1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc.h>
38 #include <drm/drm_crtc_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include "intel_drv.h"
43 #include <drm/i915_drm.h>
44 #include "i915_drv.h"
45
46 #define DP_DPRX_ESI_LEN 14
47
48 /* Compliance test status bits */
49 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
50 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
51 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
52 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
53
54 struct dp_link_dpll {
55 int clock;
56 struct dpll dpll;
57 };
58
59 static const struct dp_link_dpll g4x_dpll[] = {
60 { 162000,
61 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
62 { 270000,
63 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
64 };
65
66 static const struct dp_link_dpll pch_dpll[] = {
67 { 162000,
68 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
69 { 270000,
70 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
71 };
72
73 static const struct dp_link_dpll vlv_dpll[] = {
74 { 162000,
75 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
76 { 270000,
77 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
78 };
79
80 /*
81 * CHV supports eDP 1.4 that have more link rates.
82 * Below only provides the fixed rate but exclude variable rate.
83 */
84 static const struct dp_link_dpll chv_dpll[] = {
85 /*
86 * CHV requires to program fractional division for m2.
87 * m2 is stored in fixed point format using formula below
88 * (m2_int << 22) | m2_fraction
89 */
90 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
91 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
92 { 270000, /* m2_int = 27, m2_fraction = 0 */
93 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
94 };
95
96 /**
97 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
98 * @intel_dp: DP struct
99 *
100 * If a CPU or PCH DP output is attached to an eDP panel, this function
101 * will return true, and false otherwise.
102 */
intel_dp_is_edp(struct intel_dp * intel_dp)103 bool intel_dp_is_edp(struct intel_dp *intel_dp)
104 {
105 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
106
107 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
108 }
109
intel_dp_to_dev(struct intel_dp * intel_dp)110 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
111 {
112 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
113
114 return intel_dig_port->base.base.dev;
115 }
116
intel_attached_dp(struct drm_connector * connector)117 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
118 {
119 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
120 }
121
122 static void intel_dp_link_down(struct intel_encoder *encoder,
123 const struct intel_crtc_state *old_crtc_state);
124 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
125 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
126 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
127 const struct intel_crtc_state *crtc_state);
128 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
129 enum pipe pipe);
130 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
131
132 /* update sink rates from dpcd */
intel_dp_set_sink_rates(struct intel_dp * intel_dp)133 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
134 {
135 static const int dp_rates[] = {
136 162000, 270000, 540000, 810000
137 };
138 int i, max_rate;
139
140 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
141
142 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
143 if (dp_rates[i] > max_rate)
144 break;
145 intel_dp->sink_rates[i] = dp_rates[i];
146 }
147
148 intel_dp->num_sink_rates = i;
149 }
150
151 /* Get length of rates array potentially limited by max_rate. */
intel_dp_rate_limit_len(const int * rates,int len,int max_rate)152 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
153 {
154 int i;
155
156 /* Limit results by potentially reduced max rate */
157 for (i = 0; i < len; i++) {
158 if (rates[len - i - 1] <= max_rate)
159 return len - i;
160 }
161
162 return 0;
163 }
164
165 /* Get length of common rates array potentially limited by max_rate. */
intel_dp_common_len_rate_limit(const struct intel_dp * intel_dp,int max_rate)166 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
167 int max_rate)
168 {
169 return intel_dp_rate_limit_len(intel_dp->common_rates,
170 intel_dp->num_common_rates, max_rate);
171 }
172
173 /* Theoretical max between source and sink */
intel_dp_max_common_rate(struct intel_dp * intel_dp)174 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
175 {
176 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
177 }
178
179 /* Theoretical max between source and sink */
intel_dp_max_common_lane_count(struct intel_dp * intel_dp)180 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
181 {
182 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
183 int source_max = intel_dig_port->max_lanes;
184 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
185
186 return min(source_max, sink_max);
187 }
188
intel_dp_max_lane_count(struct intel_dp * intel_dp)189 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
190 {
191 return intel_dp->max_link_lane_count;
192 }
193
194 int
intel_dp_link_required(int pixel_clock,int bpp)195 intel_dp_link_required(int pixel_clock, int bpp)
196 {
197 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
198 return DIV_ROUND_UP(pixel_clock * bpp, 8);
199 }
200
201 int
intel_dp_max_data_rate(int max_link_clock,int max_lanes)202 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
203 {
204 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
205 * link rate that is generally expressed in Gbps. Since, 8 bits of data
206 * is transmitted every LS_Clk per lane, there is no need to account for
207 * the channel encoding that is done in the PHY layer here.
208 */
209
210 return max_link_clock * max_lanes;
211 }
212
213 static int
intel_dp_downstream_max_dotclock(struct intel_dp * intel_dp)214 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
215 {
216 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
217 struct intel_encoder *encoder = &intel_dig_port->base;
218 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
219 int max_dotclk = dev_priv->max_dotclk_freq;
220 int ds_max_dotclk;
221
222 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
223
224 if (type != DP_DS_PORT_TYPE_VGA)
225 return max_dotclk;
226
227 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
228 intel_dp->downstream_ports);
229
230 if (ds_max_dotclk != 0)
231 max_dotclk = min(max_dotclk, ds_max_dotclk);
232
233 return max_dotclk;
234 }
235
cnl_max_source_rate(struct intel_dp * intel_dp)236 static int cnl_max_source_rate(struct intel_dp *intel_dp)
237 {
238 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
239 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
240 enum port port = dig_port->base.port;
241
242 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
243
244 /* Low voltage SKUs are limited to max of 5.4G */
245 if (voltage == VOLTAGE_INFO_0_85V)
246 return 540000;
247
248 /* For this SKU 8.1G is supported in all ports */
249 if (IS_CNL_WITH_PORT_F(dev_priv))
250 return 810000;
251
252 /* For other SKUs, max rate on ports A and D is 5.4G */
253 if (port == PORT_A || port == PORT_D)
254 return 540000;
255
256 return 810000;
257 }
258
icl_max_source_rate(struct intel_dp * intel_dp)259 static int icl_max_source_rate(struct intel_dp *intel_dp)
260 {
261 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
262 enum port port = dig_port->base.port;
263
264 if (port == PORT_B)
265 return 540000;
266
267 return 810000;
268 }
269
270 static void
intel_dp_set_source_rates(struct intel_dp * intel_dp)271 intel_dp_set_source_rates(struct intel_dp *intel_dp)
272 {
273 /* The values must be in increasing order */
274 static const int cnl_rates[] = {
275 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
276 };
277 static const int bxt_rates[] = {
278 162000, 216000, 243000, 270000, 324000, 432000, 540000
279 };
280 static const int skl_rates[] = {
281 162000, 216000, 270000, 324000, 432000, 540000
282 };
283 static const int hsw_rates[] = {
284 162000, 270000, 540000
285 };
286 static const int g4x_rates[] = {
287 162000, 270000
288 };
289 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
290 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
291 const struct ddi_vbt_port_info *info =
292 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
293 const int *source_rates;
294 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
295
296 /* This should only be done once */
297 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
298
299 if (INTEL_GEN(dev_priv) >= 10) {
300 source_rates = cnl_rates;
301 size = ARRAY_SIZE(cnl_rates);
302 if (INTEL_GEN(dev_priv) == 10)
303 max_rate = cnl_max_source_rate(intel_dp);
304 else
305 max_rate = icl_max_source_rate(intel_dp);
306 } else if (IS_GEN9_LP(dev_priv)) {
307 source_rates = bxt_rates;
308 size = ARRAY_SIZE(bxt_rates);
309 } else if (IS_GEN9_BC(dev_priv)) {
310 source_rates = skl_rates;
311 size = ARRAY_SIZE(skl_rates);
312 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
313 IS_BROADWELL(dev_priv)) {
314 source_rates = hsw_rates;
315 size = ARRAY_SIZE(hsw_rates);
316 } else {
317 source_rates = g4x_rates;
318 size = ARRAY_SIZE(g4x_rates);
319 }
320
321 if (max_rate && vbt_max_rate)
322 max_rate = min(max_rate, vbt_max_rate);
323 else if (vbt_max_rate)
324 max_rate = vbt_max_rate;
325
326 if (max_rate)
327 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
328
329 intel_dp->source_rates = source_rates;
330 intel_dp->num_source_rates = size;
331 }
332
intersect_rates(const int * source_rates,int source_len,const int * sink_rates,int sink_len,int * common_rates)333 static int intersect_rates(const int *source_rates, int source_len,
334 const int *sink_rates, int sink_len,
335 int *common_rates)
336 {
337 int i = 0, j = 0, k = 0;
338
339 while (i < source_len && j < sink_len) {
340 if (source_rates[i] == sink_rates[j]) {
341 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
342 return k;
343 common_rates[k] = source_rates[i];
344 ++k;
345 ++i;
346 ++j;
347 } else if (source_rates[i] < sink_rates[j]) {
348 ++i;
349 } else {
350 ++j;
351 }
352 }
353 return k;
354 }
355
356 /* return index of rate in rates array, or -1 if not found */
intel_dp_rate_index(const int * rates,int len,int rate)357 static int intel_dp_rate_index(const int *rates, int len, int rate)
358 {
359 int i;
360
361 for (i = 0; i < len; i++)
362 if (rate == rates[i])
363 return i;
364
365 return -1;
366 }
367
intel_dp_set_common_rates(struct intel_dp * intel_dp)368 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
369 {
370 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
371
372 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
373 intel_dp->num_source_rates,
374 intel_dp->sink_rates,
375 intel_dp->num_sink_rates,
376 intel_dp->common_rates);
377
378 /* Paranoia, there should always be something in common. */
379 if (WARN_ON(intel_dp->num_common_rates == 0)) {
380 intel_dp->common_rates[0] = 162000;
381 intel_dp->num_common_rates = 1;
382 }
383 }
384
intel_dp_link_params_valid(struct intel_dp * intel_dp,int link_rate,uint8_t lane_count)385 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
386 uint8_t lane_count)
387 {
388 /*
389 * FIXME: we need to synchronize the current link parameters with
390 * hardware readout. Currently fast link training doesn't work on
391 * boot-up.
