1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24 
25 #include "../perf_event.h"
26 
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
33 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
34 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
35 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
36 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
37 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
38 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
39 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 };
41 
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 	EVENT_CONSTRAINT_END
51 };
52 
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 	EVENT_CONSTRAINT_END
69 };
70 
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 	EVENT_CONSTRAINT_END
85 };
86 
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 	EVENT_EXTRA_END
93 };
94 
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 	EVENT_CONSTRAINT_END
105 };
106 
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 
122 	/*
123 	 * When HT is off these events can only run on the bottom 4 counters
124 	 * When HT is on, they are impacted by the HT bug and require EXCL access
125 	 */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130 
131 	EVENT_CONSTRAINT_END
132 };
133 
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 
150 	/*
151 	 * When HT is off these events can only run on the bottom 4 counters
152 	 * When HT is on, they are impacted by the HT bug and require EXCL access
153 	 */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158 
159 	EVENT_CONSTRAINT_END
160 };
161 
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 	EVENT_EXTRA_END
169 };
170 
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 	EVENT_CONSTRAINT_END
174 };
175 
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 	EVENT_CONSTRAINT_END
182 };
183 
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 	EVENT_CONSTRAINT_END
190 };
191 
192 static struct event_constraint intel_skl_event_constraints[] = {
193 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
194 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
195 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
196 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 
198 	/*
199 	 * when HT is off, these can only run on the bottom 4 counters
200 	 */
201 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
204 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
205 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
206 
207 	EVENT_CONSTRAINT_END
208 };
209 
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 	EVENT_EXTRA_END
214 };
215 
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 	EVENT_EXTRA_END
222 };
223 
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 	EVENT_EXTRA_END
230 };
231 
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 	/*
237 	 * Note the low 8 bits eventsel code is not a continuous field, containing
238 	 * some #GPing bits. These are masked out.
239 	 */
240 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 	EVENT_EXTRA_END
242 };
243 
244 static struct event_constraint intel_icl_event_constraints[] = {
245 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
247 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
248 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
249 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
250 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
257 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
263 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266 	INTEL_EVENT_CONSTRAINT(0xef, 0xf),
267 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
268 	EVENT_CONSTRAINT_END
269 };
270 
271 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
272 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
273 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
274 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
275 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
276 	EVENT_EXTRA_END
277 };
278 
279 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
280 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
281 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
282 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
283 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
284 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
285 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
286 	EVENT_EXTRA_END
287 };
288 
289 static struct event_constraint intel_spr_event_constraints[] = {
290 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
291 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
292 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
293 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
294 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
295 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
296 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
297 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
298 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
299 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
300 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
301 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
302 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
303 
304 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
305 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
306 	/*
307 	 * Generally event codes < 0x90 are restricted to counters 0-3.
308 	 * The 0x2E and 0x3C are exception, which has no restriction.
309 	 */
310 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
311 
312 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
313 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
314 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
315 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
316 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
317 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
318 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
319 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
320 	/*
321 	 * Generally event codes >= 0x90 are likely to have no restrictions.
322 	 * The exception are defined as above.
323 	 */
324 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
325 
326 	EVENT_CONSTRAINT_END
327 };
328 
329 
330 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
331 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
332 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
333 
334 static struct attribute *nhm_mem_events_attrs[] = {
335 	EVENT_PTR(mem_ld_nhm),
336 	NULL,
337 };
338 
339 /*
340  * topdown events for Intel Core CPUs.
341  *
342  * The events are all in slots, which is a free slot in a 4 wide
343  * pipeline. Some events are already reported in slots, for cycle
344  * events we multiply by the pipeline width (4).
345  *
346  * With Hyper Threading on, topdown metrics are either summed or averaged
347  * between the threads of a core: (count_t0 + count_t1).
348  *
349  * For the average case the metric is always scaled to pipeline width,
350  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
351  */
352 
353 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
354 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
355 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
356 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
357 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
358 	"event=0xe,umask=0x1");			/* uops_issued.any */
359 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
360 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
361 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
362 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
363 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
364 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
365 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
366 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
367 	"4", "2");
368 
369 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
370 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
371 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
372 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
373 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
374 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
375 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
376 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
377 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
378 
379 static struct attribute *snb_events_attrs[] = {
380 	EVENT_PTR(td_slots_issued),
381 	EVENT_PTR(td_slots_retired),
382 	EVENT_PTR(td_fetch_bubbles),
383 	EVENT_PTR(td_total_slots),
384 	EVENT_PTR(td_total_slots_scale),
385 	EVENT_PTR(td_recovery_bubbles),
386 	EVENT_PTR(td_recovery_bubbles_scale),
387 	NULL,
388 };
389 
390 static struct attribute *snb_mem_events_attrs[] = {
391 	EVENT_PTR(mem_ld_snb),
392 	EVENT_PTR(mem_st_snb),
393 	NULL,
394 };
395 
396 static struct event_constraint intel_hsw_event_constraints[] = {
397 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
398 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
399 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
400 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
401 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
402 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
403 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
404 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
405 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
406 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
407 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
408 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
409 
410 	/*
411 	 * When HT is off these events can only run on the bottom 4 counters
412 	 * When HT is on, they are impacted by the HT bug and require EXCL access
413 	 */
414 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
415 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
416 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
417 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
418 
419 	EVENT_CONSTRAINT_END
420 };
421 
422 static struct event_constraint intel_bdw_event_constraints[] = {
423 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
424 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
425 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
426 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
427 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
428 	/*
429 	 * when HT is off, these can only run on the bottom 4 counters
430 	 */
431 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
432 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
433 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
434 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
435 	EVENT_CONSTRAINT_END
436 };
437 
intel_pmu_event_map(int hw_event)438 static u64 intel_pmu_event_map(int hw_event)
439 {
440 	return intel_perfmon_event_map[hw_event];
441 }
442 
443 static __initconst const u64 spr_hw_cache_event_ids
444 				[PERF_COUNT_HW_CACHE_MAX]
445 				[PERF_COUNT_HW_CACHE_OP_MAX]
446 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
447 {
448  [ C(L1D ) ] = {
449 	[ C(OP_READ) ] = {
450 		[ C(RESULT_ACCESS) ] = 0x81d0,
451 		[ C(RESULT_MISS)   ] = 0xe124,
452 	},
453 	[ C(OP_WRITE) ] = {
454 		[ C(RESULT_ACCESS) ] = 0x82d0,
455 	},
456  },
457  [ C(L1I ) ] = {
458 	[ C(OP_READ) ] = {
459 		[ C(RESULT_MISS)   ] = 0xe424,
460 	},
461 	[ C(OP_WRITE) ] = {
462 		[ C(RESULT_ACCESS) ] = -1,
463 		[ C(RESULT_MISS)   ] = -1,
464 	},
465  },
466  [ C(LL  ) ] = {
467 	[ C(OP_READ) ] = {
468 		[ C(RESULT_ACCESS) ] = 0x12a,
469 		[ C(RESULT_MISS)   ] = 0x12a,
470 	},
471 	[ C(OP_WRITE) ] = {
472 		[ C(RESULT_ACCESS) ] = 0x12a,
473 		[ C(RESULT_MISS)   ] = 0x12a,
474 	},
475  },
476  [ C(DTLB) ] = {
477 	[ C(OP_READ) ] = {
478 		[ C(RESULT_ACCESS) ] = 0x81d0,
479 		[ C(RESULT_MISS)   ] = 0xe12,
480 	},
481 	[ C(OP_WRITE) ] = {
482 		[ C(RESULT_ACCESS) ] = 0x82d0,
483 		[ C(RESULT_MISS)   ] = 0xe13,
484 	},
485  },
486  [ C(ITLB) ] = {
487 	[ C(OP_READ) ] = {
488 		[ C(RESULT_ACCESS) ] = -1,
489 		[ C(RESULT_MISS)   ] = 0xe11,
490 	},
491 	[ C(OP_WRITE) ] = {
492 		[ C(RESULT_ACCESS) ] = -1,
493 		[ C(RESULT_MISS)   ] = -1,
494 	},
495 	[ C(OP_PREFETCH) ] = {
496 		[ C(RESULT_ACCESS) ] = -1,
497 		[ C(RESULT_MISS)   ] = -1,
498 	},
499  },
500  [ C(BPU ) ] = {
501 	[ C(OP_READ) ] = {
502 		[ C(RESULT_ACCESS) ] = 0x4c4,
503 		[ C(RESULT_MISS)   ] = 0x4c5,
504 	},
505 	[ C(OP_WRITE) ] = {
506 		[ C(RESULT_ACCESS) ] = -1,
507 		[ C(RESULT_MISS)   ] = -1,
508 	},
509 	[ C(OP_PREFETCH) ] = {
510 		[ C(RESULT_ACCESS) ] = -1,
511 		[ C(RESULT_MISS)   ] = -1,
512 	},
513  },
514  [ C(NODE) ] = {
515 	[ C(OP_READ) ] = {
516 		[ C(RESULT_ACCESS) ] = 0x12a,
517 		[ C(RESULT_MISS)   ] = 0x12a,
518 	},
519  },
520 };
521 
522 static __initconst const u64 spr_hw_cache_extra_regs
523 				[PERF_COUNT_HW_CACHE_MAX]
524 				[PERF_COUNT_HW_CACHE_OP_MAX]
525 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
526 {
527  [ C(LL  ) ] = {
528 	[ C(OP_READ) ] = {
529 		[ C(RESULT_ACCESS) ] = 0x10001,
530 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
531 	},
532 	[ C(OP_WRITE) ] = {
533 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
534 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
535 	},
536  },
537  [ C(NODE) ] = {
538 	[ C(OP_READ) ] = {
539 		[ C(RESULT_ACCESS) ] = 0x10c000001,
540 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
541 	},
542  },
543 };
544 
545 /*
546  * Notes on the events:
547  * - data reads do not include code reads (comparable to earlier tables)
548  * - data counts include speculative execution (except L1 write, dtlb, bpu)
549  * - remote node access includes remote memory, remote cache, remote mmio.
550  * - prefetches are not included in the counts.
551  * - icache miss does not include decoded icache
552  */
553 
554 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
555 #define SKL_DEMAND_RFO			BIT_ULL(1)
556 #define SKL_ANY_RESPONSE		BIT_ULL(16)
557 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
558 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
559 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
560 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
561 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
562 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
563 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
564 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
565 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
566 #define SKL_SPL_HIT			BIT_ULL(30)
567 #define SKL_SNOOP_NONE			BIT_ULL(31)
568 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
569 #define SKL_SNOOP_MISS			BIT_ULL(33)
570 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
571 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
572 #define SKL_SNOOP_HITM			BIT_ULL(36)
573 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
574 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
575 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
576 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
577 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
578 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
579 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
580 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
581 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
582 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
583 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
584 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
585 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
586 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
587 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
588 
589 static __initconst const u64 skl_hw_cache_event_ids
590 				[PERF_COUNT_HW_CACHE_MAX]
591 				[PERF_COUNT_HW_CACHE_OP_MAX]
592 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
593 {
594  [ C(L1D ) ] = {
595 	[ C(OP_READ) ] = {
596 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
597 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
598 	},
599 	[ C(OP_WRITE) ] = {
600 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
601 		[ C(RESULT_MISS)   ] = 0x0,
602 	},
603 	[ C(OP_PREFETCH) ] = {
604 		[ C(RESULT_ACCESS) ] = 0x0,
605 		[ C(RESULT_MISS)   ] = 0x0,
606 	},
607  },
608  [ C(L1I ) ] = {
609 	[ C(OP_READ) ] = {
610 		[ C(RESULT_ACCESS) ] = 0x0,
611 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
612 	},
613 	[ C(OP_WRITE) ] = {
614 		[ C(RESULT_ACCESS) ] = -1,
615 		[ C(RESULT_MISS)   ] = -1,
616 	},
617 	[ C(OP_PREFETCH) ] = {
618 		[ C(RESULT_ACCESS) ] = 0x0,
619 		[ C(RESULT_MISS)   ] = 0x0,
620 	},
621  },
622  [ C(LL  ) ] = {
623 	[ C(OP_READ) ] = {
624 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
625 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
626 	},
627 	[ C(OP_WRITE) ] = {
628 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
629 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
630 	},
631 	[ C(OP_PREFETCH) ] = {
632 		[ C(RESULT_ACCESS) ] = 0x0,
633 		[ C(RESULT_MISS)   ] = 0x0,
634 	},
635  },
636  [ C(DTLB) ] = {
637 	[ C(OP_READ) ] = {
638 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
639 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
640 	},
641 	[ C(OP_WRITE) ] = {
642 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
643 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
644 	},
645 	[ C(OP_PREFETCH) ] = {
646 		[ C(RESULT_ACCESS) ] = 0x0,
647 		[ C(RESULT_MISS)   ] = 0x0,
648 	},
649  },
650  [ C(ITLB) ] = {
651 	[ C(OP_READ) ] = {
652 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
653 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
654 	},
655 	[ C(OP_WRITE) ] = {
656 		[ C(RESULT_ACCESS) ] = -1,
657 		[ C(RESULT_MISS)   ] = -1,
658 	},
659 	[ C(OP_PREFETCH) ] = {
660 		[ C(RESULT_ACCESS) ] = -1,
661 		[ C(RESULT_MISS)   ] = -1,
662 	},
663  },
664  [ C(BPU ) ] = {
665 	[ C(OP_READ) ] = {
666 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
667 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
668 	},
669 	[ C(OP_WRITE) ] = {
670 		[ C(RESULT_ACCESS) ] = -1,
671 		[ C(RESULT_MISS)   ] = -1,
672 	},
673 	[ C(OP_PREFETCH) ] = {
674 		[ C(RESULT_ACCESS) ] = -1,
675 		[ C(RESULT_MISS)   ] = -1,
676 	},
677  },
678  [ C(NODE) ] = {
679 	[ C(OP_READ) ] = {
680 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
681 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
682 	},
683 	[ C(OP_WRITE) ] = {
684 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
685 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
686 	},
687 	[ C(OP_PREFETCH) ] = {
688 		[ C(RESULT_ACCESS) ] = 0x0,
689 		[ C(RESULT_MISS)   ] = 0x0,
690 	},
691  },
692 };
693 
694 static __initconst const u64 skl_hw_cache_extra_regs
695 				[PERF_COUNT_HW_CACHE_MAX]
696 				[PERF_COUNT_HW_CACHE_OP_MAX]
697 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
698 {
699  [ C(LL  ) ] = {
700 	[ C(OP_READ) ] = {
701 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
702 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
703 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
704 				       SKL_L3_MISS|SKL_ANY_SNOOP|
705 				       SKL_SUPPLIER_NONE,
706 	},
707 	[ C(OP_WRITE) ] = {
708 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
709 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
710 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
711 				       SKL_L3_MISS|SKL_ANY_SNOOP|
712 				       SKL_SUPPLIER_NONE,
713 	},
714 	[ C(OP_PREFETCH) ] = {
715 		[ C(RESULT_ACCESS) ] = 0x0,
716 		[ C(RESULT_MISS)   ] = 0x0,
717 	},
718  },
719  [ C(NODE) ] = {
720 	[ C(OP_READ) ] = {
721 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
722 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
723 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
724 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
725 	},
726 	[ C(OP_WRITE) ] = {
727 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
728 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
729 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
730 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
731 	},
732 	[ C(OP_PREFETCH) ] = {
733 		[ C(RESULT_ACCESS) ] = 0x0,
734 		[ C(RESULT_MISS)   ] = 0x0,
735 	},
736  },
737 };
738 
739 #define SNB_DMND_DATA_RD	(1ULL << 0)
740 #define SNB_DMND_RFO		(1ULL << 1)
741 #define SNB_DMND_IFETCH		(1ULL << 2)
742 #define SNB_DMND_WB		(1ULL << 3)
743 #define SNB_PF_DATA_RD		(1ULL << 4)
744 #define SNB_PF_RFO		(1ULL << 5)
745 #define SNB_PF_IFETCH		(1ULL << 6)
746 #define SNB_LLC_DATA_RD		(1ULL << 7)
747 #define SNB_LLC_RFO		(1ULL << 8)
748 #define SNB_LLC_IFETCH		(1ULL << 9)
749 #define SNB_BUS_LOCKS		(1ULL << 10)
750 #define SNB_STRM_ST		(1ULL << 11)
751 #define SNB_OTHER		(1ULL << 15)
752 #define SNB_RESP_ANY		(1ULL << 16)
753 #define SNB_NO_SUPP		(1ULL << 17)
754 #define SNB_LLC_HITM		(1ULL << 18)
755 #define SNB_LLC_HITE		(1ULL << 19)
756 #define SNB_LLC_HITS		(1ULL << 20)
757 #define SNB_LLC_HITF		(1ULL << 21)
758 #define SNB_LOCAL		(1ULL << 22)
759 #define SNB_REMOTE		(0xffULL << 23)
760 #define SNB_SNP_NONE		(1ULL << 31)
761 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
762 #define SNB_SNP_MISS		(1ULL << 33)
763 #define SNB_NO_FWD		(1ULL << 34)
764 #define SNB_SNP_FWD		(1ULL << 35)
765 #define SNB_HITM		(1ULL << 36)
766 #define SNB_NON_DRAM		(1ULL << 37)
767 
768 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
769 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
770 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
771 
772 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
773 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
774 				 SNB_HITM)
775 
776 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
777 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
778 
779 #define SNB_L3_ACCESS		SNB_RESP_ANY
780 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
781 
782 static __initconst const u64 snb_hw_cache_extra_regs
783 				[PERF_COUNT_HW_CACHE_MAX]
784 				[PERF_COUNT_HW_CACHE_OP_MAX]
785 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
786 {
787  [ C(LL  ) ] = {
788 	[ C(OP_READ) ] = {
789 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
790 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
791 	},
792 	[ C(OP_WRITE) ] = {
793 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
794 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
795 	},
796 	[ C(OP_PREFETCH) ] = {
797 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
798 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
799 	},
800  },
801  [ C(NODE) ] = {
802 	[ C(OP_READ) ] = {
803 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
804 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
805 	},
806 	[ C(OP_WRITE) ] = {
807 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
808 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
809 	},
810 	[ C(OP_PREFETCH) ] = {
811 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
812 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
813 	},
814  },
815 };
816 
817 static __initconst const u64 snb_hw_cache_event_ids
818 				[PERF_COUNT_HW_CACHE_MAX]
819 				[PERF_COUNT_HW_CACHE_OP_MAX]
820 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
821 {
822  [ C(L1D) ] = {
823 	[ C(OP_READ) ] = {
824 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
825 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
826 	},
827 	[ C(OP_WRITE) ] = {
828 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
829 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
830 	},
831 	[ C(OP_PREFETCH) ] = {
832 		[ C(RESULT_ACCESS) ] = 0x0,
833 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
834 	},
835  },
836  [ C(L1I ) ] = {
837 	[ C(OP_READ) ] = {
838 		[ C(RESULT_ACCESS) ] = 0x0,
839 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
840 	},
841 	[ C(OP_WRITE) ] = {
842 		[ C(RESULT_ACCESS) ] = -1,
843 		[ C(RESULT_MISS)   ] = -1,
844 	},
845 	[ C(OP_PREFETCH) ] = {
846 		[ C(RESULT_ACCESS) ] = 0x0,
847 		[ C(RESULT_MISS)   ] = 0x0,
848 	},
849  },
850  [ C(LL  ) ] = {
851 	[ C(OP_READ) ] = {
852 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
853 		[ C(RESULT_ACCESS) ] = 0x01b7,
854 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
855 		[ C(RESULT_MISS)   ] = 0x01b7,
856 	},
857 	[ C(OP_WRITE) ] = {
858 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
859 		[ C(RESULT_ACCESS) ] = 0x01b7,
860 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
861 		[ C(RESULT_MISS)   ] = 0x01b7,
862 	},
863 	[ C(OP_PREFETCH) ] = {
864 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
865 		[ C(RESULT_ACCESS) ] = 0x01b7,
866 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
867 		[ C(RESULT_MISS)   ] = 0x01b7,
868 	},
869  },
870  [ C(DTLB) ] = {
871 	[ C(OP_READ) ] = {
872 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
873 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
874 	},
875 	[ C(OP_WRITE) ] = {
876 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
877 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
878 	},
879 	[ C(OP_PREFETCH) ] = {
880 		[ C(RESULT_ACCESS) ] = 0x0,
881 		[ C(RESULT_MISS)   ] = 0x0,
882 	},
883  },
884  [ C(ITLB) ] = {
885 	[ C(OP_READ) ] = {
886 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
887 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
888 	},
889 	[ C(OP_WRITE) ] = {
890 		[ C(RESULT_ACCESS) ] = -1,
891 		[ C(RESULT_MISS)   ] = -1,
892 	},
893 	[ C(OP_PREFETCH) ] = {
894 		[ C(RESULT_ACCESS) ] = -1,
895 		[ C(RESULT_MISS)   ] = -1,
896 	},
897  },
898  [ C(BPU ) ] = {
899 	[ C(OP_READ) ] = {
900 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
901 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
902 	},
903 	[ C(OP_WRITE) ] = {
904 		[ C(RESULT_ACCESS) ] = -1,
905 		[ C(RESULT_MISS)   ] = -1,
906 	},
907 	[ C(OP_PREFETCH) ] = {
908 		[ C(RESULT_ACCESS) ] = -1,
909 		[ C(RESULT_MISS)   ] = -1,
910 	},
911  },
912  [ C(NODE) ] = {
913 	[ C(OP_READ) ] = {
914 		[ C(RESULT_ACCESS) ] = 0x01b7,
915 		[ C(RESULT_MISS)   ] = 0x01b7,
916 	},
917 	[ C(OP_WRITE) ] = {
918 		[ C(RESULT_ACCESS) ] = 0x01b7,
919 		[ C(RESULT_MISS)   ] = 0x01b7,
920 	},
921 	[ C(OP_PREFETCH) ] = {
922 		[ C(RESULT_ACCESS) ] = 0x01b7,
923 		[ C(RESULT_MISS)   ] = 0x01b7,
924 	},
925  },
926 
927 };
928 
929 /*
930  * Notes on the events:
931  * - data reads do not include code reads (comparable to earlier tables)
932  * - data counts include speculative execution (except L1 write, dtlb, bpu)
933  * - remote node access includes remote memory, remote cache, remote mmio.
934  * - prefetches are not included in the counts because they are not
935  *   reliably counted.
