1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "i915_drv.h"
28 #include "intel_ringbuffer.h"
29 #include "intel_lrc.h"
30 
31 /* Haswell does have the CXT_SIZE register however it does not appear to be
32  * valid. Now, docs explain in dwords what is in the context object. The full
33  * size is 70720 bytes, however, the power context and execlist context will
34  * never be saved (power context is stored elsewhere, and execlists don't work
35  * on HSW) - so the final size, including the extra state required for the
36  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
37  */
38 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
39 
40 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
41 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
42 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43 #define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
44 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
45 
46 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
47 
48 struct engine_class_info {
49 	const char *name;
50 	int (*init_legacy)(struct intel_engine_cs *engine);
51 	int (*init_execlists)(struct intel_engine_cs *engine);
52 
53 	u8 uabi_class;
54 };
55 
56 static const struct engine_class_info intel_engine_classes[] = {
57 	[RENDER_CLASS] = {
58 		.name = "rcs",
59 		.init_execlists = logical_render_ring_init,
60 		.init_legacy = intel_init_render_ring_buffer,
61 		.uabi_class = I915_ENGINE_CLASS_RENDER,
62 	},
63 	[COPY_ENGINE_CLASS] = {
64 		.name = "bcs",
65 		.init_execlists = logical_xcs_ring_init,
66 		.init_legacy = intel_init_blt_ring_buffer,
67 		.uabi_class = I915_ENGINE_CLASS_COPY,
68 	},
69 	[VIDEO_DECODE_CLASS] = {
70 		.name = "vcs",
71 		.init_execlists = logical_xcs_ring_init,
72 		.init_legacy = intel_init_bsd_ring_buffer,
73 		.uabi_class = I915_ENGINE_CLASS_VIDEO,
74 	},
75 	[VIDEO_ENHANCEMENT_CLASS] = {
76 		.name = "vecs",
77 		.init_execlists = logical_xcs_ring_init,
78 		.init_legacy = intel_init_vebox_ring_buffer,
79 		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
80 	},
81 };
82 
83 #define MAX_MMIO_BASES 3
84 struct engine_info {
85 	unsigned int hw_id;
86 	unsigned int uabi_id;
87 	u8 class;
88 	u8 instance;
89 	/* mmio bases table *must* be sorted in reverse gen order */
90 	struct engine_mmio_base {
91 		u32 gen : 8;
92 		u32 base : 24;
93 	} mmio_bases[MAX_MMIO_BASES];
94 };
95 
96 static const struct engine_info intel_engines[] = {
97 	[RCS] = {
98 		.hw_id = RCS_HW,
99 		.uabi_id = I915_EXEC_RENDER,
100 		.class = RENDER_CLASS,
101 		.instance = 0,
102 		.mmio_bases = {
103 			{ .gen = 1, .base = RENDER_RING_BASE }
104 		},
105 	},
106 	[BCS] = {
107 		.hw_id = BCS_HW,
108 		.uabi_id = I915_EXEC_BLT,
109 		.class = COPY_ENGINE_CLASS,
110 		.instance = 0,
111 		.mmio_bases = {
112 			{ .gen = 6, .base = BLT_RING_BASE }
113 		},
114 	},
115 	[VCS] = {
116 		.hw_id = VCS_HW,
117 		.uabi_id = I915_EXEC_BSD,
118 		.class = VIDEO_DECODE_CLASS,
119 		.instance = 0,
120 		.mmio_bases = {
121 			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
122 			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
123 			{ .gen = 4, .base = BSD_RING_BASE }
124 		},
125 	},
126 	[VCS2] = {
127 		.hw_id = VCS2_HW,
128 		.uabi_id = I915_EXEC_BSD,
129 		.class = VIDEO_DECODE_CLASS,
130 		.instance = 1,
131 		.mmio_bases = {
132 			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
133 			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
134 		},
135 	},
136 	[VCS3] = {
137 		.hw_id = VCS3_HW,
138 		.uabi_id = I915_EXEC_BSD,
139 		.class = VIDEO_DECODE_CLASS,
140 		.instance = 2,
141 		.mmio_bases = {
142 			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
143 		},
144 	},
145 	[VCS4] = {
146 		.hw_id = VCS4_HW,
147 		.uabi_id = I915_EXEC_BSD,
148 		.class = VIDEO_DECODE_CLASS,
149 		.instance = 3,
150 		.mmio_bases = {
151 			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
152 		},
153 	},
154 	[VECS] = {
155 		.hw_id = VECS_HW,
156 		.uabi_id = I915_EXEC_VEBOX,
157 		.class = VIDEO_ENHANCEMENT_CLASS,
158 		.instance = 0,
159 		.mmio_bases = {
160 			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
161 			{ .gen = 7, .base = VEBOX_RING_BASE }
162 		},
163 	},
164 	[VECS2] = {
165 		.hw_id = VECS2_HW,
166 		.uabi_id = I915_EXEC_VEBOX,
167 		.class = VIDEO_ENHANCEMENT_CLASS,
168 		.instance = 1,
169 		.mmio_bases = {
170 			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
171 		},
172 	},
173 };
174 
175 /**
176  * ___intel_engine_context_size() - return the size of the context for an engine
177  * @dev_priv: i915 device private
178  * @class: engine class
179  *
180  * Each engine class may require a different amount of space for a context
181  * image.
182  *
183  * Return: size (in bytes) of an engine class specific context image
184  *
185  * Note: this size includes the HWSP, which is part of the context image
186  * in LRC mode, but does not include the "shared data page" used with
187  * GuC submission. The caller should account for this if using the GuC.