392 */
393 if (link_rate == 0 ||
394 link_rate > intel_dp->max_link_rate)
395 return false;
396
397 if (lane_count == 0 ||
398 lane_count > intel_dp_max_lane_count(intel_dp))
399 return false;
400
401 return true;
402 }
403
intel_dp_get_link_train_fallback_values(struct intel_dp * intel_dp,int link_rate,uint8_t lane_count)404 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
405 int link_rate, uint8_t lane_count)
406 {
407 int index;
408
409 index = intel_dp_rate_index(intel_dp->common_rates,
410 intel_dp->num_common_rates,
411 link_rate);
412 if (index > 0) {
413 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
414 intel_dp->max_link_lane_count = lane_count;
415 } else if (lane_count > 1) {
416 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
417 intel_dp->max_link_lane_count = lane_count >> 1;
418 } else {
419 DRM_ERROR("Link Training Unsuccessful\n");
420 return -1;
421 }
422
423 return 0;
424 }
425
426 static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)427 intel_dp_mode_valid(struct drm_connector *connector,
428 struct drm_display_mode *mode)
429 {
430 struct intel_dp *intel_dp = intel_attached_dp(connector);
431 struct intel_connector *intel_connector = to_intel_connector(connector);
432 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
433 int target_clock = mode->clock;
434 int max_rate, mode_rate, max_lanes, max_link_clock;
435 int max_dotclk;
436
437 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
438 return MODE_NO_DBLESCAN;
439
440 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
441
442 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
443 if (mode->hdisplay > fixed_mode->hdisplay)
444 return MODE_PANEL;
445
446 if (mode->vdisplay > fixed_mode->vdisplay)
447 return MODE_PANEL;
448
449 target_clock = fixed_mode->clock;
450 }
451
452 max_link_clock = intel_dp_max_link_rate(intel_dp);
453 max_lanes = intel_dp_max_lane_count(intel_dp);
454
455 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
456 mode_rate = intel_dp_link_required(target_clock, 18);
457
458 if (mode_rate > max_rate || target_clock > max_dotclk)
459 return MODE_CLOCK_HIGH;
460
461 if (mode->clock < 10000)
462 return MODE_CLOCK_LOW;
463
464 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
465 return MODE_H_ILLEGAL;
466
467 return MODE_OK;
468 }
469
intel_dp_pack_aux(const uint8_t * src,int src_bytes)470 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
471 {
472 int i;
473 uint32_t v = 0;
474
475 if (src_bytes > 4)
476 src_bytes = 4;
477 for (i = 0; i < src_bytes; i++)
478 v |= ((uint32_t) src[i]) << ((3-i) * 8);
479 return v;
480 }
481
intel_dp_unpack_aux(uint32_t src,uint8_t * dst,int dst_bytes)482 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
483 {
484 int i;
485 if (dst_bytes > 4)
486 dst_bytes = 4;
487 for (i = 0; i < dst_bytes; i++)
488 dst[i] = src >> ((3-i) * 8);
489 }
490
491 static void
492 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
493 static void
494 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
495 bool force_disable_vdd);
496 static void
497 intel_dp_pps_init(struct intel_dp *intel_dp);
498
pps_lock(struct intel_dp * intel_dp)499 static void pps_lock(struct intel_dp *intel_dp)
500 {
501 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
502
503 /*
504 * See intel_power_sequencer_reset() why we need
505 * a power domain reference here.
506 */
507 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
508
509 mutex_lock(&dev_priv->pps_mutex);
510 }
511
pps_unlock(struct intel_dp * intel_dp)512 static void pps_unlock(struct intel_dp *intel_dp)
513 {
514 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
515
516 mutex_unlock(&dev_priv->pps_mutex);
517
518 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
519 }
520
521 static void
vlv_power_sequencer_kick(struct intel_dp * intel_dp)522 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
523 {
524 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
525 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
526 enum pipe pipe = intel_dp->pps_pipe;
527 bool pll_enabled, release_cl_override = false;
528 enum dpio_phy phy = DPIO_PHY(pipe);
529 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
530 uint32_t DP;
531
532 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
533 "skipping pipe %c power sequencer kick due to port %c being active\n",
534 pipe_name(pipe), port_name(intel_dig_port->base.port)))
535 return;
536
537 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
538 pipe_name(pipe), port_name(intel_dig_port->base.port));
539
540 /* Preserve the BIOS-computed detected bit. This is
541 * supposed to be read-only.
542 */
543 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
544 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
545 DP |= DP_PORT_WIDTH(1);
546 DP |= DP_LINK_TRAIN_PAT_1;
547
548 if (IS_CHERRYVIEW(dev_priv))
549 DP |= DP_PIPE_SEL_CHV(pipe);
550 else
551 DP |= DP_PIPE_SEL(pipe);
552
553 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
554
555 /*
556 * The DPLL for the pipe must be enabled for this to work.
557 * So enable temporarily it if it's not already enabled.
558 */
559 if (!pll_enabled) {
560 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
561 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
562
563 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
564 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
565 DRM_ERROR("Failed to force on pll for pipe %c!\n",
566 pipe_name(pipe));
567 return;
568 }
569 }
570
571 /*
572 * Similar magic as in intel_dp_enable_port().
573 * We _must_ do this port enable + disable trick
574 * to make this power sequencer lock onto the port.
575 * Otherwise even VDD force bit won't work.
576 */
577 I915_WRITE(intel_dp->output_reg, DP);
578 POSTING_READ(intel_dp->output_reg);
579
580 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
581 POSTING_READ(intel_dp->output_reg);
582
583 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
584 POSTING_READ(intel_dp->output_reg);
585
586 if (!pll_enabled) {
587 vlv_force_pll_off(dev_priv, pipe);
588
589 if (release_cl_override)
590 chv_phy_powergate_ch(dev_priv, phy, ch, false);
591 }
592 }
593
vlv_find_free_pps(struct drm_i915_private * dev_priv)594 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
595 {
596 struct intel_encoder *encoder;
597 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
598
599 /*
600 * We don't have power sequencer currently.
601 * Pick one that's not used by other ports.
602 */
603 for_each_intel_dp(&dev_priv->drm, encoder) {
604 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
605
606 if (encoder->type == INTEL_OUTPUT_EDP) {
607 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
608 intel_dp->active_pipe != intel_dp->pps_pipe);
609
610 if (intel_dp->pps_pipe != INVALID_PIPE)
611 pipes &= ~(1 << intel_dp->pps_pipe);
612 } else {
613 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
614
615 if (intel_dp->active_pipe != INVALID_PIPE)
616 pipes &= ~(1 << intel_dp->active_pipe);
617 }
618 }
619
620 if (pipes == 0)
621 return INVALID_PIPE;
622
623 return ffs(pipes) - 1;
624 }
625
626 static enum pipe
vlv_power_sequencer_pipe(struct intel_dp * intel_dp)627 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
628 {
629 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
630 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
631 enum pipe pipe;
632
633 lockdep_assert_held(&dev_priv->pps_mutex);
634
635 /* We should never land here with regular DP ports */
636 WARN_ON(!intel_dp_is_edp(intel_dp));
637
638 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
639 intel_dp->active_pipe != intel_dp->pps_pipe);
640
641 if (intel_dp->pps_pipe != INVALID_PIPE)
642 return intel_dp->pps_pipe;
643
644 pipe = vlv_find_free_pps(dev_priv);
645
646 /*
647 * Didn't find one. This should not happen since there
648 * are two power sequencers and up to two eDP ports.
