1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016 Intel Corporation
4 */
5
6 #include <drm/drm_print.h>
7
8 #include "gem/i915_gem_context.h"
9
10 #include "i915_drv.h"
11
12 #include "intel_breadcrumbs.h"
13 #include "intel_context.h"
14 #include "intel_engine.h"
15 #include "intel_engine_pm.h"
16 #include "intel_engine_user.h"
17 #include "intel_execlists_submission.h"
18 #include "intel_gt.h"
19 #include "intel_gt_requests.h"
20 #include "intel_gt_pm.h"
21 #include "intel_lrc_reg.h"
22 #include "intel_reset.h"
23 #include "intel_ring.h"
24 #include "uc/intel_guc_submission.h"
25
26 /* Haswell does have the CXT_SIZE register however it does not appear to be
27 * valid. Now, docs explain in dwords what is in the context object. The full
28 * size is 70720 bytes, however, the power context and execlist context will
29 * never be saved (power context is stored elsewhere, and execlists don't work
30 * on HSW) - so the final size, including the extra state required for the
31 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
32 */
33 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
34
35 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
36 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
37 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
38 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
39
40 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
41
42 #define MAX_MMIO_BASES 3
43 struct engine_info {
44 u8 class;
45 u8 instance;
46 /* mmio bases table *must* be sorted in reverse graphics_ver order */
47 struct engine_mmio_base {
48 u32 graphics_ver : 8;
49 u32 base : 24;
50 } mmio_bases[MAX_MMIO_BASES];
51 };
52
53 static const struct engine_info intel_engines[] = {
54 [RCS0] = {
55 .class = RENDER_CLASS,
56 .instance = 0,
57 .mmio_bases = {
58 { .graphics_ver = 1, .base = RENDER_RING_BASE }
59 },
60 },
61 [BCS0] = {
62 .class = COPY_ENGINE_CLASS,
63 .instance = 0,
64 .mmio_bases = {
65 { .graphics_ver = 6, .base = BLT_RING_BASE }
66 },
67 },
68 [VCS0] = {
69 .class = VIDEO_DECODE_CLASS,
70 .instance = 0,
71 .mmio_bases = {
72 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
73 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
74 { .graphics_ver = 4, .base = BSD_RING_BASE }
75 },
76 },
77 [VCS1] = {
78 .class = VIDEO_DECODE_CLASS,
79 .instance = 1,
80 .mmio_bases = {
81 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
82 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
83 },
84 },
85 [VCS2] = {
86 .class = VIDEO_DECODE_CLASS,
87 .instance = 2,
88 .mmio_bases = {
89 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
90 },
91 },
92 [VCS3] = {
93 .class = VIDEO_DECODE_CLASS,
94 .instance = 3,
95 .mmio_bases = {
96 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
97 },
98 },
99 [VCS4] = {
100 .class = VIDEO_DECODE_CLASS,
101 .instance = 4,
102 .mmio_bases = {
103 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
104 },
105 },
106 [VCS5] = {
107 .class = VIDEO_DECODE_CLASS,
108 .instance = 5,
109 .mmio_bases = {
110 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
111 },
112 },
113 [VCS6] = {
114 .class = VIDEO_DECODE_CLASS,
115 .instance = 6,
116 .mmio_bases = {
117 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
118 },
119 },
120 [VCS7] = {
121 .class = VIDEO_DECODE_CLASS,
122 .instance = 7,
123 .mmio_bases = {
124 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
125 },
126 },
127 [VECS0] = {
128 .class = VIDEO_ENHANCEMENT_CLASS,
129 .instance = 0,
130 .mmio_bases = {
131 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
132 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
133 },
134 },
135 [VECS1] = {
136 .class = VIDEO_ENHANCEMENT_CLASS,
137 .instance = 1,
138 .mmio_bases = {
139 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
140 },
141 },
142 [VECS2] = {
143 .class = VIDEO_ENHANCEMENT_CLASS,
144 .instance = 2,
145 .mmio_bases = {
146 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
147 },
148 },
149 [VECS3] = {
150 .class = VIDEO_ENHANCEMENT_CLASS,
151 .instance = 3,
152 .mmio_bases = {
153 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
154 },
155 },
156 };
157
158 /**
159 * intel_engine_context_size() - return the size of the context for an engine
160 * @gt: the gt
161 * @class: engine class
162 *
163 * Each engine class may require a different amount of space for a context
164 * image.
165 *
166 * Return: size (in bytes) of an engine class specific context image
167 *
168 * Note: this size includes the HWSP, which is part of the context image
169 * in LRC mode, but does not include the "shared data page" used with
170 * GuC submission. The caller should account for this if using the GuC.
171 */
intel_engine_context_size(struct intel_gt * gt,u8 class)172 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
173 {
174 struct intel_uncore *uncore = gt->uncore;
175 u32 cxt_size;
176
177 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
178
179 switch (class) {
180 case RENDER_CLASS:
181 switch (GRAPHICS_VER(gt->i915)) {
182 default:
183 MISSING_CASE(GRAPHICS_VER(gt->i915));
184 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
185 case 12:
186 case 11:
187 return GEN11_LR_CONTEXT_RENDER_SIZE;
188 case 9:
189 return GEN9_LR_CONTEXT_RENDER_SIZE;
190 case 8:
191 return GEN8_LR_CONTEXT_RENDER_SIZE;
192 case 7:
193 if (IS_HASWELL(gt->i915))
194 return HSW_CXT_TOTAL_SIZE;
195
196 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
197 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
198 PAGE_SIZE);
199 case 6:
200 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
201 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
202 PAGE_SIZE);
203 case 5:
204 case 4:
205 /*
206 * There is a discrepancy here between the size reported
207 * by the register and the size of the context layout
208 * in the docs. Both are described as authorative!
209 *
210 * The discrepancy is on the order of a few cachelines,
211 * but the total is under one page (4k), which is our
212 * minimum allocation anyway so it should all come
213 * out in the wash.
214 */
215 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
216 drm_dbg(>->i915->drm,
217 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
218 GRAPHICS_VER(gt->i915), cxt_size * 64,
219 cxt_size - 1);
220 return round_up(cxt_size * 64, PAGE_SIZE);
221 case 3:
222 case 2:
223 /* For the special day when i810 gets merged. */
224 case 1:
225 return 0;
226 }
227 break;
228 default:
229 MISSING_CASE(class);
230 fallthrough;
231 case VIDEO_DECODE_CLASS:
232 case VIDEO_ENHANCEMENT_CLASS:
233 case COPY_ENGINE_CLASS:
234 if (GRAPHICS_VER(gt->i915) < 8)
235 return 0;
236 return GEN8_LR_CONTEXT_OTHER_SIZE;
237 }
238 }
239
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)240 static u32 __engine_mmio_base(struct drm_i915_private *i915,
241 const struct engine_mmio_base *bases)
242 {
243 int i;
244
245 for (i = 0; i < MAX_MMIO_BASES; i++)
246 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
247 break;
248
249 GEM_BUG_ON(i == MAX_MMIO_BASES);
250 GEM_BUG_ON(!bases[i].base);
251
252 return bases[i].base;
253 }
254
__sprint_engine_name(struct intel_engine_cs * engine)255 static void __sprint_engine_name(struct intel_engine_cs *engine)
256 {
257 /*
258 * Before we know what the uABI name for this engine will be,
259 * we still would like to keep track of this engine in the debug logs.
260 * We throw in a ' here as a reminder that this isn't its final name.
