS) ] = 0x01b7,
1709 },
1710 [ C(OP_PREFETCH) ] = {
1711 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1712 [ C(RESULT_ACCESS) ] = 0x01b7,
1713 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1714 [ C(RESULT_MISS) ] = 0x01b7,
1715 },
1716 },
1717 [ C(DTLB) ] = {
1718 [ C(OP_READ) ] = {
1719 [ C(RESULT_ACCESS) ] = 0,
1720 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1721 },
1722 [ C(OP_WRITE) ] = {
1723 [ C(RESULT_ACCESS) ] = 0,
1724 [ C(RESULT_MISS) ] = 0,
1725 },
1726 [ C(OP_PREFETCH) ] = {
1727 [ C(RESULT_ACCESS) ] = 0,
1728 [ C(RESULT_MISS) ] = 0,
1729 },
1730 },
1731 [ C(ITLB) ] = {
1732 [ C(OP_READ) ] = {
1733 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1734 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1735 },
1736 [ C(OP_WRITE) ] = {
1737 [ C(RESULT_ACCESS) ] = -1,
1738 [ C(RESULT_MISS) ] = -1,
1739 },
1740 [ C(OP_PREFETCH) ] = {
1741 [ C(RESULT_ACCESS) ] = -1,
1742 [ C(RESULT_MISS) ] = -1,
1743 },
1744 },
1745 [ C(BPU ) ] = {
1746 [ C(OP_READ) ] = {
1747 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1748 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1749 },
1750 [ C(OP_WRITE) ] = {
1751 [ C(RESULT_ACCESS) ] = -1,
1752 [ C(RESULT_MISS) ] = -1,
1753 },
1754 [ C(OP_PREFETCH) ] = {
1755 [ C(RESULT_ACCESS) ] = -1,
1756 [ C(RESULT_MISS) ] = -1,
1757 },
1758 },
1759 };
1760
1761 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1762 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1763 /* UOPS_NOT_DELIVERED.ANY */
1764 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1765 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1766 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1767 /* UOPS_RETIRED.ANY */
1768 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1769 /* UOPS_ISSUED.ANY */
1770 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1771
1772 static struct attribute *glm_events_attrs[] = {
1773 EVENT_PTR(td_total_slots_glm),
1774 EVENT_PTR(td_total_slots_scale_glm),
1775 EVENT_PTR(td_fetch_bubbles_glm),
1776 EVENT_PTR(td_recovery_bubbles_glm),
1777 EVENT_PTR(td_slots_issued_glm),
1778 EVENT_PTR(td_slots_retired_glm),
1779 NULL
1780 };
1781
1782 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1783 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1784 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1785 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1786 EVENT_EXTRA_END
1787 };
1788
1789 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1790 #define GLM_DEMAND_RFO BIT_ULL(1)
1791 #define GLM_ANY_RESPONSE BIT_ULL(16)
1792 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1793 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1794 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1795 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1796 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1797 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1798 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1799
1800 static __initconst const u64 glm_hw_cache_event_ids
1801 [PERF_COUNT_HW_CACHE_MAX]
1802 [PERF_COUNT_HW_CACHE_OP_MAX]
1803 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1804 [C(L1D)] = {
1805 [C(OP_READ)] = {
1806 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1807 [C(RESULT_MISS)] = 0x0,
1808 },
1809 [C(OP_WRITE)] = {
1810 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1811 [C(RESULT_MISS)] = 0x0,
1812 },
1813 [C(OP_PREFETCH)] = {
1814 [C(RESULT_ACCESS)] = 0x0,
1815 [C(RESULT_MISS)] = 0x0,
1816 },
1817 },
1818 [C(L1I)] = {
1819 [C(OP_READ)] = {
1820 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1821 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1822 },
1823 [C(OP_WRITE)] = {
1824 [C(RESULT_ACCESS)] = -1,
1825 [C(RESULT_MISS)] = -1,
1826 },
1827 [C(OP_PREFETCH)] = {
1828 [C(RESULT_ACCESS)] = 0x0,
1829 [C(RESULT_MISS)] = 0x0,
1830 },
1831 },
1832 [C(LL)] = {
1833 [C(OP_READ)] = {
1834 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1835 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1836 },
1837 [C(OP_WRITE)] = {
1838 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1839 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1840 },
1841 [C(OP_PREFETCH)] = {
1842 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1843 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1844 },
1845 },
1846 [C(DTLB)] = {
1847 [C(OP_READ)] = {
1848 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1849 [C(RESULT_MISS)] = 0x0,
1850 },
1851 [C(OP_WRITE)] = {
1852 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1853 [C(RESULT_MISS)] = 0x0,
1854 },
1855 [C(OP_PREFETCH)] = {
1856 [C(RESULT_ACCESS)] = 0x0,
1857 [C(RESULT_MISS)] = 0x0,
1858 },
1859 },
1860 [C(ITLB)] = {
1861 [C(OP_READ)] = {
1862 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1863 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1864 },
1865 [C(OP_WRITE)] = {
1866 [C(RESULT_ACCESS)] = -1,
1867 [C(RESULT_MISS)] = -1,
1868 },
1869 [C(OP_PREFETCH)] = {
1870 [C(RESULT_ACCESS)] = -1,
1871 [C(RESULT_MISS)] = -1,
1872 },
1873 },
1874 [C(BPU)] = {
1875 [C(OP_READ)] = {
1876 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1877 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1878 },
1879 [C(OP_WRITE)] = {
1880 [C(RESULT_ACCESS)] = -1,
1881 [C(RESULT_MISS)] = -1,
1882 },
1883 [C(OP_PREFETCH)] = {
1884 [C(RESULT_ACCESS)] = -1,
1885 [C(RESULT_MISS)] = -1,
1886 },
1887 },
1888 };
1889
1890 static __initconst const u64 glm_hw_cache_extra_regs
1891 [PERF_COUNT_HW_CACHE_MAX]
1892 [PERF_COUNT_HW_CACHE_OP_MAX]
1893 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1894 [C(LL)] = {
1895 [C(OP_READ)] = {
1896 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1897 GLM_LLC_ACCESS,
1898 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1899 GLM_LLC_MISS,
1900 },
1901 [C(OP_WRITE)] = {
1902 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1903 GLM_LLC_ACCESS,
1904 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1905 GLM_LLC_MISS,
1906 },
1907 [C(OP_PREFETCH)] = {
1908 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1909 GLM_LLC_ACCESS,
1910 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1911 GLM_LLC_MISS,
1912 },
1913 },
1914 };
1915
1916 static __initconst const u64 glp_hw_cache_event_ids
1917 [PERF_COUNT_HW_CACHE_MAX]
1918 [PERF_COUNT_HW_CACHE_OP_MAX]
1919 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1920 [C(L1D)] = {
1921 [C(OP_READ)] = {
1922 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1923 [C(RESULT_MISS)] = 0x0,
1924 },
1925 [C(OP_WRITE)] = {
1926 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1927 [C(RESULT_MISS)] = 0x0,
1928 },
1929 [C(OP_PREFETCH)] = {
1930 [C(RESULT_ACCESS)] = 0x0,
1931 [C(RESULT_MISS)] = 0x0,
1932 },
1933 },
1934 [C(L1I)] = {
1935 [C(OP_READ)] = {
1936 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1937 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1938 },
1939 [C(OP_WRITE)] = {
1940 [C(RESULT_ACCESS)] = -1,
1941 [C(RESULT_MISS)] = -1,
1942 },
1943 [C(OP_PREFETCH)] = {
1944 [C(RESULT_ACCESS)] = 0x0,
1945 [C(RESULT_MISS)] = 0x0,
1946 },
1947 },
1948 [C(LL)] = {
1949 [C(OP_READ)] = {
1950 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1951 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1952 },
1953 [C(OP_WRITE)] = {
1954 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1955 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1956 },
1957 [C(OP_PREFETCH)] = {
1958 [C(RESULT_ACCESS)] = 0x0,
1959 [C(RESULT_MISS)] = 0x0,
1960 },
1961 },
1962 [C(DTLB)] = {
1963 [C(OP_READ)] = {
1964 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1965 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1966 },
1967 [C(OP_WRITE)] = {
1968 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1969 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1970 },
1971 [C(OP_PREFETCH)] = {
1972 [C(RESULT_ACCESS)] = 0x0,
1973 [C(RESULT_MISS)] = 0x0,
1974 },
1975 },
1976 [C(ITLB)] = {
1977 [C(OP_READ)] = {
1978 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1979 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1980 },
1981 [C(OP_WRITE)] = {
1982 [C(RESULT_ACCESS)] = -1,
1983 [C(RESULT_MISS)] = -1,
1984 },
1985 [C(OP_PREFETCH)] = {
1986 [C(RESULT_ACCESS)] = -1,
1987 [C(RESULT_MISS)] = -1,
1988 },
1989 },
1990 [C(BPU)] = {
1991 [C(OP_READ)] = {
1992 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1993 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1994 },
1995 [C(OP_WRITE)] = {
1996 [C(RESULT_ACCESS)] = -1,
1997 [C(RESULT_MISS)] = -1,
1998 },
1999 [C(OP_PREFETCH)] = {
2000 [C(RESULT_ACCESS)] = -1,
2001 [C(RESULT_MISS)] = -1,
2002 },
2003 },
2004 };
2005
2006 static __initconst const u64 glp_hw_cache_extra_regs
2007 [PERF_COUNT_HW_CACHE_MAX]
2008 [PERF_COUNT_HW_CACHE_OP_MAX]
2009 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2010 [C(LL)] = {
2011 [C(OP_READ)] = {
2012 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2013 GLM_LLC_ACCESS,
2014 [C(RESULT_MISS)] = GLM_DEMAND_READ|
2015 GLM_LLC_MISS,
2016 },
2017 [C(OP_WRITE)] = {
2018 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2019 GLM_LLC_ACCESS,
2020 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2021 GLM_LLC_MISS,
2022 },
2023 [C(OP_PREFETCH)] = {
2024 [C(RESULT_ACCESS)] = 0x0,
2025 [C(RESULT_MISS)] = 0x0,
2026 },
2027 },
2028 };
2029
2030 #define TNT_LOCAL_DRAM BIT_ULL(26)
2031 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
2032 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
2033 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
2034 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2035 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2036 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2037
2038 static __initconst const u64 tnt_hw_cache_extra_regs
2039 [PERF_COUNT_HW_CACHE_MAX]
2040 [PERF_COUNT_HW_CACHE_OP_MAX]
2041 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2042 [C(LL)] = {
2043 [C(OP_READ)] = {
2044 [C(RESULT_ACCESS)] = TNT_DEMAND_READ|
2045 TNT_LLC_ACCESS,
2046 [C(RESULT_MISS)] = TNT_DEMAND_READ|
2047 TNT_LLC_MISS,
2048 },
2049 [C(OP_WRITE)] = {
2050 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
2051 TNT_LLC_ACCESS,
2052 [C(RESULT_MISS)] = TNT_DEMAND_WRITE|
2053 TNT_LLC_MISS,
2054 },
2055 [C(OP_PREFETCH)] = {
2056 [C(RESULT_ACCESS)] = 0x0,
2057 [C(RESULT_MISS)] = 0x0,
2058 },
2059 },
2060 };
2061
2062 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
2063 EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
2064 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
2065 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
2066
2067 static struct attribute *tnt_events_attrs[] = {
2068 EVENT_PTR(td_fe_bound_tnt),
2069 EVENT_PTR(td_retiring_tnt),
2070 EVENT_PTR(td_bad_spec_tnt),
2071 EVENT_PTR(td_be_bound_tnt),
2072 NULL,
2073 };
2074
2075 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2076 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2077 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2078 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2079 EVENT_EXTRA_END
2080 };
2081
2082 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2083 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2084 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2085 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2086 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2087 EVENT_EXTRA_END
2088 };
2089
2090 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
2091 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
2092 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
2093 #define KNL_MCDRAM_FAR BIT_ULL(22)
2094 #define KNL_DDR_LOCAL BIT_ULL(23)
2095 #define KNL_DDR_FAR BIT_ULL(24)
2096 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2097 KNL_DDR_LOCAL | KNL_DDR_FAR)
2098 #define KNL_L2_READ SLM_DMND_READ
2099 #define KNL_L2_WRITE SLM_DMND_WRITE
2100 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
2101 #define KNL_L2_ACCESS SLM_LLC_ACCESS
2102 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2103 KNL_DRAM_ANY | SNB_SNP_ANY | \
2104 SNB_NON_DRAM)
2105
2106 static __initconst const u64 knl_hw_cache_extra_regs
2107 [PERF_COUNT_HW_CACHE_MAX]
2108 [PERF_COUNT_HW_CACHE_OP_MAX]
2109 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2110 [C(LL)] = {
2111 [C(OP_READ)] = {
2112 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2113 [C(RESULT_MISS)] = 0,
2114 },
2115 [C(OP_WRITE)] = {
2116 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2117 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
2118 },
2119 [C(OP_PREFETCH)] = {
2120 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2121 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
2122 },
2123 },
2124 };
2125
2126 /*
2127 * Used from PMIs where the LBRs are already disabled.
2128 *
2129 * This function could be called consecutively. It is required to remain in
2130 * disabled state if called consecutively.
2131 *
2132 * During consecutive calls, the same disable value will be written to related
2133 * registers, so the PMU state remains unchanged.
2134 *
2135 * intel_bts events don't coexist with intel PMU's BTS events because of
2136 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2137 * disabled around intel PMU's event batching etc, only inside the PMI handler.
2138 *
2139 * Avoid PEBS_ENABLE MSR access in PMIs.
2140 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2141 * It doesn't matter if the PEBS is enabled or not.
2142 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2143 * access PEBS_ENABLE MSR in disable_all()/enable_all().
2144 * However, there are some cases which may change PEBS status, e.g. PMI
2145 * throttle. The PEBS_ENABLE should be updated where the status changes.
2146 */
__intel_pmu_disable_all(void)2147 static void __intel_pmu_disable_all(void)
2148 {
2149 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2150
2151 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2152
2153 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2154 intel_pmu_disable_bts();
2155 }
2156
intel_pmu_disable_all(void)2157 static void intel_pmu_disable_all(void)
2158 {
2159 __intel_pmu_disable_all();
2160 intel_pmu_pebs_disable_all();
2161 intel_pmu_lbr_disable_all();
2162 }
2163
__intel_pmu_enable_all(int added,bool pmi)2164 static void __intel_pmu_enable_all(int added, bool pmi)
2165 {
2166 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2167 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2168
2169 intel_pmu_lbr_enable_all(pmi);
2170 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2171 intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2172
2173 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2174 struct perf_event *event =
2175 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2176
2177 if (WARN_ON_ONCE(!event))
2178 return;
2179
2180 intel_pmu_enable_bts(event->hw.config);
2181 }
2182 }
2183
intel_pmu_enable_all(int added)2184 static void intel_pmu_enable_all(int added)
2185 {
2186 intel_pmu_pebs_enable_all();
2187 __intel_pmu_enable_all(added, false);
2188 }
2189
2190 /*
2191 * Workaround for:
2192 * Intel Errata AAK100 (model 26)
2193 * Intel Errata AAP53 (model 30)
2194 * Intel Errata BD53 (model 44)
2195 *
2196 * The official story:
2197 * These chips need to be 'reset' when adding counters by programming the
2198 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2199 * in sequence on the same PMC or on different PMCs.
2200 *
2201 * In practice it appears some of these events do in fact count, and
2202 * we need to program all 4 events.
2203 */
intel_pmu_nhm_workaround(void)2204 static void intel_pmu_nhm_workaround(void)
2205 {
2206 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2207 static const unsigned long nhm_magic[4] = {
2208 0x4300B5,
2209 0x4300D2,
2210 0x4300B1,
2211 0x4300B1
2212 };
2213 struct perf_event *event;
2214 int i;
2215
2216 /*
2217 * The Errata requires below steps:
2218 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2219 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2220 * the corresponding PMCx;
2221 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2222 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2223 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2224 */
2225
2226 /*
2227 * The real steps we choose are a little different from above.
2228 * A) To reduce MSR operations, we don't run step 1) as they
2229 * are already cleared before this function is called;
2230 * B) Call x86_perf_event_update to save PMCx before configuring
2231 * PERFEVTSELx with magic number;
2232 * C) With step 5), we do clear only when the PERFEVTSELx is
2233 * not used currently.
2234 * D) Call x86_perf_event_set_period to restore PMCx;
2235 */
2236
2237 /* We always operate 4 pairs of PERF Counters */
2238 for (i = 0; i < 4; i++) {
2239 event = cpuc->events[i];
2240 if (event)
2241 x86_perf_event_update(event);
2242 }
2243
2244 for (i = 0; i < 4; i++) {
2245 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2246 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2247 }
2248
2249 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2250 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2251
2252 for (i = 0; i < 4; i++) {
2253 event = cpuc->events[i];
2254
2255 if (event) {
2256 x86_perf_event_set_period(event);
2257 __x86_pmu_enable_event(&event->hw,
2258 ARCH_PERFMON_EVENTSEL_ENABLE);
2259 } else
2260 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2261 }
2262 }
2263
intel_pmu_nhm_enable_all(int added)2264 static void intel_pmu_nhm_enable_all(int added)
2265 {
2266 if (added)
2267 intel_pmu_nhm_workaround();
2268 intel_pmu_enable_all(added);
2269 }
2270
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2271 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2272 {
2273 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2274
2275 if (cpuc->tfa_shadow != val) {
2276 cpuc->tfa_shadow = val;
2277 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2278 }
2279 }
2280
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2281 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2282 {
2283 /*
2284 * We're going to use PMC3, make sure TFA is set before we touch it.