649 */
650 if (WARN_ON(pipe == INVALID_PIPE))
651 pipe = PIPE_A;
652
653 vlv_steal_power_sequencer(dev_priv, pipe);
654 intel_dp->pps_pipe = pipe;
655
656 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
657 pipe_name(intel_dp->pps_pipe),
658 port_name(intel_dig_port->base.port));
659
660 /* init power sequencer on this pipe and port */
661 intel_dp_init_panel_power_sequencer(intel_dp);
662 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
663
664 /*
665 * Even vdd force doesn't work until we've made
666 * the power sequencer lock in on the port.
667 */
668 vlv_power_sequencer_kick(intel_dp);
669
670 return intel_dp->pps_pipe;
671 }
672
673 static int
bxt_power_sequencer_idx(struct intel_dp * intel_dp)674 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
675 {
676 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
677 int backlight_controller = dev_priv->vbt.backlight.controller;
678
679 lockdep_assert_held(&dev_priv->pps_mutex);
680
681 /* We should never land here with regular DP ports */
682 WARN_ON(!intel_dp_is_edp(intel_dp));
683
684 if (!intel_dp->pps_reset)
685 return backlight_controller;
686
687 intel_dp->pps_reset = false;
688
689 /*
690 * Only the HW needs to be reprogrammed, the SW state is fixed and
691 * has been setup during connector init.
692 */
693 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
694
695 return backlight_controller;
696 }
697
698 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
699 enum pipe pipe);
700
vlv_pipe_has_pp_on(struct drm_i915_private * dev_priv,enum pipe pipe)701 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
702 enum pipe pipe)
703 {
704 return I915_READ(PP_STATUS(pipe)) & PP_ON;
705 }
706
vlv_pipe_has_vdd_on(struct drm_i915_private * dev_priv,enum pipe pipe)707 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
708 enum pipe pipe)
709 {
710 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
711 }
712
vlv_pipe_any(struct drm_i915_private * dev_priv,enum pipe pipe)713 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
714 enum pipe pipe)
715 {
716 return true;
717 }
718
719 static enum pipe
vlv_initial_pps_pipe(struct drm_i915_private * dev_priv,enum port port,vlv_pipe_check pipe_check)720 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
721 enum port port,
722 vlv_pipe_check pipe_check)
723 {
724 enum pipe pipe;
725
726 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
727 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
728 PANEL_PORT_SELECT_MASK;
729
730 if (port_sel != PANEL_PORT_SELECT_VLV(port))
731 continue;
732
733 if (!pipe_check(dev_priv, pipe))
734 continue;
735
736 return pipe;
737 }
738
739 return INVALID_PIPE;
740 }
741
742 static void
vlv_initial_power_sequencer_setup(struct intel_dp * intel_dp)743 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
744 {
745 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
746 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
747 enum port port = intel_dig_port->base.port;
748
749 lockdep_assert_held(&dev_priv->pps_mutex);
750
751 /* try to find a pipe with this port selected */
752 /* first pick one where the panel is on */
753 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
754 vlv_pipe_has_pp_on);
755 /* didn't find one? pick one where vdd is on */
756 if (intel_dp->pps_pipe == INVALID_PIPE)
757 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
758 vlv_pipe_has_vdd_on);
759 /* didn't find one? pick one with just the correct port */
760 if (intel_dp->pps_pipe == INVALID_PIPE)
761 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
762 vlv_pipe_any);
763
764 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
765 if (intel_dp->pps_pipe == INVALID_PIPE) {
766 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
767 port_name(port));
768 return;
769 }
770
771 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
772 port_name(port), pipe_name(intel_dp->pps_pipe));
773
774 intel_dp_init_panel_power_sequencer(intel_dp);
775 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
776 }
777
intel_power_sequencer_reset(struct drm_i915_private * dev_priv)778 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
779 {
780 struct intel_encoder *encoder;
781
782 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
783 !IS_GEN9_LP(dev_priv)))
784 return;
785
786 /*
787 * We can't grab pps_mutex here due to deadlock with power_domain
788 * mutex when power_domain functions are called while holding pps_mutex.
789 * That also means that in order to use pps_pipe the code needs to
790 * hold both a power domain reference and pps_mutex, and the power domain
791 * reference get/put must be done while _not_ holding pps_mutex.
792 * pps_{lock,unlock}() do these steps in the correct order, so one
793 * should use them always.
794 */
795
796 for_each_intel_dp(&dev_priv->drm, encoder) {
797 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
798
799 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
800
801 if (encoder->type != INTEL_OUTPUT_EDP)
802 continue;
803
804 if (IS_GEN9_LP(dev_priv))
805 intel_dp->pps_reset = true;
806 else
807 intel_dp->pps_pipe = INVALID_PIPE;
808 }
809 }
810
811 struct pps_registers {
812 i915_reg_t pp_ctrl;
813 i915_reg_t pp_stat;
814 i915_reg_t pp_on;
815 i915_reg_t pp_off;
816 i915_reg_t pp_div;
817 };
818
intel_pps_get_registers(struct intel_dp * intel_dp,struct pps_registers * regs)819 static void intel_pps_get_registers(struct intel_dp *intel_dp,
820 struct pps_registers *regs)
821 {
822 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
823 int pps_idx = 0;
824
825 memset(regs, 0, sizeof(*regs));
826
827 if (IS_GEN9_LP(dev_priv))
828 pps_idx = bxt_power_sequencer_idx(intel_dp);
829 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
830 pps_idx = vlv_power_sequencer_pipe(intel_dp);
831
832 regs->pp_ctrl = PP_CONTROL(pps_idx);
833 regs->pp_stat = PP_STATUS(pps_idx);
834 regs->pp_on = PP_ON_DELAYS(pps_idx);
835 regs->pp_off = PP_OFF_DELAYS(pps_idx);
836 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
837 !HAS_PCH_ICP(dev_priv))
838 regs->pp_div = PP_DIVISOR(pps_idx);
839 }
840
841 static i915_reg_t
_pp_ctrl_reg(struct intel_dp * intel_dp)842 _pp_ctrl_reg(struct intel_dp *intel_dp)
843 {
844 struct pps_registers regs;
845
846 intel_pps_get_registers(intel_dp, ®s);
847
848 return regs.pp_ctrl;
849 }
850
851 static i915_reg_t
_pp_stat_reg(struct intel_dp * intel_dp)852 _pp_stat_reg(struct intel_dp *intel_dp)
853 {
854 struct pps_registers regs;
855
856 intel_pps_get_registers(intel_dp, ®s);
857
858 return regs.pp_stat;
859 }
860
861 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
862 This function only applicable when panel PM state is not to be tracked */
edp_notify_handler(struct notifier_block * this,unsigned long code,void * unused)863 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
864 void *unused)
865 {
866 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
867 edp_notifier);
868 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
869
870 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
871 return 0;
872
873 pps_lock(intel_dp);
874
875 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
876 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
877 i915_reg_t pp_ctrl_reg, pp_div_reg;
878 u32 pp_div;
879
880 pp_ctrl_reg = PP_CONTROL(pipe);
881 pp_div_reg = PP_DIVISOR(pipe);
882 pp_div = I915_READ(pp_div_reg);
883 pp_div &= PP_REFERENCE_DIVIDER_MASK;
884
885 /* 0x1F write to PP_DIV_REG sets max cycle delay */
886 I915_WRITE(pp_div_reg, pp_div | 0x1F);
887 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
888 msleep(intel_dp->panel_power_cycle_delay);
889 }
890
891 pps_unlock(intel_dp);
892
893 return 0;
894 }
895
edp_have_panel_power(struct intel_dp * intel_dp)896 static bool edp_have_panel_power(struct intel_dp *intel_dp)
897 {
898 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
899
900 lockdep_assert_held(&dev_priv->pps_mutex);
901
902 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
903 intel_dp->pps_pipe == INVALID_PIPE)
904 return false;
905
906 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
907 }
908
edp_have_panel_vdd(struct intel_dp * intel_dp)909 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
910 {
911 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
912
913 lockdep_assert_held(&dev_priv->pps_mutex);
914
915 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
916 intel_dp->pps_pipe == INVALID_PIPE)
917 return false;
918
919 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
920 }
921
922 static void
intel_dp_check_edp(struct intel_dp * intel_dp)923 intel_dp_check_edp(struct intel_dp *intel_dp)
924 {
925 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
926
927 if (!intel_dp_is_edp(intel_dp))
928 return;
929
930 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
931 WARN(1, "eDP powered off while attempting aux channel communication.\n");
932 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
933 I915_READ(_pp_stat_reg(intel_dp)),
934 I915_READ(_pp_ctrl_reg(intel_dp)));
935 }
936 }
937
938 static uint32_t
intel_dp_aux_wait_done(struct intel_dp * intel_dp)939 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
940 {
941 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
942 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
943 uint32_t status;
944 bool done;
945
946 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
947 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
948 msecs_to_jiffies_timeout(10));
949 if (!done)
950 DRM_ERROR("dp aux hw did not signal timeout!\n");
951 #undef C
952
953 return status;
954 }
955
g4x_get_aux_clock_divider(struct intel_dp * intel_dp,int index)956 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
957 {
958 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
959
960 if (index)
961 return 0;
962
963 /*
964 * The clock divider is based off the hrawclk, and would like to run at
965 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
966 */
967 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
968 }
969
ilk_get_aux_clock_divider(struct intel_dp * intel_dp,int index)970 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
971 {
972 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
973
974 if (index)
975 return 0;
976
977 /*
978 * The clock divider is based off the cdclk or PCH rawclk, and would
979 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
980 * divide by 2000 and use that
981 */
982 if (intel_dp->aux_ch == AUX_CH_A)
983 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
984 else
985 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
986 }
987
hsw_get_aux_clock_divider(struct intel_dp * intel_dp,int index)988 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
989 {
990 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
991
992 if (intel_dp->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
993 /* Workaround for non-ULT HSW */
994 switch (index) {
995 case 0: return 63;
996 case 1: return 72;
997 default: return 0;
998 }
999 }
1000
1001 return ilk_get_aux_clock_divider(intel_dp, index);
1002 }
1003
skl_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1004 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1005 {
1006 /*
1007 * SKL doesn't need us to program the AUX clock divider (Hardware will
1008 * derive the clock from CDCLK automatically). We still implement the
1009 * get_aux_clock_divider vfunc to plug-in into the existing code.