188  */
189 static u32
__intel_engine_context_size(struct drm_i915_private * dev_priv,u8 class)190 __intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
191 {
192 	u32 cxt_size;
193 
194 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
195 
196 	switch (class) {
197 	case RENDER_CLASS:
198 		switch (INTEL_GEN(dev_priv)) {
199 		default:
200 			MISSING_CASE(INTEL_GEN(dev_priv));
201 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
202 		case 11:
203 			return GEN11_LR_CONTEXT_RENDER_SIZE;
204 		case 10:
205 			return GEN10_LR_CONTEXT_RENDER_SIZE;
206 		case 9:
207 			return GEN9_LR_CONTEXT_RENDER_SIZE;
208 		case 8:
209 			return GEN8_LR_CONTEXT_RENDER_SIZE;
210 		case 7:
211 			if (IS_HASWELL(dev_priv))
212 				return HSW_CXT_TOTAL_SIZE;
213 
214 			cxt_size = I915_READ(GEN7_CXT_SIZE);
215 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
216 					PAGE_SIZE);
217 		case 6:
218 			cxt_size = I915_READ(CXT_SIZE);
219 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
220 					PAGE_SIZE);
221 		case 5:
222 		case 4:
223 		case 3:
224 		case 2:
225 		/* For the special day when i810 gets merged. */
226 		case 1:
227 			return 0;
228 		}
229 		break;
230 	default:
231 		MISSING_CASE(class);
232 		/* fall through */
233 	case VIDEO_DECODE_CLASS:
234 	case VIDEO_ENHANCEMENT_CLASS:
235 	case COPY_ENGINE_CLASS:
236 		if (INTEL_GEN(dev_priv) < 8)
237 			return 0;
238 		return GEN8_LR_CONTEXT_OTHER_SIZE;
239 	}
240 }
241 
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)242 static u32 __engine_mmio_base(struct drm_i915_private *i915,
243 			      const struct engine_mmio_base *bases)
244 {
245 	int i;
246 
247 	for (i = 0; i < MAX_MMIO_BASES; i++)
248 		if (INTEL_GEN(i915) >= bases[i].gen)
249 			break;
250 
251 	GEM_BUG_ON(i == MAX_MMIO_BASES);
252 	GEM_BUG_ON(!bases[i].base);
253 
254 	return bases[i].base;
255 }
256 
__sprint_engine_name(char * name,const struct engine_info * info)257 static void __sprint_engine_name(char *name, const struct engine_info *info)
258 {
259 	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
260 			 intel_engine_classes[info->class].name,
261 			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
262 }
263 
264 static int
intel_engine_setup(struct drm_i915_private * dev_priv,enum intel_engine_id id)265 intel_engine_setup(struct drm_i915_private *dev_priv,
266 		   enum intel_engine_id id)
267 {
268 	const struct engine_info *info = &intel_engines[id];
269 	struct intel_engine_cs *engine;
270 
271 	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));
272 
273 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
274 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
275 
276 	if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS))
277 		return -EINVAL;
278 
279 	if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
280 		return -EINVAL;
281 
282 	if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
283 		return -EINVAL;
284 
285 	GEM_BUG_ON(dev_priv->engine[id]);
286 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
287 	if (!engine)
288 		return -ENOMEM;
289 
290 	engine->id = id;
291 	engine->i915 = dev_priv;
292 	__sprint_engine_name(engine->name, info);
293 	engine->hw_id = engine->guc_id = info->hw_id;
294 	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
295 	engine->class = info->class;
296 	engine->instance = info->instance;
297 
298 	engine->uabi_id = info->uabi_id;
299 	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
300 
301 	engine->context_size = __intel_engine_context_size(dev_priv,
302 							   engine->class);
303 	if (WARN_ON(engine->context_size > BIT(20)))
304 		engine->context_size = 0;
305 	if (engine->context_size)
306 		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
307 
308 	/* Nothing to do here, execute in order of dependencies */
309 	engine->schedule = NULL;
310 
311 	seqlock_init(&engine->stats.lock);
312 
313 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
314 
315 	dev_priv->engine_class[info->class][info->instance] = engine;
316 	dev_priv->engine[id] = engine;
317 	return 0;
318 }
319 
320 /**
321  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
322  * @dev_priv: i915 device private
323  *
324  * Return: non-zero if the initialization failed.
325  */
intel_engines_init_mmio(struct drm_i915_private * dev_priv)326 int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
327 {
328 	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
329 	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
330 	struct intel_engine_cs *engine;
331 	enum intel_engine_id id;
332 	unsigned int mask = 0;
333 	unsigned int i;
334 	int err;
335 
336 	WARN_ON(ring_mask == 0);
337 	WARN_ON(ring_mask &
338 		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
339 
340 	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
341 		if (!HAS_ENGINE(dev_priv, i))
342 			continue;
343 
344 		err = intel_engine_setup(dev_priv, i);
345 		if (err)
346 			goto cleanup;
347 
348 		mask |= ENGINE_MASK(i);
349 	}
350 
351 	/*
352 	 * Catch failures to update intel_engines table when the new engines
353 	 * are added to the driver by a warning and disabling the forgotten
354 	 * engines.
355 	 */
356 	if (WARN_ON(mask != ring_mask))
357 		device_info->ring_mask = mask;
358 
359 	/* We always presume we have at least RCS available for later probing */
360 	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
361 		err = -ENODEV;
362 		goto cleanup;
363 	}
364 
365 	device_info->num_rings = hweight32(mask);
366 
367 	i915_check_and_clear_faults(dev_priv);
368 
369 	return 0;
370 
371 cleanup:
372 	for_each_engine(engine, dev_priv, id)
373 		kfree(engine);
374 	return err;
375 }
376 
377 /**
378  * intel_engines_init() - init the Engine Command Streamers
379  * @dev_priv: i915 device private
380  *
381  * Return: non-zero if the initialization failed.
382  */
intel_engines_init(struct drm_i915_private * dev_priv)383 int intel_engines_init(struct drm_i915_private *dev_priv)
384 {
385 	struct intel_engine_cs *engine;
386 	enum intel_engine_id id, err_id;
387 	int err;
388 
389 	for_each_engine(engine, dev_priv, id) {
390 		const struct engine_class_info *class_info =
391 			&intel_engine_classes[engine->class];
392 		int (*init)(struct intel_engine_cs *engine);
393 
394 		if (HAS_EXECLISTS(dev_priv))
395 			init = class_info->init_execlists;
396 		else
397 			init = class_info->init_legacy;
398 
399 		err = -EINVAL;
400 		err_id = id;
401 
402 		if (GEM_WARN_ON(!init))
403 			goto cleanup;
404 
405 		err = init(engine);
406 		if (err)
407 			goto cleanup;
408 
409 		GEM_BUG_ON(!engine->submit_request);
410 	}
411 
412 	return 0;
413 
414 cleanup:
415 	for_each_engine(engine, dev_priv, id) {
416 		if (id >= err_id) {
417 			kfree(engine);
418 			dev_priv->engine[id] = NULL;
419 		} else {
420 			dev_priv->gt.cleanup_engine(engine);
421 		}
422 	}
423 	return err;
424 }
425 
intel_engine_init_global_seqno(struct intel_engine_cs * engine,u32 seqno)426 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
427 {
428 	struct drm_i915_private *dev_priv = engine->i915;
429 
430 	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
431 	 * so long as the semaphore value in the register/page is greater
432 	 * than the sync value), so whenever we reset the seqno,
433 	 * so long as we reset the tracking semaphore value to 0, it will
434 	 * always be before the next request's seqno. If we don't reset
435 	 * the semaphore value, then when the seqno moves backwards all
436 	 * future waits will complete instantly (causing rendering corruption).
437 	 */
438 	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
439 		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
440 		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
441 		if (HAS_VEBOX(dev_priv))
442 			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
443 	}
444 
445 	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
446 	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
447 
448 	/* After manually advancing the seqno, fake the interrupt in case
449 	 * there are any waiters for that seqno.
450 	 */
451 	intel_engine_wakeup(engine);
452 
453 	GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
454 }
455 
intel_engine_init_batch_pool(struct intel_engine_cs * engine)456 static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
457 {
458 	i915_gem_batch_pool_init(&engine->batch_pool, engine);
459 }
460 
intel_engine_init_execlist(struct intel_engine_cs * engine)461 static void intel_engine_init_execlist(struct intel_engine_cs *engine)
462 {
463 	struct intel_engine_execlists * const execlists = &engine->execlists;
464 
465 	execlists->port_mask = 1;
466 	BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists));
467 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
468 
469 	execlists->queue_priority = INT_MIN;
470 	execlists->queue = RB_ROOT_CACHED;
471 }
472 
473 /**
474  * intel_engines_setup_common - setup engine state not requiring hw access
475  * @engine: Engine to setup.
