1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37 * DOC: RC6
38 *
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43 *
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
47 *
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
54 */
55
gen9_init_clock_gating(struct drm_i915_private * dev_priv)56 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
57 {
58 if (HAS_LLC(dev_priv)) {
59 /*
60 * WaCompressedResourceDisplayNewHashMode:skl,kbl
61 * Display WA #0390: skl,kbl
62 *
63 * Must match Sampler, Pixel Back End, and Media. See
64 * WaCompressedResourceSamplerPbeMediaNewHashMode.
65 */
66 I915_WRITE(CHICKEN_PAR1_1,
67 I915_READ(CHICKEN_PAR1_1) |
68 SKL_DE_COMPRESSED_HASH_MODE);
69 }
70
71 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
72 I915_WRITE(CHICKEN_PAR1_1,
73 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
74
75 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
76 I915_WRITE(GEN8_CHICKEN_DCPR_1,
77 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
78
79 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
80 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
81 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
82 DISP_FBC_WM_DIS |
83 DISP_FBC_MEMORY_WAKE);
84
85 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
86 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
87 ILK_DPFC_DISABLE_DUMMY0);
88
89 if (IS_SKYLAKE(dev_priv)) {
90 /* WaDisableDopClockGating */
91 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
92 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
93 }
94 }
95
bxt_init_clock_gating(struct drm_i915_private * dev_priv)96 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
97 {
98 gen9_init_clock_gating(dev_priv);
99
100 /* WaDisableSDEUnitClockGating:bxt */
101 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
103
104 /*
105 * FIXME:
106 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
107 */
108 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
110
111 /*
112 * Wa: Backlight PWM may stop in the asserted state, causing backlight
113 * to stay fully on.
114 */
115 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116 PWM1_GATING_DIS | PWM2_GATING_DIS);
117 }
118
glk_init_clock_gating(struct drm_i915_private * dev_priv)119 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
120 {
121 gen9_init_clock_gating(dev_priv);
122
123 /*
124 * WaDisablePWMClockGating:glk
125 * Backlight PWM may stop in the asserted state, causing backlight
126 * to stay fully on.
127 */
128 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
129 PWM1_GATING_DIS | PWM2_GATING_DIS);
130
131 /* WaDDIIOTimeout:glk */
132 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
133 u32 val = I915_READ(CHICKEN_MISC_2);
134 val &= ~(GLK_CL0_PWR_DOWN |
135 GLK_CL1_PWR_DOWN |
136 GLK_CL2_PWR_DOWN);
137 I915_WRITE(CHICKEN_MISC_2, val);
138 }
139
140 }
141
i915_pineview_get_mem_freq(struct drm_i915_private * dev_priv)142 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
143 {
144 u32 tmp;
145
146 tmp = I915_READ(CLKCFG);
147
148 switch (tmp & CLKCFG_FSB_MASK) {
149 case CLKCFG_FSB_533:
150 dev_priv->fsb_freq = 533; /* 133*4 */
151 break;
152 case CLKCFG_FSB_800:
153 dev_priv->fsb_freq = 800; /* 200*4 */
154 break;
155 case CLKCFG_FSB_667:
156 dev_priv->fsb_freq = 667; /* 167*4 */
157 break;
158 case CLKCFG_FSB_400:
159 dev_priv->fsb_freq = 400; /* 100*4 */
160 break;
161 }
162
163 switch (tmp & CLKCFG_MEM_MASK) {
164 case CLKCFG_MEM_533:
165 dev_priv->mem_freq = 533;
166 break;
167 case CLKCFG_MEM_667:
168 dev_priv->mem_freq = 667;
169 break;
170 case CLKCFG_MEM_800:
171 dev_priv->mem_freq = 800;
172 break;
173 }
174
175 /* detect pineview DDR3 setting */
176 tmp = I915_READ(CSHRDDR3CTL);
177 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
178 }
179
i915_ironlake_get_mem_freq(struct drm_i915_private * dev_priv)180 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
181 {
182 u16 ddrpll, csipll;
183
184 ddrpll = I915_READ16(DDRMPLL1);
185 csipll = I915_READ16(CSIPLL0);
186
187 switch (ddrpll & 0xff) {
188 case 0xc:
189 dev_priv->mem_freq = 800;
190 break;
191 case 0x10:
192 dev_priv->mem_freq = 1066;
193 break;
194 case 0x14:
195 dev_priv->mem_freq = 1333;
196 break;
197 case 0x18:
198 dev_priv->mem_freq = 1600;
199 break;
200 default:
201 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
202 ddrpll & 0xff);
203 dev_priv->mem_freq = 0;
204 break;
205 }
206
207 dev_priv->ips.r_t = dev_priv->mem_freq;
208
209 switch (csipll & 0x3ff) {
210 case 0x00c:
211 dev_priv->fsb_freq = 3200;
212 break;
213 case 0x00e:
214 dev_priv->fsb_freq = 3733;
215 break;
216 case 0x010:
217 dev_priv->fsb_freq = 4266;
218 break;
219 case 0x012:
220 dev_priv->fsb_freq = 4800;
221 break;
222 case 0x014:
223 dev_priv->fsb_freq = 5333;
224 break;
225 case 0x016:
226 dev_priv->fsb_freq = 5866;
227 break;
228 case 0x018:
229 dev_priv->fsb_freq = 6400;
230 break;
231 default:
232 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
233 csipll & 0x3ff);
234 dev_priv->fsb_freq = 0;
235 break;
236 }
237
238 if (dev_priv->fsb_freq == 3200) {
239 dev_priv->ips.c_m = 0;
240 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
241 dev_priv->ips.c_m = 1;
242 } else {
243 dev_priv->ips.c_m = 2;
244 }
245 }
246
247 static const struct cxsr_latency cxsr_latency_table[] = {
248 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
249 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
250 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
251 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
252 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
253
254 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
255 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
256 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
257 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
258 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
259
260 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
261 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
262 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
263 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
264 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
265
266 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
267 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
268 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
269 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
270 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
271
272 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
273 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
274 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
275 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
276 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
277
278 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
279 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
280 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
281 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
282 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
283 };
284
intel_get_cxsr_latency(bool is_desktop,bool is_ddr3,int fsb,int mem)285 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
286 bool is_ddr3,
287 int fsb,
288 int mem)
289 {
290 const struct cxsr_latency *latency;
291 int i;
292
293 if (fsb == 0 || mem == 0)
294 return NULL;
295
296 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
297 latency = &cxsr_latency_table[i];
298 if (is_desktop == latency->is_desktop &&
299 is_ddr3 == latency->is_ddr3 &&
300 fsb == latency->fsb_freq && mem == latency->mem_freq)
301 return latency;
302 }
303
304 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
305
306 return NULL;
307 }
308
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)309 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
310 {
311 u32 val;
312
313 mutex_lock(&dev_priv->pcu_lock);
314
315 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
316 if (enable)
317 val &= ~FORCE_DDR_HIGH_FREQ;
318 else
319 val |= FORCE_DDR_HIGH_FREQ;
320 val &= ~FORCE_DDR_LOW_FREQ;
321 val |= FORCE_DDR_FREQ_REQ_ACK;
322 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
323
324 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
325 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
326 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
327
328 mutex_unlock(&dev_priv->pcu_lock);
329 }
330
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)331 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
332 {
333 u32 val;
334
335 mutex_lock(&dev_priv->pcu_lock);
336
337 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
338 if (enable)
339 val |= DSP_MAXFIFO_PM5_ENABLE;
340 else
341 val &= ~DSP_MAXFIFO_PM5_ENABLE;
342 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
343
344 mutex_unlock(&dev_priv->pcu_lock);
345 }
346
347 #define FW_WM(value, plane) \
348 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
349
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)350 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
351 {
352 bool was_enabled;
353 u32 val;
354
355 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
356 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
357 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
358 POSTING_READ(FW_BLC_SELF_VLV);
359 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
360 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
362 POSTING_READ(FW_BLC_SELF);
363 } else if (IS_PINEVIEW(dev_priv)) {
364 val = I915_READ(DSPFW3);
365 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
366 if (enable)
367 val |= PINEVIEW_SELF_REFRESH_EN;
368 else
369 val &= ~PINEVIEW_SELF_REFRESH_EN;
370 I915_WRITE(DSPFW3, val);
371 POSTING_READ(DSPFW3);
372 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
373 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
374 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
375 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
376 I915_WRITE(FW_BLC_SELF, val);
377 POSTING_READ(FW_BLC_SELF);
378 } else if (IS_I915GM(dev_priv)) {
379 /*
380 * FIXME can't find a bit like this for 915G, and
381 * and yet it does have the related watermark in
382 * FW_BLC_SELF. What's going on?
383 */
384 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
385 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
386 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
387 I915_WRITE(INSTPM, val);
388 POSTING_READ(INSTPM);
389 } else {
390 return false;
391 }
392
393 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
394
395 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
396 enableddisabled(enable),
397 enableddisabled(was_enabled));
398
399 return was_enabled;
400 }
401
402 /**
403 * intel_set_memory_cxsr - Configure CxSR state
404 * @dev_priv: i915 device
405 * @enable: Allow vs. disallow CxSR
406 *
407 * Allow or disallow the system to enter a special CxSR
408 * (C-state self refresh) state. What typically happens in CxSR mode
409 * is that several display FIFOs may get combined into a single larger
410 * FIFO for a particular plane (so called max FIFO mode) to allow the
411 * system to defer memory fetches longer, and the memory will enter
412 * self refresh.
413 *
414 * Note that enabling CxSR does not guarantee that the system enter
415 * this special mode, nor does it guarantee that the system stays
416 * in that mode once entered. So this just allows/disallows the system
417 * to autonomously utilize the CxSR mode. Other factors such as core
418 * C-states will affect when/if the system actually enters/exits the
419 * CxSR mode.
420 *
421 * Note that on VLV/CHV this actually only controls the max FIFO mode,
422 * and the system is free to enter/exit memory self refresh at any time
423 * even when the use of CxSR has been disallowed.
424 *
425 * While the system is actually in the CxSR/max FIFO mode, some plane
426 * control registers will not get latched on vblank. Thus in order to
427 * guarantee the system will respond to changes in the plane registers
428 * we must always disallow CxSR prior to making changes to those registers.
429 * Unfortunately the system will re-evaluate the CxSR conditions at
430 * frame start which happens after vblank start (which is when the plane
431 * registers would get latched), so we can't proceed with the plane update
432 * during the same frame where we disallowed CxSR.
433 *
434 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
435 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
436 * the hardware w.r.t. HPLL SR when writing to plane registers.
437 * Disallowing just CxSR is sufficient.
438 */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)439 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
440 {
441 bool ret;
442
443 mutex_lock(&dev_priv->wm.wm_mutex);
444 ret = _intel_set_memory_cxsr(dev_priv, enable);
445 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
446 dev_priv->wm.vlv.cxsr = enable;
447 else if (IS_G4X(dev_priv))
448 dev_priv->wm.g4x.cxsr = enable;
449 mutex_unlock(&dev_priv->wm.wm_mutex);
450
451 return ret;
452 }
453
454 /*
455 * Latency for FIFO fetches is dependent on several factors:
456 * - memory configuration (speed, channels)
457 * - chipset
458 * - current MCH state
459 * It can be fairly high in some situations, so here we assume a fairly
460 * pessimal value. It's a tradeoff between extra memory fetches (if we
461 * set this value too high, the FIFO will fetch frequently to stay full)
462 * and power consumption (set it too low to save power and we might see
463 * FIFO underruns and display "flicker").
464 *
465 * A value of 5us seems to be a good balance; safe for very low end
466 * platforms but not overly aggressive on lower latency configs.
467 */
468 static const int pessimal_latency_ns = 5000;
469
470 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
471 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
472
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)473 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
474 {
475 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
476 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
477 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
478 enum pipe pipe = crtc->pipe;
479 int sprite0_start, sprite1_start;
480
481 switch (pipe) {
482 uint32_t dsparb, dsparb2, dsparb3;
483 case PIPE_A:
484 dsparb = I915_READ(DSPARB);
485 dsparb2 = I915_READ(DSPARB2);
486 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
487 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
488 break;
489 case PIPE_B:
490 dsparb = I915_READ(DSPARB);
491 dsparb2 = I915_READ(DSPARB2);
492 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
493 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
494 break;
495 case PIPE_C:
496 dsparb2 = I915_READ(DSPARB2);
497 dsparb3 = I915_READ(DSPARB3);
498 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
499 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
500 break;
501 default:
502 MISSING_CASE(pipe);
503 return;
504 }
505
506 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
507 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
508 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
509 fifo_state->plane[PLANE_CURSOR] = 63;
510 }
511
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)512 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
513 enum i9xx_plane_id i9xx_plane)
514 {
515 uint32_t dsparb = I915_READ(DSPARB);
516 int size;
517
518 size = dsparb & 0x7f;
519 if (i9xx_plane == PLANE_B)
520 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
521
522 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
523 dsparb, plane_name(i9xx_plane), size);
524
525 return size;
526 }
527
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)528 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
529 enum i9xx_plane_id i9xx_plane)
530 {
531 uint32_t dsparb = I915_READ(DSPARB);
532 int size;
533
534 size = dsparb & 0x1ff;
535 if (i9xx_plane == PLANE_B)
536 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
537 size >>= 1; /* Convert to cachelines */
538
539 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
540 dsparb, plane_name(i9xx_plane), size);
541
542 return size;
543 }
544
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)545 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
546 enum i9xx_plane_id i9xx_plane)
547 {
548 uint32_t dsparb = I915_READ(DSPARB);
549 int size;
550
551 size = dsparb & 0x7f;
552 size >>= 2; /* Convert to cachelines */
553
554 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
555 dsparb, plane_name(i9xx_plane), size);
556
557 return size;
558 }
559
560 /* Pineview has different values for various configs */
561 static const struct intel_watermark_params pineview_display_wm = {
562 .fifo_size = PINEVIEW_DISPLAY_FIFO,
563 .max_wm = PINEVIEW_MAX_WM,
564 .default_wm = PINEVIEW_DFT_WM,
565 .guard_size = PINEVIEW_GUARD_WM,
566 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
567 };
568 static const struct intel_watermark_params pineview_display_hplloff_wm = {
569 .fifo_size = PINEVIEW_DISPLAY_FIFO,
570 .max_wm = PINEVIEW_MAX_WM,
571 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
572 .guard_size = PINEVIEW_GUARD_WM,
573 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 };
575 static const struct intel_watermark_params pineview_cursor_wm = {
576 .fifo_size = PINEVIEW_CURSOR_FIFO,
577 .max_wm = PINEVIEW_CURSOR_MAX_WM,
578 .default_wm = PINEVIEW_CURSOR_DFT_WM,
579 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
580 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 };
582 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
583 .fifo_size = PINEVIEW_CURSOR_FIFO,
584 .max_wm = PINEVIEW_CURSOR_MAX_WM,
585 .default_wm = PINEVIEW_CURSOR_DFT_WM,
586 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
587 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 };
589 static const struct intel_watermark_params i965_cursor_wm_info = {
590 .fifo_size = I965_CURSOR_FIFO,
591 .max_wm = I965_CURSOR_MAX_WM,
592 .default_wm = I965_CURSOR_DFT_WM,
593 .guard_size = 2,
594 .cacheline_size = I915_FIFO_LINE_SIZE,
595 };
596 static const struct intel_watermark_params i945_wm_info = {
597 .fifo_size = I945_FIFO_SIZE,
598 .max_wm = I915_MAX_WM,
599 .default_wm = 1,
600 .guard_size = 2,
601 .cacheline_size = I915_FIFO_LINE_SIZE,
602 };
603 static const struct intel_watermark_params i915_wm_info = {
604 .fifo_size = I915_FIFO_SIZE,
605 .max_wm = I915_MAX_WM,
606 .default_wm = 1,
607 .guard_size = 2,
608 .cacheline_size = I915_FIFO_LINE_SIZE,
609 };
610 static const struct intel_watermark_params i830_a_wm_info = {
611 .fifo_size = I855GM_FIFO_SIZE,
612 .max_wm = I915_MAX_WM,
613 .default_wm = 1,
614 .guard_size = 2,
615 .cacheline_size = I830_FIFO_LINE_SIZE,
616 };
617 static const struct intel_watermark_params i830_bc_wm_info = {
618 .fifo_size = I855GM_FIFO_SIZE,
619 .max_wm = I915_MAX_WM/2,
620 .default_wm = 1,
621 .guard_size = 2,
622 .cacheline_size = I830_FIFO_LINE_SIZE,
623 };
624 static const struct intel_watermark_params i845_wm_info = {
625 .fifo_size = I830_FIFO_SIZE,
626 .max_wm = I915_MAX_WM,
627 .default_wm = 1,
628 .guard_size = 2,
629 .cacheline_size = I830_FIFO_LINE_SIZE,
630 };
631
632 /**
633 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
634 * @pixel_rate: Pipe pixel rate in kHz
635 * @cpp: Plane bytes per pixel
636 * @latency: Memory wakeup latency in 0.1us units
637 *
638 * Compute the watermark using the method 1 or "small buffer"
639 * formula. The caller may additonally add extra cachelines
640 * to account for TLB misses and clock crossings.
641 *
642 * This method is concerned with the short term drain rate
643 * of the FIFO, ie. it does not account for blanking periods
644 * which would effectively reduce the average drain rate across
645 * a longer period. The name "small" refers to the fact the
646 * FIFO is relatively small compared to the amount of data
647 * fetched.
648 *
649 * The FIFO level vs. time graph might look something like:
650 *
651 * |\ |\
652 * | \ | \
653 * __---__---__ (- plane active, _ blanking)
654 * -> time
655 *
656 * or perhaps like this:
657 *
658 * |\|\ |\|\
659 * __----__----__ (- plane active, _ blanking)
660 * -> time
661 *
662 * Returns:
663 * The watermark in bytes
664 */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)665 static unsigned int intel_wm_method1(unsigned int pixel_rate,
666 unsigned int cpp,
667 unsigned int latency)
668 {
669 uint64_t ret;
670
671 ret = (uint64_t) pixel_rate * cpp * latency;
672 ret = DIV_ROUND_UP_ULL(ret, 10000);
673
674 return ret;
675 }
676
677 /**
678 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
679 * @pixel_rate: Pipe pixel rate in kHz
680 * @htotal: Pipe horizontal total
681 * @width: Plane width in pixels
682 * @cpp: Plane bytes per pixel
683 * @latency: Memory wakeup latency in 0.1us units
684 *
685 * Compute the watermark using the method 2 or "large buffer"
686 * formula. The caller may additonally add extra cachelines
687 * to account for TLB misses and clock crossings.
688 *
689 * This method is concerned with the long term drain rate
690 * of the FIFO, ie. it does account for blanking periods
691 * which effectively reduce the average drain rate across
692 * a longer period. The name "large" refers to the fact the
693 * FIFO is relatively large compared to the amount of data
694 * fetched.
695 *
696 * The FIFO level vs. time graph might look something like:
697 *
698 * |\___ |\___
699 * | \___ | \___
700 * | \ | \
701 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
702 * -> time
703 *
704 * Returns:
705 * The watermark in bytes
706 */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)707 static unsigned int intel_wm_method2(unsigned int pixel_rate,
708 unsigned int htotal,
709 unsigned int width,
710 unsigned int cpp,
711 unsigned int latency)
712 {
713 unsigned int ret;
714
715 /*
716 * FIXME remove once all users are computing
717 * watermarks in the correct place.
718 */
719 if (WARN_ON_ONCE(htotal == 0))
720 htotal = 1;
721
722 ret = (latency * pixel_rate) / (htotal * 10000);
723 ret = (ret + 1) * width * cpp;
724
725 return ret;
726 }
727
728 /**
729 * intel_calculate_wm - calculate watermark level
730 * @pixel_rate: pixel clock
731 * @wm: chip FIFO params
732 * @fifo_size: size of the FIFO buffer
733 * @cpp: bytes per pixel
734 * @latency_ns: memory latency for the platform
735 *
736 * Calculate the watermark level (the level at which the display plane will
737 * start fetching from memory again). Each chip has a different display
738 * FIFO size and allocation, so the caller needs to figure that out and pass
739 * in the correct intel_watermark_params structure.
740 *
741 * As the pixel clock runs, the FIFO will be drained at a rate that depends
742 * on the pixel size. When it reaches the watermark level, it'll start
743 * fetching FIFO line sized based chunks from memory until the FIFO fills
744 * past the watermark point. If the FIFO drains completely, a FIFO underrun
745 * will occur, and a display engine hang could result.
746 */
intel_calculate_wm(int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)747 static unsigned int intel_calculate_wm(int pixel_rate,
748 const struct intel_watermark_params *wm,
749 int fifo_size, int cpp,
750 unsigned int latency_ns)
751 {
752 int entries, wm_size;
753
754 /*
755 * Note: we need to make sure we don't overflow for various clock &
756 * latency values.
757 * clocks go from a few thousand to several hundred thousand.
758 * latency is usually a few thousand
759 */
760 entries = intel_wm_method1(pixel_rate, cpp,
761 latency_ns / 100);
762 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
763 wm->guard_size;
764 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
765
766 wm_size = fifo_size - entries;
767 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
768
769 /* Don't promote wm_size to unsigned... */
770 if (wm_size > wm->max_wm)
771 wm_size = wm->max_wm;
772 if (wm_size <= 0)
773 wm_size = wm->default_wm;
774
775 /*
776 * Bspec seems to indicate that the value shouldn't be lower than
777 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
778 * Lets go for 8 which is the burst size since certain platforms
779 * already use a hardcoded 8 (which is what the spec says should be
780 * done).
781 */
782 if (wm_size <= 8)
783 wm_size = 8;
784
785 return wm_size;
786 }
787
is_disabling(int old,int new,int threshold)788 static bool is_disabling(int old, int new, int threshold)
789 {
790 return old >= threshold && new < threshold;
791 }
792
is_enabling(int old,int new,int threshold)793 static bool is_enabling(int old, int new, int threshold)
794 {
795 return old < threshold && new >= threshold;
796 }
797
intel_wm_num_levels(struct drm_i915_private * dev_priv)798 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
799 {
800 return dev_priv->wm.max_level + 1;
801 }
802
intel_wm_plane_visible(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)803 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
804 const struct intel_plane_state *plane_state)
805 {
806 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
807
808 /* FIXME check the 'enable' instead */
809 if (!crtc_state->base.active)
810 return false;
811
812 /*
813 * Treat cursor with fb as always visible since cursor updates
814 * can happen faster than the vrefresh rate, and the current
815 * watermark code doesn't handle that correctly. Cursor updates
816 * which set/clear the fb or change the cursor size are going
817 * to get throttled by intel_legacy_cursor_update() to work
818 * around this problem with the watermark code.
819 */
820 if (plane->id == PLANE_CURSOR)
821 return plane_state->base.fb != NULL;
822 else
823 return plane_state->base.visible;
824 }
825
single_enabled_crtc(struct drm_i915_private * dev_priv)826 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
827 {
828 struct intel_crtc *crtc, *enabled = NULL;
829
830 for_each_intel_crtc(&dev_priv->drm, crtc) {
831 if (intel_crtc_active(crtc)) {
832 if (enabled)
833 return NULL;
834 enabled = crtc;
835 }
836 }
837
838 return enabled;
839 }
840
pineview_update_wm(struct intel_crtc * unused_crtc)841 static void pineview_update_wm(struct intel_crtc *unused_crtc)
842 {
843 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
844 struct intel_crtc *crtc;
845 const struct cxsr_latency *latency;
846 u32 reg;
847 unsigned int wm;
848
849 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
850 dev_priv->is_ddr3,
851 dev_priv->fsb_freq,
852 dev_priv->mem_freq);
853 if (!latency) {
854 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
855 intel_set_memory_cxsr(dev_priv, false);
856 return;
857 }
858
859 crtc = single_enabled_crtc(dev_priv);
860 if (crtc) {
861 const struct drm_display_mode *adjusted_mode =
862 &crtc->config->base.adjusted_mode;
863 const struct drm_framebuffer *fb =
864 crtc->base.primary->state->fb;
865 int cpp = fb->format->cpp[0];
866 int clock = adjusted_mode->crtc_clock;
867
868 /* Display SR */
869 wm = intel_calculate_wm(clock, &pineview_display_wm,
870 pineview_display_wm.fifo_size,
871 cpp, latency->display_sr);
872 reg = I915_READ(DSPFW1);
873 reg &= ~DSPFW_SR_MASK;
874 reg |= FW_WM(wm, SR);
875 I915_WRITE(DSPFW1, reg);
876 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
877
878 /* cursor SR */
879 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
880 pineview_display_wm.fifo_size,
881 4, latency->cursor_sr);
882 reg = I915_READ(DSPFW3);
883 reg &= ~DSPFW_CURSOR_SR_MASK;
884 reg |= FW_WM(wm, CURSOR_SR);
885 I915_WRITE(DSPFW3, reg);
886
887 /* Display HPLL off SR */
888 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
889 pineview_display_hplloff_wm.fifo_size,
890 cpp, latency->display_hpll_disable);
891 reg = I915_READ(DSPFW3);
892 reg &= ~DSPFW_HPLL_SR_MASK;
893 reg |= FW_WM(wm, HPLL_SR);
894 I915_WRITE(DSPFW3, reg);
895
896 /* cursor HPLL off SR */
897 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
898 pineview_display_hplloff_wm.fifo_size,
899 4, latency->cursor_hpll_disable);
900 reg = I915_READ(DSPFW3);
901 reg &= ~DSPFW_HPLL_CURSOR_MASK;
902 reg |= FW_WM(wm, HPLL_CURSOR);
903 I915_WRITE(DSPFW3, reg);
904 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
905
906 intel_set_memory_cxsr(dev_priv, true);
907 } else {
908 intel_set_memory_cxsr(dev_priv, false);
909 }
910 }
911
912 /*
913 * Documentation says:
914 * "If the line size is small, the TLB fetches can get in the way of the
915 * data fetches, causing some lag in the pixel data return which is not
916 * accounted for in the above formulas. The following adjustment only
917 * needs to be applied if eight whole lines fit in the buffer at once.
918 * The WM is adjusted upwards by the difference between the FIFO size
919 * and the size of 8 whole lines. This adjustment is always performed
920 * in the actual pixel depth regardless of whether FBC is enabled or not."
921 */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)922 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
923 {
924 int tlb_miss = fifo_size * 64 - width * cpp * 8;
925
926 return max(0, tlb_miss);
927 }
928
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)929 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
930 const struct g4x_wm_values *wm)
931 {
932 enum pipe pipe;
933
934 for_each_pipe(dev_priv, pipe)
935 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
936
937 I915_WRITE(DSPFW1,
938 FW_WM(wm->sr.plane, SR) |
939 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
940 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
941 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
942 I915_WRITE(DSPFW2,
943 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
944 FW_WM(wm->sr.fbc, FBC_SR) |
945 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
946 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
947 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
948 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
949 I915_WRITE(DSPFW3,
950 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
951 FW_WM(wm->sr.cursor, CURSOR_SR) |
952 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
953 FW_WM(wm->hpll.plane, HPLL_SR));
954
955 POSTING_READ(DSPFW1);
956 }
957
958 #define FW_WM_VLV(value, plane) \
959 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
960
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)961 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
962 const struct vlv_wm_values *wm)
963 {
964 enum pipe pipe;
965
966 for_each_pipe(dev_priv, pipe) {
967 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
968
969 I915_WRITE(VLV_DDL(pipe),
970 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
971 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
972 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
973 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
974 }
975
976 /*
977 * Zero the (unused) WM1 watermarks, and also clear all the
978 * high order bits so that there are no out of bounds values
979 * present in the registers during the reprogramming.
980 */
981 I915_WRITE(DSPHOWM, 0);
982 I915_WRITE(DSPHOWM1, 0);
983 I915_WRITE(DSPFW4, 0);
984 I915_WRITE(DSPFW5, 0);
985 I915_WRITE(DSPFW6, 0);
986
987 I915_WRITE(DSPFW1,
988 FW_WM(wm->sr.plane, SR) |
989 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
990 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
991 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
992 I915_WRITE(DSPFW2,
993 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
994 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
995 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
996 I915_WRITE(DSPFW3,
997 FW_WM(wm->sr.cursor, CURSOR_SR));
998
999 if (IS_CHERRYVIEW(dev_priv)) {
1000 I915_WRITE(DSPFW7_CHV,
1001 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1002 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1003 I915_WRITE(DSPFW8_CHV,
1004 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1005 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1006 I915_WRITE(DSPFW9_CHV,
1007 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1008 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1009 I915_WRITE(DSPHOWM,
1010 FW_WM(wm->sr.plane >> 9, SR_HI) |
1011 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1012 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1013 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1014 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1015 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1016 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1017 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1018 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1019 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1020 } else {
1021 I915_WRITE(DSPFW7,
1022 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1023 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1024 I915_WRITE(DSPHOWM,
1025 FW_WM(wm->sr.plane >> 9, SR_HI) |
1026 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1027 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1028 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1029 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1030 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1031 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1032 }
1033
1034 POSTING_READ(DSPFW1);
1035 }
1036
1037 #undef FW_WM_VLV
1038
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)1039 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1040 {
1041 /* all latencies in usec */
1042 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1043 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1044 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1045
1046 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1047 }
1048
g4x_plane_fifo_size(enum plane_id plane_id,int level)1049 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1050 {
1051 /*
1052 * DSPCNTR[13] supposedly controls whether the
1053 * primary plane can use the FIFO space otherwise
1054 * reserved for the sprite plane. It's not 100% clear
1055 * what the actual FIFO size is, but it looks like we
1056 * can happily set both primary and sprite watermarks
1057 * up to 127 cachelines. So that would seem to mean
1058 * that either DSPCNTR[13] doesn't do anything, or that
1059 * the total FIFO is >= 256 cachelines in size. Either
1060 * way, we don't seem to have to worry about this
1061 * repartitioning as the maximum watermark value the
1062 * register can hold for each plane is lower than the
1063 * minimum FIFO size.
1064 */
1065 switch (plane_id) {
1066 case PLANE_CURSOR:
1067 return 63;
1068 case PLANE_PRIMARY:
1069 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1070 case PLANE_SPRITE0:
1071 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1072 default:
1073 MISSING_CASE(plane_id);
1074 return 0;
1075 }
1076 }
1077
g4x_fbc_fifo_size(int level)1078 static int g4x_fbc_fifo_size(int level)
1079 {
1080 switch (level) {
1081 case G4X_WM_LEVEL_SR:
1082 return 7;
1083 case G4X_WM_LEVEL_HPLL:
1084 return 15;
1085 default:
1086 MISSING_CASE(level);
1087 return 0;
1088 }
1089 }
1090
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1091 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1092 const struct intel_plane_state *plane_state,
1093 int level)
1094 {
1095 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1096 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1097 const struct drm_display_mode *adjusted_mode =
1098 &crtc_state->base.adjusted_mode;
1099 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1100 unsigned int clock, htotal, cpp, width, wm;
1101
1102 if (latency == 0)
1103 return USHRT_MAX;
1104
1105 if (!intel_wm_plane_visible(crtc_state, plane_state))
1106 return 0;
1107
1108 /*
1109 * Not 100% sure which way ELK should go here as the
1110 * spec only says CL/CTG should assume 32bpp and BW
1111 * doesn't need to. But as these things followed the
1112 * mobile vs. desktop lines on gen3 as well, let's
1113 * assume ELK doesn't need this.
1114 *
1115 * The spec also fails to list such a restriction for
1116 * the HPLL watermark, which seems a little strange.
1117 * Let's use 32bpp for the HPLL watermark as well.
1118 */
1119 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1120 level != G4X_WM_LEVEL_NORMAL)
1121 cpp = 4;
1122 else
1123 cpp = plane_state->base.fb->format->cpp[0];
1124
1125 clock = adjusted_mode->crtc_clock;
1126 htotal = adjusted_mode->crtc_htotal;
1127
1128 if (plane->id == PLANE_CURSOR)
1129 width = plane_state->base.crtc_w;
1130 else
1131 width = drm_rect_width(&plane_state->base.dst);
1132
1133 if (plane->id == PLANE_CURSOR) {
1134 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1135 } else if (plane->id == PLANE_PRIMARY &&
1136 level == G4X_WM_LEVEL_NORMAL) {
1137 wm = intel_wm_method1(clock, cpp, latency);
1138 } else {
1139 unsigned int small, large;
1140
1141 small = intel_wm_method1(clock, cpp, latency);
1142 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1143
1144 wm = min(small, large);
1145 }
1146
1147 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1148 width, cpp);
1149
1150 wm = DIV_ROUND_UP(wm, 64) + 2;
1151
1152 return min_t(unsigned int, wm, USHRT_MAX);
1153 }
1154
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1155 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1156 int level, enum plane_id plane_id, u16 value)
1157 {
1158 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1159 bool dirty = false;
1160
1161 for (; level < intel_wm_num_levels(dev_priv); level++) {
1162 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1163
1164 dirty |= raw->plane[plane_id] != value;
1165 raw->plane[plane_id] = value;
1166 }
1167
1168 return dirty;
1169 }
1170
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1171 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1172 int level, u16 value)
1173 {
1174 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1175 bool dirty = false;
1176
1177 /* NORMAL level doesn't have an FBC watermark */
1178 level = max(level, G4X_WM_LEVEL_SR);
1179
1180 for (; level < intel_wm_num_levels(dev_priv); level++) {
1181 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1182
1183 dirty |= raw->fbc != value;
1184 raw->fbc = value;
1185 }
1186
1187 return dirty;
1188 }
1189
1190 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1191 const struct intel_plane_state *pstate,
1192 uint32_t pri_val);
1193
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1194 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1195 const struct intel_plane_state *plane_state)
1196 {
1197 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1198 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1199 enum plane_id plane_id = plane->id;
1200 bool dirty = false;
1201 int level;
1202
1203 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1204 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1205 if (plane_id == PLANE_PRIMARY)
1206 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1207 goto out;
1208 }
1209
1210 for (level = 0; level < num_levels; level++) {
1211 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1212 int wm, max_wm;
1213
1214 wm = g4x_compute_wm(crtc_state, plane_state, level);
1215 max_wm = g4x_plane_fifo_size(plane_id, level);
1216
1217 if (wm > max_wm)
1218 break;
1219
1220 dirty |= raw->plane[plane_id] != wm;
1221 raw->plane[plane_id] = wm;
1222
1223 if (plane_id != PLANE_PRIMARY ||
1224 level == G4X_WM_LEVEL_NORMAL)
1225 continue;
1226
1227 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1228 raw->plane[plane_id]);
1229 max_wm = g4x_fbc_fifo_size(level);
1230
1231 /*
1232 * FBC wm is not mandatory as we
1233 * can always just disable its use.
1234 */
1235 if (wm > max_wm)
1236 wm = USHRT_MAX;
1237
1238 dirty |= raw->fbc != wm;
1239 raw->fbc = wm;
1240 }
1241
1242 /* mark watermarks as invalid */
1243 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1244
1245 if (plane_id == PLANE_PRIMARY)
1246 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1247
1248 out:
1249 if (dirty) {
1250 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1251 plane->base.name,
1252 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1253 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1254 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1255
1256 if (plane_id == PLANE_PRIMARY)
1257 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1258 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1259 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1260 }
1261
1262 return dirty;
1263 }
1264
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1265 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1266 enum plane_id plane_id, int level)
1267 {
1268 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1269
1270 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1271 }
1272
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1273 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1274 int level)
1275 {
1276 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1277
1278 if (level > dev_priv->wm.max_level)
1279 return false;
1280
1281 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1282 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1283 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1284 }
1285
1286 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1287 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1288 struct g4x_wm_state *wm_state, int level)
1289 {
1290 if (level <= G4X_WM_LEVEL_NORMAL) {
1291 enum plane_id plane_id;
1292
1293 for_each_plane_id_on_crtc(crtc, plane_id)
1294 wm_state->wm.plane[plane_id] = USHRT_MAX;
1295 }
1296
1297 if (level <= G4X_WM_LEVEL_SR) {
1298 wm_state->cxsr = false;
1299 wm_state->sr.cursor = USHRT_MAX;
1300 wm_state->sr.plane = USHRT_MAX;
1301 wm_state->sr.fbc = USHRT_MAX;
1302 }
1303
1304 if (level <= G4X_WM_LEVEL_HPLL) {
1305 wm_state->hpll_en = false;
1306 wm_state->hpll.cursor = USHRT_MAX;
1307 wm_state->hpll.plane = USHRT_MAX;
1308 wm_state->hpll.fbc = USHRT_MAX;
1309 }
1310 }
1311
g4x_compute_pipe_wm(struct intel_crtc_state * crtc_state)1312 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1313 {
1314 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1315 struct intel_atomic_state *state =
1316 to_intel_atomic_state(crtc_state->base.state);
1317 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1318 int num_active_planes = hweight32(crtc_state->active_planes &
1319 ~BIT(PLANE_CURSOR));
1320 const struct g4x_pipe_wm *raw;
1321 const struct intel_plane_state *old_plane_state;
1322 const struct intel_plane_state *new_plane_state;
1323 struct intel_plane *plane;
1324 enum plane_id plane_id;
1325 int i, level;
1326 unsigned int dirty = 0;
1327
1328 for_each_oldnew_intel_plane_in_state(state, plane,
1329 old_plane_state,
1330 new_plane_state, i) {
1331 if (new_plane_state->base.crtc != &crtc->base &&
1332 old_plane_state->base.crtc != &crtc->base)
1333 continue;
1334
1335 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1336 dirty |= BIT(plane->id);
1337 }
1338
1339 if (!dirty)
1340 return 0;
1341
1342 level = G4X_WM_LEVEL_NORMAL;
1343 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1344 goto out;
1345
1346 raw = &crtc_state->wm.g4x.raw[level];
1347 for_each_plane_id_on_crtc(crtc, plane_id)
1348 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1349
1350 level = G4X_WM_LEVEL_SR;
1351
1352 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1353 goto out;
1354
1355 raw = &crtc_state->wm.g4x.raw[level];
1356 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1357 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1358 wm_state->sr.fbc = raw->fbc;
1359
1360 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1361
1362 level = G4X_WM_LEVEL_HPLL;
1363
1364 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1365 goto out;
1366
1367 raw = &crtc_state->wm.g4x.raw[level];
1368 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1369 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1370 wm_state->hpll.fbc = raw->fbc;
1371
1372 wm_state->hpll_en = wm_state->cxsr;
1373
1374 level++;
1375
1376 out:
1377 if (level == G4X_WM_LEVEL_NORMAL)
1378 return -EINVAL;
1379
1380 /* invalidate the higher levels */
1381 g4x_invalidate_wms(crtc, wm_state, level);
1382
1383 /*
1384 * Determine if the FBC watermark(s) can be used. IF
1385 * this isn't the case we prefer to disable the FBC
1386 ( watermark(s) rather than disable the SR/HPLL
1387 * level(s) entirely.