1010 */
1011 return index ? 0 : 1;
1012 }
1013
g4x_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,uint32_t aux_clock_divider)1014 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1015 int send_bytes,
1016 uint32_t aux_clock_divider)
1017 {
1018 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1019 struct drm_i915_private *dev_priv =
1020 to_i915(intel_dig_port->base.base.dev);
1021 uint32_t precharge, timeout;
1022
1023 if (IS_GEN6(dev_priv))
1024 precharge = 3;
1025 else
1026 precharge = 5;
1027
1028 if (IS_BROADWELL(dev_priv))
1029 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1030 else
1031 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1032
1033 return DP_AUX_CH_CTL_SEND_BUSY |
1034 DP_AUX_CH_CTL_DONE |
1035 DP_AUX_CH_CTL_INTERRUPT |
1036 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1037 timeout |
1038 DP_AUX_CH_CTL_RECEIVE_ERROR |
1039 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1040 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1041 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1042 }
1043
skl_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,uint32_t unused)1044 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1045 int send_bytes,
1046 uint32_t unused)
1047 {
1048 return DP_AUX_CH_CTL_SEND_BUSY |
1049 DP_AUX_CH_CTL_DONE |
1050 DP_AUX_CH_CTL_INTERRUPT |
1051 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1052 DP_AUX_CH_CTL_TIME_OUT_MAX |
1053 DP_AUX_CH_CTL_RECEIVE_ERROR |
1054 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1055 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1056 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1057 }
1058
1059 static int
intel_dp_aux_xfer(struct intel_dp * intel_dp,const uint8_t * send,int send_bytes,uint8_t * recv,int recv_size,u32 aux_send_ctl_flags)1060 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1061 const uint8_t *send, int send_bytes,
1062 uint8_t *recv, int recv_size,
1063 u32 aux_send_ctl_flags)
1064 {
1065 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1066 struct drm_i915_private *dev_priv =
1067 to_i915(intel_dig_port->base.base.dev);
1068 i915_reg_t ch_ctl, ch_data[5];
1069 uint32_t aux_clock_divider;
1070 int i, ret, recv_bytes;
1071 uint32_t status;
1072 int try, clock = 0;
1073 bool vdd;
1074
1075 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1076 for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1077 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1078
1079 pps_lock(intel_dp);
1080
1081 /*
1082 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1083 * In such cases we want to leave VDD enabled and it's up to upper layers
1084 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1085 * ourselves.
1086 */
1087 vdd = edp_panel_vdd_on(intel_dp);
1088
1089 /* dp aux is extremely sensitive to irq latency, hence request the
1090 * lowest possible wakeup latency and so prevent the cpu from going into
1091 * deep sleep states.
1092 */
1093 pm_qos_update_request(&dev_priv->pm_qos, 0);
1094
1095 intel_dp_check_edp(intel_dp);
1096
1097 /* Try to wait for any previous AUX channel activity */
1098 for (try = 0; try < 3; try++) {
1099 status = I915_READ_NOTRACE(ch_ctl);
1100 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1101 break;
1102 msleep(1);
1103 }
1104
1105 if (try == 3) {
1106 static u32 last_status = -1;
1107 const u32 status = I915_READ(ch_ctl);
1108
1109 if (status != last_status) {
1110 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1111 status);
1112 last_status = status;
1113 }
1114
1115 ret = -EBUSY;
1116 goto out;
1117 }
1118
1119 /* Only 5 data registers! */
1120 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1121 ret = -E2BIG;
1122 goto out;
1123 }
1124
1125 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1126 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1127 send_bytes,
1128 aux_clock_divider);
1129
1130 send_ctl |= aux_send_ctl_flags;
1131
1132 /* Must try at least 3 times according to DP spec */
1133 for (try = 0; try < 5; try++) {
1134 /* Load the send data into the aux channel data registers */
1135 for (i = 0; i < send_bytes; i += 4)
1136 I915_WRITE(ch_data[i >> 2],
1137 intel_dp_pack_aux(send + i,
1138 send_bytes - i));
1139
1140 /* Send the command and wait for it to complete */
1141 I915_WRITE(ch_ctl, send_ctl);
1142
1143 status = intel_dp_aux_wait_done(intel_dp);
1144
1145 /* Clear done status and any errors */
1146 I915_WRITE(ch_ctl,
1147 status |
1148 DP_AUX_CH_CTL_DONE |
1149 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1150 DP_AUX_CH_CTL_RECEIVE_ERROR);
1151
1152 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1153 * 400us delay required for errors and timeouts
1154 * Timeout errors from the HW already meet this
1155 * requirement so skip to next iteration
1156 */
1157 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1158 continue;
1159
1160 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1161 usleep_range(400, 500);
1162 continue;
1163 }
1164 if (status & DP_AUX_CH_CTL_DONE)
1165 goto done;
1166 }
1167 }
1168
1169 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1170 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1171 ret = -EBUSY;
1172 goto out;
1173 }
1174
1175 done:
1176 /* Check for timeout or receive error.
1177 * Timeouts occur when the sink is not connected
1178 */
1179 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1180 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1181 ret = -EIO;
1182 goto out;
1183 }
1184
1185 /* Timeouts occur when the device isn't connected, so they're
1186 * "normal" -- don't fill the kernel log with these */
1187 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1188 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1189 ret = -ETIMEDOUT;
1190 goto out;
1191 }
1192
1193 /* Unload any bytes sent back from the other side */
1194 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1195 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1196
1197 /*
1198 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1199 * We have no idea of what happened so we return -EBUSY so
1200 * drm layer takes care for the necessary retries.
1201 */
1202 if (recv_bytes == 0 || recv_bytes > 20) {
1203 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1204 recv_bytes);
1205 ret = -EBUSY;
1206 goto out;
1207 }
1208
1209 if (recv_bytes > recv_size)
1210 recv_bytes = recv_size;
1211
1212 for (i = 0; i < recv_bytes; i += 4)
1213 intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1214 recv + i, recv_bytes - i);
1215
1216 ret = recv_bytes;
1217 out:
1218 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1219
1220 if (vdd)
1221 edp_panel_vdd_off(intel_dp, false);
1222
1223 pps_unlock(intel_dp);
1224
1225 return ret;
1226 }
1227
1228 #define BARE_ADDRESS_SIZE 3
1229 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1230
1231 static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],const struct drm_dp_aux_msg * msg)1232 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1233 const struct drm_dp_aux_msg *msg)
1234 {
1235 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1236 txbuf[1] = (msg->address >> 8) & 0xff;
1237 txbuf[2] = msg->address & 0xff;
1238 txbuf[3] = msg->size - 1;
1239 }
1240
1241 static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1242 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1243 {
1244 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1245 uint8_t txbuf[20], rxbuf[20];
1246 size_t txsize, rxsize;
1247 int ret;
1248
1249 intel_dp_aux_header(txbuf, msg);
1250
1251 switch (msg->request & ~DP_AUX_I2C_MOT) {
1252 case DP_AUX_NATIVE_WRITE:
1253 case DP_AUX_I2C_WRITE:
1254 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1255 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1256 rxsize = 2; /* 0 or 1 data bytes */
1257
1258 if (WARN_ON(txsize > 20))
1259 return -E2BIG;
1260
1261 WARN_ON(!msg->buffer != !msg->size);
1262
1263 if (msg->buffer)
1264 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1265
1266 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1267 rxbuf, rxsize, 0);
1268 if (ret > 0) {
1269 msg->reply = rxbuf[0] >> 4;
1270
1271 if (ret > 1) {
1272 /* Number of bytes written in a short write. */
1273 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1274 } else {
1275 /* Return payload size. */
1276 ret = msg->size;
1277 }
1278 }
1279 break;
1280
1281 case DP_AUX_NATIVE_READ:
1282 case DP_AUX_I2C_READ:
1283 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1284 rxsize = msg->size + 1;
1285
1286 if (WARN_ON(rxsize > 20))
1287 return -E2BIG;
1288
1289 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1290 rxbuf, rxsize, 0);
1291 if (ret > 0) {
1292 msg->reply = rxbuf[0] >> 4;
1293 /*
1294 * Assume happy day, and copy the data. The caller is
1295 * expected to check msg->reply before touching it.