261 */
262 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
263 intel_engine_class_repr(engine->class),
264 engine->instance) >= sizeof(engine->name));
265 }
266
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)267 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
268 {
269 /*
270 * Though they added more rings on g4x/ilk, they did not add
271 * per-engine HWSTAM until gen6.
272 */
273 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
274 return;
275
276 if (GRAPHICS_VER(engine->i915) >= 3)
277 ENGINE_WRITE(engine, RING_HWSTAM, mask);
278 else
279 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
280 }
281
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)282 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
283 {
284 /* Mask off all writes into the unknown HWSP */
285 intel_engine_set_hwsp_writemask(engine, ~0u);
286 }
287
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)288 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
289 {
290 GEM_DEBUG_WARN_ON(iir);
291 }
292
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id)293 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
294 {
295 const struct engine_info *info = &intel_engines[id];
296 struct drm_i915_private *i915 = gt->i915;
297 struct intel_engine_cs *engine;
298 u8 guc_class;
299
300 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
301 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
302 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
303 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
304
305 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
306 return -EINVAL;
307
308 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
309 return -EINVAL;
310
311 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
312 return -EINVAL;
313
314 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
315 return -EINVAL;
316
317 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
318 if (!engine)
319 return -ENOMEM;
320
321 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
322
323 engine->id = id;
324 engine->legacy_idx = INVALID_ENGINE;
325 engine->mask = BIT(id);
326 engine->i915 = i915;
327 engine->gt = gt;
328 engine->uncore = gt->uncore;
329 guc_class = engine_class_to_guc_class(info->class);
330 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
331 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
332
333 engine->irq_handler = nop_irq_handler;
334
335 engine->class = info->class;
336 engine->instance = info->instance;
337 __sprint_engine_name(engine);
338
339 engine->props.heartbeat_interval_ms =
340 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
341 engine->props.max_busywait_duration_ns =
342 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
343 engine->props.preempt_timeout_ms =
344 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
345 engine->props.stop_timeout_ms =
346 CONFIG_DRM_I915_STOP_TIMEOUT;
347 engine->props.timeslice_duration_ms =
348 CONFIG_DRM_I915_TIMESLICE_DURATION;
349
350 /* Override to uninterruptible for OpenCL workloads. */
351 if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
352 engine->props.preempt_timeout_ms = 0;
353
354 engine->defaults = engine->props; /* never to change again */
355
356 engine->context_size = intel_engine_context_size(gt, engine->class);
357 if (WARN_ON(engine->context_size > BIT(20)))
358 engine->context_size = 0;
359 if (engine->context_size)
360 DRIVER_CAPS(i915)->has_logical_contexts = true;
361
362 ewma__engine_latency_init(&engine->latency);
363 seqcount_init(&engine->stats.lock);
364
365 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
366
367 /* Scrub mmio state on takeover */
368 intel_engine_sanitize_mmio(engine);
369
370 gt->engine_class[info->class][info->instance] = engine;
371 gt->engine[id] = engine;
372
373 return 0;
374 }
375
__setup_engine_capabilities(struct intel_engine_cs * engine)376 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
377 {
378 struct drm_i915_private *i915 = engine->i915;
379
380 if (engine->class == VIDEO_DECODE_CLASS) {
381 /*
382 * HEVC support is present on first engine instance
383 * before Gen11 and on all instances afterwards.
384 */
385 if (GRAPHICS_VER(i915) >= 11 ||
386 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
387 engine->uabi_capabilities |=
388 I915_VIDEO_CLASS_CAPABILITY_HEVC;
389
390 /*
391 * SFC block is present only on even logical engine
392 * instances.
393 */
394 if ((GRAPHICS_VER(i915) >= 11 &&
395 (engine->gt->info.vdbox_sfc_access &
396 BIT(engine->instance))) ||
397 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
398 engine->uabi_capabilities |=
399 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
400 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
401 if (GRAPHICS_VER(i915) >= 9)
402 engine->uabi_capabilities |=
403 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
404 }
405 }
406
intel_setup_engine_capabilities(struct intel_gt * gt)407 static void intel_setup_engine_capabilities(struct intel_gt *gt)
408 {
409 struct intel_engine_cs *engine;
410 enum intel_engine_id id;
411
412 for_each_engine(engine, gt, id)
413 __setup_engine_capabilities(engine);
414 }
415
416 /**
417 * intel_engines_release() - free the resources allocated for Command Streamers
418 * @gt: pointer to struct intel_gt
419 */
intel_engines_release(struct intel_gt * gt)420 void intel_engines_release(struct intel_gt *gt)
421 {
422 struct intel_engine_cs *engine;
423 enum intel_engine_id id;
424
425 /*
426 * Before we release the resources held by engine, we must be certain
427 * that the HW is no longer accessing them -- having the GPU scribble
428 * to or read from a page being used for something else causes no end
429 * of fun.
430 *
431 * The GPU should be reset by this point, but assume the worst just
432 * in case we aborted before completely initialising the engines.
433 */
434 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
435 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
436 __intel_gt_reset(gt, ALL_ENGINES);
437
438 /* Decouple the backend; but keep the layout for late GPU resets */
439 for_each_engine(engine, gt, id) {
440 if (!engine->release)
441 continue;
442
443 intel_wakeref_wait_for_idle(&engine->wakeref);
444 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
445
446 engine->release(engine);
447 engine->release = NULL;
448
449 memset(&engine->reset, 0, sizeof(engine->reset));
450 }
451 }
452
intel_engine_free_request_pool(struct intel_engine_cs * engine)453 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
454 {
455 if (!engine->request_pool)
456 return;
457
458 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
459 }
460
intel_engines_free(struct intel_gt * gt)461 void intel_engines_free(struct intel_gt *gt)
462 {
463 struct intel_engine_cs *engine;
464 enum intel_engine_id id;
465
466 /* Free the requests! dma-resv keeps fences around for an eternity */
467 rcu_barrier();
468
469 for_each_engine(engine, gt, id) {
470 intel_engine_free_request_pool(engine);
471 kfree(engine);
472 gt->engine[id] = NULL;
473 }
474 }
475
476 static
gen11_vdbox_has_sfc(struct drm_i915_private * i915,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)477 bool gen11_vdbox_has_sfc(struct drm_i915_private *i915,
478 unsigned int physical_vdbox,
479 unsigned int logical_vdbox, u16 vdbox_mask)
480 {
481 /*
482 * In Gen11, only even numbered logical VDBOXes are hooked
483 * up to an SFC (Scaler & Format Converter) unit.
484 * In Gen12, Even numbered physical instance always are connected
485 * to an SFC. Odd numbered physical instances have SFC only if
486 * previous even instance is fused off.
487 */
488 if (GRAPHICS_VER(i915) == 12)
489 return (physical_vdbox % 2 == 0) ||
490 !(BIT(physical_vdbox - 1) & vdbox_mask);
491 else if (GRAPHICS_VER(i915) == 11)
492 return logical_vdbox % 2 == 0;
493
494 MISSING_CASE(GRAPHICS_VER(i915));
495 return false;
496 }
497
498 /*
499 * Determine which engines are fused off in our particular hardware.
500 * Note that we have a catch-22 situation where we need to be able to access
501 * the blitter forcewake domain to read the engine fuses, but at the same time
502 * we need to know which engines are available on the system to know which
503 * forcewake domains are present. We solve this by intializing the forcewake
504 * domains based on the full engine mask in the platform capabilities before
505 * calling this function and pruning the domains for fused-off engines
506 * afterwards.