1388 */
1389 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1390
1391 if (level >= G4X_WM_LEVEL_SR &&
1392 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1393 wm_state->fbc_en = false;
1394 else if (level >= G4X_WM_LEVEL_HPLL &&
1395 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1396 wm_state->fbc_en = false;
1397
1398 return 0;
1399 }
1400
g4x_compute_intermediate_wm(struct drm_device * dev,struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)1401 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1402 struct intel_crtc *crtc,
1403 struct intel_crtc_state *new_crtc_state)
1404 {
1405 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1406 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1407 struct intel_atomic_state *intel_state =
1408 to_intel_atomic_state(new_crtc_state->base.state);
1409 const struct intel_crtc_state *old_crtc_state =
1410 intel_atomic_get_old_crtc_state(intel_state, crtc);
1411 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412 enum plane_id plane_id;
1413
1414 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1415 *intermediate = *optimal;
1416
1417 intermediate->cxsr = false;
1418 intermediate->hpll_en = false;
1419 goto out;
1420 }
1421
1422 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423 !new_crtc_state->disable_cxsr;
1424 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425 !new_crtc_state->disable_cxsr;
1426 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1427
1428 for_each_plane_id_on_crtc(crtc, plane_id) {
1429 intermediate->wm.plane[plane_id] =
1430 max(optimal->wm.plane[plane_id],
1431 active->wm.plane[plane_id]);
1432
1433 WARN_ON(intermediate->wm.plane[plane_id] >
1434 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1435 }
1436
1437 intermediate->sr.plane = max(optimal->sr.plane,
1438 active->sr.plane);
1439 intermediate->sr.cursor = max(optimal->sr.cursor,
1440 active->sr.cursor);
1441 intermediate->sr.fbc = max(optimal->sr.fbc,
1442 active->sr.fbc);
1443
1444 intermediate->hpll.plane = max(optimal->hpll.plane,
1445 active->hpll.plane);
1446 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1447 active->hpll.cursor);
1448 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1449 active->hpll.fbc);
1450
1451 WARN_ON((intermediate->sr.plane >
1452 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1453 intermediate->sr.cursor >
1454 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1455 intermediate->cxsr);
1456 WARN_ON((intermediate->sr.plane >
1457 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1458 intermediate->sr.cursor >
1459 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1460 intermediate->hpll_en);
1461
1462 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1463 intermediate->fbc_en && intermediate->cxsr);
1464 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1465 intermediate->fbc_en && intermediate->hpll_en);
1466
1467 out:
1468 /*
1469 * If our intermediate WM are identical to the final WM, then we can
1470 * omit the post-vblank programming; only update if it's different.
1471 */
1472 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473 new_crtc_state->wm.need_postvbl_update = true;
1474
1475 return 0;
1476 }
1477
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1478 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1479 struct g4x_wm_values *wm)
1480 {
1481 struct intel_crtc *crtc;
1482 int num_active_crtcs = 0;
1483
1484 wm->cxsr = true;
1485 wm->hpll_en = true;
1486 wm->fbc_en = true;
1487
1488 for_each_intel_crtc(&dev_priv->drm, crtc) {
1489 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1490
1491 if (!crtc->active)
1492 continue;
1493
1494 if (!wm_state->cxsr)
1495 wm->cxsr = false;
1496 if (!wm_state->hpll_en)
1497 wm->hpll_en = false;
1498 if (!wm_state->fbc_en)
1499 wm->fbc_en = false;
1500
1501 num_active_crtcs++;
1502 }
1503
1504 if (num_active_crtcs != 1) {
1505 wm->cxsr = false;
1506 wm->hpll_en = false;
1507 wm->fbc_en = false;
1508 }
1509
1510 for_each_intel_crtc(&dev_priv->drm, crtc) {
1511 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1512 enum pipe pipe = crtc->pipe;
1513
1514 wm->pipe[pipe] = wm_state->wm;
1515 if (crtc->active && wm->cxsr)
1516 wm->sr = wm_state->sr;
1517 if (crtc->active && wm->hpll_en)
1518 wm->hpll = wm_state->hpll;
1519 }
1520 }
1521
g4x_program_watermarks(struct drm_i915_private * dev_priv)1522 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1523 {
1524 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1525 struct g4x_wm_values new_wm = {};
1526
1527 g4x_merge_wm(dev_priv, &new_wm);
1528
1529 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1530 return;
1531
1532 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1533 _intel_set_memory_cxsr(dev_priv, false);
1534
1535 g4x_write_wm_values(dev_priv, &new_wm);
1536
1537 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1538 _intel_set_memory_cxsr(dev_priv, true);
1539
1540 *old_wm = new_wm;
1541 }
1542
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1543 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1544 struct intel_crtc_state *crtc_state)
1545 {
1546 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1547 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1548
1549 mutex_lock(&dev_priv->wm.wm_mutex);
1550 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1551 g4x_program_watermarks(dev_priv);
1552 mutex_unlock(&dev_priv->wm.wm_mutex);
1553 }
1554
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1555 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1556 struct intel_crtc_state *crtc_state)
1557 {
1558 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1560
1561 if (!crtc_state->wm.need_postvbl_update)
1562 return;
1563
1564 mutex_lock(&dev_priv->wm.wm_mutex);
1565 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1566 g4x_program_watermarks(dev_priv);
1567 mutex_unlock(&dev_priv->wm.wm_mutex);
1568 }
1569
1570 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1571 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572 unsigned int htotal,
1573 unsigned int width,
1574 unsigned int cpp,
1575 unsigned int latency)
1576 {
1577 unsigned int ret;
1578
1579 ret = intel_wm_method2(pixel_rate, htotal,
1580 width, cpp, latency);
1581 ret = DIV_ROUND_UP(ret, 64);
1582
1583 return ret;
1584 }
1585
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1586 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587 {
1588 /* all latencies in usec */
1589 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1590
1591 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1592
1593 if (IS_CHERRYVIEW(dev_priv)) {
1594 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1595 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596
1597 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598 }
1599 }
1600
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1601 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1602 const struct intel_plane_state *plane_state,
1603 int level)
1604 {
1605 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607 const struct drm_display_mode *adjusted_mode =
1608 &crtc_state->base.adjusted_mode;
1609 unsigned int clock, htotal, cpp, width, wm;
1610
1611 if (dev_priv->wm.pri_latency[level] == 0)
1612 return USHRT_MAX;
1613
1614 if (!intel_wm_plane_visible(crtc_state, plane_state))
1615 return 0;
1616
1617 cpp = plane_state->base.fb->format->cpp[0];
1618 clock = adjusted_mode->crtc_clock;
1619 htotal = adjusted_mode->crtc_htotal;
1620 width = crtc_state->pipe_src_w;
1621
1622 if (plane->id == PLANE_CURSOR) {
1623 /*
1624 * FIXME the formula gives values that are
1625 * too big for the cursor FIFO, and hence we
1626 * would never be able to use cursors. For
1627 * now just hardcode the watermark.
1628 */
1629 wm = 63;
1630 } else {
1631 wm = vlv_wm_method2(clock, htotal, width, cpp,
1632 dev_priv->wm.pri_latency[level] * 10);
1633 }
1634
1635 return min_t(unsigned int, wm, USHRT_MAX);
1636 }
1637
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1638 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1639 {
1640 return (active_planes & (BIT(PLANE_SPRITE0) |
1641 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1642 }
1643
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1644 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645 {
1646 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647 const struct g4x_pipe_wm *raw =
1648 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1651 int num_active_planes = hweight32(active_planes);
1652 const int fifo_size = 511;
1653 int fifo_extra, fifo_left = fifo_size;
1654 int sprite0_fifo_extra = 0;
1655 unsigned int total_rate;
1656 enum plane_id plane_id;
1657
1658 /*
1659 * When enabling sprite0 after sprite1 has already been enabled
1660 * we tend to get an underrun unless sprite0 already has some
1661 * FIFO space allcoated. Hence we always allocate at least one
1662 * cacheline for sprite0 whenever sprite1 is enabled.
1663 *
1664 * All other plane enable sequences appear immune to this problem.
1665 */
1666 if (vlv_need_sprite0_fifo_workaround(active_planes))
1667 sprite0_fifo_extra = 1;
1668
1669 total_rate = raw->plane[PLANE_PRIMARY] +
1670 raw->plane[PLANE_SPRITE0] +
1671 raw->plane[PLANE_SPRITE1] +
1672 sprite0_fifo_extra;
1673
1674 if (total_rate > fifo_size)
1675 return -EINVAL;
1676
1677 if (total_rate == 0)
1678 total_rate = 1;
1679
1680 for_each_plane_id_on_crtc(crtc, plane_id) {
1681 unsigned int rate;
1682
1683 if ((active_planes & BIT(plane_id)) == 0) {
1684 fifo_state->plane[plane_id] = 0;
1685 continue;
1686 }
1687
1688 rate = raw->plane[plane_id];
1689 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1690 fifo_left -= fifo_state->plane[plane_id];
1691 }
1692
1693 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1694 fifo_left -= sprite0_fifo_extra;
1695
1696 fifo_state->plane[PLANE_CURSOR] = 63;
1697
1698 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699
1700 /* spread the remainder evenly */
1701 for_each_plane_id_on_crtc(crtc, plane_id) {
1702 int plane_extra;
1703
1704 if (fifo_left == 0)
1705 break;
1706
1707 if ((active_planes & BIT(plane_id)) == 0)
1708 continue;
1709
1710 plane_extra = min(fifo_extra, fifo_left);
1711 fifo_state->plane[plane_id] += plane_extra;
1712 fifo_left -= plane_extra;
1713 }
1714
1715 WARN_ON(active_planes != 0 && fifo_left != 0);
1716
1717 /* give it all to the first plane if none are active */
1718 if (active_planes == 0) {
1719 WARN_ON(fifo_left != fifo_size);
1720 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1721 }
1722
1723 return 0;
1724 }
1725
1726 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1727 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1728 struct vlv_wm_state *wm_state, int level)
1729 {
1730 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1731
1732 for (; level < intel_wm_num_levels(dev_priv); level++) {
1733 enum plane_id plane_id;
1734
1735 for_each_plane_id_on_crtc(crtc, plane_id)
1736 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1737
1738 wm_state->sr[level].cursor = USHRT_MAX;
1739 wm_state->sr[level].plane = USHRT_MAX;
1740 }
1741 }
1742
vlv_invert_wm_value(u16 wm,u16 fifo_size)1743 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1744 {
1745 if (wm > fifo_size)
1746 return USHRT_MAX;
1747 else
1748 return fifo_size - wm;
1749 }
1750
1751 /*
1752 * Starting from 'level' set all higher
1753 * levels to 'value' in the "raw" watermarks.
1754 */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1755 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756 int level, enum plane_id plane_id, u16 value)
1757 {
1758 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759 int num_levels = intel_wm_num_levels(dev_priv);
1760 bool dirty = false;
1761
1762 for (; level < num_levels; level++) {
1763 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764
1765 dirty |= raw->plane[plane_id] != value;
1766 raw->plane[plane_id] = value;
1767 }
1768
1769 return dirty;
1770 }
1771
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1772 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1773 const struct intel_plane_state *plane_state)
1774 {
1775 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1776 enum plane_id plane_id = plane->id;
1777 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778 int level;
1779 bool dirty = false;
1780
1781 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1783 goto out;
1784 }
1785
1786 for (level = 0; level < num_levels; level++) {
1787 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1789 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790
1791 if (wm > max_wm)
1792 break;
1793
1794 dirty |= raw->plane[plane_id] != wm;
1795 raw->plane[plane_id] = wm;
1796 }
1797
1798 /* mark all higher levels as invalid */
1799 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800
1801 out:
1802 if (dirty)
1803 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804 plane->base.name,
1805 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1806 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1807 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1808
1809 return dirty;
1810 }
1811
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1812 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1813 enum plane_id plane_id, int level)
1814 {
1815 const struct g4x_pipe_wm *raw =
1816 &crtc_state->wm.vlv.raw[level];
1817 const struct vlv_fifo_state *fifo_state =
1818 &crtc_state->wm.vlv.fifo_state;
1819
1820 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1821 }
1822
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1823 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824 {
1825 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1826 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1827 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1828 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829 }
1830
vlv_compute_pipe_wm(struct intel_crtc_state * crtc_state)1831 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1832 {
1833 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1834 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1835 struct intel_atomic_state *state =
1836 to_intel_atomic_state(crtc_state->base.state);
1837 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1838 const struct vlv_fifo_state *fifo_state =
1839 &crtc_state->wm.vlv.fifo_state;
1840 int num_active_planes = hweight32(crtc_state->active_planes &
1841 ~BIT(PLANE_CURSOR));
1842 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843 const struct intel_plane_state *old_plane_state;
1844 const struct intel_plane_state *new_plane_state;
1845 struct intel_plane *plane;
1846 enum plane_id plane_id;
1847 int level, ret, i;
1848 unsigned int dirty = 0;
1849
1850 for_each_oldnew_intel_plane_in_state(state, plane,
1851 old_plane_state,
1852 new_plane_state, i) {
1853 if (new_plane_state->base.crtc != &crtc->base &&
1854 old_plane_state->base.crtc != &crtc->base)
1855 continue;
1856
1857 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858 dirty |= BIT(plane->id);
1859 }
1860
1861 /*
1862 * DSPARB registers may have been reset due to the
1863 * power well being turned off. Make sure we restore
1864 * them to a consistent state even if no primary/sprite
1865 * planes are initially active.
1866 */
1867 if (needs_modeset)
1868 crtc_state->fifo_changed = true;
1869
1870 if (!dirty)
1871 return 0;
1872
1873 /* cursor changes don't warrant a FIFO recompute */
1874 if (dirty & ~BIT(PLANE_CURSOR)) {
1875 const struct intel_crtc_state *old_crtc_state =
1876 intel_atomic_get_old_crtc_state(state, crtc);
1877 const struct vlv_fifo_state *old_fifo_state =
1878 &old_crtc_state->wm.vlv.fifo_state;
1879
1880 ret = vlv_compute_fifo(crtc_state);
1881 if (ret)
1882 return ret;
1883
1884 if (needs_modeset ||
1885 memcmp(old_fifo_state, fifo_state,
1886 sizeof(*fifo_state)) != 0)
1887 crtc_state->fifo_changed = true;
1888 }
1889
1890 /* initially allow all levels */
1891 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892 /*
1893 * Note that enabling cxsr with no primary/sprite planes
1894 * enabled can wedge the pipe. Hence we only allow cxsr
1895 * with exactly one enabled primary/sprite plane.
1896 */
1897 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898
1899 for (level = 0; level < wm_state->num_levels; level++) {
1900 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902
1903 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904 break;
1905
1906 for_each_plane_id_on_crtc(crtc, plane_id) {
1907 wm_state->wm[level].plane[plane_id] =
1908 vlv_invert_wm_value(raw->plane[plane_id],
1909 fifo_state->plane[plane_id]);
1910 }
1911
1912 wm_state->sr[level].plane =
1913 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914 raw->plane[PLANE_SPRITE0],
1915 raw->plane[PLANE_SPRITE1]),
1916 sr_fifo_size);
1917
1918 wm_state->sr[level].cursor =
1919 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1920 63);
1921 }
1922
1923 if (level == 0)
1924 return -EINVAL;
1925
1926 /* limit to only levels we can actually handle */
1927 wm_state->num_levels = level;
1928
1929 /* invalidate the higher levels */
1930 vlv_invalidate_wms(crtc, wm_state, level);
1931
1932 return 0;
1933 }
1934
1935 #define VLV_FIFO(plane, value) \
1936 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1937
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1938 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1939 struct intel_crtc_state *crtc_state)
1940 {
1941 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943 const struct vlv_fifo_state *fifo_state =
1944 &crtc_state->wm.vlv.fifo_state;
1945 int sprite0_start, sprite1_start, fifo_size;
1946
1947 if (!crtc_state->fifo_changed)
1948 return;
1949
1950 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1951 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1952 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953
1954 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1955 WARN_ON(fifo_size != 511);
1956
1957 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1958
1959 /*
1960 * uncore.lock serves a double purpose here. It allows us to
1961 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1962 * it protects the DSPARB registers from getting clobbered by
1963 * parallel updates from multiple pipes.
1964 *
1965 * intel_pipe_update_start() has already disabled interrupts
1966 * for us, so a plain spin_lock() is sufficient here.
1967 */
1968 spin_lock(&dev_priv->uncore.lock);
1969
1970 switch (crtc->pipe) {
1971 uint32_t dsparb, dsparb2, dsparb3;
1972 case PIPE_A:
1973 dsparb = I915_READ_FW(DSPARB);
1974 dsparb2 = I915_READ_FW(DSPARB2);
1975
1976 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1977 VLV_FIFO(SPRITEB, 0xff));
1978 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1979 VLV_FIFO(SPRITEB, sprite1_start));
1980
1981 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1982 VLV_FIFO(SPRITEB_HI, 0x1));
1983 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1984 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1985
1986 I915_WRITE_FW(DSPARB, dsparb);
1987 I915_WRITE_FW(DSPARB2, dsparb2);
1988 break;
1989 case PIPE_B:
1990 dsparb = I915_READ_FW(DSPARB);
1991 dsparb2 = I915_READ_FW(DSPARB2);
1992
1993 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1994 VLV_FIFO(SPRITED, 0xff));
1995 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1996 VLV_FIFO(SPRITED, sprite1_start));
1997
1998 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1999 VLV_FIFO(SPRITED_HI, 0xff));
2000 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2001 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2002
2003 I915_WRITE_FW(DSPARB, dsparb);
2004 I915_WRITE_FW(DSPARB2, dsparb2);
2005 break;
2006 case PIPE_C:
2007 dsparb3 = I915_READ_FW(DSPARB3);
2008 dsparb2 = I915_READ_FW(DSPARB2);
2009
2010 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2011 VLV_FIFO(SPRITEF, 0xff));
2012 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2013 VLV_FIFO(SPRITEF, sprite1_start));
2014
2015 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2016 VLV_FIFO(SPRITEF_HI, 0xff));
2017 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2018 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2019
2020 I915_WRITE_FW(DSPARB3, dsparb3);
2021 I915_WRITE_FW(DSPARB2, dsparb2);
2022 break;
2023 default:
2024 break;
2025 }
2026
2027 POSTING_READ_FW(DSPARB);
2028
2029 spin_unlock(&dev_priv->uncore.lock);
2030 }
2031
2032 #undef VLV_FIFO
2033
vlv_compute_intermediate_wm(struct drm_device * dev,struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)2034 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2035 struct intel_crtc *crtc,
2036 struct intel_crtc_state *new_crtc_state)
2037 {
2038 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2039 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2040 struct intel_atomic_state *intel_state =
2041 to_intel_atomic_state(new_crtc_state->base.state);
2042 const struct intel_crtc_state *old_crtc_state =
2043 intel_atomic_get_old_crtc_state(intel_state, crtc);
2044 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2045 int level;
2046
2047 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2048 *intermediate = *optimal;
2049
2050 intermediate->cxsr = false;
2051 goto out;
2052 }
2053
2054 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2055 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2056 !new_crtc_state->disable_cxsr;
2057
2058 for (level = 0; level < intermediate->num_levels; level++) {
2059 enum plane_id plane_id;
2060
2061 for_each_plane_id_on_crtc(crtc, plane_id) {
2062 intermediate->wm[level].plane[plane_id] =
2063 min(optimal->wm[level].plane[plane_id],
2064 active->wm[level].plane[plane_id]);
2065 }
2066
2067 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2068 active->sr[level].plane);
2069 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2070 active->sr[level].cursor);
2071 }
2072
2073 vlv_invalidate_wms(crtc, intermediate, level);
2074
2075 out:
2076 /*
2077 * If our intermediate WM are identical to the final WM, then we can
2078 * omit the post-vblank programming; only update if it's different.
2079 */
2080 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2081 new_crtc_state->wm.need_postvbl_update = true;
2082
2083 return 0;
2084 }
2085
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2086 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2087 struct vlv_wm_values *wm)
2088 {
2089 struct intel_crtc *crtc;
2090 int num_active_crtcs = 0;
2091
2092 wm->level = dev_priv->wm.max_level;
2093 wm->cxsr = true;
2094
2095 for_each_intel_crtc(&dev_priv->drm, crtc) {
2096 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2097
2098 if (!crtc->active)
2099 continue;
2100
2101 if (!wm_state->cxsr)
2102 wm->cxsr = false;
2103
2104 num_active_crtcs++;
2105 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2106 }
2107
2108 if (num_active_crtcs != 1)
2109 wm->cxsr = false;
2110
2111 if (num_active_crtcs > 1)
2112 wm->level = VLV_WM_LEVEL_PM2;
2113
2114 for_each_intel_crtc(&dev_priv->drm, crtc) {
2115 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116 enum pipe pipe = crtc->pipe;
2117
2118 wm->pipe[pipe] = wm_state->wm[wm->level];
2119 if (crtc->active && wm->cxsr)
2120 wm->sr = wm_state->sr[wm->level];
2121
2122 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2123 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2124 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2125 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2126 }
2127 }
2128
vlv_program_watermarks(struct drm_i915_private * dev_priv)2129 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2130 {
2131 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2132 struct vlv_wm_values new_wm = {};
2133
2134 vlv_merge_wm(dev_priv, &new_wm);
2135
2136 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2137 return;
2138
2139 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2140 chv_set_memory_dvfs(dev_priv, false);
2141
2142 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2143 chv_set_memory_pm5(dev_priv, false);
2144
2145 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2146 _intel_set_memory_cxsr(dev_priv, false);
2147
2148 vlv_write_wm_values(dev_priv, &new_wm);
2149
2150 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2151 _intel_set_memory_cxsr(dev_priv, true);
2152
2153 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2154 chv_set_memory_pm5(dev_priv, true);
2155
2156 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2157 chv_set_memory_dvfs(dev_priv, true);
2158
2159 *old_wm = new_wm;
2160 }
2161
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)2162 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2163 struct intel_crtc_state *crtc_state)
2164 {
2165 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2166 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2167
2168 mutex_lock(&dev_priv->wm.wm_mutex);
2169 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2170 vlv_program_watermarks(dev_priv);
2171 mutex_unlock(&dev_priv->wm.wm_mutex);
2172 }
2173
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)2174 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2175 struct intel_crtc_state *crtc_state)
2176 {
2177 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2179
2180 if (!crtc_state->wm.need_postvbl_update)
2181 return;
2182
2183 mutex_lock(&dev_priv->wm.wm_mutex);
2184 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2185 vlv_program_watermarks(dev_priv);
2186 mutex_unlock(&dev_priv->wm.wm_mutex);
2187 }
2188
i965_update_wm(struct intel_crtc * unused_crtc)2189 static void i965_update_wm(struct intel_crtc *unused_crtc)
2190 {
2191 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2192 struct intel_crtc *crtc;
2193 int srwm = 1;
2194 int cursor_sr = 16;
2195 bool cxsr_enabled;
2196
2197 /* Calc sr entries for one plane configs */
2198 crtc = single_enabled_crtc(dev_priv);
2199 if (crtc) {
2200 /* self-refresh has much higher latency */
2201 static const int sr_latency_ns = 12000;
2202 const struct drm_display_mode *adjusted_mode =
2203 &crtc->config->base.adjusted_mode;
2204 const struct drm_framebuffer *fb =
2205 crtc->base.primary->state->fb;
2206 int clock = adjusted_mode->crtc_clock;
2207 int htotal = adjusted_mode->crtc_htotal;
2208 int hdisplay = crtc->config->pipe_src_w;
2209 int cpp = fb->format->cpp[0];
2210 int entries;
2211
2212 entries = intel_wm_method2(clock, htotal,
2213 hdisplay, cpp, sr_latency_ns / 100);
2214 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2215 srwm = I965_FIFO_SIZE - entries;
2216 if (srwm < 0)
2217 srwm = 1;
2218 srwm &= 0x1ff;
2219 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2220 entries, srwm);
2221
2222 entries = intel_wm_method2(clock, htotal,
2223 crtc->base.cursor->state->crtc_w, 4,
2224 sr_latency_ns / 100);
2225 entries = DIV_ROUND_UP(entries,
2226 i965_cursor_wm_info.cacheline_size) +
2227 i965_cursor_wm_info.guard_size;
2228
2229 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2230 if (cursor_sr > i965_cursor_wm_info.max_wm)
2231 cursor_sr = i965_cursor_wm_info.max_wm;
2232
2233 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2234 "cursor %d\n", srwm, cursor_sr);
2235
2236 cxsr_enabled = true;
2237 } else {
2238 cxsr_enabled = false;
2239 /* Turn off self refresh if both pipes are enabled */
2240 intel_set_memory_cxsr(dev_priv, false);
2241 }
2242
2243 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2244 srwm);
2245
2246 /* 965 has limitations... */
2247 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2248 FW_WM(8, CURSORB) |
2249 FW_WM(8, PLANEB) |
2250 FW_WM(8, PLANEA));
2251 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2252 FW_WM(8, PLANEC_OLD));
2253 /* update cursor SR watermark */
2254 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2255
2256 if (cxsr_enabled)
2257 intel_set_memory_cxsr(dev_priv, true);
2258 }
2259
2260 #undef FW_WM
2261
i9xx_update_wm(struct intel_crtc * unused_crtc)2262 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2263 {
2264 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2265 const struct intel_watermark_params *wm_info;
2266 uint32_t fwater_lo;
2267 uint32_t fwater_hi;
2268 int cwm, srwm = 1;
2269 int fifo_size;
2270 int planea_wm, planeb_wm;
2271 struct intel_crtc *crtc, *enabled = NULL;
2272
2273 if (IS_I945GM(dev_priv))
2274 wm_info = &i945_wm_info;
2275 else if (!IS_GEN2(dev_priv))
2276 wm_info = &i915_wm_info;
2277 else
2278 wm_info = &i830_a_wm_info;
2279
2280 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2281 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2282 if (intel_crtc_active(crtc)) {
2283 const struct drm_display_mode *adjusted_mode =
2284 &crtc->config->base.adjusted_mode;
2285 const struct drm_framebuffer *fb =
2286 crtc->base.primary->state->fb;
2287 int cpp;
2288
2289 if (IS_GEN2(dev_priv))
2290 cpp = 4;
2291 else
2292 cpp = fb->format->cpp[0];
2293
2294 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2295 wm_info, fifo_size, cpp,
2296 pessimal_latency_ns);
2297 enabled = crtc;
2298 } else {
2299 planea_wm = fifo_size - wm_info->guard_size;
2300 if (planea_wm > (long)wm_info->max_wm)
2301 planea_wm = wm_info->max_wm;
2302 }
2303
2304 if (IS_GEN2(dev_priv))
2305 wm_info = &i830_bc_wm_info;
2306
2307 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2308 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2309 if (intel_crtc_active(crtc)) {
2310 const struct drm_display_mode *adjusted_mode =
2311 &crtc->config->base.adjusted_mode;
2312 const struct drm_framebuffer *fb =
2313 crtc->base.primary->state->fb;
2314 int cpp;
2315
2316 if (IS_GEN2(dev_priv))
2317 cpp = 4;
2318 else
2319 cpp = fb->format->cpp[0];
2320
2321 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2322 wm_info, fifo_size, cpp,
2323 pessimal_latency_ns);
2324 if (enabled == NULL)
2325 enabled = crtc;
2326 else
2327 enabled = NULL;
2328 } else {
2329 planeb_wm = fifo_size - wm_info->guard_size;
2330 if (planeb_wm > (long)wm_info->max_wm)
2331 planeb_wm = wm_info->max_wm;
2332 }
2333
2334 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2335
2336 if (IS_I915GM(dev_priv) && enabled) {
2337 struct drm_i915_gem_object *obj;
2338
2339 obj = intel_fb_obj(enabled->base.primary->state->fb);
2340
2341 /* self-refresh seems busted with untiled */
2342 if (!i915_gem_object_is_tiled(obj))
2343 enabled = NULL;
2344 }
2345
2346 /*
2347 * Overlay gets an aggressive default since video jitter is bad.
2348 */
2349 cwm = 2;
2350
2351 /* Play safe and disable self-refresh before adjusting watermarks. */
2352 intel_set_memory_cxsr(dev_priv, false);
2353
2354 /* Calc sr entries for one plane configs */
2355 if (HAS_FW_BLC(dev_priv) && enabled) {
2356 /* self-refresh has much higher latency */
2357 static const int sr_latency_ns = 6000;
2358 const struct drm_display_mode *adjusted_mode =
2359 &enabled->config->base.adjusted_mode;
2360 const struct drm_framebuffer *fb =
2361 enabled->base.primary->state->fb;
2362 int clock = adjusted_mode->crtc_clock;
2363 int htotal = adjusted_mode->crtc_htotal;
2364 int hdisplay = enabled->config->pipe_src_w;
2365 int cpp;
2366 int entries;
2367
2368 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2369 cpp = 4;
2370 else
2371 cpp = fb->format->cpp[0];
2372
2373 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2374 sr_latency_ns / 100);
2375 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2376 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2377 srwm = wm_info->fifo_size - entries;
2378 if (srwm < 0)
2379 srwm = 1;
2380
2381 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2382 I915_WRITE(FW_BLC_SELF,
2383 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2384 else
2385 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2386 }
2387
2388 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2389 planea_wm, planeb_wm, cwm, srwm);
2390
2391 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2392 fwater_hi = (cwm & 0x1f);
2393
2394 /* Set request length to 8 cachelines per fetch */
2395 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2396 fwater_hi = fwater_hi | (1 << 8);
2397
2398 I915_WRITE(FW_BLC, fwater_lo);
2399 I915_WRITE(FW_BLC2, fwater_hi);
2400
2401 if (enabled)
2402 intel_set_memory_cxsr(dev_priv, true);
2403 }
2404
i845_update_wm(struct intel_crtc * unused_crtc)2405 static void i845_update_wm(struct intel_crtc *unused_crtc)
2406 {
2407 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2408 struct intel_crtc *crtc;
2409 const struct drm_display_mode *adjusted_mode;
2410 uint32_t fwater_lo;
2411 int planea_wm;
2412
2413 crtc = single_enabled_crtc(dev_priv);
2414 if (crtc == NULL)
2415 return;
2416
2417 adjusted_mode = &crtc->config->base.adjusted_mode;
2418 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2419 &i845_wm_info,
2420 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2421 4, pessimal_latency_ns);
2422 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2423 fwater_lo |= (3<<8) | planea_wm;
2424
2425 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2426
2427 I915_WRITE(FW_BLC, fwater_lo);
2428 }
2429
2430 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2431 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2432 unsigned int cpp,
2433 unsigned int latency)
2434 {
2435 unsigned int ret;
2436
2437 ret = intel_wm_method1(pixel_rate, cpp, latency);
2438 ret = DIV_ROUND_UP(ret, 64) + 2;
2439
2440 return ret;
2441 }
2442
2443 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2444 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2445 unsigned int htotal,
2446 unsigned int width,
2447 unsigned int cpp,
2448 unsigned int latency)
2449 {
2450 unsigned int ret;
2451
2452 ret = intel_wm_method2(pixel_rate, htotal,
2453 width, cpp, latency);
2454 ret = DIV_ROUND_UP(ret, 64) + 2;
2455
2456 return ret;
2457 }
2458
ilk_wm_fbc(uint32_t pri_val,uint32_t horiz_pixels,uint8_t cpp)2459 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2460 uint8_t cpp)
2461 {
2462 /*
2463 * Neither of these should be possible since this function shouldn't be
2464 * called if the CRTC is off or the plane is invisible. But let's be
2465 * extra paranoid to avoid a potential divide-by-zero if we screw up
2466 * elsewhere in the driver.
2467 */
2468 if (WARN_ON(!cpp))
2469 return 0;
2470 if (WARN_ON(!horiz_pixels))
2471 return 0;
2472
2473 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2474 }
2475
2476 struct ilk_wm_maximums {
2477 uint16_t pri;
2478 uint16_t spr;
2479 uint16_t cur;
2480 uint16_t fbc;
2481 };
2482
2483 /*
2484 * For both WM_PIPE and WM_LP.
2485 * mem_value must be in 0.1us units.
2486 */
ilk_compute_pri_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value,bool is_lp)2487 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2488 const struct intel_plane_state *pstate,
2489 uint32_t mem_value,
2490 bool is_lp)
2491 {
2492 uint32_t method1, method2;
2493 int cpp;
2494
2495 if (!intel_wm_plane_visible(cstate, pstate))
2496 return 0;
2497
2498 cpp = pstate->base.fb->format->cpp[0];
2499
2500 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2501
2502 if (!is_lp)
2503 return method1;
2504
2505 method2 = ilk_wm_method2(cstate->pixel_rate,
2506 cstate->base.adjusted_mode.crtc_htotal,
2507 drm_rect_width(&pstate->base.dst),
2508 cpp, mem_value);
2509
2510 return min(method1, method2);
2511 }
2512
2513 /*
2514 * For both WM_PIPE and WM_LP.
2515 * mem_value must be in 0.1us units.
2516 */
ilk_compute_spr_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)2517 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2518 const struct intel_plane_state *pstate,
2519 uint32_t mem_value)
2520 {
2521 uint32_t method1, method2;
2522 int cpp;
2523
2524 if (!intel_wm_plane_visible(cstate, pstate))
2525 return 0;
2526
2527 cpp = pstate->base.fb->format->cpp[0];
2528
2529 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2530 method2 = ilk_wm_method2(cstate->pixel_rate,
2531 cstate->base.adjusted_mode.crtc_htotal,
2532 drm_rect_width(&pstate->base.dst),
2533 cpp, mem_value);
2534 return min(method1, method2);
2535 }
2536
2537 /*
2538 * For both WM_PIPE and WM_LP.
2539 * mem_value must be in 0.1us units.