2285 */
2286 if (cntr == 3)
2287 intel_set_tfa(cpuc, true);
2288 }
2289
intel_tfa_pmu_enable_all(int added)2290 static void intel_tfa_pmu_enable_all(int added)
2291 {
2292 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2293
2294 /*
2295 * If we find PMC3 is no longer used when we enable the PMU, we can
2296 * clear TFA.
2297 */
2298 if (!test_bit(3, cpuc->active_mask))
2299 intel_set_tfa(cpuc, false);
2300
2301 intel_pmu_enable_all(added);
2302 }
2303
intel_pmu_get_status(void)2304 static inline u64 intel_pmu_get_status(void)
2305 {
2306 u64 status;
2307
2308 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2309
2310 return status;
2311 }
2312
intel_pmu_ack_status(u64 ack)2313 static inline void intel_pmu_ack_status(u64 ack)
2314 {
2315 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2316 }
2317
event_is_checkpointed(struct perf_event * event)2318 static inline bool event_is_checkpointed(struct perf_event *event)
2319 {
2320 return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2321 }
2322
intel_set_masks(struct perf_event * event,int idx)2323 static inline void intel_set_masks(struct perf_event *event, int idx)
2324 {
2325 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2326
2327 if (event->attr.exclude_host)
2328 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2329 if (event->attr.exclude_guest)
2330 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2331 if (event_is_checkpointed(event))
2332 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2333 }
2334
intel_clear_masks(struct perf_event * event,int idx)2335 static inline void intel_clear_masks(struct perf_event *event, int idx)
2336 {
2337 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2338
2339 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2340 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2341 __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2342 }
2343
intel_pmu_disable_fixed(struct perf_event * event)2344 static void intel_pmu_disable_fixed(struct perf_event *event)
2345 {
2346 struct hw_perf_event *hwc = &event->hw;
2347 u64 ctrl_val, mask;
2348 int idx = hwc->idx;
2349
2350 if (is_topdown_idx(idx)) {
2351 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2352
2353 /*
2354 * When there are other active TopDown events,
2355 * don't disable the fixed counter 3.
2356 */
2357 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2358 return;
2359 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2360 }
2361
2362 intel_clear_masks(event, idx);
2363
2364 mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2365 rdmsrl(hwc->config_base, ctrl_val);
2366 ctrl_val &= ~mask;
2367 wrmsrl(hwc->config_base, ctrl_val);
2368 }
2369
intel_pmu_disable_event(struct perf_event * event)2370 static void intel_pmu_disable_event(struct perf_event *event)
2371 {
2372 struct hw_perf_event *hwc = &event->hw;
2373 int idx = hwc->idx;
2374
2375 switch (idx) {
2376 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2377 intel_clear_masks(event, idx);
2378 x86_pmu_disable_event(event);
2379 break;
2380 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2381 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2382 intel_pmu_disable_fixed(event);
2383 break;
2384 case INTEL_PMC_IDX_FIXED_BTS:
2385 intel_pmu_disable_bts();
2386 intel_pmu_drain_bts_buffer();
2387 return;
2388 case INTEL_PMC_IDX_FIXED_VLBR:
2389 intel_clear_masks(event, idx);
2390 break;
2391 default:
2392 intel_clear_masks(event, idx);
2393 pr_warn("Failed to disable the event with invalid index %d\n",
2394 idx);
2395 return;
2396 }
2397
2398 /*
2399 * Needs to be called after x86_pmu_disable_event,
2400 * so we don't trigger the event without PEBS bit set.
2401 */
2402 if (unlikely(event->attr.precise_ip))
2403 intel_pmu_pebs_disable(event);
2404 }
2405
intel_pmu_del_event(struct perf_event * event)2406 static void intel_pmu_del_event(struct perf_event *event)
2407 {
2408 if (needs_branch_stack(event))
2409 intel_pmu_lbr_del(event);
2410 if (event->attr.precise_ip)
2411 intel_pmu_pebs_del(event);
2412 }
2413
icl_set_topdown_event_period(struct perf_event * event)2414 static int icl_set_topdown_event_period(struct perf_event *event)
2415 {
2416 struct hw_perf_event *hwc = &event->hw;
2417 s64 left = local64_read(&hwc->period_left);
2418
2419 /*
2420 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2421 * Software should start both registers, PERF_METRICS and fixed
2422 * counter 3, from zero.
2423 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2424 * After that, both MSRs will be cleared for each read.
2425 * Don't need to clear them again.
2426 */
2427 if (left == x86_pmu.max_period) {
2428 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2429 wrmsrl(MSR_PERF_METRICS, 0);
2430 hwc->saved_slots = 0;
2431 hwc->saved_metric = 0;
2432 }
2433
2434 if ((hwc->saved_slots) && is_slots_event(event)) {
2435 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2436 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2437 }
2438
2439 perf_event_update_userpage(event);
2440
2441 return 0;
2442 }
2443
adl_set_topdown_event_period(struct perf_event * event)2444 static int adl_set_topdown_event_period(struct perf_event *event)
2445 {
2446 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2447
2448 if (pmu->cpu_type != hybrid_big)
2449 return 0;
2450
2451 return icl_set_topdown_event_period(event);
2452 }
2453
icl_get_metrics_event_value(u64 metric,u64 slots,int idx)2454 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2455 {
2456 u32 val;
2457
2458 /*
2459 * The metric is reported as an 8bit integer fraction
2460 * summing up to 0xff.
2461 * slots-in-metric = (Metric / 0xff) * slots
2462 */
2463 val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2464 return mul_u64_u32_div(slots, val, 0xff);
2465 }
2466
icl_get_topdown_value(struct perf_event * event,u64 slots,u64 metrics)2467 static u64 icl_get_topdown_value(struct perf_event *event,
2468 u64 slots, u64 metrics)
2469 {
2470 int idx = event->hw.idx;
2471 u64 delta;
2472
2473 if (is_metric_idx(idx))
2474 delta = icl_get_metrics_event_value(metrics, slots, idx);
2475 else
2476 delta = slots;
2477
2478 return delta;
2479 }
2480
__icl_update_topdown_event(struct perf_event * event,u64 slots,u64 metrics,u64 last_slots,u64 last_metrics)2481 static void __icl_update_topdown_event(struct perf_event *event,
2482 u64 slots, u64 metrics,
2483 u64 last_slots, u64 last_metrics)
2484 {
2485 u64 delta, last = 0;
2486
2487 delta = icl_get_topdown_value(event, slots, metrics);
2488 if (last_slots)
2489 last = icl_get_topdown_value(event, last_slots, last_metrics);
2490
2491 /*
2492 * The 8bit integer fraction of metric may be not accurate,
2493 * especially when the changes is very small.
2494 * For example, if only a few bad_spec happens, the fraction
2495 * may be reduced from 1 to 0. If so, the bad_spec event value
2496 * will be 0 which is definitely less than the last value.
2497 * Avoid update event->count for this case.
2498 */
2499 if (delta > last) {
2500 delta -= last;
2501 local64_add(delta, &event->count);
2502 }
2503 }
2504
update_saved_topdown_regs(struct perf_event * event,u64 slots,u64 metrics,int metric_end)2505 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2506 u64 metrics, int metric_end)
2507 {
2508 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2509 struct perf_event *other;
2510 int idx;
2511
2512 event->hw.saved_slots = slots;
2513 event->hw.saved_metric = metrics;
2514
2515 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2516 if (!is_topdown_idx(idx))
2517 continue;
2518 other = cpuc->events[idx];
2519 other->hw.saved_slots = slots;
2520 other->hw.saved_metric = metrics;
2521 }
2522 }
2523
2524 /*
2525 * Update all active Topdown events.
2526 *
2527 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2528 * modify by a NMI. PMU has to be disabled before calling this function.
2529 */
2530
intel_update_topdown_event(struct perf_event * event,int metric_end)2531 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2532 {
2533 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2534 struct perf_event *other;
2535 u64 slots, metrics;
2536 bool reset = true;
2537 int idx;
2538
2539 /* read Fixed counter 3 */
2540 rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2541 if (!slots)
2542 return 0;
2543
2544 /* read PERF_METRICS */
2545 rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2546
2547 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2548 if (!is_topdown_idx(idx))
2549 continue;
2550 other = cpuc->events[idx];
2551 __icl_update_topdown_event(other, slots, metrics,
2552 event ? event->hw.saved_slots : 0,
2553 event ? event->hw.saved_metric : 0);
2554 }
2555
2556 /*
2557 * Check and update this event, which may have been cleared
2558 * in active_mask e.g. x86_pmu_stop()
2559 */
2560 if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2561 __icl_update_topdown_event(event, slots, metrics,
2562 event->hw.saved_slots,
2563 event->hw.saved_metric);
2564
2565 /*
2566 * In x86_pmu_stop(), the event is cleared in active_mask first,
2567 * then drain the delta, which indicates context switch for
2568 * counting.
2569 * Save metric and slots for context switch.
2570 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2571 * Because the values will be restored in next schedule in.
2572 */
2573 update_saved_topdown_regs(event, slots, metrics, metric_end);
2574 reset = false;
2575 }
2576
2577 if (reset) {
2578 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2579 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2580 wrmsrl(MSR_PERF_METRICS, 0);
2581 if (event)
2582 update_saved_topdown_regs(event, 0, 0, metric_end);
2583 }
2584
2585 return slots;
2586 }
2587
icl_update_topdown_event(struct perf_event * event)2588 static u64 icl_update_topdown_event(struct perf_event *event)
2589 {
2590 return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2591 x86_pmu.num_topdown_events - 1);
2592 }
2593
adl_update_topdown_event(struct perf_event * event)2594 static u64 adl_update_topdown_event(struct perf_event *event)
2595 {
2596 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2597
2598 if (pmu->cpu_type != hybrid_big)
2599 return 0;
2600
2601 return icl_update_topdown_event(event);
2602 }
2603
2604
intel_pmu_read_topdown_event(struct perf_event * event)2605 static void intel_pmu_read_topdown_event(struct perf_event *event)
2606 {
2607 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2608
2609 /* Only need to call update_topdown_event() once for group read. */
2610 if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2611 !is_slots_event(event))
2612 return;
2613
2614 perf_pmu_disable(event->pmu);
2615 x86_pmu.update_topdown_event(event);
2616 perf_pmu_enable(event->pmu);
2617 }
2618
intel_pmu_read_event(struct perf_event * event)2619 static void intel_pmu_read_event(struct perf_event *event)
2620 {
2621 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2622 intel_pmu_auto_reload_read(event);
2623 else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2624 intel_pmu_read_topdown_event(event);
2625 else
2626 x86_perf_event_update(event);
2627 }
2628
intel_pmu_enable_fixed(struct perf_event * event)2629 static void intel_pmu_enable_fixed(struct perf_event *event)
2630 {
2631 struct hw_perf_event *hwc = &event->hw;
2632 u64 ctrl_val, mask, bits = 0;
2633 int idx = hwc->idx;
2634
2635 if (is_topdown_idx(idx)) {
2636 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2637 /*
2638 * When there are other active TopDown events,
2639 * don't enable the fixed counter 3 again.
2640 */
2641 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2642 return;
2643
2644 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2645 }
2646
2647 intel_set_masks(event, idx);
2648
2649 /*
2650 * Enable IRQ generation (0x8), if not PEBS,
2651 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2652 * if requested:
2653 */
2654 if (!event->attr.precise_ip)
2655 bits |= 0x8;
2656 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2657 bits |= 0x2;
2658 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2659 bits |= 0x1;
2660
2661 /*
2662 * ANY bit is supported in v3 and up
2663 */
2664 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2665 bits |= 0x4;
2666
2667 idx -= INTEL_PMC_IDX_FIXED;
2668 bits <<= (idx * 4);
2669 mask = 0xfULL << (idx * 4);
2670
2671 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2672 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2673 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2674 }
2675
2676 rdmsrl(hwc->config_base, ctrl_val);
2677 ctrl_val &= ~mask;
2678 ctrl_val |= bits;
2679 wrmsrl(hwc->config_base, ctrl_val);
2680 }
2681
intel_pmu_enable_event(struct perf_event * event)2682 static void intel_pmu_enable_event(struct perf_event *event)
2683 {
2684 struct hw_perf_event *hwc = &event->hw;
2685 int idx = hwc->idx;
2686
2687 if (unlikely(event->attr.precise_ip))
2688 intel_pmu_pebs_enable(event);
2689
2690 switch (idx) {
2691 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2692 intel_set_masks(event, idx);
2693 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2694 break;
2695 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2696 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2697 intel_pmu_enable_fixed(event);
2698 break;
2699 case INTEL_PMC_IDX_FIXED_BTS:
2700 if (!__this_cpu_read(cpu_hw_events.enabled))
2701 return;
2702 intel_pmu_enable_bts(hwc->config);
2703 break;
2704 case INTEL_PMC_IDX_FIXED_VLBR:
2705 intel_set_masks(event, idx);
2706 break;
2707 default:
2708 pr_warn("Failed to enable the event with invalid index %d\n",
2709 idx);
2710 }
2711 }
2712
intel_pmu_add_event(struct perf_event * event)2713 static void intel_pmu_add_event(struct perf_event *event)
2714 {
2715 if (event->attr.precise_ip)
2716 intel_pmu_pebs_add(event);
2717 if (needs_branch_stack(event))
2718 intel_pmu_lbr_add(event);
2719 }
2720
2721 /*
2722 * Save and restart an expired event. Called by NMI contexts,
2723 * so it has to be careful about preempting normal event ops:
2724 */
intel_pmu_save_and_restart(struct perf_event * event)2725 int intel_pmu_save_and_restart(struct perf_event *event)
2726 {
2727 x86_perf_event_update(event);
2728 /*
2729 * For a checkpointed counter always reset back to 0. This
2730 * avoids a situation where the counter overflows, aborts the
2731 * transaction and is then set back to shortly before the
2732 * overflow, and overflows and aborts again.
2733 */
2734 if (unlikely(event_is_checkpointed(event))) {
2735 /* No race with NMIs because the counter should not be armed */
2736 wrmsrl(event->hw.event_base, 0);
2737 local64_set(&event->hw.prev_count, 0);
2738 }
2739 return x86_perf_event_set_period(event);
2740 }
2741
intel_pmu_reset(void)2742 static void intel_pmu_reset(void)
2743 {
2744 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2745 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2746 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2747 int num_counters = hybrid(cpuc->pmu, num_counters);
2748 unsigned long flags;
2749 int idx;
2750
2751 if (!num_counters)
2752 return;
2753
2754 local_irq_save(flags);
2755
2756 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2757
2758 for (idx = 0; idx < num_counters; idx++) {
2759 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2760 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
2761 }
2762 for (idx = 0; idx < num_counters_fixed; idx++) {
2763 if (fixed_counter_disabled(idx, cpuc->pmu))
2764 continue;
2765 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2766 }
2767
2768 if (ds)
2769 ds->bts_index = ds->bts_buffer_base;
2770
2771 /* Ack all overflows and disable fixed counters */
2772 if (x86_pmu.version >= 2) {
2773 intel_pmu_ack_status(intel_pmu_get_status());
2774 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2775 }
2776
2777 /* Reset LBRs and LBR freezing */
2778 if (x86_pmu.lbr_nr) {
2779 update_debugctlmsr(get_debugctlmsr() &
2780 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2781 }
2782
2783 local_irq_restore(flags);
2784 }
2785
handle_pmi_common(struct pt_regs * regs,u64 status)2786 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2787 {
2788 struct perf_sample_data data;
2789 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2790 int bit;
2791 int handled = 0;
2792 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2793
2794 inc_irq_stat(apic_perf_irqs);
2795
2796 /*
2797 * Ignore a range of extra bits in status that do not indicate
2798 * overflow by themselves.
2799 */
2800 status &= ~(GLOBAL_STATUS_COND_CHG |
2801 GLOBAL_STATUS_ASIF |
2802 GLOBAL_STATUS_LBRS_FROZEN);
2803 if (!status)
2804 return 0;
2805 /*
2806 * In case multiple PEBS events are sampled at the same time,
2807 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2808 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2809 * having their bits set in the status register. This is a sign
2810 * that there was at least one PEBS record pending at the time
2811 * of the PMU interrupt. PEBS counters must only be processed
2812 * via the drain_pebs() calls and not via the regular sample
2813 * processing loop coming after that the function, otherwise
2814 * phony regular samples may be generated in the sampling buffer
2815 * not marked with the EXACT tag. Another possibility is to have
2816 * one PEBS event and at least one non-PEBS event which overflows
2817 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2818 * not be set, yet the overflow status bit for the PEBS counter will
2819 * be on Skylake.
2820 *
2821 * To avoid this problem, we systematically ignore the PEBS-enabled
2822 * counters from the GLOBAL_STATUS mask and we always process PEBS
2823 * events via drain_pebs().
2824 */
2825 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2826 status &= ~cpuc->pebs_enabled;
2827 else
2828 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2829
2830 /*
2831 * PEBS overflow sets bit 62 in the global status register
2832 */
2833 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2834 u64 pebs_enabled = cpuc->pebs_enabled;
2835
2836 handled++;
2837 x86_pmu.drain_pebs(regs, &data);
2838 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2839
2840 /*
2841 * PMI throttle may be triggered, which stops the PEBS event.
2842 * Although cpuc->pebs_enabled is updated accordingly, the
2843 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2844 * cpuc->enabled has been forced to 0 in PMI.
2845 * Update the MSR if pebs_enabled is changed.