507 */
init_engine_mask(struct intel_gt * gt)508 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
509 {
510 struct drm_i915_private *i915 = gt->i915;
511 struct intel_gt_info *info = >->info;
512 struct intel_uncore *uncore = gt->uncore;
513 unsigned int logical_vdbox = 0;
514 unsigned int i;
515 u32 media_fuse;
516 u16 vdbox_mask;
517 u16 vebox_mask;
518
519 info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
520
521 if (GRAPHICS_VER(i915) < 11)
522 return info->engine_mask;
523
524 /*
525 * On newer platforms the fusing register is called 'enable' and has
526 * enable semantics, while on older platforms it is called 'disable'
527 * and bits have disable semantices.
528 */
529 media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
530 if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
531 media_fuse = ~media_fuse;
532
533 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
534 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
535 GEN11_GT_VEBOX_DISABLE_SHIFT;
536
537 for (i = 0; i < I915_MAX_VCS; i++) {
538 if (!HAS_ENGINE(gt, _VCS(i))) {
539 vdbox_mask &= ~BIT(i);
540 continue;
541 }
542
543 if (!(BIT(i) & vdbox_mask)) {
544 info->engine_mask &= ~BIT(_VCS(i));
545 drm_dbg(&i915->drm, "vcs%u fused off\n", i);
546 continue;
547 }
548
549 if (gen11_vdbox_has_sfc(i915, i, logical_vdbox, vdbox_mask))
550 gt->info.vdbox_sfc_access |= BIT(i);
551 logical_vdbox++;
552 }
553 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
554 vdbox_mask, VDBOX_MASK(gt));
555 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
556
557 for (i = 0; i < I915_MAX_VECS; i++) {
558 if (!HAS_ENGINE(gt, _VECS(i))) {
559 vebox_mask &= ~BIT(i);
560 continue;
561 }
562
563 if (!(BIT(i) & vebox_mask)) {
564 info->engine_mask &= ~BIT(_VECS(i));
565 drm_dbg(&i915->drm, "vecs%u fused off\n", i);
566 }
567 }
568 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
569 vebox_mask, VEBOX_MASK(gt));
570 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
571
572 return info->engine_mask;
573 }
574
575 /**
576 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
577 * @gt: pointer to struct intel_gt
578 *
579 * Return: non-zero if the initialization failed.
580 */
intel_engines_init_mmio(struct intel_gt * gt)581 int intel_engines_init_mmio(struct intel_gt *gt)
582 {
583 struct drm_i915_private *i915 = gt->i915;
584 const unsigned int engine_mask = init_engine_mask(gt);
585 unsigned int mask = 0;
586 unsigned int i;
587 int err;
588
589 drm_WARN_ON(&i915->drm, engine_mask == 0);
590 drm_WARN_ON(&i915->drm, engine_mask &
591 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
592
593 if (i915_inject_probe_failure(i915))
594 return -ENODEV;
595
596 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
597 if (!HAS_ENGINE(gt, i))
598 continue;
599
600 err = intel_engine_setup(gt, i);
601 if (err)
602 goto cleanup;
603
604 mask |= BIT(i);
605 }
606
607 /*
608 * Catch failures to update intel_engines table when the new engines
609 * are added to the driver by a warning and disabling the forgotten
610 * engines.
611 */
612 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
613 gt->info.engine_mask = mask;
614
615 gt->info.num_engines = hweight32(mask);
616
617 intel_gt_check_and_clear_faults(gt);
618
619 intel_setup_engine_capabilities(gt);
620
621 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
622
623 return 0;
624
625 cleanup:
626 intel_engines_free(gt);
627 return err;
628 }
629
intel_engine_init_execlists(struct intel_engine_cs * engine)630 void intel_engine_init_execlists(struct intel_engine_cs *engine)
631 {
632 struct intel_engine_execlists * const execlists = &engine->execlists;
633
634 execlists->port_mask = 1;
635 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
636 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
637
638 memset(execlists->pending, 0, sizeof(execlists->pending));
639 execlists->active =
640 memset(execlists->inflight, 0, sizeof(execlists->inflight));
641 }
642
cleanup_status_page(struct intel_engine_cs * engine)643 static void cleanup_status_page(struct intel_engine_cs *engine)
644 {
645 struct i915_vma *vma;
646
647 /* Prevent writes into HWSP after returning the page to the system */
648 intel_engine_set_hwsp_writemask(engine, ~0u);
649
650 vma = fetch_and_zero(&engine->status_page.vma);
651 if (!vma)
652 return;
653
654 if (!HWS_NEEDS_PHYSICAL(engine->i915))
655 i915_vma_unpin(vma);
656
657 i915_gem_object_unpin_map(vma->obj);
658 i915_gem_object_put(vma->obj);
659 }
660
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)661 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
662 struct i915_gem_ww_ctx *ww,
663 struct i915_vma *vma)
664 {
665 unsigned int flags;
666
667 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
668 /*
669 * On g33, we cannot place HWS above 256MiB, so
670 * restrict its pinning to the low mappable arena.
671 * Though this restriction is not documented for
672 * gen4, gen5, or byt, they also behave similarly
673 * and hang if the HWS is placed at the top of the
674 * GTT. To generalise, it appears that all !llc
675 * platforms have issues with us placing the HWS
676 * above the mappable region (even though we never
677 * actually map it).
678 */
679 flags = PIN_MAPPABLE;
680 else
681 flags = PIN_HIGH;
682
683 return i915_ggtt_pin(vma, ww, 0, flags);
684 }
685
init_status_page(struct intel_engine_cs * engine)686 static int init_status_page(struct intel_engine_cs *engine)
687 {
688 struct drm_i915_gem_object *obj;
689 struct i915_gem_ww_ctx ww;
690 struct i915_vma *vma;
691 void *vaddr;
692 int ret;
693
694 INIT_LIST_HEAD(&engine->status_page.timelines);
695
696 /*
697 * Though the HWS register does support 36bit addresses, historically
698 * we have had hangs and corruption reported due to wild writes if
699 * the HWS is placed above 4G. We only allow objects to be allocated
700 * in GFP_DMA32 for i965, and no earlier physical address users had
701 * access to more than 4G.