476  *
477  * Initializes @engine@ structure members shared between legacy and execlists
478  * submission modes which do not require hardware access.
479  *
480  * Typically done early in the submission mode specific engine setup stage.
481  */
intel_engine_setup_common(struct intel_engine_cs * engine)482 void intel_engine_setup_common(struct intel_engine_cs *engine)
483 {
484 	i915_timeline_init(engine->i915, &engine->timeline, engine->name);
485 	lockdep_set_subclass(&engine->timeline.lock, TIMELINE_ENGINE);
486 
487 	intel_engine_init_execlist(engine);
488 	intel_engine_init_hangcheck(engine);
489 	intel_engine_init_batch_pool(engine);
490 	intel_engine_init_cmd_parser(engine);
491 }
492 
intel_engine_create_scratch(struct intel_engine_cs * engine,unsigned int size)493 int intel_engine_create_scratch(struct intel_engine_cs *engine,
494 				unsigned int size)
495 {
496 	struct drm_i915_gem_object *obj;
497 	struct i915_vma *vma;
498 	int ret;
499 
500 	WARN_ON(engine->scratch);
501 
502 	obj = i915_gem_object_create_stolen(engine->i915, size);
503 	if (!obj)
504 		obj = i915_gem_object_create_internal(engine->i915, size);
505 	if (IS_ERR(obj)) {
506 		DRM_ERROR("Failed to allocate scratch page\n");
507 		return PTR_ERR(obj);
508 	}
509 
510 	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
511 	if (IS_ERR(vma)) {
512 		ret = PTR_ERR(vma);
513 		goto err_unref;
514 	}
515 
516 	ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH);
517 	if (ret)
518 		goto err_unref;
519 
520 	engine->scratch = vma;
521 	return 0;
522 
523 err_unref:
524 	i915_gem_object_put(obj);
525 	return ret;
526 }
527 
intel_engine_cleanup_scratch(struct intel_engine_cs * engine)528 void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
529 {
530 	i915_vma_unpin_and_release(&engine->scratch);
531 }
532 
cleanup_phys_status_page(struct intel_engine_cs * engine)533 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
534 {
535 	struct drm_i915_private *dev_priv = engine->i915;
536 
537 	if (!dev_priv->status_page_dmah)
538 		return;
539 
540 	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
541 	engine->status_page.page_addr = NULL;
542 }
543 
cleanup_status_page(struct intel_engine_cs * engine)544 static void cleanup_status_page(struct intel_engine_cs *engine)
545 {
546 	struct i915_vma *vma;
547 	struct drm_i915_gem_object *obj;
548 
549 	vma = fetch_and_zero(&engine->status_page.vma);
550 	if (!vma)
551 		return;
552 
553 	obj = vma->obj;
554 
555 	i915_vma_unpin(vma);
556 	i915_vma_close(vma);
557 
558 	i915_gem_object_unpin_map(obj);
559 	__i915_gem_object_release_unless_active(obj);
560 }
561 
init_status_page(struct intel_engine_cs * engine)562 static int init_status_page(struct intel_engine_cs *engine)
563 {
564 	struct drm_i915_gem_object *obj;
565 	struct i915_vma *vma;
566 	unsigned int flags;
567 	void *vaddr;
568 	int ret;
569 
570 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
571 	if (IS_ERR(obj)) {
572 		DRM_ERROR("Failed to allocate status page\n");
573 		return PTR_ERR(obj);
574 	}
575 
576 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
577 	if (ret)
578 		goto err;
579 
580 	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
581 	if (IS_ERR(vma)) {
582 		ret = PTR_ERR(vma);
583 		goto err;
584 	}
585 
586 	flags = PIN_GLOBAL;
587 	if (!HAS_LLC(engine->i915))
588 		/* On g33, we cannot place HWS above 256MiB, so
589 		 * restrict its pinning to the low mappable arena.
590 		 * Though this restriction is not documented for
591 		 * gen4, gen5, or byt, they also behave similarly
592 		 * and hang if the HWS is placed at the top of the
593 		 * GTT. To generalise, it appears that all !llc
594 		 * platforms have issues with us placing the HWS
595 		 * above the mappable region (even though we never
596 		 * actually map it).
597 		 */
598 		flags |= PIN_MAPPABLE;
599 	else
600 		flags |= PIN_HIGH;
601 	ret = i915_vma_pin(vma, 0, 4096, flags);
602 	if (ret)
603 		goto err;
604 
605 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
606 	if (IS_ERR(vaddr)) {
607 		ret = PTR_ERR(vaddr);
608 		goto err_unpin;
609 	}
610 
611 	engine->status_page.vma = vma;
612 	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
613 	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
614 	return 0;
615 
616 err_unpin:
617 	i915_vma_unpin(vma);
618 err:
619 	i915_gem_object_put(obj);
620 	return ret;
621 }
622 
init_phys_status_page(struct intel_engine_cs * engine)623 static int init_phys_status_page(struct intel_engine_cs *engine)
624 {
625 	struct drm_i915_private *dev_priv = engine->i915;
626 
627 	GEM_BUG_ON(engine->id != RCS);
628 
629 	dev_priv->status_page_dmah =
630 		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
631 	if (!dev_priv->status_page_dmah)
632 		return -ENOMEM;
633 
634 	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
635 	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
636 
637 	return 0;
638 }
639 
__intel_context_unpin(struct i915_gem_context * ctx,struct intel_engine_cs * engine)640 static void __intel_context_unpin(struct i915_gem_context *ctx,
641 				  struct intel_engine_cs *engine)
642 {
643 	intel_context_unpin(to_intel_context(ctx, engine));
644 }
645 
646 /**
647  * intel_engines_init_common - initialize cengine state which might require hw access
648  * @engine: Engine to initialize.
649  *
650  * Initializes @engine@ structure members shared between legacy and execlists
651  * submission modes which do require hardware access.
652  *
653  * Typcally done at later stages of submission mode specific engine setup.
654  *
655  * Returns zero on success or an error code on failure.
656  */
intel_engine_init_common(struct intel_engine_cs * engine)657 int intel_engine_init_common(struct intel_engine_cs *engine)
658 {
659 	struct drm_i915_private *i915 = engine->i915;
660 	struct intel_context *ce;
661 	int ret;
662 
663 	engine->set_default_submission(engine);
664 
665 	/* We may need to do things with the shrinker which
666 	 * require us to immediately switch back to the default
667 	 * context. This can cause a problem as pinning the
668 	 * default context also requires GTT space which may not
669 	 * be available. To avoid this we always pin the default
670 	 * context.
671 	 */
672 	ce = intel_context_pin(i915->kernel_context, engine);
673 	if (IS_ERR(ce))
674 		return PTR_ERR(ce);
675 
676 	/*
677 	 * Similarly the preempt context must always be available so that
678 	 * we can interrupt the engine at any time.