2540 */
ilk_compute_cur_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)2541 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2542 const struct intel_plane_state *pstate,
2543 uint32_t mem_value)
2544 {
2545 int cpp;
2546
2547 if (!intel_wm_plane_visible(cstate, pstate))
2548 return 0;
2549
2550 cpp = pstate->base.fb->format->cpp[0];
2551
2552 return ilk_wm_method2(cstate->pixel_rate,
2553 cstate->base.adjusted_mode.crtc_htotal,
2554 pstate->base.crtc_w, cpp, mem_value);
2555 }
2556
2557 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t pri_val)2558 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2559 const struct intel_plane_state *pstate,
2560 uint32_t pri_val)
2561 {
2562 int cpp;
2563
2564 if (!intel_wm_plane_visible(cstate, pstate))
2565 return 0;
2566
2567 cpp = pstate->base.fb->format->cpp[0];
2568
2569 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2570 }
2571
2572 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2573 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2574 {
2575 if (INTEL_GEN(dev_priv) >= 8)
2576 return 3072;
2577 else if (INTEL_GEN(dev_priv) >= 7)
2578 return 768;
2579 else
2580 return 512;
2581 }
2582
2583 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2584 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2585 int level, bool is_sprite)
2586 {
2587 if (INTEL_GEN(dev_priv) >= 8)
2588 /* BDW primary/sprite plane watermarks */
2589 return level == 0 ? 255 : 2047;
2590 else if (INTEL_GEN(dev_priv) >= 7)
2591 /* IVB/HSW primary/sprite plane watermarks */
2592 return level == 0 ? 127 : 1023;
2593 else if (!is_sprite)
2594 /* ILK/SNB primary plane watermarks */
2595 return level == 0 ? 127 : 511;
2596 else
2597 /* ILK/SNB sprite plane watermarks */
2598 return level == 0 ? 63 : 255;
2599 }
2600
2601 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2602 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2603 {
2604 if (INTEL_GEN(dev_priv) >= 7)
2605 return level == 0 ? 63 : 255;
2606 else
2607 return level == 0 ? 31 : 63;
2608 }
2609
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2610 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2611 {
2612 if (INTEL_GEN(dev_priv) >= 8)
2613 return 31;
2614 else
2615 return 15;
2616 }
2617
2618 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2619 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2620 int level,
2621 const struct intel_wm_config *config,
2622 enum intel_ddb_partitioning ddb_partitioning,
2623 bool is_sprite)
2624 {
2625 struct drm_i915_private *dev_priv = to_i915(dev);
2626 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2627
2628 /* if sprites aren't enabled, sprites get nothing */
2629 if (is_sprite && !config->sprites_enabled)
2630 return 0;
2631
2632 /* HSW allows LP1+ watermarks even with multiple pipes */
2633 if (level == 0 || config->num_pipes_active > 1) {
2634 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2635
2636 /*
2637 * For some reason the non self refresh
2638 * FIFO size is only half of the self
2639 * refresh FIFO size on ILK/SNB.
2640 */
2641 if (INTEL_GEN(dev_priv) <= 6)
2642 fifo_size /= 2;
2643 }
2644
2645 if (config->sprites_enabled) {
2646 /* level 0 is always calculated with 1:1 split */
2647 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2648 if (is_sprite)
2649 fifo_size *= 5;
2650 fifo_size /= 6;
2651 } else {
2652 fifo_size /= 2;
2653 }
2654 }
2655
2656 /* clamp to max that the registers can hold */
2657 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2658 }
2659
2660 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config)2661 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2662 int level,
2663 const struct intel_wm_config *config)
2664 {
2665 /* HSW LP1+ watermarks w/ multiple pipes */
2666 if (level > 0 && config->num_pipes_active > 1)
2667 return 64;
2668
2669 /* otherwise just report max that registers can hold */
2670 return ilk_cursor_wm_reg_max(to_i915(dev), level);
2671 }
2672
ilk_compute_wm_maximums(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2673 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2674 int level,
2675 const struct intel_wm_config *config,
2676 enum intel_ddb_partitioning ddb_partitioning,
2677 struct ilk_wm_maximums *max)
2678 {
2679 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2680 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2681 max->cur = ilk_cursor_wm_max(dev, level, config);
2682 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2683 }
2684
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2685 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2686 int level,
2687 struct ilk_wm_maximums *max)
2688 {
2689 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2690 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2691 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2692 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2693 }
2694
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2695 static bool ilk_validate_wm_level(int level,
2696 const struct ilk_wm_maximums *max,
2697 struct intel_wm_level *result)
2698 {
2699 bool ret;
2700
2701 /* already determined to be invalid? */
2702 if (!result->enable)
2703 return false;
2704
2705 result->enable = result->pri_val <= max->pri &&
2706 result->spr_val <= max->spr &&
2707 result->cur_val <= max->cur;
2708
2709 ret = result->enable;
2710
2711 /*
2712 * HACK until we can pre-compute everything,
2713 * and thus fail gracefully if LP0 watermarks
2714 * are exceeded...
2715 */
2716 if (level == 0 && !result->enable) {
2717 if (result->pri_val > max->pri)
2718 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2719 level, result->pri_val, max->pri);
2720 if (result->spr_val > max->spr)
2721 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2722 level, result->spr_val, max->spr);
2723 if (result->cur_val > max->cur)
2724 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2725 level, result->cur_val, max->cur);
2726
2727 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2728 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2729 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2730 result->enable = true;
2731 }
2732
2733 return ret;
2734 }
2735
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * intel_crtc,int level,struct intel_crtc_state * cstate,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2736 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2737 const struct intel_crtc *intel_crtc,
2738 int level,
2739 struct intel_crtc_state *cstate,
2740 const struct intel_plane_state *pristate,
2741 const struct intel_plane_state *sprstate,
2742 const struct intel_plane_state *curstate,
2743 struct intel_wm_level *result)
2744 {
2745 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2746 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2747 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2748
2749 /* WM1+ latency values stored in 0.5us units */
2750 if (level > 0) {
2751 pri_latency *= 5;
2752 spr_latency *= 5;
2753 cur_latency *= 5;
2754 }
2755
2756 if (pristate) {
2757 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2758 pri_latency, level);
2759 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2760 }
2761
2762 if (sprstate)
2763 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2764
2765 if (curstate)
2766 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2767
2768 result->enable = true;
2769 }
2770
2771 static uint32_t
hsw_compute_linetime_wm(const struct intel_crtc_state * cstate)2772 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2773 {
2774 const struct intel_atomic_state *intel_state =
2775 to_intel_atomic_state(cstate->base.state);
2776 const struct drm_display_mode *adjusted_mode =
2777 &cstate->base.adjusted_mode;
2778 u32 linetime, ips_linetime;
2779
2780 if (!cstate->base.active)
2781 return 0;
2782 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2783 return 0;
2784 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2785 return 0;
2786
2787 /* The WM are computed with base on how long it takes to fill a single
2788 * row at the given clock rate, multiplied by 8.
2789 * */
2790 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2791 adjusted_mode->crtc_clock);
2792 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2793 intel_state->cdclk.logical.cdclk);
2794
2795 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2796 PIPE_WM_LINETIME_TIME(linetime);
2797 }
2798
intel_read_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[8])2799 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2800 uint16_t wm[8])
2801 {
2802 if (INTEL_GEN(dev_priv) >= 9) {
2803 uint32_t val;
2804 int ret, i;
2805 int level, max_level = ilk_wm_max_level(dev_priv);
2806
2807 /* read the first set of memory latencies[0:3] */
2808 val = 0; /* data0 to be programmed to 0 for first set */
2809 mutex_lock(&dev_priv->pcu_lock);
2810 ret = sandybridge_pcode_read(dev_priv,
2811 GEN9_PCODE_READ_MEM_LATENCY,
2812 &val);
2813 mutex_unlock(&dev_priv->pcu_lock);
2814
2815 if (ret) {
2816 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2817 return;
2818 }
2819
2820 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2821 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2822 GEN9_MEM_LATENCY_LEVEL_MASK;
2823 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2824 GEN9_MEM_LATENCY_LEVEL_MASK;
2825 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2826 GEN9_MEM_LATENCY_LEVEL_MASK;
2827
2828 /* read the second set of memory latencies[4:7] */
2829 val = 1; /* data0 to be programmed to 1 for second set */
2830 mutex_lock(&dev_priv->pcu_lock);
2831 ret = sandybridge_pcode_read(dev_priv,
2832 GEN9_PCODE_READ_MEM_LATENCY,
2833 &val);
2834 mutex_unlock(&dev_priv->pcu_lock);
2835 if (ret) {
2836 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2837 return;
2838 }
2839
2840 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2841 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2842 GEN9_MEM_LATENCY_LEVEL_MASK;
2843 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2844 GEN9_MEM_LATENCY_LEVEL_MASK;
2845 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2846 GEN9_MEM_LATENCY_LEVEL_MASK;
2847
2848 /*
2849 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2850 * need to be disabled. We make sure to sanitize the values out
2851 * of the punit to satisfy this requirement.
2852 */
2853 for (level = 1; level <= max_level; level++) {
2854 if (wm[level] == 0) {
2855 for (i = level + 1; i <= max_level; i++)
2856 wm[i] = 0;
2857 break;
2858 }
2859 }
2860
2861 /*
2862 * WaWmMemoryReadLatency:skl+,glk
2863 *
2864 * punit doesn't take into account the read latency so we need
2865 * to add 2us to the various latency levels we retrieve from the
2866 * punit when level 0 response data us 0us.
2867 */
2868 if (wm[0] == 0) {
2869 wm[0] += 2;
2870 for (level = 1; level <= max_level; level++) {
2871 if (wm[level] == 0)
2872 break;
2873 wm[level] += 2;
2874 }
2875 }
2876
2877 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2878 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2879
2880 wm[0] = (sskpd >> 56) & 0xFF;
2881 if (wm[0] == 0)
2882 wm[0] = sskpd & 0xF;
2883 wm[1] = (sskpd >> 4) & 0xFF;
2884 wm[2] = (sskpd >> 12) & 0xFF;
2885 wm[3] = (sskpd >> 20) & 0x1FF;
2886 wm[4] = (sskpd >> 32) & 0x1FF;
2887 } else if (INTEL_GEN(dev_priv) >= 6) {
2888 uint32_t sskpd = I915_READ(MCH_SSKPD);
2889
2890 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2891 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2892 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2893 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2894 } else if (INTEL_GEN(dev_priv) >= 5) {
2895 uint32_t mltr = I915_READ(MLTR_ILK);
2896
2897 /* ILK primary LP0 latency is 700 ns */
2898 wm[0] = 7;
2899 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2900 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2901 } else {
2902 MISSING_CASE(INTEL_DEVID(dev_priv));
2903 }
2904 }
2905
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5])2906 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2907 uint16_t wm[5])
2908 {
2909 /* ILK sprite LP0 latency is 1300 ns */
2910 if (IS_GEN5(dev_priv))
2911 wm[0] = 13;
2912 }
2913
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5])2914 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2915 uint16_t wm[5])
2916 {
2917 /* ILK cursor LP0 latency is 1300 ns */
2918 if (IS_GEN5(dev_priv))
2919 wm[0] = 13;
2920 }
2921
ilk_wm_max_level(const struct drm_i915_private * dev_priv)2922 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2923 {
2924 /* how many WM levels are we expecting */
2925 if (INTEL_GEN(dev_priv) >= 9)
2926 return 7;
2927 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2928 return 4;
2929 else if (INTEL_GEN(dev_priv) >= 6)
2930 return 3;
2931 else
2932 return 2;
2933 }
2934
intel_print_wm_latency(struct drm_i915_private * dev_priv,const char * name,const uint16_t wm[8])2935 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2936 const char *name,
2937 const uint16_t wm[8])
2938 {
2939 int level, max_level = ilk_wm_max_level(dev_priv);
2940
2941 for (level = 0; level <= max_level; level++) {
2942 unsigned int latency = wm[level];
2943
2944 if (latency == 0) {
2945 DRM_ERROR("%s WM%d latency not provided\n",
2946 name, level);
2947 continue;
2948 }
2949
2950 /*
2951 * - latencies are in us on gen9.
2952 * - before then, WM1+ latency values are in 0.5us units
2953 */
2954 if (INTEL_GEN(dev_priv) >= 9)
2955 latency *= 10;
2956 else if (level > 0)
2957 latency *= 5;
2958
2959 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2960 name, level, wm[level],
2961 latency / 10, latency % 10);
2962 }
2963 }
2964
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5],uint16_t min)2965 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2966 uint16_t wm[5], uint16_t min)
2967 {
2968 int level, max_level = ilk_wm_max_level(dev_priv);
2969
2970 if (wm[0] >= min)
2971 return false;
2972
2973 wm[0] = max(wm[0], min);
2974 for (level = 1; level <= max_level; level++)
2975 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2976
2977 return true;
2978 }
2979
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)2980 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2981 {
2982 bool changed;
2983
2984 /*
2985 * The BIOS provided WM memory latency values are often
2986 * inadequate for high resolution displays. Adjust them.
2987 */
2988 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2989 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2990 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2991
2992 if (!changed)
2993 return;
2994
2995 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2996 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2997 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2998 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2999 }
3000
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)3001 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3002 {
3003 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3004
3005 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3006 sizeof(dev_priv->wm.pri_latency));
3007 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3008 sizeof(dev_priv->wm.pri_latency));
3009
3010 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3011 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3012
3013 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3014 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3015 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3016
3017 if (IS_GEN6(dev_priv))
3018 snb_wm_latency_quirk(dev_priv);
3019 }
3020
skl_setup_wm_latency(struct drm_i915_private * dev_priv)3021 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3022 {
3023 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3024 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3025 }
3026
ilk_validate_pipe_wm(struct drm_device * dev,struct intel_pipe_wm * pipe_wm)3027 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3028 struct intel_pipe_wm *pipe_wm)
3029 {
3030 /* LP0 watermark maximums depend on this pipe alone */
3031 const struct intel_wm_config config = {
3032 .num_pipes_active = 1,
3033 .sprites_enabled = pipe_wm->sprites_enabled,
3034 .sprites_scaled = pipe_wm->sprites_scaled,
3035 };
3036 struct ilk_wm_maximums max;
3037
3038 /* LP0 watermarks always use 1/2 DDB partitioning */
3039 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3040
3041 /* At least LP0 must be valid */
3042 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3043 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3044 return false;
3045 }
3046
3047 return true;
3048 }
3049
3050 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_crtc_state * cstate)3051 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3052 {
3053 struct drm_atomic_state *state = cstate->base.state;
3054 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3055 struct intel_pipe_wm *pipe_wm;
3056 struct drm_device *dev = state->dev;
3057 const struct drm_i915_private *dev_priv = to_i915(dev);
3058 struct drm_plane *plane;
3059 const struct drm_plane_state *plane_state;
3060 const struct intel_plane_state *pristate = NULL;
3061 const struct intel_plane_state *sprstate = NULL;
3062 const struct intel_plane_state *curstate = NULL;
3063 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3064 struct ilk_wm_maximums max;
3065
3066 pipe_wm = &cstate->wm.ilk.optimal;
3067
3068 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3069 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3070
3071 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3072 pristate = ps;
3073 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3074 sprstate = ps;
3075 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3076 curstate = ps;
3077 }
3078
3079 pipe_wm->pipe_enabled = cstate->base.active;
3080 if (sprstate) {
3081 pipe_wm->sprites_enabled = sprstate->base.visible;
3082 pipe_wm->sprites_scaled = sprstate->base.visible &&
3083 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3084 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3085 }
3086
3087 usable_level = max_level;
3088
3089 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3090 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3091 usable_level = 1;
3092
3093 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3094 if (pipe_wm->sprites_scaled)
3095 usable_level = 0;
3096
3097 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3098 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3099 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3100
3101 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3102 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3103
3104 if (!ilk_validate_pipe_wm(dev, pipe_wm))
3105 return -EINVAL;
3106
3107 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3108
3109 for (level = 1; level <= usable_level; level++) {
3110 struct intel_wm_level *wm = &pipe_wm->wm[level];
3111
3112 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3113 pristate, sprstate, curstate, wm);
3114
3115 /*
3116 * Disable any watermark level that exceeds the
3117 * register maximums since such watermarks are
3118 * always invalid.
3119 */
3120 if (!ilk_validate_wm_level(level, &max, wm)) {
3121 memset(wm, 0, sizeof(*wm));
3122 break;
3123 }
3124 }
3125
3126 return 0;
3127 }
3128
3129 /*
3130 * Build a set of 'intermediate' watermark values that satisfy both the old
3131 * state and the new state. These can be programmed to the hardware
3132 * immediately.
3133 */
ilk_compute_intermediate_wm(struct drm_device * dev,struct intel_crtc * intel_crtc,struct intel_crtc_state * newstate)3134 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3135 struct intel_crtc *intel_crtc,
3136 struct intel_crtc_state *newstate)
3137 {
3138 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3139 struct intel_atomic_state *intel_state =
3140 to_intel_atomic_state(newstate->base.state);
3141 const struct intel_crtc_state *oldstate =
3142 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3143 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3144 int level, max_level = ilk_wm_max_level(to_i915(dev));
3145
3146 /*
3147 * Start with the final, target watermarks, then combine with the
3148 * currently active watermarks to get values that are safe both before
3149 * and after the vblank.
3150 */
3151 *a = newstate->wm.ilk.optimal;
3152 if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3153 return 0;
3154
3155 a->pipe_enabled |= b->pipe_enabled;
3156 a->sprites_enabled |= b->sprites_enabled;
3157 a->sprites_scaled |= b->sprites_scaled;
3158
3159 for (level = 0; level <= max_level; level++) {
3160 struct intel_wm_level *a_wm = &a->wm[level];
3161 const struct intel_wm_level *b_wm = &b->wm[level];
3162
3163 a_wm->enable &= b_wm->enable;
3164 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3165 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3166 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3167 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3168 }
3169
3170 /*
3171 * We need to make sure that these merged watermark values are
3172 * actually a valid configuration themselves. If they're not,
3173 * there's no safe way to transition from the old state to
3174 * the new state, so we need to fail the atomic transaction.
3175 */
3176 if (!ilk_validate_pipe_wm(dev, a))
3177 return -EINVAL;
3178
3179 /*
3180 * If our intermediate WM are identical to the final WM, then we can
3181 * omit the post-vblank programming; only update if it's different.
3182 */
3183 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3184 newstate->wm.need_postvbl_update = true;
3185
3186 return 0;
3187 }
3188
3189 /*
3190 * Merge the watermarks from all active pipes for a specific level.
3191 */
ilk_merge_wm_level(struct drm_device * dev,int level,struct intel_wm_level * ret_wm)3192 static void ilk_merge_wm_level(struct drm_device *dev,
3193 int level,
3194 struct intel_wm_level *ret_wm)
3195 {
3196 const struct intel_crtc *intel_crtc;
3197
3198 ret_wm->enable = true;
3199
3200 for_each_intel_crtc(dev, intel_crtc) {
3201 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3202 const struct intel_wm_level *wm = &active->wm[level];
3203
3204 if (!active->pipe_enabled)
3205 continue;
3206
3207 /*
3208 * The watermark values may have been used in the past,
3209 * so we must maintain them in the registers for some
3210 * time even if the level is now disabled.
3211 */
3212 if (!wm->enable)
3213 ret_wm->enable = false;
3214
3215 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3216 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3217 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3218 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3219 }
3220 }
3221
3222 /*
3223 * Merge all low power watermarks for all active pipes.
3224 */
ilk_wm_merge(struct drm_device * dev,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3225 static void ilk_wm_merge(struct drm_device *dev,
3226 const struct intel_wm_config *config,
3227 const struct ilk_wm_maximums *max,
3228 struct intel_pipe_wm *merged)
3229 {
3230 struct drm_i915_private *dev_priv = to_i915(dev);
3231 int level, max_level = ilk_wm_max_level(dev_priv);
3232 int last_enabled_level = max_level;
3233
3234 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3235 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3236 config->num_pipes_active > 1)
3237 last_enabled_level = 0;
3238
3239 /* ILK: FBC WM must be disabled always */
3240 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3241
3242 /* merge each WM1+ level */
3243 for (level = 1; level <= max_level; level++) {
3244 struct intel_wm_level *wm = &merged->wm[level];
3245
3246 ilk_merge_wm_level(dev, level, wm);
3247
3248 if (level > last_enabled_level)
3249 wm->enable = false;
3250 else if (!ilk_validate_wm_level(level, max, wm))
3251 /* make sure all following levels get disabled */
3252 last_enabled_level = level - 1;
3253
3254 /*
3255 * The spec says it is preferred to disable
3256 * FBC WMs instead of disabling a WM level.
3257 */
3258 if (wm->fbc_val > max->fbc) {
3259 if (wm->enable)
3260 merged->fbc_wm_enabled = false;
3261 wm->fbc_val = 0;
3262 }
3263 }
3264
3265 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3266 /*
3267 * FIXME this is racy. FBC might get enabled later.
3268 * What we should check here is whether FBC can be
3269 * enabled sometime later.
3270 */
3271 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3272 intel_fbc_is_active(dev_priv)) {
3273 for (level = 2; level <= max_level; level++) {
3274 struct intel_wm_level *wm = &merged->wm[level];
3275
3276 wm->enable = false;
3277 }
3278 }
3279 }
3280
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3281 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3282 {
3283 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3284 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3285 }
3286
3287 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_device * dev,int level)3288 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3289 {
3290 struct drm_i915_private *dev_priv = to_i915(dev);
3291
3292 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3293 return 2 * level;
3294 else
3295 return dev_priv->wm.pri_latency[level];
3296 }
3297
ilk_compute_wm_results(struct drm_device * dev,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3298 static void ilk_compute_wm_results(struct drm_device *dev,
3299 const struct intel_pipe_wm *merged,
3300 enum intel_ddb_partitioning partitioning,
3301 struct ilk_wm_values *results)
3302 {
3303 struct drm_i915_private *dev_priv = to_i915(dev);
3304 struct intel_crtc *intel_crtc;
3305 int level, wm_lp;
3306
3307 results->enable_fbc_wm = merged->fbc_wm_enabled;
3308 results->partitioning = partitioning;
3309
3310 /* LP1+ register values */
3311 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3312 const struct intel_wm_level *r;
3313
3314 level = ilk_wm_lp_to_level(wm_lp, merged);
3315
3316 r = &merged->wm[level];
3317
3318 /*
3319 * Maintain the watermark values even if the level is
3320 * disabled. Doing otherwise could cause underruns.
3321 */
3322 results->wm_lp[wm_lp - 1] =
3323 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3324 (r->pri_val << WM1_LP_SR_SHIFT) |
3325 r->cur_val;
3326
3327 if (r->enable)
3328 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3329
3330 if (INTEL_GEN(dev_priv) >= 8)
3331 results->wm_lp[wm_lp - 1] |=
3332 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3333 else
3334 results->wm_lp[wm_lp - 1] |=
3335 r->fbc_val << WM1_LP_FBC_SHIFT;
3336
3337 /*
3338 * Always set WM1S_LP_EN when spr_val != 0, even if the
3339 * level is disabled. Doing otherwise could cause underruns.
3340 */
3341 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3342 WARN_ON(wm_lp != 1);
3343 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3344 } else
3345 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3346 }
3347
3348 /* LP0 register values */
3349 for_each_intel_crtc(dev, intel_crtc) {
3350 enum pipe pipe = intel_crtc->pipe;
3351 const struct intel_wm_level *r =
3352 &intel_crtc->wm.active.ilk.wm[0];
3353
3354 if (WARN_ON(!r->enable))
3355 continue;
3356
3357 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3358
3359 results->wm_pipe[pipe] =
3360 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3361 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3362 r->cur_val;
3363 }
3364 }
3365
3366 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3367 * case both are at the same level. Prefer r1 in case they're the same. */
ilk_find_best_result(struct drm_device * dev,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3368 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3369 struct intel_pipe_wm *r1,
3370 struct intel_pipe_wm *r2)
3371 {
3372 int level, max_level = ilk_wm_max_level(to_i915(dev));
3373 int level1 = 0, level2 = 0;
3374
3375 for (level = 1; level <= max_level; level++) {
3376 if (r1->wm[level].enable)
3377 level1 = level;
3378 if (r2->wm[level].enable)
3379 level2 = level;
3380 }
3381
3382 if (level1 == level2) {
3383 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3384 return r2;
3385 else
3386 return r1;
3387 } else if (level1 > level2) {
3388 return r1;
3389 } else {
3390 return r2;
3391 }
3392 }
3393
3394 /* dirty bits used to track which watermarks need changes */
3395 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3396 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3397 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3398 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3399 #define WM_DIRTY_FBC (1 << 24)
3400 #define WM_DIRTY_DDB (1 << 25)
3401
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3402 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3403 const struct ilk_wm_values *old,
3404 const struct ilk_wm_values *new)
3405 {
3406 unsigned int dirty = 0;
3407 enum pipe pipe;
3408 int wm_lp;
3409
3410 for_each_pipe(dev_priv, pipe) {
3411 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3412 dirty |= WM_DIRTY_LINETIME(pipe);
3413 /* Must disable LP1+ watermarks too */
3414 dirty |= WM_DIRTY_LP_ALL;
3415 }
3416
3417 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3418 dirty |= WM_DIRTY_PIPE(pipe);
3419 /* Must disable LP1+ watermarks too */
3420 dirty |= WM_DIRTY_LP_ALL;
3421 }
3422 }
3423
3424 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3425 dirty |= WM_DIRTY_FBC;
3426 /* Must disable LP1+ watermarks too */
3427 dirty |= WM_DIRTY_LP_ALL;
3428 }
3429
3430 if (old->partitioning != new->partitioning) {
3431 dirty |= WM_DIRTY_DDB;
3432 /* Must disable LP1+ watermarks too */
3433 dirty |= WM_DIRTY_LP_ALL;
3434 }
3435
3436 /* LP1+ watermarks already deemed dirty, no need to continue */
3437 if (dirty & WM_DIRTY_LP_ALL)
3438 return dirty;
3439
3440 /* Find the lowest numbered LP1+ watermark in need of an update... */
3441 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3442 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3443 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3444 break;
3445 }
3446
3447 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3448 for (; wm_lp <= 3; wm_lp++)
3449 dirty |= WM_DIRTY_LP(wm_lp);
3450
3451 return dirty;
3452 }
3453
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3454 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3455 unsigned int dirty)
3456 {
3457 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3458 bool changed = false;
3459
3460 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3461 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3462 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3463 changed = true;
3464 }
3465 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3466 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3467 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3468 changed = true;
3469 }
3470 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3471 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3472 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3473 changed = true;
3474 }
3475
3476 /*
3477 * Don't touch WM1S_LP_EN here.
3478 * Doing so could cause underruns.
3479 */
3480
3481 return changed;
3482 }
3483
3484 /*
3485 * The spec says we shouldn't write when we don't need, because every write
3486 * causes WMs to be re-evaluated, expending some power.
3487 */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3488 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3489 struct ilk_wm_values *results)
3490 {
3491 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3492 unsigned int dirty;
3493 uint32_t val;
3494
3495 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3496 if (!dirty)
3497 return;
3498
3499 _ilk_disable_lp_wm(dev_priv, dirty);
3500
3501 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3502 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3503 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3504 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3505 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3506 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3507
3508 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3509 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3510 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3511 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3512 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3513 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3514
3515 if (dirty & WM_DIRTY_DDB) {
3516 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3517 val = I915_READ(WM_MISC);
3518 if (results->partitioning == INTEL_DDB_PART_1_2)
3519 val &= ~WM_MISC_DATA_PARTITION_5_6;
3520 else
3521 val |= WM_MISC_DATA_PARTITION_5_6;
3522 I915_WRITE(WM_MISC, val);
3523 } else {
3524 val = I915_READ(DISP_ARB_CTL2);
3525 if (results->partitioning == INTEL_DDB_PART_1_2)
3526 val &= ~DISP_DATA_PARTITION_5_6;
3527 else
3528 val |= DISP_DATA_PARTITION_5_6;
3529 I915_WRITE(DISP_ARB_CTL2, val);
3530 }
3531 }
3532
3533 if (dirty & WM_DIRTY_FBC) {
3534 val = I915_READ(DISP_ARB_CTL);
3535 if (results->enable_fbc_wm)
3536 val &= ~DISP_FBC_WM_DIS;
3537 else
3538 val |= DISP_FBC_WM_DIS;
3539 I915_WRITE(DISP_ARB_CTL, val);
3540 }
3541
3542 if (dirty & WM_DIRTY_LP(1) &&
3543 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3544 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3545
3546 if (INTEL_GEN(dev_priv) >= 7) {
3547 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3548 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3549 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3550 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3551 }
3552
3553 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3554 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3555 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3556 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3557 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3558 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3559
3560 dev_priv->wm.hw = *results;
3561 }
3562
ilk_disable_lp_wm(struct drm_device * dev)3563 bool ilk_disable_lp_wm(struct drm_device *dev)
3564 {
3565 struct drm_i915_private *dev_priv = to_i915(dev);
3566
3567 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3568 }
3569
intel_enabled_dbuf_slices_num(struct drm_i915_private * dev_priv)3570 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3571 {
3572 u8 enabled_slices;
3573
3574 /* Slice 1 will always be enabled */
3575 enabled_slices = 1;
3576
3577 /* Gen prior to GEN11 have only one DBuf slice */
3578 if (INTEL_GEN(dev_priv) < 11)
3579 return enabled_slices;
3580
3581 if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3582 enabled_slices++;
3583
3584 return enabled_slices;
3585 }
3586
3587 /*
3588 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3589 * so assume we'll always need it in order to avoid underruns.
3590 */
skl_needs_memory_bw_wa(struct intel_atomic_state * state)3591 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3592 {
3593 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3594
3595 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3596 return true;
3597
3598 return false;
3599 }
3600
3601 static bool
intel_has_sagv(struct drm_i915_private * dev_priv)3602 intel_has_sagv(struct drm_i915_private *dev_priv)
3603 {
3604 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3605 IS_CANNONLAKE(dev_priv))
3606 return true;
3607
3608 if (IS_SKYLAKE(dev_priv) &&
3609 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3610 return true;
3611
3612 return false;
3613 }
3614
3615 /*
3616 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3617 * depending on power and performance requirements. The display engine access
3618 * to system memory is blocked during the adjustment time. Because of the
3619 * blocking time, having this enabled can cause full system hangs and/or pipe
3620 * underruns if we don't meet all of the following requirements:
3621 *
3622 * - <= 1 pipe enabled
3623 * - All planes can enable watermarks for latencies >= SAGV engine block time
3624 * - We're not using an interlaced display configuration
3625 */
3626 int
intel_enable_sagv(struct drm_i915_private * dev_priv)3627 intel_enable_sagv(struct drm_i915_private *dev_priv)
3628 {
3629 int ret;
3630
3631 if (!intel_has_sagv(dev_priv))
3632 return 0;
3633
3634 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3635 return 0;
3636
3637 DRM_DEBUG_KMS("Enabling the SAGV\n");
3638 mutex_lock(&dev_priv->pcu_lock);
3639
3640 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3641 GEN9_SAGV_ENABLE);
3642
3643 /* We don't need to wait for the SAGV when enabling */
3644 mutex_unlock(&dev_priv->pcu_lock);
3645
3646 /*
3647 * Some skl systems, pre-release machines in particular,
3648 * don't actually have an SAGV.
3649 */
3650 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3651 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3652 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3653 return 0;
3654 } else if (ret < 0) {
3655 DRM_ERROR("Failed to enable the SAGV\n");
3656 return ret;
3657 }
3658
3659 dev_priv->sagv_status = I915_SAGV_ENABLED;
3660 return 0;
3661 }
3662
3663 int
intel_disable_sagv(struct drm_i915_private * dev_priv)3664 intel_disable_sagv(struct drm_i915_private *dev_priv)
3665 {
3666 int ret;
3667
3668 if (!intel_has_sagv(dev_priv))
3669 return 0;
3670
3671 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3672 return 0;
3673
3674 DRM_DEBUG_KMS("Disabling the SAGV\n");
3675 mutex_lock(&dev_priv->pcu_lock);
3676
3677 /* bspec says to keep retrying for at least 1 ms */
3678 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3679 GEN9_SAGV_DISABLE,
3680 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3681 1);
3682 mutex_unlock(&dev_priv->pcu_lock);
3683
3684 /*
3685 * Some skl systems, pre-release machines in particular,
3686 * don't actually have an SAGV.
3687 */
3688 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3689 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3690 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3691 return 0;
3692 } else if (ret < 0) {
3693 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3694 return ret;
3695 }
3696
3697 dev_priv->sagv_status = I915_SAGV_DISABLED;
3698 return 0;
3699 }
3700
intel_can_enable_sagv(struct drm_atomic_state * state)3701 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3702 {
3703 struct drm_device *dev = state->dev;
3704 struct drm_i915_private *dev_priv = to_i915(dev);
3705 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3706 struct intel_crtc *crtc;
3707 struct intel_plane *plane;
3708 struct intel_crtc_state *cstate;
3709 enum pipe pipe;
3710 int level, latency;
3711 int sagv_block_time_us;
3712
3713 if (!intel_has_sagv(dev_priv))
3714 return false;
3715
3716 if (IS_GEN9(dev_priv))
3717 sagv_block_time_us = 30;
3718 else if (IS_GEN10(dev_priv))
3719 sagv_block_time_us = 20;
3720 else
3721 sagv_block_time_us = 10;
3722
3723 /*
3724 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3725 * more then one pipe enabled
3726 *
3727 * If there are no active CRTCs, no additional checks need be performed
3728 */
3729 if (hweight32(intel_state->active_crtcs) == 0)
3730 return true;
3731 else if (hweight32(intel_state->active_crtcs) > 1)
3732 return false;
3733
3734 /* Since we're now guaranteed to only have one active CRTC... */
3735 pipe = ffs(intel_state->active_crtcs) - 1;
3736 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3737 cstate = to_intel_crtc_state(crtc->base.state);
3738
3739 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3740 return false;
3741
3742 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3743 struct skl_plane_wm *wm =
3744 &cstate->wm.skl.optimal.planes[plane->id];
3745
3746 /* Skip this plane if it's not enabled */
3747 if (!wm->wm[0].plane_en)
3748 continue;
3749
3750 /* Find the highest enabled wm level for this plane */
3751 for (level = ilk_wm_max_level(dev_priv);
3752 !wm->wm[level].plane_en; --level)
3753 { }
3754
3755 latency = dev_priv->wm.skl_latency[level];
3756
3757 if (skl_needs_memory_bw_wa(intel_state) &&
3758 plane->base.state->fb->modifier ==
3759 I915_FORMAT_MOD_X_TILED)
3760 latency += 15;
3761
3762 /*
3763 * If any of the planes on this pipe don't enable wm levels that
3764 * incur memory latencies higher than sagv_block_time_us we
3765 * can't enable the SAGV.
3766 */
3767 if (latency < sagv_block_time_us)
3768 return false;
3769 }
3770
3771 return true;
3772 }
3773
intel_get_ddb_size(struct drm_i915_private * dev_priv,const struct intel_crtc_state * cstate,const unsigned int total_data_rate,const int num_active,struct skl_ddb_allocation * ddb)3774 static unsigned int intel_get_ddb_size(struct drm_i915_private *dev_priv,
3775 const struct intel_crtc_state *cstate,
3776 const unsigned int total_data_rate,
3777 const int num_active,
3778 struct skl_ddb_allocation *ddb)
3779 {
3780 const struct drm_display_mode *adjusted_mode;
3781 u64 total_data_bw;
3782 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3783
3784 WARN_ON(ddb_size == 0);
3785
3786 if (INTEL_GEN(dev_priv) < 11)
3787 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3788
3789 adjusted_mode = &cstate->base.adjusted_mode;
3790 total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);
3791
3792 /*
3793 * 12GB/s is maximum BW supported by single DBuf slice.
3794 */
3795 if (total_data_bw >= GBps(12) || num_active > 1) {
3796 ddb->enabled_slices = 2;
3797 } else {
3798 ddb->enabled_slices = 1;
3799 ddb_size /= 2;
3800 }
3801
3802 return ddb_size;
3803 }
3804
3805 static void
skl_ddb_get_pipe_allocation_limits(struct drm_device * dev,const struct intel_crtc_state * cstate,const unsigned int total_data_rate,struct skl_ddb_allocation * ddb,struct skl_ddb_entry * alloc,int * num_active)3806 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3807 const struct intel_crtc_state *cstate,
3808 const unsigned int total_data_rate,
3809 struct skl_ddb_allocation *ddb,
3810 struct skl_ddb_entry *alloc, /* out */
3811 int *num_active /* out */)
3812 {
3813 struct drm_atomic_state *state = cstate->base.state;
3814 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3815 struct drm_i915_private *dev_priv = to_i915(dev);
3816 struct drm_crtc *for_crtc = cstate->base.crtc;
3817 unsigned int pipe_size, ddb_size;
3818 int nth_active_pipe;
3819
3820 if (WARN_ON(!state) || !cstate->base.active) {
3821 alloc->start = 0;
3822 alloc->end = 0;
3823 *num_active = hweight32(dev_priv->active_crtcs);
3824 return;
3825 }
3826
3827 if (intel_state->active_pipe_changes)
3828 *num_active = hweight32(intel_state->active_crtcs);
3829 else
3830 *num_active = hweight32(dev_priv->active_crtcs);
3831
3832 ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3833 *num_active, ddb);
3834
3835 /*
3836 * If the state doesn't change the active CRTC's, then there's
3837 * no need to recalculate; the existing pipe allocation limits
3838 * should remain unchanged. Note that we're safe from racing
3839 * commits since any racing commit that changes the active CRTC
3840 * list would need to grab _all_ crtc locks, including the one
3841 * we currently hold.