702 */
703 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
704 if (IS_ERR(obj)) {
705 drm_err(&engine->i915->drm,
706 "Failed to allocate status page\n");
707 return PTR_ERR(obj);
708 }
709
710 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
711
712 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
713 if (IS_ERR(vma)) {
714 ret = PTR_ERR(vma);
715 goto err_put;
716 }
717
718 i915_gem_ww_ctx_init(&ww, true);
719 retry:
720 ret = i915_gem_object_lock(obj, &ww);
721 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
722 ret = pin_ggtt_status_page(engine, &ww, vma);
723 if (ret)
724 goto err;
725
726 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
727 if (IS_ERR(vaddr)) {
728 ret = PTR_ERR(vaddr);
729 goto err_unpin;
730 }
731
732 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
733 engine->status_page.vma = vma;
734
735 err_unpin:
736 if (ret)
737 i915_vma_unpin(vma);
738 err:
739 if (ret == -EDEADLK) {
740 ret = i915_gem_ww_ctx_backoff(&ww);
741 if (!ret)
742 goto retry;
743 }
744 i915_gem_ww_ctx_fini(&ww);
745 err_put:
746 if (ret)
747 i915_gem_object_put(obj);
748 return ret;
749 }
750
engine_setup_common(struct intel_engine_cs * engine)751 static int engine_setup_common(struct intel_engine_cs *engine)
752 {
753 int err;
754
755 init_llist_head(&engine->barrier_tasks);
756
757 err = init_status_page(engine);
758 if (err)
759 return err;
760
761 engine->breadcrumbs = intel_breadcrumbs_create(engine);
762 if (!engine->breadcrumbs) {
763 err = -ENOMEM;
764 goto err_status;
765 }
766
767 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
768 if (!engine->sched_engine) {
769 err = -ENOMEM;
770 goto err_sched_engine;
771 }
772 engine->sched_engine->private_data = engine;
773
774 err = intel_engine_init_cmd_parser(engine);
775 if (err)
776 goto err_cmd_parser;
777
778 intel_engine_init_execlists(engine);
779 intel_engine_init__pm(engine);
780 intel_engine_init_retire(engine);
781
782 /* Use the whole device by default */
783 engine->sseu =
784 intel_sseu_from_device_info(&engine->gt->info.sseu);
785
786 intel_engine_init_workarounds(engine);
787 intel_engine_init_whitelist(engine);
788 intel_engine_init_ctx_wa(engine);
789
790 if (GRAPHICS_VER(engine->i915) >= 12)
791 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
792
793 return 0;
794
795 err_cmd_parser:
796 i915_sched_engine_put(engine->sched_engine);
797 err_sched_engine:
798 intel_breadcrumbs_put(engine->breadcrumbs);
799 err_status:
800 cleanup_status_page(engine);
801 return err;
802 }
803
804 struct measure_breadcrumb {
805 struct i915_request rq;
806 struct intel_ring ring;
807 u32 cs[2048];
808 };
809
measure_breadcrumb_dw(struct intel_context * ce)810 static int measure_breadcrumb_dw(struct intel_context *ce)
811 {
812 struct intel_engine_cs *engine = ce->engine;
813 struct measure_breadcrumb *frame;
814 int dw;
815
816 GEM_BUG_ON(!engine->gt->scratch);
817
818 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
819 if (!frame)
820 return -ENOMEM;
821
822 frame->rq.engine = engine;
823 frame->rq.context = ce;
824 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
825 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
826
827 frame->ring.vaddr = frame->cs;
828 frame->ring.size = sizeof(frame->cs);
829 frame->ring.wrap =
830 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
831 frame->ring.effective_size = frame->ring.size;
832 intel_ring_update_space(&frame->ring);
833 frame->rq.ring = &frame->ring;
834
835 mutex_lock(&ce->timeline->mutex);
836 spin_lock_irq(&engine->sched_engine->lock);
837
838 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
839
840 spin_unlock_irq(&engine->sched_engine->lock);
841 mutex_unlock(&ce->timeline->mutex);
842
843 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
844
845 kfree(frame);
846 return dw;
847 }
848
849 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)850 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
851 struct i915_address_space *vm,
852 unsigned int ring_size,
853 unsigned int hwsp,
854 struct lock_class_key *key,
855 const char *name)
856 {
857 struct intel_context *ce;
858 int err;
859
860 ce = intel_context_create(engine);
861 if (IS_ERR(ce))
862 return ce;
863
864 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
865 ce->timeline = page_pack_bits(NULL, hwsp);
866 ce->ring = NULL;
867 ce->ring_size = ring_size;
868
869 i915_vm_put(ce->vm);
870 ce->vm = i915_vm_get(vm);
871
872 err = intel_context_pin(ce); /* perma-pin so it is always available */
873 if (err) {
874 intel_context_put(ce);
875 return ERR_PTR(err);
876 }
877
878 /*
879 * Give our perma-pinned kernel timelines a separate lockdep class,
880 * so that we can use them from within the normal user timelines
881 * should we need to inject GPU operations during their request
882 * construction.
883 */
884 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
885
886 return ce;
887 }
888
intel_engine_destroy_pinned_context(struct intel_context * ce)889 void intel_engine_destroy_pinned_context(struct intel_context *ce)
890 {
891 struct intel_engine_cs *engine = ce->engine;
892 struct i915_vma *hwsp = engine->status_page.vma;
893
894 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
895
896 mutex_lock(&hwsp->vm->mutex);
897 list_del(&ce->timeline->engine_link);
898 mutex_unlock(&hwsp->vm->mutex);
899
900 intel_context_unpin(ce);
901 intel_context_put(ce);
902 }
903
904 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)905 create_kernel_context(struct intel_engine_cs *engine)
906 {
907 static struct lock_class_key kernel;
908
909 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
910 I915_GEM_HWS_SEQNO_ADDR,
911 &kernel, "kernel_context");
912 }
913
914 /**
915 * intel_engines_init_common - initialize cengine state which might require hw access
916 * @engine: Engine to initialize.
917 *
918 * Initializes @engine@ structure members shared between legacy and execlists
919 * submission modes which do require hardware access.
920 *
921 * Typcally done at later stages of submission mode specific engine setup.
922 *
923 * Returns zero on success or an error code on failure.
924 */
engine_init_common(struct intel_engine_cs * engine)925 static int engine_init_common(struct intel_engine_cs *engine)
926 {
927 struct intel_context *ce;
928 int ret;
929
930 engine->set_default_submission(engine);
931
932 /*
933 * We may need to do things with the shrinker which
934 * require us to immediately switch back to the default
935 * context. This can cause a problem as pinning the
936 * default context also requires GTT space which may not
937 * be available. To avoid this we always pin the default
938 * context.
939 */
940 ce = create_kernel_context(engine);
941 if (IS_ERR(ce))
942 return PTR_ERR(ce);
943
944 ret = measure_breadcrumb_dw(ce);
945 if (ret < 0)
946 goto err_context;
947
948 engine->emit_fini_breadcrumb_dw = ret;
949 engine->kernel_context = ce;
950
951 return 0;
952
953 err_context:
954 intel_engine_destroy_pinned_context(ce);
955 return ret;
956 }
957
intel_engines_init(struct intel_gt * gt)958 int intel_engines_init(struct intel_gt *gt)
959 {
960 int (*setup)(struct intel_engine_cs *engine);
961 struct intel_engine_cs *engine;
962 enum intel_engine_id id;
963 int err;
964
965 if (intel_uc_uses_guc_submission(>->uc)) {
966 gt->submission_method = INTEL_SUBMISSION_GUC;
967 setup = intel_guc_submission_setup;
968 } else if (HAS_EXECLISTS(gt->i915)) {
969 gt->submission_method = INTEL_SUBMISSION_ELSP;
970 setup = intel_execlists_submission_setup;
971 } else {
972 gt->submission_method = INTEL_SUBMISSION_RING;
973 setup = intel_ring_submission_setup;
974 }
975
976 for_each_engine(engine, gt, id) {
977 err = engine_setup_common(engine);
978 if (err)
979 return err;
980
981 err = setup(engine);
982 if (err)
983 return err;
984
985 err = engine_init_common(engine);
986 if (err)
987 return err;
988
989 intel_engine_add_user(engine);
990 }
991
992 return 0;
993 }
994
995 /**
996 * intel_engines_cleanup_common - cleans up the engine state created by
997 * the common initiailizers.
998 * @engine: Engine to cleanup.
999 *
1000 * This cleans up everything created by the common helpers.