679 	 */
680 	if (i915->preempt_context) {
681 		ce = intel_context_pin(i915->preempt_context, engine);
682 		if (IS_ERR(ce)) {
683 			ret = PTR_ERR(ce);
684 			goto err_unpin_kernel;
685 		}
686 	}
687 
688 	ret = intel_engine_init_breadcrumbs(engine);
689 	if (ret)
690 		goto err_unpin_preempt;
691 
692 	if (HWS_NEEDS_PHYSICAL(i915))
693 		ret = init_phys_status_page(engine);
694 	else
695 		ret = init_status_page(engine);
696 	if (ret)
697 		goto err_breadcrumbs;
698 
699 	return 0;
700 
701 err_breadcrumbs:
702 	intel_engine_fini_breadcrumbs(engine);
703 err_unpin_preempt:
704 	if (i915->preempt_context)
705 		__intel_context_unpin(i915->preempt_context, engine);
706 
707 err_unpin_kernel:
708 	__intel_context_unpin(i915->kernel_context, engine);
709 	return ret;
710 }
711 
712 /**
713  * intel_engines_cleanup_common - cleans up the engine state created by
714  *                                the common initiailizers.
715  * @engine: Engine to cleanup.
716  *
717  * This cleans up everything created by the common helpers.
718  */
intel_engine_cleanup_common(struct intel_engine_cs * engine)719 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
720 {
721 	struct drm_i915_private *i915 = engine->i915;
722 
723 	intel_engine_cleanup_scratch(engine);
724 
725 	if (HWS_NEEDS_PHYSICAL(engine->i915))
726 		cleanup_phys_status_page(engine);
727 	else
728 		cleanup_status_page(engine);
729 
730 	intel_engine_fini_breadcrumbs(engine);
731 	intel_engine_cleanup_cmd_parser(engine);
732 	i915_gem_batch_pool_fini(&engine->batch_pool);
733 
734 	if (engine->default_state)
735 		i915_gem_object_put(engine->default_state);
736 
737 	if (i915->preempt_context)
738 		__intel_context_unpin(i915->preempt_context, engine);
739 	__intel_context_unpin(i915->kernel_context, engine);
740 
741 	i915_timeline_fini(&engine->timeline);
742 }
743 
intel_engine_get_active_head(const struct intel_engine_cs * engine)744 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
745 {
746 	struct drm_i915_private *dev_priv = engine->i915;
747 	u64 acthd;
748 
749 	if (INTEL_GEN(dev_priv) >= 8)
750 		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
751 					 RING_ACTHD_UDW(engine->mmio_base));
752 	else if (INTEL_GEN(dev_priv) >= 4)
753 		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
754 	else
755 		acthd = I915_READ(ACTHD);
756 
757 	return acthd;
758 }
759 
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)760 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
761 {
762 	struct drm_i915_private *dev_priv = engine->i915;
763 	u64 bbaddr;
764 
765 	if (INTEL_GEN(dev_priv) >= 8)
766 		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
767 					  RING_BBADDR_UDW(engine->mmio_base));
768 	else
769 		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));
770 
771 	return bbaddr;
772 }
773 
intel_engine_stop_cs(struct intel_engine_cs * engine)774 int intel_engine_stop_cs(struct intel_engine_cs *engine)
775 {
776 	struct drm_i915_private *dev_priv = engine->i915;
777 	const u32 base = engine->mmio_base;
778 	const i915_reg_t mode = RING_MI_MODE(base);
779 	int err;
780 
781 	if (INTEL_GEN(dev_priv) < 3)
782 		return -ENODEV;
783 
784 	GEM_TRACE("%s\n", engine->name);
785 
786 	I915_WRITE_FW(mode, _MASKED_BIT_ENABLE(STOP_RING));
787 
788 	err = 0;
789 	if (__intel_wait_for_register_fw(dev_priv,
790 					 mode, MODE_IDLE, MODE_IDLE,
791 					 1000, 0,
792 					 NULL)) {
793 		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
794 		err = -ETIMEDOUT;
795 	}
796 
797 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
798 	POSTING_READ_FW(mode);
799 
800 	return err;
801 }
802 
i915_cache_level_str(struct drm_i915_private * i915,int type)803 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
804 {
805 	switch (type) {
806 	case I915_CACHE_NONE: return " uncached";
807 	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
808 	case I915_CACHE_L3_LLC: return " L3+LLC";
809 	case I915_CACHE_WT: return " WT";
810 	default: return "";
811 	}
812 }
813 
intel_calculate_mcr_s_ss_select(struct drm_i915_private * dev_priv)814 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
815 {
816 	const struct sseu_dev_info *sseu = &(INTEL_INFO(dev_priv)->sseu);
817 	u32 mcr_s_ss_select;
818 	u32 slice = fls(sseu->slice_mask);
819 	u32 subslice = fls(sseu->subslice_mask[slice]);
820 
821 	if (INTEL_GEN(dev_priv) == 10)
822 		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
823 				  GEN8_MCR_SUBSLICE(subslice);
824 	else if (INTEL_GEN(dev_priv) >= 11)
825 		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
826 				  GEN11_MCR_SUBSLICE(subslice);
827 	else
828 		mcr_s_ss_select = 0;
829 
830 	return mcr_s_ss_select;
831 }
832 
833 static inline uint32_t
read_subslice_reg(struct drm_i915_private * dev_priv,int slice,int subslice,i915_reg_t reg)834 read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
835 		  int subslice, i915_reg_t reg)
836 {
837 	uint32_t mcr_slice_subslice_mask;
838 	uint32_t mcr_slice_subslice_select;
839 	uint32_t default_mcr_s_ss_select;
840 	uint32_t mcr;
841 	uint32_t ret;
842 	enum forcewake_domains fw_domains;
843 
844 	if (INTEL_GEN(dev_priv) >= 11) {
845 		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
846 					  GEN11_MCR_SUBSLICE_MASK;
847 		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
848 					    GEN11_MCR_SUBSLICE(subslice);
849 	} else {
850 		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
851 					  GEN8_MCR_SUBSLICE_MASK;
852 		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
853 					    GEN8_MCR_SUBSLICE(subslice);
854 	}
855 
856 	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);
857 
858 	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
859 						    FW_REG_READ);
860 	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
861 						     GEN8_MCR_SELECTOR,
862 						     FW_REG_READ | FW_REG_WRITE);
863 
864 	spin_lock_irq(&dev_priv->uncore.lock);
865 	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
866 
867 	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
868 
869 	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
870 		     default_mcr_s_ss_select);
871 
872 	mcr &= ~mcr_slice_subslice_mask;
873 	mcr |= mcr_slice_subslice_select;
874 	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);
875 
876 	ret = I915_READ_FW(reg);
877 
878 	mcr &= ~mcr_slice_subslice_mask;
879 	mcr |= default_mcr_s_ss_select;
880 
881 	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);
882 
883 	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
884 	spin_unlock_irq(&dev_priv->uncore.lock);
885 
886 	return ret;
887 }
888 
889 /* NB: please notice the memset */
intel_engine_get_instdone(struct intel_engine_cs * engine,struct intel_instdone * instdone)890 void intel_engine_get_instdone(struct intel_engine_cs *engine,
891 			       struct intel_instdone *instdone)
892 {
893 	struct drm_i915_private *dev_priv = engine->i915;
894 	u32 mmio_base = engine->mmio_base;
895 	int slice;
896 	int subslice;
897 
898 	memset(instdone, 0, sizeof(*instdone));
899 
900 	switch (INTEL_GEN(dev_priv)) {
901 	default:
902 		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
903 
904 		if (engine->id != RCS)
905 			break;
906 
907 		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
908 		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
909 			instdone->sampler[slice][subslice] =
910 				read_subslice_reg(dev_priv, slice, subslice,
911 						  GEN7_SAMPLER_INSTDONE);
912 			instdone->row[slice][subslice] =
913 				read_subslice_reg(dev_priv, slice, subslice,
914 						  GEN7_ROW_INSTDONE);
915 		}
916 		break;
917 	case 7:
918 		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
919 
920 		if (engine->id != RCS)
921 			break;
922 
923 		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
924 		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
925 		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);
926 
927 		break;
928 	case 6:
929 	case 5:
930 	case 4:
931 		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
932 
933 		if (engine->id == RCS)
934 			/* HACK: Using the wrong struct member */
935 			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
936 		break;
937 	case 3:
938 	case 2:
939 		instdone->instdone = I915_READ(GEN2_INSTDONE);
940 		break;
941 	}
942 }
943 
ring_is_idle(struct intel_engine_cs * engine)944 static bool ring_is_idle(struct intel_engine_cs *engine)
945 {
946 	struct drm_i915_private *dev_priv = engine->i915;
947 	bool idle = true;
948 
949 	/* If the whole device is asleep, the engine must be idle */
950 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
951 		return true;
952 
953 	/* First check that no commands are left in the ring */
954 	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
955 	    (I915_READ_TAIL(engine) & TAIL_ADDR))
956 		idle = false;
957 
958 	/* No bit for gen2, so assume the CS parser is idle */
959 	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
960 		idle = false;
961 
962 	intel_runtime_pm_put(dev_priv);
963 
964 	return idle;
965 }
966 
967 /**
968  * intel_engine_is_idle() - Report if the engine has finished process all work
969  * @engine: the intel_engine_cs
970  *
971  * Return true if there are no requests pending, nothing left to be submitted
972  * to hardware, and that the engine is idle.