2846 */
2847 if (pebs_enabled != cpuc->pebs_enabled)
2848 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2849 }
2850
2851 /*
2852 * Intel PT
2853 */
2854 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2855 handled++;
2856 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2857 perf_guest_cbs->handle_intel_pt_intr))
2858 perf_guest_cbs->handle_intel_pt_intr();
2859 else
2860 intel_pt_interrupt();
2861 }
2862
2863 /*
2864 * Intel Perf metrics
2865 */
2866 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2867 handled++;
2868 if (x86_pmu.update_topdown_event)
2869 x86_pmu.update_topdown_event(NULL);
2870 }
2871
2872 /*
2873 * Checkpointed counters can lead to 'spurious' PMIs because the
2874 * rollback caused by the PMI will have cleared the overflow status
2875 * bit. Therefore always force probe these counters.
2876 */
2877 status |= cpuc->intel_cp_status;
2878
2879 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2880 struct perf_event *event = cpuc->events[bit];
2881
2882 handled++;
2883
2884 if (!test_bit(bit, cpuc->active_mask))
2885 continue;
2886
2887 if (!intel_pmu_save_and_restart(event))
2888 continue;
2889
2890 perf_sample_data_init(&data, 0, event->hw.last_period);
2891
2892 if (has_branch_stack(event))
2893 data.br_stack = &cpuc->lbr_stack;
2894
2895 if (perf_event_overflow(event, &data, regs))
2896 x86_pmu_stop(event, 0);
2897 }
2898
2899 return handled;
2900 }
2901
2902 /*
2903 * This handler is triggered by the local APIC, so the APIC IRQ handling
2904 * rules apply:
2905 */
intel_pmu_handle_irq(struct pt_regs * regs)2906 static int intel_pmu_handle_irq(struct pt_regs *regs)
2907 {
2908 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2909 bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
2910 bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
2911 int loops;
2912 u64 status;
2913 int handled;
2914 int pmu_enabled;
2915
2916 /*
2917 * Save the PMU state.
2918 * It needs to be restored when leaving the handler.
2919 */
2920 pmu_enabled = cpuc->enabled;
2921 /*
2922 * In general, the early ACK is only applied for old platforms.
2923 * For the big core starts from Haswell, the late ACK should be
2924 * applied.
2925 * For the small core after Tremont, we have to do the ACK right
2926 * before re-enabling counters, which is in the middle of the
2927 * NMI handler.
2928 */
2929 if (!late_ack && !mid_ack)
2930 apic_write(APIC_LVTPC, APIC_DM_NMI);
2931 intel_bts_disable_local();
2932 cpuc->enabled = 0;
2933 __intel_pmu_disable_all();
2934 handled = intel_pmu_drain_bts_buffer();
2935 handled += intel_bts_interrupt();
2936 status = intel_pmu_get_status();
2937 if (!status)
2938 goto done;
2939
2940 loops = 0;
2941 again:
2942 intel_pmu_lbr_read();
2943 intel_pmu_ack_status(status);
2944 if (++loops > 100) {
2945 static bool warned;
2946
2947 if (!warned) {
2948 WARN(1, "perfevents: irq loop stuck!\n");
2949 perf_event_print_debug();
2950 warned = true;
2951 }
2952 intel_pmu_reset();
2953 goto done;
2954 }
2955
2956 handled += handle_pmi_common(regs, status);
2957
2958 /*
2959 * Repeat if there is more work to be done:
2960 */
2961 status = intel_pmu_get_status();
2962 if (status)
2963 goto again;
2964
2965 done:
2966 if (mid_ack)
2967 apic_write(APIC_LVTPC, APIC_DM_NMI);
2968 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2969 cpuc->enabled = pmu_enabled;
2970 if (pmu_enabled)
2971 __intel_pmu_enable_all(0, true);
2972 intel_bts_enable_local();
2973
2974 /*
2975 * Only unmask the NMI after the overflow counters
2976 * have been reset. This avoids spurious NMIs on
2977 * Haswell CPUs.
2978 */
2979 if (late_ack)
2980 apic_write(APIC_LVTPC, APIC_DM_NMI);
2981 return handled;
2982 }
2983
2984 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)2985 intel_bts_constraints(struct perf_event *event)
2986 {
2987 if (unlikely(intel_pmu_has_bts(event)))
2988 return &bts_constraint;
2989
2990 return NULL;
2991 }
2992
2993 /*
2994 * Note: matches a fake event, like Fixed2.
2995 */
2996 static struct event_constraint *
intel_vlbr_constraints(struct perf_event * event)2997 intel_vlbr_constraints(struct perf_event *event)
2998 {
2999 struct event_constraint *c = &vlbr_constraint;
3000
3001 if (unlikely(constraint_match(c, event->hw.config)))
3002 return c;
3003
3004 return NULL;
3005 }
3006
intel_alt_er(struct cpu_hw_events * cpuc,int idx,u64 config)3007 static int intel_alt_er(struct cpu_hw_events *cpuc,
3008 int idx, u64 config)
3009 {
3010 struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3011 int alt_idx = idx;
3012
3013 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3014 return idx;
3015
3016 if (idx == EXTRA_REG_RSP_0)
3017 alt_idx = EXTRA_REG_RSP_1;
3018
3019 if (idx == EXTRA_REG_RSP_1)
3020 alt_idx = EXTRA_REG_RSP_0;
3021
3022 if (config & ~extra_regs[alt_idx].valid_mask)
3023 return idx;
3024
3025 return alt_idx;
3026 }
3027
intel_fixup_er(struct perf_event * event,int idx)3028 static void intel_fixup_er(struct perf_event *event, int idx)
3029 {
3030 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3031 event->hw.extra_reg.idx = idx;
3032
3033 if (idx == EXTRA_REG_RSP_0) {
3034 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3035 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3036 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3037 } else if (idx == EXTRA_REG_RSP_1) {
3038 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3039 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3040 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3041 }
3042 }
3043
3044 /*
3045 * manage allocation of shared extra msr for certain events
3046 *
3047 * sharing can be:
3048 * per-cpu: to be shared between the various events on a single PMU
3049 * per-core: per-cpu + shared by HT threads
3050 */
3051 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)3052 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3053 struct perf_event *event,
3054 struct hw_perf_event_extra *reg)
3055 {
3056 struct event_constraint *c = &emptyconstraint;
3057 struct er_account *era;
3058 unsigned long flags;
3059 int idx = reg->idx;
3060
3061 /*
3062 * reg->alloc can be set due to existing state, so for fake cpuc we
3063 * need to ignore this, otherwise we might fail to allocate proper fake
3064 * state for this extra reg constraint. Also see the comment below.
3065 */
3066 if (reg->alloc && !cpuc->is_fake)
3067 return NULL; /* call x86_get_event_constraint() */
3068
3069 again:
3070 era = &cpuc->shared_regs->regs[idx];
3071 /*
3072 * we use spin_lock_irqsave() to avoid lockdep issues when
3073 * passing a fake cpuc
3074 */
3075 raw_spin_lock_irqsave(&era->lock, flags);
3076
3077 if (!atomic_read(&era->ref) || era->config == reg->config) {
3078
3079 /*
3080 * If its a fake cpuc -- as per validate_{group,event}() we
3081 * shouldn't touch event state and we can avoid doing so
3082 * since both will only call get_event_constraints() once
3083 * on each event, this avoids the need for reg->alloc.
3084 *
3085 * Not doing the ER fixup will only result in era->reg being
3086 * wrong, but since we won't actually try and program hardware
3087 * this isn't a problem either.
3088 */
3089 if (!cpuc->is_fake) {
3090 if (idx != reg->idx)
3091 intel_fixup_er(event, idx);
3092
3093 /*
3094 * x86_schedule_events() can call get_event_constraints()
3095 * multiple times on events in the case of incremental
3096 * scheduling(). reg->alloc ensures we only do the ER
3097 * allocation once.
3098 */
3099 reg->alloc = 1;
3100 }
3101
3102 /* lock in msr value */
3103 era->config = reg->config;
3104 era->reg = reg->reg;
3105
3106 /* one more user */
3107 atomic_inc(&era->ref);
3108
3109 /*
3110 * need to call x86_get_event_constraint()
3111 * to check if associated event has constraints
3112 */
3113 c = NULL;
3114 } else {
3115 idx = intel_alt_er(cpuc, idx, reg->config);
3116 if (idx != reg->idx) {
3117 raw_spin_unlock_irqrestore(&era->lock, flags);
3118 goto again;
3119 }
3120 }
3121 raw_spin_unlock_irqrestore(&era->lock, flags);
3122
3123 return c;
3124 }
3125
3126 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)3127 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3128 struct hw_perf_event_extra *reg)
3129 {
3130 struct er_account *era;
3131
3132 /*
3133 * Only put constraint if extra reg was actually allocated. Also takes
3134 * care of event which do not use an extra shared reg.
3135 *
3136 * Also, if this is a fake cpuc we shouldn't touch any event state
3137 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3138 * either since it'll be thrown out.
3139 */
3140 if (!reg->alloc || cpuc->is_fake)
3141 return;
3142
3143 era = &cpuc->shared_regs->regs[reg->idx];
3144
3145 /* one fewer user */
3146 atomic_dec(&era->ref);
3147
3148 /* allocate again next time */
3149 reg->alloc = 0;
3150 }
3151
3152 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3153 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3154 struct perf_event *event)
3155 {
3156 struct event_constraint *c = NULL, *d;
3157 struct hw_perf_event_extra *xreg, *breg;
3158
3159 xreg = &event->hw.extra_reg;
3160 if (xreg->idx != EXTRA_REG_NONE) {
3161 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3162 if (c == &emptyconstraint)
3163 return c;
3164 }
3165 breg = &event->hw.branch_reg;
3166 if (breg->idx != EXTRA_REG_NONE) {
3167 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3168 if (d == &emptyconstraint) {
3169 __intel_shared_reg_put_constraints(cpuc, xreg);
3170 c = d;
3171 }
3172 }
3173 return c;
3174 }
3175
3176 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3177 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3178 struct perf_event *event)
3179 {
3180 struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3181 struct event_constraint *c;
3182
3183 if (event_constraints) {
3184 for_each_event_constraint(c, event_constraints) {
3185 if (constraint_match(c, event->hw.config)) {
3186 event->hw.flags |= c->flags;
3187 return c;
3188 }
3189 }
3190 }
3191
3192 return &hybrid_var(cpuc->pmu, unconstrained);
3193 }
3194
3195 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3196 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3197 struct perf_event *event)
3198 {
3199 struct event_constraint *c;
3200
3201 c = intel_vlbr_constraints(event);
3202 if (c)
3203 return c;
3204
3205 c = intel_bts_constraints(event);
3206 if (c)
3207 return c;
3208
3209 c = intel_shared_regs_constraints(cpuc, event);
3210 if (c)
3211 return c;
3212
3213 c = intel_pebs_constraints(event);
3214 if (c)
3215 return c;
3216
3217 return x86_get_event_constraints(cpuc, idx, event);
3218 }
3219
3220 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)3221 intel_start_scheduling(struct cpu_hw_events *cpuc)
3222 {
3223 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3224 struct intel_excl_states *xl;
3225 int tid = cpuc->excl_thread_id;
3226
3227 /*
3228 * nothing needed if in group validation mode
3229 */
3230 if (cpuc->is_fake || !is_ht_workaround_enabled())
3231 return;
3232
3233 /*
3234 * no exclusion needed
3235 */
3236 if (WARN_ON_ONCE(!excl_cntrs))
3237 return;
3238
3239 xl = &excl_cntrs->states[tid];
3240
3241 xl->sched_started = true;
3242 /*
3243 * lock shared state until we are done scheduling
3244 * in stop_event_scheduling()
3245 * makes scheduling appear as a transaction
3246 */
3247 raw_spin_lock(&excl_cntrs->lock);
3248 }
3249
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)3250 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3251 {
3252 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3253 struct event_constraint *c = cpuc->event_constraint[idx];
3254 struct intel_excl_states *xl;
3255 int tid = cpuc->excl_thread_id;
3256
3257 if (cpuc->is_fake || !is_ht_workaround_enabled())
3258 return;
3259
3260 if (WARN_ON_ONCE(!excl_cntrs))
3261 return;
3262
3263 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3264 return;
3265
3266 xl = &excl_cntrs->states[tid];
3267
3268 lockdep_assert_held(&excl_cntrs->lock);
3269
3270 if (c->flags & PERF_X86_EVENT_EXCL)
3271 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3272 else
3273 xl->state[cntr] = INTEL_EXCL_SHARED;
3274 }
3275
3276 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)3277 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3278 {
3279 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3280 struct intel_excl_states *xl;
3281 int tid = cpuc->excl_thread_id;
3282
3283 /*
3284 * nothing needed if in group validation mode
3285 */
3286 if (cpuc->is_fake || !is_ht_workaround_enabled())
3287 return;
3288 /*
3289 * no exclusion needed
3290 */
3291 if (WARN_ON_ONCE(!excl_cntrs))
3292 return;
3293
3294 xl = &excl_cntrs->states[tid];
3295
3296 xl->sched_started = false;
3297 /*
3298 * release shared state lock (acquired in intel_start_scheduling())
3299 */
3300 raw_spin_unlock(&excl_cntrs->lock);
3301 }
3302
3303 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)3304 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3305 {
3306 WARN_ON_ONCE(!cpuc->constraint_list);
3307
3308 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3309 struct event_constraint *cx;
3310
3311 /*
3312 * grab pre-allocated constraint entry
3313 */
3314 cx = &cpuc->constraint_list[idx];
3315
3316 /*
3317 * initialize dynamic constraint
3318 * with static constraint
3319 */
3320 *cx = *c;
3321
3322 /*
3323 * mark constraint as dynamic
3324 */
3325 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3326 c = cx;
3327 }
3328
3329 return c;
3330 }
3331
3332 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)3333 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3334 int idx, struct event_constraint *c)
3335 {
3336 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3337 struct intel_excl_states *xlo;
3338 int tid = cpuc->excl_thread_id;
3339 int is_excl, i, w;
3340
3341 /*
3342 * validating a group does not require
3343 * enforcing cross-thread exclusion
3344 */
3345 if (cpuc->is_fake || !is_ht_workaround_enabled())
3346 return c;
3347
3348 /*
3349 * no exclusion needed
3350 */
3351 if (WARN_ON_ONCE(!excl_cntrs))
3352 return c;
3353
3354 /*
3355 * because we modify the constraint, we need
3356 * to make a copy. Static constraints come
3357 * from static const tables.
3358 *
3359 * only needed when constraint has not yet
3360 * been cloned (marked dynamic)
3361 */
3362 c = dyn_constraint(cpuc, c, idx);
3363
3364 /*
3365 * From here on, the constraint is dynamic.
3366 * Either it was just allocated above, or it
3367 * was allocated during a earlier invocation
3368 * of this function
3369 */
3370
3371 /*
3372 * state of sibling HT
3373 */
3374 xlo = &excl_cntrs->states[tid ^ 1];
3375
3376 /*
3377 * event requires exclusive counter access
3378 * across HT threads
3379 */
3380 is_excl = c->flags & PERF_X86_EVENT_EXCL;
3381 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3382 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3383 if (!cpuc->n_excl++)
3384 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3385 }
3386
3387 /*
3388 * Modify static constraint with current dynamic
3389 * state of thread
3390 *
3391 * EXCLUSIVE: sibling counter measuring exclusive event
3392 * SHARED : sibling counter measuring non-exclusive event
3393 * UNUSED : sibling counter unused
3394 */
3395 w = c->weight;
3396 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3397 /*
3398 * exclusive event in sibling counter
3399 * our corresponding counter cannot be used
3400 * regardless of our event
3401 */
3402 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3403 __clear_bit(i, c->idxmsk);
3404 w--;
3405 continue;
3406 }
3407 /*
3408 * if measuring an exclusive event, sibling
3409 * measuring non-exclusive, then counter cannot
3410 * be used
3411 */
3412 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3413 __clear_bit(i, c->idxmsk);
3414 w--;
3415 continue;
3416 }
3417 }
3418
3419 /*
3420 * if we return an empty mask, then switch
3421 * back to static empty constraint to avoid
3422 * the cost of freeing later on
3423 */
3424 if (!w)
3425 c = &emptyconstraint;
3426
3427 c->weight = w;
3428
3429 return c;
3430 }
3431
3432 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3433 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3434 struct perf_event *event)
3435 {
3436 struct event_constraint *c1, *c2;
3437
3438 c1 = cpuc->event_constraint[idx];
3439
3440 /*
3441 * first time only
3442 * - static constraint: no change across incremental scheduling calls
3443 * - dynamic constraint: handled by intel_get_excl_constraints()
3444 */
3445 c2 = __intel_get_event_constraints(cpuc, idx, event);
3446 if (c1) {
3447 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3448 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3449 c1->weight = c2->weight;
3450 c2 = c1;
3451 }
3452
3453 if (cpuc->excl_cntrs)
3454 return intel_get_excl_constraints(cpuc, event, idx, c2);
3455
3456 return c2;
3457 }
3458
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3459 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3460 struct perf_event *event)
3461 {
3462 struct hw_perf_event *hwc = &event->hw;
3463 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3464 int tid = cpuc->excl_thread_id;
3465 struct intel_excl_states *xl;
3466
3467 /*
3468 * nothing needed if in group validation mode
3469 */
3470 if (cpuc->is_fake)
3471 return;
3472
3473 if (WARN_ON_ONCE(!excl_cntrs))
3474 return;
3475
3476 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3477 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3478 if (!--cpuc->n_excl)
3479 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3480 }
3481
3482 /*
3483 * If event was actually assigned, then mark the counter state as
3484 * unused now.
3485 */
3486 if (hwc->idx >= 0) {
3487 xl = &excl_cntrs->states[tid];
3488
3489 /*
3490 * put_constraint may be called from x86_schedule_events()
3491 * which already has the lock held so here make locking
3492 * conditional.