1001 */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1002 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1003 {
1004 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1005
1006 i915_sched_engine_put(engine->sched_engine);
1007 intel_breadcrumbs_put(engine->breadcrumbs);
1008
1009 intel_engine_fini_retire(engine);
1010 intel_engine_cleanup_cmd_parser(engine);
1011
1012 if (engine->default_state)
1013 fput(engine->default_state);
1014
1015 if (engine->kernel_context)
1016 intel_engine_destroy_pinned_context(engine->kernel_context);
1017
1018 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1019 cleanup_status_page(engine);
1020
1021 intel_wa_list_free(&engine->ctx_wa_list);
1022 intel_wa_list_free(&engine->wa_list);
1023 intel_wa_list_free(&engine->whitelist);
1024 }
1025
1026 /**
1027 * intel_engine_resume - re-initializes the HW state of the engine
1028 * @engine: Engine to resume.
1029 *
1030 * Returns zero on success or an error code on failure.
1031 */
intel_engine_resume(struct intel_engine_cs * engine)1032 int intel_engine_resume(struct intel_engine_cs *engine)
1033 {
1034 intel_engine_apply_workarounds(engine);
1035 intel_engine_apply_whitelist(engine);
1036
1037 return engine->resume(engine);
1038 }
1039
intel_engine_get_active_head(const struct intel_engine_cs * engine)1040 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1041 {
1042 struct drm_i915_private *i915 = engine->i915;
1043
1044 u64 acthd;
1045
1046 if (GRAPHICS_VER(i915) >= 8)
1047 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1048 else if (GRAPHICS_VER(i915) >= 4)
1049 acthd = ENGINE_READ(engine, RING_ACTHD);
1050 else
1051 acthd = ENGINE_READ(engine, ACTHD);
1052
1053 return acthd;
1054 }
1055
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1056 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1057 {
1058 u64 bbaddr;
1059
1060 if (GRAPHICS_VER(engine->i915) >= 8)
1061 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1062 else
1063 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1064
1065 return bbaddr;
1066 }
1067
stop_timeout(const struct intel_engine_cs * engine)1068 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1069 {
1070 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1071 return 0;
1072
1073 /*
1074 * If we are doing a normal GPU reset, we can take our time and allow
1075 * the engine to quiesce. We've stopped submission to the engine, and
1076 * if we wait long enough an innocent context should complete and
1077 * leave the engine idle. So they should not be caught unaware by
1078 * the forthcoming GPU reset (which usually follows the stop_cs)!
1079 */
1080 return READ_ONCE(engine->props.stop_timeout_ms);
1081 }
1082
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1083 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1084 int fast_timeout_us,
1085 int slow_timeout_ms)
1086 {
1087 struct intel_uncore *uncore = engine->uncore;
1088 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1089 int err;
1090
1091 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1092 err = __intel_wait_for_register_fw(engine->uncore, mode,
1093 MODE_IDLE, MODE_IDLE,
1094 fast_timeout_us,
1095 slow_timeout_ms,
1096 NULL);
1097
1098 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1099 intel_uncore_posting_read_fw(uncore, mode);
1100 return err;
1101 }
1102
intel_engine_stop_cs(struct intel_engine_cs * engine)1103 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1104 {
1105 int err = 0;
1106
1107 if (GRAPHICS_VER(engine->i915) < 3)
1108 return -ENODEV;
1109
1110 ENGINE_TRACE(engine, "\n");
1111 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1112 ENGINE_TRACE(engine,
1113 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1114 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1115 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1116
1117 /*
1118 * Sometimes we observe that the idle flag is not
1119 * set even though the ring is empty. So double
1120 * check before giving up.
1121 */
1122 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1123 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1124 err = -ETIMEDOUT;
1125 }
1126
1127 return err;
1128 }
1129
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1130 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1131 {
1132 ENGINE_TRACE(engine, "\n");
1133
1134 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1135 }
1136
i915_cache_level_str(struct drm_i915_private * i915,int type)1137 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1138 {
1139 switch (type) {
1140 case I915_CACHE_NONE: return " uncached";
1141 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1142 case I915_CACHE_L3_LLC: return " L3+LLC";
1143 case I915_CACHE_WT: return " WT";
1144 default: return "";
1145 }
1146 }
1147
1148 static u32
read_subslice_reg(const struct intel_engine_cs * engine,int slice,int subslice,i915_reg_t reg)1149 read_subslice_reg(const struct intel_engine_cs *engine,
1150 int slice, int subslice, i915_reg_t reg)
1151 {
1152 return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
1153 slice, subslice);
1154 }
1155
1156 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1157 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1158 struct intel_instdone *instdone)
1159 {
1160 struct drm_i915_private *i915 = engine->i915;
1161 const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1162 struct intel_uncore *uncore = engine->uncore;
1163 u32 mmio_base = engine->mmio_base;
1164 int slice;
1165 int subslice;
1166
1167 memset(instdone, 0, sizeof(*instdone));
1168
1169 switch (GRAPHICS_VER(i915)) {
1170 default:
1171 instdone->instdone =
1172 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1173
1174 if (engine->id != RCS0)
1175 break;
1176
1177 instdone->slice_common =
1178 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1179 if (GRAPHICS_VER(i915) >= 12) {
1180 instdone->slice_common_extra[0] =
1181 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1182 instdone->slice_common_extra[1] =
1183 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1184 }
1185 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1186 instdone->sampler[slice][subslice] =
1187 read_subslice_reg(engine, slice, subslice,
1188 GEN7_SAMPLER_INSTDONE);
1189 instdone->row[slice][subslice] =
1190 read_subslice_reg(engine, slice, subslice,
1191 GEN7_ROW_INSTDONE);
1192 }
1193 break;
1194 case 7:
1195 instdone->instdone =
1196 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1197
1198 if (engine->id != RCS0)
1199 break;
1200
1201 instdone->slice_common =
1202 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1203 instdone->sampler[0][0] =
1204 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1205 instdone->row[0][0] =
1206 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1207
1208 break;
1209 case 6:
1210 case 5:
1211 case 4:
1212 instdone->instdone =
1213 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1214 if (engine->id == RCS0)
1215 /* HACK: Using the wrong struct member */
1216 instdone->slice_common =
1217 intel_uncore_read(uncore, GEN4_INSTDONE1);
1218 break;
1219 case 3:
1220 case 2:
1221 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1222 break;
1223 }
1224 }
1225
ring_is_idle(struct intel_engine_cs * engine)1226 static bool ring_is_idle(struct intel_engine_cs *engine)
1227 {
1228 bool idle = true;
1229
1230 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1231 return true;
1232
1233 if (!intel_engine_pm_get_if_awake(engine))
1234 return true;
1235
1236 /* First check that no commands are left in the ring */
1237 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1238 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1239 idle = false;
1240
1241 /* No bit for gen2, so assume the CS parser is idle */
1242 if (GRAPHICS_VER(engine->i915) > 2 &&
1243 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1244 idle = false;
1245
1246 intel_engine_pm_put(engine);
1247
1248 return idle;
1249 }
1250
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1251 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1252 {
1253 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1254
1255 if (!t->callback)
1256 return;
1257
1258 local_bh_disable();
1259 if (tasklet_trylock(t)) {
1260 /* Must wait for any GPU reset in progress. */
1261 if (__tasklet_is_enabled(t))
1262 t->callback(t);
1263 tasklet_unlock(t);
1264 }
1265 local_bh_enable();
1266
1267 /* Synchronise and wait for the tasklet on another CPU */
1268 if (sync)
1269 tasklet_unlock_wait(t);
1270 }
1271
1272 /**
1273 * intel_engine_is_idle() - Report if the engine has finished process all work
1274 * @engine: the intel_engine_cs
1275 *
1276 * Return true if there are no requests pending, nothing left to be submitted
1277 * to hardware, and that the engine is idle.