1296 *
1297 * Return payload size.
1298 */
1299 ret--;
1300 memcpy(msg->buffer, rxbuf + 1, ret);
1301 }
1302 break;
1303
1304 default:
1305 ret = -EINVAL;
1306 break;
1307 }
1308
1309 return ret;
1310 }
1311
intel_aux_ch(struct intel_dp * intel_dp)1312 static enum aux_ch intel_aux_ch(struct intel_dp *intel_dp)
1313 {
1314 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1315 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1316 enum port port = encoder->port;
1317 const struct ddi_vbt_port_info *info =
1318 &dev_priv->vbt.ddi_port_info[port];
1319 enum aux_ch aux_ch;
1320
1321 if (!info->alternate_aux_channel) {
1322 aux_ch = (enum aux_ch) port;
1323
1324 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1325 aux_ch_name(aux_ch), port_name(port));
1326 return aux_ch;
1327 }
1328
1329 switch (info->alternate_aux_channel) {
1330 case DP_AUX_A:
1331 aux_ch = AUX_CH_A;
1332 break;
1333 case DP_AUX_B:
1334 aux_ch = AUX_CH_B;
1335 break;
1336 case DP_AUX_C:
1337 aux_ch = AUX_CH_C;
1338 break;
1339 case DP_AUX_D:
1340 aux_ch = AUX_CH_D;
1341 break;
1342 case DP_AUX_E:
1343 aux_ch = AUX_CH_E;
1344 break;
1345 case DP_AUX_F:
1346 aux_ch = AUX_CH_F;
1347 break;
1348 default:
1349 MISSING_CASE(info->alternate_aux_channel);
1350 aux_ch = AUX_CH_A;
1351 break;
1352 }
1353
1354 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1355 aux_ch_name(aux_ch), port_name(port));
1356
1357 return aux_ch;
1358 }
1359
1360 static enum intel_display_power_domain
intel_aux_power_domain(struct intel_dp * intel_dp)1361 intel_aux_power_domain(struct intel_dp *intel_dp)
1362 {
1363 switch (intel_dp->aux_ch) {
1364 case AUX_CH_A:
1365 return POWER_DOMAIN_AUX_A;
1366 case AUX_CH_B:
1367 return POWER_DOMAIN_AUX_B;
1368 case AUX_CH_C:
1369 return POWER_DOMAIN_AUX_C;
1370 case AUX_CH_D:
1371 return POWER_DOMAIN_AUX_D;
1372 case AUX_CH_E:
1373 return POWER_DOMAIN_AUX_E;
1374 case AUX_CH_F:
1375 return POWER_DOMAIN_AUX_F;
1376 default:
1377 MISSING_CASE(intel_dp->aux_ch);
1378 return POWER_DOMAIN_AUX_A;
1379 }
1380 }
1381
g4x_aux_ctl_reg(struct intel_dp * intel_dp)1382 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1383 {
1384 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1385 enum aux_ch aux_ch = intel_dp->aux_ch;
1386
1387 switch (aux_ch) {
1388 case AUX_CH_B:
1389 case AUX_CH_C:
1390 case AUX_CH_D:
1391 return DP_AUX_CH_CTL(aux_ch);
1392 default:
1393 MISSING_CASE(aux_ch);
1394 return DP_AUX_CH_CTL(AUX_CH_B);
1395 }
1396 }
1397
g4x_aux_data_reg(struct intel_dp * intel_dp,int index)1398 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1399 {
1400 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1401 enum aux_ch aux_ch = intel_dp->aux_ch;
1402
1403 switch (aux_ch) {
1404 case AUX_CH_B:
1405 case AUX_CH_C:
1406 case AUX_CH_D:
1407 return DP_AUX_CH_DATA(aux_ch, index);
1408 default:
1409 MISSING_CASE(aux_ch);
1410 return DP_AUX_CH_DATA(AUX_CH_B, index);
1411 }
1412 }
1413
ilk_aux_ctl_reg(struct intel_dp * intel_dp)1414 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1415 {
1416 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1417 enum aux_ch aux_ch = intel_dp->aux_ch;
1418
1419 switch (aux_ch) {
1420 case AUX_CH_A:
1421 return DP_AUX_CH_CTL(aux_ch);
1422 case AUX_CH_B:
1423 case AUX_CH_C:
1424 case AUX_CH_D:
1425 return PCH_DP_AUX_CH_CTL(aux_ch);
1426 default:
1427 MISSING_CASE(aux_ch);
1428 return DP_AUX_CH_CTL(AUX_CH_A);
1429 }
1430 }
1431
ilk_aux_data_reg(struct intel_dp * intel_dp,int index)1432 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1433 {
1434 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1435 enum aux_ch aux_ch = intel_dp->aux_ch;
1436
1437 switch (aux_ch) {
1438 case AUX_CH_A:
1439 return DP_AUX_CH_DATA(aux_ch, index);
1440 case AUX_CH_B:
1441 case AUX_CH_C:
1442 case AUX_CH_D:
1443 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1444 default:
1445 MISSING_CASE(aux_ch);
1446 return DP_AUX_CH_DATA(AUX_CH_A, index);
1447 }
1448 }
1449
skl_aux_ctl_reg(struct intel_dp * intel_dp)1450 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1451 {
1452 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1453 enum aux_ch aux_ch = intel_dp->aux_ch;
1454
1455 switch (aux_ch) {
1456 case AUX_CH_A:
1457 case AUX_CH_B:
1458 case AUX_CH_C:
1459 case AUX_CH_D:
1460 case AUX_CH_E:
1461 case AUX_CH_F:
1462 return DP_AUX_CH_CTL(aux_ch);
1463 default:
1464 MISSING_CASE(aux_ch);
1465 return DP_AUX_CH_CTL(AUX_CH_A);
1466 }
1467 }
1468
skl_aux_data_reg(struct intel_dp * intel_dp,int index)1469 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1470 {
1471 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1472 enum aux_ch aux_ch = intel_dp->aux_ch;
1473
1474 switch (aux_ch) {
1475 case AUX_CH_A:
1476 case AUX_CH_B:
1477 case AUX_CH_C:
1478 case AUX_CH_D:
1479 case AUX_CH_E:
1480 case AUX_CH_F:
1481 return DP_AUX_CH_DATA(aux_ch, index);
1482 default:
1483 MISSING_CASE(aux_ch);
1484 return DP_AUX_CH_DATA(AUX_CH_A, index);
1485 }
1486 }
1487
1488 static void
intel_dp_aux_fini(struct intel_dp * intel_dp)1489 intel_dp_aux_fini(struct intel_dp *intel_dp)
1490 {
1491 kfree(intel_dp->aux.name);
1492 }
1493
1494 static void
intel_dp_aux_init(struct intel_dp * intel_dp)1495 intel_dp_aux_init(struct intel_dp *intel_dp)
1496 {
1497 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1498 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1499
1500 intel_dp->aux_ch = intel_aux_ch(intel_dp);
1501 intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp);
1502
1503 if (INTEL_GEN(dev_priv) >= 9) {
1504 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1505 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1506 } else if (HAS_PCH_SPLIT(dev_priv)) {
1507 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1508 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1509 } else {
1510 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1511 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1512 }
1513
1514 if (INTEL_GEN(dev_priv) >= 9)
1515 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1516 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1517 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1518 else if (HAS_PCH_SPLIT(dev_priv))
1519 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1520 else
1521 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1522
1523 if (INTEL_GEN(dev_priv) >= 9)
1524 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1525 else
1526 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1527
1528 drm_dp_aux_init(&intel_dp->aux);
1529
1530 /* Failure to allocate our preferred name is not critical */
1531 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1532 port_name(encoder->port));
1533 intel_dp->aux.transfer = intel_dp_aux_transfer;
1534 }
1535
intel_dp_source_supports_hbr2(struct intel_dp * intel_dp)1536 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1537 {
1538 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1539
1540 return max_rate >= 540000;
1541 }
1542
intel_dp_source_supports_hbr3(struct intel_dp * intel_dp)1543 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1544 {
1545 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1546
1547 return max_rate >= 810000;
1548 }
1549
1550 static void
intel_dp_set_clock(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1551 intel_dp_set_clock(struct intel_encoder *encoder,
1552 struct intel_crtc_state *pipe_config)
1553 {
1554 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1555 const struct dp_link_dpll *divisor = NULL;
1556 int i, count = 0;
1557
1558 if (IS_G4X(dev_priv)) {
1559 divisor = g4x_dpll;
1560 count = ARRAY_SIZE(g4x_dpll);
1561 } else if (HAS_PCH_SPLIT(dev_priv)) {
1562 divisor = pch_dpll;
1563 count = ARRAY_SIZE(pch_dpll);
1564 } else if (IS_CHERRYVIEW(dev_priv)) {
1565 divisor = chv_dpll;
1566 count = ARRAY_SIZE(chv_dpll);