3493 */
3494 if (!xl->sched_started)
3495 raw_spin_lock(&excl_cntrs->lock);
3496
3497 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3498
3499 if (!xl->sched_started)
3500 raw_spin_unlock(&excl_cntrs->lock);
3501 }
3502 }
3503
3504 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3505 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3506 struct perf_event *event)
3507 {
3508 struct hw_perf_event_extra *reg;
3509
3510 reg = &event->hw.extra_reg;
3511 if (reg->idx != EXTRA_REG_NONE)
3512 __intel_shared_reg_put_constraints(cpuc, reg);
3513
3514 reg = &event->hw.branch_reg;
3515 if (reg->idx != EXTRA_REG_NONE)
3516 __intel_shared_reg_put_constraints(cpuc, reg);
3517 }
3518
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3519 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3520 struct perf_event *event)
3521 {
3522 intel_put_shared_regs_event_constraints(cpuc, event);
3523
3524 /*
3525 * is PMU has exclusive counter restrictions, then
3526 * all events are subject to and must call the
3527 * put_excl_constraints() routine
3528 */
3529 if (cpuc->excl_cntrs)
3530 intel_put_excl_constraints(cpuc, event);
3531 }
3532
intel_pebs_aliases_core2(struct perf_event * event)3533 static void intel_pebs_aliases_core2(struct perf_event *event)
3534 {
3535 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3536 /*
3537 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3538 * (0x003c) so that we can use it with PEBS.
3539 *
3540 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3541 * PEBS capable. However we can use INST_RETIRED.ANY_P
3542 * (0x00c0), which is a PEBS capable event, to get the same
3543 * count.
3544 *
3545 * INST_RETIRED.ANY_P counts the number of cycles that retires
3546 * CNTMASK instructions. By setting CNTMASK to a value (16)
3547 * larger than the maximum number of instructions that can be
3548 * retired per cycle (4) and then inverting the condition, we
3549 * count all cycles that retire 16 or less instructions, which
3550 * is every cycle.
3551 *
3552 * Thereby we gain a PEBS capable cycle counter.
3553 */
3554 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3555
3556 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3557 event->hw.config = alt_config;
3558 }
3559 }
3560
intel_pebs_aliases_snb(struct perf_event * event)3561 static void intel_pebs_aliases_snb(struct perf_event *event)
3562 {
3563 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3564 /*
3565 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3566 * (0x003c) so that we can use it with PEBS.
3567 *
3568 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3569 * PEBS capable. However we can use UOPS_RETIRED.ALL
3570 * (0x01c2), which is a PEBS capable event, to get the same
3571 * count.
3572 *
3573 * UOPS_RETIRED.ALL counts the number of cycles that retires
3574 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3575 * larger than the maximum number of micro-ops that can be
3576 * retired per cycle (4) and then inverting the condition, we
3577 * count all cycles that retire 16 or less micro-ops, which
3578 * is every cycle.
3579 *
3580 * Thereby we gain a PEBS capable cycle counter.
3581 */
3582 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3583
3584 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3585 event->hw.config = alt_config;
3586 }
3587 }
3588
intel_pebs_aliases_precdist(struct perf_event * event)3589 static void intel_pebs_aliases_precdist(struct perf_event *event)
3590 {
3591 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3592 /*
3593 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3594 * (0x003c) so that we can use it with PEBS.
3595 *
3596 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3597 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3598 * (0x01c0), which is a PEBS capable event, to get the same
3599 * count.
3600 *
3601 * The PREC_DIST event has special support to minimize sample
3602 * shadowing effects. One drawback is that it can be
3603 * only programmed on counter 1, but that seems like an
3604 * acceptable trade off.
3605 */
3606 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3607
3608 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3609 event->hw.config = alt_config;
3610 }
3611 }
3612
intel_pebs_aliases_ivb(struct perf_event * event)3613 static void intel_pebs_aliases_ivb(struct perf_event *event)
3614 {
3615 if (event->attr.precise_ip < 3)
3616 return intel_pebs_aliases_snb(event);
3617 return intel_pebs_aliases_precdist(event);
3618 }
3619
intel_pebs_aliases_skl(struct perf_event * event)3620 static void intel_pebs_aliases_skl(struct perf_event *event)
3621 {
3622 if (event->attr.precise_ip < 3)
3623 return intel_pebs_aliases_core2(event);
3624 return intel_pebs_aliases_precdist(event);
3625 }
3626
intel_pmu_large_pebs_flags(struct perf_event * event)3627 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3628 {
3629 unsigned long flags = x86_pmu.large_pebs_flags;
3630
3631 if (event->attr.use_clockid)
3632 flags &= ~PERF_SAMPLE_TIME;
3633 if (!event->attr.exclude_kernel)
3634 flags &= ~PERF_SAMPLE_REGS_USER;
3635 if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3636 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3637 return flags;
3638 }
3639
intel_pmu_bts_config(struct perf_event * event)3640 static int intel_pmu_bts_config(struct perf_event *event)
3641 {
3642 struct perf_event_attr *attr = &event->attr;
3643
3644 if (unlikely(intel_pmu_has_bts(event))) {
3645 /* BTS is not supported by this architecture. */
3646 if (!x86_pmu.bts_active)
3647 return -EOPNOTSUPP;
3648
3649 /* BTS is currently only allowed for user-mode. */
3650 if (!attr->exclude_kernel)
3651 return -EOPNOTSUPP;
3652
3653 /* BTS is not allowed for precise events. */
3654 if (attr->precise_ip)
3655 return -EOPNOTSUPP;
3656
3657 /* disallow bts if conflicting events are present */
3658 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3659 return -EBUSY;
3660
3661 event->destroy = hw_perf_lbr_event_destroy;
3662 }
3663
3664 return 0;
3665 }
3666
core_pmu_hw_config(struct perf_event * event)3667 static int core_pmu_hw_config(struct perf_event *event)
3668 {
3669 int ret = x86_pmu_hw_config(event);
3670
3671 if (ret)
3672 return ret;
3673
3674 return intel_pmu_bts_config(event);
3675 }
3676
3677 #define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
3678 ((x86_pmu.num_topdown_events - 1) << 8))
3679
is_available_metric_event(struct perf_event * event)3680 static bool is_available_metric_event(struct perf_event *event)
3681 {
3682 return is_metric_event(event) &&
3683 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3684 }
3685
is_mem_loads_event(struct perf_event * event)3686 static inline bool is_mem_loads_event(struct perf_event *event)
3687 {
3688 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3689 }
3690
is_mem_loads_aux_event(struct perf_event * event)3691 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3692 {
3693 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3694 }
3695
require_mem_loads_aux_event(struct perf_event * event)3696 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3697 {
3698 if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3699 return false;
3700
3701 if (is_hybrid())
3702 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3703
3704 return true;
3705 }
3706
intel_pmu_has_cap(struct perf_event * event,int idx)3707 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3708 {
3709 union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3710
3711 return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3712 }
3713
intel_pmu_hw_config(struct perf_event * event)3714 static int intel_pmu_hw_config(struct perf_event *event)
3715 {
3716 int ret = x86_pmu_hw_config(event);
3717
3718 if (ret)
3719 return ret;
3720
3721 ret = intel_pmu_bts_config(event);
3722 if (ret)
3723 return ret;
3724
3725 if (event->attr.precise_ip) {
3726 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3727 return -EINVAL;
3728
3729 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3730 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3731 if (!(event->attr.sample_type &
3732 ~intel_pmu_large_pebs_flags(event))) {
3733 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3734 event->attach_state |= PERF_ATTACH_SCHED_CB;
3735 }
3736 }
3737 if (x86_pmu.pebs_aliases)
3738 x86_pmu.pebs_aliases(event);
3739
3740 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3741 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3742 }
3743
3744 if (needs_branch_stack(event)) {
3745 ret = intel_pmu_setup_lbr_filter(event);
3746 if (ret)
3747 return ret;
3748 event->attach_state |= PERF_ATTACH_SCHED_CB;
3749
3750 /*
3751 * BTS is set up earlier in this path, so don't account twice
3752 */
3753 if (!unlikely(intel_pmu_has_bts(event))) {
3754 /* disallow lbr if conflicting events are present */
3755 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3756 return -EBUSY;
3757
3758 event->destroy = hw_perf_lbr_event_destroy;
3759 }
3760 }
3761
3762 if (event->attr.aux_output) {
3763 if (!event->attr.precise_ip)
3764 return -EINVAL;
3765
3766 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3767 }
3768
3769 if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3770 (event->attr.type == PERF_TYPE_HW_CACHE))
3771 return 0;
3772
3773 /*
3774 * Config Topdown slots and metric events
3775 *
3776 * The slots event on Fixed Counter 3 can support sampling,
3777 * which will be handled normally in x86_perf_event_update().
3778 *
3779 * Metric events don't support sampling and require being paired
3780 * with a slots event as group leader. When the slots event
3781 * is used in a metrics group, it too cannot support sampling.
3782 */
3783 if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3784 if (event->attr.config1 || event->attr.config2)
3785 return -EINVAL;
3786
3787 /*
3788 * The TopDown metrics events and slots event don't
3789 * support any filters.
3790 */
3791 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3792 return -EINVAL;
3793
3794 if (is_available_metric_event(event)) {
3795 struct perf_event *leader = event->group_leader;
3796
3797 /* The metric events don't support sampling. */
3798 if (is_sampling_event(event))
3799 return -EINVAL;
3800
3801 /* The metric events require a slots group leader. */
3802 if (!is_slots_event(leader))
3803 return -EINVAL;
3804
3805 /*
3806 * The leader/SLOTS must not be a sampling event for
3807 * metric use; hardware requires it starts at 0 when used
3808 * in conjunction with MSR_PERF_METRICS.
3809 */
3810 if (is_sampling_event(leader))
3811 return -EINVAL;
3812
3813 event->event_caps |= PERF_EV_CAP_SIBLING;
3814 /*
3815 * Only once we have a METRICs sibling do we
3816 * need TopDown magic.
3817 */
3818 leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3819 event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3820 }
3821 }
3822
3823 /*
3824 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3825 * doesn't function quite right. As a work-around it needs to always be
3826 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3827 * The actual count of this second event is irrelevant it just needs
3828 * to be active to make the first event function correctly.
3829 *
3830 * In a group, the auxiliary event must be in front of the load latency
3831 * event. The rule is to simplify the implementation of the check.
3832 * That's because perf cannot have a complete group at the moment.
3833 */
3834 if (require_mem_loads_aux_event(event) &&
3835 (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3836 is_mem_loads_event(event)) {
3837 struct perf_event *leader = event->group_leader;
3838 struct perf_event *sibling = NULL;
3839
3840 if (!is_mem_loads_aux_event(leader)) {
3841 for_each_sibling_event(sibling, leader) {
3842 if (is_mem_loads_aux_event(sibling))
3843 break;
3844 }
3845 if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3846 return -ENODATA;
3847 }
3848 }
3849
3850 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3851 return 0;
3852
3853 if (x86_pmu.version < 3)
3854 return -EINVAL;
3855
3856 ret = perf_allow_cpu(&event->attr);
3857 if (ret)
3858 return ret;
3859
3860 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3861
3862 return 0;
3863 }
3864
intel_guest_get_msrs(int * nr)3865 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3866 {
3867 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3868 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3869 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3870
3871 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3872 arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3873 arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3874 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3875 arr[0].guest &= ~cpuc->pebs_enabled;
3876 else
3877 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3878 *nr = 1;
3879
3880 if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3881 /*
3882 * If PMU counter has PEBS enabled it is not enough to
3883 * disable counter on a guest entry since PEBS memory
3884 * write can overshoot guest entry and corrupt guest
3885 * memory. Disabling PEBS solves the problem.
3886 *
3887 * Don't do this if the CPU already enforces it.
3888 */
3889 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3890 arr[1].host = cpuc->pebs_enabled;
3891 arr[1].guest = 0;
3892 *nr = 2;
3893 }
3894
3895 return arr;
3896 }
3897
core_guest_get_msrs(int * nr)3898 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3899 {
3900 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3901 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3902 int idx;
3903
3904 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3905 struct perf_event *event = cpuc->events[idx];
3906
3907 arr[idx].msr = x86_pmu_config_addr(idx);
3908 arr[idx].host = arr[idx].guest = 0;
3909
3910 if (!test_bit(idx, cpuc->active_mask))
3911 continue;
3912
3913 arr[idx].host = arr[idx].guest =
3914 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3915
3916 if (event->attr.exclude_host)
3917 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3918 else if (event->attr.exclude_guest)
3919 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3920 }
3921
3922 *nr = x86_pmu.num_counters;
3923 return arr;
3924 }
3925
core_pmu_enable_event(struct perf_event * event)3926 static void core_pmu_enable_event(struct perf_event *event)
3927 {
3928 if (!event->attr.exclude_host)
3929 x86_pmu_enable_event(event);
3930 }
3931
core_pmu_enable_all(int added)3932 static void core_pmu_enable_all(int added)
3933 {
3934 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3935 int idx;
3936
3937 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3938 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3939
3940 if (!test_bit(idx, cpuc->active_mask) ||
3941 cpuc->events[idx]->attr.exclude_host)
3942 continue;
3943
3944 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3945 }
3946 }
3947
hsw_hw_config(struct perf_event * event)3948 static int hsw_hw_config(struct perf_event *event)
3949 {
3950 int ret = intel_pmu_hw_config(event);
3951
3952 if (ret)
3953 return ret;
3954 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3955 return 0;
3956 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3957
3958 /*
3959 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3960 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3961 * this combination.
3962 */
3963 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3964 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3965 event->attr.precise_ip > 0))
3966 return -EOPNOTSUPP;
3967
3968 if (event_is_checkpointed(event)) {
3969 /*
3970 * Sampling of checkpointed events can cause situations where
3971 * the CPU constantly aborts because of a overflow, which is
3972 * then checkpointed back and ignored. Forbid checkpointing
3973 * for sampling.
3974 *
3975 * But still allow a long sampling period, so that perf stat
3976 * from KVM works.
3977 */
3978 if (event->attr.sample_period > 0 &&
3979 event->attr.sample_period < 0x7fffffff)
3980 return -EOPNOTSUPP;
3981 }
3982 return 0;
3983 }
3984
3985 static struct event_constraint counter0_constraint =
3986 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3987
3988 static struct event_constraint counter2_constraint =
3989 EVENT_CONSTRAINT(0, 0x4, 0);
3990
3991 static struct event_constraint fixed0_constraint =
3992 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3993
3994 static struct event_constraint fixed0_counter0_constraint =
3995 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3996
3997 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3998 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3999 struct perf_event *event)
4000 {
4001 struct event_constraint *c;
4002
4003 c = intel_get_event_constraints(cpuc, idx, event);
4004
4005 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4006 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4007 if (c->idxmsk64 & (1U << 2))
4008 return &counter2_constraint;
4009 return &emptyconstraint;
4010 }
4011
4012 return c;
4013 }
4014
4015 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4016 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4017 struct perf_event *event)
4018 {
4019 /*
4020 * Fixed counter 0 has less skid.
4021 * Force instruction:ppp in Fixed counter 0
4022 */
4023 if ((event->attr.precise_ip == 3) &&
4024 constraint_match(&fixed0_constraint, event->hw.config))
4025 return &fixed0_constraint;
4026
4027 return hsw_get_event_constraints(cpuc, idx, event);
4028 }
4029
4030 static struct event_constraint *
spr_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4031 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4032 struct perf_event *event)
4033 {
4034 struct event_constraint *c;
4035
4036 c = icl_get_event_constraints(cpuc, idx, event);
4037
4038 /*
4039 * The :ppp indicates the Precise Distribution (PDist) facility, which
4040 * is only supported on the GP counter 0. If a :ppp event which is not
4041 * available on the GP counter 0, error out.
4042 * Exception: Instruction PDIR is only available on the fixed counter 0.
4043 */
4044 if ((event->attr.precise_ip == 3) &&
4045 !constraint_match(&fixed0_constraint, event->hw.config)) {
4046 if (c->idxmsk64 & BIT_ULL(0))
4047 return &counter0_constraint;
4048
4049 return &emptyconstraint;
4050 }
4051
4052 return c;
4053 }
4054
4055 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4056 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4057 struct perf_event *event)
4058 {
4059 struct event_constraint *c;
4060
4061 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4062 if (event->attr.precise_ip == 3)
4063 return &counter0_constraint;
4064
4065 c = intel_get_event_constraints(cpuc, idx, event);
4066
4067 return c;
4068 }
4069
4070 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4071 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4072 struct perf_event *event)
4073 {
4074 struct event_constraint *c;
4075
4076 /*
4077 * :ppp means to do reduced skid PEBS,
4078 * which is available on PMC0 and fixed counter 0.
4079 */
4080 if (event->attr.precise_ip == 3) {
4081 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4082 if (constraint_match(&fixed0_constraint, event->hw.config))
4083 return &fixed0_counter0_constraint;
4084
4085 return &counter0_constraint;
4086 }
4087
4088 c = intel_get_event_constraints(cpuc, idx, event);
4089
4090 return c;
4091 }
4092
4093 static bool allow_tsx_force_abort = true;
4094
4095 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4096 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4097 struct perf_event *event)
4098 {
4099 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4100
4101 /*
4102 * Without TFA we must not use PMC3.