936  */
937 
938 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
939 #define HSW_DEMAND_RFO			BIT_ULL(1)
940 #define HSW_ANY_RESPONSE		BIT_ULL(16)
941 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
942 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
943 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
944 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
945 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
946 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
947 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
948 					 HSW_L3_MISS_REMOTE_HOP2P)
949 #define HSW_SNOOP_NONE			BIT_ULL(31)
950 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
951 #define HSW_SNOOP_MISS			BIT_ULL(33)
952 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
953 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
954 #define HSW_SNOOP_HITM			BIT_ULL(36)
955 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
956 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
957 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
958 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
959 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
960 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
961 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
962 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
963 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
964 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
965 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
966 
967 #define BDW_L3_MISS_LOCAL		BIT(26)
968 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
969 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
970 					 HSW_L3_MISS_REMOTE_HOP2P)
971 
972 
973 static __initconst const u64 hsw_hw_cache_event_ids
974 				[PERF_COUNT_HW_CACHE_MAX]
975 				[PERF_COUNT_HW_CACHE_OP_MAX]
976 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
977 {
978  [ C(L1D ) ] = {
979 	[ C(OP_READ) ] = {
980 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
981 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
982 	},
983 	[ C(OP_WRITE) ] = {
984 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
985 		[ C(RESULT_MISS)   ] = 0x0,
986 	},
987 	[ C(OP_PREFETCH) ] = {
988 		[ C(RESULT_ACCESS) ] = 0x0,
989 		[ C(RESULT_MISS)   ] = 0x0,
990 	},
991  },
992  [ C(L1I ) ] = {
993 	[ C(OP_READ) ] = {
994 		[ C(RESULT_ACCESS) ] = 0x0,
995 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
996 	},
997 	[ C(OP_WRITE) ] = {
998 		[ C(RESULT_ACCESS) ] = -1,
999 		[ C(RESULT_MISS)   ] = -1,
1000 	},
1001 	[ C(OP_PREFETCH) ] = {
1002 		[ C(RESULT_ACCESS) ] = 0x0,
1003 		[ C(RESULT_MISS)   ] = 0x0,
1004 	},
1005  },
1006  [ C(LL  ) ] = {
1007 	[ C(OP_READ) ] = {
1008 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1009 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1010 	},
1011 	[ C(OP_WRITE) ] = {
1012 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1013 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1014 	},
1015 	[ C(OP_PREFETCH) ] = {
1016 		[ C(RESULT_ACCESS) ] = 0x0,
1017 		[ C(RESULT_MISS)   ] = 0x0,
1018 	},
1019  },
1020  [ C(DTLB) ] = {
1021 	[ C(OP_READ) ] = {
1022 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1023 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1024 	},
1025 	[ C(OP_WRITE) ] = {
1026 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1027 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1028 	},
1029 	[ C(OP_PREFETCH) ] = {
1030 		[ C(RESULT_ACCESS) ] = 0x0,
1031 		[ C(RESULT_MISS)   ] = 0x0,
1032 	},
1033  },
1034  [ C(ITLB) ] = {
1035 	[ C(OP_READ) ] = {
1036 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1037 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1038 	},
1039 	[ C(OP_WRITE) ] = {
1040 		[ C(RESULT_ACCESS) ] = -1,
1041 		[ C(RESULT_MISS)   ] = -1,
1042 	},
1043 	[ C(OP_PREFETCH) ] = {
1044 		[ C(RESULT_ACCESS) ] = -1,
1045 		[ C(RESULT_MISS)   ] = -1,
1046 	},
1047  },
1048  [ C(BPU ) ] = {
1049 	[ C(OP_READ) ] = {
1050 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1051 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1052 	},
1053 	[ C(OP_WRITE) ] = {
1054 		[ C(RESULT_ACCESS) ] = -1,
1055 		[ C(RESULT_MISS)   ] = -1,
1056 	},
1057 	[ C(OP_PREFETCH) ] = {
1058 		[ C(RESULT_ACCESS) ] = -1,
1059 		[ C(RESULT_MISS)   ] = -1,
1060 	},
1061  },
1062  [ C(NODE) ] = {
1063 	[ C(OP_READ) ] = {
1064 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1065 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1066 	},
1067 	[ C(OP_WRITE) ] = {
1068 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1069 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1070 	},
1071 	[ C(OP_PREFETCH) ] = {
1072 		[ C(RESULT_ACCESS) ] = 0x0,
1073 		[ C(RESULT_MISS)   ] = 0x0,
1074 	},
1075  },
1076 };
1077 
1078 static __initconst const u64 hsw_hw_cache_extra_regs
1079 				[PERF_COUNT_HW_CACHE_MAX]
1080 				[PERF_COUNT_HW_CACHE_OP_MAX]
1081 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1082 {
1083  [ C(LL  ) ] = {
1084 	[ C(OP_READ) ] = {
1085 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1086 				       HSW_LLC_ACCESS,
1087 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1088 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1089 	},
1090 	[ C(OP_WRITE) ] = {
1091 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1092 				       HSW_LLC_ACCESS,
1093 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1094 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1095 	},
1096 	[ C(OP_PREFETCH) ] = {
1097 		[ C(RESULT_ACCESS) ] = 0x0,
1098 		[ C(RESULT_MISS)   ] = 0x0,
1099 	},
1100  },
1101  [ C(NODE) ] = {
1102 	[ C(OP_READ) ] = {
1103 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1104 				       HSW_L3_MISS_LOCAL_DRAM|
1105 				       HSW_SNOOP_DRAM,
1106 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1107 				       HSW_L3_MISS_REMOTE|
1108 				       HSW_SNOOP_DRAM,
1109 	},
1110 	[ C(OP_WRITE) ] = {
1111 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1112 				       HSW_L3_MISS_LOCAL_DRAM|
1113 				       HSW_SNOOP_DRAM,
1114 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1115 				       HSW_L3_MISS_REMOTE|
1116 				       HSW_SNOOP_DRAM,
1117 	},
1118 	[ C(OP_PREFETCH) ] = {
1119 		[ C(RESULT_ACCESS) ] = 0x0,
1120 		[ C(RESULT_MISS)   ] = 0x0,
1121 	},
1122  },
1123 };
1124 
1125 static __initconst const u64 westmere_hw_cache_event_ids
1126 				[PERF_COUNT_HW_CACHE_MAX]
1127 				[PERF_COUNT_HW_CACHE_OP_MAX]
1128 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1129 {
1130  [ C(L1D) ] = {
1131 	[ C(OP_READ) ] = {
1132 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1133 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1134 	},
1135 	[ C(OP_WRITE) ] = {
1136 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1137 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1138 	},
1139 	[ C(OP_PREFETCH) ] = {
1140 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1141 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1142 	},
1143  },
1144  [ C(L1I ) ] = {
1145 	[ C(OP_READ) ] = {
1146 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1147 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1148 	},
1149 	[ C(OP_WRITE) ] = {
1150 		[ C(RESULT_ACCESS) ] = -1,
1151 		[ C(RESULT_MISS)   ] = -1,
1152 	},
1153 	[ C(OP_PREFETCH) ] = {
1154 		[ C(RESULT_ACCESS) ] = 0x0,
1155 		[ C(RESULT_MISS)   ] = 0x0,
1156 	},
1157  },
1158  [ C(LL  ) ] = {
1159 	[ C(OP_READ) ] = {
1160 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1161 		[ C(RESULT_ACCESS) ] = 0x01b7,
1162 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1163 		[ C(RESULT_MISS)   ] = 0x01b7,
1164 	},
1165 	/*
1166 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1167 	 * on RFO.
1168 	 */
1169 	[ C(OP_WRITE) ] = {
1170 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1171 		[ C(RESULT_ACCESS) ] = 0x01b7,
1172 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1173 		[ C(RESULT_MISS)   ] = 0x01b7,
1174 	},
1175 	[ C(OP_PREFETCH) ] = {
1176 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1177 		[ C(RESULT_ACCESS) ] = 0x01b7,
1178 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1179 		[ C(RESULT_MISS)   ] = 0x01b7,
1180 	},
1181  },
1182  [ C(DTLB) ] = {
1183 	[ C(OP_READ) ] = {
1184 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1185 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1186 	},
1187 	[ C(OP_WRITE) ] = {
1188 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1189 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1190 	},
1191 	[ C(OP_PREFETCH) ] = {
1192 		[ C(RESULT_ACCESS) ] = 0x0,
1193 		[ C(RESULT_MISS)   ] = 0x0,
1194 	},
1195  },
1196  [ C(ITLB) ] = {
1197 	[ C(OP_READ) ] = {
1198 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1199 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1200 	},
1201 	[ C(OP_WRITE) ] = {
1202 		[ C(RESULT_ACCESS) ] = -1,
1203 		[ C(RESULT_MISS)   ] = -1,
1204 	},
1205 	[ C(OP_PREFETCH) ] = {
1206 		[ C(RESULT_ACCESS) ] = -1,
1207 		[ C(RESULT_MISS)   ] = -1,
1208 	},
1209  },
1210  [ C(BPU ) ] = {
1211 	[ C(OP_READ) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1213 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1214 	},
1215 	[ C(OP_WRITE) ] = {
1216 		[ C(RESULT_ACCESS) ] = -1,
1217 		[ C(RESULT_MISS)   ] = -1,
1218 	},
1219 	[ C(OP_PREFETCH) ] = {
1220 		[ C(RESULT_ACCESS) ] = -1,
1221 		[ C(RESULT_MISS)   ] = -1,
1222 	},
1223  },
1224  [ C(NODE) ] = {
1225 	[ C(OP_READ) ] = {
1226 		[ C(RESULT_ACCESS) ] = 0x01b7,
1227 		[ C(RESULT_MISS)   ] = 0x01b7,
1228 	},
1229 	[ C(OP_WRITE) ] = {
1230 		[ C(RESULT_ACCESS) ] = 0x01b7,
1231 		[ C(RESULT_MISS)   ] = 0x01b7,
1232 	},
1233 	[ C(OP_PREFETCH) ] = {
1234 		[ C(RESULT_ACCESS) ] = 0x01b7,
1235 		[ C(RESULT_MISS)   ] = 0x01b7,
1236 	},
1237  },
1238 };
1239 
1240 /*
1241  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1242  * See IA32 SDM Vol 3B 30.6.1.3
1243  */
1244 
1245 #define NHM_DMND_DATA_RD	(1 << 0)
1246 #define NHM_DMND_RFO		(1 << 1)
1247 #define NHM_DMND_IFETCH		(1 << 2)
1248 #define NHM_DMND_WB		(1 << 3)
1249 #define NHM_PF_DATA_RD		(1 << 4)
1250 #define NHM_PF_DATA_RFO		(1 << 5)
1251 #define NHM_PF_IFETCH		(1 << 6)
1252 #define NHM_OFFCORE_OTHER	(1 << 7)
1253 #define NHM_UNCORE_HIT		(1 << 8)
1254 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1255 #define NHM_OTHER_CORE_HITM	(1 << 10)
1256         			/* reserved */
1257 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1258 #define NHM_REMOTE_DRAM		(1 << 13)
1259 #define NHM_LOCAL_DRAM		(1 << 14)
1260 #define NHM_NON_DRAM		(1 << 15)
1261 
1262 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1263 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1264 
1265 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1266 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1267 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1268 
1269 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1270 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1271 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1272 
1273 static __initconst const u64 nehalem_hw_cache_extra_regs
1274 				[PERF_COUNT_HW_CACHE_MAX]
1275 				[PERF_COUNT_HW_CACHE_OP_MAX]
1276 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1277 {
1278  [ C(LL  ) ] = {
1279 	[ C(OP_READ) ] = {
1280 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1281 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1282 	},
1283 	[ C(OP_WRITE) ] = {
1284 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1285 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1286 	},
1287 	[ C(OP_PREFETCH) ] = {
1288 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1289 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1290 	},
1291  },
1292  [ C(NODE) ] = {
1293 	[ C(OP_READ) ] = {
1294 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1295 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1296 	},
1297 	[ C(OP_WRITE) ] = {
1298 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1299 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1300 	},
1301 	[ C(OP_PREFETCH) ] = {
1302 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1303 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1304 	},
1305  },
1306 };
1307 
1308 static __initconst const u64 nehalem_hw_cache_event_ids
1309 				[PERF_COUNT_HW_CACHE_MAX]
1310 				[PERF_COUNT_HW_CACHE_OP_MAX]
1311 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1312 {
1313  [ C(L1D) ] = {
1314 	[ C(OP_READ) ] = {
1315 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1316 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1317 	},
1318 	[ C(OP_WRITE) ] = {
1319 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1320 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1321 	},
1322 	[ C(OP_PREFETCH) ] = {
1323 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1324 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1325 	},
1326  },
1327  [ C(L1I ) ] = {
1328 	[ C(OP_READ) ] = {
1329 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1330 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1331 	},
1332 	[ C(OP_WRITE) ] = {
1333 		[ C(RESULT_ACCESS) ] = -1,
1334 		[ C(RESULT_MISS)   ] = -1,
1335 	},
1336 	[ C(OP_PREFETCH) ] = {
1337 		[ C(RESULT_ACCESS) ] = 0x0,
1338 		[ C(RESULT_MISS)   ] = 0x0,
1339 	},
1340  },
1341  [ C(LL  ) ] = {
1342 	[ C(OP_READ) ] = {
1343 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1344 		[ C(RESULT_ACCESS) ] = 0x01b7,
1345 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1346 		[ C(RESULT_MISS)   ] = 0x01b7,
1347 	},
1348 	/*
1349 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1350 	 * on RFO.
1351 	 */
1352 	[ C(OP_WRITE) ] = {
1353 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1354 		[ C(RESULT_ACCESS) ] = 0x01b7,
1355 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1356 		[ C(RESULT_MISS)   ] = 0x01b7,
1357 	},
1358 	[ C(OP_PREFETCH) ] = {
1359 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1360 		[ C(RESULT_ACCESS) ] = 0x01b7,
1361 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1362 		[ C(RESULT_MISS)   ] = 0x01b7,
1363 	},
1364  },
1365  [ C(DTLB) ] = {
1366 	[ C(OP_READ) ] = {
1367 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1368 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1369 	},
1370 	[ C(OP_WRITE) ] = {
1371 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1372 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1373 	},
1374 	[ C(OP_PREFETCH) ] = {
1375 		[ C(RESULT_ACCESS) ] = 0x0,
1376 		[ C(RESULT_MISS)   ] = 0x0,
1377 	},
1378  },
1379  [ C(ITLB) ] = {
1380 	[ C(OP_READ) ] = {
1381 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1382 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1383 	},
1384 	[ C(OP_WRITE) ] = {
1385 		[ C(RESULT_ACCESS) ] = -1,
1386 		[ C(RESULT_MISS)   ] = -1,
1387 	},
1388 	[ C(OP_PREFETCH) ] = {
1389 		[ C(RESULT_ACCESS) ] = -1,
1390 		[ C(RESULT_MISS)   ] = -1,
1391 	},
1392  },
1393  [ C(BPU ) ] = {
1394 	[ C(OP_READ) ] = {
1395 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1396 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1397 	},
1398 	[ C(OP_WRITE) ] = {
1399 		[ C(RESULT_ACCESS) ] = -1,
1400 		[ C(RESULT_MISS)   ] = -1,
1401 	},
1402 	[ C(OP_PREFETCH) ] = {
1403 		[ C(RESULT_ACCESS) ] = -1,
1404 		[ C(RESULT_MISS)   ] = -1,
1405 	},
1406  },
1407  [ C(NODE) ] = {
1408 	[ C(OP_READ) ] = {
1409 		[ C(RESULT_ACCESS) ] = 0x01b7,
1410 		[ C(RESULT_MISS)   ] = 0x01b7,
1411 	},
1412 	[ C(OP_WRITE) ] = {
1413 		[ C(RESULT_ACCESS) ] = 0x01b7,
1414 		[ C(RESULT_MISS)   ] = 0x01b7,
1415 	},
1416 	[ C(OP_PREFETCH) ] = {
1417 		[ C(RESULT_ACCESS) ] = 0x01b7,
1418 		[ C(RESULT_MISS)   ] = 0x01b7,
1419 	},
1420  },
1421 };
1422 
1423 static __initconst const u64 core2_hw_cache_event_ids
1424 				[PERF_COUNT_HW_CACHE_MAX]
1425 				[PERF_COUNT_HW_CACHE_OP_MAX]
1426 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1427 {
1428  [ C(L1D) ] = {
1429 	[ C(OP_READ) ] = {
1430 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1431 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1432 	},
1433 	[ C(OP_WRITE) ] = {
1434 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1435 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1436 	},
1437 	[ C(OP_PREFETCH) ] = {
1438 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1439 		[ C(RESULT_MISS)   ] = 0,
1440 	},
1441  },
1442  [ C(L1I ) ] = {
1443 	[ C(OP_READ) ] = {
1444 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1445 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1446 	},
1447 	[ C(OP_WRITE) ] = {
1448 		[ C(RESULT_ACCESS) ] = -1,
1449 		[ C(RESULT_MISS)   ] = -1,
1450 	},
1451 	[ C(OP_PREFETCH) ] = {
1452 		[ C(RESULT_ACCESS) ] = 0,
1453 		[ C(RESULT_MISS)   ] = 0,
1454 	},
1455  },
1456  [ C(LL  ) ] = {
1457 	[ C(OP_READ) ] = {
1458 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1459 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1460 	},
1461 	[ C(OP_WRITE) ] = {
1462 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1463 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1464 	},
1465 	[ C(OP_PREFETCH) ] = {
1466 		[ C(RESULT_ACCESS) ] = 0,
1467 		[ C(RESULT_MISS)   ] = 0,
1468 	},
1469  },
1470  [ C(DTLB) ] = {
1471 	[ C(OP_READ) ] = {
1472 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1473 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1474 	},
1475 	[ C(OP_WRITE) ] = {
1476 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1477 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1478 	},
1479 	[ C(OP_PREFETCH) ] = {
1480 		[ C(RESULT_ACCESS) ] = 0,
1481 		[ C(RESULT_MISS)   ] = 0,
1482 	},
1483  },
1484  [ C(ITLB) ] = {
1485 	[ C(OP_READ) ] = {
1486 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1487 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1488 	},
1489 	[ C(OP_WRITE) ] = {
1490 		[ C(RESULT_ACCESS) ] = -1,
1491 		[ C(RESULT_MISS)   ] = -1,
1492 	},
1493 	[ C(OP_PREFETCH) ] = {
1494 		[ C(RESULT_ACCESS) ] = -1,
1495 		[ C(RESULT_MISS)   ] = -1,
1496 	},
1497  },
1498  [ C(BPU ) ] = {
1499 	[ C(OP_READ) ] = {
1500 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1501 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1502 	},
1503 	[ C(OP_WRITE) ] = {
1504 		[ C(RESULT_ACCESS) ] = -1,
1505 		[ C(RESULT_MISS)   ] = -1,
1506 	},
1507 	[ C(OP_PREFETCH) ] = {
1508 		[ C(RESULT_ACCESS) ] = -1,
1509 		[ C(RESULT_MISS)   ] = -1,
1510 	},
1511  },
1512 };
1513 
1514 static __initconst const u64 atom_hw_cache_event_ids
1515 				[PERF_COUNT_HW_CACHE_MAX]
1516 				[PERF_COUNT_HW_CACHE_OP_MAX]
1517 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1518 {
1519  [ C(L1D) ] = {
1520 	[ C(OP_READ) ] = {
1521 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1522 		[ C(RESULT_MISS)   ] = 0,
1523 	},
1524 	[ C(OP_WRITE) ] = {
1525 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1526 		[ C(RESULT_MISS)   ] = 0,
1527 	},
1528 	[ C(OP_PREFETCH) ] = {
1529 		[ C(RESULT_ACCESS) ] = 0x0,
1530 		[ C(RESULT_MISS)   ] = 0,
1531 	},
1532  },
1533  [ C(L1I ) ] = {
1534 	[ C(OP_READ) ] = {
1535 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1536 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1537 	},
1538 	[ C(OP_WRITE) ] = {
1539 		[ C(RESULT_ACCESS) ] = -1,
1540 		[ C(RESULT_MISS)   ] = -1,
1541 	},
1542 	[ C(OP_PREFETCH) ] = {
1543 		[ C(RESULT_ACCESS) ] = 0,
1544 		[ C(RESULT_MISS)   ] = 0,
1545 	},
1546  },
1547  [ C(LL  ) ] = {
1548 	[ C(OP_READ) ] = {
1549 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1550 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1551 	},
1552 	[ C(OP_WRITE) ] = {
1553 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1554 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1555 	},
1556 	[ C(OP_PREFETCH) ] = {
1557 		[ C(RESULT_ACCESS) ] = 0,
1558 		[ C(RESULT_MISS)   ] = 0,
1559 	},
1560  },
1561  [ C(DTLB) ] = {
1562 	[ C(OP_READ) ] = {
1563 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1564 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1565 	},
1566 	[ C(OP_WRITE) ] = {
1567 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1568 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1569 	},
1570 	[ C(OP_PREFETCH) ] = {
1571 		[ C(RESULT_ACCESS) ] = 0,
1572 		[ C(RESULT_MISS)   ] = 0,
1573 	},
1574  },
1575  [ C(ITLB) ] = {
1576 	[ C(OP_READ) ] = {
1577 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1578 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1579 	},
1580 	[ C(OP_WRITE) ] = {
1581 		[ C(RESULT_ACCESS) ] = -1,
1582 		[ C(RESULT_MISS)   ] = -1,
1583 	},
1584 	[ C(OP_PREFETCH) ] = {
1585 		[ C(RESULT_ACCESS) ] = -1,
1586 		[ C(RESULT_MISS)   ] = -1,
1587 	},
1588  },
1589  [ C(BPU ) ] = {
1590 	[ C(OP_READ) ] = {
1591 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1592 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1593 	},
1594 	[ C(OP_WRITE) ] = {
1595 		[ C(RESULT_ACCESS) ] = -1,
1596 		[ C(RESULT_MISS)   ] = -1,
1597 	},
1598 	[ C(OP_PREFETCH) ] = {
1599 		[ C(RESULT_ACCESS) ] = -1,
1600 		[ C(RESULT_MISS)   ] = -1,
1601 	},
1602  },
1603 };
1604 
1605 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1606 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1607 /* no_alloc_cycles.not_delivered */
1608 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1609 	       "event=0xca,umask=0x50");
1610 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1611 /* uops_retired.all */
1612 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1613 	       "event=0xc2,umask=0x10");
1614 /* uops_retired.all */
1615 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1616 	       "event=0xc2,umask=0x10");
1617 
1618 static struct attribute *slm_events_attrs[] = {
1619 	EVENT_PTR(td_total_slots_slm),
1620 	EVENT_PTR(td_total_slots_scale_slm),
1621 	EVENT_PTR(td_fetch_bubbles_slm),
1622 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1623 	EVENT_PTR(td_slots_issued_slm),
1624 	EVENT_PTR(td_slots_retired_slm),
1625 	NULL
1626 };
1627 
1628 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1629 {
1630 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1631 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1632 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1633 	EVENT_EXTRA_END
1634 };
1635 
1636 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1637 #define SLM_DMND_WRITE		SNB_DMND_RFO
1638 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1639 
1640 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1641 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1642 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1643 
1644 static __initconst const u64 slm_hw_cache_extra_regs
1645 				[PERF_COUNT_HW_CACHE_MAX]
1646 				[PERF_COUNT_HW_CACHE_OP_MAX]
1647 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1648 {
1649  [ C(LL  ) ] = {
1650 	[ C(OP_READ) ] = {
1651 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1652 		[ C(RESULT_MISS)   ] = 0,
1653 	},
1654 	[ C(OP_WRITE) ] = {
1655 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1656 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1657 	},
1658 	[ C(OP_PREFETCH) ] = {
1659 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1660 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1661 	},
1662  },
1663 };
1664 
1665 static __initconst const u64 slm_hw_cache_event_ids
1666 				[PERF_COUNT_HW_CACHE_MAX]
1667 				[PERF_COUNT_HW_CACHE_OP_MAX]
1668 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1669 {
1670  [ C(L1D) ] = {
1671 	[ C(OP_READ) ] = {
1672 		[ C(RESULT_ACCESS) ] = 0,
1673 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1674 	},
1675 	[ C(OP_WRITE) ] = {
1676 		[ C(RESULT_ACCESS) ] = 0,
1677 		[ C(RESULT_MISS)   ] = 0,
1678 	},
1679 	[ C(OP_PREFETCH) ] = {
1680 		[ C(RESULT_ACCESS) ] = 0,
1681 		[ C(RESULT_MISS)   ] = 0,
1682 	},
1683  },
1684  [ C(L1I ) ] = {
1685 	[ C(OP_READ) ] = {
1686 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1687 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1688 	},
1689 	[ C(OP_WRITE) ] = {
1690 		[ C(RESULT_ACCESS) ] = -1,
1691 		[ C(RESULT_MISS)   ] = -1,
1692 	},
1693 	[ C(OP_PREFETCH) ] = {
1694 		[ C(RESULT_ACCESS) ] = 0,
1695 		[ C(RESULT_MISS)   ] = 0,
1696 	},
1697  },
1698  [ C(LL  ) ] = {
1699 	[ C(OP_READ) ] = {
1700 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1701 		[ C(RESULT_ACCESS) ] = 0x01b7,
1702 		[ C(RESULT_MISS)   ] = 0,
1703 	},
1704 	[ C(OP_WRITE) ] = {
1705 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1706 		[ C(RESULT_ACCESS) ] = 0x01b7,
1707 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1708 		[ C(RESULT_MISS)   ] = 0x01b7,
1709 	},
1710 	[ C(OP_PREFETCH) ] = {
1711 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1712 		[ C(RESULT_ACCESS) ] = 0x01b7,
1713 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1714 		[ C(RESULT_MISS)   ] = 0x01b7,
1715 	},
1716  },
1717  [ C(DTLB) ] = {
1718 	[ C(OP_READ) ] = {
1719 		[ C(RESULT_ACCESS) ] = 0,
1720 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1721 	},
1722 	[ C(OP_WRITE) ] = {
1723 		[ C(RESULT_ACCESS) ] = 0,
1724 		[ C(RESULT_MISS)   ] = 0,
1725 	},
1726 	[ C(OP_PREFETCH) ] = {
1727 		[ C(RESULT_ACCESS) ] = 0,
1728 		[ C(RESULT_MISS)   ] = 0,
1729 	},
1730  },
1731  [ C(ITLB) ] = {
1732 	[ C(OP_READ) ] = {