1567 } else if (IS_VALLEYVIEW(dev_priv)) {
1568 divisor = vlv_dpll;
1569 count = ARRAY_SIZE(vlv_dpll);
1570 }
1571
1572 if (divisor && count) {
1573 for (i = 0; i < count; i++) {
1574 if (pipe_config->port_clock == divisor[i].clock) {
1575 pipe_config->dpll = divisor[i].dpll;
1576 pipe_config->clock_set = true;
1577 break;
1578 }
1579 }
1580 }
1581 }
1582
snprintf_int_array(char * str,size_t len,const int * array,int nelem)1583 static void snprintf_int_array(char *str, size_t len,
1584 const int *array, int nelem)
1585 {
1586 int i;
1587
1588 str[0] = '\0';
1589
1590 for (i = 0; i < nelem; i++) {
1591 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1592 if (r >= len)
1593 return;
1594 str += r;
1595 len -= r;
1596 }
1597 }
1598
intel_dp_print_rates(struct intel_dp * intel_dp)1599 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1600 {
1601 char str[128]; /* FIXME: too big for stack? */
1602
1603 if ((drm_debug & DRM_UT_KMS) == 0)
1604 return;
1605
1606 snprintf_int_array(str, sizeof(str),
1607 intel_dp->source_rates, intel_dp->num_source_rates);
1608 DRM_DEBUG_KMS("source rates: %s\n", str);
1609
1610 snprintf_int_array(str, sizeof(str),
1611 intel_dp->sink_rates, intel_dp->num_sink_rates);
1612 DRM_DEBUG_KMS("sink rates: %s\n", str);
1613
1614 snprintf_int_array(str, sizeof(str),
1615 intel_dp->common_rates, intel_dp->num_common_rates);
1616 DRM_DEBUG_KMS("common rates: %s\n", str);
1617 }
1618
1619 int
intel_dp_max_link_rate(struct intel_dp * intel_dp)1620 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1621 {
1622 int len;
1623
1624 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1625 if (WARN_ON(len <= 0))
1626 return 162000;
1627
1628 return intel_dp->common_rates[len - 1];
1629 }
1630
intel_dp_rate_select(struct intel_dp * intel_dp,int rate)1631 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1632 {
1633 int i = intel_dp_rate_index(intel_dp->sink_rates,
1634 intel_dp->num_sink_rates, rate);
1635
1636 if (WARN_ON(i < 0))
1637 i = 0;
1638
1639 return i;
1640 }
1641
intel_dp_compute_rate(struct intel_dp * intel_dp,int port_clock,uint8_t * link_bw,uint8_t * rate_select)1642 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1643 uint8_t *link_bw, uint8_t *rate_select)
1644 {
1645 /* eDP 1.4 rate select method. */
1646 if (intel_dp->use_rate_select) {
1647 *link_bw = 0;
1648 *rate_select =
1649 intel_dp_rate_select(intel_dp, port_clock);
1650 } else {
1651 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1652 *rate_select = 0;
1653 }
1654 }
1655
1656 struct link_config_limits {
1657 int min_clock, max_clock;
1658 int min_lane_count, max_lane_count;
1659 int min_bpp, max_bpp;
1660 };
1661
intel_dp_compute_bpp(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config)1662 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1663 struct intel_crtc_state *pipe_config)
1664 {
1665 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1666 struct intel_connector *intel_connector = intel_dp->attached_connector;
1667 int bpp, bpc;
1668
1669 bpp = pipe_config->pipe_bpp;
1670 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1671
1672 if (bpc > 0)
1673 bpp = min(bpp, 3*bpc);
1674
1675 if (intel_dp_is_edp(intel_dp)) {
1676 /* Get bpp from vbt only for panels that dont have bpp in edid */
1677 if (intel_connector->base.display_info.bpc == 0 &&
1678 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1679 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1680 dev_priv->vbt.edp.bpp);
1681 bpp = dev_priv->vbt.edp.bpp;
1682 }
1683 }
1684
1685 return bpp;
1686 }
1687
1688 /* Adjust link config limits based on compliance test requests. */
1689 static void
intel_dp_adjust_compliance_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,struct link_config_limits * limits)1690 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1691 struct intel_crtc_state *pipe_config,
1692 struct link_config_limits *limits)
1693 {
1694 /* For DP Compliance we override the computed bpp for the pipe */
1695 if (intel_dp->compliance.test_data.bpc != 0) {
1696 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1697
1698 limits->min_bpp = limits->max_bpp = bpp;
1699 pipe_config->dither_force_disable = bpp == 6 * 3;
1700
1701 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1702 }
1703
1704 /* Use values requested by Compliance Test Request */
1705 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1706 int index;
1707
1708 /* Validate the compliance test data since max values
1709 * might have changed due to link train fallback.
1710 */
1711 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1712 intel_dp->compliance.test_lane_count)) {
1713 index = intel_dp_rate_index(intel_dp->common_rates,
1714 intel_dp->num_common_rates,
1715 intel_dp->compliance.test_link_rate);
1716 if (index >= 0)
1717 limits->min_clock = limits->max_clock = index;
1718 limits->min_lane_count = limits->max_lane_count =
1719 intel_dp->compliance.test_lane_count;
1720 }
1721 }
1722 }
1723
1724 /* Optimize link config in order: max bpp, min clock, min lanes */
1725 static bool
intel_dp_compute_link_config_wide(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,const struct link_config_limits * limits)1726 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1727 struct intel_crtc_state *pipe_config,
1728 const struct link_config_limits *limits)
1729 {
1730 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1731 int bpp, clock, lane_count;
1732 int mode_rate, link_clock, link_avail;
1733
1734 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1735 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1736 bpp);
1737
1738 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1739 for (lane_count = limits->min_lane_count;
1740 lane_count <= limits->max_lane_count;
1741 lane_count <<= 1) {
1742 link_clock = intel_dp->common_rates[clock];
1743 link_avail = intel_dp_max_data_rate(link_clock,
1744 lane_count);
1745
1746 if (mode_rate <= link_avail) {
1747 pipe_config->lane_count = lane_count;
1748 pipe_config->pipe_bpp = bpp;
1749 pipe_config->port_clock = link_clock;
1750
1751 return true;
1752 }
1753 }
1754 }
1755 }
1756
1757 return false;
1758 }
1759
1760 static bool
intel_dp_compute_link_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1761 intel_dp_compute_link_config(struct intel_encoder *encoder,
1762 struct intel_crtc_state *pipe_config)
1763 {
1764 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1765 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1766 struct link_config_limits limits;
1767 int common_len;
1768
1769 common_len = intel_dp_common_len_rate_limit(intel_dp,
1770 intel_dp->max_link_rate);
1771
1772 /* No common link rates between source and sink */
1773 WARN_ON(common_len <= 0);
1774
1775 limits.min_clock = 0;
1776 limits.max_clock = common_len - 1;
1777
1778 limits.min_lane_count = 1;
1779 limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
1780
1781 limits.min_bpp = 6 * 3;
1782 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1783
1784 if (intel_dp_is_edp(intel_dp)) {
1785 /*
1786 * Use the maximum clock and number of lanes the eDP panel
1787 * advertizes being capable of. The panels are generally
1788 * designed to support only a single clock and lane
1789 * configuration, and typically these values correspond to the
1790 * native resolution of the panel.
1791 */
1792 limits.min_lane_count = limits.max_lane_count;
1793 limits.min_clock = limits.max_clock;
1794 }
1795
1796 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
1797
1798 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1799 "max rate %d max bpp %d pixel clock %iKHz\n",
1800 limits.max_lane_count,
1801 intel_dp->common_rates[limits.max_clock],
1802 limits.max_bpp, adjusted_mode->crtc_clock);
1803
1804 /*
1805 * Optimize for slow and wide. This is the place to add alternative
1806 * optimization policy.