4103 */
4104 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4105 c = dyn_constraint(cpuc, c, idx);
4106 c->idxmsk64 &= ~(1ULL << 3);
4107 c->weight--;
4108 }
4109
4110 return c;
4111 }
4112
4113 static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4114 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4115 struct perf_event *event)
4116 {
4117 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4118
4119 if (pmu->cpu_type == hybrid_big)
4120 return spr_get_event_constraints(cpuc, idx, event);
4121 else if (pmu->cpu_type == hybrid_small)
4122 return tnt_get_event_constraints(cpuc, idx, event);
4123
4124 WARN_ON(1);
4125 return &emptyconstraint;
4126 }
4127
adl_hw_config(struct perf_event * event)4128 static int adl_hw_config(struct perf_event *event)
4129 {
4130 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4131
4132 if (pmu->cpu_type == hybrid_big)
4133 return hsw_hw_config(event);
4134 else if (pmu->cpu_type == hybrid_small)
4135 return intel_pmu_hw_config(event);
4136
4137 WARN_ON(1);
4138 return -EOPNOTSUPP;
4139 }
4140
adl_get_hybrid_cpu_type(void)4141 static u8 adl_get_hybrid_cpu_type(void)
4142 {
4143 return hybrid_big;
4144 }
4145
4146 /*
4147 * Broadwell:
4148 *
4149 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4150 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4151 * the two to enforce a minimum period of 128 (the smallest value that has bits
4152 * 0-5 cleared and >= 100).
4153 *
4154 * Because of how the code in x86_perf_event_set_period() works, the truncation
4155 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4156 * to make up for the 'lost' events due to carrying the 'error' in period_left.
4157 *
4158 * Therefore the effective (average) period matches the requested period,
4159 * despite coarser hardware granularity.
4160 */
bdw_limit_period(struct perf_event * event,u64 left)4161 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4162 {
4163 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4164 X86_CONFIG(.event=0xc0, .umask=0x01)) {
4165 if (left < 128)
4166 left = 128;
4167 left &= ~0x3fULL;
4168 }
4169 return left;
4170 }
4171
nhm_limit_period(struct perf_event * event,u64 left)4172 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4173 {
4174 return max(left, 32ULL);
4175 }
4176
spr_limit_period(struct perf_event * event,u64 left)4177 static u64 spr_limit_period(struct perf_event *event, u64 left)
4178 {
4179 if (event->attr.precise_ip == 3)
4180 return max(left, 128ULL);
4181
4182 return left;
4183 }
4184
4185 PMU_FORMAT_ATTR(event, "config:0-7" );
4186 PMU_FORMAT_ATTR(umask, "config:8-15" );
4187 PMU_FORMAT_ATTR(edge, "config:18" );
4188 PMU_FORMAT_ATTR(pc, "config:19" );
4189 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
4190 PMU_FORMAT_ATTR(inv, "config:23" );
4191 PMU_FORMAT_ATTR(cmask, "config:24-31" );
4192 PMU_FORMAT_ATTR(in_tx, "config:32");
4193 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4194
4195 static struct attribute *intel_arch_formats_attr[] = {
4196 &format_attr_event.attr,
4197 &format_attr_umask.attr,
4198 &format_attr_edge.attr,
4199 &format_attr_pc.attr,
4200 &format_attr_inv.attr,
4201 &format_attr_cmask.attr,
4202 NULL,
4203 };
4204
intel_event_sysfs_show(char * page,u64 config)4205 ssize_t intel_event_sysfs_show(char *page, u64 config)
4206 {
4207 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4208
4209 return x86_event_sysfs_show(page, config, event);
4210 }
4211
allocate_shared_regs(int cpu)4212 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4213 {
4214 struct intel_shared_regs *regs;
4215 int i;
4216
4217 regs = kzalloc_node(sizeof(struct intel_shared_regs),
4218 GFP_KERNEL, cpu_to_node(cpu));
4219 if (regs) {
4220 /*
4221 * initialize the locks to keep lockdep happy
4222 */
4223 for (i = 0; i < EXTRA_REG_MAX; i++)
4224 raw_spin_lock_init(®s->regs[i].lock);
4225
4226 regs->core_id = -1;
4227 }
4228 return regs;
4229 }
4230
allocate_excl_cntrs(int cpu)4231 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4232 {
4233 struct intel_excl_cntrs *c;
4234
4235 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4236 GFP_KERNEL, cpu_to_node(cpu));
4237 if (c) {
4238 raw_spin_lock_init(&c->lock);
4239 c->core_id = -1;
4240 }
4241 return c;
4242 }
4243
4244
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)4245 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4246 {
4247 cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4248
4249 if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4250 cpuc->shared_regs = allocate_shared_regs(cpu);
4251 if (!cpuc->shared_regs)
4252 goto err;
4253 }
4254
4255 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4256 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4257
4258 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4259 if (!cpuc->constraint_list)
4260 goto err_shared_regs;
4261 }
4262
4263 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4264 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4265 if (!cpuc->excl_cntrs)
4266 goto err_constraint_list;
4267
4268 cpuc->excl_thread_id = 0;
4269 }
4270
4271 return 0;
4272
4273 err_constraint_list:
4274 kfree(cpuc->constraint_list);
4275 cpuc->constraint_list = NULL;
4276
4277 err_shared_regs:
4278 kfree(cpuc->shared_regs);
4279 cpuc->shared_regs = NULL;
4280
4281 err:
4282 return -ENOMEM;
4283 }
4284
intel_pmu_cpu_prepare(int cpu)4285 static int intel_pmu_cpu_prepare(int cpu)
4286 {
4287 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4288 }
4289
flip_smm_bit(void * data)4290 static void flip_smm_bit(void *data)
4291 {
4292 unsigned long set = *(unsigned long *)data;
4293
4294 if (set > 0) {
4295 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4296 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4297 } else {
4298 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4299 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4300 }
4301 }
4302
init_hybrid_pmu(int cpu)4303 static bool init_hybrid_pmu(int cpu)
4304 {
4305 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4306 u8 cpu_type = get_this_hybrid_cpu_type();
4307 struct x86_hybrid_pmu *pmu = NULL;
4308 int i;
4309
4310 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4311 cpu_type = x86_pmu.get_hybrid_cpu_type();
4312
4313 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4314 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4315 pmu = &x86_pmu.hybrid_pmu[i];
4316 break;
4317 }
4318 }
4319 if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4320 cpuc->pmu = NULL;
4321 return false;
4322 }
4323
4324 /* Only check and dump the PMU information for the first CPU */
4325 if (!cpumask_empty(&pmu->supported_cpus))
4326 goto end;
4327
4328 if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4329 return false;
4330
4331 pr_info("%s PMU driver: ", pmu->name);
4332
4333 if (pmu->intel_cap.pebs_output_pt_available)
4334 pr_cont("PEBS-via-PT ");
4335
4336 pr_cont("\n");
4337
4338 x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4339 pmu->intel_ctrl);
4340
4341 end:
4342 cpumask_set_cpu(cpu, &pmu->supported_cpus);
4343 cpuc->pmu = &pmu->pmu;
4344
4345 x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4346
4347 return true;
4348 }
4349
intel_pmu_cpu_starting(int cpu)4350 static void intel_pmu_cpu_starting(int cpu)
4351 {
4352 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4353 int core_id = topology_core_id(cpu);
4354 int i;
4355
4356 if (is_hybrid() && !init_hybrid_pmu(cpu))
4357 return;
4358
4359 init_debug_store_on_cpu(cpu);
4360 /*
4361 * Deal with CPUs that don't clear their LBRs on power-up.
4362 */
4363 intel_pmu_lbr_reset();
4364
4365 cpuc->lbr_sel = NULL;
4366
4367 if (x86_pmu.flags & PMU_FL_TFA) {
4368 WARN_ON_ONCE(cpuc->tfa_shadow);
4369 cpuc->tfa_shadow = ~0ULL;
4370 intel_set_tfa(cpuc, false);
4371 }
4372
4373 if (x86_pmu.version > 1)
4374 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4375
4376 /*
4377 * Disable perf metrics if any added CPU doesn't support it.
4378 *
4379 * Turn off the check for a hybrid architecture, because the
4380 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4381 * the architecture features. The perf metrics is a model-specific
4382 * feature for now. The corresponding bit should always be 0 on
4383 * a hybrid platform, e.g., Alder Lake.
4384 */
4385 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4386 union perf_capabilities perf_cap;
4387
4388 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4389 if (!perf_cap.perf_metrics) {
4390 x86_pmu.intel_cap.perf_metrics = 0;
4391 x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4392 }
4393 }
4394
4395 if (!cpuc->shared_regs)
4396 return;
4397
4398 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4399 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4400 struct intel_shared_regs *pc;
4401
4402 pc = per_cpu(cpu_hw_events, i).shared_regs;
4403 if (pc && pc->core_id == core_id) {
4404 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4405 cpuc->shared_regs = pc;
4406 break;
4407 }
4408 }
4409 cpuc->shared_regs->core_id = core_id;
4410 cpuc->shared_regs->refcnt++;
4411 }
4412
4413 if (x86_pmu.lbr_sel_map)
4414 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4415
4416 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4417 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4418 struct cpu_hw_events *sibling;
4419 struct intel_excl_cntrs *c;
4420
4421 sibling = &per_cpu(cpu_hw_events, i);
4422 c = sibling->excl_cntrs;
4423 if (c && c->core_id == core_id) {
4424 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4425 cpuc->excl_cntrs = c;
4426 if (!sibling->excl_thread_id)
4427 cpuc->excl_thread_id = 1;
4428 break;
4429 }
4430 }
4431 cpuc->excl_cntrs->core_id = core_id;
4432 cpuc->excl_cntrs->refcnt++;
4433 }
4434 }
4435
free_excl_cntrs(struct cpu_hw_events * cpuc)4436 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4437 {
4438 struct intel_excl_cntrs *c;
4439
4440 c = cpuc->excl_cntrs;
4441 if (c) {
4442 if (c->core_id == -1 || --c->refcnt == 0)
4443 kfree(c);
4444 cpuc->excl_cntrs = NULL;
4445 }
4446
4447 kfree(cpuc->constraint_list);
4448 cpuc->constraint_list = NULL;
4449 }
4450
intel_pmu_cpu_dying(int cpu)4451 static void intel_pmu_cpu_dying(int cpu)
4452 {
4453 fini_debug_store_on_cpu(cpu);
4454 }
4455
intel_cpuc_finish(struct cpu_hw_events * cpuc)4456 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4457 {
4458 struct intel_shared_regs *pc;
4459
4460 pc = cpuc->shared_regs;
4461 if (pc) {
4462 if (pc->core_id == -1 || --pc->refcnt == 0)
4463 kfree(pc);
4464 cpuc->shared_regs = NULL;
4465 }
4466
4467 free_excl_cntrs(cpuc);
4468 }
4469
intel_pmu_cpu_dead(int cpu)4470 static void intel_pmu_cpu_dead(int cpu)
4471 {
4472 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4473
4474 intel_cpuc_finish(cpuc);
4475
4476 if (is_hybrid() && cpuc->pmu)
4477 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4478 }
4479
intel_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)4480 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4481 bool sched_in)
4482 {
4483 intel_pmu_pebs_sched_task(ctx, sched_in);
4484 intel_pmu_lbr_sched_task(ctx, sched_in);
4485 }
4486
intel_pmu_swap_task_ctx(struct perf_event_context * prev,struct perf_event_context * next)4487 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4488 struct perf_event_context *next)
4489 {
4490 intel_pmu_lbr_swap_task_ctx(prev, next);
4491 }
4492
intel_pmu_check_period(struct perf_event * event,u64 value)4493 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4494 {
4495 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4496 }
4497
intel_pmu_aux_output_match(struct perf_event * event)4498 static int intel_pmu_aux_output_match(struct perf_event *event)
4499 {
4500 if (!x86_pmu.intel_cap.pebs_output_pt_available)
4501 return 0;
4502
4503 return is_intel_pt_event(event);
4504 }
4505
intel_pmu_filter_match(struct perf_event * event)4506 static int intel_pmu_filter_match(struct perf_event *event)
4507 {
4508 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4509 unsigned int cpu = smp_processor_id();
4510
4511 return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4512 }
4513
4514 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4515
4516 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4517
4518 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4519
4520 static struct attribute *intel_arch3_formats_attr[] = {
4521 &format_attr_event.attr,
4522 &format_attr_umask.attr,
4523 &format_attr_edge.attr,
4524 &format_attr_pc.attr,
4525 &format_attr_any.attr,
4526 &format_attr_inv.attr,
4527 &format_attr_cmask.attr,
4528 NULL,
4529 };
4530
4531 static struct attribute *hsw_format_attr[] = {
4532 &format_attr_in_tx.attr,
4533 &format_attr_in_tx_cp.attr,
4534 &format_attr_offcore_rsp.attr,
4535 &format_attr_ldlat.attr,
4536 NULL
4537 };
4538
4539 static struct attribute *nhm_format_attr[] = {
4540 &format_attr_offcore_rsp.attr,
4541 &format_attr_ldlat.attr,
4542 NULL
4543 };
4544
4545 static struct attribute *slm_format_attr[] = {
4546 &format_attr_offcore_rsp.attr,
4547 NULL
4548 };
4549
4550 static struct attribute *skl_format_attr[] = {
4551 &format_attr_frontend.attr,
4552 NULL,
4553 };
4554
4555 static __initconst const struct x86_pmu core_pmu = {
4556 .name = "core",
4557 .handle_irq = x86_pmu_handle_irq,
4558 .disable_all = x86_pmu_disable_all,
4559 .enable_all = core_pmu_enable_all,
4560 .enable = core_pmu_enable_event,
4561 .disable = x86_pmu_disable_event,
4562 .hw_config = core_pmu_hw_config,
4563 .schedule_events = x86_schedule_events,
4564 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
4565 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
4566 .event_map = intel_pmu_event_map,
4567 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
4568 .apic = 1,
4569 .large_pebs_flags = LARGE_PEBS_FLAGS,
4570
4571 /*
4572 * Intel PMCs cannot be accessed sanely above 32-bit width,
4573 * so we install an artificial 1<<31 period regardless of
4574 * the generic event period:
4575 */
4576 .max_period = (1ULL<<31) - 1,
4577 .get_event_constraints = intel_get_event_constraints,
4578 .put_event_constraints = intel_put_event_constraints,
4579 .event_constraints = intel_core_event_constraints,
4580 .guest_get_msrs = core_guest_get_msrs,
4581 .format_attrs = intel_arch_formats_attr,
4582 .events_sysfs_show = intel_event_sysfs_show,
4583
4584 /*
4585 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4586 * together with PMU version 1 and thus be using core_pmu with
4587 * shared_regs. We need following callbacks here to allocate
4588 * it properly.
4589 */
4590 .cpu_prepare = intel_pmu_cpu_prepare,
4591 .cpu_starting = intel_pmu_cpu_starting,
4592 .cpu_dying = intel_pmu_cpu_dying,
4593 .cpu_dead = intel_pmu_cpu_dead,
4594
4595 .check_period = intel_pmu_check_period,
4596
4597 .lbr_reset = intel_pmu_lbr_reset_64,
4598 .lbr_read = intel_pmu_lbr_read_64,
4599 .lbr_save = intel_pmu_lbr_save,
4600 .lbr_restore = intel_pmu_lbr_restore,
4601 };
4602
4603 static __initconst const struct x86_pmu intel_pmu = {
4604 .name = "Intel",
4605 .handle_irq = intel_pmu_handle_irq,
4606 .disable_all = intel_pmu_disable_all,
4607 .enable_all = intel_pmu_enable_all,
4608 .enable = intel_pmu_enable_event,
4609 .disable = intel_pmu_disable_event,
4610 .add = intel_pmu_add_event,
4611 .del = intel_pmu_del_event,
4612 .read = intel_pmu_read_event,
4613 .hw_config = intel_pmu_hw_config,
4614 .schedule_events = x86_schedule_events,
4615 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
4616 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
4617 .event_map = intel_pmu_event_map,
4618 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
4619 .apic = 1,
4620 .large_pebs_flags = LARGE_PEBS_FLAGS,
4621 /*
4622 * Intel PMCs cannot be accessed sanely above 32 bit width,
4623 * so we install an artificial 1<<31 period regardless of
4624 * the generic event period:
4625 */
4626 .max_period = (1ULL << 31) - 1,
4627 .get_event_constraints = intel_get_event_constraints,
4628 .put_event_constraints = intel_put_event_constraints,
4629 .pebs_aliases = intel_pebs_aliases_core2,
4630
4631 .format_attrs = intel_arch3_formats_attr,
4632 .events_sysfs_show = intel_event_sysfs_show,
4633
4634 .cpu_prepare = intel_pmu_cpu_prepare,
4635 .cpu_starting = intel_pmu_cpu_starting,
4636 .cpu_dying = intel_pmu_cpu_dying,
4637 .cpu_dead = intel_pmu_cpu_dead,
4638
4639 .guest_get_msrs = intel_guest_get_msrs,
4640 .sched_task = intel_pmu_sched_task,
4641 .swap_task_ctx = intel_pmu_swap_task_ctx,
4642
4643 .check_period = intel_pmu_check_period,
4644
4645 .aux_output_match = intel_pmu_aux_output_match,
4646
4647 .lbr_reset = intel_pmu_lbr_reset_64,
4648 .lbr_read = intel_pmu_lbr_read_64,
4649 .lbr_save = intel_pmu_lbr_save,
4650 .lbr_restore = intel_pmu_lbr_restore,
4651 };
4652
intel_clovertown_quirk(void)4653 static __init void intel_clovertown_quirk(void)
4654 {
4655 /*
4656 * PEBS is unreliable due to:
4657 *
4658 * AJ67 - PEBS may experience CPL leaks
4659 * AJ68 - PEBS PMI may be delayed by one event
4660 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4661 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4662 *
4663 * AJ67 could be worked around by restricting the OS/USR flags.
4664 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4665 *
4666 * AJ106 could possibly be worked around by not allowing LBR
4667 * usage from PEBS, including the fixup.
4668 * AJ68 could possibly be worked around by always programming
4669 * a pebs_event_reset[0] value and coping with the lost events.
4670 *
4671 * But taken together it might just make sense to not enable PEBS on
4672 * these chips.