973  */
intel_engine_is_idle(struct intel_engine_cs * engine)974 bool intel_engine_is_idle(struct intel_engine_cs *engine)
975 {
976 	struct drm_i915_private *dev_priv = engine->i915;
977 
978 	/* More white lies, if wedged, hw state is inconsistent */
979 	if (i915_terminally_wedged(&dev_priv->gpu_error))
980 		return true;
981 
982 	/* Any inflight/incomplete requests? */
983 	if (!i915_seqno_passed(intel_engine_get_seqno(engine),
984 			       intel_engine_last_submit(engine)))
985 		return false;
986 
987 	if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
988 		return true;
989 
990 	/* Waiting to drain ELSP? */
991 	if (READ_ONCE(engine->execlists.active)) {
992 		struct tasklet_struct *t = &engine->execlists.tasklet;
993 
994 		local_bh_disable();
995 		if (tasklet_trylock(t)) {
996 			/* Must wait for any GPU reset in progress. */
997 			if (__tasklet_is_enabled(t))
998 				t->func(t->data);
999 			tasklet_unlock(t);
1000 		}
1001 		local_bh_enable();
1002 
1003 		if (READ_ONCE(engine->execlists.active))
1004 			return false;
1005 	}
1006 
1007 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1008 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1009 		return false;
1010 
1011 	/* Ring stopped? */
1012 	if (!ring_is_idle(engine))
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
intel_engines_are_idle(struct drm_i915_private * dev_priv)1018 bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
1019 {
1020 	struct intel_engine_cs *engine;
1021 	enum intel_engine_id id;
1022 
1023 	/*
1024 	 * If the driver is wedged, HW state may be very inconsistent and
1025 	 * report that it is still busy, even though we have stopped using it.
1026 	 */
1027 	if (i915_terminally_wedged(&dev_priv->gpu_error))
1028 		return true;
1029 
1030 	for_each_engine(engine, dev_priv, id) {
1031 		if (!intel_engine_is_idle(engine))
1032 			return false;
1033 	}
1034 
1035 	return true;
1036 }
1037 
1038 /**
1039  * intel_engine_has_kernel_context:
1040  * @engine: the engine
1041  *
1042  * Returns true if the last context to be executed on this engine, or has been
1043  * executed if the engine is already idle, is the kernel context
1044  * (#i915.kernel_context).
1045  */
intel_engine_has_kernel_context(const struct intel_engine_cs * engine)1046 bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
1047 {
1048 	const struct intel_context *kernel_context =
1049 		to_intel_context(engine->i915->kernel_context, engine);
1050 	struct i915_request *rq;
1051 
1052 	lockdep_assert_held(&engine->i915->drm.struct_mutex);
1053 
1054 	/*
1055 	 * Check the last context seen by the engine. If active, it will be
1056 	 * the last request that remains in the timeline. When idle, it is
1057 	 * the last executed context as tracked by retirement.
1058 	 */
1059 	rq = __i915_gem_active_peek(&engine->timeline.last_request);
1060 	if (rq)
1061 		return rq->hw_context == kernel_context;
1062 	else
1063 		return engine->last_retired_context == kernel_context;
1064 }
1065 
intel_engines_reset_default_submission(struct drm_i915_private * i915)1066 void intel_engines_reset_default_submission(struct drm_i915_private *i915)
1067 {
1068 	struct intel_engine_cs *engine;
1069 	enum intel_engine_id id;
1070 
1071 	for_each_engine(engine, i915, id)
1072 		engine->set_default_submission(engine);
1073 }
1074 
1075 /**
1076  * intel_engines_sanitize: called after the GPU has lost power
1077  * @i915: the i915 device
1078  *
1079  * Anytime we reset the GPU, either with an explicit GPU reset or through a
1080  * PCI power cycle, the GPU loses state and we must reset our state tracking
1081  * to match. Note that calling intel_engines_sanitize() if the GPU has not
1082  * been reset results in much confusion!
1083  */
intel_engines_sanitize(struct drm_i915_private * i915)1084 void intel_engines_sanitize(struct drm_i915_private *i915)
1085 {
1086 	struct intel_engine_cs *engine;
1087 	enum intel_engine_id id;
1088 
1089 	GEM_TRACE("\n");
1090 
1091 	for_each_engine(engine, i915, id) {
1092 		if (engine->reset.reset)
1093 			engine->reset.reset(engine, NULL);
1094 	}
1095 }
1096 
1097 /**
1098  * intel_engines_park: called when the GT is transitioning from busy->idle
1099  * @i915: the i915 device
1100  *
1101  * The GT is now idle and about to go to sleep (maybe never to wake again?).
1102  * Time for us to tidy and put away our toys (release resources back to the
1103  * system).
1104  */
intel_engines_park(struct drm_i915_private * i915)1105 void intel_engines_park(struct drm_i915_private *i915)
1106 {
1107 	struct intel_engine_cs *engine;
1108 	enum intel_engine_id id;
1109 
1110 	for_each_engine(engine, i915, id) {
1111 		/* Flush the residual irq tasklets first. */
1112 		intel_engine_disarm_breadcrumbs(engine);
1113 		tasklet_kill(&engine->execlists.tasklet);
1114 
1115 		/*
1116 		 * We are committed now to parking the engines, make sure there
1117 		 * will be no more interrupts arriving later and the engines
1118 		 * are truly idle.