3842 */
3843 if (!intel_state->active_pipe_changes) {
3844 /*
3845 * alloc may be cleared by clear_intel_crtc_state,
3846 * copy from old state to be sure
3847 */
3848 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3849 return;
3850 }
3851
3852 nth_active_pipe = hweight32(intel_state->active_crtcs &
3853 (drm_crtc_mask(for_crtc) - 1));
3854 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3855 alloc->start = nth_active_pipe * ddb_size / *num_active;
3856 alloc->end = alloc->start + pipe_size;
3857 }
3858
skl_cursor_allocation(int num_active)3859 static unsigned int skl_cursor_allocation(int num_active)
3860 {
3861 if (num_active == 1)
3862 return 32;
3863
3864 return 8;
3865 }
3866
skl_ddb_entry_init_from_hw(struct drm_i915_private * dev_priv,struct skl_ddb_entry * entry,u32 reg)3867 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3868 struct skl_ddb_entry *entry, u32 reg)
3869 {
3870 u16 mask;
3871
3872 if (INTEL_GEN(dev_priv) >= 11)
3873 mask = ICL_DDB_ENTRY_MASK;
3874 else
3875 mask = SKL_DDB_ENTRY_MASK;
3876 entry->start = reg & mask;
3877 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;
3878
3879 if (entry->end)
3880 entry->end += 1;
3881 }
3882
3883 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * dev_priv,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_allocation * ddb)3884 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3885 const enum pipe pipe,
3886 const enum plane_id plane_id,
3887 struct skl_ddb_allocation *ddb /* out */)
3888 {
3889 u32 val, val2 = 0;
3890 int fourcc, pixel_format;
3891
3892 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3893 if (plane_id == PLANE_CURSOR) {
3894 val = I915_READ(CUR_BUF_CFG(pipe));
3895 skl_ddb_entry_init_from_hw(dev_priv,
3896 &ddb->plane[pipe][plane_id], val);
3897 return;
3898 }
3899
3900 val = I915_READ(PLANE_CTL(pipe, plane_id));
3901
3902 /* No DDB allocated for disabled planes */
3903 if (!(val & PLANE_CTL_ENABLE))
3904 return;
3905
3906 pixel_format = val & PLANE_CTL_FORMAT_MASK;
3907 fourcc = skl_format_to_fourcc(pixel_format,
3908 val & PLANE_CTL_ORDER_RGBX,
3909 val & PLANE_CTL_ALPHA_MASK);
3910
3911 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3912 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3913
3914 if (fourcc == DRM_FORMAT_NV12) {
3915 skl_ddb_entry_init_from_hw(dev_priv,
3916 &ddb->plane[pipe][plane_id], val2);
3917 skl_ddb_entry_init_from_hw(dev_priv,
3918 &ddb->uv_plane[pipe][plane_id], val);
3919 } else {
3920 skl_ddb_entry_init_from_hw(dev_priv,
3921 &ddb->plane[pipe][plane_id], val);
3922 }
3923 }
3924
skl_ddb_get_hw_state(struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb)3925 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3926 struct skl_ddb_allocation *ddb /* out */)
3927 {
3928 struct intel_crtc *crtc;
3929
3930 memset(ddb, 0, sizeof(*ddb));
3931
3932 ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
3933
3934 for_each_intel_crtc(&dev_priv->drm, crtc) {
3935 enum intel_display_power_domain power_domain;
3936 enum plane_id plane_id;
3937 enum pipe pipe = crtc->pipe;
3938
3939 power_domain = POWER_DOMAIN_PIPE(pipe);
3940 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3941 continue;
3942
3943 for_each_plane_id_on_crtc(crtc, plane_id)
3944 skl_ddb_get_hw_plane_state(dev_priv, pipe,
3945 plane_id, ddb);
3946
3947 intel_display_power_put(dev_priv, power_domain);
3948 }
3949 }
3950
3951 /*
3952 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3953 * The bspec defines downscale amount as:
3954 *
3955 * """
3956 * Horizontal down scale amount = maximum[1, Horizontal source size /
3957 * Horizontal destination size]
3958 * Vertical down scale amount = maximum[1, Vertical source size /
3959 * Vertical destination size]
3960 * Total down scale amount = Horizontal down scale amount *
3961 * Vertical down scale amount
3962 * """
3963 *
3964 * Return value is provided in 16.16 fixed point form to retain fractional part.
3965 * Caller should take care of dividing & rounding off the value.
3966 */
3967 static uint_fixed_16_16_t
skl_plane_downscale_amount(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate)3968 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3969 const struct intel_plane_state *pstate)
3970 {
3971 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3972 uint32_t src_w, src_h, dst_w, dst_h;
3973 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3974 uint_fixed_16_16_t downscale_h, downscale_w;
3975
3976 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3977 return u32_to_fixed16(0);
3978
3979 /* n.b., src is 16.16 fixed point, dst is whole integer */
3980 if (plane->id == PLANE_CURSOR) {
3981 /*
3982 * Cursors only support 0/180 degree rotation,
3983 * hence no need to account for rotation here.
3984 */
3985 src_w = pstate->base.src_w >> 16;
3986 src_h = pstate->base.src_h >> 16;
3987 dst_w = pstate->base.crtc_w;
3988 dst_h = pstate->base.crtc_h;
3989 } else {
3990 /*
3991 * Src coordinates are already rotated by 270 degrees for
3992 * the 90/270 degree plane rotation cases (to match the
3993 * GTT mapping), hence no need to account for rotation here.
3994 */
3995 src_w = drm_rect_width(&pstate->base.src) >> 16;
3996 src_h = drm_rect_height(&pstate->base.src) >> 16;
3997 dst_w = drm_rect_width(&pstate->base.dst);
3998 dst_h = drm_rect_height(&pstate->base.dst);
3999 }
4000
4001 fp_w_ratio = div_fixed16(src_w, dst_w);
4002 fp_h_ratio = div_fixed16(src_h, dst_h);
4003 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4004 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4005
4006 return mul_fixed16(downscale_w, downscale_h);
4007 }
4008
4009 static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state * crtc_state)4010 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4011 {
4012 uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4013
4014 if (!crtc_state->base.enable)
4015 return pipe_downscale;
4016
4017 if (crtc_state->pch_pfit.enabled) {
4018 uint32_t src_w, src_h, dst_w, dst_h;
4019 uint32_t pfit_size = crtc_state->pch_pfit.size;
4020 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4021 uint_fixed_16_16_t downscale_h, downscale_w;
4022
4023 src_w = crtc_state->pipe_src_w;
4024 src_h = crtc_state->pipe_src_h;
4025 dst_w = pfit_size >> 16;
4026 dst_h = pfit_size & 0xffff;
4027
4028 if (!dst_w || !dst_h)
4029 return pipe_downscale;
4030
4031 fp_w_ratio = div_fixed16(src_w, dst_w);
4032 fp_h_ratio = div_fixed16(src_h, dst_h);
4033 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4034 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4035
4036 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4037 }
4038
4039 return pipe_downscale;
4040 }
4041
skl_check_pipe_max_pixel_rate(struct intel_crtc * intel_crtc,struct intel_crtc_state * cstate)4042 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4043 struct intel_crtc_state *cstate)
4044 {
4045 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4046 struct drm_crtc_state *crtc_state = &cstate->base;
4047 struct drm_atomic_state *state = crtc_state->state;
4048 struct drm_plane *plane;
4049 const struct drm_plane_state *pstate;
4050 struct intel_plane_state *intel_pstate;
4051 int crtc_clock, dotclk;
4052 uint32_t pipe_max_pixel_rate;
4053 uint_fixed_16_16_t pipe_downscale;
4054 uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4055
4056 if (!cstate->base.enable)
4057 return 0;
4058
4059 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4060 uint_fixed_16_16_t plane_downscale;
4061 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4062 int bpp;
4063
4064 if (!intel_wm_plane_visible(cstate,
4065 to_intel_plane_state(pstate)))
4066 continue;
4067
4068 if (WARN_ON(!pstate->fb))
4069 return -EINVAL;
4070
4071 intel_pstate = to_intel_plane_state(pstate);
4072 plane_downscale = skl_plane_downscale_amount(cstate,
4073 intel_pstate);
4074 bpp = pstate->fb->format->cpp[0] * 8;
4075 if (bpp == 64)
4076 plane_downscale = mul_fixed16(plane_downscale,
4077 fp_9_div_8);
4078
4079 max_downscale = max_fixed16(plane_downscale, max_downscale);
4080 }
4081 pipe_downscale = skl_pipe_downscale_amount(cstate);
4082
4083 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4084
4085 crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4086 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4087
4088 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4089 dotclk *= 2;
4090
4091 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4092
4093 if (pipe_max_pixel_rate < crtc_clock) {
4094 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4095 return -EINVAL;
4096 }
4097
4098 return 0;
4099 }
4100
4101 static unsigned int
skl_plane_relative_data_rate(const struct intel_crtc_state * cstate,const struct drm_plane_state * pstate,const int plane)4102 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4103 const struct drm_plane_state *pstate,
4104 const int plane)
4105 {
4106 struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4107 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4108 uint32_t data_rate;
4109 uint32_t width = 0, height = 0;
4110 struct drm_framebuffer *fb;
4111 u32 format;
4112 uint_fixed_16_16_t down_scale_amount;
4113
4114 if (!intel_pstate->base.visible)
4115 return 0;
4116
4117 fb = pstate->fb;
4118 format = fb->format->format;
4119
4120 if (intel_plane->id == PLANE_CURSOR)
4121 return 0;
4122 if (plane == 1 && format != DRM_FORMAT_NV12)
4123 return 0;
4124
4125 /*
4126 * Src coordinates are already rotated by 270 degrees for
4127 * the 90/270 degree plane rotation cases (to match the
4128 * GTT mapping), hence no need to account for rotation here.
4129 */
4130 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4131 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4132
4133 /* UV plane does 1/2 pixel sub-sampling */
4134 if (plane == 1 && format == DRM_FORMAT_NV12) {
4135 width /= 2;
4136 height /= 2;
4137 }
4138
4139 data_rate = width * height * fb->format->cpp[plane];
4140
4141 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4142
4143 return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4144 }
4145
4146 /*
4147 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4148 * a 8192x4096@32bpp framebuffer:
4149 * 3 * 4096 * 8192 * 4 < 2^32
4150 */
4151 static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc_state * intel_cstate,unsigned int * plane_data_rate,unsigned int * uv_plane_data_rate)4152 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4153 unsigned int *plane_data_rate,
4154 unsigned int *uv_plane_data_rate)
4155 {
4156 struct drm_crtc_state *cstate = &intel_cstate->base;
4157 struct drm_atomic_state *state = cstate->state;
4158 struct drm_plane *plane;
4159 const struct drm_plane_state *pstate;
4160 unsigned int total_data_rate = 0;
4161
4162 if (WARN_ON(!state))
4163 return 0;
4164
4165 /* Calculate and cache data rate for each plane */
4166 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4167 enum plane_id plane_id = to_intel_plane(plane)->id;
4168 unsigned int rate;
4169
4170 /* packed/y */
4171 rate = skl_plane_relative_data_rate(intel_cstate,
4172 pstate, 0);
4173 plane_data_rate[plane_id] = rate;
4174
4175 total_data_rate += rate;
4176
4177 /* uv-plane */
4178 rate = skl_plane_relative_data_rate(intel_cstate,
4179 pstate, 1);
4180 uv_plane_data_rate[plane_id] = rate;
4181
4182 total_data_rate += rate;
4183 }
4184
4185 return total_data_rate;
4186 }
4187
4188 static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state * pstate,const int plane)4189 skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4190 {
4191 struct drm_framebuffer *fb = pstate->fb;
4192 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4193 uint32_t src_w, src_h;
4194 uint32_t min_scanlines = 8;
4195 uint8_t plane_bpp;
4196
4197 if (WARN_ON(!fb))
4198 return 0;
4199
4200 /* For packed formats, and uv-plane, return 0 */
4201 if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4202 return 0;
4203
4204 /* For Non Y-tile return 8-blocks */
4205 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4206 fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4207 fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4208 fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4209 return 8;
4210
4211 /*
4212 * Src coordinates are already rotated by 270 degrees for
4213 * the 90/270 degree plane rotation cases (to match the
4214 * GTT mapping), hence no need to account for rotation here.
4215 */
4216 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4217 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4218
4219 /* Halve UV plane width and height for NV12 */
4220 if (plane == 1) {
4221 src_w /= 2;
4222 src_h /= 2;
4223 }
4224
4225 plane_bpp = fb->format->cpp[plane];
4226
4227 if (drm_rotation_90_or_270(pstate->rotation)) {
4228 switch (plane_bpp) {
4229 case 1:
4230 min_scanlines = 32;
4231 break;
4232 case 2:
4233 min_scanlines = 16;
4234 break;
4235 case 4:
4236 min_scanlines = 8;
4237 break;
4238 case 8:
4239 min_scanlines = 4;
4240 break;
4241 default:
4242 WARN(1, "Unsupported pixel depth %u for rotation",
4243 plane_bpp);
4244 min_scanlines = 32;
4245 }
4246 }
4247
4248 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4249 }
4250
4251 static void
skl_ddb_calc_min(const struct intel_crtc_state * cstate,int num_active,uint16_t * minimum,uint16_t * uv_minimum)4252 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4253 uint16_t *minimum, uint16_t *uv_minimum)
4254 {
4255 const struct drm_plane_state *pstate;
4256 struct drm_plane *plane;
4257
4258 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4259 enum plane_id plane_id = to_intel_plane(plane)->id;
4260
4261 if (plane_id == PLANE_CURSOR)
4262 continue;
4263
4264 if (!pstate->visible)
4265 continue;
4266
4267 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4268 uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4269 }
4270
4271 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4272 }
4273
4274 static int
skl_allocate_pipe_ddb(struct intel_crtc_state * cstate,struct skl_ddb_allocation * ddb)4275 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4276 struct skl_ddb_allocation *ddb /* out */)
4277 {
4278 struct drm_atomic_state *state = cstate->base.state;
4279 struct drm_crtc *crtc = cstate->base.crtc;
4280 struct drm_device *dev = crtc->dev;
4281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4282 enum pipe pipe = intel_crtc->pipe;
4283 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4284 uint16_t alloc_size, start;
4285 uint16_t minimum[I915_MAX_PLANES] = {};
4286 uint16_t uv_minimum[I915_MAX_PLANES] = {};
4287 unsigned int total_data_rate;
4288 enum plane_id plane_id;
4289 int num_active;
4290 unsigned int plane_data_rate[I915_MAX_PLANES] = {};
4291 unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4292 uint16_t total_min_blocks = 0;
4293
4294 /* Clear the partitioning for disabled planes. */
4295 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4296 memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4297
4298 if (WARN_ON(!state))
4299 return 0;
4300
4301 if (!cstate->base.active) {
4302 alloc->start = alloc->end = 0;
4303 return 0;
4304 }
4305
4306 total_data_rate = skl_get_total_relative_data_rate(cstate,
4307 plane_data_rate,
4308 uv_plane_data_rate);
4309 skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
4310 alloc, &num_active);
4311 alloc_size = skl_ddb_entry_size(alloc);
4312 if (alloc_size == 0)
4313 return 0;
4314
4315 skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4316
4317 /*
4318 * 1. Allocate the mininum required blocks for each active plane
4319 * and allocate the cursor, it doesn't require extra allocation
4320 * proportional to the data rate.
4321 */
4322
4323 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4324 total_min_blocks += minimum[plane_id];
4325 total_min_blocks += uv_minimum[plane_id];
4326 }
4327
4328 if (total_min_blocks > alloc_size) {
4329 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4330 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4331 alloc_size);
4332 return -EINVAL;
4333 }
4334
4335 alloc_size -= total_min_blocks;
4336 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4337 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4338
4339 /*
4340 * 2. Distribute the remaining space in proportion to the amount of
4341 * data each plane needs to fetch from memory.
4342 *
4343 * FIXME: we may not allocate every single block here.
4344 */
4345 if (total_data_rate == 0)
4346 return 0;
4347
4348 start = alloc->start;
4349 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4350 unsigned int data_rate, uv_data_rate;
4351 uint16_t plane_blocks, uv_plane_blocks;
4352
4353 if (plane_id == PLANE_CURSOR)
4354 continue;
4355
4356 data_rate = plane_data_rate[plane_id];
4357
4358 /*
4359 * allocation for (packed formats) or (uv-plane part of planar format):
4360 * promote the expression to 64 bits to avoid overflowing, the
4361 * result is < available as data_rate / total_data_rate < 1
4362 */
4363 plane_blocks = minimum[plane_id];
4364 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4365 total_data_rate);
4366
4367 /* Leave disabled planes at (0,0) */
4368 if (data_rate) {
4369 ddb->plane[pipe][plane_id].start = start;
4370 ddb->plane[pipe][plane_id].end = start + plane_blocks;
4371 }
4372
4373 start += plane_blocks;
4374
4375 /* Allocate DDB for UV plane for planar format/NV12 */
4376 uv_data_rate = uv_plane_data_rate[plane_id];
4377
4378 uv_plane_blocks = uv_minimum[plane_id];
4379 uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
4380 total_data_rate);
4381
4382 if (uv_data_rate) {
4383 ddb->uv_plane[pipe][plane_id].start = start;
4384 ddb->uv_plane[pipe][plane_id].end =
4385 start + uv_plane_blocks;
4386 }
4387
4388 start += uv_plane_blocks;
4389 }
4390
4391 return 0;
4392 }
4393
4394 /*
4395 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4396 * for the read latency) and cpp should always be <= 8, so that
4397 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4398 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4399 */
4400 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * dev_priv,uint32_t pixel_rate,uint8_t cpp,uint32_t latency,uint32_t dbuf_block_size)4401 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4402 uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4403 {
4404 uint32_t wm_intermediate_val;
4405 uint_fixed_16_16_t ret;
4406
4407 if (latency == 0)
4408 return FP_16_16_MAX;
4409
4410 wm_intermediate_val = latency * pixel_rate * cpp;
4411 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4412
4413 if (INTEL_GEN(dev_priv) >= 10)
4414 ret = add_fixed16_u32(ret, 1);
4415
4416 return ret;
4417 }
4418
skl_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t latency,uint_fixed_16_16_t plane_blocks_per_line)4419 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4420 uint32_t pipe_htotal,
4421 uint32_t latency,
4422 uint_fixed_16_16_t plane_blocks_per_line)
4423 {
4424 uint32_t wm_intermediate_val;
4425 uint_fixed_16_16_t ret;
4426
4427 if (latency == 0)
4428 return FP_16_16_MAX;
4429
4430 wm_intermediate_val = latency * pixel_rate;
4431 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4432 pipe_htotal * 1000);
4433 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4434 return ret;
4435 }
4436
4437 static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state * cstate)4438 intel_get_linetime_us(struct intel_crtc_state *cstate)
4439 {
4440 uint32_t pixel_rate;
4441 uint32_t crtc_htotal;
4442 uint_fixed_16_16_t linetime_us;
4443
4444 if (!cstate->base.active)
4445 return u32_to_fixed16(0);
4446
4447 pixel_rate = cstate->pixel_rate;
4448
4449 if (WARN_ON(pixel_rate == 0))
4450 return u32_to_fixed16(0);
4451
4452 crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4453 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4454
4455 return linetime_us;
4456 }
4457
4458 static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate)4459 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4460 const struct intel_plane_state *pstate)
4461 {
4462 uint64_t adjusted_pixel_rate;
4463 uint_fixed_16_16_t downscale_amount;
4464
4465 /* Shouldn't reach here on disabled planes... */
4466 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4467 return 0;
4468
4469 /*
4470 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4471 * with additional adjustments for plane-specific scaling.
4472 */
4473 adjusted_pixel_rate = cstate->pixel_rate;
4474 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4475
4476 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4477 downscale_amount);
4478 }
4479
4480 static int
skl_compute_plane_wm_params(const struct drm_i915_private * dev_priv,struct intel_crtc_state * cstate,const struct intel_plane_state * intel_pstate,struct skl_wm_params * wp,int plane_id)4481 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4482 struct intel_crtc_state *cstate,
4483 const struct intel_plane_state *intel_pstate,
4484 struct skl_wm_params *wp, int plane_id)
4485 {
4486 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4487 const struct drm_plane_state *pstate = &intel_pstate->base;
4488 const struct drm_framebuffer *fb = pstate->fb;
4489 uint32_t interm_pbpl;
4490 struct intel_atomic_state *state =
4491 to_intel_atomic_state(cstate->base.state);
4492 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4493
4494 if (!intel_wm_plane_visible(cstate, intel_pstate))
4495 return 0;
4496
4497 /* only NV12 format has two planes */
4498 if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
4499 DRM_DEBUG_KMS("Non NV12 format have single plane\n");
4500 return -EINVAL;
4501 }
4502
4503 wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4504 fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4505 fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4506 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4507 wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4508 wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4509 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4510 wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4511
4512 if (plane->id == PLANE_CURSOR) {
4513 wp->width = intel_pstate->base.crtc_w;
4514 } else {
4515 /*
4516 * Src coordinates are already rotated by 270 degrees for
4517 * the 90/270 degree plane rotation cases (to match the
4518 * GTT mapping), hence no need to account for rotation here.
4519 */
4520 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4521 }
4522
4523 if (plane_id == 1 && wp->is_planar)
4524 wp->width /= 2;
4525
4526 wp->cpp = fb->format->cpp[plane_id];
4527 wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4528 intel_pstate);
4529
4530 if (INTEL_GEN(dev_priv) >= 11 &&
4531 fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
4532 wp->dbuf_block_size = 256;
4533 else
4534 wp->dbuf_block_size = 512;
4535
4536 if (drm_rotation_90_or_270(pstate->rotation)) {
4537
4538 switch (wp->cpp) {
4539 case 1:
4540 wp->y_min_scanlines = 16;
4541 break;
4542 case 2:
4543 wp->y_min_scanlines = 8;
4544 break;
4545 case 4:
4546 wp->y_min_scanlines = 4;
4547 break;
4548 default:
4549 MISSING_CASE(wp->cpp);
4550 return -EINVAL;
4551 }
4552 } else {
4553 wp->y_min_scanlines = 4;
4554 }
4555
4556 if (apply_memory_bw_wa)
4557 wp->y_min_scanlines *= 2;
4558
4559 wp->plane_bytes_per_line = wp->width * wp->cpp;
4560 if (wp->y_tiled) {
4561 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4562 wp->y_min_scanlines,
4563 wp->dbuf_block_size);
4564
4565 if (INTEL_GEN(dev_priv) >= 10)
4566 interm_pbpl++;
4567
4568 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4569 wp->y_min_scanlines);
4570 } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4571 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4572 wp->dbuf_block_size);
4573 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4574 } else {
4575 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4576 wp->dbuf_block_size) + 1;
4577 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4578 }
4579
4580 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4581 wp->plane_blocks_per_line);
4582 wp->linetime_us = fixed16_to_u32_round_up(
4583 intel_get_linetime_us(cstate));
4584
4585 return 0;
4586 }
4587
skl_compute_plane_wm(const struct drm_i915_private * dev_priv,struct intel_crtc_state * cstate,const struct intel_plane_state * intel_pstate,uint16_t ddb_allocation,int level,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)4588 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4589 struct intel_crtc_state *cstate,
4590 const struct intel_plane_state *intel_pstate,
4591 uint16_t ddb_allocation,
4592 int level,
4593 const struct skl_wm_params *wp,
4594 const struct skl_wm_level *result_prev,
4595 struct skl_wm_level *result /* out */)
4596 {
4597 const struct drm_plane_state *pstate = &intel_pstate->base;
4598 uint32_t latency = dev_priv->wm.skl_latency[level];
4599 uint_fixed_16_16_t method1, method2;
4600 uint_fixed_16_16_t selected_result;
4601 uint32_t res_blocks, res_lines;
4602 struct intel_atomic_state *state =
4603 to_intel_atomic_state(cstate->base.state);
4604 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4605 uint32_t min_disp_buf_needed;
4606
4607 if (latency == 0 ||
4608 !intel_wm_plane_visible(cstate, intel_pstate)) {
4609 result->plane_en = false;
4610 return 0;
4611 }
4612
4613 /* Display WA #1141: kbl,cfl */
4614 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4615 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4616 dev_priv->ipc_enabled)
4617 latency += 4;
4618
4619 if (apply_memory_bw_wa && wp->x_tiled)
4620 latency += 15;
4621
4622 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4623 wp->cpp, latency, wp->dbuf_block_size);
4624 method2 = skl_wm_method2(wp->plane_pixel_rate,
4625 cstate->base.adjusted_mode.crtc_htotal,
4626 latency,
4627 wp->plane_blocks_per_line);
4628
4629 if (wp->y_tiled) {
4630 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4631 } else {
4632 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4633 wp->dbuf_block_size < 1) &&
4634 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4635 selected_result = method2;
4636 else if (ddb_allocation >=
4637 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4638 selected_result = min_fixed16(method1, method2);
4639 else if (latency >= wp->linetime_us)
4640 selected_result = min_fixed16(method1, method2);
4641 else
4642 selected_result = method1;
4643 }
4644
4645 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4646 res_lines = div_round_up_fixed16(selected_result,
4647 wp->plane_blocks_per_line);
4648
4649 /* Display WA #1125: skl,bxt,kbl,glk */
4650 if (level == 0 && wp->rc_surface)
4651 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4652
4653 /* Display WA #1126: skl,bxt,kbl,glk */
4654 if (level >= 1 && level <= 7) {
4655 if (wp->y_tiled) {
4656 res_blocks += fixed16_to_u32_round_up(
4657 wp->y_tile_minimum);
4658 res_lines += wp->y_min_scanlines;
4659 } else {
4660 res_blocks++;
4661 }
4662
4663 /*
4664 * Make sure result blocks for higher latency levels are atleast
4665 * as high as level below the current level.
4666 * Assumption in DDB algorithm optimization for special cases.
4667 * Also covers Display WA #1125 for RC.
4668 */
4669 if (result_prev->plane_res_b > res_blocks)
4670 res_blocks = result_prev->plane_res_b;
4671 }
4672
4673 if (INTEL_GEN(dev_priv) >= 11) {
4674 if (wp->y_tiled) {
4675 uint32_t extra_lines;
4676 uint_fixed_16_16_t fp_min_disp_buf_needed;
4677
4678 if (res_lines % wp->y_min_scanlines == 0)
4679 extra_lines = wp->y_min_scanlines;
4680 else
4681 extra_lines = wp->y_min_scanlines * 2 -
4682 res_lines % wp->y_min_scanlines;
4683
4684 fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
4685 extra_lines,
4686 wp->plane_blocks_per_line);
4687 min_disp_buf_needed = fixed16_to_u32_round_up(
4688 fp_min_disp_buf_needed);
4689 } else {
4690 min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
4691 }
4692 } else {
4693 min_disp_buf_needed = res_blocks;
4694 }
4695
4696 if ((level > 0 && res_lines > 31) ||
4697 res_blocks >= ddb_allocation ||
4698 min_disp_buf_needed >= ddb_allocation) {
4699 result->plane_en = false;
4700
4701 /*
4702 * If there are no valid level 0 watermarks, then we can't
4703 * support this display configuration.
4704 */
4705 if (level) {
4706 return 0;
4707 } else {
4708 struct drm_plane *plane = pstate->plane;
4709
4710 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4711 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4712 plane->base.id, plane->name,
4713 res_blocks, ddb_allocation, res_lines);
4714 return -EINVAL;
4715 }
4716 }
4717
4718 /*
4719 * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
4720 * disable wm level 1-7 on NV12 planes
4721 */
4722 if (wp->is_planar && level >= 1 &&
4723 (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
4724 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
4725 result->plane_en = false;
4726 return 0;
4727 }
4728
4729 /* The number of lines are ignored for the level 0 watermark. */
4730 result->plane_res_b = res_blocks;
4731 result->plane_res_l = res_lines;
4732 result->plane_en = true;
4733
4734 return 0;
4735 }
4736
4737 static int
skl_compute_wm_levels(const struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb,struct intel_crtc_state * cstate,const struct intel_plane_state * intel_pstate,const struct skl_wm_params * wm_params,struct skl_plane_wm * wm,int plane_id)4738 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4739 struct skl_ddb_allocation *ddb,
4740 struct intel_crtc_state *cstate,
4741 const struct intel_plane_state *intel_pstate,
4742 const struct skl_wm_params *wm_params,
4743 struct skl_plane_wm *wm,
4744 int plane_id)
4745 {
4746 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4747 struct drm_plane *plane = intel_pstate->base.plane;
4748 struct intel_plane *intel_plane = to_intel_plane(plane);
4749 uint16_t ddb_blocks;
4750 enum pipe pipe = intel_crtc->pipe;
4751 int level, max_level = ilk_wm_max_level(dev_priv);
4752 enum plane_id intel_plane_id = intel_plane->id;
4753 int ret;
4754
4755 if (WARN_ON(!intel_pstate->base.fb))
4756 return -EINVAL;
4757
4758 ddb_blocks = plane_id ?
4759 skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
4760 skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4761
4762 for (level = 0; level <= max_level; level++) {
4763 struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
4764 &wm->wm[level];
4765 struct skl_wm_level *result_prev;
4766
4767 if (level)
4768 result_prev = plane_id ? &wm->uv_wm[level - 1] :
4769 &wm->wm[level - 1];
4770 else
4771 result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4772
4773 ret = skl_compute_plane_wm(dev_priv,
4774 cstate,
4775 intel_pstate,
4776 ddb_blocks,
4777 level,
4778 wm_params,
4779 result_prev,
4780 result);
4781 if (ret)
4782 return ret;
4783 }
4784
4785 if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
4786 wm->is_planar = true;
4787
4788 return 0;
4789 }
4790
4791 static uint32_t
skl_compute_linetime_wm(struct intel_crtc_state * cstate)4792 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4793 {
4794 struct drm_atomic_state *state = cstate->base.state;
4795 struct drm_i915_private *dev_priv = to_i915(state->dev);
4796 uint_fixed_16_16_t linetime_us;
4797 uint32_t linetime_wm;
4798
4799 linetime_us = intel_get_linetime_us(cstate);
4800
4801 if (is_fixed16_zero(linetime_us))
4802 return 0;
4803
4804 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4805
4806 /* Display WA #1135: bxt:ALL GLK:ALL */
4807 if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4808 dev_priv->ipc_enabled)
4809 linetime_wm /= 2;
4810
4811 return linetime_wm;
4812 }
4813
skl_compute_transition_wm(struct intel_crtc_state * cstate,struct skl_wm_params * wp,struct skl_wm_level * wm_l0,uint16_t ddb_allocation,struct skl_wm_level * trans_wm)4814 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4815 struct skl_wm_params *wp,
4816 struct skl_wm_level *wm_l0,
4817 uint16_t ddb_allocation,
4818 struct skl_wm_level *trans_wm /* out */)
4819 {
4820 struct drm_device *dev = cstate->base.crtc->dev;
4821 const struct drm_i915_private *dev_priv = to_i915(dev);
4822 uint16_t trans_min, trans_y_tile_min;
4823 const uint16_t trans_amount = 10; /* This is configurable amount */
4824 uint16_t trans_offset_b, res_blocks;
4825
4826 if (!cstate->base.active)
4827 goto exit;
4828
4829 /* Transition WM are not recommended by HW team for GEN9 */
4830 if (INTEL_GEN(dev_priv) <= 9)
4831 goto exit;
4832
4833 /* Transition WM don't make any sense if ipc is disabled */
4834 if (!dev_priv->ipc_enabled)
4835 goto exit;
4836
4837 trans_min = 0;
4838 if (INTEL_GEN(dev_priv) >= 10)
4839 trans_min = 4;
4840
4841 trans_offset_b = trans_min + trans_amount;
4842
4843 if (wp->y_tiled) {
4844 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4845 wp->y_tile_minimum);
4846 res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4847 trans_offset_b;
4848 } else {
4849 res_blocks = wm_l0->plane_res_b + trans_offset_b;
4850
4851 /* WA BUG:1938466 add one block for non y-tile planes */
4852 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4853 res_blocks += 1;
4854
4855 }
4856
4857 res_blocks += 1;
4858
4859 if (res_blocks < ddb_allocation) {
4860 trans_wm->plane_res_b = res_blocks;
4861 trans_wm->plane_en = true;
4862 return;
4863 }
4864
4865 exit:
4866 trans_wm->plane_en = false;
4867 }
4868
skl_build_pipe_wm(struct intel_crtc_state * cstate,struct skl_ddb_allocation * ddb,struct skl_pipe_wm * pipe_wm)4869 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4870 struct skl_ddb_allocation *ddb,
4871 struct skl_pipe_wm *pipe_wm)
4872 {
4873 struct drm_device *dev = cstate->base.crtc->dev;
4874 struct drm_crtc_state *crtc_state = &cstate->base;
4875 const struct drm_i915_private *dev_priv = to_i915(dev);
4876 struct drm_plane *plane;
4877 const struct drm_plane_state *pstate;
4878 struct skl_plane_wm *wm;
4879 int ret;
4880
4881 /*
4882 * We'll only calculate watermarks for planes that are actually
4883 * enabled, so make sure all other planes are set as disabled.