1733 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1734 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1735 	},
1736 	[ C(OP_WRITE) ] = {
1737 		[ C(RESULT_ACCESS) ] = -1,
1738 		[ C(RESULT_MISS)   ] = -1,
1739 	},
1740 	[ C(OP_PREFETCH) ] = {
1741 		[ C(RESULT_ACCESS) ] = -1,
1742 		[ C(RESULT_MISS)   ] = -1,
1743 	},
1744  },
1745  [ C(BPU ) ] = {
1746 	[ C(OP_READ) ] = {
1747 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1748 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1749 	},
1750 	[ C(OP_WRITE) ] = {
1751 		[ C(RESULT_ACCESS) ] = -1,
1752 		[ C(RESULT_MISS)   ] = -1,
1753 	},
1754 	[ C(OP_PREFETCH) ] = {
1755 		[ C(RESULT_ACCESS) ] = -1,
1756 		[ C(RESULT_MISS)   ] = -1,
1757 	},
1758  },
1759 };
1760 
1761 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1762 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1763 /* UOPS_NOT_DELIVERED.ANY */
1764 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1765 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1766 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1767 /* UOPS_RETIRED.ANY */
1768 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1769 /* UOPS_ISSUED.ANY */
1770 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1771 
1772 static struct attribute *glm_events_attrs[] = {
1773 	EVENT_PTR(td_total_slots_glm),
1774 	EVENT_PTR(td_total_slots_scale_glm),
1775 	EVENT_PTR(td_fetch_bubbles_glm),
1776 	EVENT_PTR(td_recovery_bubbles_glm),
1777 	EVENT_PTR(td_slots_issued_glm),
1778 	EVENT_PTR(td_slots_retired_glm),
1779 	NULL
1780 };
1781 
1782 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1783 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1784 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1785 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1786 	EVENT_EXTRA_END
1787 };
1788 
1789 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1790 #define GLM_DEMAND_RFO			BIT_ULL(1)
1791 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1792 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1793 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1794 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1795 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1796 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1797 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1798 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1799 
1800 static __initconst const u64 glm_hw_cache_event_ids
1801 				[PERF_COUNT_HW_CACHE_MAX]
1802 				[PERF_COUNT_HW_CACHE_OP_MAX]
1803 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1804 	[C(L1D)] = {
1805 		[C(OP_READ)] = {
1806 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1807 			[C(RESULT_MISS)]	= 0x0,
1808 		},
1809 		[C(OP_WRITE)] = {
1810 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1811 			[C(RESULT_MISS)]	= 0x0,
1812 		},
1813 		[C(OP_PREFETCH)] = {
1814 			[C(RESULT_ACCESS)]	= 0x0,
1815 			[C(RESULT_MISS)]	= 0x0,
1816 		},
1817 	},
1818 	[C(L1I)] = {
1819 		[C(OP_READ)] = {
1820 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1821 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1822 		},
1823 		[C(OP_WRITE)] = {
1824 			[C(RESULT_ACCESS)]	= -1,
1825 			[C(RESULT_MISS)]	= -1,
1826 		},
1827 		[C(OP_PREFETCH)] = {
1828 			[C(RESULT_ACCESS)]	= 0x0,
1829 			[C(RESULT_MISS)]	= 0x0,
1830 		},
1831 	},
1832 	[C(LL)] = {
1833 		[C(OP_READ)] = {
1834 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1835 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1836 		},
1837 		[C(OP_WRITE)] = {
1838 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1839 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1840 		},
1841 		[C(OP_PREFETCH)] = {
1842 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1843 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1844 		},
1845 	},
1846 	[C(DTLB)] = {
1847 		[C(OP_READ)] = {
1848 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1849 			[C(RESULT_MISS)]	= 0x0,
1850 		},
1851 		[C(OP_WRITE)] = {
1852 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1853 			[C(RESULT_MISS)]	= 0x0,
1854 		},
1855 		[C(OP_PREFETCH)] = {
1856 			[C(RESULT_ACCESS)]	= 0x0,
1857 			[C(RESULT_MISS)]	= 0x0,
1858 		},
1859 	},
1860 	[C(ITLB)] = {
1861 		[C(OP_READ)] = {
1862 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1863 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1864 		},
1865 		[C(OP_WRITE)] = {
1866 			[C(RESULT_ACCESS)]	= -1,
1867 			[C(RESULT_MISS)]	= -1,
1868 		},
1869 		[C(OP_PREFETCH)] = {
1870 			[C(RESULT_ACCESS)]	= -1,
1871 			[C(RESULT_MISS)]	= -1,
1872 		},
1873 	},
1874 	[C(BPU)] = {
1875 		[C(OP_READ)] = {
1876 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1877 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1878 		},
1879 		[C(OP_WRITE)] = {
1880 			[C(RESULT_ACCESS)]	= -1,
1881 			[C(RESULT_MISS)]	= -1,
1882 		},
1883 		[C(OP_PREFETCH)] = {
1884 			[C(RESULT_ACCESS)]	= -1,
1885 			[C(RESULT_MISS)]	= -1,
1886 		},
1887 	},
1888 };
1889 
1890 static __initconst const u64 glm_hw_cache_extra_regs
1891 				[PERF_COUNT_HW_CACHE_MAX]
1892 				[PERF_COUNT_HW_CACHE_OP_MAX]
1893 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1894 	[C(LL)] = {
1895 		[C(OP_READ)] = {
1896 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1897 						  GLM_LLC_ACCESS,
1898 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1899 						  GLM_LLC_MISS,
1900 		},
1901 		[C(OP_WRITE)] = {
1902 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1903 						  GLM_LLC_ACCESS,
1904 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1905 						  GLM_LLC_MISS,
1906 		},
1907 		[C(OP_PREFETCH)] = {
1908 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1909 						  GLM_LLC_ACCESS,
1910 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1911 						  GLM_LLC_MISS,
1912 		},
1913 	},
1914 };
1915 
1916 static __initconst const u64 glp_hw_cache_event_ids
1917 				[PERF_COUNT_HW_CACHE_MAX]
1918 				[PERF_COUNT_HW_CACHE_OP_MAX]
1919 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1920 	[C(L1D)] = {
1921 		[C(OP_READ)] = {
1922 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1923 			[C(RESULT_MISS)]	= 0x0,
1924 		},
1925 		[C(OP_WRITE)] = {
1926 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1927 			[C(RESULT_MISS)]	= 0x0,
1928 		},
1929 		[C(OP_PREFETCH)] = {
1930 			[C(RESULT_ACCESS)]	= 0x0,
1931 			[C(RESULT_MISS)]	= 0x0,
1932 		},
1933 	},
1934 	[C(L1I)] = {
1935 		[C(OP_READ)] = {
1936 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1937 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1938 		},
1939 		[C(OP_WRITE)] = {
1940 			[C(RESULT_ACCESS)]	= -1,
1941 			[C(RESULT_MISS)]	= -1,
1942 		},
1943 		[C(OP_PREFETCH)] = {
1944 			[C(RESULT_ACCESS)]	= 0x0,
1945 			[C(RESULT_MISS)]	= 0x0,
1946 		},
1947 	},
1948 	[C(LL)] = {
1949 		[C(OP_READ)] = {
1950 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1951 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1952 		},
1953 		[C(OP_WRITE)] = {
1954 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1955 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1956 		},
1957 		[C(OP_PREFETCH)] = {
1958 			[C(RESULT_ACCESS)]	= 0x0,
1959 			[C(RESULT_MISS)]	= 0x0,
1960 		},
1961 	},
1962 	[C(DTLB)] = {
1963 		[C(OP_READ)] = {
1964 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1965 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1966 		},
1967 		[C(OP_WRITE)] = {
1968 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1969 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1970 		},
1971 		[C(OP_PREFETCH)] = {
1972 			[C(RESULT_ACCESS)]	= 0x0,
1973 			[C(RESULT_MISS)]	= 0x0,
1974 		},
1975 	},
1976 	[C(ITLB)] = {
1977 		[C(OP_READ)] = {
1978 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1979 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1980 		},
1981 		[C(OP_WRITE)] = {
1982 			[C(RESULT_ACCESS)]	= -1,
1983 			[C(RESULT_MISS)]	= -1,
1984 		},
1985 		[C(OP_PREFETCH)] = {
1986 			[C(RESULT_ACCESS)]	= -1,
1987 			[C(RESULT_MISS)]	= -1,
1988 		},
1989 	},
1990 	[C(BPU)] = {
1991 		[C(OP_READ)] = {
1992 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1993 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1994 		},
1995 		[C(OP_WRITE)] = {
1996 			[C(RESULT_ACCESS)]	= -1,
1997 			[C(RESULT_MISS)]	= -1,
1998 		},
1999 		[C(OP_PREFETCH)] = {
2000 			[C(RESULT_ACCESS)]	= -1,
2001 			[C(RESULT_MISS)]	= -1,
2002 		},
2003 	},
2004 };
2005 
2006 static __initconst const u64 glp_hw_cache_extra_regs
2007 				[PERF_COUNT_HW_CACHE_MAX]
2008 				[PERF_COUNT_HW_CACHE_OP_MAX]
2009 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2010 	[C(LL)] = {
2011 		[C(OP_READ)] = {
2012 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2013 						  GLM_LLC_ACCESS,
2014 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2015 						  GLM_LLC_MISS,
2016 		},
2017 		[C(OP_WRITE)] = {
2018 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2019 						  GLM_LLC_ACCESS,
2020 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2021 						  GLM_LLC_MISS,
2022 		},
2023 		[C(OP_PREFETCH)] = {
2024 			[C(RESULT_ACCESS)]	= 0x0,
2025 			[C(RESULT_MISS)]	= 0x0,
2026 		},
2027 	},
2028 };
2029 
2030 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2031 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2032 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2033 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2034 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2035 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2036 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2037 
2038 static __initconst const u64 tnt_hw_cache_extra_regs
2039 				[PERF_COUNT_HW_CACHE_MAX]
2040 				[PERF_COUNT_HW_CACHE_OP_MAX]
2041 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2042 	[C(LL)] = {
2043 		[C(OP_READ)] = {
2044 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2045 						  TNT_LLC_ACCESS,
2046 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2047 						  TNT_LLC_MISS,
2048 		},
2049 		[C(OP_WRITE)] = {
2050 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2051 						  TNT_LLC_ACCESS,
2052 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2053 						  TNT_LLC_MISS,
2054 		},
2055 		[C(OP_PREFETCH)] = {
2056 			[C(RESULT_ACCESS)]	= 0x0,
2057 			[C(RESULT_MISS)]	= 0x0,
2058 		},
2059 	},
2060 };
2061 
2062 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2063 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2064 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2065 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2066 
2067 static struct attribute *tnt_events_attrs[] = {
2068 	EVENT_PTR(td_fe_bound_tnt),
2069 	EVENT_PTR(td_retiring_tnt),
2070 	EVENT_PTR(td_bad_spec_tnt),
2071 	EVENT_PTR(td_be_bound_tnt),
2072 	NULL,
2073 };
2074 
2075 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2076 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2077 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2078 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2079 	EVENT_EXTRA_END
2080 };
2081 
2082 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2083 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2084 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2085 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2086 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2087 	EVENT_EXTRA_END
2088 };
2089 
2090 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2091 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2092 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2093 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2094 #define KNL_DDR_LOCAL		BIT_ULL(23)
2095 #define KNL_DDR_FAR		BIT_ULL(24)
2096 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2097 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2098 #define KNL_L2_READ		SLM_DMND_READ
2099 #define KNL_L2_WRITE		SLM_DMND_WRITE
2100 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2101 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2102 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2103 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2104 						  SNB_NON_DRAM)
2105 
2106 static __initconst const u64 knl_hw_cache_extra_regs
2107 				[PERF_COUNT_HW_CACHE_MAX]
2108 				[PERF_COUNT_HW_CACHE_OP_MAX]
2109 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2110 	[C(LL)] = {
2111 		[C(OP_READ)] = {
2112 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2113 			[C(RESULT_MISS)]   = 0,
2114 		},
2115 		[C(OP_WRITE)] = {
2116 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2117 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2118 		},
2119 		[C(OP_PREFETCH)] = {
2120 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2121 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2122 		},
2123 	},
2124 };
2125 
2126 /*
2127  * Used from PMIs where the LBRs are already disabled.
2128  *
2129  * This function could be called consecutively. It is required to remain in
2130  * disabled state if called consecutively.
2131  *
2132  * During consecutive calls, the same disable value will be written to related
2133  * registers, so the PMU state remains unchanged.
2134  *
2135  * intel_bts events don't coexist with intel PMU's BTS events because of
2136  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2137  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2138  *
2139  * Avoid PEBS_ENABLE MSR access in PMIs.
2140  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2141  * It doesn't matter if the PEBS is enabled or not.
2142  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2143  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2144  * However, there are some cases which may change PEBS status, e.g. PMI
2145  * throttle. The PEBS_ENABLE should be updated where the status changes.
2146  */
__intel_pmu_disable_all(void)2147 static void __intel_pmu_disable_all(void)
2148 {
2149 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2150 
2151 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2152 
2153 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2154 		intel_pmu_disable_bts();
2155 }
2156 
intel_pmu_disable_all(void)2157 static void intel_pmu_disable_all(void)
2158 {
2159 	__intel_pmu_disable_all();
2160 	intel_pmu_pebs_disable_all();
2161 	intel_pmu_lbr_disable_all();
2162 }
2163 
__intel_pmu_enable_all(int added,bool pmi)2164 static void __intel_pmu_enable_all(int added, bool pmi)
2165 {
2166 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2167 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2168 
2169 	intel_pmu_lbr_enable_all(pmi);
2170 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2171 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2172 
2173 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2174 		struct perf_event *event =
2175 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2176 
2177 		if (WARN_ON_ONCE(!event))
2178 			return;
2179 
2180 		intel_pmu_enable_bts(event->hw.config);
2181 	}
2182 }
2183 
intel_pmu_enable_all(int added)2184 static void intel_pmu_enable_all(int added)
2185 {
2186 	intel_pmu_pebs_enable_all();
2187 	__intel_pmu_enable_all(added, false);
2188 }
2189 
2190 /*
2191  * Workaround for:
2192  *   Intel Errata AAK100 (model 26)
2193  *   Intel Errata AAP53  (model 30)
2194  *   Intel Errata BD53   (model 44)
2195  *
2196  * The official story:
2197  *   These chips need to be 'reset' when adding counters by programming the
2198  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2199  *   in sequence on the same PMC or on different PMCs.
2200  *
2201  * In practice it appears some of these events do in fact count, and
2202  * we need to program all 4 events.
2203  */
intel_pmu_nhm_workaround(void)2204 static void intel_pmu_nhm_workaround(void)
2205 {
2206 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2207 	static const unsigned long nhm_magic[4] = {
2208 		0x4300B5,
2209 		0x4300D2,
2210 		0x4300B1,
2211 		0x4300B1
2212 	};
2213 	struct perf_event *event;
2214 	int i;
2215 
2216 	/*
2217 	 * The Errata requires below steps:
2218 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2219 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2220 	 *    the corresponding PMCx;
2221 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2222 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2223 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2224 	 */
2225 
2226 	/*
2227 	 * The real steps we choose are a little different from above.
2228 	 * A) To reduce MSR operations, we don't run step 1) as they
2229 	 *    are already cleared before this function is called;
2230 	 * B) Call x86_perf_event_update to save PMCx before configuring
2231 	 *    PERFEVTSELx with magic number;
2232 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2233 	 *    not used currently.
2234 	 * D) Call x86_perf_event_set_period to restore PMCx;
2235 	 */
2236 
2237 	/* We always operate 4 pairs of PERF Counters */
2238 	for (i = 0; i < 4; i++) {
2239 		event = cpuc->events[i];
2240 		if (event)
2241 			x86_perf_event_update(event);
2242 	}
2243 
2244 	for (i = 0; i < 4; i++) {
2245 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2246 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2247 	}
2248 
2249 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2250 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2251 
2252 	for (i = 0; i < 4; i++) {
2253 		event = cpuc->events[i];
2254 
2255 		if (event) {
2256 			x86_perf_event_set_period(event);
2257 			__x86_pmu_enable_event(&event->hw,
2258 					ARCH_PERFMON_EVENTSEL_ENABLE);
2259 		} else
2260 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2261 	}
2262 }
2263 
intel_pmu_nhm_enable_all(int added)2264 static void intel_pmu_nhm_enable_all(int added)
2265 {
2266 	if (added)
2267 		intel_pmu_nhm_workaround();
2268 	intel_pmu_enable_all(added);
2269 }
2270 
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2271 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2272 {
2273 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2274 
2275 	if (cpuc->tfa_shadow != val) {
2276 		cpuc->tfa_shadow = val;
2277 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2278 	}
2279 }
2280 
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2281 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2282 {
2283 	/*
2284 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2285 	 */
2286 	if (cntr == 3)
2287 		intel_set_tfa(cpuc, true);
2288 }
2289 
intel_tfa_pmu_enable_all(int added)2290 static void intel_tfa_pmu_enable_all(int added)
2291 {
2292 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2293 
2294 	/*
2295 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2296 	 * clear TFA.
2297 	 */
2298 	if (!test_bit(3, cpuc->active_mask))
2299 		intel_set_tfa(cpuc, false);
2300 
2301 	intel_pmu_enable_all(added);
2302 }
2303 
intel_pmu_get_status(void)2304 static inline u64 intel_pmu_get_status(void)
2305 {
2306 	u64 status;
2307 
2308 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2309 
2310 	return status;
2311 }
2312 
intel_pmu_ack_status(u64 ack)2313 static inline void intel_pmu_ack_status(u64 ack)
2314 {
2315 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2316 }
2317 
event_is_checkpointed(struct perf_event * event)2318 static inline bool event_is_checkpointed(struct perf_event *event)
2319 {
2320 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2321 }
2322 
intel_set_masks(struct perf_event * event,int idx)2323 static inline void intel_set_masks(struct perf_event *event, int idx)
2324 {
2325 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2326 
2327 	if (event->attr.exclude_host)
2328 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2329 	if (event->attr.exclude_guest)
2330 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2331 	if (event_is_checkpointed(event))
2332 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2333 }
2334 
intel_clear_masks(struct perf_event * event,int idx)2335 static inline void intel_clear_masks(struct perf_event *event, int idx)
2336 {
2337 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2338 
2339 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2340 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2341 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2342 }
2343 
intel_pmu_disable_fixed(struct perf_event * event)2344 static void intel_pmu_disable_fixed(struct perf_event *event)
2345 {
2346 	struct hw_perf_event *hwc = &event->hw;
2347 	u64 ctrl_val, mask;
2348 	int idx = hwc->idx;
2349 
2350 	if (is_topdown_idx(idx)) {
2351 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2352 
2353 		/*
2354 		 * When there are other active TopDown events,
2355 		 * don't disable the fixed counter 3.
2356 		 */
2357 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2358 			return;
2359 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2360 	}
2361 
2362 	intel_clear_masks(event, idx);
2363 
2364 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2365 	rdmsrl(hwc->config_base, ctrl_val);
2366 	ctrl_val &= ~mask;
2367 	wrmsrl(hwc->config_base, ctrl_val);
2368 }
2369 
intel_pmu_disable_event(struct perf_event * event)2370 static void intel_pmu_disable_event(struct perf_event *event)
2371 {
2372 	struct hw_perf_event *hwc = &event->hw;
2373 	int idx = hwc->idx;
2374 
2375 	switch (idx) {
2376 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2377 		intel_clear_masks(event, idx);
2378 		x86_pmu_disable_event(event);
2379 		break;
2380 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2381 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2382 		intel_pmu_disable_fixed(event);
2383 		break;
2384 	case INTEL_PMC_IDX_FIXED_BTS:
2385 		intel_pmu_disable_bts();
2386 		intel_pmu_drain_bts_buffer();
2387 		return;
2388 	case INTEL_PMC_IDX_FIXED_VLBR:
2389 		intel_clear_masks(event, idx);
2390 		break;
2391 	default:
2392 		intel_clear_masks(event, idx);
2393 		pr_warn("Failed to disable the event with invalid index %d\n",
2394 			idx);
2395 		return;
2396 	}
2397 
2398 	/*
2399 	 * Needs to be called after x86_pmu_disable_event,
2400 	 * so we don't trigger the event without PEBS bit set.
2401 	 */
2402 	if (unlikely(event->attr.precise_ip))
2403 		intel_pmu_pebs_disable(event);
2404 }
2405 
intel_pmu_del_event(struct perf_event * event)2406 static void intel_pmu_del_event(struct perf_event *event)
2407 {
2408 	if (needs_branch_stack(event))
2409 		intel_pmu_lbr_del(event);
2410 	if (event->attr.precise_ip)
2411 		intel_pmu_pebs_del(event);
2412 }
2413 
icl_set_topdown_event_period(struct perf_event * event)2414 static int icl_set_topdown_event_period(struct perf_event *event)
2415 {
2416 	struct hw_perf_event *hwc = &event->hw;
2417 	s64 left = local64_read(&hwc->period_left);
2418 
2419 	/*
2420 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2421 	 * Software should start both registers, PERF_METRICS and fixed
2422 	 * counter 3, from zero.
2423 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2424 	 * After that, both MSRs will be cleared for each read.
2425 	 * Don't need to clear them again.
2426 	 */
2427 	if (left == x86_pmu.max_period) {
2428 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2429 		wrmsrl(MSR_PERF_METRICS, 0);
2430 		hwc->saved_slots = 0;
2431 		hwc->saved_metric = 0;
2432 	}
2433 
2434 	if ((hwc->saved_slots) && is_slots_event(event)) {
2435 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2436 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2437 	}
2438 
2439 	perf_event_update_userpage(event);
2440 
2441 	return 0;
2442 }
2443 
adl_set_topdown_event_period(struct perf_event * event)2444 static int adl_set_topdown_event_period(struct perf_event *event)
2445 {
2446 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2447 
2448 	if (pmu->cpu_type != hybrid_big)
2449 		return 0;
2450 
2451 	return icl_set_topdown_event_period(event);
2452 }
2453 
icl_get_metrics_event_value(u64 metric,u64 slots,int idx)2454 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2455 {
2456 	u32 val;
2457 
2458 	/*
2459 	 * The metric is reported as an 8bit integer fraction
2460 	 * summing up to 0xff.
2461 	 * slots-in-metric = (Metric / 0xff) * slots
2462 	 */
2463 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2464 	return  mul_u64_u32_div(slots, val, 0xff);
2465 }
2466 
icl_get_topdown_value(struct perf_event * event,u64 slots,u64 metrics)2467 static u64 icl_get_topdown_value(struct perf_event *event,
2468 				       u64 slots, u64 metrics)
2469 {
2470 	int idx = event->hw.idx;
2471 	u64 delta;
2472 
2473 	if (is_metric_idx(idx))
2474 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2475 	else
2476 		delta = slots;
2477 
2478 	return delta;
2479 }
2480 
__icl_update_topdown_event(struct perf_event * event,u64 slots,u64 metrics,u64 last_slots,u64 last_metrics)2481 static void __icl_update_topdown_event(struct perf_event *event,
2482 				       u64 slots, u64 metrics,
2483 				       u64 last_slots, u64 last_metrics)
2484 {
2485 	u64 delta, last = 0;
2486 
2487 	delta = icl_get_topdown_value(event, slots, metrics);
2488 	if (last_slots)
2489 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2490 
2491 	/*
2492 	 * The 8bit integer fraction of metric may be not accurate,
2493 	 * especially when the changes is very small.