1807 */
1808 if (!intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits))
1809 return false;
1810
1811 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
1812 pipe_config->lane_count, pipe_config->port_clock,
1813 pipe_config->pipe_bpp);
1814
1815 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
1816 intel_dp_link_required(adjusted_mode->crtc_clock,
1817 pipe_config->pipe_bpp),
1818 intel_dp_max_data_rate(pipe_config->port_clock,
1819 pipe_config->lane_count));
1820
1821 return true;
1822 }
1823
1824 bool
intel_dp_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)1825 intel_dp_compute_config(struct intel_encoder *encoder,
1826 struct intel_crtc_state *pipe_config,
1827 struct drm_connector_state *conn_state)
1828 {
1829 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1830 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1831 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1832 enum port port = encoder->port;
1833 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1834 struct intel_connector *intel_connector = intel_dp->attached_connector;
1835 struct intel_digital_connector_state *intel_conn_state =
1836 to_intel_digital_connector_state(conn_state);
1837 bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
1838 DP_DPCD_QUIRK_LIMITED_M_N);
1839
1840 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1841 pipe_config->has_pch_encoder = true;
1842
1843 pipe_config->has_drrs = false;
1844 if (IS_G4X(dev_priv) || port == PORT_A)
1845 pipe_config->has_audio = false;
1846 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
1847 pipe_config->has_audio = intel_dp->has_audio;
1848 else
1849 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
1850
1851 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1852 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1853 adjusted_mode);
1854
1855 if (INTEL_GEN(dev_priv) >= 9) {
1856 int ret;
1857
1858 ret = skl_update_scaler_crtc(pipe_config);
1859 if (ret)
1860 return ret;
1861 }
1862
1863 if (HAS_GMCH_DISPLAY(dev_priv))
1864 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1865 conn_state->scaling_mode);
1866 else
1867 intel_pch_panel_fitting(intel_crtc, pipe_config,
1868 conn_state->scaling_mode);
1869 }
1870
1871 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
1872 return false;
1873
1874 if (HAS_GMCH_DISPLAY(dev_priv) &&
1875 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
1876 return false;
1877
1878 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1879 return false;
1880
1881 if (!intel_dp_compute_link_config(encoder, pipe_config))
1882 return false;
1883
1884 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
1885 /*
1886 * See:
1887 * CEA-861-E - 5.1 Default Encoding Parameters
1888 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1889 */
1890 pipe_config->limited_color_range =
1891 pipe_config->pipe_bpp != 18 &&
1892 drm_default_rgb_quant_range(adjusted_mode) ==
1893 HDMI_QUANTIZATION_RANGE_LIMITED;
1894 } else {
1895 pipe_config->limited_color_range =
1896 intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
1897 }
1898
1899 intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count,
1900 adjusted_mode->crtc_clock,
1901 pipe_config->port_clock,
1902 &pipe_config->dp_m_n,
1903 reduce_m_n);
1904
1905 if (intel_connector->panel.downclock_mode != NULL &&
1906 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1907 pipe_config->has_drrs = true;
1908 intel_link_compute_m_n(pipe_config->pipe_bpp,
1909 pipe_config->lane_count,
1910 intel_connector->panel.downclock_mode->clock,
1911 pipe_config->port_clock,
1912 &pipe_config->dp_m2_n2,
1913 reduce_m_n);
1914 }
1915
1916 if (!HAS_DDI(dev_priv))
1917 intel_dp_set_clock(encoder, pipe_config);
1918
1919 intel_psr_compute_config(intel_dp, pipe_config);
1920
1921 return true;
1922 }
1923
intel_dp_set_link_params(struct intel_dp * intel_dp,int link_rate,uint8_t lane_count,bool link_mst)1924 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1925 int link_rate, uint8_t lane_count,
1926 bool link_mst)
1927 {
1928 intel_dp->link_trained = false;
1929 intel_dp->link_rate = link_rate;
1930 intel_dp->lane_count = lane_count;
1931 intel_dp->link_mst = link_mst;
1932 }
1933
intel_dp_prepare(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)1934 static void intel_dp_prepare(struct intel_encoder *encoder,
1935 const struct intel_crtc_state *pipe_config)
1936 {
1937 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1938 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1939 enum port port = encoder->port;
1940 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
1941 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1942
1943 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1944 pipe_config->lane_count,
1945 intel_crtc_has_type(pipe_config,
1946 INTEL_OUTPUT_DP_MST));
1947
1948 /*
1949 * There are four kinds of DP registers:
1950 *
1951 * IBX PCH
1952 * SNB CPU
1953 * IVB CPU
1954 * CPT PCH
1955 *
1956 * IBX PCH and CPU are the same for almost everything,
1957 * except that the CPU DP PLL is configured in this
1958 * register
1959 *
1960 * CPT PCH is quite different, having many bits moved
1961 * to the TRANS_DP_CTL register instead. That
1962 * configuration happens (oddly) in ironlake_pch_enable
1963 */
1964
1965 /* Preserve the BIOS-computed detected bit. This is
1966 * supposed to be read-only.
1967 */
1968 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1969
1970 /* Handle DP bits in common between all three register formats */
1971 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1972 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1973
1974 /* Split out the IBX/CPU vs CPT settings */
1975
1976 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
1977 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1978 intel_dp->DP |= DP_SYNC_HS_HIGH;
1979 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1980 intel_dp->DP |= DP_SYNC_VS_HIGH;
1981 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1982
1983 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1984 intel_dp->DP |= DP_ENHANCED_FRAMING;
1985
1986 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
1987 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1988 u32 trans_dp;
1989
1990 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1991
1992 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1993 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1994 trans_dp |= TRANS_DP_ENH_FRAMING;
1995 else
1996 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1997 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1998 } else {
1999 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2000 intel_dp->DP |= DP_COLOR_RANGE_16_235;
2001
2002 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2003 intel_dp->DP |= DP_SYNC_HS_HIGH;
2004 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2005 intel_dp->DP |= DP_SYNC_VS_HIGH;
2006 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2007
2008 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2009 intel_dp->DP |= DP_ENHANCED_FRAMING;
2010
2011 if (IS_CHERRYVIEW(dev_priv))
2012 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2013 else
2014 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2015 }
2016 }
2017
2018 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2019 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2020
2021 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2022 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2023
2024 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2025 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2026
2027 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2028
wait_panel_status(struct intel_dp * intel_dp,u32 mask,u32 value)2029 static void wait_panel_status(struct intel_dp *intel_dp,
2030 u32 mask,
2031 u32 value)
2032 {
2033 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2034 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2035
2036 lockdep_assert_held(&dev_priv->pps_mutex);
2037
2038 intel_pps_verify_state(intel_dp);
2039
2040 pp_stat_reg = _pp_stat_reg(intel_dp);
2041 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2042
2043 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2044 mask, value,
2045 I915_READ(pp_stat_reg),
2046 I915_READ(pp_ctrl_reg));
2047
2048 if (intel_wait_for_register(dev_priv,
2049 pp_stat_reg, mask, value,
2050 5000))
2051 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2052 I915_READ(pp_stat_reg),
2053 I915_READ(pp_ctrl_reg));
2054
2055 DRM_DEBUG_KMS("Wait complete\n");
2056 }
2057
wait_panel_on(struct intel_dp * intel_dp)2058 static void wait_panel_on(struct intel_dp *intel_dp)
2059 {
2060 DRM_DEBUG_KMS("Wait for panel power on\n");
2061 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2062 }
2063
wait_panel_off(struct intel_dp * intel_dp)2064 static void wait_panel_off(struct intel_dp *intel_dp)
2065 {
2066 DRM_DEBUG_KMS("Wait for panel power off time\n");
2067 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2068 }
2069
wait_panel_power_cycle(struct intel_dp * intel_dp)2070 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2071 {
2072 ktime_t panel_power_on_time;
2073 s64 panel_power_off_duration;
2074
2075 DRM_DEBUG_KMS("Wait for panel power cycle\n");
2076
2077 /* take the difference of currrent time and panel power off time
2078 * and then make panel wait for t11_t12 if needed. */
2079 panel_power_on_time = ktime_get_boottime();
2080 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2081
2082 /* When we disable the VDD override bit last we have to do the manual
2083 * wait. */
2084 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2085 wait_remaining_ms_from_jiffies(jiffies,
2086 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2087
2088 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2089 }
2090
wait_backlight_on(struct intel_dp * intel_dp)2091 static void wait_backlight_on(struct intel_dp *intel_dp)
2092 {
2093 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2094 intel_dp->backlight_on_delay);
2095 }
2096
edp_wait_backlight_off(struct intel_dp * intel_dp)2097 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2098 {
2099 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2100 intel_dp->backlight_off_delay);
2101 }
2102
2103 /* Read the current pp_control value, unlocking the register if it
2104 * is locked
2105 */
2106
ironlake_get_pp_control(struct intel_dp * intel_dp)2107 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2108 {
2109 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2110 u32 control;
2111
2112 lockdep_assert_held(&dev_priv->pps_mutex);
2113
2114 control = I915_READ(_pp_ctrl_reg(intel_dp));
2115 if (WARN_ON(!HAS_DDI(dev_priv) &&
2116 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2117 control &= ~PANEL_UNLOCK_MASK;
2118 control |= PANEL_UNLOCK_REGS;
2119 }
2120 return control;
2121 }
2122
2123 /*
2124 * Must be paired with edp_panel_vdd_off().
2125 * Must hold pps_mutex around the whole on/off sequence.