4884 */
4885 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4886
4887 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4888 const struct intel_plane_state *intel_pstate =
4889 to_intel_plane_state(pstate);
4890 enum plane_id plane_id = to_intel_plane(plane)->id;
4891 struct skl_wm_params wm_params;
4892 enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4893 uint16_t ddb_blocks;
4894
4895 wm = &pipe_wm->planes[plane_id];
4896 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4897
4898 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4899 intel_pstate, &wm_params, 0);
4900 if (ret)
4901 return ret;
4902
4903 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4904 intel_pstate, &wm_params, wm, 0);
4905 if (ret)
4906 return ret;
4907
4908 skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4909 ddb_blocks, &wm->trans_wm);
4910
4911 /* uv plane watermarks must also be validated for NV12/Planar */
4912 if (wm_params.is_planar) {
4913 memset(&wm_params, 0, sizeof(struct skl_wm_params));
4914 wm->is_planar = true;
4915
4916 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4917 intel_pstate,
4918 &wm_params, 1);
4919 if (ret)
4920 return ret;
4921
4922 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4923 intel_pstate, &wm_params,
4924 wm, 1);
4925 if (ret)
4926 return ret;
4927 }
4928 }
4929
4930 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4931
4932 return 0;
4933 }
4934
skl_ddb_entry_write(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_ddb_entry * entry)4935 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4936 i915_reg_t reg,
4937 const struct skl_ddb_entry *entry)
4938 {
4939 if (entry->end)
4940 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4941 else
4942 I915_WRITE(reg, 0);
4943 }
4944
skl_write_wm_level(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_wm_level * level)4945 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4946 i915_reg_t reg,
4947 const struct skl_wm_level *level)
4948 {
4949 uint32_t val = 0;
4950
4951 if (level->plane_en) {
4952 val |= PLANE_WM_EN;
4953 val |= level->plane_res_b;
4954 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4955 }
4956
4957 I915_WRITE(reg, val);
4958 }
4959
skl_write_plane_wm(struct intel_crtc * intel_crtc,const struct skl_plane_wm * wm,const struct skl_ddb_allocation * ddb,enum plane_id plane_id)4960 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4961 const struct skl_plane_wm *wm,
4962 const struct skl_ddb_allocation *ddb,
4963 enum plane_id plane_id)
4964 {
4965 struct drm_crtc *crtc = &intel_crtc->base;
4966 struct drm_device *dev = crtc->dev;
4967 struct drm_i915_private *dev_priv = to_i915(dev);
4968 int level, max_level = ilk_wm_max_level(dev_priv);
4969 enum pipe pipe = intel_crtc->pipe;
4970
4971 for (level = 0; level <= max_level; level++) {
4972 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4973 &wm->wm[level]);
4974 }
4975 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4976 &wm->trans_wm);
4977
4978 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4979 &ddb->plane[pipe][plane_id]);
4980 if (INTEL_GEN(dev_priv) >= 11)
4981 return skl_ddb_entry_write(dev_priv,
4982 PLANE_BUF_CFG(pipe, plane_id),
4983 &ddb->plane[pipe][plane_id]);
4984 if (wm->is_planar) {
4985 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4986 &ddb->uv_plane[pipe][plane_id]);
4987 skl_ddb_entry_write(dev_priv,
4988 PLANE_NV12_BUF_CFG(pipe, plane_id),
4989 &ddb->plane[pipe][plane_id]);
4990 } else {
4991 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4992 &ddb->plane[pipe][plane_id]);
4993 I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
4994 }
4995 }
4996
skl_write_cursor_wm(struct intel_crtc * intel_crtc,const struct skl_plane_wm * wm,const struct skl_ddb_allocation * ddb)4997 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4998 const struct skl_plane_wm *wm,
4999 const struct skl_ddb_allocation *ddb)
5000 {
5001 struct drm_crtc *crtc = &intel_crtc->base;
5002 struct drm_device *dev = crtc->dev;
5003 struct drm_i915_private *dev_priv = to_i915(dev);
5004 int level, max_level = ilk_wm_max_level(dev_priv);
5005 enum pipe pipe = intel_crtc->pipe;
5006
5007 for (level = 0; level <= max_level; level++) {
5008 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5009 &wm->wm[level]);
5010 }
5011 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5012
5013 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5014 &ddb->plane[pipe][PLANE_CURSOR]);
5015 }
5016
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)5017 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5018 const struct skl_wm_level *l2)
5019 {
5020 if (l1->plane_en != l2->plane_en)
5021 return false;
5022
5023 /* If both planes aren't enabled, the rest shouldn't matter */
5024 if (!l1->plane_en)
5025 return true;
5026
5027 return (l1->plane_res_l == l2->plane_res_l &&
5028 l1->plane_res_b == l2->plane_res_b);
5029 }
5030
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)5031 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5032 const struct skl_ddb_entry *b)
5033 {
5034 return a->start < b->end && b->start < a->end;
5035 }
5036
skl_ddb_allocation_overlaps(struct drm_i915_private * dev_priv,const struct skl_ddb_entry ** entries,const struct skl_ddb_entry * ddb,int ignore)5037 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
5038 const struct skl_ddb_entry **entries,
5039 const struct skl_ddb_entry *ddb,
5040 int ignore)
5041 {
5042 enum pipe pipe;
5043
5044 for_each_pipe(dev_priv, pipe) {
5045 if (pipe != ignore && entries[pipe] &&
5046 skl_ddb_entries_overlap(ddb, entries[pipe]))
5047 return true;
5048 }
5049
5050 return false;
5051 }
5052
skl_update_pipe_wm(struct drm_crtc_state * cstate,const struct skl_pipe_wm * old_pipe_wm,struct skl_pipe_wm * pipe_wm,struct skl_ddb_allocation * ddb,bool * changed)5053 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5054 const struct skl_pipe_wm *old_pipe_wm,
5055 struct skl_pipe_wm *pipe_wm, /* out */
5056 struct skl_ddb_allocation *ddb, /* out */
5057 bool *changed /* out */)
5058 {
5059 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5060 int ret;
5061
5062 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
5063 if (ret)
5064 return ret;
5065
5066 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5067 *changed = false;
5068 else
5069 *changed = true;
5070
5071 return 0;
5072 }
5073
5074 static uint32_t
pipes_modified(struct drm_atomic_state * state)5075 pipes_modified(struct drm_atomic_state *state)
5076 {
5077 struct drm_crtc *crtc;
5078 struct drm_crtc_state *cstate;
5079 uint32_t i, ret = 0;
5080
5081 for_each_new_crtc_in_state(state, crtc, cstate, i)
5082 ret |= drm_crtc_mask(crtc);
5083
5084 return ret;
5085 }
5086
5087 static int
skl_ddb_add_affected_planes(struct intel_crtc_state * cstate)5088 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
5089 {
5090 struct drm_atomic_state *state = cstate->base.state;
5091 struct drm_device *dev = state->dev;
5092 struct drm_crtc *crtc = cstate->base.crtc;
5093 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5094 struct drm_i915_private *dev_priv = to_i915(dev);
5095 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5096 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5097 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
5098 struct drm_plane_state *plane_state;
5099 struct drm_plane *plane;
5100 enum pipe pipe = intel_crtc->pipe;
5101
5102 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
5103 enum plane_id plane_id = to_intel_plane(plane)->id;
5104
5105 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
5106 &new_ddb->plane[pipe][plane_id]) &&
5107 skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
5108 &new_ddb->uv_plane[pipe][plane_id]))
5109 continue;
5110
5111 plane_state = drm_atomic_get_plane_state(state, plane);
5112 if (IS_ERR(plane_state))
5113 return PTR_ERR(plane_state);
5114 }
5115
5116 return 0;
5117 }
5118
5119 static int
skl_compute_ddb(struct drm_atomic_state * state)5120 skl_compute_ddb(struct drm_atomic_state *state)
5121 {
5122 const struct drm_i915_private *dev_priv = to_i915(state->dev);
5123 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5124 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5125 struct intel_crtc *crtc;
5126 struct intel_crtc_state *cstate;
5127 int ret, i;
5128
5129 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5130
5131 for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5132 ret = skl_allocate_pipe_ddb(cstate, ddb);
5133 if (ret)
5134 return ret;
5135
5136 ret = skl_ddb_add_affected_planes(cstate);
5137 if (ret)
5138 return ret;
5139 }
5140
5141 return 0;
5142 }
5143
5144 static void
skl_copy_ddb_for_pipe(struct skl_ddb_values * dst,struct skl_ddb_values * src,enum pipe pipe)5145 skl_copy_ddb_for_pipe(struct skl_ddb_values *dst,
5146 struct skl_ddb_values *src,
5147 enum pipe pipe)
5148 {
5149 memcpy(dst->ddb.uv_plane[pipe], src->ddb.uv_plane[pipe],
5150 sizeof(dst->ddb.uv_plane[pipe]));
5151 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
5152 sizeof(dst->ddb.plane[pipe]));
5153 }
5154
5155 static void
skl_print_wm_changes(const struct drm_atomic_state * state)5156 skl_print_wm_changes(const struct drm_atomic_state *state)
5157 {
5158 const struct drm_device *dev = state->dev;
5159 const struct drm_i915_private *dev_priv = to_i915(dev);
5160 const struct intel_atomic_state *intel_state =
5161 to_intel_atomic_state(state);
5162 const struct drm_crtc *crtc;
5163 const struct drm_crtc_state *cstate;
5164 const struct intel_plane *intel_plane;
5165 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
5166 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5167 int i;
5168
5169 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5170 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5171 enum pipe pipe = intel_crtc->pipe;
5172
5173 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5174 enum plane_id plane_id = intel_plane->id;
5175 const struct skl_ddb_entry *old, *new;
5176
5177 old = &old_ddb->plane[pipe][plane_id];
5178 new = &new_ddb->plane[pipe][plane_id];
5179
5180 if (skl_ddb_entry_equal(old, new))
5181 continue;
5182
5183 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5184 intel_plane->base.base.id,
5185 intel_plane->base.name,
5186 old->start, old->end,
5187 new->start, new->end);
5188 }
5189 }
5190 }
5191
5192 static int
skl_ddb_add_affected_pipes(struct drm_atomic_state * state,bool * changed)5193 skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5194 {
5195 struct drm_device *dev = state->dev;
5196 const struct drm_i915_private *dev_priv = to_i915(dev);
5197 const struct drm_crtc *crtc;
5198 const struct drm_crtc_state *cstate;
5199 struct intel_crtc *intel_crtc;
5200 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5201 uint32_t realloc_pipes = pipes_modified(state);
5202 int ret, i;
5203
5204 /*
5205 * When we distrust bios wm we always need to recompute to set the
5206 * expected DDB allocations for each CRTC.
5207 */
5208 if (dev_priv->wm.distrust_bios_wm)
5209 (*changed) = true;
5210
5211 /*
5212 * If this transaction isn't actually touching any CRTC's, don't
5213 * bother with watermark calculation. Note that if we pass this
5214 * test, we're guaranteed to hold at least one CRTC state mutex,
5215 * which means we can safely use values like dev_priv->active_crtcs
5216 * since any racing commits that want to update them would need to
5217 * hold _all_ CRTC state mutexes.
5218 */
5219 for_each_new_crtc_in_state(state, crtc, cstate, i)
5220 (*changed) = true;
5221
5222 if (!*changed)
5223 return 0;
5224
5225 /*
5226 * If this is our first atomic update following hardware readout,
5227 * we can't trust the DDB that the BIOS programmed for us. Let's
5228 * pretend that all pipes switched active status so that we'll
5229 * ensure a full DDB recompute.
5230 */
5231 if (dev_priv->wm.distrust_bios_wm) {
5232 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5233 state->acquire_ctx);
5234 if (ret)
5235 return ret;
5236
5237 intel_state->active_pipe_changes = ~0;
5238
5239 /*
5240 * We usually only initialize intel_state->active_crtcs if we
5241 * we're doing a modeset; make sure this field is always
5242 * initialized during the sanitization process that happens
5243 * on the first commit too.
5244 */
5245 if (!intel_state->modeset)
5246 intel_state->active_crtcs = dev_priv->active_crtcs;
5247 }
5248
5249 /*
5250 * If the modeset changes which CRTC's are active, we need to
5251 * recompute the DDB allocation for *all* active pipes, even
5252 * those that weren't otherwise being modified in any way by this
5253 * atomic commit. Due to the shrinking of the per-pipe allocations
5254 * when new active CRTC's are added, it's possible for a pipe that
5255 * we were already using and aren't changing at all here to suddenly
5256 * become invalid if its DDB needs exceeds its new allocation.
5257 *
5258 * Note that if we wind up doing a full DDB recompute, we can't let
5259 * any other display updates race with this transaction, so we need
5260 * to grab the lock on *all* CRTC's.
5261 */
5262 if (intel_state->active_pipe_changes) {
5263 realloc_pipes = ~0;
5264 intel_state->wm_results.dirty_pipes = ~0;
5265 }
5266
5267 /*
5268 * We're not recomputing for the pipes not included in the commit, so
5269 * make sure we start with the current state.
5270 */
5271 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
5272 struct intel_crtc_state *cstate;
5273
5274 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
5275 if (IS_ERR(cstate))
5276 return PTR_ERR(cstate);
5277 }
5278
5279 return 0;
5280 }
5281
5282 static int
skl_compute_wm(struct drm_atomic_state * state)5283 skl_compute_wm(struct drm_atomic_state *state)
5284 {
5285 struct drm_crtc *crtc;
5286 struct drm_crtc_state *cstate;
5287 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5288 struct skl_ddb_values *results = &intel_state->wm_results;
5289 struct skl_pipe_wm *pipe_wm;
5290 bool changed = false;
5291 int ret, i;
5292
5293 /* Clear all dirty flags */
5294 results->dirty_pipes = 0;
5295
5296 ret = skl_ddb_add_affected_pipes(state, &changed);
5297 if (ret || !changed)
5298 return ret;
5299
5300 ret = skl_compute_ddb(state);
5301 if (ret)
5302 return ret;
5303
5304 /*
5305 * Calculate WM's for all pipes that are part of this transaction.
5306 * Note that the DDB allocation above may have added more CRTC's that
5307 * weren't otherwise being modified (and set bits in dirty_pipes) if
5308 * pipe allocations had to change.
5309 *
5310 * FIXME: Now that we're doing this in the atomic check phase, we
5311 * should allow skl_update_pipe_wm() to return failure in cases where
5312 * no suitable watermark values can be found.
5313 */
5314 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5315 struct intel_crtc_state *intel_cstate =
5316 to_intel_crtc_state(cstate);
5317 const struct skl_pipe_wm *old_pipe_wm =
5318 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5319
5320 pipe_wm = &intel_cstate->wm.skl.optimal;
5321 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5322 &results->ddb, &changed);
5323 if (ret)
5324 return ret;
5325
5326 if (changed)
5327 results->dirty_pipes |= drm_crtc_mask(crtc);
5328
5329 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5330 /* This pipe's WM's did not change */
5331 continue;
5332
5333 intel_cstate->update_wm_pre = true;
5334 }
5335
5336 skl_print_wm_changes(state);
5337
5338 return 0;
5339 }
5340
skl_atomic_update_crtc_wm(struct intel_atomic_state * state,struct intel_crtc_state * cstate)5341 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5342 struct intel_crtc_state *cstate)
5343 {
5344 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5345 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5346 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5347 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5348 enum pipe pipe = crtc->pipe;
5349 enum plane_id plane_id;
5350
5351 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5352 return;
5353
5354 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5355
5356 for_each_plane_id_on_crtc(crtc, plane_id) {
5357 if (plane_id != PLANE_CURSOR)
5358 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5359 ddb, plane_id);
5360 else
5361 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5362 ddb);
5363 }
5364 }
5365
skl_initial_wm(struct intel_atomic_state * state,struct intel_crtc_state * cstate)5366 static void skl_initial_wm(struct intel_atomic_state *state,
5367 struct intel_crtc_state *cstate)
5368 {
5369 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5370 struct drm_device *dev = intel_crtc->base.dev;
5371 struct drm_i915_private *dev_priv = to_i915(dev);
5372 struct skl_ddb_values *results = &state->wm_results;
5373 struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5374 enum pipe pipe = intel_crtc->pipe;
5375
5376 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5377 return;
5378
5379 mutex_lock(&dev_priv->wm.wm_mutex);
5380
5381 if (cstate->base.active_changed)
5382 skl_atomic_update_crtc_wm(state, cstate);
5383
5384 skl_copy_ddb_for_pipe(hw_vals, results, pipe);
5385
5386 mutex_unlock(&dev_priv->wm.wm_mutex);
5387 }
5388
ilk_compute_wm_config(struct drm_device * dev,struct intel_wm_config * config)5389 static void ilk_compute_wm_config(struct drm_device *dev,
5390 struct intel_wm_config *config)
5391 {
5392 struct intel_crtc *crtc;
5393
5394 /* Compute the currently _active_ config */
5395 for_each_intel_crtc(dev, crtc) {
5396 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5397
5398 if (!wm->pipe_enabled)
5399 continue;
5400
5401 config->sprites_enabled |= wm->sprites_enabled;
5402 config->sprites_scaled |= wm->sprites_scaled;
5403 config->num_pipes_active++;
5404 }
5405 }
5406
ilk_program_watermarks(struct drm_i915_private * dev_priv)5407 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5408 {
5409 struct drm_device *dev = &dev_priv->drm;
5410 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5411 struct ilk_wm_maximums max;
5412 struct intel_wm_config config = {};
5413 struct ilk_wm_values results = {};
5414 enum intel_ddb_partitioning partitioning;
5415
5416 ilk_compute_wm_config(dev, &config);
5417
5418 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5419 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5420
5421 /* 5/6 split only in single pipe config on IVB+ */
5422 if (INTEL_GEN(dev_priv) >= 7 &&
5423 config.num_pipes_active == 1 && config.sprites_enabled) {
5424 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5425 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5426
5427 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5428 } else {
5429 best_lp_wm = &lp_wm_1_2;
5430 }
5431
5432 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5433 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5434
5435 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5436
5437 ilk_write_wm_values(dev_priv, &results);
5438 }
5439
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * cstate)5440 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5441 struct intel_crtc_state *cstate)
5442 {
5443 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5444 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5445
5446 mutex_lock(&dev_priv->wm.wm_mutex);
5447 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5448 ilk_program_watermarks(dev_priv);
5449 mutex_unlock(&dev_priv->wm.wm_mutex);
5450 }
5451
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * cstate)5452 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5453 struct intel_crtc_state *cstate)
5454 {
5455 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5456 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5457
5458 mutex_lock(&dev_priv->wm.wm_mutex);
5459 if (cstate->wm.need_postvbl_update) {
5460 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5461 ilk_program_watermarks(dev_priv);
5462 }
5463 mutex_unlock(&dev_priv->wm.wm_mutex);
5464 }
5465
skl_wm_level_from_reg_val(uint32_t val,struct skl_wm_level * level)5466 static inline void skl_wm_level_from_reg_val(uint32_t val,
5467 struct skl_wm_level *level)
5468 {
5469 level->plane_en = val & PLANE_WM_EN;
5470 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5471 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5472 PLANE_WM_LINES_MASK;
5473 }
5474
skl_pipe_wm_get_hw_state(struct drm_crtc * crtc,struct skl_pipe_wm * out)5475 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5476 struct skl_pipe_wm *out)
5477 {
5478 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5479 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5480 enum pipe pipe = intel_crtc->pipe;
5481 int level, max_level;
5482 enum plane_id plane_id;
5483 uint32_t val;
5484
5485 max_level = ilk_wm_max_level(dev_priv);
5486
5487 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5488 struct skl_plane_wm *wm = &out->planes[plane_id];
5489
5490 for (level = 0; level <= max_level; level++) {
5491 if (plane_id != PLANE_CURSOR)
5492 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5493 else
5494 val = I915_READ(CUR_WM(pipe, level));
5495
5496 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5497 }
5498
5499 if (plane_id != PLANE_CURSOR)
5500 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5501 else
5502 val = I915_READ(CUR_WM_TRANS(pipe));
5503
5504 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5505 }
5506
5507 if (!intel_crtc->active)
5508 return;
5509
5510 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5511 }
5512
skl_wm_get_hw_state(struct drm_device * dev)5513 void skl_wm_get_hw_state(struct drm_device *dev)
5514 {
5515 struct drm_i915_private *dev_priv = to_i915(dev);
5516 struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5517 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5518 struct drm_crtc *crtc;
5519 struct intel_crtc *intel_crtc;
5520 struct intel_crtc_state *cstate;
5521
5522 skl_ddb_get_hw_state(dev_priv, ddb);
5523 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5524 intel_crtc = to_intel_crtc(crtc);
5525 cstate = to_intel_crtc_state(crtc->state);
5526
5527 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5528
5529 if (intel_crtc->active)
5530 hw->dirty_pipes |= drm_crtc_mask(crtc);
5531 }
5532
5533 if (dev_priv->active_crtcs) {
5534 /* Fully recompute DDB on first atomic commit */
5535 dev_priv->wm.distrust_bios_wm = true;
5536 } else {
5537 /*
5538 * Easy/common case; just sanitize DDB now if everything off
5539 * Keep dbuf slice info intact
5540 */
5541 memset(ddb->plane, 0, sizeof(ddb->plane));
5542 memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5543 }
5544 }
5545
ilk_pipe_wm_get_hw_state(struct drm_crtc * crtc)5546 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5547 {
5548 struct drm_device *dev = crtc->dev;
5549 struct drm_i915_private *dev_priv = to_i915(dev);
5550 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5551 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5552 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5553 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5554 enum pipe pipe = intel_crtc->pipe;
5555 static const i915_reg_t wm0_pipe_reg[] = {
5556 [PIPE_A] = WM0_PIPEA_ILK,
5557 [PIPE_B] = WM0_PIPEB_ILK,
5558 [PIPE_C] = WM0_PIPEC_IVB,
5559 };
5560
5561 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5562 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5563 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5564
5565 memset(active, 0, sizeof(*active));
5566
5567 active->pipe_enabled = intel_crtc->active;
5568
5569 if (active->pipe_enabled) {
5570 u32 tmp = hw->wm_pipe[pipe];
5571
5572 /*
5573 * For active pipes LP0 watermark is marked as
5574 * enabled, and LP1+ watermaks as disabled since
5575 * we can't really reverse compute them in case
5576 * multiple pipes are active.
5577 */
5578 active->wm[0].enable = true;
5579 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5580 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5581 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5582 active->linetime = hw->wm_linetime[pipe];
5583 } else {
5584 int level, max_level = ilk_wm_max_level(dev_priv);
5585
5586 /*
5587 * For inactive pipes, all watermark levels
5588 * should be marked as enabled but zeroed,
5589 * which is what we'd compute them to.
5590 */
5591 for (level = 0; level <= max_level; level++)
5592 active->wm[level].enable = true;
5593 }
5594
5595 intel_crtc->wm.active.ilk = *active;
5596 }
5597
5598 #define _FW_WM(value, plane) \
5599 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5600 #define _FW_WM_VLV(value, plane) \
5601 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5602
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)5603 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5604 struct g4x_wm_values *wm)
5605 {
5606 uint32_t tmp;
5607
5608 tmp = I915_READ(DSPFW1);
5609 wm->sr.plane = _FW_WM(tmp, SR);
5610 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5611 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5612 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5613
5614 tmp = I915_READ(DSPFW2);
5615 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5616 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5617 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5618 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5619 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5620 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5621
5622 tmp = I915_READ(DSPFW3);
5623 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5624 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5625 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5626 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5627 }
5628
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)5629 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5630 struct vlv_wm_values *wm)
5631 {
5632 enum pipe pipe;
5633 uint32_t tmp;
5634
5635 for_each_pipe(dev_priv, pipe) {
5636 tmp = I915_READ(VLV_DDL(pipe));
5637
5638 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5639 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5640 wm->ddl[pipe].plane[PLANE_CURSOR] =
5641 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5642 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5643 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5644 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5645 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5646 }
5647
5648 tmp = I915_READ(DSPFW1);
5649 wm->sr.plane = _FW_WM(tmp, SR);
5650 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5651 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5652 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5653
5654 tmp = I915_READ(DSPFW2);
5655 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5656 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5657 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5658
5659 tmp = I915_READ(DSPFW3);
5660 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5661
5662 if (IS_CHERRYVIEW(dev_priv)) {
5663 tmp = I915_READ(DSPFW7_CHV);
5664 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5665 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5666
5667 tmp = I915_READ(DSPFW8_CHV);
5668 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5669 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5670
5671 tmp = I915_READ(DSPFW9_CHV);
5672 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5673 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5674
5675 tmp = I915_READ(DSPHOWM);
5676 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5677 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5678 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5679 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5680 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5681 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5682 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5683 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5684 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5685 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5686 } else {
5687 tmp = I915_READ(DSPFW7);
5688 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5689 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5690
5691 tmp = I915_READ(DSPHOWM);
5692 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5693 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5694 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5695 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5696 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5697 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5698 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5699 }
5700 }
5701
5702 #undef _FW_WM
5703 #undef _FW_WM_VLV
5704
g4x_wm_get_hw_state(struct drm_device * dev)5705 void g4x_wm_get_hw_state(struct drm_device *dev)
5706 {
5707 struct drm_i915_private *dev_priv = to_i915(dev);
5708 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5709 struct intel_crtc *crtc;
5710
5711 g4x_read_wm_values(dev_priv, wm);
5712
5713 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5714
5715 for_each_intel_crtc(dev, crtc) {
5716 struct intel_crtc_state *crtc_state =
5717 to_intel_crtc_state(crtc->base.state);
5718 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5719 struct g4x_pipe_wm *raw;
5720 enum pipe pipe = crtc->pipe;
5721 enum plane_id plane_id;
5722 int level, max_level;
5723
5724 active->cxsr = wm->cxsr;
5725 active->hpll_en = wm->hpll_en;
5726 active->fbc_en = wm->fbc_en;
5727
5728 active->sr = wm->sr;
5729 active->hpll = wm->hpll;
5730
5731 for_each_plane_id_on_crtc(crtc, plane_id) {
5732 active->wm.plane[plane_id] =
5733 wm->pipe[pipe].plane[plane_id];
5734 }
5735
5736 if (wm->cxsr && wm->hpll_en)
5737 max_level = G4X_WM_LEVEL_HPLL;
5738 else if (wm->cxsr)
5739 max_level = G4X_WM_LEVEL_SR;
5740 else
5741 max_level = G4X_WM_LEVEL_NORMAL;
5742
5743 level = G4X_WM_LEVEL_NORMAL;
5744 raw = &crtc_state->wm.g4x.raw[level];
5745 for_each_plane_id_on_crtc(crtc, plane_id)
5746 raw->plane[plane_id] = active->wm.plane[plane_id];
5747
5748 if (++level > max_level)
5749 goto out;
5750
5751 raw = &crtc_state->wm.g4x.raw[level];
5752 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5753 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5754 raw->plane[PLANE_SPRITE0] = 0;
5755 raw->fbc = active->sr.fbc;
5756
5757 if (++level > max_level)
5758 goto out;
5759
5760 raw = &crtc_state->wm.g4x.raw[level];
5761 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5762 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5763 raw->plane[PLANE_SPRITE0] = 0;
5764 raw->fbc = active->hpll.fbc;
5765
5766 out:
5767 for_each_plane_id_on_crtc(crtc, plane_id)
5768 g4x_raw_plane_wm_set(crtc_state, level,
5769 plane_id, USHRT_MAX);
5770 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5771
5772 crtc_state->wm.g4x.optimal = *active;
5773 crtc_state->wm.g4x.intermediate = *active;
5774
5775 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5776 pipe_name(pipe),
5777 wm->pipe[pipe].plane[PLANE_PRIMARY],
5778 wm->pipe[pipe].plane[PLANE_CURSOR],
5779 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5780 }
5781
5782 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5783 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5784 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5785 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5786 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5787 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5788 }
5789
g4x_wm_sanitize(struct drm_i915_private * dev_priv)5790 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5791 {
5792 struct intel_plane *plane;
5793 struct intel_crtc *crtc;
5794
5795 mutex_lock(&dev_priv->wm.wm_mutex);
5796
5797 for_each_intel_plane(&dev_priv->drm, plane) {
5798 struct intel_crtc *crtc =
5799 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5800 struct intel_crtc_state *crtc_state =
5801 to_intel_crtc_state(crtc->base.state);
5802 struct intel_plane_state *plane_state =
5803 to_intel_plane_state(plane->base.state);
5804 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5805 enum plane_id plane_id = plane->id;
5806 int level;
5807
5808 if (plane_state->base.visible)
5809 continue;
5810
5811 for (level = 0; level < 3; level++) {
5812 struct g4x_pipe_wm *raw =
5813 &crtc_state->wm.g4x.raw[level];
5814
5815 raw->plane[plane_id] = 0;
5816 wm_state->wm.plane[plane_id] = 0;
5817 }
5818
5819 if (plane_id == PLANE_PRIMARY) {
5820 for (level = 0; level < 3; level++) {
5821 struct g4x_pipe_wm *raw =
5822 &crtc_state->wm.g4x.raw[level];
5823 raw->fbc = 0;
5824 }
5825
5826 wm_state->sr.fbc = 0;
5827 wm_state->hpll.fbc = 0;
5828 wm_state->fbc_en = false;
5829 }
5830 }
5831
5832 for_each_intel_crtc(&dev_priv->drm, crtc) {
5833 struct intel_crtc_state *crtc_state =
5834 to_intel_crtc_state(crtc->base.state);
5835
5836 crtc_state->wm.g4x.intermediate =
5837 crtc_state->wm.g4x.optimal;
5838 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5839 }
5840
5841 g4x_program_watermarks(dev_priv);
5842
5843 mutex_unlock(&dev_priv->wm.wm_mutex);
5844 }
5845
vlv_wm_get_hw_state(struct drm_device * dev)5846 void vlv_wm_get_hw_state(struct drm_device *dev)
5847 {
5848 struct drm_i915_private *dev_priv = to_i915(dev);
5849 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5850 struct intel_crtc *crtc;
5851 u32 val;
5852
5853 vlv_read_wm_values(dev_priv, wm);
5854
5855 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5856 wm->level = VLV_WM_LEVEL_PM2;
5857
5858 if (IS_CHERRYVIEW(dev_priv)) {
5859 mutex_lock(&dev_priv->pcu_lock);
5860
5861 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5862 if (val & DSP_MAXFIFO_PM5_ENABLE)
5863 wm->level = VLV_WM_LEVEL_PM5;
5864
5865 /*
5866 * If DDR DVFS is disabled in the BIOS, Punit
5867 * will never ack the request. So if that happens
5868 * assume we don't have to enable/disable DDR DVFS
5869 * dynamically. To test that just set the REQ_ACK
5870 * bit to poke the Punit, but don't change the
5871 * HIGH/LOW bits so that we don't actually change
5872 * the current state.
5873 */
5874 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5875 val |= FORCE_DDR_FREQ_REQ_ACK;
5876 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5877
5878 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5879 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5880 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5881 "assuming DDR DVFS is disabled\n");
5882 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5883 } else {
5884 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5885 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5886 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5887 }
5888
5889 mutex_unlock(&dev_priv->pcu_lock);
5890 }
5891
5892 for_each_intel_crtc(dev, crtc) {
5893 struct intel_crtc_state *crtc_state =
5894 to_intel_crtc_state(crtc->base.state);
5895 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5896 const struct vlv_fifo_state *fifo_state =
5897 &crtc_state->wm.vlv.fifo_state;
5898 enum pipe pipe = crtc->pipe;
5899 enum plane_id plane_id;
5900 int level;
5901
5902 vlv_get_fifo_size(crtc_state);
5903
5904 active->num_levels = wm->level + 1;
5905 active->cxsr = wm->cxsr;
5906
5907 for (level = 0; level < active->num_levels; level++) {
5908 struct g4x_pipe_wm *raw =
5909 &crtc_state->wm.vlv.raw[level];
5910
5911 active->sr[level].plane = wm->sr.plane;
5912 active->sr[level].cursor = wm->sr.cursor;
5913
5914 for_each_plane_id_on_crtc(crtc, plane_id) {
5915 active->wm[level].plane[plane_id] =
5916 wm->pipe[pipe].plane[plane_id];
5917
5918 raw->plane[plane_id] =
5919 vlv_invert_wm_value(active->wm[level].plane[plane_id],
5920 fifo_state->plane[plane_id]);
5921 }
5922 }
5923
5924 for_each_plane_id_on_crtc(crtc, plane_id)
5925 vlv_raw_plane_wm_set(crtc_state, level,
5926 plane_id, USHRT_MAX);
5927 vlv_invalidate_wms(crtc, active, level);
5928
5929 crtc_state->wm.vlv.optimal = *active;
5930 crtc_state->wm.vlv.intermediate = *active;
5931
5932 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5933 pipe_name(pipe),
5934 wm->pipe[pipe].plane[PLANE_PRIMARY],
5935 wm->pipe[pipe].plane[PLANE_CURSOR],
5936 wm->pipe[pipe].plane[PLANE_SPRITE0],
5937 wm->pipe[pipe].plane[PLANE_SPRITE1]);
5938 }
5939
5940 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5941 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5942 }
5943
vlv_wm_sanitize(struct drm_i915_private * dev_priv)5944 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5945 {
5946 struct intel_plane *plane;
5947 struct intel_crtc *crtc;
5948
5949 mutex_lock(&dev_priv->wm.wm_mutex);
5950
5951 for_each_intel_plane(&dev_priv->drm, plane) {
5952 struct intel_crtc *crtc =
5953 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5954 struct intel_crtc_state *crtc_state =
5955 to_intel_crtc_state(crtc->base.state);
5956 struct intel_plane_state *plane_state =
5957 to_intel_plane_state(plane->base.state);
5958 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5959 const struct vlv_fifo_state *fifo_state =
5960 &crtc_state->wm.vlv.fifo_state;
5961 enum plane_id plane_id = plane->id;
5962 int level;
5963
5964 if (plane_state->base.visible)
5965 continue;
5966
5967 for (level = 0; level < wm_state->num_levels; level++) {
5968 struct g4x_pipe_wm *raw =
5969 &crtc_state->wm.vlv.raw[level];
5970
5971 raw->plane[plane_id] = 0;
5972
5973 wm_state->wm[level].plane[plane_id] =
5974 vlv_invert_wm_value(raw->plane[plane_id],
5975 fifo_state->plane[plane_id]);
5976 }
5977 }
5978
5979 for_each_intel_crtc(&dev_priv->drm, crtc) {
5980 struct intel_crtc_state *crtc_state =
5981 to_intel_crtc_state(crtc->base.state);
5982
5983 crtc_state->wm.vlv.intermediate =
5984 crtc_state->wm.vlv.optimal;
5985 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5986 }
5987
5988 vlv_program_watermarks(dev_priv);
5989
5990 mutex_unlock(&dev_priv->wm.wm_mutex);
5991 }
5992
5993 /*
5994 * FIXME should probably kill this and improve
5995 * the real watermark readout/sanitation instead
5996 */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)5997 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
5998 {
5999 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6000 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6001 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6002
6003 /*
6004 * Don't touch WM1S_LP_EN here.
6005 * Doing so could cause underruns.
6006 */
6007 }
6008
ilk_wm_get_hw_state(struct drm_device * dev)6009 void ilk_wm_get_hw_state(struct drm_device *dev)
6010 {
6011 struct drm_i915_private *dev_priv = to_i915(dev);
6012 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6013 struct drm_crtc *crtc;
6014
6015 ilk_init_lp_watermarks(dev_priv);
6016
6017 for_each_crtc(dev, crtc)
6018 ilk_pipe_wm_get_hw_state(crtc);
6019
6020 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6021 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6022 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6023
6024 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6025 if (INTEL_GEN(dev_priv) >= 7) {
6026 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6027 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6028 }
6029
6030 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6031 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6032 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6033 else if (IS_IVYBRIDGE(dev_priv))
6034 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6035 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6036
6037 hw->enable_fbc_wm =
6038 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6039 }
6040
6041 /**
6042 * intel_update_watermarks - update FIFO watermark values based on current modes
6043 * @crtc: the #intel_crtc on which to compute the WM
6044 *
6045 * Calculate watermark values for the various WM regs based on current mode
6046 * and plane configuration.
6047 *
6048 * There are several cases to deal with here:
6049 * - normal (i.e. non-self-refresh)
6050 * - self-refresh (SR) mode
6051 * - lines are large relative to FIFO size (buffer can hold up to 2)
6052 * - lines are small relative to FIFO size (buffer can hold more than 2
6053 * lines), so need to account for TLB latency
6054 *
6055 * The normal calculation is:
6056 * watermark = dotclock * bytes per pixel * latency
6057 * where latency is platform & configuration dependent (we assume pessimal
6058 * values here).
6059 *
6060 * The SR calculation is:
6061 * watermark = (trunc(latency/line time)+1) * surface width *
6062 * bytes per pixel
6063 * where
6064 * line time = htotal / dotclock
6065 * surface width = hdisplay for normal plane and 64 for cursor
6066 * and latency is assumed to be high, as above.
6067 *
6068 * The final value programmed to the register should always be rounded up,
6069 * and include an extra 2 entries to account for clock crossings.
6070 *
6071 * We don't use the sprite, so we can ignore that. And on Crestline we have
6072 * to set the non-SR watermarks to 8.
6073 */
intel_update_watermarks(struct intel_crtc * crtc)6074 void intel_update_watermarks(struct intel_crtc *crtc)
6075 {
6076 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6077
6078 if (dev_priv->display.update_wm)
6079 dev_priv->display.update_wm(crtc);
6080 }
6081
intel_enable_ipc(struct drm_i915_private * dev_priv)6082 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6083 {
6084 u32 val;
6085
6086 /* Display WA #0477 WaDisableIPC: skl */
6087 if (IS_SKYLAKE(dev_priv)) {
6088 dev_priv->ipc_enabled = false;
6089 return;
6090 }
6091
6092 val = I915_READ(DISP_ARB_CTL2);
6093
6094 if (dev_priv->ipc_enabled)
6095 val |= DISP_IPC_ENABLE;
6096 else
6097 val &= ~DISP_IPC_ENABLE;
6098
6099 I915_WRITE(DISP_ARB_CTL2, val);
6100 }
6101
intel_init_ipc(struct drm_i915_private * dev_priv)6102 void intel_init_ipc(struct drm_i915_private *dev_priv)
6103 {
6104 dev_priv->ipc_enabled = false;
6105 if (!HAS_IPC(dev_priv))
6106 return;
6107
6108 dev_priv->ipc_enabled = true;
6109 intel_enable_ipc(dev_priv);
6110 }
6111
6112 /*
6113 * Lock protecting IPS related data structures
6114 */
6115 DEFINE_SPINLOCK(mchdev_lock);
6116
6117 /* Global for IPS driver to get at the current i915 device. Protected by
6118 * mchdev_lock. */
6119 static struct drm_i915_private *i915_mch_dev;
6120
ironlake_set_drps(struct drm_i915_private * dev_priv,u8 val)6121 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6122 {
6123 u16 rgvswctl;
6124
6125 lockdep_assert_held(&mchdev_lock);
6126
6127 rgvswctl = I915_READ16(MEMSWCTL);
6128 if (rgvswctl & MEMCTL_CMD_STS) {
6129 DRM_DEBUG("gpu busy, RCS change rejected\n");
6130 return false; /* still busy with another command */
6131 }
6132
6133 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6134 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6135 I915_WRITE16(MEMSWCTL, rgvswctl);
6136 POSTING_READ16(MEMSWCTL);
6137
6138 rgvswctl |= MEMCTL_CMD_STS;
6139 I915_WRITE16(MEMSWCTL, rgvswctl);
6140
6141 return true;
6142 }
6143
ironlake_enable_drps(struct drm_i915_private * dev_priv)6144 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6145 {
6146 u32 rgvmodectl;
6147 u8 fmax, fmin, fstart, vstart;
6148
6149 spin_lock_irq(&mchdev_lock);
6150
6151 rgvmodectl = I915_READ(MEMMODECTL);
6152
6153 /* Enable temp reporting */
6154 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6155 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6156
6157 /* 100ms RC evaluation intervals */
6158 I915_WRITE(RCUPEI, 100000);
6159 I915_WRITE(RCDNEI, 100000);
6160
6161 /* Set max/min thresholds to 90ms and 80ms respectively */
6162 I915_WRITE(RCBMAXAVG, 90000);
6163 I915_WRITE(RCBMINAVG, 80000);
6164
6165 I915_WRITE(MEMIHYST, 1);
6166
6167 /* Set up min, max, and cur for interrupt handling */
6168 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6169 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6170 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6171 MEMMODE_FSTART_SHIFT;
6172
6173 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6174 PXVFREQ_PX_SHIFT;
6175
6176 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6177 dev_priv->ips.fstart = fstart;
6178
6179 dev_priv->ips.max_delay = fstart;
6180 dev_priv->ips.min_delay = fmin;
6181 dev_priv->ips.cur_delay = fstart;
6182
6183 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6184 fmax, fmin, fstart);
6185
6186 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6187
6188 /*
6189 * Interrupts will be enabled in ironlake_irq_postinstall
6190 */
6191
6192 I915_WRITE(VIDSTART, vstart);
6193 POSTING_READ(VIDSTART);
6194
6195 rgvmodectl |= MEMMODE_SWMODE_EN;
6196 I915_WRITE(MEMMODECTL, rgvmodectl);
6197
6198 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6199 DRM_ERROR("stuck trying to change perf mode\n");
6200 mdelay(1);
6201
6202 ironlake_set_drps(dev_priv, fstart);
6203
6204 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6205 I915_READ(DDREC) + I915_READ(CSIEC);
6206 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6207 dev_priv->ips.last_count2 = I915_READ(GFXEC);
6208 dev_priv->ips.last_time2 = ktime_get_raw_ns();
6209
6210 spin_unlock_irq(&mchdev_lock);
6211 }
6212
ironlake_disable_drps(struct drm_i915_private * dev_priv)6213 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6214 {
6215 u16 rgvswctl;
6216
6217 spin_lock_irq(&mchdev_lock);
6218
6219 rgvswctl = I915_READ16(MEMSWCTL);
6220
6221 /* Ack interrupts, disable EFC interrupt */
6222 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6223 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6224 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6225 I915_WRITE(DEIIR, DE_PCU_EVENT);
6226 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6227
6228 /* Go back to the starting frequency */
6229 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6230 mdelay(1);
6231 rgvswctl |= MEMCTL_CMD_STS;
6232 I915_WRITE(MEMSWCTL, rgvswctl);
6233 mdelay(1);
6234
6235 spin_unlock_irq(&mchdev_lock);
6236 }
6237
6238 /* There's a funny hw issue where the hw returns all 0 when reading from
6239 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6240 * ourselves, instead of doing a rmw cycle (which might result in us clearing
6241 * all limits and the gpu stuck at whatever frequency it is at atm).