1278 */
intel_engine_is_idle(struct intel_engine_cs * engine)1279 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1280 {
1281 /* More white lies, if wedged, hw state is inconsistent */
1282 if (intel_gt_is_wedged(engine->gt))
1283 return true;
1284
1285 if (!intel_engine_pm_is_awake(engine))
1286 return true;
1287
1288 /* Waiting to drain ELSP? */
1289 intel_synchronize_hardirq(engine->i915);
1290 intel_engine_flush_submission(engine);
1291
1292 /* ELSP is empty, but there are ready requests? E.g. after reset */
1293 if (!i915_sched_engine_is_empty(engine->sched_engine))
1294 return false;
1295
1296 /* Ring stopped? */
1297 return ring_is_idle(engine);
1298 }
1299
intel_engines_are_idle(struct intel_gt * gt)1300 bool intel_engines_are_idle(struct intel_gt *gt)
1301 {
1302 struct intel_engine_cs *engine;
1303 enum intel_engine_id id;
1304
1305 /*
1306 * If the driver is wedged, HW state may be very inconsistent and
1307 * report that it is still busy, even though we have stopped using it.
1308 */
1309 if (intel_gt_is_wedged(gt))
1310 return true;
1311
1312 /* Already parked (and passed an idleness test); must still be idle */
1313 if (!READ_ONCE(gt->awake))
1314 return true;
1315
1316 for_each_engine(engine, gt, id) {
1317 if (!intel_engine_is_idle(engine))
1318 return false;
1319 }
1320
1321 return true;
1322 }
1323
intel_engine_irq_enable(struct intel_engine_cs * engine)1324 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1325 {
1326 if (!engine->irq_enable)
1327 return false;
1328
1329 /* Caller disables interrupts */
1330 spin_lock(&engine->gt->irq_lock);
1331 engine->irq_enable(engine);
1332 spin_unlock(&engine->gt->irq_lock);
1333
1334 return true;
1335 }
1336
intel_engine_irq_disable(struct intel_engine_cs * engine)1337 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1338 {
1339 if (!engine->irq_disable)
1340 return;
1341
1342 /* Caller disables interrupts */
1343 spin_lock(&engine->gt->irq_lock);
1344 engine->irq_disable(engine);
1345 spin_unlock(&engine->gt->irq_lock);
1346 }
1347
intel_engines_reset_default_submission(struct intel_gt * gt)1348 void intel_engines_reset_default_submission(struct intel_gt *gt)
1349 {
1350 struct intel_engine_cs *engine;
1351 enum intel_engine_id id;
1352
1353 for_each_engine(engine, gt, id) {
1354 if (engine->sanitize)
1355 engine->sanitize(engine);
1356
1357 engine->set_default_submission(engine);
1358 }
1359 }
1360
intel_engine_can_store_dword(struct intel_engine_cs * engine)1361 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1362 {
1363 switch (GRAPHICS_VER(engine->i915)) {
1364 case 2:
1365 return false; /* uses physical not virtual addresses */
1366 case 3:
1367 /* maybe only uses physical not virtual addresses */
1368 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1369 case 4:
1370 return !IS_I965G(engine->i915); /* who knows! */
1371 case 6:
1372 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1373 default:
1374 return true;
1375 }
1376 }
1377
get_timeline(struct i915_request * rq)1378 static struct intel_timeline *get_timeline(struct i915_request *rq)
1379 {
1380 struct intel_timeline *tl;
1381
1382 /*
1383 * Even though we are holding the engine->sched_engine->lock here, there
1384 * is no control over the submission queue per-se and we are
1385 * inspecting the active state at a random point in time, with an
1386 * unknown queue. Play safe and make sure the timeline remains valid.
1387 * (Only being used for pretty printing, one extra kref shouldn't
1388 * cause a camel stampede!)
1389 */
1390 rcu_read_lock();
1391 tl = rcu_dereference(rq->timeline);
1392 if (!kref_get_unless_zero(&tl->kref))
1393 tl = NULL;
1394 rcu_read_unlock();
1395
1396 return tl;
1397 }
1398
print_ring(char * buf,int sz,struct i915_request * rq)1399 static int print_ring(char *buf, int sz, struct i915_request *rq)
1400 {
1401 int len = 0;
1402
1403 if (!i915_request_signaled(rq)) {
1404 struct intel_timeline *tl = get_timeline(rq);
1405
1406 len = scnprintf(buf, sz,
1407 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1408 i915_ggtt_offset(rq->ring->vma),
1409 tl ? tl->hwsp_offset : 0,
1410 hwsp_seqno(rq),
1411 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1412 1000 * 1000));
1413
1414 if (tl)
1415 intel_timeline_put(tl);
1416 }
1417
1418 return len;
1419 }
1420
hexdump(struct drm_printer * m,const void * buf,size_t len)1421 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1422 {
1423 const size_t rowsize = 8 * sizeof(u32);
1424 const void *prev = NULL;
1425 bool skip = false;
1426 size_t pos;
1427
1428 for (pos = 0; pos < len; pos += rowsize) {
1429 char line[128];
1430
1431 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1432 if (!skip) {
1433 drm_printf(m, "*\n");
1434 skip = true;
1435 }
1436 continue;
1437 }
1438
1439 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1440 rowsize, sizeof(u32),
1441 line, sizeof(line),
1442 false) >= sizeof(line));
1443 drm_printf(m, "[%04zx] %s\n", pos, line);
1444
1445 prev = buf + pos;
1446 skip = false;
1447 }
1448 }
1449
repr_timer(const struct timer_list * t)1450 static const char *repr_timer(const struct timer_list *t)
1451 {
1452 if (!READ_ONCE(t->expires))
1453 return "inactive";
1454
1455 if (timer_pending(t))
1456 return "active";
1457
1458 return "expired";
1459 }
1460
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)1461 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1462 struct drm_printer *m)
1463 {
1464 struct drm_i915_private *dev_priv = engine->i915;
1465 struct intel_engine_execlists * const execlists = &engine->execlists;
1466 u64 addr;
1467
1468 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1469 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1470 if (HAS_EXECLISTS(dev_priv)) {
1471 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1472 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1473 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1474 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1475 }
1476 drm_printf(m, "\tRING_START: 0x%08x\n",
1477 ENGINE_READ(engine, RING_START));
1478 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
1479 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1480 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
1481 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1482 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
1483 ENGINE_READ(engine, RING_CTL),
1484 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1485 if (GRAPHICS_VER(engine->i915) > 2) {
1486 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
1487 ENGINE_READ(engine, RING_MI_MODE),
1488 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1489 }
1490
1491 if (GRAPHICS_VER(dev_priv) >= 6) {
1492 drm_printf(m, "\tRING_IMR: 0x%08x\n",
1493 ENGINE_READ(engine, RING_IMR));
1494 drm_printf(m, "\tRING_ESR: 0x%08x\n",
1495 ENGINE_READ(engine, RING_ESR));
1496 drm_printf(m, "\tRING_EMR: 0x%08x\n",
1497 ENGINE_READ(engine, RING_EMR));
1498 drm_printf(m, "\tRING_EIR: 0x%08x\n",
1499 ENGINE_READ(engine, RING_EIR));
1500 }
1501
1502 addr = intel_engine_get_active_head(engine);
1503 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
1504 upper_32_bits(addr), lower_32_bits(addr));
1505 addr = intel_engine_get_last_batch_head(engine);
1506 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1507 upper_32_bits(addr), lower_32_bits(addr));
1508 if (GRAPHICS_VER(dev_priv) >= 8)
1509 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1510 else if (GRAPHICS_VER(dev_priv) >= 4)