2494 	 * For example, if only a few bad_spec happens, the fraction
2495 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2496 	 * will be 0 which is definitely less than the last value.
2497 	 * Avoid update event->count for this case.
2498 	 */
2499 	if (delta > last) {
2500 		delta -= last;
2501 		local64_add(delta, &event->count);
2502 	}
2503 }
2504 
update_saved_topdown_regs(struct perf_event * event,u64 slots,u64 metrics,int metric_end)2505 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2506 				      u64 metrics, int metric_end)
2507 {
2508 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2509 	struct perf_event *other;
2510 	int idx;
2511 
2512 	event->hw.saved_slots = slots;
2513 	event->hw.saved_metric = metrics;
2514 
2515 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2516 		if (!is_topdown_idx(idx))
2517 			continue;
2518 		other = cpuc->events[idx];
2519 		other->hw.saved_slots = slots;
2520 		other->hw.saved_metric = metrics;
2521 	}
2522 }
2523 
2524 /*
2525  * Update all active Topdown events.
2526  *
2527  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2528  * modify by a NMI. PMU has to be disabled before calling this function.
2529  */
2530 
intel_update_topdown_event(struct perf_event * event,int metric_end)2531 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2532 {
2533 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2534 	struct perf_event *other;
2535 	u64 slots, metrics;
2536 	bool reset = true;
2537 	int idx;
2538 
2539 	/* read Fixed counter 3 */
2540 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2541 	if (!slots)
2542 		return 0;
2543 
2544 	/* read PERF_METRICS */
2545 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2546 
2547 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2548 		if (!is_topdown_idx(idx))
2549 			continue;
2550 		other = cpuc->events[idx];
2551 		__icl_update_topdown_event(other, slots, metrics,
2552 					   event ? event->hw.saved_slots : 0,
2553 					   event ? event->hw.saved_metric : 0);
2554 	}
2555 
2556 	/*
2557 	 * Check and update this event, which may have been cleared
2558 	 * in active_mask e.g. x86_pmu_stop()
2559 	 */
2560 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2561 		__icl_update_topdown_event(event, slots, metrics,
2562 					   event->hw.saved_slots,
2563 					   event->hw.saved_metric);
2564 
2565 		/*
2566 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2567 		 * then drain the delta, which indicates context switch for
2568 		 * counting.
2569 		 * Save metric and slots for context switch.
2570 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2571 		 * Because the values will be restored in next schedule in.
2572 		 */
2573 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2574 		reset = false;
2575 	}
2576 
2577 	if (reset) {
2578 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2579 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2580 		wrmsrl(MSR_PERF_METRICS, 0);
2581 		if (event)
2582 			update_saved_topdown_regs(event, 0, 0, metric_end);
2583 	}
2584 
2585 	return slots;
2586 }
2587 
icl_update_topdown_event(struct perf_event * event)2588 static u64 icl_update_topdown_event(struct perf_event *event)
2589 {
2590 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2591 						 x86_pmu.num_topdown_events - 1);
2592 }
2593 
adl_update_topdown_event(struct perf_event * event)2594 static u64 adl_update_topdown_event(struct perf_event *event)
2595 {
2596 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2597 
2598 	if (pmu->cpu_type != hybrid_big)
2599 		return 0;
2600 
2601 	return icl_update_topdown_event(event);
2602 }
2603 
2604 
intel_pmu_read_topdown_event(struct perf_event * event)2605 static void intel_pmu_read_topdown_event(struct perf_event *event)
2606 {
2607 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2608 
2609 	/* Only need to call update_topdown_event() once for group read. */
2610 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2611 	    !is_slots_event(event))
2612 		return;
2613 
2614 	perf_pmu_disable(event->pmu);
2615 	x86_pmu.update_topdown_event(event);
2616 	perf_pmu_enable(event->pmu);
2617 }
2618 
intel_pmu_read_event(struct perf_event * event)2619 static void intel_pmu_read_event(struct perf_event *event)
2620 {
2621 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2622 		intel_pmu_auto_reload_read(event);
2623 	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2624 		intel_pmu_read_topdown_event(event);
2625 	else
2626 		x86_perf_event_update(event);
2627 }
2628 
intel_pmu_enable_fixed(struct perf_event * event)2629 static void intel_pmu_enable_fixed(struct perf_event *event)
2630 {
2631 	struct hw_perf_event *hwc = &event->hw;
2632 	u64 ctrl_val, mask, bits = 0;
2633 	int idx = hwc->idx;
2634 
2635 	if (is_topdown_idx(idx)) {
2636 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2637 		/*
2638 		 * When there are other active TopDown events,
2639 		 * don't enable the fixed counter 3 again.
2640 		 */
2641 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2642 			return;
2643 
2644 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2645 	}
2646 
2647 	intel_set_masks(event, idx);
2648 
2649 	/*
2650 	 * Enable IRQ generation (0x8), if not PEBS,
2651 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2652 	 * if requested:
2653 	 */
2654 	if (!event->attr.precise_ip)
2655 		bits |= 0x8;
2656 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2657 		bits |= 0x2;
2658 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2659 		bits |= 0x1;
2660 
2661 	/*
2662 	 * ANY bit is supported in v3 and up
2663 	 */
2664 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2665 		bits |= 0x4;
2666 
2667 	idx -= INTEL_PMC_IDX_FIXED;
2668 	bits <<= (idx * 4);
2669 	mask = 0xfULL << (idx * 4);
2670 
2671 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2672 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2673 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2674 	}
2675 
2676 	rdmsrl(hwc->config_base, ctrl_val);
2677 	ctrl_val &= ~mask;
2678 	ctrl_val |= bits;
2679 	wrmsrl(hwc->config_base, ctrl_val);
2680 }
2681 
intel_pmu_enable_event(struct perf_event * event)2682 static void intel_pmu_enable_event(struct perf_event *event)
2683 {
2684 	struct hw_perf_event *hwc = &event->hw;
2685 	int idx = hwc->idx;
2686 
2687 	if (unlikely(event->attr.precise_ip))
2688 		intel_pmu_pebs_enable(event);
2689 
2690 	switch (idx) {
2691 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2692 		intel_set_masks(event, idx);
2693 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2694 		break;
2695 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2696 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2697 		intel_pmu_enable_fixed(event);
2698 		break;
2699 	case INTEL_PMC_IDX_FIXED_BTS:
2700 		if (!__this_cpu_read(cpu_hw_events.enabled))
2701 			return;
2702 		intel_pmu_enable_bts(hwc->config);
2703 		break;
2704 	case INTEL_PMC_IDX_FIXED_VLBR:
2705 		intel_set_masks(event, idx);
2706 		break;
2707 	default:
2708 		pr_warn("Failed to enable the event with invalid index %d\n",
2709 			idx);
2710 	}
2711 }
2712 
intel_pmu_add_event(struct perf_event * event)2713 static void intel_pmu_add_event(struct perf_event *event)
2714 {
2715 	if (event->attr.precise_ip)
2716 		intel_pmu_pebs_add(event);
2717 	if (needs_branch_stack(event))
2718 		intel_pmu_lbr_add(event);
2719 }
2720 
2721 /*
2722  * Save and restart an expired event. Called by NMI contexts,
2723  * so it has to be careful about preempting normal event ops:
2724  */
intel_pmu_save_and_restart(struct perf_event * event)2725 int intel_pmu_save_and_restart(struct perf_event *event)
2726 {
2727 	x86_perf_event_update(event);
2728 	/*
2729 	 * For a checkpointed counter always reset back to 0.  This
2730 	 * avoids a situation where the counter overflows, aborts the
2731 	 * transaction and is then set back to shortly before the
2732 	 * overflow, and overflows and aborts again.
2733 	 */
2734 	if (unlikely(event_is_checkpointed(event))) {
2735 		/* No race with NMIs because the counter should not be armed */
2736 		wrmsrl(event->hw.event_base, 0);
2737 		local64_set(&event->hw.prev_count, 0);
2738 	}
2739 	return x86_perf_event_set_period(event);
2740 }
2741 
intel_pmu_reset(void)2742 static void intel_pmu_reset(void)
2743 {
2744 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2745 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2746 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2747 	int num_counters = hybrid(cpuc->pmu, num_counters);
2748 	unsigned long flags;
2749 	int idx;
2750 
2751 	if (!num_counters)
2752 		return;
2753 
2754 	local_irq_save(flags);
2755 
2756 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2757 
2758 	for (idx = 0; idx < num_counters; idx++) {
2759 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2760 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2761 	}
2762 	for (idx = 0; idx < num_counters_fixed; idx++) {
2763 		if (fixed_counter_disabled(idx, cpuc->pmu))
2764 			continue;
2765 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2766 	}
2767 
2768 	if (ds)
2769 		ds->bts_index = ds->bts_buffer_base;
2770 
2771 	/* Ack all overflows and disable fixed counters */
2772 	if (x86_pmu.version >= 2) {
2773 		intel_pmu_ack_status(intel_pmu_get_status());
2774 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2775 	}
2776 
2777 	/* Reset LBRs and LBR freezing */
2778 	if (x86_pmu.lbr_nr) {
2779 		update_debugctlmsr(get_debugctlmsr() &
2780 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2781 	}
2782 
2783 	local_irq_restore(flags);
2784 }
2785 
handle_pmi_common(struct pt_regs * regs,u64 status)2786 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2787 {
2788 	struct perf_sample_data data;
2789 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2790 	int bit;
2791 	int handled = 0;
2792 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2793 
2794 	inc_irq_stat(apic_perf_irqs);
2795 
2796 	/*
2797 	 * Ignore a range of extra bits in status that do not indicate
2798 	 * overflow by themselves.
2799 	 */
2800 	status &= ~(GLOBAL_STATUS_COND_CHG |
2801 		    GLOBAL_STATUS_ASIF |
2802 		    GLOBAL_STATUS_LBRS_FROZEN);
2803 	if (!status)
2804 		return 0;
2805 	/*
2806 	 * In case multiple PEBS events are sampled at the same time,
2807 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2808 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2809 	 * having their bits set in the status register. This is a sign
2810 	 * that there was at least one PEBS record pending at the time
2811 	 * of the PMU interrupt. PEBS counters must only be processed
2812 	 * via the drain_pebs() calls and not via the regular sample
2813 	 * processing loop coming after that the function, otherwise
2814 	 * phony regular samples may be generated in the sampling buffer
2815 	 * not marked with the EXACT tag. Another possibility is to have
2816 	 * one PEBS event and at least one non-PEBS event which overflows
2817 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2818 	 * not be set, yet the overflow status bit for the PEBS counter will
2819 	 * be on Skylake.
2820 	 *
2821 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2822 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2823 	 * events via drain_pebs().
2824 	 */
2825 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2826 		status &= ~cpuc->pebs_enabled;
2827 	else
2828 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2829 
2830 	/*
2831 	 * PEBS overflow sets bit 62 in the global status register
2832 	 */
2833 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2834 		u64 pebs_enabled = cpuc->pebs_enabled;
2835 
2836 		handled++;
2837 		x86_pmu.drain_pebs(regs, &data);
2838 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2839 
2840 		/*
2841 		 * PMI throttle may be triggered, which stops the PEBS event.
2842 		 * Although cpuc->pebs_enabled is updated accordingly, the
2843 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2844 		 * cpuc->enabled has been forced to 0 in PMI.
2845 		 * Update the MSR if pebs_enabled is changed.
2846 		 */
2847 		if (pebs_enabled != cpuc->pebs_enabled)
2848 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2849 	}
2850 
2851 	/*
2852 	 * Intel PT
2853 	 */
2854 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2855 		handled++;
2856 		if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2857 			perf_guest_cbs->handle_intel_pt_intr))
2858 			perf_guest_cbs->handle_intel_pt_intr();
2859 		else
2860 			intel_pt_interrupt();
2861 	}
2862 
2863 	/*
2864 	 * Intel Perf metrics
2865 	 */
2866 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2867 		handled++;
2868 		if (x86_pmu.update_topdown_event)
2869 			x86_pmu.update_topdown_event(NULL);
2870 	}
2871 
2872 	/*
2873 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2874 	 * rollback caused by the PMI will have cleared the overflow status
2875 	 * bit. Therefore always force probe these counters.
2876 	 */
2877 	status |= cpuc->intel_cp_status;
2878 
2879 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2880 		struct perf_event *event = cpuc->events[bit];
2881 
2882 		handled++;
2883 
2884 		if (!test_bit(bit, cpuc->active_mask))
2885 			continue;
2886 
2887 		if (!intel_pmu_save_and_restart(event))
2888 			continue;
2889 
2890 		perf_sample_data_init(&data, 0, event->hw.last_period);
2891 
2892 		if (has_branch_stack(event))
2893 			data.br_stack = &cpuc->lbr_stack;
2894 
2895 		if (perf_event_overflow(event, &data, regs))
2896 			x86_pmu_stop(event, 0);
2897 	}
2898 
2899 	return handled;
2900 }
2901 
2902 /*
2903  * This handler is triggered by the local APIC, so the APIC IRQ handling
2904  * rules apply:
2905  */
intel_pmu_handle_irq(struct pt_regs * regs)2906 static int intel_pmu_handle_irq(struct pt_regs *regs)
2907 {
2908 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2909 	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
2910 	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
2911 	int loops;
2912 	u64 status;
2913 	int handled;
2914 	int pmu_enabled;
2915 
2916 	/*
2917 	 * Save the PMU state.
2918 	 * It needs to be restored when leaving the handler.
2919 	 */
2920 	pmu_enabled = cpuc->enabled;
2921 	/*
2922 	 * In general, the early ACK is only applied for old platforms.
2923 	 * For the big core starts from Haswell, the late ACK should be
2924 	 * applied.
2925 	 * For the small core after Tremont, we have to do the ACK right
2926 	 * before re-enabling counters, which is in the middle of the
2927 	 * NMI handler.
2928 	 */
2929 	if (!late_ack && !mid_ack)
2930 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2931 	intel_bts_disable_local();
2932 	cpuc->enabled = 0;
2933 	__intel_pmu_disable_all();
2934 	handled = intel_pmu_drain_bts_buffer();
2935 	handled += intel_bts_interrupt();
2936 	status = intel_pmu_get_status();
2937 	if (!status)
2938 		goto done;
2939 
2940 	loops = 0;
2941 again:
2942 	intel_pmu_lbr_read();
2943 	intel_pmu_ack_status(status);
2944 	if (++loops > 100) {
2945 		static bool warned;
2946 
2947 		if (!warned) {
2948 			WARN(1, "perfevents: irq loop stuck!\n");
2949 			perf_event_print_debug();
2950 			warned = true;
2951 		}
2952 		intel_pmu_reset();
2953 		goto done;
2954 	}
2955 
2956 	handled += handle_pmi_common(regs, status);
2957 
2958 	/*
2959 	 * Repeat if there is more work to be done:
2960 	 */
2961 	status = intel_pmu_get_status();
2962 	if (status)
2963 		goto again;
2964 
2965 done:
2966 	if (mid_ack)
2967 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2968 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2969 	cpuc->enabled = pmu_enabled;
2970 	if (pmu_enabled)
2971 		__intel_pmu_enable_all(0, true);
2972 	intel_bts_enable_local();
2973 
2974 	/*
2975 	 * Only unmask the NMI after the overflow counters
2976 	 * have been reset. This avoids spurious NMIs on
2977 	 * Haswell CPUs.
2978 	 */
2979 	if (late_ack)
2980 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2981 	return handled;
2982 }
2983 
2984 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)2985 intel_bts_constraints(struct perf_event *event)
2986 {
2987 	if (unlikely(intel_pmu_has_bts(event)))
2988 		return &bts_constraint;
2989 
2990 	return NULL;
2991 }
2992 
2993 /*
2994  * Note: matches a fake event, like Fixed2.
2995  */
2996 static struct event_constraint *
intel_vlbr_constraints(struct perf_event * event)2997 intel_vlbr_constraints(struct perf_event *event)
2998 {
2999 	struct event_constraint *c = &vlbr_constraint;
3000 
3001 	if (unlikely(constraint_match(c, event->hw.config)))
3002 		return c;
3003 
3004 	return NULL;
3005 }
3006 
intel_alt_er(struct cpu_hw_events * cpuc,int idx,u64 config)3007 static int intel_alt_er(struct cpu_hw_events *cpuc,
3008 			int idx, u64 config)
3009 {
3010 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3011 	int alt_idx = idx;
3012 
3013 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3014 		return idx;
3015 
3016 	if (idx == EXTRA_REG_RSP_0)
3017 		alt_idx = EXTRA_REG_RSP_1;
3018 
3019 	if (idx == EXTRA_REG_RSP_1)
3020 		alt_idx = EXTRA_REG_RSP_0;
3021 
3022 	if (config & ~extra_regs[alt_idx].valid_mask)
3023 		return idx;
3024 
3025 	return alt_idx;
3026 }
3027 
intel_fixup_er(struct perf_event * event,int idx)3028 static void intel_fixup_er(struct perf_event *event, int idx)
3029 {
3030 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3031 	event->hw.extra_reg.idx = idx;
3032 
3033 	if (idx == EXTRA_REG_RSP_0) {
3034 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3035 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3036 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3037 	} else if (idx == EXTRA_REG_RSP_1) {
3038 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3039 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3040 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3041 	}
3042 }
3043 
3044 /*
3045  * manage allocation of shared extra msr for certain events
3046  *
3047  * sharing can be:
3048  * per-cpu: to be shared between the various events on a single PMU
3049  * per-core: per-cpu + shared by HT threads
3050  */
3051 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)3052 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3053 				   struct perf_event *event,
3054 				   struct hw_perf_event_extra *reg)
3055 {
3056 	struct event_constraint *c = &emptyconstraint;
3057 	struct er_account *era;
3058 	unsigned long flags;
3059 	int idx = reg->idx;
3060 
3061 	/*
3062 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3063 	 * need to ignore this, otherwise we might fail to allocate proper fake
3064 	 * state for this extra reg constraint. Also see the comment below.
3065 	 */
3066 	if (reg->alloc && !cpuc->is_fake)
3067 		return NULL; /* call x86_get_event_constraint() */
3068 
3069 again:
3070 	era = &cpuc->shared_regs->regs[idx];
3071 	/*
3072 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3073 	 * passing a fake cpuc
3074 	 */
3075 	raw_spin_lock_irqsave(&era->lock, flags);
3076 
3077 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3078 
3079 		/*
3080 		 * If its a fake cpuc -- as per validate_{group,event}() we
3081 		 * shouldn't touch event state and we can avoid doing so
3082 		 * since both will only call get_event_constraints() once
3083 		 * on each event, this avoids the need for reg->alloc.
3084 		 *
3085 		 * Not doing the ER fixup will only result in era->reg being
3086 		 * wrong, but since we won't actually try and program hardware
3087 		 * this isn't a problem either.
3088 		 */
3089 		if (!cpuc->is_fake) {
3090 			if (idx != reg->idx)
3091 				intel_fixup_er(event, idx);
3092 
3093 			/*
3094 			 * x86_schedule_events() can call get_event_constraints()
3095 			 * multiple times on events in the case of incremental
3096 			 * scheduling(). reg->alloc ensures we only do the ER
3097 			 * allocation once.
3098 			 */
3099 			reg->alloc = 1;
3100 		}
3101 
3102 		/* lock in msr value */
3103 		era->config = reg->config;
3104 		era->reg = reg->reg;
3105 
3106 		/* one more user */
3107 		atomic_inc(&era->ref);
3108 
3109 		/*
3110 		 * need to call x86_get_event_constraint()
3111 		 * to check if associated event has constraints
3112 		 */
3113 		c = NULL;
3114 	} else {
3115 		idx = intel_alt_er(cpuc, idx, reg->config);
3116 		if (idx != reg->idx) {
3117 			raw_spin_unlock_irqrestore(&era->lock, flags);
3118 			goto again;
3119 		}
3120 	}
3121 	raw_spin_unlock_irqrestore(&era->lock, flags);
3122 
3123 	return c;
3124 }
3125 
3126 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)3127 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3128 				   struct hw_perf_event_extra *reg)
3129 {
3130 	struct er_account *era;
3131 
3132 	/*
3133 	 * Only put constraint if extra reg was actually allocated. Also takes
3134 	 * care of event which do not use an extra shared reg.
3135 	 *
3136 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3137 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3138 	 * either since it'll be thrown out.
3139 	 */
3140 	if (!reg->alloc || cpuc->is_fake)
3141 		return;
3142 
3143 	era = &cpuc->shared_regs->regs[reg->idx];
3144 
3145 	/* one fewer user */
3146 	atomic_dec(&era->ref);
3147 
3148 	/* allocate again next time */
3149 	reg->alloc = 0;
3150 }
3151 
3152 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3153 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3154 			      struct perf_event *event)
3155 {
3156 	struct event_constraint *c = NULL, *d;
3157 	struct hw_perf_event_extra *xreg, *breg;
3158 
3159 	xreg = &event->hw.extra_reg;
3160 	if (xreg->idx != EXTRA_REG_NONE) {
3161 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3162 		if (c == &emptyconstraint)
3163 			return c;
3164 	}
3165 	breg = &event->hw.branch_reg;
3166 	if (breg->idx != EXTRA_REG_NONE) {
3167 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3168 		if (d == &emptyconstraint) {
3169 			__intel_shared_reg_put_constraints(cpuc, xreg);
3170 			c = d;
3171 		}
3172 	}
3173 	return c;
3174 }
3175 
3176 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3177 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3178 			  struct perf_event *event)
3179 {
3180 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3181 	struct event_constraint *c;
3182 
3183 	if (event_constraints) {
3184 		for_each_event_constraint(c, event_constraints) {
3185 			if (constraint_match(c, event->hw.config)) {
3186 				event->hw.flags |= c->flags;
3187 				return c;
3188 			}
3189 		}
3190 	}
3191 
3192 	return &hybrid_var(cpuc->pmu, unconstrained);
3193 }
3194 
3195 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3196 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3197 			    struct perf_event *event)
3198 {
3199 	struct event_constraint *c;
3200 
3201 	c = intel_vlbr_constraints(event);
3202 	if (c)
3203 		return c;
3204 
3205 	c = intel_bts_constraints(event);
3206 	if (c)
3207 		return c;
3208 
3209 	c = intel_shared_regs_constraints(cpuc, event);
3210 	if (c)
3211 		return c;
3212 
3213 	c = intel_pebs_constraints(event);
3214 	if (c)
3215 		return c;
3216 
3217 	return x86_get_event_constraints(cpuc, idx, event);
3218 }
3219 
3220 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)3221 intel_start_scheduling(struct cpu_hw_events *cpuc)
3222 {
3223 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3224 	struct intel_excl_states *xl;
3225 	int tid = cpuc->excl_thread_id;
3226 
3227 	/*
3228 	 * nothing needed if in group validation mode
3229 	 */
3230 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3231 		return;
3232 
3233 	/*
3234 	 * no exclusion needed
3235 	 */
3236 	if (WARN_ON_ONCE(!excl_cntrs))
3237 		return;
3238 
3239 	xl = &excl_cntrs->states[tid];
3240 
3241 	xl->sched_started = true;
3242 	/*
3243 	 * lock shared state until we are done scheduling
3244 	 * in stop_event_scheduling()
3245 	 * makes scheduling appear as a transaction
3246 	 */
3247 	raw_spin_lock(&excl_cntrs->lock);
3248 }
3249 
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)3250 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3251 {
3252 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3253 	struct event_constraint *c = cpuc->event_constraint[idx];
3254 	struct intel_excl_states *xl;
3255 	int tid = cpuc->excl_thread_id;
3256 
3257 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3258 		return;
3259 
3260 	if (WARN_ON_ONCE(!excl_cntrs))
3261 		return;
3262 
3263 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3264 		return;
3265 
3266 	xl = &excl_cntrs->states[tid];
3267 
3268 	lockdep_assert_held(&excl_cntrs->lock);
3269 
3270 	if (c->flags & PERF_X86_EVENT_EXCL)
3271 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3272 	else
3273 		xl->state[cntr] = INTEL_EXCL_SHARED;
3274 }
3275 
3276 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)3277 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3278 {
3279 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3280 	struct intel_excl_states *xl;
3281 	int tid = cpuc->excl_thread_id;
3282 
3283 	/*
3284 	 * nothing needed if in group validation mode
3285 	 */
3286 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3287 		return;
3288 	/*
3289 	 * no exclusion needed
3290 	 */
3291 	if (WARN_ON_ONCE(!excl_cntrs))
3292 		return;
3293 
3294 	xl = &excl_cntrs->states[tid];
3295 
3296 	xl->sched_started = false;
3297 	/*
3298 	 * release shared state lock (acquired in intel_start_scheduling())
3299 	 */
3300 	raw_spin_unlock(&excl_cntrs->lock);
3301 }
3302 
3303 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)3304 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3305 {
3306 	WARN_ON_ONCE(!cpuc->constraint_list);
3307 
3308 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3309 		struct event_constraint *cx;
3310 
3311 		/*
3312 		 * grab pre-allocated constraint entry
3313 		 */
3314 		cx = &cpuc->constraint_list[idx];
3315 
3316 		/*
3317 		 * initialize dynamic constraint
3318 		 * with static constraint
3319 		 */
3320 		*cx = *c;
3321 
3322 		/*
3323 		 * mark constraint as dynamic
3324 		 */
3325 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3326 		c = cx;
3327 	}
3328 
3329 	return c;
3330 }
3331 
3332 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)3333 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3334 			   int idx, struct event_constraint *c)
3335 {
3336 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3337 	struct intel_excl_states *xlo;
3338 	int tid = cpuc->excl_thread_id;
3339 	int is_excl, i, w;
3340 
3341 	/*
3342 	 * validating a group does not require
3343 	 * enforcing cross-thread  exclusion
3344 	 */
3345 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3346 		return c;
3347 
3348 	/*
3349 	 * no exclusion needed
3350 	 */
3351 	if (WARN_ON_ONCE(!excl_cntrs))
3352 		return c;
3353 
3354 	/*
3355 	 * because we modify the constraint, we need
3356 	 * to make a copy. Static constraints come
3357 	 * from static const tables.