6242 */
intel_rps_limits(struct drm_i915_private * dev_priv,u8 val)6243 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6244 {
6245 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6246 u32 limits;
6247
6248 /* Only set the down limit when we've reached the lowest level to avoid
6249 * getting more interrupts, otherwise leave this clear. This prevents a
6250 * race in the hw when coming out of rc6: There's a tiny window where
6251 * the hw runs at the minimal clock before selecting the desired
6252 * frequency, if the down threshold expires in that window we will not
6253 * receive a down interrupt. */
6254 if (INTEL_GEN(dev_priv) >= 9) {
6255 limits = (rps->max_freq_softlimit) << 23;
6256 if (val <= rps->min_freq_softlimit)
6257 limits |= (rps->min_freq_softlimit) << 14;
6258 } else {
6259 limits = rps->max_freq_softlimit << 24;
6260 if (val <= rps->min_freq_softlimit)
6261 limits |= rps->min_freq_softlimit << 16;
6262 }
6263
6264 return limits;
6265 }
6266
rps_set_power(struct drm_i915_private * dev_priv,int new_power)6267 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6268 {
6269 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6270 u32 threshold_up = 0, threshold_down = 0; /* in % */
6271 u32 ei_up = 0, ei_down = 0;
6272
6273 lockdep_assert_held(&rps->power.mutex);
6274
6275 if (new_power == rps->power.mode)
6276 return;
6277
6278 /* Note the units here are not exactly 1us, but 1280ns. */
6279 switch (new_power) {
6280 case LOW_POWER:
6281 /* Upclock if more than 95% busy over 16ms */
6282 ei_up = 16000;
6283 threshold_up = 95;
6284
6285 /* Downclock if less than 85% busy over 32ms */
6286 ei_down = 32000;
6287 threshold_down = 85;
6288 break;
6289
6290 case BETWEEN:
6291 /* Upclock if more than 90% busy over 13ms */
6292 ei_up = 13000;
6293 threshold_up = 90;
6294
6295 /* Downclock if less than 75% busy over 32ms */
6296 ei_down = 32000;
6297 threshold_down = 75;
6298 break;
6299
6300 case HIGH_POWER:
6301 /* Upclock if more than 85% busy over 10ms */
6302 ei_up = 10000;
6303 threshold_up = 85;
6304
6305 /* Downclock if less than 60% busy over 32ms */
6306 ei_down = 32000;
6307 threshold_down = 60;
6308 break;
6309 }
6310
6311 /* When byt can survive without system hang with dynamic
6312 * sw freq adjustments, this restriction can be lifted.
6313 */
6314 if (IS_VALLEYVIEW(dev_priv))
6315 goto skip_hw_write;
6316
6317 I915_WRITE(GEN6_RP_UP_EI,
6318 GT_INTERVAL_FROM_US(dev_priv, ei_up));
6319 I915_WRITE(GEN6_RP_UP_THRESHOLD,
6320 GT_INTERVAL_FROM_US(dev_priv,
6321 ei_up * threshold_up / 100));
6322
6323 I915_WRITE(GEN6_RP_DOWN_EI,
6324 GT_INTERVAL_FROM_US(dev_priv, ei_down));
6325 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6326 GT_INTERVAL_FROM_US(dev_priv,
6327 ei_down * threshold_down / 100));
6328
6329 I915_WRITE(GEN6_RP_CONTROL,
6330 GEN6_RP_MEDIA_TURBO |
6331 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6332 GEN6_RP_MEDIA_IS_GFX |
6333 GEN6_RP_ENABLE |
6334 GEN6_RP_UP_BUSY_AVG |
6335 GEN6_RP_DOWN_IDLE_AVG);
6336
6337 skip_hw_write:
6338 rps->power.mode = new_power;
6339 rps->power.up_threshold = threshold_up;
6340 rps->power.down_threshold = threshold_down;
6341 }
6342
gen6_set_rps_thresholds(struct drm_i915_private * dev_priv,u8 val)6343 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6344 {
6345 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6346 int new_power;
6347
6348 new_power = rps->power.mode;
6349 switch (rps->power.mode) {
6350 case LOW_POWER:
6351 if (val > rps->efficient_freq + 1 &&
6352 val > rps->cur_freq)
6353 new_power = BETWEEN;
6354 break;
6355
6356 case BETWEEN:
6357 if (val <= rps->efficient_freq &&
6358 val < rps->cur_freq)
6359 new_power = LOW_POWER;
6360 else if (val >= rps->rp0_freq &&
6361 val > rps->cur_freq)
6362 new_power = HIGH_POWER;
6363 break;
6364
6365 case HIGH_POWER:
6366 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6367 val < rps->cur_freq)
6368 new_power = BETWEEN;
6369 break;
6370 }
6371 /* Max/min bins are special */
6372 if (val <= rps->min_freq_softlimit)
6373 new_power = LOW_POWER;
6374 if (val >= rps->max_freq_softlimit)
6375 new_power = HIGH_POWER;
6376
6377 mutex_lock(&rps->power.mutex);
6378 if (rps->power.interactive)
6379 new_power = HIGH_POWER;
6380 rps_set_power(dev_priv, new_power);
6381 mutex_unlock(&rps->power.mutex);
6382 rps->last_adj = 0;
6383 }
6384
intel_rps_mark_interactive(struct drm_i915_private * i915,bool interactive)6385 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6386 {
6387 struct intel_rps *rps = &i915->gt_pm.rps;
6388
6389 if (INTEL_GEN(i915) < 6)
6390 return;
6391
6392 mutex_lock(&rps->power.mutex);
6393 if (interactive) {
6394 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6395 rps_set_power(i915, HIGH_POWER);
6396 } else {
6397 GEM_BUG_ON(!rps->power.interactive);
6398 rps->power.interactive--;
6399 }
6400 mutex_unlock(&rps->power.mutex);
6401 }
6402
gen6_rps_pm_mask(struct drm_i915_private * dev_priv,u8 val)6403 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6404 {
6405 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6406 u32 mask = 0;
6407
6408 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6409 if (val > rps->min_freq_softlimit)
6410 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6411 if (val < rps->max_freq_softlimit)
6412 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6413
6414 mask &= dev_priv->pm_rps_events;
6415
6416 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6417 }
6418
6419 /* gen6_set_rps is called to update the frequency request, but should also be
6420 * called when the range (min_delay and max_delay) is modified so that we can
6421 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
gen6_set_rps(struct drm_i915_private * dev_priv,u8 val)6422 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6423 {
6424 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6425
6426 /* min/max delay may still have been modified so be sure to
6427 * write the limits value.
6428 */
6429 if (val != rps->cur_freq) {
6430 gen6_set_rps_thresholds(dev_priv, val);
6431
6432 if (INTEL_GEN(dev_priv) >= 9)
6433 I915_WRITE(GEN6_RPNSWREQ,
6434 GEN9_FREQUENCY(val));
6435 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6436 I915_WRITE(GEN6_RPNSWREQ,
6437 HSW_FREQUENCY(val));
6438 else
6439 I915_WRITE(GEN6_RPNSWREQ,
6440 GEN6_FREQUENCY(val) |
6441 GEN6_OFFSET(0) |
6442 GEN6_AGGRESSIVE_TURBO);
6443 }
6444
6445 /* Make sure we continue to get interrupts
6446 * until we hit the minimum or maximum frequencies.
6447 */
6448 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6449 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6450
6451 rps->cur_freq = val;
6452 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6453
6454 return 0;
6455 }
6456
valleyview_set_rps(struct drm_i915_private * dev_priv,u8 val)6457 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6458 {
6459 int err;
6460
6461 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6462 "Odd GPU freq value\n"))
6463 val &= ~1;
6464
6465 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6466
6467 if (val != dev_priv->gt_pm.rps.cur_freq) {
6468 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6469 if (err)
6470 return err;
6471
6472 gen6_set_rps_thresholds(dev_priv, val);
6473 }
6474
6475 dev_priv->gt_pm.rps.cur_freq = val;
6476 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6477
6478 return 0;
6479 }
6480
6481 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6482 *
6483 * * If Gfx is Idle, then
6484 * 1. Forcewake Media well.
6485 * 2. Request idle freq.
6486 * 3. Release Forcewake of Media well.
6487 */
vlv_set_rps_idle(struct drm_i915_private * dev_priv)6488 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6489 {
6490 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6491 u32 val = rps->idle_freq;
6492 int err;
6493
6494 if (rps->cur_freq <= val)
6495 return;
6496
6497 /* The punit delays the write of the frequency and voltage until it
6498 * determines the GPU is awake. During normal usage we don't want to
6499 * waste power changing the frequency if the GPU is sleeping (rc6).
6500 * However, the GPU and driver is now idle and we do not want to delay
6501 * switching to minimum voltage (reducing power whilst idle) as we do
6502 * not expect to be woken in the near future and so must flush the
6503 * change by waking the device.
6504 *
6505 * We choose to take the media powerwell (either would do to trick the
6506 * punit into committing the voltage change) as that takes a lot less
6507 * power than the render powerwell.
6508 */
6509 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6510 err = valleyview_set_rps(dev_priv, val);
6511 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6512
6513 if (err)
6514 DRM_ERROR("Failed to set RPS for idle\n");
6515 }
6516
gen6_rps_busy(struct drm_i915_private * dev_priv)6517 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6518 {
6519 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6520
6521 mutex_lock(&dev_priv->pcu_lock);
6522 if (rps->enabled) {
6523 u8 freq;
6524
6525 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6526 gen6_rps_reset_ei(dev_priv);
6527 I915_WRITE(GEN6_PMINTRMSK,
6528 gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6529
6530 gen6_enable_rps_interrupts(dev_priv);
6531
6532 /* Use the user's desired frequency as a guide, but for better
6533 * performance, jump directly to RPe as our starting frequency.
6534 */
6535 freq = max(rps->cur_freq,
6536 rps->efficient_freq);
6537
6538 if (intel_set_rps(dev_priv,
6539 clamp(freq,
6540 rps->min_freq_softlimit,
6541 rps->max_freq_softlimit)))
6542 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6543 }
6544 mutex_unlock(&dev_priv->pcu_lock);
6545 }
6546
gen6_rps_idle(struct drm_i915_private * dev_priv)6547 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6548 {
6549 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6550
6551 /* Flush our bottom-half so that it does not race with us
6552 * setting the idle frequency and so that it is bounded by
6553 * our rpm wakeref. And then disable the interrupts to stop any
6554 * futher RPS reclocking whilst we are asleep.
6555 */
6556 gen6_disable_rps_interrupts(dev_priv);
6557
6558 mutex_lock(&dev_priv->pcu_lock);
6559 if (rps->enabled) {
6560 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6561 vlv_set_rps_idle(dev_priv);
6562 else
6563 gen6_set_rps(dev_priv, rps->idle_freq);
6564 rps->last_adj = 0;
6565 I915_WRITE(GEN6_PMINTRMSK,
6566 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6567 }
6568 mutex_unlock(&dev_priv->pcu_lock);
6569 }
6570
gen6_rps_boost(struct i915_request * rq,struct intel_rps_client * rps_client)6571 void gen6_rps_boost(struct i915_request *rq,
6572 struct intel_rps_client *rps_client)
6573 {
6574 struct intel_rps *rps = &rq->i915->gt_pm.rps;
6575 unsigned long flags;
6576 bool boost;
6577
6578 /* This is intentionally racy! We peek at the state here, then
6579 * validate inside the RPS worker.
6580 */
6581 if (!rps->enabled)
6582 return;
6583
6584 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
6585 return;
6586
6587 /* Serializes with i915_request_retire() */
6588 boost = false;
6589 spin_lock_irqsave(&rq->lock, flags);
6590 if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6591 boost = !atomic_fetch_inc(&rps->num_waiters);
6592 rq->waitboost = true;
6593 }
6594 spin_unlock_irqrestore(&rq->lock, flags);
6595 if (!boost)
6596 return;
6597
6598 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6599 schedule_work(&rps->work);
6600
6601 atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6602 }
6603
intel_set_rps(struct drm_i915_private * dev_priv,u8 val)6604 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6605 {
6606 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6607 int err;
6608
6609 lockdep_assert_held(&dev_priv->pcu_lock);
6610 GEM_BUG_ON(val > rps->max_freq);
6611 GEM_BUG_ON(val < rps->min_freq);
6612
6613 if (!rps->enabled) {
6614 rps->cur_freq = val;
6615 return 0;
6616 }
6617
6618 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6619 err = valleyview_set_rps(dev_priv, val);
6620 else
6621 err = gen6_set_rps(dev_priv, val);
6622
6623 return err;
6624 }
6625
gen9_disable_rc6(struct drm_i915_private * dev_priv)6626 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6627 {
6628 I915_WRITE(GEN6_RC_CONTROL, 0);
6629 I915_WRITE(GEN9_PG_ENABLE, 0);
6630 }
6631
gen9_disable_rps(struct drm_i915_private * dev_priv)6632 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6633 {
6634 I915_WRITE(GEN6_RP_CONTROL, 0);
6635 }
6636
gen6_disable_rc6(struct drm_i915_private * dev_priv)6637 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6638 {
6639 I915_WRITE(GEN6_RC_CONTROL, 0);
6640 }
6641
gen6_disable_rps(struct drm_i915_private * dev_priv)6642 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6643 {
6644 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6645 I915_WRITE(GEN6_RP_CONTROL, 0);
6646 }
6647
cherryview_disable_rc6(struct drm_i915_private * dev_priv)6648 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6649 {
6650 I915_WRITE(GEN6_RC_CONTROL, 0);
6651 }
6652
cherryview_disable_rps(struct drm_i915_private * dev_priv)6653 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6654 {
6655 I915_WRITE(GEN6_RP_CONTROL, 0);
6656 }
6657
valleyview_disable_rc6(struct drm_i915_private * dev_priv)6658 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6659 {
6660 /* We're doing forcewake before Disabling RC6,
6661 * This what the BIOS expects when going into suspend */
6662 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6663
6664 I915_WRITE(GEN6_RC_CONTROL, 0);
6665
6666 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6667 }
6668
valleyview_disable_rps(struct drm_i915_private * dev_priv)6669 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6670 {
6671 I915_WRITE(GEN6_RP_CONTROL, 0);
6672 }
6673
bxt_check_bios_rc6_setup(struct drm_i915_private * dev_priv)6674 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6675 {
6676 bool enable_rc6 = true;
6677 unsigned long rc6_ctx_base;
6678 u32 rc_ctl;
6679 int rc_sw_target;
6680
6681 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6682 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6683 RC_SW_TARGET_STATE_SHIFT;
6684 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6685 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6686 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6687 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6688 rc_sw_target);
6689
6690 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6691 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6692 enable_rc6 = false;
6693 }
6694
6695 /*
6696 * The exact context size is not known for BXT, so assume a page size
6697 * for this check.
6698 */
6699 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6700 if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6701 (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6702 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6703 enable_rc6 = false;
6704 }
6705
6706 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6707 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6708 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6709 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6710 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6711 enable_rc6 = false;
6712 }
6713
6714 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6715 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6716 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6717 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6718 enable_rc6 = false;
6719 }
6720
6721 if (!I915_READ(GEN6_GFXPAUSE)) {
6722 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6723 enable_rc6 = false;
6724 }
6725
6726 if (!I915_READ(GEN8_MISC_CTRL0)) {
6727 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6728 enable_rc6 = false;
6729 }
6730
6731 return enable_rc6;
6732 }
6733
sanitize_rc6(struct drm_i915_private * i915)6734 static bool sanitize_rc6(struct drm_i915_private *i915)
6735 {
6736 struct intel_device_info *info = mkwrite_device_info(i915);
6737
6738 /* Powersaving is controlled by the host when inside a VM */
6739 if (intel_vgpu_active(i915))
6740 info->has_rc6 = 0;
6741
6742 if (info->has_rc6 &&
6743 IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6744 DRM_INFO("RC6 disabled by BIOS\n");
6745 info->has_rc6 = 0;
6746 }
6747
6748 /*
6749 * We assume that we do not have any deep rc6 levels if we don't have
6750 * have the previous rc6 level supported, i.e. we use HAS_RC6()
6751 * as the initial coarse check for rc6 in general, moving on to
6752 * progressively finer/deeper levels.
6753 */
6754 if (!info->has_rc6 && info->has_rc6p)
6755 info->has_rc6p = 0;
6756
6757 return info->has_rc6;
6758 }
6759
gen6_init_rps_frequencies(struct drm_i915_private * dev_priv)6760 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6761 {
6762 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6763
6764 /* All of these values are in units of 50MHz */
6765
6766 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6767 if (IS_GEN9_LP(dev_priv)) {
6768 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6769 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6770 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6771 rps->min_freq = (rp_state_cap >> 0) & 0xff;
6772 } else {
6773 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6774 rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
6775 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6776 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6777 }
6778 /* hw_max = RP0 until we check for overclocking */
6779 rps->max_freq = rps->rp0_freq;
6780
6781 rps->efficient_freq = rps->rp1_freq;
6782 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6783 IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6784 u32 ddcc_status = 0;
6785
6786 if (sandybridge_pcode_read(dev_priv,
6787 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6788 &ddcc_status) == 0)
6789 rps->efficient_freq =
6790 clamp_t(u8,
6791 ((ddcc_status >> 8) & 0xff),
6792 rps->min_freq,
6793 rps->max_freq);
6794 }
6795
6796 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6797 /* Store the frequency values in 16.66 MHZ units, which is
6798 * the natural hardware unit for SKL
6799 */
6800 rps->rp0_freq *= GEN9_FREQ_SCALER;
6801 rps->rp1_freq *= GEN9_FREQ_SCALER;
6802 rps->min_freq *= GEN9_FREQ_SCALER;
6803 rps->max_freq *= GEN9_FREQ_SCALER;
6804 rps->efficient_freq *= GEN9_FREQ_SCALER;
6805 }
6806 }
6807
reset_rps(struct drm_i915_private * dev_priv,int (* set)(struct drm_i915_private *,u8))6808 static void reset_rps(struct drm_i915_private *dev_priv,
6809 int (*set)(struct drm_i915_private *, u8))
6810 {
6811 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6812 u8 freq = rps->cur_freq;
6813
6814 /* force a reset */
6815 rps->power.mode = -1;
6816 rps->cur_freq = -1;
6817
6818 if (set(dev_priv, freq))
6819 DRM_ERROR("Failed to reset RPS to initial values\n");
6820 }
6821
6822 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_enable_rps(struct drm_i915_private * dev_priv)6823 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6824 {
6825 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6826
6827 /* Program defaults and thresholds for RPS */
6828 if (IS_GEN9(dev_priv))
6829 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6830 GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6831
6832 /* 1 second timeout*/
6833 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6834 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6835
6836 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6837
6838 /* Leaning on the below call to gen6_set_rps to program/setup the
6839 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6840 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6841 reset_rps(dev_priv, gen6_set_rps);
6842
6843 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6844 }
6845
gen9_enable_rc6(struct drm_i915_private * dev_priv)6846 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6847 {
6848 struct intel_engine_cs *engine;
6849 enum intel_engine_id id;
6850 u32 rc6_mode;
6851
6852 /* 1a: Software RC state - RC0 */
6853 I915_WRITE(GEN6_RC_STATE, 0);
6854
6855 /* 1b: Get forcewake during program sequence. Although the driver
6856 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6857 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6858
6859 /* 2a: Disable RC states. */
6860 I915_WRITE(GEN6_RC_CONTROL, 0);
6861
6862 /* 2b: Program RC6 thresholds.*/
6863 if (INTEL_GEN(dev_priv) >= 10) {
6864 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
6865 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
6866 } else if (IS_SKYLAKE(dev_priv)) {
6867 /*
6868 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
6869 * when CPG is enabled
6870 */
6871 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6872 } else {
6873 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6874 }
6875
6876 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6877 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6878 for_each_engine(engine, dev_priv, id)
6879 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6880
6881 if (HAS_GUC(dev_priv))
6882 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6883
6884 I915_WRITE(GEN6_RC_SLEEP, 0);
6885
6886 /*
6887 * 2c: Program Coarse Power Gating Policies.
6888 *
6889 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
6890 * use instead is a more conservative estimate for the maximum time
6891 * it takes us to service a CS interrupt and submit a new ELSP - that
6892 * is the time which the GPU is idle waiting for the CPU to select the
6893 * next request to execute. If the idle hysteresis is less than that
6894 * interrupt service latency, the hardware will automatically gate
6895 * the power well and we will then incur the wake up cost on top of
6896 * the service latency. A similar guide from intel_pstate is that we
6897 * do not want the enable hysteresis to less than the wakeup latency.
6898 *
6899 * igt/gem_exec_nop/sequential provides a rough estimate for the
6900 * service latency, and puts it around 10us for Broadwell (and other
6901 * big core) and around 40us for Broxton (and other low power cores).
6902 * [Note that for legacy ringbuffer submission, this is less than 1us!]
6903 * However, the wakeup latency on Broxton is closer to 100us. To be
6904 * conservative, we have to factor in a context switch on top (due
6905 * to ksoftirqd).
6906 */
6907 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
6908 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6909
6910 /* 3a: Enable RC6 */
6911 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6912
6913 /* WaRsUseTimeoutMode:cnl (pre-prod) */
6914 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6915 rc6_mode = GEN7_RC_CTL_TO_MODE;
6916 else
6917 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6918
6919 I915_WRITE(GEN6_RC_CONTROL,
6920 GEN6_RC_CTL_HW_ENABLE |
6921 GEN6_RC_CTL_RC6_ENABLE |
6922 rc6_mode);
6923
6924 /*
6925 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6926 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6927 */
6928 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6929 I915_WRITE(GEN9_PG_ENABLE, 0);
6930 else
6931 I915_WRITE(GEN9_PG_ENABLE,
6932 GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6933
6934 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6935 }
6936
gen8_enable_rc6(struct drm_i915_private * dev_priv)6937 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6938 {
6939 struct intel_engine_cs *engine;
6940 enum intel_engine_id id;
6941
6942 /* 1a: Software RC state - RC0 */
6943 I915_WRITE(GEN6_RC_STATE, 0);
6944
6945 /* 1b: Get forcewake during program sequence. Although the driver
6946 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6947 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6948
6949 /* 2a: Disable RC states. */
6950 I915_WRITE(GEN6_RC_CONTROL, 0);
6951
6952 /* 2b: Program RC6 thresholds.*/
6953 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6954 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6955 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6956 for_each_engine(engine, dev_priv, id)
6957 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6958 I915_WRITE(GEN6_RC_SLEEP, 0);
6959 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6960
6961 /* 3: Enable RC6 */
6962
6963 I915_WRITE(GEN6_RC_CONTROL,
6964 GEN6_RC_CTL_HW_ENABLE |
6965 GEN7_RC_CTL_TO_MODE |
6966 GEN6_RC_CTL_RC6_ENABLE);
6967
6968 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6969 }
6970
gen8_enable_rps(struct drm_i915_private * dev_priv)6971 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6972 {
6973 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6974
6975 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6976
6977 /* 1 Program defaults and thresholds for RPS*/
6978 I915_WRITE(GEN6_RPNSWREQ,
6979 HSW_FREQUENCY(rps->rp1_freq));
6980 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6981 HSW_FREQUENCY(rps->rp1_freq));
6982 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6983 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6984
6985 /* Docs recommend 900MHz, and 300 MHz respectively */
6986 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6987 rps->max_freq_softlimit << 24 |
6988 rps->min_freq_softlimit << 16);
6989
6990 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6991 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6992 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6993 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6994
6995 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6996
6997 /* 2: Enable RPS */
6998 I915_WRITE(GEN6_RP_CONTROL,
6999 GEN6_RP_MEDIA_TURBO |
7000 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7001 GEN6_RP_MEDIA_IS_GFX |
7002 GEN6_RP_ENABLE |
7003 GEN6_RP_UP_BUSY_AVG |
7004 GEN6_RP_DOWN_IDLE_AVG);
7005
7006 reset_rps(dev_priv, gen6_set_rps);
7007
7008 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7009 }
7010
gen6_enable_rc6(struct drm_i915_private * dev_priv)7011 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7012 {
7013 struct intel_engine_cs *engine;
7014 enum intel_engine_id id;
7015 u32 rc6vids, rc6_mask;
7016 u32 gtfifodbg;
7017 int ret;
7018
7019 I915_WRITE(GEN6_RC_STATE, 0);
7020
7021 /* Clear the DBG now so we don't confuse earlier errors */
7022 gtfifodbg = I915_READ(GTFIFODBG);
7023 if (gtfifodbg) {
7024 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7025 I915_WRITE(GTFIFODBG, gtfifodbg);
7026 }
7027
7028 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7029
7030 /* disable the counters and set deterministic thresholds */
7031 I915_WRITE(GEN6_RC_CONTROL, 0);
7032
7033 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7034 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7035 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7036 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7037 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7038
7039 for_each_engine(engine, dev_priv, id)
7040 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7041
7042 I915_WRITE(GEN6_RC_SLEEP, 0);
7043 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7044 if (IS_IVYBRIDGE(dev_priv))
7045 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7046 else
7047 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7048 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7049 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7050
7051 /* We don't use those on Haswell */
7052 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7053 if (HAS_RC6p(dev_priv))
7054 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7055 if (HAS_RC6pp(dev_priv))
7056 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7057 I915_WRITE(GEN6_RC_CONTROL,
7058 rc6_mask |
7059 GEN6_RC_CTL_EI_MODE(1) |
7060 GEN6_RC_CTL_HW_ENABLE);
7061
7062 rc6vids = 0;
7063 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7064 if (IS_GEN6(dev_priv) && ret) {
7065 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7066 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7067 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7068 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7069 rc6vids &= 0xffff00;
7070 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7071 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7072 if (ret)
7073 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7074 }
7075
7076 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7077 }
7078
gen6_enable_rps(struct drm_i915_private * dev_priv)7079 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7080 {
7081 /* Here begins a magic sequence of register writes to enable
7082 * auto-downclocking.
7083 *
7084 * Perhaps there might be some value in exposing these to
7085 * userspace...
7086 */
7087 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7088
7089 /* Power down if completely idle for over 50ms */
7090 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7091 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7092
7093 reset_rps(dev_priv, gen6_set_rps);
7094
7095 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7096 }
7097
gen6_update_ring_freq(struct drm_i915_private * dev_priv)7098 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7099 {
7100 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7101 const int min_freq = 15;
7102 const int scaling_factor = 180;
7103 unsigned int gpu_freq;
7104 unsigned int max_ia_freq, min_ring_freq;
7105 unsigned int max_gpu_freq, min_gpu_freq;
7106 struct cpufreq_policy *policy;
7107
7108 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7109
7110 if (rps->max_freq <= rps->min_freq)
7111 return;
7112
7113 policy = cpufreq_cpu_get(0);
7114 if (policy) {
7115 max_ia_freq = policy->cpuinfo.max_freq;
7116 cpufreq_cpu_put(policy);
7117 } else {
7118 /*
7119 * Default to measured freq if none found, PCU will ensure we
7120 * don't go over
7121 */
7122 max_ia_freq = tsc_khz;
7123 }
7124
7125 /* Convert from kHz to MHz */
7126 max_ia_freq /= 1000;
7127
7128 min_ring_freq = I915_READ(DCLK) & 0xf;
7129 /* convert DDR frequency from units of 266.6MHz to bandwidth */
7130 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7131
7132 min_gpu_freq = rps->min_freq;
7133 max_gpu_freq = rps->max_freq;
7134 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7135 /* Convert GT frequency to 50 HZ units */
7136 min_gpu_freq /= GEN9_FREQ_SCALER;
7137 max_gpu_freq /= GEN9_FREQ_SCALER;
7138 }
7139
7140 /*
7141 * For each potential GPU frequency, load a ring frequency we'd like
7142 * to use for memory access. We do this by specifying the IA frequency
7143 * the PCU should use as a reference to determine the ring frequency.
7144 */
7145 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7146 const int diff = max_gpu_freq - gpu_freq;
7147 unsigned int ia_freq = 0, ring_freq = 0;
7148
7149 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7150 /*
7151 * ring_freq = 2 * GT. ring_freq is in 100MHz units
7152 * No floor required for ring frequency on SKL.
7153 */
7154 ring_freq = gpu_freq;
7155 } else if (INTEL_GEN(dev_priv) >= 8) {
7156 /* max(2 * GT, DDR). NB: GT is 50MHz units */
7157 ring_freq = max(min_ring_freq, gpu_freq);
7158 } else if (IS_HASWELL(dev_priv)) {
7159 ring_freq = mult_frac(gpu_freq, 5, 4);
7160 ring_freq = max(min_ring_freq, ring_freq);
7161 /* leave ia_freq as the default, chosen by cpufreq */
7162 } else {
7163 /* On older processors, there is no separate ring
7164 * clock domain, so in order to boost the bandwidth
7165 * of the ring, we need to upclock the CPU (ia_freq).
7166 *
7167 * For GPU frequencies less than 750MHz,
7168 * just use the lowest ring freq.
7169 */
7170 if (gpu_freq < min_freq)
7171 ia_freq = 800;
7172 else
7173 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7174 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7175 }
7176
7177 sandybridge_pcode_write(dev_priv,
7178 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7179 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7180 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7181 gpu_freq);
7182 }
7183 }
7184
cherryview_rps_max_freq(struct drm_i915_private * dev_priv)7185 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7186 {
7187 u32 val, rp0;
7188
7189 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7190
7191 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7192 case 8:
7193 /* (2 * 4) config */
7194 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7195 break;
7196 case 12:
7197 /* (2 * 6) config */
7198 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7199 break;
7200 case 16:
7201 /* (2 * 8) config */
7202 default:
7203 /* Setting (2 * 8) Min RP0 for any other combination */
7204 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7205 break;
7206 }
7207
7208 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7209
7210 return rp0;
7211 }
7212
cherryview_rps_rpe_freq(struct drm_i915_private * dev_priv)7213 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7214 {
7215 u32 val, rpe;
7216
7217 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7218 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7219
7220 return rpe;
7221 }
7222
cherryview_rps_guar_freq(struct drm_i915_private * dev_priv)7223 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7224 {
7225 u32 val, rp1;
7226
7227 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7228 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7229
7230 return rp1;
7231 }
7232
cherryview_rps_min_freq(struct drm_i915_private * dev_priv)7233 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7234 {
7235 u32 val, rpn;
7236
7237 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7238 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7239 FB_GFX_FREQ_FUSE_MASK);
7240
7241 return rpn;
7242 }
7243
valleyview_rps_guar_freq(struct drm_i915_private * dev_priv)7244 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7245 {
7246 u32 val, rp1;
7247
7248 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7249
7250 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7251
7252 return rp1;
7253 }
7254
valleyview_rps_max_freq(struct drm_i915_private * dev_priv)7255 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7256 {
7257 u32 val, rp0;
7258
7259 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7260
7261 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7262 /* Clamp to max */
7263 rp0 = min_t(u32, rp0, 0xea);
7264
7265 return rp0;
7266 }
7267
valleyview_rps_rpe_freq(struct drm_i915_private * dev_priv)7268 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7269 {
7270 u32 val, rpe;
7271
7272 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7273 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7274 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7275 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7276
7277 return rpe;
7278 }
7279
valleyview_rps_min_freq(struct drm_i915_private * dev_priv)7280 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7281 {
7282 u32 val;
7283
7284 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7285 /*
7286 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7287 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7288 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7289 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7290 * to make sure it matches what Punit accepts.
7291 */
7292 return max_t(u32, val, 0xc0);
7293 }
7294
7295 /* Check that the pctx buffer wasn't move under us. */
valleyview_check_pctx(struct drm_i915_private * dev_priv)7296 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7297 {
7298 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7299
7300 WARN_ON(pctx_addr != dev_priv->dsm.start +
7301 dev_priv->vlv_pctx->stolen->start);
7302 }
7303
7304
7305 /* Check that the pcbr address is not empty. */
cherryview_check_pctx(struct drm_i915_private * dev_priv)7306 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7307 {
7308 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7309
7310 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7311 }
7312
cherryview_setup_pctx(struct drm_i915_private * dev_priv)7313 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7314 {
7315 resource_size_t pctx_paddr, paddr;
7316 resource_size_t pctx_size = 32*1024;
7317 u32 pcbr;
7318
7319 pcbr = I915_READ(VLV_PCBR);
7320 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7321 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7322 paddr = dev_priv->dsm.end + 1 - pctx_size;
7323 GEM_BUG_ON(paddr > U32_MAX);
7324
7325 pctx_paddr = (paddr & (~4095));
7326 I915_WRITE(VLV_PCBR, pctx_paddr);
7327 }
7328
7329 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7330 }
7331
valleyview_setup_pctx(struct drm_i915_private * dev_priv)7332 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7333 {
7334 struct drm_i915_gem_object *pctx;
7335 resource_size_t pctx_paddr;
7336 resource_size_t pctx_size = 24*1024;
7337 u32 pcbr;
7338
7339 pcbr = I915_READ(VLV_PCBR);
7340 if (pcbr) {
7341 /* BIOS set it up already, grab the pre-alloc'd space */
7342 resource_size_t pcbr_offset;
7343
7344 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7345 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7346 pcbr_offset,
7347 I915_GTT_OFFSET_NONE,
7348 pctx_size);
7349 goto out;
7350 }
7351
7352 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7353
7354 /*
7355 * From the Gunit register HAS:
7356 * The Gfx driver is expected to program this register and ensure
7357 * proper allocation within Gfx stolen memory. For example, this
7358 * register should be programmed such than the PCBR range does not
7359 * overlap with other ranges, such as the frame buffer, protected
7360 * memory, or any other relevant ranges.