4673 */
4674 pr_warn("PEBS disabled due to CPU errata\n");
4675 x86_pmu.pebs = 0;
4676 x86_pmu.pebs_constraints = NULL;
4677 }
4678
4679 static const struct x86_cpu_desc isolation_ucodes[] = {
4680 INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f),
4681 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e),
4682 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015),
4683 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037),
4684 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a),
4685 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023),
4686 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014),
4687 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010),
4688 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009),
4689 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009),
4690 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002),
4691 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 1, 0x0b000014),
4692 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021),
4693 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000),
4694 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 5, 0x00000000),
4695 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 6, 0x00000000),
4696 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 7, 0x00000000),
4697 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c),
4698 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c),
4699 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e),
4700 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e),
4701 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e),
4702 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e),
4703 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e),
4704 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e),
4705 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e),
4706 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e),
4707 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e),
4708 {}
4709 };
4710
intel_check_pebs_isolation(void)4711 static void intel_check_pebs_isolation(void)
4712 {
4713 x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4714 }
4715
intel_pebs_isolation_quirk(void)4716 static __init void intel_pebs_isolation_quirk(void)
4717 {
4718 WARN_ON_ONCE(x86_pmu.check_microcode);
4719 x86_pmu.check_microcode = intel_check_pebs_isolation;
4720 intel_check_pebs_isolation();
4721 }
4722
4723 static const struct x86_cpu_desc pebs_ucodes[] = {
4724 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028),
4725 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618),
4726 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c),
4727 {}
4728 };
4729
intel_snb_pebs_broken(void)4730 static bool intel_snb_pebs_broken(void)
4731 {
4732 return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4733 }
4734
intel_snb_check_microcode(void)4735 static void intel_snb_check_microcode(void)
4736 {
4737 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4738 return;
4739
4740 /*
4741 * Serialized by the microcode lock..
4742 */
4743 if (x86_pmu.pebs_broken) {
4744 pr_info("PEBS enabled due to microcode update\n");
4745 x86_pmu.pebs_broken = 0;
4746 } else {
4747 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4748 x86_pmu.pebs_broken = 1;
4749 }
4750 }
4751
is_lbr_from(unsigned long msr)4752 static bool is_lbr_from(unsigned long msr)
4753 {
4754 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4755
4756 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4757 }
4758
4759 /*
4760 * Under certain circumstances, access certain MSR may cause #GP.
4761 * The function tests if the input MSR can be safely accessed.
4762 */
check_msr(unsigned long msr,u64 mask)4763 static bool check_msr(unsigned long msr, u64 mask)
4764 {
4765 u64 val_old, val_new, val_tmp;
4766
4767 /*
4768 * Disable the check for real HW, so we don't
4769 * mess with potentially enabled registers:
4770 */
4771 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4772 return true;
4773
4774 /*
4775 * Read the current value, change it and read it back to see if it
4776 * matches, this is needed to detect certain hardware emulators
4777 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4778 */
4779 if (rdmsrl_safe(msr, &val_old))
4780 return false;
4781
4782 /*
4783 * Only change the bits which can be updated by wrmsrl.
4784 */
4785 val_tmp = val_old ^ mask;
4786
4787 if (is_lbr_from(msr))
4788 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4789
4790 if (wrmsrl_safe(msr, val_tmp) ||
4791 rdmsrl_safe(msr, &val_new))
4792 return false;
4793
4794 /*
4795 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4796 * should equal rdmsrl()'s even with the quirk.
4797 */
4798 if (val_new != val_tmp)
4799 return false;
4800
4801 if (is_lbr_from(msr))
4802 val_old = lbr_from_signext_quirk_wr(val_old);
4803
4804 /* Here it's sure that the MSR can be safely accessed.
4805 * Restore the old value and return.
4806 */
4807 wrmsrl(msr, val_old);
4808
4809 return true;
4810 }
4811
intel_sandybridge_quirk(void)4812 static __init void intel_sandybridge_quirk(void)
4813 {
4814 x86_pmu.check_microcode = intel_snb_check_microcode;
4815 cpus_read_lock();
4816 intel_snb_check_microcode();
4817 cpus_read_unlock();
4818 }
4819
4820 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4821 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4822 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4823 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4824 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4825 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4826 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4827 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4828 };
4829
intel_arch_events_quirk(void)4830 static __init void intel_arch_events_quirk(void)
4831 {
4832 int bit;
4833
4834 /* disable event that reported as not present by cpuid */
4835 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4836 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4837 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4838 intel_arch_events_map[bit].name);
4839 }
4840 }
4841
intel_nehalem_quirk(void)4842 static __init void intel_nehalem_quirk(void)
4843 {
4844 union cpuid10_ebx ebx;
4845
4846 ebx.full = x86_pmu.events_maskl;
4847 if (ebx.split.no_branch_misses_retired) {
4848 /*
4849 * Erratum AAJ80 detected, we work it around by using
4850 * the BR_MISP_EXEC.ANY event. This will over-count
4851 * branch-misses, but it's still much better than the
4852 * architectural event which is often completely bogus:
4853 */
4854 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4855 ebx.split.no_branch_misses_retired = 0;
4856 x86_pmu.events_maskl = ebx.full;
4857 pr_info("CPU erratum AAJ80 worked around\n");
4858 }
4859 }
4860
4861 /*
4862 * enable software workaround for errata:
4863 * SNB: BJ122
4864 * IVB: BV98
4865 * HSW: HSD29
4866 *
4867 * Only needed when HT is enabled. However detecting
4868 * if HT is enabled is difficult (model specific). So instead,
4869 * we enable the workaround in the early boot, and verify if
4870 * it is needed in a later initcall phase once we have valid
4871 * topology information to check if HT is actually enabled
4872 */
intel_ht_bug(void)4873 static __init void intel_ht_bug(void)
4874 {
4875 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4876
4877 x86_pmu.start_scheduling = intel_start_scheduling;
4878 x86_pmu.commit_scheduling = intel_commit_scheduling;
4879 x86_pmu.stop_scheduling = intel_stop_scheduling;
4880 }
4881
4882 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
4883 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
4884
4885 /* Haswell special events */
4886 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
4887 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
4888 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
4889 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
4890 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
4891 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
4892 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
4893 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
4894 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
4895 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
4896 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
4897 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
4898
4899 static struct attribute *hsw_events_attrs[] = {
4900 EVENT_PTR(td_slots_issued),
4901 EVENT_PTR(td_slots_retired),
4902 EVENT_PTR(td_fetch_bubbles),
4903 EVENT_PTR(td_total_slots),
4904 EVENT_PTR(td_total_slots_scale),
4905 EVENT_PTR(td_recovery_bubbles),
4906 EVENT_PTR(td_recovery_bubbles_scale),
4907 NULL
4908 };
4909
4910 static struct attribute *hsw_mem_events_attrs[] = {
4911 EVENT_PTR(mem_ld_hsw),
4912 EVENT_PTR(mem_st_hsw),
4913 NULL,
4914 };
4915
4916 static struct attribute *hsw_tsx_events_attrs[] = {
4917 EVENT_PTR(tx_start),
4918 EVENT_PTR(tx_commit),
4919 EVENT_PTR(tx_abort),
4920 EVENT_PTR(tx_capacity),
4921 EVENT_PTR(tx_conflict),
4922 EVENT_PTR(el_start),
4923 EVENT_PTR(el_commit),
4924 EVENT_PTR(el_abort),
4925 EVENT_PTR(el_capacity),
4926 EVENT_PTR(el_conflict),
4927 EVENT_PTR(cycles_t),
4928 EVENT_PTR(cycles_ct),
4929 NULL
4930 };
4931
4932 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
4933 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4934 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
4935 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4936
4937 static struct attribute *icl_events_attrs[] = {
4938 EVENT_PTR(mem_ld_hsw),
4939 EVENT_PTR(mem_st_hsw),
4940 NULL,
4941 };
4942
4943 static struct attribute *icl_td_events_attrs[] = {
4944 EVENT_PTR(slots),
4945 EVENT_PTR(td_retiring),
4946 EVENT_PTR(td_bad_spec),
4947 EVENT_PTR(td_fe_bound),
4948 EVENT_PTR(td_be_bound),
4949 NULL,
4950 };
4951
4952 static struct attribute *icl_tsx_events_attrs[] = {
4953 EVENT_PTR(tx_start),
4954 EVENT_PTR(tx_abort),
4955 EVENT_PTR(tx_commit),
4956 EVENT_PTR(tx_capacity_read),
4957 EVENT_PTR(tx_capacity_write),
4958 EVENT_PTR(tx_conflict),
4959 EVENT_PTR(el_start),
4960 EVENT_PTR(el_abort),
4961 EVENT_PTR(el_commit),
4962 EVENT_PTR(el_capacity_read),
4963 EVENT_PTR(el_capacity_write),
4964 EVENT_PTR(el_conflict),
4965 EVENT_PTR(cycles_t),
4966 EVENT_PTR(cycles_ct),
4967 NULL,
4968 };
4969
4970
4971 EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
4972 EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
4973
4974 static struct attribute *spr_events_attrs[] = {
4975 EVENT_PTR(mem_ld_hsw),
4976 EVENT_PTR(mem_st_spr),
4977 EVENT_PTR(mem_ld_aux),
4978 NULL,
4979 };
4980
4981 static struct attribute *spr_td_events_attrs[] = {
4982 EVENT_PTR(slots),
4983 EVENT_PTR(td_retiring),
4984 EVENT_PTR(td_bad_spec),
4985 EVENT_PTR(td_fe_bound),
4986 EVENT_PTR(td_be_bound),
4987 EVENT_PTR(td_heavy_ops),
4988 EVENT_PTR(td_br_mispredict),
4989 EVENT_PTR(td_fetch_lat),
4990 EVENT_PTR(td_mem_bound),
4991 NULL,
4992 };
4993
4994 static struct attribute *spr_tsx_events_attrs[] = {
4995 EVENT_PTR(tx_start),
4996 EVENT_PTR(tx_abort),
4997 EVENT_PTR(tx_commit),
4998 EVENT_PTR(tx_capacity_read),
4999 EVENT_PTR(tx_capacity_write),
5000 EVENT_PTR(tx_conflict),
5001 EVENT_PTR(cycles_t),
5002 EVENT_PTR(cycles_ct),
5003 NULL,
5004 };
5005
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)5006 static ssize_t freeze_on_smi_show(struct device *cdev,
5007 struct device_attribute *attr,
5008 char *buf)
5009 {
5010 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5011 }
5012
5013 static DEFINE_MUTEX(freeze_on_smi_mutex);
5014
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5015 static ssize_t freeze_on_smi_store(struct device *cdev,
5016 struct device_attribute *attr,
5017 const char *buf, size_t count)
5018 {
5019 unsigned long val;
5020 ssize_t ret;
5021
5022 ret = kstrtoul(buf, 0, &val);
5023 if (ret)
5024 return ret;
5025
5026 if (val > 1)
5027 return -EINVAL;
5028
5029 mutex_lock(&freeze_on_smi_mutex);
5030
5031 if (x86_pmu.attr_freeze_on_smi == val)
5032 goto done;
5033
5034 x86_pmu.attr_freeze_on_smi = val;
5035
5036 cpus_read_lock();
5037 on_each_cpu(flip_smm_bit, &val, 1);
5038 cpus_read_unlock();
5039 done:
5040 mutex_unlock(&freeze_on_smi_mutex);
5041
5042 return count;
5043 }
5044
update_tfa_sched(void * ignored)5045 static void update_tfa_sched(void *ignored)
5046 {
5047 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5048
5049 /*
5050 * check if PMC3 is used
5051 * and if so force schedule out for all event types all contexts
5052 */
5053 if (test_bit(3, cpuc->active_mask))
5054 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5055 }
5056
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)5057 static ssize_t show_sysctl_tfa(struct device *cdev,
5058 struct device_attribute *attr,
5059 char *buf)
5060 {
5061 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5062 }
5063
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5064 static ssize_t set_sysctl_tfa(struct device *cdev,
5065 struct device_attribute *attr,
5066 const char *buf, size_t count)
5067 {
5068 bool val;
5069 ssize_t ret;
5070
5071 ret = kstrtobool(buf, &val);
5072 if (ret)
5073 return ret;
5074
5075 /* no change */
5076 if (val == allow_tsx_force_abort)
5077 return count;
5078
5079 allow_tsx_force_abort = val;
5080
5081 cpus_read_lock();
5082 on_each_cpu(update_tfa_sched, NULL, 1);
5083 cpus_read_unlock();
5084
5085 return count;
5086 }
5087
5088
5089 static DEVICE_ATTR_RW(freeze_on_smi);
5090
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)5091 static ssize_t branches_show(struct device *cdev,
5092 struct device_attribute *attr,
5093 char *buf)
5094 {
5095 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5096 }
5097
5098 static DEVICE_ATTR_RO(branches);
5099
5100 static struct attribute *lbr_attrs[] = {
5101 &dev_attr_branches.attr,
5102 NULL
5103 };
5104
5105 static char pmu_name_str[30];
5106
pmu_name_show(struct device * cdev,struct device_attribute * attr,char * buf)5107 static ssize_t pmu_name_show(struct device *cdev,
5108 struct device_attribute *attr,
5109 char *buf)
5110 {
5111 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5112 }
5113
5114 static DEVICE_ATTR_RO(pmu_name);
5115
5116 static struct attribute *intel_pmu_caps_attrs[] = {
5117 &dev_attr_pmu_name.attr,
5118 NULL
5119 };
5120
5121 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5122 show_sysctl_tfa,
5123 set_sysctl_tfa);
5124
5125 static struct attribute *intel_pmu_attrs[] = {
5126 &dev_attr_freeze_on_smi.attr,
5127 &dev_attr_allow_tsx_force_abort.attr,
5128 NULL,
5129 };
5130
5131 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5132 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5133 {
5134 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5135 }
5136
5137 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)5138 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5139 {
5140 return x86_pmu.pebs ? attr->mode : 0;
5141 }
5142
5143 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)5144 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5145 {
5146 return x86_pmu.lbr_nr ? attr->mode : 0;
5147 }
5148
5149 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)5150 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5151 {
5152 return x86_pmu.version >= 2 ? attr->mode : 0;
5153 }
5154
5155 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)5156 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5157 {
5158 if (attr == &dev_attr_allow_tsx_force_abort.attr)
5159 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5160
5161 return attr->mode;
5162 }
5163
5164 static struct attribute_group group_events_td = {
5165 .name = "events",
5166 };
5167
5168 static struct attribute_group group_events_mem = {
5169 .name = "events",
5170 .is_visible = pebs_is_visible,
5171 };
5172
5173 static struct attribute_group group_events_tsx = {
5174 .name = "events",
5175 .is_visible = tsx_is_visible,
5176 };
5177
5178 static struct attribute_group group_caps_gen = {
5179 .name = "caps",
5180 .attrs = intel_pmu_caps_attrs,
5181 };
5182
5183 static struct attribute_group group_caps_lbr = {
5184 .name = "caps",
5185 .attrs = lbr_attrs,
5186 .is_visible = lbr_is_visible,
5187 };
5188
5189 static struct attribute_group group_format_extra = {
5190 .name = "format",
5191 .is_visible = exra_is_visible,
5192 };
5193
5194 static struct attribute_group group_format_extra_skl = {
5195 .name = "format",
5196 .is_visible = exra_is_visible,
5197 };
5198
5199 static struct attribute_group group_default = {
5200 .attrs = intel_pmu_attrs,
5201 .is_visible = default_is_visible,
5202 };
5203
5204 static const struct attribute_group *attr_update[] = {
5205 &group_events_td,
5206 &group_events_mem,
5207 &group_events_tsx,
5208 &group_caps_gen,
5209 &group_caps_lbr,
5210 &group_format_extra,
5211 &group_format_extra_skl,
5212 &group_default,
5213 NULL,
5214 };
5215
5216 EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
5217 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5218 EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5219 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5220 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5221 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
5222 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
5223 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
5224 EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
5225
5226 static struct attribute *adl_hybrid_events_attrs[] = {
5227 EVENT_PTR(slots_adl),
5228 EVENT_PTR(td_retiring_adl),
5229 EVENT_PTR(td_bad_spec_adl),
5230 EVENT_PTR(td_fe_bound_adl),
5231 EVENT_PTR(td_be_bound_adl),
5232 EVENT_PTR(td_heavy_ops_adl),
5233 EVENT_PTR(td_br_mis_adl),
5234 EVENT_PTR(td_fetch_lat_adl),
5235 EVENT_PTR(td_mem_bound_adl),
5236 NULL,
5237 };
5238
5239 /* Must be in IDX order */
5240 EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5241 EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
5242 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
5243
5244 static struct attribute *adl_hybrid_mem_attrs[] = {
5245 EVENT_PTR(mem_ld_adl),
5246 EVENT_PTR(mem_st_adl),
5247 EVENT_PTR(mem_ld_aux_adl),
5248 NULL,
5249 };
5250
5251 EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
5252 EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
5253 EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
5254 EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
5255 EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
5256 EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5257 EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
5258 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
5259
5260 static struct attribute *adl_hybrid_tsx_attrs[] = {
5261 EVENT_PTR(tx_start_adl),
5262 EVENT_PTR(tx_abort_adl),
5263 EVENT_PTR(tx_commit_adl),
5264 EVENT_PTR(tx_capacity_read_adl),
5265 EVENT_PTR(tx_capacity_write_adl),
5266 EVENT_PTR(tx_conflict_adl),
5267 EVENT_PTR(cycles_t_adl),
5268 EVENT_PTR(cycles_ct_adl),
5269 NULL,
5270 };
5271
5272 FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
5273 FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
5274 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5275 FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small);
5276 FORMAT_ATTR_HYBRID(frontend, hybrid_big);
5277
5278 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5279 FORMAT_HYBRID_PTR(in_tx),
5280 FORMAT_HYBRID_PTR(in_tx_cp),
5281 FORMAT_HYBRID_PTR(offcore_rsp),
5282 FORMAT_HYBRID_PTR(ldlat),
5283 FORMAT_HYBRID_PTR(frontend),
5284 NULL,
5285 };
5286
5287 static struct attribute *adl_hybrid_extra_attr[] = {
5288 FORMAT_HYBRID_PTR(offcore_rsp),
5289 FORMAT_HYBRID_PTR(ldlat),
5290 FORMAT_HYBRID_PTR(frontend),
5291 NULL,
5292 };
5293
is_attr_for_this_pmu(struct kobject * kobj,struct attribute * attr)5294 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5295 {
5296 struct device *dev = kobj_to_dev(kobj);
5297 struct x86_hybrid_pmu *pmu =
5298 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5299 struct perf_pmu_events_hybrid_attr *pmu_attr =
5300 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5301
5302 return pmu->cpu_type & pmu_attr->pmu_type;
5303 }
5304
hybrid_events_is_visible(struct kobject * kobj,struct attribute * attr,int i)5305 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5306 struct attribute *attr, int i)
5307 {
5308 return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5309 }
5310
hybrid_find_supported_cpu(struct x86_hybrid_pmu * pmu)5311 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5312 {
5313 int cpu = cpumask_first(&pmu->supported_cpus);
5314
5315 return (cpu >= nr_cpu_ids) ? -1 : cpu;
5316 }
5317
hybrid_tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5318 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5319 struct attribute *attr, int i)
5320 {
5321 struct device *dev = kobj_to_dev(kobj);
5322 struct x86_hybrid_pmu *pmu =
5323 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5324 int cpu = hybrid_find_supported_cpu(pmu);
5325
5326 return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5327 }
5328
hybrid_format_is_visible(struct kobject * kobj,struct attribute * attr,int i)5329 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5330 struct attribute *attr, int i)
5331 {
5332 struct device *dev = kobj_to_dev(kobj);
5333 struct x86_hybrid_pmu *pmu =
5334 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5335 struct perf_pmu_format_hybrid_attr *pmu_attr =
5336 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5337 int cpu = hybrid_find_supported_cpu(pmu);
5338
5339 return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5340 }
5341
5342 static struct attribute_group hybrid_group_events_td = {
5343 .name = "events",
5344 .is_visible = hybrid_events_is_visible,
5345 };
5346
5347 static struct attribute_group hybrid_group_events_mem = {
5348 .name = "events",
5349 .is_visible = hybrid_events_is_visible,
5350 };
5351
5352 static struct attribute_group hybrid_group_events_tsx = {
5353 .name = "events",
5354 .is_visible = hybrid_tsx_is_visible,
5355 };
5356
5357 static struct attribute_group hybrid_group_format_extra = {
5358 .name = "format",
5359 .is_visible = hybrid_format_is_visible,
5360 };
5361
intel_hybrid_get_attr_cpus(struct device * dev,struct device_attribute * attr,char * buf)5362 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5363 struct device_attribute *attr,
5364 char *buf)
5365 {
5366 struct x86_hybrid_pmu *pmu =
5367 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5368
5369 return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5370 }
5371
5372 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5373 static struct attribute *intel_hybrid_cpus_attrs[] = {
5374 &dev_attr_cpus.attr,
5375 NULL,
5376 };
5377
5378 static struct attribute_group hybrid_group_cpus = {
5379 .attrs = intel_hybrid_cpus_attrs,
5380 };
5381
5382 static const struct attribute_group *hybrid_attr_update[] = {
5383 &hybrid_group_events_td,
5384 &hybrid_group_events_mem,
5385 &hybrid_group_events_tsx,
5386 &group_caps_gen,
5387 &group_caps_lbr,
5388 &hybrid_group_format_extra,
5389 &group_default,
5390 &hybrid_group_cpus,
5391 NULL,
5392 };
5393
5394 static struct attribute *empty_attrs;
5395
intel_pmu_check_num_counters(int * num_counters,int * num_counters_fixed,u64 * intel_ctrl,u64 fixed_mask)5396 static void intel_pmu_check_num_counters(int *num_counters,
5397 int *num_counters_fixed,
5398 u64 *intel_ctrl, u64 fixed_mask)
5399 {
5400 if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5401 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5402 *num_counters, INTEL_PMC_MAX_GENERIC);
5403 *num_counters = INTEL_PMC_MAX_GENERIC;
5404 }
5405 *intel_ctrl = (1ULL << *num_counters) - 1;
5406
5407 if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5408 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5409 *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5410 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5411 }
5412
5413 *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5414 }
5415
intel_pmu_check_event_constraints(struct event_constraint * event_constraints,int num_counters,int num_counters_fixed,u64 intel_ctrl)5416 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5417 int num_counters,
5418 int num_counters_fixed,
5419 u64 intel_ctrl)
5420 {
5421 struct event_constraint *c;
5422
5423 if (!event_constraints)
5424 return;
5425
5426 /*
5427 * event on fixed counter2 (REF_CYCLES) only works on this
5428 * counter, so do not extend mask to generic counters
5429 */
5430 for_each_event_constraint(c, event_constraints) {
5431 /*
5432 * Don't extend the topdown slots and metrics
5433 * events to the generic counters.