3358 	 *
3359 	 * only needed when constraint has not yet
3360 	 * been cloned (marked dynamic)
3361 	 */
3362 	c = dyn_constraint(cpuc, c, idx);
3363 
3364 	/*
3365 	 * From here on, the constraint is dynamic.
3366 	 * Either it was just allocated above, or it
3367 	 * was allocated during a earlier invocation
3368 	 * of this function
3369 	 */
3370 
3371 	/*
3372 	 * state of sibling HT
3373 	 */
3374 	xlo = &excl_cntrs->states[tid ^ 1];
3375 
3376 	/*
3377 	 * event requires exclusive counter access
3378 	 * across HT threads
3379 	 */
3380 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3381 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3382 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3383 		if (!cpuc->n_excl++)
3384 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3385 	}
3386 
3387 	/*
3388 	 * Modify static constraint with current dynamic
3389 	 * state of thread
3390 	 *
3391 	 * EXCLUSIVE: sibling counter measuring exclusive event
3392 	 * SHARED   : sibling counter measuring non-exclusive event
3393 	 * UNUSED   : sibling counter unused
3394 	 */
3395 	w = c->weight;
3396 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3397 		/*
3398 		 * exclusive event in sibling counter
3399 		 * our corresponding counter cannot be used
3400 		 * regardless of our event
3401 		 */
3402 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3403 			__clear_bit(i, c->idxmsk);
3404 			w--;
3405 			continue;
3406 		}
3407 		/*
3408 		 * if measuring an exclusive event, sibling
3409 		 * measuring non-exclusive, then counter cannot
3410 		 * be used
3411 		 */
3412 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3413 			__clear_bit(i, c->idxmsk);
3414 			w--;
3415 			continue;
3416 		}
3417 	}
3418 
3419 	/*
3420 	 * if we return an empty mask, then switch
3421 	 * back to static empty constraint to avoid
3422 	 * the cost of freeing later on
3423 	 */
3424 	if (!w)
3425 		c = &emptyconstraint;
3426 
3427 	c->weight = w;
3428 
3429 	return c;
3430 }
3431 
3432 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3433 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3434 			    struct perf_event *event)
3435 {
3436 	struct event_constraint *c1, *c2;
3437 
3438 	c1 = cpuc->event_constraint[idx];
3439 
3440 	/*
3441 	 * first time only
3442 	 * - static constraint: no change across incremental scheduling calls
3443 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3444 	 */
3445 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3446 	if (c1) {
3447 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3448 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3449 		c1->weight = c2->weight;
3450 		c2 = c1;
3451 	}
3452 
3453 	if (cpuc->excl_cntrs)
3454 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3455 
3456 	return c2;
3457 }
3458 
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3459 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3460 		struct perf_event *event)
3461 {
3462 	struct hw_perf_event *hwc = &event->hw;
3463 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3464 	int tid = cpuc->excl_thread_id;
3465 	struct intel_excl_states *xl;
3466 
3467 	/*
3468 	 * nothing needed if in group validation mode
3469 	 */
3470 	if (cpuc->is_fake)
3471 		return;
3472 
3473 	if (WARN_ON_ONCE(!excl_cntrs))
3474 		return;
3475 
3476 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3477 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3478 		if (!--cpuc->n_excl)
3479 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3480 	}
3481 
3482 	/*
3483 	 * If event was actually assigned, then mark the counter state as
3484 	 * unused now.
3485 	 */
3486 	if (hwc->idx >= 0) {
3487 		xl = &excl_cntrs->states[tid];
3488 
3489 		/*
3490 		 * put_constraint may be called from x86_schedule_events()
3491 		 * which already has the lock held so here make locking
3492 		 * conditional.
3493 		 */
3494 		if (!xl->sched_started)
3495 			raw_spin_lock(&excl_cntrs->lock);
3496 
3497 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3498 
3499 		if (!xl->sched_started)
3500 			raw_spin_unlock(&excl_cntrs->lock);
3501 	}
3502 }
3503 
3504 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3505 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3506 					struct perf_event *event)
3507 {
3508 	struct hw_perf_event_extra *reg;
3509 
3510 	reg = &event->hw.extra_reg;
3511 	if (reg->idx != EXTRA_REG_NONE)
3512 		__intel_shared_reg_put_constraints(cpuc, reg);
3513 
3514 	reg = &event->hw.branch_reg;
3515 	if (reg->idx != EXTRA_REG_NONE)
3516 		__intel_shared_reg_put_constraints(cpuc, reg);
3517 }
3518 
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3519 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3520 					struct perf_event *event)
3521 {
3522 	intel_put_shared_regs_event_constraints(cpuc, event);
3523 
3524 	/*
3525 	 * is PMU has exclusive counter restrictions, then
3526 	 * all events are subject to and must call the
3527 	 * put_excl_constraints() routine
3528 	 */
3529 	if (cpuc->excl_cntrs)
3530 		intel_put_excl_constraints(cpuc, event);
3531 }
3532 
intel_pebs_aliases_core2(struct perf_event * event)3533 static void intel_pebs_aliases_core2(struct perf_event *event)
3534 {
3535 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3536 		/*
3537 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3538 		 * (0x003c) so that we can use it with PEBS.
3539 		 *
3540 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3541 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3542 		 * (0x00c0), which is a PEBS capable event, to get the same
3543 		 * count.
3544 		 *
3545 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3546 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3547 		 * larger than the maximum number of instructions that can be
3548 		 * retired per cycle (4) and then inverting the condition, we
3549 		 * count all cycles that retire 16 or less instructions, which
3550 		 * is every cycle.
3551 		 *
3552 		 * Thereby we gain a PEBS capable cycle counter.
3553 		 */
3554 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3555 
3556 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3557 		event->hw.config = alt_config;
3558 	}
3559 }
3560 
intel_pebs_aliases_snb(struct perf_event * event)3561 static void intel_pebs_aliases_snb(struct perf_event *event)
3562 {
3563 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3564 		/*
3565 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3566 		 * (0x003c) so that we can use it with PEBS.
3567 		 *
3568 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3569 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3570 		 * (0x01c2), which is a PEBS capable event, to get the same
3571 		 * count.
3572 		 *
3573 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3574 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3575 		 * larger than the maximum number of micro-ops that can be
3576 		 * retired per cycle (4) and then inverting the condition, we
3577 		 * count all cycles that retire 16 or less micro-ops, which
3578 		 * is every cycle.
3579 		 *
3580 		 * Thereby we gain a PEBS capable cycle counter.
3581 		 */
3582 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3583 
3584 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3585 		event->hw.config = alt_config;
3586 	}
3587 }
3588 
intel_pebs_aliases_precdist(struct perf_event * event)3589 static void intel_pebs_aliases_precdist(struct perf_event *event)
3590 {
3591 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3592 		/*
3593 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3594 		 * (0x003c) so that we can use it with PEBS.
3595 		 *
3596 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3597 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3598 		 * (0x01c0), which is a PEBS capable event, to get the same
3599 		 * count.
3600 		 *
3601 		 * The PREC_DIST event has special support to minimize sample
3602 		 * shadowing effects. One drawback is that it can be
3603 		 * only programmed on counter 1, but that seems like an
3604 		 * acceptable trade off.
3605 		 */
3606 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3607 
3608 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3609 		event->hw.config = alt_config;
3610 	}
3611 }
3612 
intel_pebs_aliases_ivb(struct perf_event * event)3613 static void intel_pebs_aliases_ivb(struct perf_event *event)
3614 {
3615 	if (event->attr.precise_ip < 3)
3616 		return intel_pebs_aliases_snb(event);
3617 	return intel_pebs_aliases_precdist(event);
3618 }
3619 
intel_pebs_aliases_skl(struct perf_event * event)3620 static void intel_pebs_aliases_skl(struct perf_event *event)
3621 {
3622 	if (event->attr.precise_ip < 3)
3623 		return intel_pebs_aliases_core2(event);
3624 	return intel_pebs_aliases_precdist(event);
3625 }
3626 
intel_pmu_large_pebs_flags(struct perf_event * event)3627 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3628 {
3629 	unsigned long flags = x86_pmu.large_pebs_flags;
3630 
3631 	if (event->attr.use_clockid)
3632 		flags &= ~PERF_SAMPLE_TIME;
3633 	if (!event->attr.exclude_kernel)
3634 		flags &= ~PERF_SAMPLE_REGS_USER;
3635 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3636 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3637 	return flags;
3638 }
3639 
intel_pmu_bts_config(struct perf_event * event)3640 static int intel_pmu_bts_config(struct perf_event *event)
3641 {
3642 	struct perf_event_attr *attr = &event->attr;
3643 
3644 	if (unlikely(intel_pmu_has_bts(event))) {
3645 		/* BTS is not supported by this architecture. */
3646 		if (!x86_pmu.bts_active)
3647 			return -EOPNOTSUPP;
3648 
3649 		/* BTS is currently only allowed for user-mode. */
3650 		if (!attr->exclude_kernel)
3651 			return -EOPNOTSUPP;
3652 
3653 		/* BTS is not allowed for precise events. */
3654 		if (attr->precise_ip)
3655 			return -EOPNOTSUPP;
3656 
3657 		/* disallow bts if conflicting events are present */
3658 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3659 			return -EBUSY;
3660 
3661 		event->destroy = hw_perf_lbr_event_destroy;
3662 	}
3663 
3664 	return 0;
3665 }
3666 
core_pmu_hw_config(struct perf_event * event)3667 static int core_pmu_hw_config(struct perf_event *event)
3668 {
3669 	int ret = x86_pmu_hw_config(event);
3670 
3671 	if (ret)
3672 		return ret;
3673 
3674 	return intel_pmu_bts_config(event);
3675 }
3676 
3677 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3678 					 ((x86_pmu.num_topdown_events - 1) << 8))
3679 
is_available_metric_event(struct perf_event * event)3680 static bool is_available_metric_event(struct perf_event *event)
3681 {
3682 	return is_metric_event(event) &&
3683 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3684 }
3685 
is_mem_loads_event(struct perf_event * event)3686 static inline bool is_mem_loads_event(struct perf_event *event)
3687 {
3688 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3689 }
3690 
is_mem_loads_aux_event(struct perf_event * event)3691 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3692 {
3693 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3694 }
3695 
require_mem_loads_aux_event(struct perf_event * event)3696 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3697 {
3698 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3699 		return false;
3700 
3701 	if (is_hybrid())
3702 		return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3703 
3704 	return true;
3705 }
3706 
intel_pmu_has_cap(struct perf_event * event,int idx)3707 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3708 {
3709 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3710 
3711 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3712 }
3713 
intel_pmu_hw_config(struct perf_event * event)3714 static int intel_pmu_hw_config(struct perf_event *event)
3715 {
3716 	int ret = x86_pmu_hw_config(event);
3717 
3718 	if (ret)
3719 		return ret;
3720 
3721 	ret = intel_pmu_bts_config(event);
3722 	if (ret)
3723 		return ret;
3724 
3725 	if (event->attr.precise_ip) {
3726 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3727 			return -EINVAL;
3728 
3729 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3730 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3731 			if (!(event->attr.sample_type &
3732 			      ~intel_pmu_large_pebs_flags(event))) {
3733 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3734 				event->attach_state |= PERF_ATTACH_SCHED_CB;
3735 			}
3736 		}
3737 		if (x86_pmu.pebs_aliases)
3738 			x86_pmu.pebs_aliases(event);
3739 
3740 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3741 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3742 	}
3743 
3744 	if (needs_branch_stack(event)) {
3745 		ret = intel_pmu_setup_lbr_filter(event);
3746 		if (ret)
3747 			return ret;
3748 		event->attach_state |= PERF_ATTACH_SCHED_CB;
3749 
3750 		/*
3751 		 * BTS is set up earlier in this path, so don't account twice
3752 		 */
3753 		if (!unlikely(intel_pmu_has_bts(event))) {
3754 			/* disallow lbr if conflicting events are present */
3755 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3756 				return -EBUSY;
3757 
3758 			event->destroy = hw_perf_lbr_event_destroy;
3759 		}
3760 	}
3761 
3762 	if (event->attr.aux_output) {
3763 		if (!event->attr.precise_ip)
3764 			return -EINVAL;
3765 
3766 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3767 	}
3768 
3769 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3770 	    (event->attr.type == PERF_TYPE_HW_CACHE))
3771 		return 0;
3772 
3773 	/*
3774 	 * Config Topdown slots and metric events
3775 	 *
3776 	 * The slots event on Fixed Counter 3 can support sampling,
3777 	 * which will be handled normally in x86_perf_event_update().
3778 	 *
3779 	 * Metric events don't support sampling and require being paired
3780 	 * with a slots event as group leader. When the slots event
3781 	 * is used in a metrics group, it too cannot support sampling.
3782 	 */
3783 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3784 		if (event->attr.config1 || event->attr.config2)
3785 			return -EINVAL;
3786 
3787 		/*
3788 		 * The TopDown metrics events and slots event don't
3789 		 * support any filters.
3790 		 */
3791 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3792 			return -EINVAL;
3793 
3794 		if (is_available_metric_event(event)) {
3795 			struct perf_event *leader = event->group_leader;
3796 
3797 			/* The metric events don't support sampling. */
3798 			if (is_sampling_event(event))
3799 				return -EINVAL;
3800 
3801 			/* The metric events require a slots group leader. */
3802 			if (!is_slots_event(leader))
3803 				return -EINVAL;
3804 
3805 			/*
3806 			 * The leader/SLOTS must not be a sampling event for
3807 			 * metric use; hardware requires it starts at 0 when used
3808 			 * in conjunction with MSR_PERF_METRICS.
3809 			 */
3810 			if (is_sampling_event(leader))
3811 				return -EINVAL;
3812 
3813 			event->event_caps |= PERF_EV_CAP_SIBLING;
3814 			/*
3815 			 * Only once we have a METRICs sibling do we
3816 			 * need TopDown magic.
3817 			 */
3818 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3819 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3820 		}
3821 	}
3822 
3823 	/*
3824 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3825 	 * doesn't function quite right. As a work-around it needs to always be
3826 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3827 	 * The actual count of this second event is irrelevant it just needs
3828 	 * to be active to make the first event function correctly.
3829 	 *
3830 	 * In a group, the auxiliary event must be in front of the load latency
3831 	 * event. The rule is to simplify the implementation of the check.
3832 	 * That's because perf cannot have a complete group at the moment.
3833 	 */
3834 	if (require_mem_loads_aux_event(event) &&
3835 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3836 	    is_mem_loads_event(event)) {
3837 		struct perf_event *leader = event->group_leader;
3838 		struct perf_event *sibling = NULL;
3839 
3840 		if (!is_mem_loads_aux_event(leader)) {
3841 			for_each_sibling_event(sibling, leader) {
3842 				if (is_mem_loads_aux_event(sibling))
3843 					break;
3844 			}
3845 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3846 				return -ENODATA;
3847 		}
3848 	}
3849 
3850 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3851 		return 0;
3852 
3853 	if (x86_pmu.version < 3)
3854 		return -EINVAL;
3855 
3856 	ret = perf_allow_cpu(&event->attr);
3857 	if (ret)
3858 		return ret;
3859 
3860 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3861 
3862 	return 0;
3863 }
3864 
intel_guest_get_msrs(int * nr)3865 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3866 {
3867 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3868 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3869 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3870 
3871 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3872 	arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3873 	arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3874 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3875 		arr[0].guest &= ~cpuc->pebs_enabled;
3876 	else
3877 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3878 	*nr = 1;
3879 
3880 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3881 		/*
3882 		 * If PMU counter has PEBS enabled it is not enough to
3883 		 * disable counter on a guest entry since PEBS memory
3884 		 * write can overshoot guest entry and corrupt guest
3885 		 * memory. Disabling PEBS solves the problem.
3886 		 *
3887 		 * Don't do this if the CPU already enforces it.
3888 		 */
3889 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3890 		arr[1].host = cpuc->pebs_enabled;
3891 		arr[1].guest = 0;
3892 		*nr = 2;
3893 	}
3894 
3895 	return arr;
3896 }
3897 
core_guest_get_msrs(int * nr)3898 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3899 {
3900 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3901 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3902 	int idx;
3903 
3904 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3905 		struct perf_event *event = cpuc->events[idx];
3906 
3907 		arr[idx].msr = x86_pmu_config_addr(idx);
3908 		arr[idx].host = arr[idx].guest = 0;
3909 
3910 		if (!test_bit(idx, cpuc->active_mask))
3911 			continue;
3912 
3913 		arr[idx].host = arr[idx].guest =
3914 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3915 
3916 		if (event->attr.exclude_host)
3917 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3918 		else if (event->attr.exclude_guest)
3919 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3920 	}
3921 
3922 	*nr = x86_pmu.num_counters;
3923 	return arr;
3924 }
3925 
core_pmu_enable_event(struct perf_event * event)3926 static void core_pmu_enable_event(struct perf_event *event)
3927 {
3928 	if (!event->attr.exclude_host)
3929 		x86_pmu_enable_event(event);
3930 }
3931 
core_pmu_enable_all(int added)3932 static void core_pmu_enable_all(int added)
3933 {
3934 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3935 	int idx;
3936 
3937 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3938 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3939 
3940 		if (!test_bit(idx, cpuc->active_mask) ||
3941 				cpuc->events[idx]->attr.exclude_host)
3942 			continue;
3943 
3944 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3945 	}
3946 }
3947 
hsw_hw_config(struct perf_event * event)3948 static int hsw_hw_config(struct perf_event *event)
3949 {
3950 	int ret = intel_pmu_hw_config(event);
3951 
3952 	if (ret)
3953 		return ret;
3954 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3955 		return 0;
3956 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3957 
3958 	/*
3959 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3960 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3961 	 * this combination.
3962 	 */
3963 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3964 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3965 	      event->attr.precise_ip > 0))
3966 		return -EOPNOTSUPP;
3967 
3968 	if (event_is_checkpointed(event)) {
3969 		/*
3970 		 * Sampling of checkpointed events can cause situations where
3971 		 * the CPU constantly aborts because of a overflow, which is
3972 		 * then checkpointed back and ignored. Forbid checkpointing
3973 		 * for sampling.
3974 		 *
3975 		 * But still allow a long sampling period, so that perf stat
3976 		 * from KVM works.
3977 		 */
3978 		if (event->attr.sample_period > 0 &&
3979 		    event->attr.sample_period < 0x7fffffff)
3980 			return -EOPNOTSUPP;
3981 	}
3982 	return 0;
3983 }
3984 
3985 static struct event_constraint counter0_constraint =
3986 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3987 
3988 static struct event_constraint counter2_constraint =
3989 			EVENT_CONSTRAINT(0, 0x4, 0);
3990 
3991 static struct event_constraint fixed0_constraint =
3992 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3993 
3994 static struct event_constraint fixed0_counter0_constraint =
3995 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3996 
3997 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3998 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3999 			  struct perf_event *event)
4000 {
4001 	struct event_constraint *c;
4002 
4003 	c = intel_get_event_constraints(cpuc, idx, event);
4004 
4005 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
4006 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4007 		if (c->idxmsk64 & (1U << 2))
4008 			return &counter2_constraint;
4009 		return &emptyconstraint;
4010 	}
4011 
4012 	return c;
4013 }
4014 
4015 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4016 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4017 			  struct perf_event *event)
4018 {
4019 	/*
4020 	 * Fixed counter 0 has less skid.
4021 	 * Force instruction:ppp in Fixed counter 0
4022 	 */
4023 	if ((event->attr.precise_ip == 3) &&
4024 	    constraint_match(&fixed0_constraint, event->hw.config))
4025 		return &fixed0_constraint;
4026 
4027 	return hsw_get_event_constraints(cpuc, idx, event);
4028 }
4029 
4030 static struct event_constraint *
spr_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4031 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4032 			  struct perf_event *event)
4033 {
4034 	struct event_constraint *c;
4035 
4036 	c = icl_get_event_constraints(cpuc, idx, event);
4037 
4038 	/*
4039 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4040 	 * is only supported on the GP counter 0. If a :ppp event which is not
4041 	 * available on the GP counter 0, error out.
4042 	 * Exception: Instruction PDIR is only available on the fixed counter 0.
4043 	 */
4044 	if ((event->attr.precise_ip == 3) &&
4045 	    !constraint_match(&fixed0_constraint, event->hw.config)) {
4046 		if (c->idxmsk64 & BIT_ULL(0))
4047 			return &counter0_constraint;
4048 
4049 		return &emptyconstraint;
4050 	}
4051 
4052 	return c;
4053 }
4054 
4055 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4056 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4057 			  struct perf_event *event)
4058 {
4059 	struct event_constraint *c;
4060 
4061 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4062 	if (event->attr.precise_ip == 3)
4063 		return &counter0_constraint;
4064 
4065 	c = intel_get_event_constraints(cpuc, idx, event);
4066 
4067 	return c;
4068 }
4069 
4070 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4071 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4072 			  struct perf_event *event)
4073 {
4074 	struct event_constraint *c;
4075 
4076 	/*
4077 	 * :ppp means to do reduced skid PEBS,
4078 	 * which is available on PMC0 and fixed counter 0.
4079 	 */
4080 	if (event->attr.precise_ip == 3) {
4081 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4082 		if (constraint_match(&fixed0_constraint, event->hw.config))
4083 			return &fixed0_counter0_constraint;
4084 
4085 		return &counter0_constraint;
4086 	}
4087 
4088 	c = intel_get_event_constraints(cpuc, idx, event);
4089 
4090 	return c;
4091 }
4092 
4093 static bool allow_tsx_force_abort = true;
4094 
4095 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4096 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4097 			  struct perf_event *event)
4098 {
4099 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4100 
4101 	/*
4102 	 * Without TFA we must not use PMC3.