7361 */
7362 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7363 if (!pctx) {
7364 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7365 goto out;
7366 }
7367
7368 GEM_BUG_ON(range_overflows_t(u64,
7369 dev_priv->dsm.start,
7370 pctx->stolen->start,
7371 U32_MAX));
7372 pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7373 I915_WRITE(VLV_PCBR, pctx_paddr);
7374
7375 out:
7376 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7377 dev_priv->vlv_pctx = pctx;
7378 }
7379
valleyview_cleanup_pctx(struct drm_i915_private * dev_priv)7380 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7381 {
7382 struct drm_i915_gem_object *pctx;
7383
7384 pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7385 if (pctx)
7386 i915_gem_object_put(pctx);
7387 }
7388
vlv_init_gpll_ref_freq(struct drm_i915_private * dev_priv)7389 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7390 {
7391 dev_priv->gt_pm.rps.gpll_ref_freq =
7392 vlv_get_cck_clock(dev_priv, "GPLL ref",
7393 CCK_GPLL_CLOCK_CONTROL,
7394 dev_priv->czclk_freq);
7395
7396 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7397 dev_priv->gt_pm.rps.gpll_ref_freq);
7398 }
7399
valleyview_init_gt_powersave(struct drm_i915_private * dev_priv)7400 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7401 {
7402 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7403 u32 val;
7404
7405 valleyview_setup_pctx(dev_priv);
7406
7407 vlv_init_gpll_ref_freq(dev_priv);
7408
7409 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7410 switch ((val >> 6) & 3) {
7411 case 0:
7412 case 1:
7413 dev_priv->mem_freq = 800;
7414 break;
7415 case 2:
7416 dev_priv->mem_freq = 1066;
7417 break;
7418 case 3:
7419 dev_priv->mem_freq = 1333;
7420 break;
7421 }
7422 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7423
7424 rps->max_freq = valleyview_rps_max_freq(dev_priv);
7425 rps->rp0_freq = rps->max_freq;
7426 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7427 intel_gpu_freq(dev_priv, rps->max_freq),
7428 rps->max_freq);
7429
7430 rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7431 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7432 intel_gpu_freq(dev_priv, rps->efficient_freq),
7433 rps->efficient_freq);
7434
7435 rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7436 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7437 intel_gpu_freq(dev_priv, rps->rp1_freq),
7438 rps->rp1_freq);
7439
7440 rps->min_freq = valleyview_rps_min_freq(dev_priv);
7441 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7442 intel_gpu_freq(dev_priv, rps->min_freq),
7443 rps->min_freq);
7444 }
7445
cherryview_init_gt_powersave(struct drm_i915_private * dev_priv)7446 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7447 {
7448 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7449 u32 val;
7450
7451 cherryview_setup_pctx(dev_priv);
7452
7453 vlv_init_gpll_ref_freq(dev_priv);
7454
7455 mutex_lock(&dev_priv->sb_lock);
7456 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7457 mutex_unlock(&dev_priv->sb_lock);
7458
7459 switch ((val >> 2) & 0x7) {
7460 case 3:
7461 dev_priv->mem_freq = 2000;
7462 break;
7463 default:
7464 dev_priv->mem_freq = 1600;
7465 break;
7466 }
7467 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7468
7469 rps->max_freq = cherryview_rps_max_freq(dev_priv);
7470 rps->rp0_freq = rps->max_freq;
7471 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7472 intel_gpu_freq(dev_priv, rps->max_freq),
7473 rps->max_freq);
7474
7475 rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7476 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7477 intel_gpu_freq(dev_priv, rps->efficient_freq),
7478 rps->efficient_freq);
7479
7480 rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7481 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7482 intel_gpu_freq(dev_priv, rps->rp1_freq),
7483 rps->rp1_freq);
7484
7485 rps->min_freq = cherryview_rps_min_freq(dev_priv);
7486 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7487 intel_gpu_freq(dev_priv, rps->min_freq),
7488 rps->min_freq);
7489
7490 WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7491 rps->min_freq) & 1,
7492 "Odd GPU freq values\n");
7493 }
7494
valleyview_cleanup_gt_powersave(struct drm_i915_private * dev_priv)7495 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7496 {
7497 valleyview_cleanup_pctx(dev_priv);
7498 }
7499
cherryview_enable_rc6(struct drm_i915_private * dev_priv)7500 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7501 {
7502 struct intel_engine_cs *engine;
7503 enum intel_engine_id id;
7504 u32 gtfifodbg, rc6_mode, pcbr;
7505
7506 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7507 GT_FIFO_FREE_ENTRIES_CHV);
7508 if (gtfifodbg) {
7509 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7510 gtfifodbg);
7511 I915_WRITE(GTFIFODBG, gtfifodbg);
7512 }
7513
7514 cherryview_check_pctx(dev_priv);
7515
7516 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7517 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7518 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7519
7520 /* Disable RC states. */
7521 I915_WRITE(GEN6_RC_CONTROL, 0);
7522
7523 /* 2a: Program RC6 thresholds.*/
7524 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7525 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7526 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7527
7528 for_each_engine(engine, dev_priv, id)
7529 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7530 I915_WRITE(GEN6_RC_SLEEP, 0);
7531
7532 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7533 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7534
7535 /* Allows RC6 residency counter to work */
7536 I915_WRITE(VLV_COUNTER_CONTROL,
7537 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7538 VLV_MEDIA_RC6_COUNT_EN |
7539 VLV_RENDER_RC6_COUNT_EN));
7540
7541 /* For now we assume BIOS is allocating and populating the PCBR */
7542 pcbr = I915_READ(VLV_PCBR);
7543
7544 /* 3: Enable RC6 */
7545 rc6_mode = 0;
7546 if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7547 rc6_mode = GEN7_RC_CTL_TO_MODE;
7548 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7549
7550 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7551 }
7552
cherryview_enable_rps(struct drm_i915_private * dev_priv)7553 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7554 {
7555 u32 val;
7556
7557 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7558
7559 /* 1: Program defaults and thresholds for RPS*/
7560 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7561 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7562 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7563 I915_WRITE(GEN6_RP_UP_EI, 66000);
7564 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7565
7566 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7567
7568 /* 2: Enable RPS */
7569 I915_WRITE(GEN6_RP_CONTROL,
7570 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7571 GEN6_RP_MEDIA_IS_GFX |
7572 GEN6_RP_ENABLE |
7573 GEN6_RP_UP_BUSY_AVG |
7574 GEN6_RP_DOWN_IDLE_AVG);
7575
7576 /* Setting Fixed Bias */
7577 val = VLV_OVERRIDE_EN |
7578 VLV_SOC_TDP_EN |
7579 CHV_BIAS_CPU_50_SOC_50;
7580 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7581
7582 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7583
7584 /* RPS code assumes GPLL is used */
7585 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7586
7587 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7588 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7589
7590 reset_rps(dev_priv, valleyview_set_rps);
7591
7592 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7593 }
7594
valleyview_enable_rc6(struct drm_i915_private * dev_priv)7595 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7596 {
7597 struct intel_engine_cs *engine;
7598 enum intel_engine_id id;
7599 u32 gtfifodbg;
7600
7601 valleyview_check_pctx(dev_priv);
7602
7603 gtfifodbg = I915_READ(GTFIFODBG);
7604 if (gtfifodbg) {
7605 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7606 gtfifodbg);
7607 I915_WRITE(GTFIFODBG, gtfifodbg);
7608 }
7609
7610 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7611
7612 /* Disable RC states. */
7613 I915_WRITE(GEN6_RC_CONTROL, 0);
7614
7615 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7616 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7617 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7618
7619 for_each_engine(engine, dev_priv, id)
7620 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7621
7622 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7623
7624 /* Allows RC6 residency counter to work */
7625 I915_WRITE(VLV_COUNTER_CONTROL,
7626 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7627 VLV_MEDIA_RC0_COUNT_EN |
7628 VLV_RENDER_RC0_COUNT_EN |
7629 VLV_MEDIA_RC6_COUNT_EN |
7630 VLV_RENDER_RC6_COUNT_EN));
7631
7632 I915_WRITE(GEN6_RC_CONTROL,
7633 GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7634
7635 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7636 }
7637
valleyview_enable_rps(struct drm_i915_private * dev_priv)7638 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7639 {
7640 u32 val;
7641
7642 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7643
7644 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7645 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7646 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7647 I915_WRITE(GEN6_RP_UP_EI, 66000);
7648 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7649
7650 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7651
7652 I915_WRITE(GEN6_RP_CONTROL,
7653 GEN6_RP_MEDIA_TURBO |
7654 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7655 GEN6_RP_MEDIA_IS_GFX |
7656 GEN6_RP_ENABLE |
7657 GEN6_RP_UP_BUSY_AVG |
7658 GEN6_RP_DOWN_IDLE_CONT);
7659
7660 /* Setting Fixed Bias */
7661 val = VLV_OVERRIDE_EN |
7662 VLV_SOC_TDP_EN |
7663 VLV_BIAS_CPU_125_SOC_875;
7664 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7665
7666 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7667
7668 /* RPS code assumes GPLL is used */
7669 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7670
7671 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7672 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7673
7674 reset_rps(dev_priv, valleyview_set_rps);
7675
7676 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7677 }
7678
intel_pxfreq(u32 vidfreq)7679 static unsigned long intel_pxfreq(u32 vidfreq)
7680 {
7681 unsigned long freq;
7682 int div = (vidfreq & 0x3f0000) >> 16;
7683 int post = (vidfreq & 0x3000) >> 12;
7684 int pre = (vidfreq & 0x7);
7685
7686 if (!pre)
7687 return 0;
7688
7689 freq = ((div * 133333) / ((1<<post) * pre));
7690
7691 return freq;
7692 }
7693
7694 static const struct cparams {
7695 u16 i;
7696 u16 t;
7697 u16 m;
7698 u16 c;
7699 } cparams[] = {
7700 { 1, 1333, 301, 28664 },
7701 { 1, 1066, 294, 24460 },
7702 { 1, 800, 294, 25192 },
7703 { 0, 1333, 276, 27605 },
7704 { 0, 1066, 276, 27605 },
7705 { 0, 800, 231, 23784 },
7706 };
7707
__i915_chipset_val(struct drm_i915_private * dev_priv)7708 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7709 {
7710 u64 total_count, diff, ret;
7711 u32 count1, count2, count3, m = 0, c = 0;
7712 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7713 int i;
7714
7715 lockdep_assert_held(&mchdev_lock);
7716
7717 diff1 = now - dev_priv->ips.last_time1;
7718
7719 /* Prevent division-by-zero if we are asking too fast.
7720 * Also, we don't get interesting results if we are polling
7721 * faster than once in 10ms, so just return the saved value
7722 * in such cases.
7723 */
7724 if (diff1 <= 10)
7725 return dev_priv->ips.chipset_power;
7726
7727 count1 = I915_READ(DMIEC);
7728 count2 = I915_READ(DDREC);
7729 count3 = I915_READ(CSIEC);
7730
7731 total_count = count1 + count2 + count3;
7732
7733 /* FIXME: handle per-counter overflow */
7734 if (total_count < dev_priv->ips.last_count1) {
7735 diff = ~0UL - dev_priv->ips.last_count1;
7736 diff += total_count;
7737 } else {
7738 diff = total_count - dev_priv->ips.last_count1;
7739 }
7740
7741 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7742 if (cparams[i].i == dev_priv->ips.c_m &&
7743 cparams[i].t == dev_priv->ips.r_t) {
7744 m = cparams[i].m;
7745 c = cparams[i].c;
7746 break;
7747 }
7748 }
7749
7750 diff = div_u64(diff, diff1);
7751 ret = ((m * diff) + c);
7752 ret = div_u64(ret, 10);
7753
7754 dev_priv->ips.last_count1 = total_count;
7755 dev_priv->ips.last_time1 = now;
7756
7757 dev_priv->ips.chipset_power = ret;
7758
7759 return ret;
7760 }
7761
i915_chipset_val(struct drm_i915_private * dev_priv)7762 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7763 {
7764 unsigned long val;
7765
7766 if (!IS_GEN5(dev_priv))
7767 return 0;
7768
7769 spin_lock_irq(&mchdev_lock);
7770
7771 val = __i915_chipset_val(dev_priv);
7772
7773 spin_unlock_irq(&mchdev_lock);
7774
7775 return val;
7776 }
7777
i915_mch_val(struct drm_i915_private * dev_priv)7778 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7779 {
7780 unsigned long m, x, b;
7781 u32 tsfs;
7782
7783 tsfs = I915_READ(TSFS);
7784
7785 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7786 x = I915_READ8(TR1);
7787
7788 b = tsfs & TSFS_INTR_MASK;
7789
7790 return ((m * x) / 127) - b;
7791 }
7792
_pxvid_to_vd(u8 pxvid)7793 static int _pxvid_to_vd(u8 pxvid)
7794 {
7795 if (pxvid == 0)
7796 return 0;
7797
7798 if (pxvid >= 8 && pxvid < 31)
7799 pxvid = 31;
7800
7801 return (pxvid + 2) * 125;
7802 }
7803
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)7804 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7805 {
7806 const int vd = _pxvid_to_vd(pxvid);
7807 const int vm = vd - 1125;
7808
7809 if (INTEL_INFO(dev_priv)->is_mobile)
7810 return vm > 0 ? vm : 0;
7811
7812 return vd;
7813 }
7814
__i915_update_gfx_val(struct drm_i915_private * dev_priv)7815 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7816 {
7817 u64 now, diff, diffms;
7818 u32 count;
7819
7820 lockdep_assert_held(&mchdev_lock);
7821
7822 now = ktime_get_raw_ns();
7823 diffms = now - dev_priv->ips.last_time2;
7824 do_div(diffms, NSEC_PER_MSEC);
7825
7826 /* Don't divide by 0 */
7827 if (!diffms)
7828 return;
7829
7830 count = I915_READ(GFXEC);
7831
7832 if (count < dev_priv->ips.last_count2) {
7833 diff = ~0UL - dev_priv->ips.last_count2;
7834 diff += count;
7835 } else {
7836 diff = count - dev_priv->ips.last_count2;
7837 }
7838
7839 dev_priv->ips.last_count2 = count;
7840 dev_priv->ips.last_time2 = now;
7841
7842 /* More magic constants... */
7843 diff = diff * 1181;
7844 diff = div_u64(diff, diffms * 10);
7845 dev_priv->ips.gfx_power = diff;
7846 }
7847
i915_update_gfx_val(struct drm_i915_private * dev_priv)7848 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7849 {
7850 if (!IS_GEN5(dev_priv))
7851 return;
7852
7853 spin_lock_irq(&mchdev_lock);
7854
7855 __i915_update_gfx_val(dev_priv);
7856
7857 spin_unlock_irq(&mchdev_lock);
7858 }
7859
__i915_gfx_val(struct drm_i915_private * dev_priv)7860 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7861 {
7862 unsigned long t, corr, state1, corr2, state2;
7863 u32 pxvid, ext_v;
7864
7865 lockdep_assert_held(&mchdev_lock);
7866
7867 pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7868 pxvid = (pxvid >> 24) & 0x7f;
7869 ext_v = pvid_to_extvid(dev_priv, pxvid);
7870
7871 state1 = ext_v;
7872
7873 t = i915_mch_val(dev_priv);
7874
7875 /* Revel in the empirically derived constants */
7876
7877 /* Correction factor in 1/100000 units */
7878 if (t > 80)
7879 corr = ((t * 2349) + 135940);
7880 else if (t >= 50)
7881 corr = ((t * 964) + 29317);
7882 else /* < 50 */
7883 corr = ((t * 301) + 1004);
7884
7885 corr = corr * ((150142 * state1) / 10000 - 78642);
7886 corr /= 100000;
7887 corr2 = (corr * dev_priv->ips.corr);
7888
7889 state2 = (corr2 * state1) / 10000;
7890 state2 /= 100; /* convert to mW */
7891
7892 __i915_update_gfx_val(dev_priv);
7893
7894 return dev_priv->ips.gfx_power + state2;
7895 }
7896
i915_gfx_val(struct drm_i915_private * dev_priv)7897 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7898 {
7899 unsigned long val;
7900
7901 if (!IS_GEN5(dev_priv))
7902 return 0;
7903
7904 spin_lock_irq(&mchdev_lock);
7905
7906 val = __i915_gfx_val(dev_priv);
7907
7908 spin_unlock_irq(&mchdev_lock);
7909
7910 return val;
7911 }
7912
7913 /**
7914 * i915_read_mch_val - return value for IPS use
7915 *
7916 * Calculate and return a value for the IPS driver to use when deciding whether
7917 * we have thermal and power headroom to increase CPU or GPU power budget.
7918 */
i915_read_mch_val(void)7919 unsigned long i915_read_mch_val(void)
7920 {
7921 struct drm_i915_private *dev_priv;
7922 unsigned long chipset_val, graphics_val, ret = 0;
7923
7924 spin_lock_irq(&mchdev_lock);
7925 if (!i915_mch_dev)
7926 goto out_unlock;
7927 dev_priv = i915_mch_dev;
7928
7929 chipset_val = __i915_chipset_val(dev_priv);
7930 graphics_val = __i915_gfx_val(dev_priv);
7931
7932 ret = chipset_val + graphics_val;
7933
7934 out_unlock:
7935 spin_unlock_irq(&mchdev_lock);
7936
7937 return ret;
7938 }
7939 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7940
7941 /**
7942 * i915_gpu_raise - raise GPU frequency limit
7943 *
7944 * Raise the limit; IPS indicates we have thermal headroom.
7945 */
i915_gpu_raise(void)7946 bool i915_gpu_raise(void)
7947 {
7948 struct drm_i915_private *dev_priv;
7949 bool ret = true;
7950
7951 spin_lock_irq(&mchdev_lock);
7952 if (!i915_mch_dev) {
7953 ret = false;
7954 goto out_unlock;
7955 }
7956 dev_priv = i915_mch_dev;
7957
7958 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7959 dev_priv->ips.max_delay--;
7960
7961 out_unlock:
7962 spin_unlock_irq(&mchdev_lock);
7963
7964 return ret;
7965 }
7966 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7967
7968 /**
7969 * i915_gpu_lower - lower GPU frequency limit
7970 *
7971 * IPS indicates we're close to a thermal limit, so throttle back the GPU
7972 * frequency maximum.
7973 */
i915_gpu_lower(void)7974 bool i915_gpu_lower(void)
7975 {
7976 struct drm_i915_private *dev_priv;
7977 bool ret = true;
7978
7979 spin_lock_irq(&mchdev_lock);
7980 if (!i915_mch_dev) {
7981 ret = false;
7982 goto out_unlock;
7983 }
7984 dev_priv = i915_mch_dev;
7985
7986 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7987 dev_priv->ips.max_delay++;
7988
7989 out_unlock:
7990 spin_unlock_irq(&mchdev_lock);
7991
7992 return ret;
7993 }
7994 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7995
7996 /**
7997 * i915_gpu_busy - indicate GPU business to IPS
7998 *
7999 * Tell the IPS driver whether or not the GPU is busy.
8000 */
i915_gpu_busy(void)8001 bool i915_gpu_busy(void)
8002 {
8003 bool ret = false;
8004
8005 spin_lock_irq(&mchdev_lock);
8006 if (i915_mch_dev)
8007 ret = i915_mch_dev->gt.awake;
8008 spin_unlock_irq(&mchdev_lock);
8009
8010 return ret;
8011 }
8012 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8013
8014 /**
8015 * i915_gpu_turbo_disable - disable graphics turbo
8016 *
8017 * Disable graphics turbo by resetting the max frequency and setting the
8018 * current frequency to the default.
8019 */
i915_gpu_turbo_disable(void)8020 bool i915_gpu_turbo_disable(void)
8021 {
8022 struct drm_i915_private *dev_priv;
8023 bool ret = true;
8024
8025 spin_lock_irq(&mchdev_lock);
8026 if (!i915_mch_dev) {
8027 ret = false;
8028 goto out_unlock;
8029 }
8030 dev_priv = i915_mch_dev;
8031
8032 dev_priv->ips.max_delay = dev_priv->ips.fstart;
8033
8034 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8035 ret = false;
8036
8037 out_unlock:
8038 spin_unlock_irq(&mchdev_lock);
8039
8040 return ret;
8041 }
8042 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8043
8044 /**
8045 * Tells the intel_ips driver that the i915 driver is now loaded, if
8046 * IPS got loaded first.
8047 *
8048 * This awkward dance is so that neither module has to depend on the
8049 * other in order for IPS to do the appropriate communication of
8050 * GPU turbo limits to i915.
8051 */
8052 static void
ips_ping_for_i915_load(void)8053 ips_ping_for_i915_load(void)
8054 {
8055 void (*link)(void);
8056
8057 link = symbol_get(ips_link_to_i915_driver);
8058 if (link) {
8059 link();
8060 symbol_put(ips_link_to_i915_driver);
8061 }
8062 }
8063
intel_gpu_ips_init(struct drm_i915_private * dev_priv)8064 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8065 {
8066 /* We only register the i915 ips part with intel-ips once everything is
8067 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8068 spin_lock_irq(&mchdev_lock);
8069 i915_mch_dev = dev_priv;
8070 spin_unlock_irq(&mchdev_lock);
8071
8072 ips_ping_for_i915_load();
8073 }
8074
intel_gpu_ips_teardown(void)8075 void intel_gpu_ips_teardown(void)
8076 {
8077 spin_lock_irq(&mchdev_lock);
8078 i915_mch_dev = NULL;
8079 spin_unlock_irq(&mchdev_lock);
8080 }
8081
intel_init_emon(struct drm_i915_private * dev_priv)8082 static void intel_init_emon(struct drm_i915_private *dev_priv)
8083 {
8084 u32 lcfuse;
8085 u8 pxw[16];
8086 int i;
8087
8088 /* Disable to program */
8089 I915_WRITE(ECR, 0);
8090 POSTING_READ(ECR);
8091
8092 /* Program energy weights for various events */
8093 I915_WRITE(SDEW, 0x15040d00);
8094 I915_WRITE(CSIEW0, 0x007f0000);
8095 I915_WRITE(CSIEW1, 0x1e220004);
8096 I915_WRITE(CSIEW2, 0x04000004);
8097
8098 for (i = 0; i < 5; i++)
8099 I915_WRITE(PEW(i), 0);
8100 for (i = 0; i < 3; i++)
8101 I915_WRITE(DEW(i), 0);
8102
8103 /* Program P-state weights to account for frequency power adjustment */
8104 for (i = 0; i < 16; i++) {
8105 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8106 unsigned long freq = intel_pxfreq(pxvidfreq);
8107 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8108 PXVFREQ_PX_SHIFT;
8109 unsigned long val;
8110
8111 val = vid * vid;
8112 val *= (freq / 1000);
8113 val *= 255;
8114 val /= (127*127*900);
8115 if (val > 0xff)
8116 DRM_ERROR("bad pxval: %ld\n", val);
8117 pxw[i] = val;
8118 }
8119 /* Render standby states get 0 weight */
8120 pxw[14] = 0;
8121 pxw[15] = 0;
8122
8123 for (i = 0; i < 4; i++) {
8124 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8125 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8126 I915_WRITE(PXW(i), val);
8127 }
8128
8129 /* Adjust magic regs to magic values (more experimental results) */
8130 I915_WRITE(OGW0, 0);
8131 I915_WRITE(OGW1, 0);
8132 I915_WRITE(EG0, 0x00007f00);
8133 I915_WRITE(EG1, 0x0000000e);
8134 I915_WRITE(EG2, 0x000e0000);
8135 I915_WRITE(EG3, 0x68000300);
8136 I915_WRITE(EG4, 0x42000000);
8137 I915_WRITE(EG5, 0x00140031);
8138 I915_WRITE(EG6, 0);
8139 I915_WRITE(EG7, 0);
8140
8141 for (i = 0; i < 8; i++)
8142 I915_WRITE(PXWL(i), 0);
8143
8144 /* Enable PMON + select events */
8145 I915_WRITE(ECR, 0x80000019);
8146
8147 lcfuse = I915_READ(LCFUSE02);
8148
8149 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8150 }
8151
intel_init_gt_powersave(struct drm_i915_private * dev_priv)8152 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8153 {
8154 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8155
8156 /*
8157 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8158 * requirement.
8159 */
8160 if (!sanitize_rc6(dev_priv)) {
8161 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8162 intel_runtime_pm_get(dev_priv);
8163 }
8164
8165 mutex_lock(&dev_priv->pcu_lock);
8166
8167 /* Initialize RPS limits (for userspace) */
8168 if (IS_CHERRYVIEW(dev_priv))
8169 cherryview_init_gt_powersave(dev_priv);
8170 else if (IS_VALLEYVIEW(dev_priv))
8171 valleyview_init_gt_powersave(dev_priv);
8172 else if (INTEL_GEN(dev_priv) >= 6)
8173 gen6_init_rps_frequencies(dev_priv);
8174
8175 /* Derive initial user preferences/limits from the hardware limits */
8176 rps->idle_freq = rps->min_freq;
8177 rps->cur_freq = rps->idle_freq;
8178
8179 rps->max_freq_softlimit = rps->max_freq;
8180 rps->min_freq_softlimit = rps->min_freq;
8181
8182 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8183 rps->min_freq_softlimit =
8184 max_t(int,
8185 rps->efficient_freq,
8186 intel_freq_opcode(dev_priv, 450));
8187
8188 /* After setting max-softlimit, find the overclock max freq */
8189 if (IS_GEN6(dev_priv) ||
8190 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8191 u32 params = 0;
8192
8193 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, ¶ms);
8194 if (params & BIT(31)) { /* OC supported */
8195 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8196 (rps->max_freq & 0xff) * 50,
8197 (params & 0xff) * 50);
8198 rps->max_freq = params & 0xff;
8199 }
8200 }
8201
8202 /* Finally allow us to boost to max by default */
8203 rps->boost_freq = rps->max_freq;
8204
8205 mutex_unlock(&dev_priv->pcu_lock);
8206 }
8207
intel_cleanup_gt_powersave(struct drm_i915_private * dev_priv)8208 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8209 {
8210 if (IS_VALLEYVIEW(dev_priv))
8211 valleyview_cleanup_gt_powersave(dev_priv);
8212
8213 if (!HAS_RC6(dev_priv))
8214 intel_runtime_pm_put(dev_priv);
8215 }
8216
8217 /**
8218 * intel_suspend_gt_powersave - suspend PM work and helper threads
8219 * @dev_priv: i915 device
8220 *
8221 * We don't want to disable RC6 or other features here, we just want
8222 * to make sure any work we've queued has finished and won't bother
8223 * us while we're suspended.
8224 */
intel_suspend_gt_powersave(struct drm_i915_private * dev_priv)8225 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8226 {
8227 if (INTEL_GEN(dev_priv) < 6)
8228 return;
8229
8230 /* gen6_rps_idle() will be called later to disable interrupts */
8231 }
8232
intel_sanitize_gt_powersave(struct drm_i915_private * dev_priv)8233 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8234 {
8235 dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8236 dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8237 intel_disable_gt_powersave(dev_priv);
8238
8239 if (INTEL_GEN(dev_priv) >= 11)
8240 gen11_reset_rps_interrupts(dev_priv);
8241 else
8242 gen6_reset_rps_interrupts(dev_priv);
8243 }
8244
intel_disable_llc_pstate(struct drm_i915_private * i915)8245 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8246 {
8247 lockdep_assert_held(&i915->pcu_lock);
8248
8249 if (!i915->gt_pm.llc_pstate.enabled)
8250 return;
8251
8252 /* Currently there is no HW configuration to be done to disable. */
8253
8254 i915->gt_pm.llc_pstate.enabled = false;
8255 }
8256
intel_disable_rc6(struct drm_i915_private * dev_priv)8257 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8258 {
8259 lockdep_assert_held(&dev_priv->pcu_lock);
8260
8261 if (!dev_priv->gt_pm.rc6.enabled)
8262 return;
8263
8264 if (INTEL_GEN(dev_priv) >= 9)
8265 gen9_disable_rc6(dev_priv);
8266 else if (IS_CHERRYVIEW(dev_priv))
8267 cherryview_disable_rc6(dev_priv);
8268 else if (IS_VALLEYVIEW(dev_priv))
8269 valleyview_disable_rc6(dev_priv);
8270 else if (INTEL_GEN(dev_priv) >= 6)
8271 gen6_disable_rc6(dev_priv);
8272
8273 dev_priv->gt_pm.rc6.enabled = false;
8274 }
8275
intel_disable_rps(struct drm_i915_private * dev_priv)8276 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8277 {
8278 lockdep_assert_held(&dev_priv->pcu_lock);
8279
8280 if (!dev_priv->gt_pm.rps.enabled)
8281 return;
8282
8283 if (INTEL_GEN(dev_priv) >= 9)
8284 gen9_disable_rps(dev_priv);
8285 else if (IS_CHERRYVIEW(dev_priv))
8286 cherryview_disable_rps(dev_priv);
8287 else if (IS_VALLEYVIEW(dev_priv))
8288 valleyview_disable_rps(dev_priv);
8289 else if (INTEL_GEN(dev_priv) >= 6)
8290 gen6_disable_rps(dev_priv);
8291 else if (IS_IRONLAKE_M(dev_priv))
8292 ironlake_disable_drps(dev_priv);
8293
8294 dev_priv->gt_pm.rps.enabled = false;
8295 }
8296
intel_disable_gt_powersave(struct drm_i915_private * dev_priv)8297 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8298 {
8299 mutex_lock(&dev_priv->pcu_lock);
8300
8301 intel_disable_rc6(dev_priv);
8302 intel_disable_rps(dev_priv);
8303 if (HAS_LLC(dev_priv))
8304 intel_disable_llc_pstate(dev_priv);
8305
8306 mutex_unlock(&dev_priv->pcu_lock);
8307 }
8308
intel_enable_llc_pstate(struct drm_i915_private * i915)8309 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8310 {
8311 lockdep_assert_held(&i915->pcu_lock);
8312
8313 if (i915->gt_pm.llc_pstate.enabled)
8314 return;
8315
8316 gen6_update_ring_freq(i915);
8317
8318 i915->gt_pm.llc_pstate.enabled = true;
8319 }
8320
intel_enable_rc6(struct drm_i915_private * dev_priv)8321 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8322 {
8323 lockdep_assert_held(&dev_priv->pcu_lock);
8324
8325 if (dev_priv->gt_pm.rc6.enabled)
8326 return;
8327
8328 if (IS_CHERRYVIEW(dev_priv))
8329 cherryview_enable_rc6(dev_priv);
8330 else if (IS_VALLEYVIEW(dev_priv))
8331 valleyview_enable_rc6(dev_priv);
8332 else if (INTEL_GEN(dev_priv) >= 9)
8333 gen9_enable_rc6(dev_priv);
8334 else if (IS_BROADWELL(dev_priv))
8335 gen8_enable_rc6(dev_priv);
8336 else if (INTEL_GEN(dev_priv) >= 6)
8337 gen6_enable_rc6(dev_priv);
8338
8339 dev_priv->gt_pm.rc6.enabled = true;
8340 }
8341
intel_enable_rps(struct drm_i915_private * dev_priv)8342 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8343 {
8344 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8345
8346 lockdep_assert_held(&dev_priv->pcu_lock);
8347
8348 if (rps->enabled)
8349 return;
8350
8351 if (IS_CHERRYVIEW(dev_priv)) {
8352 cherryview_enable_rps(dev_priv);
8353 } else if (IS_VALLEYVIEW(dev_priv)) {
8354 valleyview_enable_rps(dev_priv);
8355 } else if (INTEL_GEN(dev_priv) >= 9) {
8356 gen9_enable_rps(dev_priv);
8357 } else if (IS_BROADWELL(dev_priv)) {
8358 gen8_enable_rps(dev_priv);
8359 } else if (INTEL_GEN(dev_priv) >= 6) {
8360 gen6_enable_rps(dev_priv);
8361 } else if (IS_IRONLAKE_M(dev_priv)) {
8362 ironlake_enable_drps(dev_priv);
8363 intel_init_emon(dev_priv);
8364 }
8365
8366 WARN_ON(rps->max_freq < rps->min_freq);
8367 WARN_ON(rps->idle_freq > rps->max_freq);
8368
8369 WARN_ON(rps->efficient_freq < rps->min_freq);
8370 WARN_ON(rps->efficient_freq > rps->max_freq);
8371
8372 rps->enabled = true;
8373 }
8374
intel_enable_gt_powersave(struct drm_i915_private * dev_priv)8375 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8376 {
8377 /* Powersaving is controlled by the host when inside a VM */
8378 if (intel_vgpu_active(dev_priv))
8379 return;
8380
8381 mutex_lock(&dev_priv->pcu_lock);
8382
8383 if (HAS_RC6(dev_priv))
8384 intel_enable_rc6(dev_priv);
8385 intel_enable_rps(dev_priv);
8386 if (HAS_LLC(dev_priv))
8387 intel_enable_llc_pstate(dev_priv);
8388
8389 mutex_unlock(&dev_priv->pcu_lock);
8390 }
8391
ibx_init_clock_gating(struct drm_i915_private * dev_priv)8392 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8393 {
8394 /*
8395 * On Ibex Peak and Cougar Point, we need to disable clock
8396 * gating for the panel power sequencer or it will fail to
8397 * start up when no ports are active.
8398 */
8399 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8400 }
8401
g4x_disable_trickle_feed(struct drm_i915_private * dev_priv)8402 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8403 {
8404 enum pipe pipe;
8405
8406 for_each_pipe(dev_priv, pipe) {
8407 I915_WRITE(DSPCNTR(pipe),
8408 I915_READ(DSPCNTR(pipe)) |
8409 DISPPLANE_TRICKLE_FEED_DISABLE);
8410
8411 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8412 POSTING_READ(DSPSURF(pipe));
8413 }
8414 }
8415
ilk_init_clock_gating(struct drm_i915_private * dev_priv)8416 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8417 {
8418 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8419
8420 /*
8421 * Required for FBC
8422 * WaFbcDisableDpfcClockGating:ilk
8423 */
8424 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8425 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8426 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8427
8428 I915_WRITE(PCH_3DCGDIS0,
8429 MARIUNIT_CLOCK_GATE_DISABLE |
8430 SVSMUNIT_CLOCK_GATE_DISABLE);
8431 I915_WRITE(PCH_3DCGDIS1,
8432 VFMUNIT_CLOCK_GATE_DISABLE);
8433
8434 /*
8435 * According to the spec the following bits should be set in
8436 * order to enable memory self-refresh
8437 * The bit 22/21 of 0x42004
8438 * The bit 5 of 0x42020
8439 * The bit 15 of 0x45000
8440 */
8441 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8442 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8443 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8444 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8445 I915_WRITE(DISP_ARB_CTL,
8446 (I915_READ(DISP_ARB_CTL) |
8447 DISP_FBC_WM_DIS));
8448
8449 /*
8450 * Based on the document from hardware guys the following bits
8451 * should be set unconditionally in order to enable FBC.
8452 * The bit 22 of 0x42000
8453 * The bit 22 of 0x42004
8454 * The bit 7,8,9 of 0x42020.
8455 */
8456 if (IS_IRONLAKE_M(dev_priv)) {
8457 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8458 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8459 I915_READ(ILK_DISPLAY_CHICKEN1) |
8460 ILK_FBCQ_DIS);
8461 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8462 I915_READ(ILK_DISPLAY_CHICKEN2) |
8463 ILK_DPARB_GATE);
8464 }
8465
8466 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8467
8468 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8469 I915_READ(ILK_DISPLAY_CHICKEN2) |
8470 ILK_ELPIN_409_SELECT);
8471 I915_WRITE(_3D_CHICKEN2,
8472 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8473 _3D_CHICKEN2_WM_READ_PIPELINED);
8474
8475 /* WaDisableRenderCachePipelinedFlush:ilk */
8476 I915_WRITE(CACHE_MODE_0,
8477 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8478
8479 /* WaDisable_RenderCache_OperationalFlush:ilk */
8480 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8481
8482 g4x_disable_trickle_feed(dev_priv);
8483
8484 ibx_init_clock_gating(dev_priv);
8485 }
8486
cpt_init_clock_gating(struct drm_i915_private * dev_priv)8487 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8488 {
8489 int pipe;
8490 uint32_t val;
8491
8492 /*
8493 * On Ibex Peak and Cougar Point, we need to disable clock
8494 * gating for the panel power sequencer or it will fail to
8495 * start up when no ports are active.
8496 */
8497 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8498 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8499 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8500 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8501 DPLS_EDP_PPS_FIX_DIS);
8502 /* The below fixes the weird display corruption, a few pixels shifted
8503 * downward, on (only) LVDS of some HP laptops with IVY.
8504 */
8505 for_each_pipe(dev_priv, pipe) {
8506 val = I915_READ(TRANS_CHICKEN2(pipe));
8507 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8508 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8509 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8510 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8511 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8512 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8513 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8514 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8515 }
8516 /* WADP0ClockGatingDisable */
8517 for_each_pipe(dev_priv, pipe) {
8518 I915_WRITE(TRANS_CHICKEN1(pipe),
8519 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8520 }
8521 }
8522
gen6_check_mch_setup(struct drm_i915_private * dev_priv)8523 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8524 {
8525 uint32_t tmp;
8526
8527 tmp = I915_READ(MCH_SSKPD);
8528 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8529 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8530 tmp);
8531 }
8532
gen6_init_clock_gating(struct drm_i915_private * dev_priv)8533 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8534 {
8535 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8536
8537 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8538
8539 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8540 I915_READ(ILK_DISPLAY_CHICKEN2) |
8541 ILK_ELPIN_409_SELECT);
8542
8543 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8544 I915_WRITE(_3D_CHICKEN,
8545 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8546
8547 /* WaDisable_RenderCache_OperationalFlush:snb */
8548 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8549
8550 /*
8551 * BSpec recoomends 8x4 when MSAA is used,
8552 * however in practice 16x4 seems fastest.