1511 addr = ENGINE_READ(engine, RING_DMA_FADD);
1512 else
1513 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1514 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1515 upper_32_bits(addr), lower_32_bits(addr));
1516 if (GRAPHICS_VER(dev_priv) >= 4) {
1517 drm_printf(m, "\tIPEIR: 0x%08x\n",
1518 ENGINE_READ(engine, RING_IPEIR));
1519 drm_printf(m, "\tIPEHR: 0x%08x\n",
1520 ENGINE_READ(engine, RING_IPEHR));
1521 } else {
1522 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1523 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1524 }
1525
1526 if (intel_engine_uses_guc(engine)) {
1527 /* nothing to print yet */
1528 } else if (HAS_EXECLISTS(dev_priv)) {
1529 struct i915_request * const *port, *rq;
1530 const u32 *hws =
1531 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1532 const u8 num_entries = execlists->csb_size;
1533 unsigned int idx;
1534 u8 read, write;
1535
1536 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1537 yesno(test_bit(TASKLET_STATE_SCHED,
1538 &engine->sched_engine->tasklet.state)),
1539 enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1540 repr_timer(&engine->execlists.preempt),
1541 repr_timer(&engine->execlists.timer));
1542
1543 read = execlists->csb_head;
1544 write = READ_ONCE(*execlists->csb_write);
1545
1546 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1547 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1548 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1549 read, write, num_entries);
1550
1551 if (read >= num_entries)
1552 read = 0;
1553 if (write >= num_entries)
1554 write = 0;
1555 if (read > write)
1556 write += num_entries;
1557 while (read < write) {
1558 idx = ++read % num_entries;
1559 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1560 idx, hws[idx * 2], hws[idx * 2 + 1]);
1561 }
1562
1563 i915_sched_engine_active_lock_bh(engine->sched_engine);
1564 rcu_read_lock();
1565 for (port = execlists->active; (rq = *port); port++) {
1566 char hdr[160];
1567 int len;
1568
1569 len = scnprintf(hdr, sizeof(hdr),
1570 "\t\tActive[%d]: ccid:%08x%s%s, ",
1571 (int)(port - execlists->active),
1572 rq->context->lrc.ccid,
1573 intel_context_is_closed(rq->context) ? "!" : "",
1574 intel_context_is_banned(rq->context) ? "*" : "");
1575 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1576 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1577 i915_request_show(m, rq, hdr, 0);
1578 }
1579 for (port = execlists->pending; (rq = *port); port++) {
1580 char hdr[160];
1581 int len;
1582
1583 len = scnprintf(hdr, sizeof(hdr),
1584 "\t\tPending[%d]: ccid:%08x%s%s, ",
1585 (int)(port - execlists->pending),
1586 rq->context->lrc.ccid,
1587 intel_context_is_closed(rq->context) ? "!" : "",
1588 intel_context_is_banned(rq->context) ? "*" : "");
1589 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1590 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1591 i915_request_show(m, rq, hdr, 0);
1592 }
1593 rcu_read_unlock();
1594 i915_sched_engine_active_unlock_bh(engine->sched_engine);
1595 } else if (GRAPHICS_VER(dev_priv) > 6) {
1596 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1597 ENGINE_READ(engine, RING_PP_DIR_BASE));
1598 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1599 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1600 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1601 ENGINE_READ(engine, RING_PP_DIR_DCLV));
1602 }
1603 }
1604
print_request_ring(struct drm_printer * m,struct i915_request * rq)1605 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1606 {
1607 void *ring;
1608 int size;
1609
1610 drm_printf(m,
1611 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1612 rq->head, rq->postfix, rq->tail,
1613 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1614 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1615
1616 size = rq->tail - rq->head;
1617 if (rq->tail < rq->head)
1618 size += rq->ring->size;
1619
1620 ring = kmalloc(size, GFP_ATOMIC);
1621 if (ring) {
1622 const void *vaddr = rq->ring->vaddr;
1623 unsigned int head = rq->head;
1624 unsigned int len = 0;
1625
1626 if (rq->tail < head) {
1627 len = rq->ring->size - head;
1628 memcpy(ring, vaddr + head, len);
1629 head = 0;
1630 }
1631 memcpy(ring + len, vaddr + head, size - len);
1632
1633 hexdump(m, ring, size);
1634 kfree(ring);
1635 }
1636 }
1637
list_count(struct list_head * list)1638 static unsigned long list_count(struct list_head *list)
1639 {
1640 struct list_head *pos;
1641 unsigned long count = 0;
1642
1643 list_for_each(pos, list)
1644 count++;
1645
1646 return count;
1647 }
1648
read_ul(void * p,size_t x)1649 static unsigned long read_ul(void *p, size_t x)
1650 {
1651 return *(unsigned long *)(p + x);
1652 }
1653
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)1654 static void print_properties(struct intel_engine_cs *engine,
1655 struct drm_printer *m)
1656 {
1657 static const struct pmap {
1658 size_t offset;
1659 const char *name;
1660 } props[] = {
1661 #define P(x) { \
1662 .offset = offsetof(typeof(engine->props), x), \
1663 .name = #x \
1664 }
1665 P(heartbeat_interval_ms),
1666 P(max_busywait_duration_ns),
1667 P(preempt_timeout_ms),
1668 P(stop_timeout_ms),
1669 P(timeslice_duration_ms),
1670
1671 {},
1672 #undef P
1673 };
1674 const struct pmap *p;
1675
1676 drm_printf(m, "\tProperties:\n");
1677 for (p = props; p->name; p++)
1678 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
1679 p->name,
1680 read_ul(&engine->props, p->offset),
1681 read_ul(&engine->defaults, p->offset));
1682 }
1683
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)1684 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
1685 {
1686 struct intel_timeline *tl = get_timeline(rq);
1687
1688 i915_request_show(m, rq, msg, 0);
1689
1690 drm_printf(m, "\t\tring->start: 0x%08x\n",
1691 i915_ggtt_offset(rq->ring->vma));
1692 drm_printf(m, "\t\tring->head: 0x%08x\n",
1693 rq->ring->head);
1694 drm_printf(m, "\t\tring->tail: 0x%08x\n",
1695 rq->ring->tail);
1696 drm_printf(m, "\t\tring->emit: 0x%08x\n",
1697 rq->ring->emit);
1698 drm_printf(m, "\t\tring->space: 0x%08x\n",
1699 rq->ring->space);
1700
1701 if (tl) {
1702 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
1703 tl->hwsp_offset);
1704 intel_timeline_put(tl);
1705 }
1706
1707 print_request_ring(m, rq);
1708
1709 if (rq->context->lrc_reg_state) {
1710 drm_printf(m, "Logical Ring Context:\n");
1711 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1712 }
1713 }
1714
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)1715 void intel_engine_dump_active_requests(struct list_head *requests,
1716 struct i915_request *hung_rq,
1717 struct drm_printer *m)
1718 {
1719 struct i915_request *rq;
1720 const char *msg;
1721 enum i915_request_state state;
1722
1723 list_for_each_entry(rq, requests, sched.link) {
1724 if (rq == hung_rq)
1725 continue;
1726
1727 state = i915_test_request_state(rq);
1728 if (state < I915_REQUEST_QUEUED)
1729 continue;
1730
1731 if (state == I915_REQUEST_ACTIVE)
1732 msg = "\t\tactive on engine";
1733 else
1734 msg = "\t\tactive in queue";
1735
1736 engine_dump_request(rq, m, msg);
1737 }
1738 }
1739
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)1740 static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
1741 {
1742 struct i915_request *hung_rq = NULL;
1743 struct intel_context *ce;
1744 bool guc;
1745
1746 /*
1747 * No need for an engine->irq_seqno_barrier() before the seqno reads.