1119 		 */
1120 		if (wait_for(intel_engine_is_idle(engine), 10)) {
1121 			struct drm_printer p = drm_debug_printer(__func__);
1122 
1123 			dev_err(i915->drm.dev,
1124 				"%s is not idle before parking\n",
1125 				engine->name);
1126 			intel_engine_dump(engine, &p, NULL);
1127 		}
1128 
1129 		/* Must be reset upon idling, or we may miss the busy wakeup. */
1130 		GEM_BUG_ON(engine->execlists.queue_priority != INT_MIN);
1131 
1132 		if (engine->park)
1133 			engine->park(engine);
1134 
1135 		if (engine->pinned_default_state) {
1136 			i915_gem_object_unpin_map(engine->default_state);
1137 			engine->pinned_default_state = NULL;
1138 		}
1139 
1140 		i915_gem_batch_pool_fini(&engine->batch_pool);
1141 		engine->execlists.no_priolist = false;
1142 	}
1143 }
1144 
1145 /**
1146  * intel_engines_unpark: called when the GT is transitioning from idle->busy
1147  * @i915: the i915 device
1148  *
1149  * The GT was idle and now about to fire up with some new user requests.
1150  */
intel_engines_unpark(struct drm_i915_private * i915)1151 void intel_engines_unpark(struct drm_i915_private *i915)
1152 {
1153 	struct intel_engine_cs *engine;
1154 	enum intel_engine_id id;
1155 
1156 	for_each_engine(engine, i915, id) {
1157 		void *map;
1158 
1159 		/* Pin the default state for fast resets from atomic context. */
1160 		map = NULL;
1161 		if (engine->default_state)
1162 			map = i915_gem_object_pin_map(engine->default_state,
1163 						      I915_MAP_WB);
1164 		if (!IS_ERR_OR_NULL(map))
1165 			engine->pinned_default_state = map;
1166 
1167 		if (engine->unpark)
1168 			engine->unpark(engine);
1169 
1170 		intel_engine_init_hangcheck(engine);
1171 	}
1172 }
1173 
1174 /**
1175  * intel_engine_lost_context: called when the GPU is reset into unknown state
1176  * @engine: the engine
1177  *
1178  * We have either reset the GPU or otherwise about to lose state tracking of
1179  * the current GPU logical state (e.g. suspend). On next use, it is therefore
1180  * imperative that we make no presumptions about the current state and load
1181  * from scratch.
1182  */
intel_engine_lost_context(struct intel_engine_cs * engine)1183 void intel_engine_lost_context(struct intel_engine_cs *engine)
1184 {
1185 	struct intel_context *ce;
1186 
1187 	lockdep_assert_held(&engine->i915->drm.struct_mutex);
1188 
1189 	ce = fetch_and_zero(&engine->last_retired_context);
1190 	if (ce)
1191 		intel_context_unpin(ce);
1192 }
1193 
intel_engine_can_store_dword(struct intel_engine_cs * engine)1194 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1195 {
1196 	switch (INTEL_GEN(engine->i915)) {
1197 	case 2:
1198 		return false; /* uses physical not virtual addresses */
1199 	case 3:
1200 		/* maybe only uses physical not virtual addresses */
1201 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1202 	case 6:
1203 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1204 	default:
1205 		return true;
1206 	}
1207 }
1208 
intel_engines_has_context_isolation(struct drm_i915_private * i915)1209 unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
1210 {
1211 	struct intel_engine_cs *engine;
1212 	enum intel_engine_id id;
1213 	unsigned int which;
1214 
1215 	which = 0;
1216 	for_each_engine(engine, i915, id)
1217 		if (engine->default_state)
1218 			which |= BIT(engine->uabi_class);
1219 
1220 	return which;
1221 }
1222 
print_sched_attr(struct drm_i915_private * i915,const struct i915_sched_attr * attr,char * buf,int x,int len)1223 static int print_sched_attr(struct drm_i915_private *i915,
1224 			    const struct i915_sched_attr *attr,
1225 			    char *buf, int x, int len)
1226 {
1227 	if (attr->priority == I915_PRIORITY_INVALID)
1228 		return x;
1229 
1230 	x += snprintf(buf + x, len - x,
1231 		      " prio=%d", attr->priority);
1232 
1233 	return x;
1234 }
1235 
print_request(struct drm_printer * m,struct i915_request * rq,const char * prefix)1236 static void print_request(struct drm_printer *m,
1237 			  struct i915_request *rq,
1238 			  const char *prefix)
1239 {
1240 	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1241 	char buf[80] = "";
1242 	int x = 0;
1243 
1244 	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1245 
1246 	drm_printf(m, "%s%x%s [%llx:%x]%s @ %dms: %s\n",
1247 		   prefix,
1248 		   rq->global_seqno,
1249 		   i915_request_completed(rq) ? "!" : "",
1250 		   rq->fence.context, rq->fence.seqno,
1251 		   buf,
1252 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1253 		   name);
1254 }
1255 
hexdump(struct drm_printer * m,const void * buf,size_t len)1256 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1257 {
1258 	const size_t rowsize = 8 * sizeof(u32);
1259 	const void *prev = NULL;
1260 	bool skip = false;
1261 	size_t pos;
1262 
1263 	for (pos = 0; pos < len; pos += rowsize) {
1264 		char line[128];
1265 
1266 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1267 			if (!skip) {
1268 				drm_printf(m, "*\n");
1269 				skip = true;
1270 			}
1271 			continue;
1272 		}
1273 
1274 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1275 						rowsize, sizeof(u32),
1276 						line, sizeof(line),
1277 						false) >= sizeof(line));
1278 		drm_printf(m, "[%04zx] %s\n", pos, line);
1279 
1280 		prev = buf + pos;
1281 		skip = false;
1282 	}
1283 }
1284 
intel_engine_print_registers(const struct intel_engine_cs * engine,struct drm_printer * m)1285 static void intel_engine_print_registers(const struct intel_engine_cs *engine,
1286 					 struct drm_printer *m)
1287 {
1288 	struct drm_i915_private *dev_priv = engine->i915;
1289 	const struct intel_engine_execlists * const execlists =
1290 		&engine->execlists;
1291 	u64 addr;
1292 
1293 	if (engine->id == RCS && IS_GEN(dev_priv, 4, 7))
1294 		drm_printf(m, "\tCCID: 0x%08x\n", I915_READ(CCID));
1295 	drm_printf(m, "\tRING_START: 0x%08x\n",
1296 		   I915_READ(RING_START(engine->mmio_base)));
1297 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1298 		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
1299 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1300 		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
1301 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1302 		   I915_READ(RING_CTL(engine->mmio_base)),
1303 		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1304 	if (INTEL_GEN(engine->i915) > 2) {
1305 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1306 			   I915_READ(RING_MI_MODE(engine->mmio_base)),
1307 			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
1308 	}
1309 
1310 	if (INTEL_GEN(dev_priv) >= 6) {
1311 		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
1312 	}
1313 
1314 	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1315 		drm_printf(m, "\tSYNC_0: 0x%08x\n",
1316 			   I915_READ(RING_SYNC_0(engine->mmio_base)));