8553 *
8554 * Note that PS/WM thread counts depend on the WIZ hashing
8555 * disable bit, which we don't touch here, but it's good
8556 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8557 */
8558 I915_WRITE(GEN6_GT_MODE,
8559 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8560
8561 I915_WRITE(CACHE_MODE_0,
8562 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8563
8564 I915_WRITE(GEN6_UCGCTL1,
8565 I915_READ(GEN6_UCGCTL1) |
8566 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8567 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8568
8569 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8570 * gating disable must be set. Failure to set it results in
8571 * flickering pixels due to Z write ordering failures after
8572 * some amount of runtime in the Mesa "fire" demo, and Unigine
8573 * Sanctuary and Tropics, and apparently anything else with
8574 * alpha test or pixel discard.
8575 *
8576 * According to the spec, bit 11 (RCCUNIT) must also be set,
8577 * but we didn't debug actual testcases to find it out.
8578 *
8579 * WaDisableRCCUnitClockGating:snb
8580 * WaDisableRCPBUnitClockGating:snb
8581 */
8582 I915_WRITE(GEN6_UCGCTL2,
8583 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8584 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8585
8586 /* WaStripsFansDisableFastClipPerformanceFix:snb */
8587 I915_WRITE(_3D_CHICKEN3,
8588 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8589
8590 /*
8591 * Bspec says:
8592 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8593 * 3DSTATE_SF number of SF output attributes is more than 16."
8594 */
8595 I915_WRITE(_3D_CHICKEN3,
8596 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8597
8598 /*
8599 * According to the spec the following bits should be
8600 * set in order to enable memory self-refresh and fbc:
8601 * The bit21 and bit22 of 0x42000
8602 * The bit21 and bit22 of 0x42004
8603 * The bit5 and bit7 of 0x42020
8604 * The bit14 of 0x70180
8605 * The bit14 of 0x71180
8606 *
8607 * WaFbcAsynchFlipDisableFbcQueue:snb
8608 */
8609 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8610 I915_READ(ILK_DISPLAY_CHICKEN1) |
8611 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8612 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8613 I915_READ(ILK_DISPLAY_CHICKEN2) |
8614 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8615 I915_WRITE(ILK_DSPCLK_GATE_D,
8616 I915_READ(ILK_DSPCLK_GATE_D) |
8617 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8618 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8619
8620 g4x_disable_trickle_feed(dev_priv);
8621
8622 cpt_init_clock_gating(dev_priv);
8623
8624 gen6_check_mch_setup(dev_priv);
8625 }
8626
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)8627 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8628 {
8629 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8630
8631 /*
8632 * WaVSThreadDispatchOverride:ivb,vlv
8633 *
8634 * This actually overrides the dispatch
8635 * mode for all thread types.
8636 */
8637 reg &= ~GEN7_FF_SCHED_MASK;
8638 reg |= GEN7_FF_TS_SCHED_HW;
8639 reg |= GEN7_FF_VS_SCHED_HW;
8640 reg |= GEN7_FF_DS_SCHED_HW;
8641
8642 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8643 }
8644
lpt_init_clock_gating(struct drm_i915_private * dev_priv)8645 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8646 {
8647 /*
8648 * TODO: this bit should only be enabled when really needed, then
8649 * disabled when not needed anymore in order to save power.
8650 */
8651 if (HAS_PCH_LPT_LP(dev_priv))
8652 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8653 I915_READ(SOUTH_DSPCLK_GATE_D) |
8654 PCH_LP_PARTITION_LEVEL_DISABLE);
8655
8656 /* WADPOClockGatingDisable:hsw */
8657 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8658 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8659 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8660 }
8661
lpt_suspend_hw(struct drm_i915_private * dev_priv)8662 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8663 {
8664 if (HAS_PCH_LPT_LP(dev_priv)) {
8665 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8666
8667 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8668 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8669 }
8670 }
8671
gen8_set_l3sqc_credits(struct drm_i915_private * dev_priv,int general_prio_credits,int high_prio_credits)8672 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8673 int general_prio_credits,
8674 int high_prio_credits)
8675 {
8676 u32 misccpctl;
8677 u32 val;
8678
8679 /* WaTempDisableDOPClkGating:bdw */
8680 misccpctl = I915_READ(GEN7_MISCCPCTL);
8681 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8682
8683 val = I915_READ(GEN8_L3SQCREG1);
8684 val &= ~L3_PRIO_CREDITS_MASK;
8685 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8686 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8687 I915_WRITE(GEN8_L3SQCREG1, val);
8688
8689 /*
8690 * Wait at least 100 clocks before re-enabling clock gating.
8691 * See the definition of L3SQCREG1 in BSpec.
8692 */
8693 POSTING_READ(GEN8_L3SQCREG1);
8694 udelay(1);
8695 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8696 }
8697
icl_init_clock_gating(struct drm_i915_private * dev_priv)8698 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
8699 {
8700 /* This is not an Wa. Enable to reduce Sampler power */
8701 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
8702 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8703 }
8704
cnp_init_clock_gating(struct drm_i915_private * dev_priv)8705 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8706 {
8707 if (!HAS_PCH_CNP(dev_priv))
8708 return;
8709
8710 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8711 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8712 CNP_PWM_CGE_GATING_DISABLE);
8713 }
8714
cnl_init_clock_gating(struct drm_i915_private * dev_priv)8715 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8716 {
8717 u32 val;
8718 cnp_init_clock_gating(dev_priv);
8719
8720 /* This is not an Wa. Enable for better image quality */
8721 I915_WRITE(_3D_CHICKEN3,
8722 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8723
8724 /* WaEnableChickenDCPR:cnl */
8725 I915_WRITE(GEN8_CHICKEN_DCPR_1,
8726 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8727
8728 /* WaFbcWakeMemOn:cnl */
8729 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8730 DISP_FBC_MEMORY_WAKE);
8731
8732 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8733 /* ReadHitWriteOnlyDisable:cnl */
8734 val |= RCCUNIT_CLKGATE_DIS;
8735 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8736 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8737 val |= SARBUNIT_CLKGATE_DIS;
8738 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8739
8740 /* Wa_2201832410:cnl */
8741 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8742 val |= GWUNIT_CLKGATE_DIS;
8743 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8744
8745 /* WaDisableVFclkgate:cnl */
8746 /* WaVFUnitClockGatingDisable:cnl */
8747 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8748 val |= VFUNIT_CLKGATE_DIS;
8749 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8750 }
8751
cfl_init_clock_gating(struct drm_i915_private * dev_priv)8752 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8753 {
8754 cnp_init_clock_gating(dev_priv);
8755 gen9_init_clock_gating(dev_priv);
8756
8757 /* WaFbcNukeOnHostModify:cfl */
8758 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8759 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8760 }
8761
kbl_init_clock_gating(struct drm_i915_private * dev_priv)8762 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8763 {
8764 gen9_init_clock_gating(dev_priv);
8765
8766 /* WaDisableSDEUnitClockGating:kbl */
8767 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8768 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8769 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8770
8771 /* WaDisableGamClockGating:kbl */
8772 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8773 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8774 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8775
8776 /* WaFbcNukeOnHostModify:kbl */
8777 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8778 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8779 }
8780
skl_init_clock_gating(struct drm_i915_private * dev_priv)8781 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8782 {
8783 gen9_init_clock_gating(dev_priv);
8784
8785 /* WAC6entrylatency:skl */
8786 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8787 FBC_LLC_FULLY_OPEN);
8788
8789 /* WaFbcNukeOnHostModify:skl */
8790 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8791 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8792 }
8793
bdw_init_clock_gating(struct drm_i915_private * dev_priv)8794 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8795 {
8796 /* The GTT cache must be disabled if the system is using 2M pages. */
8797 bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8798 I915_GTT_PAGE_SIZE_2M);
8799 enum pipe pipe;
8800
8801 /* WaSwitchSolVfFArbitrationPriority:bdw */
8802 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8803
8804 /* WaPsrDPAMaskVBlankInSRD:bdw */
8805 I915_WRITE(CHICKEN_PAR1_1,
8806 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8807
8808 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8809 for_each_pipe(dev_priv, pipe) {
8810 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8811 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8812 BDW_DPRS_MASK_VBLANK_SRD);
8813 }
8814
8815 /* WaVSRefCountFullforceMissDisable:bdw */
8816 /* WaDSRefCountFullforceMissDisable:bdw */
8817 I915_WRITE(GEN7_FF_THREAD_MODE,
8818 I915_READ(GEN7_FF_THREAD_MODE) &
8819 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8820
8821 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8822 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8823
8824 /* WaDisableSDEUnitClockGating:bdw */
8825 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8826 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8827
8828 /* WaProgramL3SqcReg1Default:bdw */
8829 gen8_set_l3sqc_credits(dev_priv, 30, 2);
8830
8831 /* WaGttCachingOffByDefault:bdw */
8832 I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8833
8834 /* WaKVMNotificationOnConfigChange:bdw */
8835 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8836 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8837
8838 lpt_init_clock_gating(dev_priv);
8839
8840 /* WaDisableDopClockGating:bdw
8841 *
8842 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8843 * clock gating.
8844 */
8845 I915_WRITE(GEN6_UCGCTL1,
8846 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8847 }
8848
hsw_init_clock_gating(struct drm_i915_private * dev_priv)8849 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8850 {
8851 /* L3 caching of data atomics doesn't work -- disable it. */
8852 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8853 I915_WRITE(HSW_ROW_CHICKEN3,
8854 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8855
8856 /* This is required by WaCatErrorRejectionIssue:hsw */
8857 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8858 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8859 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8860
8861 /* WaVSRefCountFullforceMissDisable:hsw */
8862 I915_WRITE(GEN7_FF_THREAD_MODE,
8863 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8864
8865 /* WaDisable_RenderCache_OperationalFlush:hsw */
8866 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8867
8868 /* enable HiZ Raw Stall Optimization */
8869 I915_WRITE(CACHE_MODE_0_GEN7,
8870 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8871
8872 /* WaDisable4x2SubspanOptimization:hsw */
8873 I915_WRITE(CACHE_MODE_1,
8874 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8875
8876 /*
8877 * BSpec recommends 8x4 when MSAA is used,
8878 * however in practice 16x4 seems fastest.
8879 *
8880 * Note that PS/WM thread counts depend on the WIZ hashing
8881 * disable bit, which we don't touch here, but it's good
8882 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8883 */
8884 I915_WRITE(GEN7_GT_MODE,
8885 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8886
8887 /* WaSampleCChickenBitEnable:hsw */
8888 I915_WRITE(HALF_SLICE_CHICKEN3,
8889 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8890
8891 /* WaSwitchSolVfFArbitrationPriority:hsw */
8892 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8893
8894 lpt_init_clock_gating(dev_priv);
8895 }
8896
ivb_init_clock_gating(struct drm_i915_private * dev_priv)8897 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8898 {
8899 uint32_t snpcr;
8900
8901 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8902
8903 /* WaDisableEarlyCull:ivb */
8904 I915_WRITE(_3D_CHICKEN3,
8905 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8906
8907 /* WaDisableBackToBackFlipFix:ivb */
8908 I915_WRITE(IVB_CHICKEN3,
8909 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8910 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8911
8912 /* WaDisablePSDDualDispatchEnable:ivb */
8913 if (IS_IVB_GT1(dev_priv))
8914 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8915 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8916
8917 /* WaDisable_RenderCache_OperationalFlush:ivb */
8918 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8919
8920 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8921 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8922 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8923
8924 /* WaApplyL3ControlAndL3ChickenMode:ivb */
8925 I915_WRITE(GEN7_L3CNTLREG1,
8926 GEN7_WA_FOR_GEN7_L3_CONTROL);
8927 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8928 GEN7_WA_L3_CHICKEN_MODE);
8929 if (IS_IVB_GT1(dev_priv))
8930 I915_WRITE(GEN7_ROW_CHICKEN2,
8931 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8932 else {
8933 /* must write both registers */
8934 I915_WRITE(GEN7_ROW_CHICKEN2,
8935 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8936 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8937 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8938 }
8939
8940 /* WaForceL3Serialization:ivb */
8941 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8942 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8943
8944 /*
8945 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8946 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8947 */
8948 I915_WRITE(GEN6_UCGCTL2,
8949 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8950
8951 /* This is required by WaCatErrorRejectionIssue:ivb */
8952 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8953 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8954 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8955
8956 g4x_disable_trickle_feed(dev_priv);
8957
8958 gen7_setup_fixed_func_scheduler(dev_priv);
8959
8960 if (0) { /* causes HiZ corruption on ivb:gt1 */
8961 /* enable HiZ Raw Stall Optimization */
8962 I915_WRITE(CACHE_MODE_0_GEN7,
8963 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8964 }
8965
8966 /* WaDisable4x2SubspanOptimization:ivb */
8967 I915_WRITE(CACHE_MODE_1,
8968 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8969
8970 /*
8971 * BSpec recommends 8x4 when MSAA is used,
8972 * however in practice 16x4 seems fastest.
8973 *
8974 * Note that PS/WM thread counts depend on the WIZ hashing
8975 * disable bit, which we don't touch here, but it's good
8976 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8977 */
8978 I915_WRITE(GEN7_GT_MODE,
8979 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8980
8981 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8982 snpcr &= ~GEN6_MBC_SNPCR_MASK;
8983 snpcr |= GEN6_MBC_SNPCR_MED;
8984 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8985
8986 if (!HAS_PCH_NOP(dev_priv))
8987 cpt_init_clock_gating(dev_priv);
8988
8989 gen6_check_mch_setup(dev_priv);
8990 }
8991
vlv_init_clock_gating(struct drm_i915_private * dev_priv)8992 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8993 {
8994 /* WaDisableEarlyCull:vlv */
8995 I915_WRITE(_3D_CHICKEN3,
8996 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8997
8998 /* WaDisableBackToBackFlipFix:vlv */
8999 I915_WRITE(IVB_CHICKEN3,
9000 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9001 CHICKEN3_DGMG_DONE_FIX_DISABLE);
9002
9003 /* WaPsdDispatchEnable:vlv */
9004 /* WaDisablePSDDualDispatchEnable:vlv */
9005 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9006 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9007 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9008
9009 /* WaDisable_RenderCache_OperationalFlush:vlv */
9010 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9011
9012 /* WaForceL3Serialization:vlv */
9013 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9014 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9015
9016 /* WaDisableDopClockGating:vlv */
9017 I915_WRITE(GEN7_ROW_CHICKEN2,
9018 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9019
9020 /* This is required by WaCatErrorRejectionIssue:vlv */
9021 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9022 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9023 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9024
9025 gen7_setup_fixed_func_scheduler(dev_priv);
9026
9027 /*
9028 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9029 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9030 */
9031 I915_WRITE(GEN6_UCGCTL2,
9032 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9033
9034 /* WaDisableL3Bank2xClockGate:vlv
9035 * Disabling L3 clock gating- MMIO 940c[25] = 1
9036 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9037 I915_WRITE(GEN7_UCGCTL4,
9038 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9039
9040 /*
9041 * BSpec says this must be set, even though
9042 * WaDisable4x2SubspanOptimization isn't listed for VLV.
9043 */
9044 I915_WRITE(CACHE_MODE_1,
9045 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9046
9047 /*
9048 * BSpec recommends 8x4 when MSAA is used,
9049 * however in practice 16x4 seems fastest.
9050 *
9051 * Note that PS/WM thread counts depend on the WIZ hashing
9052 * disable bit, which we don't touch here, but it's good
9053 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9054 */
9055 I915_WRITE(GEN7_GT_MODE,
9056 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9057
9058 /*
9059 * WaIncreaseL3CreditsForVLVB0:vlv
9060 * This is the hardware default actually.
9061 */
9062 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9063
9064 /*
9065 * WaDisableVLVClockGating_VBIIssue:vlv
9066 * Disable clock gating on th GCFG unit to prevent a delay
9067 * in the reporting of vblank events.
9068 */
9069 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9070 }
9071
chv_init_clock_gating(struct drm_i915_private * dev_priv)9072 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9073 {
9074 /* WaVSRefCountFullforceMissDisable:chv */
9075 /* WaDSRefCountFullforceMissDisable:chv */
9076 I915_WRITE(GEN7_FF_THREAD_MODE,
9077 I915_READ(GEN7_FF_THREAD_MODE) &
9078 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9079
9080 /* WaDisableSemaphoreAndSyncFlipWait:chv */
9081 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9082 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9083
9084 /* WaDisableCSUnitClockGating:chv */
9085 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9086 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9087
9088 /* WaDisableSDEUnitClockGating:chv */
9089 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9090 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9091
9092 /*
9093 * WaProgramL3SqcReg1Default:chv
9094 * See gfxspecs/Related Documents/Performance Guide/
9095 * LSQC Setting Recommendations.
9096 */
9097 gen8_set_l3sqc_credits(dev_priv, 38, 2);
9098
9099 /*
9100 * GTT cache may not work with big pages, so if those
9101 * are ever enabled GTT cache may need to be disabled.
9102 */
9103 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9104 }
9105
g4x_init_clock_gating(struct drm_i915_private * dev_priv)9106 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9107 {
9108 uint32_t dspclk_gate;
9109
9110 I915_WRITE(RENCLK_GATE_D1, 0);
9111 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9112 GS_UNIT_CLOCK_GATE_DISABLE |
9113 CL_UNIT_CLOCK_GATE_DISABLE);
9114 I915_WRITE(RAMCLK_GATE_D, 0);
9115 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9116 OVRUNIT_CLOCK_GATE_DISABLE |
9117 OVCUNIT_CLOCK_GATE_DISABLE;
9118 if (IS_GM45(dev_priv))
9119 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9120 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9121
9122 /* WaDisableRenderCachePipelinedFlush */
9123 I915_WRITE(CACHE_MODE_0,
9124 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9125
9126 /* WaDisable_RenderCache_OperationalFlush:g4x */
9127 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9128
9129 g4x_disable_trickle_feed(dev_priv);
9130 }
9131
i965gm_init_clock_gating(struct drm_i915_private * dev_priv)9132 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9133 {
9134 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9135 I915_WRITE(RENCLK_GATE_D2, 0);
9136 I915_WRITE(DSPCLK_GATE_D, 0);
9137 I915_WRITE(RAMCLK_GATE_D, 0);
9138 I915_WRITE16(DEUC, 0);
9139 I915_WRITE(MI_ARB_STATE,
9140 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9141
9142 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9143 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9144 }
9145
i965g_init_clock_gating(struct drm_i915_private * dev_priv)9146 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9147 {
9148 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9149 I965_RCC_CLOCK_GATE_DISABLE |
9150 I965_RCPB_CLOCK_GATE_DISABLE |
9151 I965_ISC_CLOCK_GATE_DISABLE |
9152 I965_FBC_CLOCK_GATE_DISABLE);
9153 I915_WRITE(RENCLK_GATE_D2, 0);
9154 I915_WRITE(MI_ARB_STATE,
9155 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9156
9157 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9158 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9159 }
9160
gen3_init_clock_gating(struct drm_i915_private * dev_priv)9161 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9162 {
9163 u32 dstate = I915_READ(D_STATE);
9164
9165 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9166 DSTATE_DOT_CLOCK_GATING;
9167 I915_WRITE(D_STATE, dstate);
9168
9169 if (IS_PINEVIEW(dev_priv))
9170 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9171
9172 /* IIR "flip pending" means done if this bit is set */
9173 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9174
9175 /* interrupts should cause a wake up from C3 */
9176 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9177
9178 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9179 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9180
9181 I915_WRITE(MI_ARB_STATE,
9182 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9183 }
9184
i85x_init_clock_gating(struct drm_i915_private * dev_priv)9185 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9186 {
9187 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9188
9189 /* interrupts should cause a wake up from C3 */
9190 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9191 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9192
9193 I915_WRITE(MEM_MODE,
9194 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9195 }
9196
i830_init_clock_gating(struct drm_i915_private * dev_priv)9197 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9198 {
9199 I915_WRITE(MEM_MODE,
9200 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9201 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9202 }
9203
intel_init_clock_gating(struct drm_i915_private * dev_priv)9204 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9205 {
9206 dev_priv->display.init_clock_gating(dev_priv);
9207 }
9208
intel_suspend_hw(struct drm_i915_private * dev_priv)9209 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9210 {
9211 if (HAS_PCH_LPT(dev_priv))
9212 lpt_suspend_hw(dev_priv);
9213 }
9214
nop_init_clock_gating(struct drm_i915_private * dev_priv)9215 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9216 {
9217 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9218 }
9219
9220 /**
9221 * intel_init_clock_gating_hooks - setup the clock gating hooks
9222 * @dev_priv: device private
9223 *
9224 * Setup the hooks that configure which clocks of a given platform can be
9225 * gated and also apply various GT and display specific workarounds for these
9226 * platforms. Note that some GT specific workarounds are applied separately
9227 * when GPU contexts or batchbuffers start their execution.
9228 */
intel_init_clock_gating_hooks(struct drm_i915_private * dev_priv)9229 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9230 {
9231 if (IS_ICELAKE(dev_priv))
9232 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9233 else if (IS_CANNONLAKE(dev_priv))
9234 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9235 else if (IS_COFFEELAKE(dev_priv))
9236 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9237 else if (IS_SKYLAKE(dev_priv))
9238 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9239 else if (IS_KABYLAKE(dev_priv))
9240 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9241 else if (IS_BROXTON(dev_priv))
9242 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9243 else if (IS_GEMINILAKE(dev_priv))
9244 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9245 else if (IS_BROADWELL(dev_priv))
9246 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9247 else if (IS_CHERRYVIEW(dev_priv))
9248 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9249 else if (IS_HASWELL(dev_priv))
9250 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9251 else if (IS_IVYBRIDGE(dev_priv))
9252 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9253 else if (IS_VALLEYVIEW(dev_priv))
9254 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9255 else if (IS_GEN6(dev_priv))
9256 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9257 else if (IS_GEN5(dev_priv))
9258 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9259 else if (IS_G4X(dev_priv))
9260 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9261 else if (IS_I965GM(dev_priv))
9262 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9263 else if (IS_I965G(dev_priv))
9264 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9265 else if (IS_GEN3(dev_priv))
9266 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9267 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9268 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9269 else if (IS_GEN2(dev_priv))
9270 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9271 else {
9272 MISSING_CASE(INTEL_DEVID(dev_priv));
9273 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9274 }
9275 }
9276
9277 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_i915_private * dev_priv)9278 void intel_init_pm(struct drm_i915_private *dev_priv)
9279 {
9280 intel_fbc_init(dev_priv);
9281
9282 /* For cxsr */
9283 if (IS_PINEVIEW(dev_priv))
9284 i915_pineview_get_mem_freq(dev_priv);
9285 else if (IS_GEN5(dev_priv))
9286 i915_ironlake_get_mem_freq(dev_priv);
9287
9288 /* For FIFO watermark updates */
9289 if (INTEL_GEN(dev_priv) >= 9) {
9290 skl_setup_wm_latency(dev_priv);
9291 dev_priv->display.initial_watermarks = skl_initial_wm;
9292 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9293 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9294 } else if (HAS_PCH_SPLIT(dev_priv)) {
9295 ilk_setup_wm_latency(dev_priv);
9296
9297 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9298 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9299 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9300 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9301 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9302 dev_priv->display.compute_intermediate_wm =
9303 ilk_compute_intermediate_wm;
9304 dev_priv->display.initial_watermarks =
9305 ilk_initial_watermarks;
9306 dev_priv->display.optimize_watermarks =
9307 ilk_optimize_watermarks;
9308 } else {
9309 DRM_DEBUG_KMS("Failed to read display plane latency. "
9310 "Disable CxSR\n");
9311 }
9312 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9313 vlv_setup_wm_latency(dev_priv);
9314 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9315 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9316 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9317 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9318 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9319 } else if (IS_G4X(dev_priv)) {
9320 g4x_setup_wm_latency(dev_priv);
9321 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9322 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9323 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9324 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9325 } else if (IS_PINEVIEW(dev_priv)) {
9326 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9327 dev_priv->is_ddr3,
9328 dev_priv->fsb_freq,
9329 dev_priv->mem_freq)) {
9330 DRM_INFO("failed to find known CxSR latency "
9331 "(found ddr%s fsb freq %d, mem freq %d), "
9332 "disabling CxSR\n",
9333 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9334 dev_priv->fsb_freq, dev_priv->mem_freq);
9335 /* Disable CxSR and never update its watermark again */
9336 intel_set_memory_cxsr(dev_priv, false);
9337 dev_priv->display.update_wm = NULL;
9338 } else
9339 dev_priv->display.update_wm = pineview_update_wm;
9340 } else if (IS_GEN4(dev_priv)) {
9341 dev_priv->display.update_wm = i965_update_wm;
9342 } else if (IS_GEN3(dev_priv)) {
9343 dev_priv->display.update_wm = i9xx_update_wm;
9344 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9345 } else if (IS_GEN2(dev_priv)) {
9346 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9347 dev_priv->display.update_wm = i845_update_wm;
9348 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9349 } else {
9350 dev_priv->display.update_wm = i9xx_update_wm;
9351 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9352 }
9353 } else {
9354 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9355 }
9356 }
9357
gen6_check_mailbox_status(struct drm_i915_private * dev_priv)9358 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9359 {
9360 uint32_t flags =
9361 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9362
9363 switch (flags) {
9364 case GEN6_PCODE_SUCCESS:
9365 return 0;
9366 case GEN6_PCODE_UNIMPLEMENTED_CMD:
9367 return -ENODEV;
9368 case GEN6_PCODE_ILLEGAL_CMD:
9369 return -ENXIO;
9370 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9371 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9372 return -EOVERFLOW;
9373 case GEN6_PCODE_TIMEOUT:
9374 return -ETIMEDOUT;
9375 default:
9376 MISSING_CASE(flags);
9377 return 0;
9378 }
9379 }
9380
gen7_check_mailbox_status(struct drm_i915_private * dev_priv)9381 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9382 {
9383 uint32_t flags =
9384 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9385
9386 switch (flags) {
9387 case GEN6_PCODE_SUCCESS:
9388 return 0;
9389 case GEN6_PCODE_ILLEGAL_CMD:
9390 return -ENXIO;
9391 case GEN7_PCODE_TIMEOUT:
9392 return -ETIMEDOUT;
9393 case GEN7_PCODE_ILLEGAL_DATA:
9394 return -EINVAL;
9395 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9396 return -EOVERFLOW;
9397 default:
9398 MISSING_CASE(flags);
9399 return 0;
9400 }
9401 }
9402
sandybridge_pcode_read(struct drm_i915_private * dev_priv,u32 mbox,u32 * val)9403 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9404 {
9405 int status;
9406
9407 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9408
9409 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9410 * use te fw I915_READ variants to reduce the amount of work
9411 * required when reading/writing.
9412 */
9413
9414 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9415 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9416 mbox, __builtin_return_address(0));
9417 return -EAGAIN;
9418 }
9419
9420 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9421 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9422 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9423
9424 if (__intel_wait_for_register_fw(dev_priv,
9425 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9426 500, 0, NULL)) {
9427 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9428 mbox, __builtin_return_address(0));
9429 return -ETIMEDOUT;
9430 }
9431
9432 *val = I915_READ_FW(GEN6_PCODE_DATA);
9433 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9434
9435 if (INTEL_GEN(dev_priv) > 6)
9436 status = gen7_check_mailbox_status(dev_priv);
9437 else
9438 status = gen6_check_mailbox_status(dev_priv);
9439
9440 if (status) {
9441 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9442 mbox, __builtin_return_address(0), status);
9443 return status;
9444 }
9445
9446 return 0;
9447 }
9448
sandybridge_pcode_write_timeout(struct drm_i915_private * dev_priv,u32 mbox,u32 val,int fast_timeout_us,int slow_timeout_ms)9449 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9450 u32 mbox, u32 val,
9451 int fast_timeout_us, int slow_timeout_ms)
9452 {
9453 int status;
9454
9455 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9456
9457 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9458 * use te fw I915_READ variants to reduce the amount of work
9459 * required when reading/writing.
9460 */
9461
9462 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9463 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9464 val, mbox, __builtin_return_address(0));
9465 return -EAGAIN;
9466 }
9467
9468 I915_WRITE_FW(GEN6_PCODE_DATA, val);
9469 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9470 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9471
9472 if (__intel_wait_for_register_fw(dev_priv,
9473 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9474 fast_timeout_us, slow_timeout_ms,
9475 NULL)) {
9476 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9477 val, mbox, __builtin_return_address(0));
9478 return -ETIMEDOUT;
9479 }
9480
9481 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9482
9483 if (INTEL_GEN(dev_priv) > 6)
9484 status = gen7_check_mailbox_status(dev_priv);
9485 else
9486 status = gen6_check_mailbox_status(dev_priv);
9487
9488 if (status) {
9489 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9490 val, mbox, __builtin_return_address(0), status);
9491 return status;
9492 }
9493
9494 return 0;
9495 }
9496
skl_pcode_try_request(struct drm_i915_private * dev_priv,u32 mbox,u32 request,u32 reply_mask,u32 reply,u32 * status)9497 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9498 u32 request, u32 reply_mask, u32 reply,
9499 u32 *status)
9500 {
9501 u32 val = request;
9502
9503 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9504
9505 return *status || ((val & reply_mask) == reply);
9506 }
9507
9508 /**
9509 * skl_pcode_request - send PCODE request until acknowledgment
9510 * @dev_priv: device private
9511 * @mbox: PCODE mailbox ID the request is targeted for
9512 * @request: request ID
9513 * @reply_mask: mask used to check for request acknowledgment
9514 * @reply: value used to check for request acknowledgment
9515 * @timeout_base_ms: timeout for polling with preemption enabled
9516 *
9517 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9518 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9519 * The request is acknowledged once the PCODE reply dword equals @reply after
9520 * applying @reply_mask. Polling is first attempted with preemption enabled
9521 * for @timeout_base_ms and if this times out for another 50 ms with
9522 * preemption disabled.
9523 *
9524 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9525 * other error as reported by PCODE.
9526 */
skl_pcode_request(struct drm_i915_private * dev_priv,u32 mbox,u32 request,u32 reply_mask,u32 reply,int timeout_base_ms)9527 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9528 u32 reply_mask, u32 reply, int timeout_base_ms)
9529 {
9530 u32 status;
9531 int ret;
9532
9533 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9534
9535 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9536 &status)
9537
9538 /*
9539 * Prime the PCODE by doing a request first. Normally it guarantees
9540 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9541 * _wait_for() doesn't guarantee when its passed condition is evaluated
9542 * first, so send the first request explicitly.
9543 */
9544 if (COND) {
9545 ret = 0;
9546 goto out;
9547 }
9548 ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9549 if (!ret)
9550 goto out;
9551
9552 /*
9553 * The above can time out if the number of requests was low (2 in the
9554 * worst case) _and_ PCODE was busy for some reason even after a
9555 * (queued) request and @timeout_base_ms delay. As a workaround retry
9556 * the poll with preemption disabled to maximize the number of
9557 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9558 * account for interrupts that could reduce the number of these
9559 * requests, and for any quirks of the PCODE firmware that delays
9560 * the request completion.
9561 */
9562 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9563 WARN_ON_ONCE(timeout_base_ms > 3);
9564 preempt_disable();
9565 ret = wait_for_atomic(COND, 50);
9566 preempt_enable();
9567
9568 out:
9569 return ret ? ret : status;
9570 #undef COND
9571 }
9572
byt_gpu_freq(struct drm_i915_private * dev_priv,int val)9573 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9574 {
9575 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9576
9577 /*
9578 * N = val - 0xb7
9579 * Slow = Fast = GPLL ref * N
9580 */
9581 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9582 }
9583
byt_freq_opcode(struct drm_i915_private * dev_priv,int val)9584 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9585 {
9586 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9587
9588 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9589 }
9590
chv_gpu_freq(struct drm_i915_private * dev_priv,int val)9591 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9592 {
9593 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9594
9595 /*
9596 * N = val / 2
9597 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9598 */
9599 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9600 }
9601
chv_freq_opcode(struct drm_i915_private * dev_priv,int val)9602 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9603 {
9604 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9605
9606 /* CHV needs even values */
9607 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9608 }
9609
intel_gpu_freq(struct drm_i915_private * dev_priv,int val)9610 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9611 {
9612 if (INTEL_GEN(dev_priv) >= 9)
9613 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9614 GEN9_FREQ_SCALER);
9615 else if (IS_CHERRYVIEW(dev_priv))
9616 return chv_gpu_freq(dev_priv, val);
9617 else if (IS_VALLEYVIEW(dev_priv))
9618 return byt_gpu_freq(dev_priv, val);
9619 else
9620 return val * GT_FREQUENCY_MULTIPLIER;
9621 }
9622
intel_freq_opcode(struct drm_i915_private * dev_priv,int val)9623 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9624 {
9625 if (INTEL_GEN(dev_priv) >= 9)
9626 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9627 GT_FREQUENCY_MULTIPLIER);
9628 else if (IS_CHERRYVIEW(dev_priv))
9629 return chv_freq_opcode(dev_priv, val);
9630 else if (IS_VALLEYVIEW(dev_priv))
9631 return byt_freq_opcode(dev_priv, val);
9632 else
9633 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9634 }
9635
intel_pm_setup(struct drm_i915_private * dev_priv)9636 void intel_pm_setup(struct drm_i915_private *dev_priv)
9637 {
9638 mutex_init(&dev_priv->pcu_lock);
9639 mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9640
9641 atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9642
9643 dev_priv->runtime_pm.suspended = false;
9644 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9645 }
9646
vlv_residency_raw(struct drm_i915_private * dev_priv,const i915_reg_t reg)9647 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9648 const i915_reg_t reg)
9649 {
9650 u32 lower, upper, tmp;
9651 int loop = 2;
9652
9653 /*
9654 * The register accessed do not need forcewake. We borrow
9655 * uncore lock to prevent concurrent access to range reg.
9656 */
9657 lockdep_assert_held(&dev_priv->uncore.lock);
9658
9659 /*
9660 * vlv and chv residency counters are 40 bits in width.
9661 * With a control bit, we can choose between upper or lower
9662 * 32bit window into this counter.
9663 *
9664 * Although we always use the counter in high-range mode elsewhere,
9665 * userspace may attempt to read the value before rc6 is initialised,
9666 * before we have set the default VLV_COUNTER_CONTROL value. So always
9667 * set the high bit to be safe.
9668 */
9669 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9670 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9671 upper = I915_READ_FW(reg);
9672 do {
9673 tmp = upper;
9674
9675 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9676 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9677 lower = I915_READ_FW(reg);
9678
9679 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9680 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9681 upper = I915_READ_FW(reg);
9682 } while (upper != tmp && --loop);
9683
9684 /*
9685 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9686 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9687 * now.
9688 */
9689
9690 return lower | (u64)upper << 8;
9691 }
9692
intel_rc6_residency_ns(struct drm_i915_private * dev_priv,const i915_reg_t reg)9693 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9694 const i915_reg_t reg)
9695 {
9696 u64 time_hw, prev_hw, overflow_hw;
9697 unsigned int fw_domains;
9698 unsigned long flags;
9699 unsigned int i;
9700 u32 mul, div;
9701
9702 if (!HAS_RC6(dev_priv))
9703 return 0;
9704
9705 /*
9706 * Store previous hw counter values for counter wrap-around handling.
9707 *
9708 * There are only four interesting registers and they live next to each
9709 * other so we can use the relative address, compared to the smallest
9710 * one as the index into driver storage.
9711 */
9712 i = (i915_mmio_reg_offset(reg) -
9713 i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9714 if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9715 return 0;
9716
9717 fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9718
9719 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9720 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9721
9722 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9723 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9724 mul = 1000000;
9725 div = dev_priv->czclk_freq;
9726 overflow_hw = BIT_ULL(40);
9727 time_hw = vlv_residency_raw(dev_priv, reg);
9728 } else {
9729 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9730 if (IS_GEN9_LP(dev_priv)) {
9731 mul = 10000;
9732 div = 12;
9733 } else {
9734 mul = 1280;
9735 div = 1;
9736 }
9737
9738 overflow_hw = BIT_ULL(32);
9739 time_hw = I915_READ_FW(reg);
9740 }
9741
9742 /*
9743 * Counter wrap handling.
9744 *
9745 * But relying on a sufficient frequency of queries otherwise counters
9746 * can still wrap.
9747 */
9748 prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9749 dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9750
9751 /* RC6 delta from last sample. */
9752 if (time_hw >= prev_hw)
9753 time_hw -= prev_hw;
9754 else
9755 time_hw += overflow_hw - prev_hw;
9756
9757 /* Add delta to RC6 extended raw driver copy. */
9758 time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9759 dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9760
9761 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9762 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9763
9764 return mul_u64_u32_div(time_hw, mul, div);
9765 }
9766
intel_get_cagf(struct drm_i915_private * dev_priv,u32 rpstat)9767 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9768 {
9769 u32 cagf;
9770
9771 if (INTEL_GEN(dev_priv) >= 9)
9772 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9773 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9774 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9775 else
9776 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
9777
9778 return cagf;
9779 }
9780