5434 */
5435 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5436 /*
5437 * Disable topdown slots and metrics events,
5438 * if slots event is not in CPUID.
5439 */
5440 if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5441 c->idxmsk64 = 0;
5442 c->weight = hweight64(c->idxmsk64);
5443 continue;
5444 }
5445
5446 if (c->cmask == FIXED_EVENT_FLAGS) {
5447 /* Disabled fixed counters which are not in CPUID */
5448 c->idxmsk64 &= intel_ctrl;
5449
5450 if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
5451 c->idxmsk64 |= (1ULL << num_counters) - 1;
5452 }
5453 c->idxmsk64 &=
5454 ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5455 c->weight = hweight64(c->idxmsk64);
5456 }
5457 }
5458
intel_pmu_check_extra_regs(struct extra_reg * extra_regs)5459 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5460 {
5461 struct extra_reg *er;
5462
5463 /*
5464 * Access extra MSR may cause #GP under certain circumstances.
5465 * E.g. KVM doesn't support offcore event
5466 * Check all extra_regs here.
5467 */
5468 if (!extra_regs)
5469 return;
5470
5471 for (er = extra_regs; er->msr; er++) {
5472 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5473 /* Disable LBR select mapping */
5474 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5475 x86_pmu.lbr_sel_map = NULL;
5476 }
5477 }
5478
intel_pmu_check_hybrid_pmus(u64 fixed_mask)5479 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5480 {
5481 struct x86_hybrid_pmu *pmu;
5482 int i;
5483
5484 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5485 pmu = &x86_pmu.hybrid_pmu[i];
5486
5487 intel_pmu_check_num_counters(&pmu->num_counters,
5488 &pmu->num_counters_fixed,
5489 &pmu->intel_ctrl,
5490 fixed_mask);
5491
5492 if (pmu->intel_cap.perf_metrics) {
5493 pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5494 pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5495 }
5496
5497 if (pmu->intel_cap.pebs_output_pt_available)
5498 pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5499
5500 intel_pmu_check_event_constraints(pmu->event_constraints,
5501 pmu->num_counters,
5502 pmu->num_counters_fixed,
5503 pmu->intel_ctrl);
5504
5505 intel_pmu_check_extra_regs(pmu->extra_regs);
5506 }
5507 }
5508
intel_pmu_init(void)5509 __init int intel_pmu_init(void)
5510 {
5511 struct attribute **extra_skl_attr = &empty_attrs;
5512 struct attribute **extra_attr = &empty_attrs;
5513 struct attribute **td_attr = &empty_attrs;
5514 struct attribute **mem_attr = &empty_attrs;
5515 struct attribute **tsx_attr = &empty_attrs;
5516 union cpuid10_edx edx;
5517 union cpuid10_eax eax;
5518 union cpuid10_ebx ebx;
5519 unsigned int fixed_mask;
5520 bool pmem = false;
5521 int version, i;
5522 char *name;
5523 struct x86_hybrid_pmu *pmu;
5524
5525 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5526 switch (boot_cpu_data.x86) {
5527 case 0x6:
5528 return p6_pmu_init();
5529 case 0xb:
5530 return knc_pmu_init();
5531 case 0xf:
5532 return p4_pmu_init();
5533 }
5534 return -ENODEV;
5535 }
5536
5537 /*
5538 * Check whether the Architectural PerfMon supports
5539 * Branch Misses Retired hw_event or not.
5540 */
5541 cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5542 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5543 return -ENODEV;
5544
5545 version = eax.split.version_id;
5546 if (version < 2)
5547 x86_pmu = core_pmu;
5548 else
5549 x86_pmu = intel_pmu;
5550
5551 x86_pmu.version = version;
5552 x86_pmu.num_counters = eax.split.num_counters;
5553 x86_pmu.cntval_bits = eax.split.bit_width;
5554 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
5555
5556 x86_pmu.events_maskl = ebx.full;
5557 x86_pmu.events_mask_len = eax.split.mask_length;
5558
5559 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5560
5561 /*
5562 * Quirk: v2 perfmon does not report fixed-purpose events, so
5563 * assume at least 3 events, when not running in a hypervisor:
5564 */
5565 if (version > 1 && version < 5) {
5566 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5567
5568 x86_pmu.num_counters_fixed =
5569 max((int)edx.split.num_counters_fixed, assume);
5570
5571 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5572 } else if (version >= 5)
5573 x86_pmu.num_counters_fixed = fls(fixed_mask);
5574
5575 if (boot_cpu_has(X86_FEATURE_PDCM)) {
5576 u64 capabilities;
5577
5578 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5579 x86_pmu.intel_cap.capabilities = capabilities;
5580 }
5581
5582 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5583 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5584 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5585 }
5586
5587 if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5588 intel_pmu_arch_lbr_init();
5589
5590 intel_ds_init();
5591
5592 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5593
5594 if (version >= 5) {
5595 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5596 if (x86_pmu.intel_cap.anythread_deprecated)
5597 pr_cont(" AnyThread deprecated, ");
5598 }
5599
5600 /*
5601 * Install the hw-cache-events table:
5602 */
5603 switch (boot_cpu_data.x86_model) {
5604 case INTEL_FAM6_CORE_YONAH:
5605 pr_cont("Core events, ");
5606 name = "core";
5607 break;
5608
5609 case INTEL_FAM6_CORE2_MEROM:
5610 x86_add_quirk(intel_clovertown_quirk);
5611 fallthrough;
5612
5613 case INTEL_FAM6_CORE2_MEROM_L:
5614 case INTEL_FAM6_CORE2_PENRYN:
5615 case INTEL_FAM6_CORE2_DUNNINGTON:
5616 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5617 sizeof(hw_cache_event_ids));
5618
5619 intel_pmu_lbr_init_core();
5620
5621 x86_pmu.event_constraints = intel_core2_event_constraints;
5622 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5623 pr_cont("Core2 events, ");
5624 name = "core2";
5625 break;
5626
5627 case INTEL_FAM6_NEHALEM:
5628 case INTEL_FAM6_NEHALEM_EP:
5629 case INTEL_FAM6_NEHALEM_EX:
5630 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5631 sizeof(hw_cache_event_ids));
5632 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5633 sizeof(hw_cache_extra_regs));
5634
5635 intel_pmu_lbr_init_nhm();
5636
5637 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5638 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5639 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5640 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5641 x86_pmu.limit_period = nhm_limit_period;
5642
5643 mem_attr = nhm_mem_events_attrs;
5644
5645 /* UOPS_ISSUED.STALLED_CYCLES */
5646 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5647 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5648 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5649 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5650 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5651
5652 intel_pmu_pebs_data_source_nhm();
5653 x86_add_quirk(intel_nehalem_quirk);
5654 x86_pmu.pebs_no_tlb = 1;
5655 extra_attr = nhm_format_attr;
5656
5657 pr_cont("Nehalem events, ");
5658 name = "nehalem";
5659 break;
5660
5661 case INTEL_FAM6_ATOM_BONNELL:
5662 case INTEL_FAM6_ATOM_BONNELL_MID:
5663 case INTEL_FAM6_ATOM_SALTWELL:
5664 case INTEL_FAM6_ATOM_SALTWELL_MID:
5665 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5666 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5667 sizeof(hw_cache_event_ids));
5668
5669 intel_pmu_lbr_init_atom();
5670
5671 x86_pmu.event_constraints = intel_gen_event_constraints;
5672 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5673 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5674 pr_cont("Atom events, ");
5675 name = "bonnell";
5676 break;
5677
5678 case INTEL_FAM6_ATOM_SILVERMONT:
5679 case INTEL_FAM6_ATOM_SILVERMONT_D:
5680 case INTEL_FAM6_ATOM_SILVERMONT_MID:
5681 case INTEL_FAM6_ATOM_AIRMONT:
5682 case INTEL_FAM6_ATOM_AIRMONT_MID:
5683 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5684 sizeof(hw_cache_event_ids));
5685 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5686 sizeof(hw_cache_extra_regs));
5687
5688 intel_pmu_lbr_init_slm();
5689
5690 x86_pmu.event_constraints = intel_slm_event_constraints;
5691 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5692 x86_pmu.extra_regs = intel_slm_extra_regs;
5693 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5694 td_attr = slm_events_attrs;
5695 extra_attr = slm_format_attr;
5696 pr_cont("Silvermont events, ");
5697 name = "silvermont";
5698 break;
5699
5700 case INTEL_FAM6_ATOM_GOLDMONT:
5701 case INTEL_FAM6_ATOM_GOLDMONT_D:
5702 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5703 sizeof(hw_cache_event_ids));
5704 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5705 sizeof(hw_cache_extra_regs));
5706
5707 intel_pmu_lbr_init_skl();
5708
5709 x86_pmu.event_constraints = intel_slm_event_constraints;
5710 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5711 x86_pmu.extra_regs = intel_glm_extra_regs;
5712 /*
5713 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5714 * for precise cycles.
5715 * :pp is identical to :ppp
5716 */
5717 x86_pmu.pebs_aliases = NULL;
5718 x86_pmu.pebs_prec_dist = true;
5719 x86_pmu.lbr_pt_coexist = true;
5720 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5721 td_attr = glm_events_attrs;
5722 extra_attr = slm_format_attr;
5723 pr_cont("Goldmont events, ");
5724 name = "goldmont";
5725 break;
5726
5727 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5728 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5729 sizeof(hw_cache_event_ids));
5730 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5731 sizeof(hw_cache_extra_regs));
5732
5733 intel_pmu_lbr_init_skl();
5734
5735 x86_pmu.event_constraints = intel_slm_event_constraints;
5736 x86_pmu.extra_regs = intel_glm_extra_regs;
5737 /*
5738 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5739 * for precise cycles.
5740 */
5741 x86_pmu.pebs_aliases = NULL;
5742 x86_pmu.pebs_prec_dist = true;
5743 x86_pmu.lbr_pt_coexist = true;
5744 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5745 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5746 x86_pmu.get_event_constraints = glp_get_event_constraints;
5747 td_attr = glm_events_attrs;
5748 /* Goldmont Plus has 4-wide pipeline */
5749 event_attr_td_total_slots_scale_glm.event_str = "4";
5750 extra_attr = slm_format_attr;
5751 pr_cont("Goldmont plus events, ");
5752 name = "goldmont_plus";
5753 break;
5754
5755 case INTEL_FAM6_ATOM_TREMONT_D:
5756 case INTEL_FAM6_ATOM_TREMONT:
5757 case INTEL_FAM6_ATOM_TREMONT_L:
5758 x86_pmu.late_ack = true;
5759 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5760 sizeof(hw_cache_event_ids));
5761 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5762 sizeof(hw_cache_extra_regs));
5763 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5764
5765 intel_pmu_lbr_init_skl();
5766
5767 x86_pmu.event_constraints = intel_slm_event_constraints;
5768 x86_pmu.extra_regs = intel_tnt_extra_regs;
5769 /*
5770 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5771 * for precise cycles.