4103 	 */
4104 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4105 		c = dyn_constraint(cpuc, c, idx);
4106 		c->idxmsk64 &= ~(1ULL << 3);
4107 		c->weight--;
4108 	}
4109 
4110 	return c;
4111 }
4112 
4113 static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4114 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4115 			  struct perf_event *event)
4116 {
4117 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4118 
4119 	if (pmu->cpu_type == hybrid_big)
4120 		return spr_get_event_constraints(cpuc, idx, event);
4121 	else if (pmu->cpu_type == hybrid_small)
4122 		return tnt_get_event_constraints(cpuc, idx, event);
4123 
4124 	WARN_ON(1);
4125 	return &emptyconstraint;
4126 }
4127 
adl_hw_config(struct perf_event * event)4128 static int adl_hw_config(struct perf_event *event)
4129 {
4130 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4131 
4132 	if (pmu->cpu_type == hybrid_big)
4133 		return hsw_hw_config(event);
4134 	else if (pmu->cpu_type == hybrid_small)
4135 		return intel_pmu_hw_config(event);
4136 
4137 	WARN_ON(1);
4138 	return -EOPNOTSUPP;
4139 }
4140 
adl_get_hybrid_cpu_type(void)4141 static u8 adl_get_hybrid_cpu_type(void)
4142 {
4143 	return hybrid_big;
4144 }
4145 
4146 /*
4147  * Broadwell:
4148  *
4149  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4150  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4151  * the two to enforce a minimum period of 128 (the smallest value that has bits
4152  * 0-5 cleared and >= 100).
4153  *
4154  * Because of how the code in x86_perf_event_set_period() works, the truncation
4155  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4156  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4157  *
4158  * Therefore the effective (average) period matches the requested period,
4159  * despite coarser hardware granularity.
4160  */
bdw_limit_period(struct perf_event * event,u64 left)4161 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4162 {
4163 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4164 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
4165 		if (left < 128)
4166 			left = 128;
4167 		left &= ~0x3fULL;
4168 	}
4169 	return left;
4170 }
4171 
nhm_limit_period(struct perf_event * event,u64 left)4172 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4173 {
4174 	return max(left, 32ULL);
4175 }
4176 
spr_limit_period(struct perf_event * event,u64 left)4177 static u64 spr_limit_period(struct perf_event *event, u64 left)
4178 {
4179 	if (event->attr.precise_ip == 3)
4180 		return max(left, 128ULL);
4181 
4182 	return left;
4183 }
4184 
4185 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4186 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4187 PMU_FORMAT_ATTR(edge,	"config:18"	);
4188 PMU_FORMAT_ATTR(pc,	"config:19"	);
4189 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4190 PMU_FORMAT_ATTR(inv,	"config:23"	);
4191 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4192 PMU_FORMAT_ATTR(in_tx,  "config:32");
4193 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4194 
4195 static struct attribute *intel_arch_formats_attr[] = {
4196 	&format_attr_event.attr,
4197 	&format_attr_umask.attr,
4198 	&format_attr_edge.attr,
4199 	&format_attr_pc.attr,
4200 	&format_attr_inv.attr,
4201 	&format_attr_cmask.attr,
4202 	NULL,
4203 };
4204 
intel_event_sysfs_show(char * page,u64 config)4205 ssize_t intel_event_sysfs_show(char *page, u64 config)
4206 {
4207 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4208 
4209 	return x86_event_sysfs_show(page, config, event);
4210 }
4211 
allocate_shared_regs(int cpu)4212 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4213 {
4214 	struct intel_shared_regs *regs;
4215 	int i;
4216 
4217 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4218 			    GFP_KERNEL, cpu_to_node(cpu));
4219 	if (regs) {
4220 		/*
4221 		 * initialize the locks to keep lockdep happy
4222 		 */
4223 		for (i = 0; i < EXTRA_REG_MAX; i++)
4224 			raw_spin_lock_init(&regs->regs[i].lock);
4225 
4226 		regs->core_id = -1;
4227 	}
4228 	return regs;
4229 }
4230 
allocate_excl_cntrs(int cpu)4231 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4232 {
4233 	struct intel_excl_cntrs *c;
4234 
4235 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4236 			 GFP_KERNEL, cpu_to_node(cpu));
4237 	if (c) {
4238 		raw_spin_lock_init(&c->lock);
4239 		c->core_id = -1;
4240 	}
4241 	return c;
4242 }
4243 
4244 
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)4245 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4246 {
4247 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4248 
4249 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4250 		cpuc->shared_regs = allocate_shared_regs(cpu);
4251 		if (!cpuc->shared_regs)
4252 			goto err;
4253 	}
4254 
4255 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4256 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4257 
4258 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4259 		if (!cpuc->constraint_list)
4260 			goto err_shared_regs;
4261 	}
4262 
4263 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4264 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4265 		if (!cpuc->excl_cntrs)
4266 			goto err_constraint_list;
4267 
4268 		cpuc->excl_thread_id = 0;
4269 	}
4270 
4271 	return 0;
4272 
4273 err_constraint_list:
4274 	kfree(cpuc->constraint_list);
4275 	cpuc->constraint_list = NULL;
4276 
4277 err_shared_regs:
4278 	kfree(cpuc->shared_regs);
4279 	cpuc->shared_regs = NULL;
4280 
4281 err:
4282 	return -ENOMEM;
4283 }
4284 
intel_pmu_cpu_prepare(int cpu)4285 static int intel_pmu_cpu_prepare(int cpu)
4286 {
4287 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4288 }
4289 
flip_smm_bit(void * data)4290 static void flip_smm_bit(void *data)
4291 {
4292 	unsigned long set = *(unsigned long *)data;
4293 
4294 	if (set > 0) {
4295 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4296 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4297 	} else {
4298 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4299 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4300 	}
4301 }
4302 
init_hybrid_pmu(int cpu)4303 static bool init_hybrid_pmu(int cpu)
4304 {
4305 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4306 	u8 cpu_type = get_this_hybrid_cpu_type();
4307 	struct x86_hybrid_pmu *pmu = NULL;
4308 	int i;
4309 
4310 	if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4311 		cpu_type = x86_pmu.get_hybrid_cpu_type();
4312 
4313 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4314 		if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4315 			pmu = &x86_pmu.hybrid_pmu[i];
4316 			break;
4317 		}
4318 	}
4319 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4320 		cpuc->pmu = NULL;
4321 		return false;
4322 	}
4323 
4324 	/* Only check and dump the PMU information for the first CPU */
4325 	if (!cpumask_empty(&pmu->supported_cpus))
4326 		goto end;
4327 
4328 	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4329 		return false;
4330 
4331 	pr_info("%s PMU driver: ", pmu->name);
4332 
4333 	if (pmu->intel_cap.pebs_output_pt_available)
4334 		pr_cont("PEBS-via-PT ");
4335 
4336 	pr_cont("\n");
4337 
4338 	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4339 			     pmu->intel_ctrl);
4340 
4341 end:
4342 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
4343 	cpuc->pmu = &pmu->pmu;
4344 
4345 	x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4346 
4347 	return true;
4348 }
4349 
intel_pmu_cpu_starting(int cpu)4350 static void intel_pmu_cpu_starting(int cpu)
4351 {
4352 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4353 	int core_id = topology_core_id(cpu);
4354 	int i;
4355 
4356 	if (is_hybrid() && !init_hybrid_pmu(cpu))
4357 		return;
4358 
4359 	init_debug_store_on_cpu(cpu);
4360 	/*
4361 	 * Deal with CPUs that don't clear their LBRs on power-up.
4362 	 */
4363 	intel_pmu_lbr_reset();
4364 
4365 	cpuc->lbr_sel = NULL;
4366 
4367 	if (x86_pmu.flags & PMU_FL_TFA) {
4368 		WARN_ON_ONCE(cpuc->tfa_shadow);
4369 		cpuc->tfa_shadow = ~0ULL;
4370 		intel_set_tfa(cpuc, false);
4371 	}
4372 
4373 	if (x86_pmu.version > 1)
4374 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4375 
4376 	/*
4377 	 * Disable perf metrics if any added CPU doesn't support it.
4378 	 *
4379 	 * Turn off the check for a hybrid architecture, because the
4380 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4381 	 * the architecture features. The perf metrics is a model-specific
4382 	 * feature for now. The corresponding bit should always be 0 on
4383 	 * a hybrid platform, e.g., Alder Lake.
4384 	 */
4385 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4386 		union perf_capabilities perf_cap;
4387 
4388 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4389 		if (!perf_cap.perf_metrics) {
4390 			x86_pmu.intel_cap.perf_metrics = 0;
4391 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4392 		}
4393 	}
4394 
4395 	if (!cpuc->shared_regs)
4396 		return;
4397 
4398 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4399 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4400 			struct intel_shared_regs *pc;
4401 
4402 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4403 			if (pc && pc->core_id == core_id) {
4404 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4405 				cpuc->shared_regs = pc;
4406 				break;
4407 			}
4408 		}
4409 		cpuc->shared_regs->core_id = core_id;
4410 		cpuc->shared_regs->refcnt++;
4411 	}
4412 
4413 	if (x86_pmu.lbr_sel_map)
4414 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4415 
4416 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4417 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4418 			struct cpu_hw_events *sibling;
4419 			struct intel_excl_cntrs *c;
4420 
4421 			sibling = &per_cpu(cpu_hw_events, i);
4422 			c = sibling->excl_cntrs;
4423 			if (c && c->core_id == core_id) {
4424 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4425 				cpuc->excl_cntrs = c;
4426 				if (!sibling->excl_thread_id)
4427 					cpuc->excl_thread_id = 1;
4428 				break;
4429 			}
4430 		}
4431 		cpuc->excl_cntrs->core_id = core_id;
4432 		cpuc->excl_cntrs->refcnt++;
4433 	}
4434 }
4435 
free_excl_cntrs(struct cpu_hw_events * cpuc)4436 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4437 {
4438 	struct intel_excl_cntrs *c;
4439 
4440 	c = cpuc->excl_cntrs;
4441 	if (c) {
4442 		if (c->core_id == -1 || --c->refcnt == 0)
4443 			kfree(c);
4444 		cpuc->excl_cntrs = NULL;
4445 	}
4446 
4447 	kfree(cpuc->constraint_list);
4448 	cpuc->constraint_list = NULL;
4449 }
4450 
intel_pmu_cpu_dying(int cpu)4451 static void intel_pmu_cpu_dying(int cpu)
4452 {
4453 	fini_debug_store_on_cpu(cpu);
4454 }
4455 
intel_cpuc_finish(struct cpu_hw_events * cpuc)4456 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4457 {
4458 	struct intel_shared_regs *pc;
4459 
4460 	pc = cpuc->shared_regs;
4461 	if (pc) {
4462 		if (pc->core_id == -1 || --pc->refcnt == 0)
4463 			kfree(pc);
4464 		cpuc->shared_regs = NULL;
4465 	}
4466 
4467 	free_excl_cntrs(cpuc);
4468 }
4469 
intel_pmu_cpu_dead(int cpu)4470 static void intel_pmu_cpu_dead(int cpu)
4471 {
4472 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4473 
4474 	intel_cpuc_finish(cpuc);
4475 
4476 	if (is_hybrid() && cpuc->pmu)
4477 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4478 }
4479 
intel_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)4480 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4481 				 bool sched_in)
4482 {
4483 	intel_pmu_pebs_sched_task(ctx, sched_in);
4484 	intel_pmu_lbr_sched_task(ctx, sched_in);
4485 }
4486 
intel_pmu_swap_task_ctx(struct perf_event_context * prev,struct perf_event_context * next)4487 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4488 				    struct perf_event_context *next)
4489 {
4490 	intel_pmu_lbr_swap_task_ctx(prev, next);
4491 }
4492 
intel_pmu_check_period(struct perf_event * event,u64 value)4493 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4494 {
4495 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4496 }
4497 
intel_pmu_aux_output_match(struct perf_event * event)4498 static int intel_pmu_aux_output_match(struct perf_event *event)
4499 {
4500 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4501 		return 0;
4502 
4503 	return is_intel_pt_event(event);
4504 }
4505 
intel_pmu_filter_match(struct perf_event * event)4506 static int intel_pmu_filter_match(struct perf_event *event)
4507 {
4508 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4509 	unsigned int cpu = smp_processor_id();
4510 
4511 	return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4512 }
4513 
4514 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4515 
4516 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4517 
4518 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4519 
4520 static struct attribute *intel_arch3_formats_attr[] = {
4521 	&format_attr_event.attr,
4522 	&format_attr_umask.attr,
4523 	&format_attr_edge.attr,
4524 	&format_attr_pc.attr,
4525 	&format_attr_any.attr,
4526 	&format_attr_inv.attr,
4527 	&format_attr_cmask.attr,
4528 	NULL,
4529 };
4530 
4531 static struct attribute *hsw_format_attr[] = {
4532 	&format_attr_in_tx.attr,
4533 	&format_attr_in_tx_cp.attr,
4534 	&format_attr_offcore_rsp.attr,
4535 	&format_attr_ldlat.attr,
4536 	NULL
4537 };
4538 
4539 static struct attribute *nhm_format_attr[] = {
4540 	&format_attr_offcore_rsp.attr,
4541 	&format_attr_ldlat.attr,
4542 	NULL
4543 };
4544 
4545 static struct attribute *slm_format_attr[] = {
4546 	&format_attr_offcore_rsp.attr,
4547 	NULL
4548 };
4549 
4550 static struct attribute *skl_format_attr[] = {
4551 	&format_attr_frontend.attr,
4552 	NULL,
4553 };
4554 
4555 static __initconst const struct x86_pmu core_pmu = {
4556 	.name			= "core",
4557 	.handle_irq		= x86_pmu_handle_irq,
4558 	.disable_all		= x86_pmu_disable_all,
4559 	.enable_all		= core_pmu_enable_all,
4560 	.enable			= core_pmu_enable_event,
4561 	.disable		= x86_pmu_disable_event,
4562 	.hw_config		= core_pmu_hw_config,
4563 	.schedule_events	= x86_schedule_events,
4564 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4565 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4566 	.event_map		= intel_pmu_event_map,
4567 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4568 	.apic			= 1,
4569 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4570 
4571 	/*
4572 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4573 	 * so we install an artificial 1<<31 period regardless of
4574 	 * the generic event period:
4575 	 */
4576 	.max_period		= (1ULL<<31) - 1,
4577 	.get_event_constraints	= intel_get_event_constraints,
4578 	.put_event_constraints	= intel_put_event_constraints,
4579 	.event_constraints	= intel_core_event_constraints,
4580 	.guest_get_msrs		= core_guest_get_msrs,
4581 	.format_attrs		= intel_arch_formats_attr,
4582 	.events_sysfs_show	= intel_event_sysfs_show,
4583 
4584 	/*
4585 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4586 	 * together with PMU version 1 and thus be using core_pmu with
4587 	 * shared_regs. We need following callbacks here to allocate
4588 	 * it properly.
4589 	 */
4590 	.cpu_prepare		= intel_pmu_cpu_prepare,
4591 	.cpu_starting		= intel_pmu_cpu_starting,
4592 	.cpu_dying		= intel_pmu_cpu_dying,
4593 	.cpu_dead		= intel_pmu_cpu_dead,
4594 
4595 	.check_period		= intel_pmu_check_period,
4596 
4597 	.lbr_reset		= intel_pmu_lbr_reset_64,
4598 	.lbr_read		= intel_pmu_lbr_read_64,
4599 	.lbr_save		= intel_pmu_lbr_save,
4600 	.lbr_restore		= intel_pmu_lbr_restore,
4601 };
4602 
4603 static __initconst const struct x86_pmu intel_pmu = {
4604 	.name			= "Intel",
4605 	.handle_irq		= intel_pmu_handle_irq,
4606 	.disable_all		= intel_pmu_disable_all,
4607 	.enable_all		= intel_pmu_enable_all,
4608 	.enable			= intel_pmu_enable_event,
4609 	.disable		= intel_pmu_disable_event,
4610 	.add			= intel_pmu_add_event,
4611 	.del			= intel_pmu_del_event,
4612 	.read			= intel_pmu_read_event,
4613 	.hw_config		= intel_pmu_hw_config,
4614 	.schedule_events	= x86_schedule_events,
4615 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4616 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4617 	.event_map		= intel_pmu_event_map,
4618 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4619 	.apic			= 1,
4620 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4621 	/*
4622 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4623 	 * so we install an artificial 1<<31 period regardless of
4624 	 * the generic event period:
4625 	 */
4626 	.max_period		= (1ULL << 31) - 1,
4627 	.get_event_constraints	= intel_get_event_constraints,
4628 	.put_event_constraints	= intel_put_event_constraints,
4629 	.pebs_aliases		= intel_pebs_aliases_core2,
4630 
4631 	.format_attrs		= intel_arch3_formats_attr,
4632 	.events_sysfs_show	= intel_event_sysfs_show,
4633 
4634 	.cpu_prepare		= intel_pmu_cpu_prepare,
4635 	.cpu_starting		= intel_pmu_cpu_starting,
4636 	.cpu_dying		= intel_pmu_cpu_dying,
4637 	.cpu_dead		= intel_pmu_cpu_dead,
4638 
4639 	.guest_get_msrs		= intel_guest_get_msrs,
4640 	.sched_task		= intel_pmu_sched_task,
4641 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4642 
4643 	.check_period		= intel_pmu_check_period,
4644 
4645 	.aux_output_match	= intel_pmu_aux_output_match,
4646 
4647 	.lbr_reset		= intel_pmu_lbr_reset_64,
4648 	.lbr_read		= intel_pmu_lbr_read_64,
4649 	.lbr_save		= intel_pmu_lbr_save,
4650 	.lbr_restore		= intel_pmu_lbr_restore,
4651 };
4652 
intel_clovertown_quirk(void)4653 static __init void intel_clovertown_quirk(void)
4654 {
4655 	/*
4656 	 * PEBS is unreliable due to:
4657 	 *
4658 	 *   AJ67  - PEBS may experience CPL leaks
4659 	 *   AJ68  - PEBS PMI may be delayed by one event
4660 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4661 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4662 	 *
4663 	 * AJ67 could be worked around by restricting the OS/USR flags.
4664 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4665 	 *
4666 	 * AJ106 could possibly be worked around by not allowing LBR
4667 	 *       usage from PEBS, including the fixup.
4668 	 * AJ68  could possibly be worked around by always programming
4669 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4670 	 *
4671 	 * But taken together it might just make sense to not enable PEBS on
4672 	 * these chips.
4673 	 */
4674 	pr_warn("PEBS disabled due to CPU errata\n");
4675 	x86_pmu.pebs = 0;
4676 	x86_pmu.pebs_constraints = NULL;
4677 }
4678 
4679 static const struct x86_cpu_desc isolation_ucodes[] = {
4680 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4681 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4682 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4683 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4684 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4685 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4686 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4687 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4688 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4689 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4690 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4691 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
4692 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4693 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4694 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
4695 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
4696 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
4697 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4698 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4699 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4700 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4701 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4702 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4703 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4704 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4705 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4706 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4707 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4708 	{}
4709 };
4710 
intel_check_pebs_isolation(void)4711 static void intel_check_pebs_isolation(void)
4712 {
4713 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4714 }
4715 
intel_pebs_isolation_quirk(void)4716 static __init void intel_pebs_isolation_quirk(void)
4717 {
4718 	WARN_ON_ONCE(x86_pmu.check_microcode);
4719 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4720 	intel_check_pebs_isolation();
4721 }
4722 
4723 static const struct x86_cpu_desc pebs_ucodes[] = {
4724 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4725 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4726 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4727 	{}
4728 };
4729 
intel_snb_pebs_broken(void)4730 static bool intel_snb_pebs_broken(void)
4731 {
4732 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4733 }
4734 
intel_snb_check_microcode(void)4735 static void intel_snb_check_microcode(void)
4736 {
4737 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4738 		return;
4739 
4740 	/*
4741 	 * Serialized by the microcode lock..
4742 	 */
4743 	if (x86_pmu.pebs_broken) {
4744 		pr_info("PEBS enabled due to microcode update\n");
4745 		x86_pmu.pebs_broken = 0;
4746 	} else {
4747 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4748 		x86_pmu.pebs_broken = 1;
4749 	}
4750 }
4751 
is_lbr_from(unsigned long msr)4752 static bool is_lbr_from(unsigned long msr)
4753 {
4754 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4755 
4756 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4757 }
4758 
4759 /*
4760  * Under certain circumstances, access certain MSR may cause #GP.
4761  * The function tests if the input MSR can be safely accessed.
4762  */
check_msr(unsigned long msr,u64 mask)4763 static bool check_msr(unsigned long msr, u64 mask)
4764 {
4765 	u64 val_old, val_new, val_tmp;
4766 
4767 	/*
4768 	 * Disable the check for real HW, so we don't
4769 	 * mess with potentially enabled registers:
4770 	 */
4771 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4772 		return true;
4773 
4774 	/*
4775 	 * Read the current value, change it and read it back to see if it
4776 	 * matches, this is needed to detect certain hardware emulators
4777 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4778 	 */
4779 	if (rdmsrl_safe(msr, &val_old))
4780 		return false;
4781 
4782 	/*
4783 	 * Only change the bits which can be updated by wrmsrl.
4784 	 */
4785 	val_tmp = val_old ^ mask;
4786 
4787 	if (is_lbr_from(msr))
4788 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4789 
4790 	if (wrmsrl_safe(msr, val_tmp) ||
4791 	    rdmsrl_safe(msr, &val_new))
4792 		return false;
4793 
4794 	/*
4795 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4796 	 * should equal rdmsrl()'s even with the quirk.
4797 	 */
4798 	if (val_new != val_tmp)
4799 		return false;
4800 
4801 	if (is_lbr_from(msr))
4802 		val_old = lbr_from_signext_quirk_wr(val_old);
4803 
4804 	/* Here it's sure that the MSR can be safely accessed.
4805 	 * Restore the old value and return.