1748 * The GPU is still running so requests are still executing and any
1749 * hardware reads will be out of date by the time they are reported.
1750 * But the intention here is just to report an instantaneous snapshot
1751 * so that's fine.
1752 */
1753 lockdep_assert_held(&engine->sched_engine->lock);
1754
1755 drm_printf(m, "\tRequests:\n");
1756
1757 guc = intel_uc_uses_guc_submission(&engine->gt->uc);
1758 if (guc) {
1759 ce = intel_engine_get_hung_context(engine);
1760 if (ce)
1761 hung_rq = intel_context_find_active_request(ce);
1762 } else {
1763 hung_rq = intel_engine_execlist_find_hung_request(engine);
1764 }
1765
1766 if (hung_rq)
1767 engine_dump_request(hung_rq, m, "\t\thung");
1768
1769 if (guc)
1770 intel_guc_dump_active_requests(engine, hung_rq, m);
1771 else
1772 intel_engine_dump_active_requests(&engine->sched_engine->requests,
1773 hung_rq, m);
1774 }
1775
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)1776 void intel_engine_dump(struct intel_engine_cs *engine,
1777 struct drm_printer *m,
1778 const char *header, ...)
1779 {
1780 struct i915_gpu_error * const error = &engine->i915->gpu_error;
1781 struct i915_request *rq;
1782 intel_wakeref_t wakeref;
1783 unsigned long flags;
1784 ktime_t dummy;
1785
1786 if (header) {
1787 va_list ap;
1788
1789 va_start(ap, header);
1790 drm_vprintf(m, header, &ap);
1791 va_end(ap);
1792 }
1793
1794 if (intel_gt_is_wedged(engine->gt))
1795 drm_printf(m, "*** WEDGED ***\n");
1796
1797 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1798 drm_printf(m, "\tBarriers?: %s\n",
1799 yesno(!llist_empty(&engine->barrier_tasks)));
1800 drm_printf(m, "\tLatency: %luus\n",
1801 ewma__engine_latency_read(&engine->latency));
1802 if (intel_engine_supports_stats(engine))
1803 drm_printf(m, "\tRuntime: %llums\n",
1804 ktime_to_ms(intel_engine_get_busy_time(engine,
1805 &dummy)));
1806 drm_printf(m, "\tForcewake: %x domains, %d active\n",
1807 engine->fw_domain, READ_ONCE(engine->fw_active));
1808
1809 rcu_read_lock();
1810 rq = READ_ONCE(engine->heartbeat.systole);
1811 if (rq)
1812 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1813 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1814 rcu_read_unlock();
1815 drm_printf(m, "\tReset count: %d (global %d)\n",
1816 i915_reset_engine_count(error, engine),
1817 i915_reset_count(error));
1818 print_properties(engine, m);
1819
1820 spin_lock_irqsave(&engine->sched_engine->lock, flags);
1821 engine_dump_active_requests(engine, m);
1822
1823 drm_printf(m, "\tOn hold?: %lu\n",
1824 list_count(&engine->sched_engine->hold));
1825 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1826
1827 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
1828 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1829 if (wakeref) {
1830 intel_engine_print_registers(engine, m);
1831 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1832 } else {
1833 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1834 }
1835
1836 intel_execlists_show_requests(engine, m, i915_request_show, 8);
1837
1838 drm_printf(m, "HWSP:\n");
1839 hexdump(m, engine->status_page.addr, PAGE_SIZE);
1840
1841 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1842
1843 intel_engine_print_breadcrumbs(engine, m);
1844 }
1845
__intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)1846 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1847 ktime_t *now)
1848 {
1849 ktime_t total = engine->stats.total;
1850
1851 /*
1852 * If the engine is executing something at the moment
1853 * add it to the total.
1854 */
1855 *now = ktime_get();
1856 if (READ_ONCE(engine->stats.active))
1857 total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1858
1859 return total;
1860 }
1861
1862 /**
1863 * intel_engine_get_busy_time() - Return current accumulated engine busyness
1864 * @engine: engine to report on
1865 * @now: monotonic timestamp of sampling
1866 *
1867 * Returns accumulated time @engine was busy since engine stats were enabled.
1868 */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)1869 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1870 {
1871 unsigned int seq;
1872 ktime_t total;
1873
1874 do {
1875 seq = read_seqcount_begin(&engine->stats.lock);
1876 total = __intel_engine_get_busy_time(engine, now);
1877 } while (read_seqcount_retry(&engine->stats.lock, seq));
1878
1879 return total;
1880 }
1881
1882 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count)1883 intel_engine_create_virtual(struct intel_engine_cs **siblings,
1884 unsigned int count)
1885 {
1886 if (count == 0)
1887 return ERR_PTR(-EINVAL);
1888
1889 if (count == 1)
1890 return intel_context_create(siblings[0]);
1891
1892 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
1893 return siblings[0]->cops->create_virtual(siblings, count);
1894 }
1895
1896 struct i915_request *
intel_engine_execlist_find_hung_request(struct intel_engine_cs * engine)1897 intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
1898 {
1899 struct i915_request *request, *active = NULL;
1900
1901 /*
1902 * This search does not work in GuC submission mode. However, the GuC
1903 * will report the hanging context directly to the driver itself. So
1904 * the driver should never get here when in GuC mode.
1905 */
1906 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
1907
1908 /*
1909 * We are called by the error capture, reset and to dump engine
1910 * state at random points in time. In particular, note that neither is
1911 * crucially ordered with an interrupt. After a hang, the GPU is dead
1912 * and we assume that no more writes can happen (we waited long enough
1913 * for all writes that were in transaction to be flushed) - adding an
1914 * extra delay for a recent interrupt is pointless. Hence, we do
1915 * not need an engine->irq_seqno_barrier() before the seqno reads.
1916 * At all other times, we must assume the GPU is still running, but
1917 * we only care about the snapshot of this moment.
1918 */
1919 lockdep_assert_held(&engine->sched_engine->lock);
1920
1921 rcu_read_lock();
1922 request = execlists_active(&engine->execlists);
1923 if (request) {
1924 struct intel_timeline *tl = request->context->timeline;
1925
1926 list_for_each_entry_from_reverse(request, &tl->requests, link) {
1927 if (__i915_request_is_complete(request))
1928 break;
1929
1930 active = request;
1931 }
1932 }
1933 rcu_read_unlock();
1934 if (active)
1935 return active;
1936
1937 list_for_each_entry(request, &engine->sched_engine->requests,
1938 sched.link) {
1939 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
1940 continue;
1941
1942 active = request;
1943 break;
1944 }
1945
1946 return active;
1947 }
1948
1949 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1950 #include "mock_engine.c"
1951 #include "selftest_engine.c"
1952 #include "selftest_engine_cs.c"
1953 #endif
1954