5772 */
5773 x86_pmu.pebs_aliases = NULL;
5774 x86_pmu.pebs_prec_dist = true;
5775 x86_pmu.lbr_pt_coexist = true;
5776 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5777 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5778 td_attr = tnt_events_attrs;
5779 extra_attr = slm_format_attr;
5780 pr_cont("Tremont events, ");
5781 name = "Tremont";
5782 break;
5783
5784 case INTEL_FAM6_WESTMERE:
5785 case INTEL_FAM6_WESTMERE_EP:
5786 case INTEL_FAM6_WESTMERE_EX:
5787 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5788 sizeof(hw_cache_event_ids));
5789 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5790 sizeof(hw_cache_extra_regs));
5791
5792 intel_pmu_lbr_init_nhm();
5793
5794 x86_pmu.event_constraints = intel_westmere_event_constraints;
5795 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5796 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5797 x86_pmu.extra_regs = intel_westmere_extra_regs;
5798 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5799
5800 mem_attr = nhm_mem_events_attrs;
5801
5802 /* UOPS_ISSUED.STALLED_CYCLES */
5803 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5804 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5805 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5806 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5807 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5808
5809 intel_pmu_pebs_data_source_nhm();
5810 extra_attr = nhm_format_attr;
5811 pr_cont("Westmere events, ");
5812 name = "westmere";
5813 break;
5814
5815 case INTEL_FAM6_SANDYBRIDGE:
5816 case INTEL_FAM6_SANDYBRIDGE_X:
5817 x86_add_quirk(intel_sandybridge_quirk);
5818 x86_add_quirk(intel_ht_bug);
5819 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5820 sizeof(hw_cache_event_ids));
5821 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5822 sizeof(hw_cache_extra_regs));
5823
5824 intel_pmu_lbr_init_snb();
5825
5826 x86_pmu.event_constraints = intel_snb_event_constraints;
5827 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5828 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5829 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5830 x86_pmu.extra_regs = intel_snbep_extra_regs;
5831 else
5832 x86_pmu.extra_regs = intel_snb_extra_regs;
5833
5834
5835 /* all extra regs are per-cpu when HT is on */
5836 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5837 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5838
5839 td_attr = snb_events_attrs;
5840 mem_attr = snb_mem_events_attrs;
5841
5842 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5843 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5844 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5845 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5846 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5847 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5848
5849 extra_attr = nhm_format_attr;
5850
5851 pr_cont("SandyBridge events, ");
5852 name = "sandybridge";
5853 break;
5854
5855 case INTEL_FAM6_IVYBRIDGE:
5856 case INTEL_FAM6_IVYBRIDGE_X:
5857 x86_add_quirk(intel_ht_bug);
5858 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5859 sizeof(hw_cache_event_ids));
5860 /* dTLB-load-misses on IVB is different than SNB */
5861 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5862
5863 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5864 sizeof(hw_cache_extra_regs));
5865
5866 intel_pmu_lbr_init_snb();
5867
5868 x86_pmu.event_constraints = intel_ivb_event_constraints;
5869 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5870 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5871 x86_pmu.pebs_prec_dist = true;
5872 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5873 x86_pmu.extra_regs = intel_snbep_extra_regs;
5874 else
5875 x86_pmu.extra_regs = intel_snb_extra_regs;
5876 /* all extra regs are per-cpu when HT is on */
5877 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5878 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5879
5880 td_attr = snb_events_attrs;
5881 mem_attr = snb_mem_events_attrs;
5882
5883 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5884 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5885 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5886
5887 extra_attr = nhm_format_attr;
5888
5889 pr_cont("IvyBridge events, ");
5890 name = "ivybridge";
5891 break;
5892
5893
5894 case INTEL_FAM6_HASWELL:
5895 case INTEL_FAM6_HASWELL_X:
5896 case INTEL_FAM6_HASWELL_L:
5897 case INTEL_FAM6_HASWELL_G:
5898 x86_add_quirk(intel_ht_bug);
5899 x86_add_quirk(intel_pebs_isolation_quirk);
5900 x86_pmu.late_ack = true;
5901 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5902 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5903
5904 intel_pmu_lbr_init_hsw();
5905
5906 x86_pmu.event_constraints = intel_hsw_event_constraints;
5907 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5908 x86_pmu.extra_regs = intel_snbep_extra_regs;
5909 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5910 x86_pmu.pebs_prec_dist = true;
5911 /* all extra regs are per-cpu when HT is on */
5912 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5913 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5914
5915 x86_pmu.hw_config = hsw_hw_config;
5916 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5917 x86_pmu.lbr_double_abort = true;
5918 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5919 hsw_format_attr : nhm_format_attr;
5920 td_attr = hsw_events_attrs;
5921 mem_attr = hsw_mem_events_attrs;
5922 tsx_attr = hsw_tsx_events_attrs;
5923 pr_cont("Haswell events, ");
5924 name = "haswell";
5925 break;
5926
5927 case INTEL_FAM6_BROADWELL:
5928 case INTEL_FAM6_BROADWELL_D:
5929 case INTEL_FAM6_BROADWELL_G:
5930 case INTEL_FAM6_BROADWELL_X:
5931 x86_add_quirk(intel_pebs_isolation_quirk);
5932 x86_pmu.late_ack = true;
5933 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5934 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5935
5936 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5937 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5938 BDW_L3_MISS|HSW_SNOOP_DRAM;
5939 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5940 HSW_SNOOP_DRAM;
5941 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5942 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5943 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5944 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5945
5946 intel_pmu_lbr_init_hsw();
5947
5948 x86_pmu.event_constraints = intel_bdw_event_constraints;
5949 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5950 x86_pmu.extra_regs = intel_snbep_extra_regs;
5951 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5952 x86_pmu.pebs_prec_dist = true;
5953 /* all extra regs are per-cpu when HT is on */
5954 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5955 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5956
5957 x86_pmu.hw_config = hsw_hw_config;
5958 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5959 x86_pmu.limit_period = bdw_limit_period;
5960 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5961 hsw_format_attr : nhm_format_attr;
5962 td_attr = hsw_events_attrs;
5963 mem_attr = hsw_mem_events_attrs;
5964 tsx_attr = hsw_tsx_events_attrs;
5965 pr_cont("Broadwell events, ");
5966 name = "broadwell";
5967 break;
5968
5969 case INTEL_FAM6_XEON_PHI_KNL:
5970 case INTEL_FAM6_XEON_PHI_KNM:
5971 memcpy(hw_cache_event_ids,
5972 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5973 memcpy(hw_cache_extra_regs,
5974 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5975 intel_pmu_lbr_init_knl();
5976
5977 x86_pmu.event_constraints = intel_slm_event_constraints;
5978 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5979 x86_pmu.extra_regs = intel_knl_extra_regs;
5980
5981 /* all extra regs are per-cpu when HT is on */
5982 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5983 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5984 extra_attr = slm_format_attr;
5985 pr_cont("Knights Landing/Mill events, ");
5986 name = "knights-landing";
5987 break;
5988
5989 case INTEL_FAM6_SKYLAKE_X:
5990 pmem = true;
5991 fallthrough;
5992 case INTEL_FAM6_SKYLAKE_L:
5993 case INTEL_FAM6_SKYLAKE:
5994 case INTEL_FAM6_KABYLAKE_L:
5995 case INTEL_FAM6_KABYLAKE:
5996 case INTEL_FAM6_COMETLAKE_L:
5997 case INTEL_FAM6_COMETLAKE:
5998 x86_add_quirk(intel_pebs_isolation_quirk);
5999 x86_pmu.late_ack = true;
6000 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6001 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6002 intel_pmu_lbr_init_skl();
6003
6004 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6005 event_attr_td_recovery_bubbles.event_str_noht =
6006 "event=0xd,umask=0x1,cmask=1";
6007 event_attr_td_recovery_bubbles.event_str_ht =
6008 "event=0xd,umask=0x1,cmask=1,any=1";
6009
6010 x86_pmu.event_constraints = intel_skl_event_constraints;
6011 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6012 x86_pmu.extra_regs = intel_skl_extra_regs;
6013 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6014 x86_pmu.pebs_prec_dist = true;
6015 /* all extra regs are per-cpu when HT is on */
6016 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6017 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6018
6019 x86_pmu.hw_config = hsw_hw_config;
6020 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6021 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6022 hsw_format_attr : nhm_format_attr;
6023 extra_skl_attr = skl_format_attr;
6024 td_attr = hsw_events_attrs;
6025 mem_attr = hsw_mem_events_attrs;
6026 tsx_attr = hsw_tsx_events_attrs;
6027 intel_pmu_pebs_data_source_skl(pmem);
6028
6029 /*
6030 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6031 * TSX force abort hooks are not required on these systems. Only deploy
6032 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6033 */
6034 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6035 !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6036 x86_pmu.flags |= PMU_FL_TFA;
6037 x86_pmu.get_event_constraints = tfa_get_event_constraints;
6038 x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6039 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6040 }
6041
6042 pr_cont("Skylake events, ");
6043 name = "skylake";
6044 break;
6045
6046 case INTEL_FAM6_ICELAKE_X:
6047 case INTEL_FAM6_ICELAKE_D:
6048 pmem = true;
6049 fallthrough;
6050 case INTEL_FAM6_ICELAKE_L:
6051 case INTEL_FAM6_ICELAKE:
6052 case INTEL_FAM6_TIGERLAKE_L:
6053 case INTEL_FAM6_TIGERLAKE:
6054 case INTEL_FAM6_ROCKETLAKE:
6055 x86_pmu.late_ack = true;
6056 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6057 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6058 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6059 intel_pmu_lbr_init_skl();
6060
6061 x86_pmu.event_constraints = intel_icl_event_constraints;
6062 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6063 x86_pmu.extra_regs = intel_icl_extra_regs;
6064 x86_pmu.pebs_aliases = NULL;
6065 x86_pmu.pebs_prec_dist = true;
6066 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6067 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6068
6069 x86_pmu.hw_config = hsw_hw_config;
6070 x86_pmu.get_event_constraints = icl_get_event_constraints;
6071 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6072 hsw_format_attr : nhm_format_attr;
6073 extra_skl_attr = skl_format_attr;
6074 mem_attr = icl_events_attrs;
6075 td_attr = icl_td_events_attrs;
6076 tsx_attr = icl_tsx_events_attrs;
6077 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6078 x86_pmu.lbr_pt_coexist = true;
6079 intel_pmu_pebs_data_source_skl(pmem);
6080 x86_pmu.num_topdown_events = 4;
6081 x86_pmu.update_topdown_event = icl_update_topdown_event;
6082 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6083 pr_cont("Icelake events, ");
6084 name = "icelake";
6085 break;
6086
6087 case INTEL_FAM6_SAPPHIRERAPIDS_X:
6088 pmem = true;
6089 x86_pmu.late_ack = true;
6090 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6091 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6092
6093 x86_pmu.event_constraints = intel_spr_event_constraints;
6094 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6095 x86_pmu.extra_regs = intel_spr_extra_regs;
6096 x86_pmu.limit_period = spr_limit_period;
6097 x86_pmu.pebs_aliases = NULL;
6098 x86_pmu.pebs_prec_dist = true;
6099 x86_pmu.pebs_block = true;
6100 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6101 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6102 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6103 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6104 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6105
6106 x86_pmu.hw_config = hsw_hw_config;
6107 x86_pmu.get_event_constraints = spr_get_event_constraints;
6108 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6109 hsw_format_attr : nhm_format_attr;
6110 extra_skl_attr = skl_format_attr;
6111 mem_attr = spr_events_attrs;
6112 td_attr = spr_td_events_attrs;
6113 tsx_attr = spr_tsx_events_attrs;
6114 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6115 x86_pmu.lbr_pt_coexist = true;
6116 intel_pmu_pebs_data_source_skl(pmem);
6117 x86_pmu.num_topdown_events = 8;
6118 x86_pmu.update_topdown_event = icl_update_topdown_event;
6119 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6120 pr_cont("Sapphire Rapids events, ");
6121 name = "sapphire_rapids";
6122 break;
6123
6124 case INTEL_FAM6_ALDERLAKE:
6125 case INTEL_FAM6_ALDERLAKE_L:
6126 /*
6127 * Alder Lake has 2 types of CPU, core and atom.
6128 *
6129 * Initialize the common PerfMon capabilities here.
6130 */
6131 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6132 sizeof(struct x86_hybrid_pmu),
6133 GFP_KERNEL);
6134 if (!x86_pmu.hybrid_pmu)
6135 return -ENOMEM;
6136 static_branch_enable(&perf_is_hybrid);
6137 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6138
6139 x86_pmu.pebs_aliases = NULL;
6140 x86_pmu.pebs_prec_dist = true;
6141 x86_pmu.pebs_block = true;
6142 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6143 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6144 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6145 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6146 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6147 x86_pmu.lbr_pt_coexist = true;
6148 intel_pmu_pebs_data_source_skl(false);
6149 x86_pmu.num_topdown_events = 8;
6150 x86_pmu.update_topdown_event = adl_update_topdown_event;
6151 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6152
6153 x86_pmu.filter_match = intel_pmu_filter_match;
6154 x86_pmu.get_event_constraints = adl_get_event_constraints;
6155 x86_pmu.hw_config = adl_hw_config;
6156 x86_pmu.limit_period = spr_limit_period;
6157 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6158 /*
6159 * The rtm_abort_event is used to check whether to enable GPRs
6160 * for the RTM abort event. Atom doesn't have the RTM abort
6161 * event. There is no harmful to set it in the common
6162 * x86_pmu.rtm_abort_event.
6163 */
6164 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6165
6166 td_attr = adl_hybrid_events_attrs;
6167 mem_attr = adl_hybrid_mem_attrs;
6168 tsx_attr = adl_hybrid_tsx_attrs;
6169 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6170 adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6171
6172 /* Initialize big core specific PerfMon capabilities.*/
6173 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6174 pmu->name = "cpu_core";
6175 pmu->cpu_type = hybrid_big;
6176 pmu->late_ack = true;
6177 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6178 pmu->num_counters = x86_pmu.num_counters + 2;
6179 pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6180 } else {
6181 pmu->num_counters = x86_pmu.num_counters;
6182 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6183 }
6184 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6185 pmu->unconstrained = (struct event_constraint)
6186 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6187 0, pmu->num_counters, 0, 0);
6188 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6189 pmu->intel_cap.perf_metrics = 1;
6190 pmu->intel_cap.pebs_output_pt_available = 0;
6191
6192 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6193 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6194 pmu->event_constraints = intel_spr_event_constraints;
6195 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6196 pmu->extra_regs = intel_spr_extra_regs;
6197
6198 /* Initialize Atom core specific PerfMon capabilities.*/
6199 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6200 pmu->name = "cpu_atom";
6201 pmu->cpu_type = hybrid_small;
6202 pmu->mid_ack = true;
6203 pmu->num_counters = x86_pmu.num_counters;
6204 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6205 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6206 pmu->unconstrained = (struct event_constraint)
6207 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6208 0, pmu->num_counters, 0, 0);
6209 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6210 pmu->intel_cap.perf_metrics = 0;
6211 pmu->intel_cap.pebs_output_pt_available = 1;
6212
6213 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6214 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6215 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6216 pmu->event_constraints = intel_slm_event_constraints;
6217 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6218 pmu->extra_regs = intel_grt_extra_regs;
6219 pr_cont("Alderlake Hybrid events, ");
6220 name = "alderlake_hybrid";
6221 break;
6222
6223 default:
6224 switch (x86_pmu.version) {
6225 case 1:
6226 x86_pmu.event_constraints = intel_v1_event_constraints;
6227 pr_cont("generic architected perfmon v1, ");
6228 name = "generic_arch_v1";
6229 break;
6230 default:
6231 /*
6232 * default constraints for v2 and up
6233 */
6234 x86_pmu.event_constraints = intel_gen_event_constraints;
6235 pr_cont("generic architected perfmon, ");
6236 name = "generic_arch_v2+";
6237 break;
6238 }
6239 }
6240
6241 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6242
6243 if (!is_hybrid()) {
6244 group_events_td.attrs = td_attr;
6245 group_events_mem.attrs = mem_attr;
6246 group_events_tsx.attrs = tsx_attr;
6247 group_format_extra.attrs = extra_attr;
6248 group_format_extra_skl.attrs = extra_skl_attr;
6249
6250 x86_pmu.attr_update = attr_update;
6251 } else {
6252 hybrid_group_events_td.attrs = td_attr;
6253 hybrid_group_events_mem.attrs = mem_attr;
6254 hybrid_group_events_tsx.attrs = tsx_attr;
6255 hybrid_group_format_extra.attrs = extra_attr;
6256
6257 x86_pmu.attr_update = hybrid_attr_update;
6258 }
6259
6260 intel_pmu_check_num_counters(&x86_pmu.num_counters,
6261 &x86_pmu.num_counters_fixed,
6262 &x86_pmu.intel_ctrl,
6263 (u64)fixed_mask);
6264
6265 /* AnyThread may be deprecated on arch perfmon v5 or later */
6266 if (x86_pmu.intel_cap.anythread_deprecated)
6267 x86_pmu.format_attrs = intel_arch_formats_attr;
6268
6269 intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6270 x86_pmu.num_counters,
6271 x86_pmu.num_counters_fixed,
6272 x86_pmu.intel_ctrl);
6273 /*
6274 * Access LBR MSR may cause #GP under certain circumstances.
6275 * E.g. KVM doesn't support LBR MSR
6276 * Check all LBT MSR here.
6277 * Disable LBR access if any LBR MSRs can not be accessed.
6278 */
6279 if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6280 x86_pmu.lbr_nr = 0;
6281 for (i = 0; i < x86_pmu.lbr_nr; i++) {
6282 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6283 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6284 x86_pmu.lbr_nr = 0;
6285 }
6286
6287 if (x86_pmu.lbr_nr)
6288 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6289
6290 intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6291
6292 /* Support full width counters using alternative MSR range */
6293 if (x86_pmu.intel_cap.full_width_write) {
6294 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6295 x86_pmu.perfctr = MSR_IA32_PMC0;
6296 pr_cont("full-width counters, ");
6297 }
6298
6299 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6300 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6301
6302 if (is_hybrid())
6303 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6304
6305 return 0;
6306 }
6307
6308 /*
6309 * HT bug: phase 2 init
6310 * Called once we have valid topology information to check
6311 * whether or not HT is enabled
6312 * If HT is off, then we disable the workaround
6313 */
fixup_ht_bug(void)6314 static __init int fixup_ht_bug(void)
6315 {
6316 int c;
6317 /*
6318 * problem not present on this CPU model, nothing to do
6319 */
6320 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6321 return 0;
6322
6323 if (topology_max_smt_threads() > 1) {
6324 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6325 return 0;
6326 }
6327
6328 cpus_read_lock();
6329
6330 hardlockup_detector_perf_stop();
6331
6332 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6333
6334 x86_pmu.start_scheduling = NULL;
6335 x86_pmu.commit_scheduling = NULL;
6336 x86_pmu.stop_scheduling = NULL;
6337
6338 hardlockup_detector_perf_restart();
6339
6340 for_each_online_cpu(c)
6341 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6342
6343 cpus_read_unlock();
6344 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6345 return 0;
6346 }
6347 subsys_initcall(fixup_ht_bug)
6348