4806 	 */
4807 	wrmsrl(msr, val_old);
4808 
4809 	return true;
4810 }
4811 
intel_sandybridge_quirk(void)4812 static __init void intel_sandybridge_quirk(void)
4813 {
4814 	x86_pmu.check_microcode = intel_snb_check_microcode;
4815 	cpus_read_lock();
4816 	intel_snb_check_microcode();
4817 	cpus_read_unlock();
4818 }
4819 
4820 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4821 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4822 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4823 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4824 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4825 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4826 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4827 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4828 };
4829 
intel_arch_events_quirk(void)4830 static __init void intel_arch_events_quirk(void)
4831 {
4832 	int bit;
4833 
4834 	/* disable event that reported as not present by cpuid */
4835 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4836 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4837 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4838 			intel_arch_events_map[bit].name);
4839 	}
4840 }
4841 
intel_nehalem_quirk(void)4842 static __init void intel_nehalem_quirk(void)
4843 {
4844 	union cpuid10_ebx ebx;
4845 
4846 	ebx.full = x86_pmu.events_maskl;
4847 	if (ebx.split.no_branch_misses_retired) {
4848 		/*
4849 		 * Erratum AAJ80 detected, we work it around by using
4850 		 * the BR_MISP_EXEC.ANY event. This will over-count
4851 		 * branch-misses, but it's still much better than the
4852 		 * architectural event which is often completely bogus:
4853 		 */
4854 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4855 		ebx.split.no_branch_misses_retired = 0;
4856 		x86_pmu.events_maskl = ebx.full;
4857 		pr_info("CPU erratum AAJ80 worked around\n");
4858 	}
4859 }
4860 
4861 /*
4862  * enable software workaround for errata:
4863  * SNB: BJ122
4864  * IVB: BV98
4865  * HSW: HSD29
4866  *
4867  * Only needed when HT is enabled. However detecting
4868  * if HT is enabled is difficult (model specific). So instead,
4869  * we enable the workaround in the early boot, and verify if
4870  * it is needed in a later initcall phase once we have valid
4871  * topology information to check if HT is actually enabled
4872  */
intel_ht_bug(void)4873 static __init void intel_ht_bug(void)
4874 {
4875 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4876 
4877 	x86_pmu.start_scheduling = intel_start_scheduling;
4878 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4879 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4880 }
4881 
4882 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4883 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4884 
4885 /* Haswell special events */
4886 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4887 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4888 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4889 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4890 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4891 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4892 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4893 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4894 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4895 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4896 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4897 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4898 
4899 static struct attribute *hsw_events_attrs[] = {
4900 	EVENT_PTR(td_slots_issued),
4901 	EVENT_PTR(td_slots_retired),
4902 	EVENT_PTR(td_fetch_bubbles),
4903 	EVENT_PTR(td_total_slots),
4904 	EVENT_PTR(td_total_slots_scale),
4905 	EVENT_PTR(td_recovery_bubbles),
4906 	EVENT_PTR(td_recovery_bubbles_scale),
4907 	NULL
4908 };
4909 
4910 static struct attribute *hsw_mem_events_attrs[] = {
4911 	EVENT_PTR(mem_ld_hsw),
4912 	EVENT_PTR(mem_st_hsw),
4913 	NULL,
4914 };
4915 
4916 static struct attribute *hsw_tsx_events_attrs[] = {
4917 	EVENT_PTR(tx_start),
4918 	EVENT_PTR(tx_commit),
4919 	EVENT_PTR(tx_abort),
4920 	EVENT_PTR(tx_capacity),
4921 	EVENT_PTR(tx_conflict),
4922 	EVENT_PTR(el_start),
4923 	EVENT_PTR(el_commit),
4924 	EVENT_PTR(el_abort),
4925 	EVENT_PTR(el_capacity),
4926 	EVENT_PTR(el_conflict),
4927 	EVENT_PTR(cycles_t),
4928 	EVENT_PTR(cycles_ct),
4929 	NULL
4930 };
4931 
4932 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4933 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4934 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4935 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4936 
4937 static struct attribute *icl_events_attrs[] = {
4938 	EVENT_PTR(mem_ld_hsw),
4939 	EVENT_PTR(mem_st_hsw),
4940 	NULL,
4941 };
4942 
4943 static struct attribute *icl_td_events_attrs[] = {
4944 	EVENT_PTR(slots),
4945 	EVENT_PTR(td_retiring),
4946 	EVENT_PTR(td_bad_spec),
4947 	EVENT_PTR(td_fe_bound),
4948 	EVENT_PTR(td_be_bound),
4949 	NULL,
4950 };
4951 
4952 static struct attribute *icl_tsx_events_attrs[] = {
4953 	EVENT_PTR(tx_start),
4954 	EVENT_PTR(tx_abort),
4955 	EVENT_PTR(tx_commit),
4956 	EVENT_PTR(tx_capacity_read),
4957 	EVENT_PTR(tx_capacity_write),
4958 	EVENT_PTR(tx_conflict),
4959 	EVENT_PTR(el_start),
4960 	EVENT_PTR(el_abort),
4961 	EVENT_PTR(el_commit),
4962 	EVENT_PTR(el_capacity_read),
4963 	EVENT_PTR(el_capacity_write),
4964 	EVENT_PTR(el_conflict),
4965 	EVENT_PTR(cycles_t),
4966 	EVENT_PTR(cycles_ct),
4967 	NULL,
4968 };
4969 
4970 
4971 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
4972 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
4973 
4974 static struct attribute *spr_events_attrs[] = {
4975 	EVENT_PTR(mem_ld_hsw),
4976 	EVENT_PTR(mem_st_spr),
4977 	EVENT_PTR(mem_ld_aux),
4978 	NULL,
4979 };
4980 
4981 static struct attribute *spr_td_events_attrs[] = {
4982 	EVENT_PTR(slots),
4983 	EVENT_PTR(td_retiring),
4984 	EVENT_PTR(td_bad_spec),
4985 	EVENT_PTR(td_fe_bound),
4986 	EVENT_PTR(td_be_bound),
4987 	EVENT_PTR(td_heavy_ops),
4988 	EVENT_PTR(td_br_mispredict),
4989 	EVENT_PTR(td_fetch_lat),
4990 	EVENT_PTR(td_mem_bound),
4991 	NULL,
4992 };
4993 
4994 static struct attribute *spr_tsx_events_attrs[] = {
4995 	EVENT_PTR(tx_start),
4996 	EVENT_PTR(tx_abort),
4997 	EVENT_PTR(tx_commit),
4998 	EVENT_PTR(tx_capacity_read),
4999 	EVENT_PTR(tx_capacity_write),
5000 	EVENT_PTR(tx_conflict),
5001 	EVENT_PTR(cycles_t),
5002 	EVENT_PTR(cycles_ct),
5003 	NULL,
5004 };
5005 
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)5006 static ssize_t freeze_on_smi_show(struct device *cdev,
5007 				  struct device_attribute *attr,
5008 				  char *buf)
5009 {
5010 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5011 }
5012 
5013 static DEFINE_MUTEX(freeze_on_smi_mutex);
5014 
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5015 static ssize_t freeze_on_smi_store(struct device *cdev,
5016 				   struct device_attribute *attr,
5017 				   const char *buf, size_t count)
5018 {
5019 	unsigned long val;
5020 	ssize_t ret;
5021 
5022 	ret = kstrtoul(buf, 0, &val);
5023 	if (ret)
5024 		return ret;
5025 
5026 	if (val > 1)
5027 		return -EINVAL;
5028 
5029 	mutex_lock(&freeze_on_smi_mutex);
5030 
5031 	if (x86_pmu.attr_freeze_on_smi == val)
5032 		goto done;
5033 
5034 	x86_pmu.attr_freeze_on_smi = val;
5035 
5036 	cpus_read_lock();
5037 	on_each_cpu(flip_smm_bit, &val, 1);
5038 	cpus_read_unlock();
5039 done:
5040 	mutex_unlock(&freeze_on_smi_mutex);
5041 
5042 	return count;
5043 }
5044 
update_tfa_sched(void * ignored)5045 static void update_tfa_sched(void *ignored)
5046 {
5047 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5048 
5049 	/*
5050 	 * check if PMC3 is used
5051 	 * and if so force schedule out for all event types all contexts
5052 	 */
5053 	if (test_bit(3, cpuc->active_mask))
5054 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5055 }
5056 
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)5057 static ssize_t show_sysctl_tfa(struct device *cdev,
5058 			      struct device_attribute *attr,
5059 			      char *buf)
5060 {
5061 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5062 }
5063 
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5064 static ssize_t set_sysctl_tfa(struct device *cdev,
5065 			      struct device_attribute *attr,
5066 			      const char *buf, size_t count)
5067 {
5068 	bool val;
5069 	ssize_t ret;
5070 
5071 	ret = kstrtobool(buf, &val);
5072 	if (ret)
5073 		return ret;
5074 
5075 	/* no change */
5076 	if (val == allow_tsx_force_abort)
5077 		return count;
5078 
5079 	allow_tsx_force_abort = val;
5080 
5081 	cpus_read_lock();
5082 	on_each_cpu(update_tfa_sched, NULL, 1);
5083 	cpus_read_unlock();
5084 
5085 	return count;
5086 }
5087 
5088 
5089 static DEVICE_ATTR_RW(freeze_on_smi);
5090 
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)5091 static ssize_t branches_show(struct device *cdev,
5092 			     struct device_attribute *attr,
5093 			     char *buf)
5094 {
5095 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5096 }
5097 
5098 static DEVICE_ATTR_RO(branches);
5099 
5100 static struct attribute *lbr_attrs[] = {
5101 	&dev_attr_branches.attr,
5102 	NULL
5103 };
5104 
5105 static char pmu_name_str[30];
5106 
pmu_name_show(struct device * cdev,struct device_attribute * attr,char * buf)5107 static ssize_t pmu_name_show(struct device *cdev,
5108 			     struct device_attribute *attr,
5109 			     char *buf)
5110 {
5111 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5112 }
5113 
5114 static DEVICE_ATTR_RO(pmu_name);
5115 
5116 static struct attribute *intel_pmu_caps_attrs[] = {
5117        &dev_attr_pmu_name.attr,
5118        NULL
5119 };
5120 
5121 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5122 		   show_sysctl_tfa,
5123 		   set_sysctl_tfa);
5124 
5125 static struct attribute *intel_pmu_attrs[] = {
5126 	&dev_attr_freeze_on_smi.attr,
5127 	&dev_attr_allow_tsx_force_abort.attr,
5128 	NULL,
5129 };
5130 
5131 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5132 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5133 {
5134 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5135 }
5136 
5137 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)5138 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5139 {
5140 	return x86_pmu.pebs ? attr->mode : 0;
5141 }
5142 
5143 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)5144 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5145 {
5146 	return x86_pmu.lbr_nr ? attr->mode : 0;
5147 }
5148 
5149 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)5150 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5151 {
5152 	return x86_pmu.version >= 2 ? attr->mode : 0;
5153 }
5154 
5155 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)5156 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5157 {
5158 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
5159 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5160 
5161 	return attr->mode;
5162 }
5163 
5164 static struct attribute_group group_events_td  = {
5165 	.name = "events",
5166 };
5167 
5168 static struct attribute_group group_events_mem = {
5169 	.name       = "events",
5170 	.is_visible = pebs_is_visible,
5171 };
5172 
5173 static struct attribute_group group_events_tsx = {
5174 	.name       = "events",
5175 	.is_visible = tsx_is_visible,
5176 };
5177 
5178 static struct attribute_group group_caps_gen = {
5179 	.name  = "caps",
5180 	.attrs = intel_pmu_caps_attrs,
5181 };
5182 
5183 static struct attribute_group group_caps_lbr = {
5184 	.name       = "caps",
5185 	.attrs	    = lbr_attrs,
5186 	.is_visible = lbr_is_visible,
5187 };
5188 
5189 static struct attribute_group group_format_extra = {
5190 	.name       = "format",
5191 	.is_visible = exra_is_visible,
5192 };
5193 
5194 static struct attribute_group group_format_extra_skl = {
5195 	.name       = "format",
5196 	.is_visible = exra_is_visible,
5197 };
5198 
5199 static struct attribute_group group_default = {
5200 	.attrs      = intel_pmu_attrs,
5201 	.is_visible = default_is_visible,
5202 };
5203 
5204 static const struct attribute_group *attr_update[] = {
5205 	&group_events_td,
5206 	&group_events_mem,
5207 	&group_events_tsx,
5208 	&group_caps_gen,
5209 	&group_caps_lbr,
5210 	&group_format_extra,
5211 	&group_format_extra_skl,
5212 	&group_default,
5213 	NULL,
5214 };
5215 
5216 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5217 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5218 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5219 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5220 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5221 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5222 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5223 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5224 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5225 
5226 static struct attribute *adl_hybrid_events_attrs[] = {
5227 	EVENT_PTR(slots_adl),
5228 	EVENT_PTR(td_retiring_adl),
5229 	EVENT_PTR(td_bad_spec_adl),
5230 	EVENT_PTR(td_fe_bound_adl),
5231 	EVENT_PTR(td_be_bound_adl),
5232 	EVENT_PTR(td_heavy_ops_adl),
5233 	EVENT_PTR(td_br_mis_adl),
5234 	EVENT_PTR(td_fetch_lat_adl),
5235 	EVENT_PTR(td_mem_bound_adl),
5236 	NULL,
5237 };
5238 
5239 /* Must be in IDX order */
5240 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5241 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5242 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5243 
5244 static struct attribute *adl_hybrid_mem_attrs[] = {
5245 	EVENT_PTR(mem_ld_adl),
5246 	EVENT_PTR(mem_st_adl),
5247 	EVENT_PTR(mem_ld_aux_adl),
5248 	NULL,
5249 };
5250 
5251 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5252 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5253 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5254 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5255 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5256 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5257 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5258 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5259 
5260 static struct attribute *adl_hybrid_tsx_attrs[] = {
5261 	EVENT_PTR(tx_start_adl),
5262 	EVENT_PTR(tx_abort_adl),
5263 	EVENT_PTR(tx_commit_adl),
5264 	EVENT_PTR(tx_capacity_read_adl),
5265 	EVENT_PTR(tx_capacity_write_adl),
5266 	EVENT_PTR(tx_conflict_adl),
5267 	EVENT_PTR(cycles_t_adl),
5268 	EVENT_PTR(cycles_ct_adl),
5269 	NULL,
5270 };
5271 
5272 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5273 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5274 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5275 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5276 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5277 
5278 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5279 	FORMAT_HYBRID_PTR(in_tx),
5280 	FORMAT_HYBRID_PTR(in_tx_cp),
5281 	FORMAT_HYBRID_PTR(offcore_rsp),
5282 	FORMAT_HYBRID_PTR(ldlat),
5283 	FORMAT_HYBRID_PTR(frontend),
5284 	NULL,
5285 };
5286 
5287 static struct attribute *adl_hybrid_extra_attr[] = {
5288 	FORMAT_HYBRID_PTR(offcore_rsp),
5289 	FORMAT_HYBRID_PTR(ldlat),
5290 	FORMAT_HYBRID_PTR(frontend),
5291 	NULL,
5292 };
5293 
is_attr_for_this_pmu(struct kobject * kobj,struct attribute * attr)5294 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5295 {
5296 	struct device *dev = kobj_to_dev(kobj);
5297 	struct x86_hybrid_pmu *pmu =
5298 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5299 	struct perf_pmu_events_hybrid_attr *pmu_attr =
5300 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5301 
5302 	return pmu->cpu_type & pmu_attr->pmu_type;
5303 }
5304 
hybrid_events_is_visible(struct kobject * kobj,struct attribute * attr,int i)5305 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5306 					struct attribute *attr, int i)
5307 {
5308 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5309 }
5310 
hybrid_find_supported_cpu(struct x86_hybrid_pmu * pmu)5311 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5312 {
5313 	int cpu = cpumask_first(&pmu->supported_cpus);
5314 
5315 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
5316 }
5317 
hybrid_tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5318 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5319 				     struct attribute *attr, int i)
5320 {
5321 	struct device *dev = kobj_to_dev(kobj);
5322 	struct x86_hybrid_pmu *pmu =
5323 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5324 	int cpu = hybrid_find_supported_cpu(pmu);
5325 
5326 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5327 }
5328 
hybrid_format_is_visible(struct kobject * kobj,struct attribute * attr,int i)5329 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5330 					struct attribute *attr, int i)
5331 {
5332 	struct device *dev = kobj_to_dev(kobj);
5333 	struct x86_hybrid_pmu *pmu =
5334 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5335 	struct perf_pmu_format_hybrid_attr *pmu_attr =
5336 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5337 	int cpu = hybrid_find_supported_cpu(pmu);
5338 
5339 	return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5340 }
5341 
5342 static struct attribute_group hybrid_group_events_td  = {
5343 	.name		= "events",
5344 	.is_visible	= hybrid_events_is_visible,
5345 };
5346 
5347 static struct attribute_group hybrid_group_events_mem = {
5348 	.name		= "events",
5349 	.is_visible	= hybrid_events_is_visible,
5350 };
5351 
5352 static struct attribute_group hybrid_group_events_tsx = {
5353 	.name		= "events",
5354 	.is_visible	= hybrid_tsx_is_visible,
5355 };
5356 
5357 static struct attribute_group hybrid_group_format_extra = {
5358 	.name		= "format",
5359 	.is_visible	= hybrid_format_is_visible,
5360 };
5361 
intel_hybrid_get_attr_cpus(struct device * dev,struct device_attribute * attr,char * buf)5362 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5363 					  struct device_attribute *attr,
5364 					  char *buf)
5365 {
5366 	struct x86_hybrid_pmu *pmu =
5367 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5368 
5369 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5370 }
5371 
5372 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5373 static struct attribute *intel_hybrid_cpus_attrs[] = {
5374 	&dev_attr_cpus.attr,
5375 	NULL,
5376 };
5377 
5378 static struct attribute_group hybrid_group_cpus = {
5379 	.attrs		= intel_hybrid_cpus_attrs,
5380 };
5381 
5382 static const struct attribute_group *hybrid_attr_update[] = {
5383 	&hybrid_group_events_td,
5384 	&hybrid_group_events_mem,
5385 	&hybrid_group_events_tsx,
5386 	&group_caps_gen,
5387 	&group_caps_lbr,
5388 	&hybrid_group_format_extra,
5389 	&group_default,
5390 	&hybrid_group_cpus,
5391 	NULL,
5392 };
5393 
5394 static struct attribute *empty_attrs;
5395 
intel_pmu_check_num_counters(int * num_counters,int * num_counters_fixed,u64 * intel_ctrl,u64 fixed_mask)5396 static void intel_pmu_check_num_counters(int *num_counters,
5397 					 int *num_counters_fixed,
5398 					 u64 *intel_ctrl, u64 fixed_mask)
5399 {
5400 	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5401 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5402 		     *num_counters, INTEL_PMC_MAX_GENERIC);
5403 		*num_counters = INTEL_PMC_MAX_GENERIC;
5404 	}
5405 	*intel_ctrl = (1ULL << *num_counters) - 1;
5406 
5407 	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5408 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5409 		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5410 		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
5411 	}
5412 
5413 	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5414 }
5415 
intel_pmu_check_event_constraints(struct event_constraint * event_constraints,int num_counters,int num_counters_fixed,u64 intel_ctrl)5416 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5417 					      int num_counters,
5418 					      int num_counters_fixed,
5419 					      u64 intel_ctrl)
5420 {
5421 	struct event_constraint *c;
5422 
5423 	if (!event_constraints)
5424 		return;
5425 
5426 	/*
5427 	 * event on fixed counter2 (REF_CYCLES) only works on this
5428 	 * counter, so do not extend mask to generic counters
5429 	 */
5430 	for_each_event_constraint(c, event_constraints) {
5431 		/*
5432 		 * Don't extend the topdown slots and metrics
5433 		 * events to the generic counters.
5434 		 */
5435 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5436 			/*
5437 			 * Disable topdown slots and metrics events,
5438 			 * if slots event is not in CPUID.
5439 			 */
5440 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5441 				c->idxmsk64 = 0;
5442 			c->weight = hweight64(c->idxmsk64);
5443 			continue;
5444 		}
5445 
5446 		if (c->cmask == FIXED_EVENT_FLAGS) {
5447 			/* Disabled fixed counters which are not in CPUID */
5448 			c->idxmsk64 &= intel_ctrl;
5449 
5450 			if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
5451 				c->idxmsk64 |= (1ULL << num_counters) - 1;
5452 		}
5453 		c->idxmsk64 &=
5454 			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5455 		c->weight = hweight64(c->idxmsk64);
5456 	}
5457 }
5458 
intel_pmu_check_extra_regs(struct extra_reg * extra_regs)5459 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5460 {
5461 	struct extra_reg *er;
5462 
5463 	/*
5464 	 * Access extra MSR may cause #GP under certain circumstances.
5465 	 * E.g. KVM doesn't support offcore event
5466 	 * Check all extra_regs here.
5467 	 */
5468 	if (!extra_regs)
5469 		return;
5470 
5471 	for (er = extra_regs; er->msr; er++) {
5472 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
5473 		/* Disable LBR select mapping */
5474 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5475 			x86_pmu.lbr_sel_map = NULL;
5476 	}
5477 }
5478 
intel_pmu_check_hybrid_pmus(u64 fixed_mask)5479 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5480 {
5481 	struct x86_hybrid_pmu *pmu;
5482 	int i;
5483 
5484 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5485 		pmu = &x86_pmu.hybrid_pmu[i];
5486 
5487 		intel_pmu_check_num_counters(&pmu->num_counters,
5488 					     &pmu->num_counters_fixed,
5489 					     &pmu->intel_ctrl,
5490 					     fixed_mask);
5491 
5492 		if (pmu->intel_cap.perf_metrics) {
5493 			pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5494 			pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5495 		}
5496 
5497 		if (pmu->intel_cap.pebs_output_pt_available)
5498 			pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5499 
5500 		intel_pmu_check_event_constraints(pmu->event_constraints,
5501 						  pmu->num_counters,
5502 						  pmu->num_counters_fixed,
5503 						  pmu->intel_ctrl);
5504 
5505 		intel_pmu_check_extra_regs(pmu->extra_regs);
5506 	}
5507 }
5508 
intel_pmu_init(void)5509 __init int intel_pmu_init(void)
5510 {
5511 	struct attribute **extra_skl_attr = &empty_attrs;
5512 	struct attribute **extra_attr = &empty_attrs;
5513 	struct attribute **td_attr    = &empty_attrs;
5514 	struct attribute **mem_attr   = &empty_attrs;
5515 	struct attribute **tsx_attr   = &empty_attrs;
5516 	union cpuid10_edx edx;
5517 	union cpuid10_eax eax;
5518 	union cpuid10_ebx ebx;
5519 	unsigned int fixed_mask;
5520 	bool pmem = false;
5521 	int version, i;
5522 	char *name;
5523 	struct x86_hybrid_pmu *pmu;
5524 
5525 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5526 		switch (boot_cpu_data.x86) {
5527 		case 0x6:
5528 			return p6_pmu_init();
5529 		case 0xb:
5530 			return knc_pmu_init();
5531 		case 0xf:
5532 			return p4_pmu_init();
5533 		}
5534 		return -ENODEV;
5535 	}
5536 
5537 	/*
5538 	 * Check whether the Architectural PerfMon supports
5539 	 * Branch Misses Retired hw_event or not.
5540 	 */
5541 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5542 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5543 		return -ENODEV;
5544 
5545 	version = eax.split.version_id;
5546 	if (version < 2)
5547 		x86_pmu = core_pmu;
5548 	else
5549 		x86_pmu = intel_pmu;
5550 
5551 	x86_pmu.version			= version;
5552 	x86_pmu.num_counters		= eax.split.num_counters;
5553 	x86_pmu.cntval_bits		= eax.split.bit_width;
5554 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
5555 
5556 	x86_pmu.events_maskl		= ebx.full;
5557 	x86_pmu.events_mask_len		= eax.split.mask_length;
5558 
5559 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5560 
5561 	/*
5562 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
5563 	 * assume at least 3 events, when not running in a hypervisor:
5564 	 */
5565 	if (version > 1 && version < 5) {
5566 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5567 
5568 		x86_pmu.num_counters_fixed =
5569 			max((int)edx.split.num_counters_fixed, assume);
5570 
5571 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5572 	} else if (version >= 5)
5573 		x86_pmu.num_counters_fixed = fls(fixed_mask);
5574 
5575 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
5576 		u64 capabilities;
5577 
5578 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5579 		x86_pmu.intel_cap.capabilities = capabilities;
5580 	}
5581 
5582 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5583 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5584 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5585 	}
5586 
5587 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5588 		intel_pmu_arch_lbr_init();
5589 
5590 	intel_ds_init();
5591 
5592 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5593 
5594 	if (version >= 5) {
5595 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5596 		if (x86_pmu.intel_cap.anythread_deprecated)
5597 			pr_cont(" AnyThread deprecated, ");
5598 	}
5599 
5600 	/*
5601 	 * Install the hw-cache-events table:
5602 	 */
5603 	switch (boot_cpu_data.x86_model) {
5604 	case INTEL_FAM6_CORE_YONAH:
5605 		pr_cont("Core events, ");
5606 		name = "core";
5607 		break;
5608 
5609 	case INTEL_FAM6_CORE2_MEROM:
5610 		x86_add_quirk(intel_clovertown_quirk);
5611 		fallthrough;
5612 
5613 	case INTEL_FAM6_CORE2_MEROM_L:
5614 	case INTEL_FAM6_CORE2_PENRYN:
5615 	case INTEL_FAM6_CORE2_DUNNINGTON:
5616 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5617 		       sizeof(hw_cache_event_ids));
5618 
5619 		intel_pmu_lbr_init_core();
5620 
5621 		x86_pmu.event_constraints = intel_core2_event_constraints;
5622 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5623 		pr_cont("Core2 events, ");
5624 		name = "core2";
5625 		break;
5626 
5627 	case INTEL_FAM6_NEHALEM:
5628 	case INTEL_FAM6_NEHALEM_EP:
5629 	case INTEL_FAM6_NEHALEM_EX:
5630 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5631 		       sizeof(hw_cache_event_ids));
5632 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5633 		       sizeof(hw_cache_extra_regs));
5634 
5635 		intel_pmu_lbr_init_nhm();
5636 
5637 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5638 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5639 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5640 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5641 		x86_pmu.limit_period = nhm_limit_period;
5642 
5643 		mem_attr = nhm_mem_events_attrs;
5644 
5645 		/* UOPS_ISSUED.STALLED_CYCLES */
5646 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5647 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5648 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5649 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5650 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5651 
5652 		intel_pmu_pebs_data_source_nhm();
5653 		x86_add_quirk(intel_nehalem_quirk);
5654 		x86_pmu.pebs_no_tlb = 1;
5655 		extra_attr = nhm_format_attr;
5656 
5657 		pr_cont("Nehalem events, ");
5658 		name = "nehalem";
5659 		break;
5660 
5661 	case INTEL_FAM6_ATOM_BONNELL:
5662 	case INTEL_FAM6_ATOM_BONNELL_MID:
5663 	case INTEL_FAM6_ATOM_SALTWELL:
5664 	case INTEL_FAM6_ATOM_SALTWELL_MID:
5665 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5666 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5667 		       sizeof(hw_cache_event_ids));
5668 
5669 		intel_pmu_lbr_init_atom();
5670 
5671 		x86_pmu.event_constraints = intel_gen_event_constraints;
5672 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5673 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5674 		pr_cont("Atom events, ");
5675 		name = "bonnell";
5676 		break;
5677 
5678 	case INTEL_FAM6_ATOM_SILVERMONT:
5679 	case INTEL_FAM6_ATOM_SILVERMONT_D:
5680 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5681 	case INTEL_FAM6_ATOM_AIRMONT:
5682 	case INTEL_FAM6_ATOM_AIRMONT_MID:
5683 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5684 			sizeof(hw_cache_event_ids));
5685 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5686 		       sizeof(hw_cache_extra_regs));
5687 
5688 		intel_pmu_lbr_init_slm();
5689 
5690 		x86_pmu.event_constraints = intel_slm_event_constraints;
5691 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5692 		x86_pmu.extra_regs = intel_slm_extra_regs;
5693 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5694 		td_attr = slm_events_attrs;
5695 		extra_attr = slm_format_attr;
5696 		pr_cont("Silvermont events, ");
5697 		name = "silvermont";
5698 		break;
5699 
5700 	case INTEL_FAM6_ATOM_GOLDMONT:
5701 	case INTEL_FAM6_ATOM_GOLDMONT_D:
5702 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5703 		       sizeof(hw_cache_event_ids));
5704 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5705 		       sizeof(hw_cache_extra_regs));
5706 
5707 		intel_pmu_lbr_init_skl();
5708 
5709 		x86_pmu.event_constraints = intel_slm_event_constraints;
5710 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5711 		x86_pmu.extra_regs = intel_glm_extra_regs;
5712 		/*
5713 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5714 		 * for precise cycles.