1317 		drm_printf(m, "\tSYNC_1: 0x%08x\n",
1318 			   I915_READ(RING_SYNC_1(engine->mmio_base)));
1319 		if (HAS_VEBOX(dev_priv))
1320 			drm_printf(m, "\tSYNC_2: 0x%08x\n",
1321 				   I915_READ(RING_SYNC_2(engine->mmio_base)));
1322 	}
1323 
1324 	addr = intel_engine_get_active_head(engine);
1325 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1326 		   upper_32_bits(addr), lower_32_bits(addr));
1327 	addr = intel_engine_get_last_batch_head(engine);
1328 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1329 		   upper_32_bits(addr), lower_32_bits(addr));
1330 	if (INTEL_GEN(dev_priv) >= 8)
1331 		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
1332 					RING_DMA_FADD_UDW(engine->mmio_base));
1333 	else if (INTEL_GEN(dev_priv) >= 4)
1334 		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
1335 	else
1336 		addr = I915_READ(DMA_FADD_I8XX);
1337 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1338 		   upper_32_bits(addr), lower_32_bits(addr));
1339 	if (INTEL_GEN(dev_priv) >= 4) {
1340 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1341 			   I915_READ(RING_IPEIR(engine->mmio_base)));
1342 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1343 			   I915_READ(RING_IPEHR(engine->mmio_base)));
1344 	} else {
1345 		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
1346 		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
1347 	}
1348 
1349 	if (HAS_EXECLISTS(dev_priv)) {
1350 		const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
1351 		u32 ptr, read, write;
1352 		unsigned int idx;
1353 
1354 		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
1355 			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
1356 			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));
1357 
1358 		ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
1359 		read = GEN8_CSB_READ_PTR(ptr);
1360 		write = GEN8_CSB_WRITE_PTR(ptr);
1361 		drm_printf(m, "\tExeclist CSB read %d [%d cached], write %d [%d from hws], tasklet queued? %s (%s)\n",
1362 			   read, execlists->csb_head,
1363 			   write,
1364 			   intel_read_status_page(engine, intel_hws_csb_write_index(engine->i915)),
1365 			   yesno(test_bit(TASKLET_STATE_SCHED,
1366 					  &engine->execlists.tasklet.state)),
1367 			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1368 		if (read >= GEN8_CSB_ENTRIES)
1369 			read = 0;
1370 		if (write >= GEN8_CSB_ENTRIES)
1371 			write = 0;
1372 		if (read > write)
1373 			write += GEN8_CSB_ENTRIES;
1374 		while (read < write) {
1375 			idx = ++read % GEN8_CSB_ENTRIES;
1376 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [0x%08x in hwsp], context: %d [%d in hwsp]\n",
1377 				   idx,
1378 				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
1379 				   hws[idx * 2],
1380 				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)),
1381 				   hws[idx * 2 + 1]);
1382 		}
1383 
1384 		rcu_read_lock();
1385 		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1386 			struct i915_request *rq;
1387 			unsigned int count;
1388 
1389 			rq = port_unpack(&execlists->port[idx], &count);
1390 			if (rq) {
1391 				char hdr[80];
1392 
1393 				snprintf(hdr, sizeof(hdr),
1394 					 "\t\tELSP[%d] count=%d, ring->start=%08x, rq: ",
1395 					 idx, count,
1396 					 i915_ggtt_offset(rq->ring->vma));
1397 				print_request(m, rq, hdr);
1398 			} else {
1399 				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1400 			}
1401 		}
1402 		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1403 		rcu_read_unlock();
1404 	} else if (INTEL_GEN(dev_priv) > 6) {
1405 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1406 			   I915_READ(RING_PP_DIR_BASE(engine)));
1407 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1408 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
1409 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1410 			   I915_READ(RING_PP_DIR_DCLV(engine)));
1411 	}
1412 }
1413 
print_request_ring(struct drm_printer * m,struct i915_request * rq)1414 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1415 {
1416 	void *ring;
1417 	int size;
1418 
1419 	drm_printf(m,
1420 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1421 		   rq->head, rq->postfix, rq->tail,
1422 		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1423 		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1424 
1425 	size = rq->tail - rq->head;
1426 	if (rq->tail < rq->head)
1427 		size += rq->ring->size;
1428 
1429 	ring = kmalloc(size, GFP_ATOMIC);
1430 	if (ring) {
1431 		const void *vaddr = rq->ring->vaddr;
1432 		unsigned int head = rq->head;
1433 		unsigned int len = 0;
1434 
1435 		if (rq->tail < head) {
1436 			len = rq->ring->size - head;
1437 			memcpy(ring, vaddr + head, len);
1438 			head = 0;
1439 		}
1440 		memcpy(ring + len, vaddr + head, size - len);
1441 
1442 		hexdump(m, ring, size);
1443 		kfree(ring);
1444 	}
1445 }
1446 
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)1447 void intel_engine_dump(struct intel_engine_cs *engine,
1448 		       struct drm_printer *m,
1449 		       const char *header, ...)
1450 {
1451 	const int MAX_REQUESTS_TO_SHOW = 8;
1452 	struct intel_breadcrumbs * const b = &engine->breadcrumbs;
1453 	const struct intel_engine_execlists * const execlists = &engine->execlists;
1454 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1455 	struct i915_request *rq, *last;
1456 	unsigned long flags;
1457 	struct rb_node *rb;
1458 	int count;
1459 
1460 	if (header) {
1461 		va_list ap;
1462 
1463 		va_start(ap, header);
1464 		drm_vprintf(m, header, &ap);
1465 		va_end(ap);
1466 	}
1467 
1468 	if (i915_terminally_wedged(&engine->i915->gpu_error))
1469 		drm_printf(m, "*** WEDGED ***\n");
1470 
1471 	drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
1472 		   intel_engine_get_seqno(engine),
1473 		   intel_engine_last_submit(engine),
1474 		   engine->hangcheck.seqno,
1475 		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1476 	drm_printf(m, "\tReset count: %d (global %d)\n",
1477 		   i915_reset_engine_count(error, engine),
1478 		   i915_reset_count(error));
1479 
1480 	rcu_read_lock();
1481 
1482 	drm_printf(m, "\tRequests:\n");
1483 
1484 	rq = list_first_entry(&engine->timeline.requests,
1485 			      struct i915_request, link);
1486 	if (&rq->link != &engine->timeline.requests)
1487 		print_request(m, rq, "\t\tfirst  ");
1488 
1489 	rq = list_last_entry(&engine->timeline.requests,
1490 			     struct i915_request, link);
1491 	if (&rq->link != &engine->timeline.requests)
1492 		print_request(m, rq, "\t\tlast   ");
1493 
1494 	rq = i915_gem_find_active_request(engine);
1495 	if (rq) {
1496 		print_request(m, rq, "\t\tactive ");
1497 
1498 		drm_printf(m, "\t\tring->start:  0x%08x\n",
1499 			   i915_ggtt_offset(rq->ring->vma));
1500 		drm_printf(m, "\t\tring->head:   0x%08x\n",