5715 		 * :pp is identical to :ppp
5716 		 */
5717 		x86_pmu.pebs_aliases = NULL;
5718 		x86_pmu.pebs_prec_dist = true;
5719 		x86_pmu.lbr_pt_coexist = true;
5720 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5721 		td_attr = glm_events_attrs;
5722 		extra_attr = slm_format_attr;
5723 		pr_cont("Goldmont events, ");
5724 		name = "goldmont";
5725 		break;
5726 
5727 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5728 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5729 		       sizeof(hw_cache_event_ids));
5730 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5731 		       sizeof(hw_cache_extra_regs));
5732 
5733 		intel_pmu_lbr_init_skl();
5734 
5735 		x86_pmu.event_constraints = intel_slm_event_constraints;
5736 		x86_pmu.extra_regs = intel_glm_extra_regs;
5737 		/*
5738 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5739 		 * for precise cycles.
5740 		 */
5741 		x86_pmu.pebs_aliases = NULL;
5742 		x86_pmu.pebs_prec_dist = true;
5743 		x86_pmu.lbr_pt_coexist = true;
5744 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5745 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5746 		x86_pmu.get_event_constraints = glp_get_event_constraints;
5747 		td_attr = glm_events_attrs;
5748 		/* Goldmont Plus has 4-wide pipeline */
5749 		event_attr_td_total_slots_scale_glm.event_str = "4";
5750 		extra_attr = slm_format_attr;
5751 		pr_cont("Goldmont plus events, ");
5752 		name = "goldmont_plus";
5753 		break;
5754 
5755 	case INTEL_FAM6_ATOM_TREMONT_D:
5756 	case INTEL_FAM6_ATOM_TREMONT:
5757 	case INTEL_FAM6_ATOM_TREMONT_L:
5758 		x86_pmu.late_ack = true;
5759 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5760 		       sizeof(hw_cache_event_ids));
5761 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5762 		       sizeof(hw_cache_extra_regs));
5763 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5764 
5765 		intel_pmu_lbr_init_skl();
5766 
5767 		x86_pmu.event_constraints = intel_slm_event_constraints;
5768 		x86_pmu.extra_regs = intel_tnt_extra_regs;
5769 		/*
5770 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5771 		 * for precise cycles.
5772 		 */
5773 		x86_pmu.pebs_aliases = NULL;
5774 		x86_pmu.pebs_prec_dist = true;
5775 		x86_pmu.lbr_pt_coexist = true;
5776 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5777 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5778 		td_attr = tnt_events_attrs;
5779 		extra_attr = slm_format_attr;
5780 		pr_cont("Tremont events, ");
5781 		name = "Tremont";
5782 		break;
5783 
5784 	case INTEL_FAM6_WESTMERE:
5785 	case INTEL_FAM6_WESTMERE_EP:
5786 	case INTEL_FAM6_WESTMERE_EX:
5787 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5788 		       sizeof(hw_cache_event_ids));
5789 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5790 		       sizeof(hw_cache_extra_regs));
5791 
5792 		intel_pmu_lbr_init_nhm();
5793 
5794 		x86_pmu.event_constraints = intel_westmere_event_constraints;
5795 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5796 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5797 		x86_pmu.extra_regs = intel_westmere_extra_regs;
5798 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5799 
5800 		mem_attr = nhm_mem_events_attrs;
5801 
5802 		/* UOPS_ISSUED.STALLED_CYCLES */
5803 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5804 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5805 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5806 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5807 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5808 
5809 		intel_pmu_pebs_data_source_nhm();
5810 		extra_attr = nhm_format_attr;
5811 		pr_cont("Westmere events, ");
5812 		name = "westmere";
5813 		break;
5814 
5815 	case INTEL_FAM6_SANDYBRIDGE:
5816 	case INTEL_FAM6_SANDYBRIDGE_X:
5817 		x86_add_quirk(intel_sandybridge_quirk);
5818 		x86_add_quirk(intel_ht_bug);
5819 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5820 		       sizeof(hw_cache_event_ids));
5821 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5822 		       sizeof(hw_cache_extra_regs));
5823 
5824 		intel_pmu_lbr_init_snb();
5825 
5826 		x86_pmu.event_constraints = intel_snb_event_constraints;
5827 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5828 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5829 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5830 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5831 		else
5832 			x86_pmu.extra_regs = intel_snb_extra_regs;
5833 
5834 
5835 		/* all extra regs are per-cpu when HT is on */
5836 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5837 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5838 
5839 		td_attr  = snb_events_attrs;
5840 		mem_attr = snb_mem_events_attrs;
5841 
5842 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5843 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5844 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5845 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5846 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5847 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5848 
5849 		extra_attr = nhm_format_attr;
5850 
5851 		pr_cont("SandyBridge events, ");
5852 		name = "sandybridge";
5853 		break;
5854 
5855 	case INTEL_FAM6_IVYBRIDGE:
5856 	case INTEL_FAM6_IVYBRIDGE_X:
5857 		x86_add_quirk(intel_ht_bug);
5858 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5859 		       sizeof(hw_cache_event_ids));
5860 		/* dTLB-load-misses on IVB is different than SNB */
5861 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5862 
5863 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5864 		       sizeof(hw_cache_extra_regs));
5865 
5866 		intel_pmu_lbr_init_snb();
5867 
5868 		x86_pmu.event_constraints = intel_ivb_event_constraints;
5869 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5870 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5871 		x86_pmu.pebs_prec_dist = true;
5872 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5873 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5874 		else
5875 			x86_pmu.extra_regs = intel_snb_extra_regs;
5876 		/* all extra regs are per-cpu when HT is on */
5877 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5878 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5879 
5880 		td_attr  = snb_events_attrs;
5881 		mem_attr = snb_mem_events_attrs;
5882 
5883 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5884 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5885 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5886 
5887 		extra_attr = nhm_format_attr;
5888 
5889 		pr_cont("IvyBridge events, ");
5890 		name = "ivybridge";
5891 		break;
5892 
5893 
5894 	case INTEL_FAM6_HASWELL:
5895 	case INTEL_FAM6_HASWELL_X:
5896 	case INTEL_FAM6_HASWELL_L:
5897 	case INTEL_FAM6_HASWELL_G:
5898 		x86_add_quirk(intel_ht_bug);
5899 		x86_add_quirk(intel_pebs_isolation_quirk);
5900 		x86_pmu.late_ack = true;
5901 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5902 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5903 
5904 		intel_pmu_lbr_init_hsw();
5905 
5906 		x86_pmu.event_constraints = intel_hsw_event_constraints;
5907 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5908 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5909 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5910 		x86_pmu.pebs_prec_dist = true;
5911 		/* all extra regs are per-cpu when HT is on */
5912 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5913 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5914 
5915 		x86_pmu.hw_config = hsw_hw_config;
5916 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5917 		x86_pmu.lbr_double_abort = true;
5918 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5919 			hsw_format_attr : nhm_format_attr;
5920 		td_attr  = hsw_events_attrs;
5921 		mem_attr = hsw_mem_events_attrs;
5922 		tsx_attr = hsw_tsx_events_attrs;
5923 		pr_cont("Haswell events, ");
5924 		name = "haswell";
5925 		break;
5926 
5927 	case INTEL_FAM6_BROADWELL:
5928 	case INTEL_FAM6_BROADWELL_D:
5929 	case INTEL_FAM6_BROADWELL_G:
5930 	case INTEL_FAM6_BROADWELL_X:
5931 		x86_add_quirk(intel_pebs_isolation_quirk);
5932 		x86_pmu.late_ack = true;
5933 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5934 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5935 
5936 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5937 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5938 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
5939 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5940 									  HSW_SNOOP_DRAM;
5941 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5942 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5943 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5944 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5945 
5946 		intel_pmu_lbr_init_hsw();
5947 
5948 		x86_pmu.event_constraints = intel_bdw_event_constraints;
5949 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5950 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5951 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5952 		x86_pmu.pebs_prec_dist = true;
5953 		/* all extra regs are per-cpu when HT is on */
5954 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5955 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5956 
5957 		x86_pmu.hw_config = hsw_hw_config;
5958 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5959 		x86_pmu.limit_period = bdw_limit_period;
5960 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5961 			hsw_format_attr : nhm_format_attr;
5962 		td_attr  = hsw_events_attrs;
5963 		mem_attr = hsw_mem_events_attrs;
5964 		tsx_attr = hsw_tsx_events_attrs;
5965 		pr_cont("Broadwell events, ");
5966 		name = "broadwell";
5967 		break;
5968 
5969 	case INTEL_FAM6_XEON_PHI_KNL:
5970 	case INTEL_FAM6_XEON_PHI_KNM:
5971 		memcpy(hw_cache_event_ids,
5972 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5973 		memcpy(hw_cache_extra_regs,
5974 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5975 		intel_pmu_lbr_init_knl();
5976 
5977 		x86_pmu.event_constraints = intel_slm_event_constraints;
5978 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5979 		x86_pmu.extra_regs = intel_knl_extra_regs;
5980 
5981 		/* all extra regs are per-cpu when HT is on */
5982 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5983 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5984 		extra_attr = slm_format_attr;
5985 		pr_cont("Knights Landing/Mill events, ");
5986 		name = "knights-landing";
5987 		break;
5988 
5989 	case INTEL_FAM6_SKYLAKE_X:
5990 		pmem = true;
5991 		fallthrough;
5992 	case INTEL_FAM6_SKYLAKE_L:
5993 	case INTEL_FAM6_SKYLAKE:
5994 	case INTEL_FAM6_KABYLAKE_L:
5995 	case INTEL_FAM6_KABYLAKE:
5996 	case INTEL_FAM6_COMETLAKE_L:
5997 	case INTEL_FAM6_COMETLAKE:
5998 		x86_add_quirk(intel_pebs_isolation_quirk);
5999 		x86_pmu.late_ack = true;
6000 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6001 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6002 		intel_pmu_lbr_init_skl();
6003 
6004 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6005 		event_attr_td_recovery_bubbles.event_str_noht =
6006 			"event=0xd,umask=0x1,cmask=1";
6007 		event_attr_td_recovery_bubbles.event_str_ht =
6008 			"event=0xd,umask=0x1,cmask=1,any=1";
6009 
6010 		x86_pmu.event_constraints = intel_skl_event_constraints;
6011 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6012 		x86_pmu.extra_regs = intel_skl_extra_regs;
6013 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6014 		x86_pmu.pebs_prec_dist = true;
6015 		/* all extra regs are per-cpu when HT is on */
6016 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6017 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6018 
6019 		x86_pmu.hw_config = hsw_hw_config;
6020 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6021 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6022 			hsw_format_attr : nhm_format_attr;
6023 		extra_skl_attr = skl_format_attr;
6024 		td_attr  = hsw_events_attrs;
6025 		mem_attr = hsw_mem_events_attrs;
6026 		tsx_attr = hsw_tsx_events_attrs;
6027 		intel_pmu_pebs_data_source_skl(pmem);
6028 
6029 		/*
6030 		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6031 		 * TSX force abort hooks are not required on these systems. Only deploy
6032 		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6033 		 */
6034 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6035 		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6036 			x86_pmu.flags |= PMU_FL_TFA;
6037 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
6038 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6039 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6040 		}
6041 
6042 		pr_cont("Skylake events, ");
6043 		name = "skylake";
6044 		break;
6045 
6046 	case INTEL_FAM6_ICELAKE_X:
6047 	case INTEL_FAM6_ICELAKE_D:
6048 		pmem = true;
6049 		fallthrough;
6050 	case INTEL_FAM6_ICELAKE_L:
6051 	case INTEL_FAM6_ICELAKE:
6052 	case INTEL_FAM6_TIGERLAKE_L:
6053 	case INTEL_FAM6_TIGERLAKE:
6054 	case INTEL_FAM6_ROCKETLAKE:
6055 		x86_pmu.late_ack = true;
6056 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6057 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6058 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6059 		intel_pmu_lbr_init_skl();
6060 
6061 		x86_pmu.event_constraints = intel_icl_event_constraints;
6062 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6063 		x86_pmu.extra_regs = intel_icl_extra_regs;
6064 		x86_pmu.pebs_aliases = NULL;
6065 		x86_pmu.pebs_prec_dist = true;
6066 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6067 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6068 
6069 		x86_pmu.hw_config = hsw_hw_config;
6070 		x86_pmu.get_event_constraints = icl_get_event_constraints;
6071 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6072 			hsw_format_attr : nhm_format_attr;
6073 		extra_skl_attr = skl_format_attr;
6074 		mem_attr = icl_events_attrs;
6075 		td_attr = icl_td_events_attrs;
6076 		tsx_attr = icl_tsx_events_attrs;
6077 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6078 		x86_pmu.lbr_pt_coexist = true;
6079 		intel_pmu_pebs_data_source_skl(pmem);
6080 		x86_pmu.num_topdown_events = 4;
6081 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6082 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6083 		pr_cont("Icelake events, ");
6084 		name = "icelake";
6085 		break;
6086 
6087 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
6088 		pmem = true;
6089 		x86_pmu.late_ack = true;
6090 		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6091 		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6092 
6093 		x86_pmu.event_constraints = intel_spr_event_constraints;
6094 		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6095 		x86_pmu.extra_regs = intel_spr_extra_regs;
6096 		x86_pmu.limit_period = spr_limit_period;
6097 		x86_pmu.pebs_aliases = NULL;
6098 		x86_pmu.pebs_prec_dist = true;
6099 		x86_pmu.pebs_block = true;
6100 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6101 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6102 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6103 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6104 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6105 
6106 		x86_pmu.hw_config = hsw_hw_config;
6107 		x86_pmu.get_event_constraints = spr_get_event_constraints;
6108 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6109 			hsw_format_attr : nhm_format_attr;
6110 		extra_skl_attr = skl_format_attr;
6111 		mem_attr = spr_events_attrs;
6112 		td_attr = spr_td_events_attrs;
6113 		tsx_attr = spr_tsx_events_attrs;
6114 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6115 		x86_pmu.lbr_pt_coexist = true;
6116 		intel_pmu_pebs_data_source_skl(pmem);
6117 		x86_pmu.num_topdown_events = 8;
6118 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6119 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6120 		pr_cont("Sapphire Rapids events, ");
6121 		name = "sapphire_rapids";
6122 		break;
6123 
6124 	case INTEL_FAM6_ALDERLAKE:
6125 	case INTEL_FAM6_ALDERLAKE_L:
6126 		/*
6127 		 * Alder Lake has 2 types of CPU, core and atom.
6128 		 *
6129 		 * Initialize the common PerfMon capabilities here.
6130 		 */
6131 		x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6132 					     sizeof(struct x86_hybrid_pmu),
6133 					     GFP_KERNEL);
6134 		if (!x86_pmu.hybrid_pmu)
6135 			return -ENOMEM;
6136 		static_branch_enable(&perf_is_hybrid);
6137 		x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6138 
6139 		x86_pmu.pebs_aliases = NULL;
6140 		x86_pmu.pebs_prec_dist = true;
6141 		x86_pmu.pebs_block = true;
6142 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6143 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6144 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6145 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6146 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6147 		x86_pmu.lbr_pt_coexist = true;
6148 		intel_pmu_pebs_data_source_skl(false);
6149 		x86_pmu.num_topdown_events = 8;
6150 		x86_pmu.update_topdown_event = adl_update_topdown_event;
6151 		x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6152 
6153 		x86_pmu.filter_match = intel_pmu_filter_match;
6154 		x86_pmu.get_event_constraints = adl_get_event_constraints;
6155 		x86_pmu.hw_config = adl_hw_config;
6156 		x86_pmu.limit_period = spr_limit_period;
6157 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6158 		/*
6159 		 * The rtm_abort_event is used to check whether to enable GPRs
6160 		 * for the RTM abort event. Atom doesn't have the RTM abort
6161 		 * event. There is no harmful to set it in the common
6162 		 * x86_pmu.rtm_abort_event.
6163 		 */
6164 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6165 
6166 		td_attr = adl_hybrid_events_attrs;
6167 		mem_attr = adl_hybrid_mem_attrs;
6168 		tsx_attr = adl_hybrid_tsx_attrs;
6169 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6170 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6171 
6172 		/* Initialize big core specific PerfMon capabilities.*/
6173 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6174 		pmu->name = "cpu_core";
6175 		pmu->cpu_type = hybrid_big;
6176 		pmu->late_ack = true;
6177 		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6178 			pmu->num_counters = x86_pmu.num_counters + 2;
6179 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6180 		} else {
6181 			pmu->num_counters = x86_pmu.num_counters;
6182 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6183 		}
6184 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6185 		pmu->unconstrained = (struct event_constraint)
6186 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6187 							   0, pmu->num_counters, 0, 0);
6188 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6189 		pmu->intel_cap.perf_metrics = 1;
6190 		pmu->intel_cap.pebs_output_pt_available = 0;
6191 
6192 		memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6193 		memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6194 		pmu->event_constraints = intel_spr_event_constraints;
6195 		pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6196 		pmu->extra_regs = intel_spr_extra_regs;
6197 
6198 		/* Initialize Atom core specific PerfMon capabilities.*/
6199 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6200 		pmu->name = "cpu_atom";
6201 		pmu->cpu_type = hybrid_small;
6202 		pmu->mid_ack = true;
6203 		pmu->num_counters = x86_pmu.num_counters;
6204 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6205 		pmu->max_pebs_events = x86_pmu.max_pebs_events;
6206 		pmu->unconstrained = (struct event_constraint)
6207 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6208 							   0, pmu->num_counters, 0, 0);
6209 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6210 		pmu->intel_cap.perf_metrics = 0;
6211 		pmu->intel_cap.pebs_output_pt_available = 1;
6212 
6213 		memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6214 		memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6215 		pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6216 		pmu->event_constraints = intel_slm_event_constraints;
6217 		pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6218 		pmu->extra_regs = intel_grt_extra_regs;
6219 		pr_cont("Alderlake Hybrid events, ");
6220 		name = "alderlake_hybrid";
6221 		break;
6222 
6223 	default:
6224 		switch (x86_pmu.version) {
6225 		case 1:
6226 			x86_pmu.event_constraints = intel_v1_event_constraints;
6227 			pr_cont("generic architected perfmon v1, ");
6228 			name = "generic_arch_v1";
6229 			break;
6230 		default:
6231 			/*
6232 			 * default constraints for v2 and up
6233 			 */
6234 			x86_pmu.event_constraints = intel_gen_event_constraints;
6235 			pr_cont("generic architected perfmon, ");
6236 			name = "generic_arch_v2+";
6237 			break;
6238 		}
6239 	}
6240 
6241 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6242 
6243 	if (!is_hybrid()) {
6244 		group_events_td.attrs  = td_attr;
6245 		group_events_mem.attrs = mem_attr;
6246 		group_events_tsx.attrs = tsx_attr;
6247 		group_format_extra.attrs = extra_attr;
6248 		group_format_extra_skl.attrs = extra_skl_attr;
6249 
6250 		x86_pmu.attr_update = attr_update;
6251 	} else {
6252 		hybrid_group_events_td.attrs  = td_attr;
6253 		hybrid_group_events_mem.attrs = mem_attr;
6254 		hybrid_group_events_tsx.attrs = tsx_attr;
6255 		hybrid_group_format_extra.attrs = extra_attr;
6256 
6257 		x86_pmu.attr_update = hybrid_attr_update;
6258 	}
6259 
6260 	intel_pmu_check_num_counters(&x86_pmu.num_counters,
6261 				     &x86_pmu.num_counters_fixed,
6262 				     &x86_pmu.intel_ctrl,
6263 				     (u64)fixed_mask);
6264 
6265 	/* AnyThread may be deprecated on arch perfmon v5 or later */
6266 	if (x86_pmu.intel_cap.anythread_deprecated)
6267 		x86_pmu.format_attrs = intel_arch_formats_attr;
6268 
6269 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6270 					  x86_pmu.num_counters,
6271 					  x86_pmu.num_counters_fixed,
6272 					  x86_pmu.intel_ctrl);
6273 	/*
6274 	 * Access LBR MSR may cause #GP under certain circumstances.
6275 	 * E.g. KVM doesn't support LBR MSR
6276 	 * Check all LBT MSR here.
6277 	 * Disable LBR access if any LBR MSRs can not be accessed.
6278 	 */
6279 	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6280 		x86_pmu.lbr_nr = 0;
6281 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
6282 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6283 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6284 			x86_pmu.lbr_nr = 0;
6285 	}
6286 
6287 	if (x86_pmu.lbr_nr)
6288 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6289 
6290 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6291 
6292 	/* Support full width counters using alternative MSR range */
6293 	if (x86_pmu.intel_cap.full_width_write) {
6294 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6295 		x86_pmu.perfctr = MSR_IA32_PMC0;
6296 		pr_cont("full-width counters, ");
6297 	}
6298 
6299 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6300 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6301 
6302 	if (is_hybrid())
6303 		intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6304 
6305 	return 0;
6306 }
6307 
6308 /*
6309  * HT bug: phase 2 init
6310  * Called once we have valid topology information to check
6311  * whether or not HT is enabled
6312  * If HT is off, then we disable the workaround
6313  */
fixup_ht_bug(void)6314 static __init int fixup_ht_bug(void)
6315 {
6316 	int c;
6317 	/*
6318 	 * problem not present on this CPU model, nothing to do
6319 	 */
6320 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6321 		return 0;
6322 
6323 	if (topology_max_smt_threads() > 1) {
6324 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6325 		return 0;
6326 	}
6327 
6328 	cpus_read_lock();
6329 
6330 	hardlockup_detector_perf_stop();
6331 
6332 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6333 
6334 	x86_pmu.start_scheduling = NULL;
6335 	x86_pmu.commit_scheduling = NULL;
6336 	x86_pmu.stop_scheduling = NULL;
6337 
6338 	hardlockup_detector_perf_restart();
6339 
6340 	for_each_online_cpu(c)
6341 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6342 
6343 	cpus_read_unlock();
6344 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6345 	return 0;
6346 }
6347 subsys_initcall(fixup_ht_bug)
6348