1501 			   rq->ring->head);
1502 		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1503 			   rq->ring->tail);
1504 		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1505 			   rq->ring->emit);
1506 		drm_printf(m, "\t\tring->space:  0x%08x\n",
1507 			   rq->ring->space);
1508 
1509 		print_request_ring(m, rq);
1510 	}
1511 
1512 	rcu_read_unlock();
1513 
1514 	if (intel_runtime_pm_get_if_in_use(engine->i915)) {
1515 		intel_engine_print_registers(engine, m);
1516 		intel_runtime_pm_put(engine->i915);
1517 	} else {
1518 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1519 	}
1520 
1521 	local_irq_save(flags);
1522 	spin_lock(&engine->timeline.lock);
1523 
1524 	last = NULL;
1525 	count = 0;
1526 	list_for_each_entry(rq, &engine->timeline.requests, link) {
1527 		if (count++ < MAX_REQUESTS_TO_SHOW - 1)
1528 			print_request(m, rq, "\t\tE ");
1529 		else
1530 			last = rq;
1531 	}
1532 	if (last) {
1533 		if (count > MAX_REQUESTS_TO_SHOW) {
1534 			drm_printf(m,
1535 				   "\t\t...skipping %d executing requests...\n",
1536 				   count - MAX_REQUESTS_TO_SHOW);
1537 		}
1538 		print_request(m, last, "\t\tE ");
1539 	}
1540 
1541 	last = NULL;
1542 	count = 0;
1543 	drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority);
1544 	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
1545 		struct i915_priolist *p =
1546 			rb_entry(rb, typeof(*p), node);
1547 
1548 		list_for_each_entry(rq, &p->requests, sched.link) {
1549 			if (count++ < MAX_REQUESTS_TO_SHOW - 1)
1550 				print_request(m, rq, "\t\tQ ");
1551 			else
1552 				last = rq;
1553 		}
1554 	}
1555 	if (last) {
1556 		if (count > MAX_REQUESTS_TO_SHOW) {
1557 			drm_printf(m,
1558 				   "\t\t...skipping %d queued requests...\n",
1559 				   count - MAX_REQUESTS_TO_SHOW);
1560 		}
1561 		print_request(m, last, "\t\tQ ");
1562 	}
1563 
1564 	spin_unlock(&engine->timeline.lock);
1565 
1566 	spin_lock(&b->rb_lock);
1567 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1568 		struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1569 
1570 		drm_printf(m, "\t%s [%d] waiting for %x\n",
1571 			   w->tsk->comm, w->tsk->pid, w->seqno);
1572 	}
1573 	spin_unlock(&b->rb_lock);
1574 	local_irq_restore(flags);
1575 
1576 	drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s)\n",
1577 		   engine->irq_posted,
1578 		   yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
1579 				  &engine->irq_posted)));
1580 
1581 	drm_printf(m, "HWSP:\n");
1582 	hexdump(m, engine->status_page.page_addr, PAGE_SIZE);
1583 
1584 	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1585 }
1586 
1587 static u8 user_class_map[] = {
1588 	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
1589 	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
1590 	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
1591 	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
1592 };
1593 
1594 struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private * i915,u8 class,u8 instance)1595 intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
1596 {
1597 	if (class >= ARRAY_SIZE(user_class_map))
1598 		return NULL;
1599 
1600 	class = user_class_map[class];
1601 
1602 	GEM_BUG_ON(class > MAX_ENGINE_CLASS);
1603 
1604 	if (instance > MAX_ENGINE_INSTANCE)
1605 		return NULL;
1606 
1607 	return i915->engine_class[class][instance];
1608 }
1609 
1610 /**
1611  * intel_enable_engine_stats() - Enable engine busy tracking on engine
1612  * @engine: engine to enable stats collection
1613  *
1614  * Start collecting the engine busyness data for @engine.
1615  *
1616  * Returns 0 on success or a negative error code.
1617  */
intel_enable_engine_stats(struct intel_engine_cs * engine)1618 int intel_enable_engine_stats(struct intel_engine_cs *engine)
1619 {
1620 	struct intel_engine_execlists *execlists = &engine->execlists;
1621 	unsigned long flags;
1622 	int err = 0;
1623 
1624 	if (!intel_engine_supports_stats(engine))
1625 		return -ENODEV;
1626 
1627 	spin_lock_irqsave(&engine->timeline.lock, flags);
1628 	write_seqlock(&engine->stats.lock);
1629 
1630 	if (unlikely(engine->stats.enabled == ~0)) {
1631 		err = -EBUSY;
1632 		goto unlock;
1633 	}
1634 
1635 	if (engine->stats.enabled++ == 0) {
1636 		const struct execlist_port *port = execlists->port;
1637 		unsigned int num_ports = execlists_num_ports(execlists);
1638 
1639 		engine->stats.enabled_at = ktime_get();
1640 
1641 		/* XXX submission method oblivious? */
1642 		while (num_ports-- && port_isset(port)) {
1643 			engine->stats.active++;
1644 			port++;
1645 		}
1646 
1647 		if (engine->stats.active)
1648 			engine->stats.start = engine->stats.enabled_at;
1649 	}
1650 
1651 unlock:
1652 	write_sequnlock(&engine->stats.lock);
1653 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1654 
1655 	return err;
1656 }
1657 
__intel_engine_get_busy_time(struct intel_engine_cs * engine)1658 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1659 {
1660 	ktime_t total = engine->stats.total;
1661 
1662 	/*
1663 	 * If the engine is executing something at the moment
1664 	 * add it to the total.
1665 	 */
1666 	if (engine->stats.active)
1667 		total = ktime_add(total,
1668 				  ktime_sub(ktime_get(), engine->stats.start));
1669 
1670 	return total;
1671 }
1672 
1673 /**
1674  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1675  * @engine: engine to report on
1676  *
1677  * Returns accumulated time @engine was busy since engine stats were enabled.
1678  */
intel_engine_get_busy_time(struct intel_engine_cs * engine)1679 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1680 {
1681 	unsigned int seq;
1682 	ktime_t total;
1683 
1684 	do {
1685 		seq = read_seqbegin(&engine->stats.lock);
1686 		total = __intel_engine_get_busy_time(engine);
1687 	} while (read_seqretry(&engine->stats.lock, seq));
1688 
1689 	return total;
1690 }
1691 
1692 /**
1693  * intel_disable_engine_stats() - Disable engine busy tracking on engine
1694  * @engine: engine to disable stats collection
1695  *
1696  * Stops collecting the engine busyness data for @engine.
1697  */
intel_disable_engine_stats(struct intel_engine_cs * engine)1698 void intel_disable_engine_stats(struct intel_engine_cs *engine)
1699 {
1700 	unsigned long flags;
1701 
1702 	if (!intel_engine_supports_stats(engine))
1703 		return;
1704 
1705 	write_seqlock_irqsave(&engine->stats.lock, flags);
1706 	WARN_ON_ONCE(engine->stats.enabled == 0);
1707 	if (--engine->stats.enabled == 0) {
1708 		engine->stats.total = __intel_engine_get_busy_time(engine);
1709 		engine->stats.active = 0;
1710 	}
1711 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1712 }
1713 
1714 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1715 #include "selftests/mock_engine.c"
1716 #include "selftests/intel_engine_cs.c"
1717 #endif
1718