2126 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2127 */
edp_panel_vdd_on(struct intel_dp * intel_dp)2128 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2129 {
2130 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2131 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2132 u32 pp;
2133 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2134 bool need_to_disable = !intel_dp->want_panel_vdd;
2135
2136 lockdep_assert_held(&dev_priv->pps_mutex);
2137
2138 if (!intel_dp_is_edp(intel_dp))
2139 return false;
2140
2141 cancel_delayed_work(&intel_dp->panel_vdd_work);
2142 intel_dp->want_panel_vdd = true;
2143
2144 if (edp_have_panel_vdd(intel_dp))
2145 return need_to_disable;
2146
2147 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2148
2149 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2150 port_name(intel_dig_port->base.port));
2151
2152 if (!edp_have_panel_power(intel_dp))
2153 wait_panel_power_cycle(intel_dp);
2154
2155 pp = ironlake_get_pp_control(intel_dp);
2156 pp |= EDP_FORCE_VDD;
2157
2158 pp_stat_reg = _pp_stat_reg(intel_dp);
2159 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2160
2161 I915_WRITE(pp_ctrl_reg, pp);
2162 POSTING_READ(pp_ctrl_reg);
2163 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2164 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2165 /*
2166 * If the panel wasn't on, delay before accessing aux channel
2167 */
2168 if (!edp_have_panel_power(intel_dp)) {
2169 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2170 port_name(intel_dig_port->base.port));
2171 msleep(intel_dp->panel_power_up_delay);
2172 }
2173
2174 return need_to_disable;
2175 }
2176
2177 /*
2178 * Must be paired with intel_edp_panel_vdd_off() or
2179 * intel_edp_panel_off().
2180 * Nested calls to these functions are not allowed since
2181 * we drop the lock. Caller must use some higher level
2182 * locking to prevent nested calls from other threads.
2183 */
intel_edp_panel_vdd_on(struct intel_dp * intel_dp)2184 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2185 {
2186 bool vdd;
2187
2188 if (!intel_dp_is_edp(intel_dp))
2189 return;
2190
2191 pps_lock(intel_dp);
2192 vdd = edp_panel_vdd_on(intel_dp);
2193 pps_unlock(intel_dp);
2194
2195 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2196 port_name(dp_to_dig_port(intel_dp)->base.port));
2197 }
2198
edp_panel_vdd_off_sync(struct intel_dp * intel_dp)2199 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2200 {
2201 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2202 struct intel_digital_port *intel_dig_port =
2203 dp_to_dig_port(intel_dp);
2204 u32 pp;
2205 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2206
2207 lockdep_assert_held(&dev_priv->pps_mutex);
2208
2209 WARN_ON(intel_dp->want_panel_vdd);
2210
2211 if (!edp_have_panel_vdd(intel_dp))
2212 return;
2213
2214 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2215 port_name(intel_dig_port->base.port));
2216
2217 pp = ironlake_get_pp_control(intel_dp);
2218 pp &= ~EDP_FORCE_VDD;
2219
2220 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2221 pp_stat_reg = _pp_stat_reg(intel_dp);
2222
2223 I915_WRITE(pp_ctrl_reg, pp);
2224 POSTING_READ(pp_ctrl_reg);
2225
2226 /* Make sure sequencer is idle before allowing subsequent activity */
2227 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2228 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2229
2230 if ((pp & PANEL_POWER_ON) == 0)
2231 intel_dp->panel_power_off_time = ktime_get_boottime();
2232
2233 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2234 }
2235
edp_panel_vdd_work(struct work_struct * __work)2236 static void edp_panel_vdd_work(struct work_struct *__work)
2237 {
2238 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2239 struct intel_dp, panel_vdd_work);
2240
2241 pps_lock(intel_dp);
2242 if (!intel_dp->want_panel_vdd)
2243 edp_panel_vdd_off_sync(intel_dp);
2244 pps_unlock(intel_dp);
2245 }
2246
edp_panel_vdd_schedule_off(struct intel_dp * intel_dp)2247 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2248 {
2249 unsigned long delay;
2250
2251 /*
2252 * Queue the timer to fire a long time from now (relative to the power
2253 * down delay) to keep the panel power up across a sequence of
2254 * operations.
2255 */
2256 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2257 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2258 }
2259
2260 /*
2261 * Must be paired with edp_panel_vdd_on().
2262 * Must hold pps_mutex around the whole on/off sequence.
2263 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2264 */
edp_panel_vdd_off(struct intel_dp * intel_dp,bool sync)2265 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2266 {
2267 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2268
2269 lockdep_assert_held(&dev_priv->pps_mutex);
2270
2271 if (!intel_dp_is_edp(intel_dp))
2272 return;
2273
2274 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2275 port_name(dp_to_dig_port(intel_dp)->base.port));
2276
2277 intel_dp->want_panel_vdd = false;
2278
2279 if (sync)
2280 edp_panel_vdd_off_sync(intel_dp);
2281 else
2282 edp_panel_vdd_schedule_off(intel_dp);
2283 }
2284
edp_panel_on(struct intel_dp * intel_dp)2285 static void edp_panel_on(struct intel_dp *intel_dp)
2286 {
2287 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2288 u32 pp;
2289 i915_reg_t pp_ctrl_reg;
2290
2291 lockdep_assert_held(&dev_priv->pps_mutex);
2292
2293 if (!intel_dp_is_edp(intel_dp))
2294 return;
2295
2296 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2297 port_name(dp_to_dig_port(intel_dp)->base.port));
2298
2299 if (WARN(edp_have_panel_power(intel_dp),
2300 "eDP port %c panel power already on\n",
2301 port_name(dp_to_dig_port(intel_dp)->base.port)))
2302 return;
2303
2304 wait_panel_power_cycle(intel_dp);
2305
2306 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2307 pp = ironlake_get_pp_control(intel_dp);
2308 if (IS_GEN5(dev_priv)) {
2309 /* ILK workaround: disable reset around power sequence */
2310 pp &= ~PANEL_POWER_RESET;
2311 I915_WRITE(pp_ctrl_reg, pp);
2312 POSTING_READ(pp_ctrl_reg);
2313 }
2314
2315 pp |= PANEL_POWER_ON;
2316 if (!IS_GEN5(dev_priv))
2317 pp |= PANEL_POWER_RESET;
2318
2319 I915_WRITE(pp_ctrl_reg, pp);
2320 POSTING_READ(pp_ctrl_reg);
2321
2322 wait_panel_on(intel_dp);
2323 intel_dp->last_power_on = jiffies;
2324
2325 if (IS_GEN5(dev_priv)) {
2326 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2327 I915_WRITE(pp_ctrl_reg, pp);
2328 POSTING_READ(pp_ctrl_reg);
2329 }
2330 }
2331
intel_edp_panel_on(struct intel_dp * intel_dp)2332 void intel_edp_panel_on(struct intel_dp *intel_dp)
2333 {
2334 if (!intel_dp_is_edp(intel_dp))
2335 return;
2336
2337 pps_lock(intel_dp);
2338 edp_panel_on(intel_dp);
2339 pps_unlock(intel_dp);
2340 }
2341
2342
edp_panel_off(struct intel_dp * intel_dp)2343 static void edp_panel_off(struct intel_dp *intel_dp)
2344 {
2345 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2346 u32 pp;
2347 i915_reg_t pp_ctrl_reg;
2348
2349 lockdep_assert_held(&dev_priv->pps_mutex);
2350
2351 if (!intel_dp_is_edp(intel_dp))
2352 return;
2353
2354 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2355 port_name(dp_to_dig_port(intel_dp)->base.port));
2356
2357 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2358 port_name(dp_to_dig_port(intel_dp)->base.port));
2359
2360 pp = ironlake_get_pp_control(intel_dp);
2361 /* We need to switch off panel power _and_ force vdd, for otherwise some
2362 * panels get very unhappy and cease to work. */
2363 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2364 EDP_BLC_ENABLE);
2365
2366 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2367
2368 intel_dp->want_panel_vdd = false;
2369
2370 I915_WRITE(pp_ctrl_reg, pp);
2371 POSTING_READ(pp_ctrl_reg);
2372
2373 wait_panel_off(intel_dp);
2374 intel_dp->panel_power_off_time = ktime_get_boottime();
2375
2376 /* We got a reference when we enabled the VDD. */
2377 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2378 }
2379
intel_edp_panel_off(struct intel_dp * intel_dp)2380 void intel_edp_panel_off(struct intel_dp *intel_dp)
2381 {
2382 if (!intel_dp_is_edp(intel_dp))
2383 return;
2384
2385 pps_lock(intel_dp);
2386 edp_panel_off(intel_dp);
2387 pps_unlock(intel_dp);
2388 }
2389
2390 /* Enable backlight in the panel power control. */
_intel_edp_backlight_on(struct intel_dp * intel_dp)2391 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2392 {
2393 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2394 u32 pp;
2395 i915_reg_t pp_ctrl_reg;
2396
2397 /*
2398 * If we enable the backlight right away following a panel power
2399 * on, we may see slight flicker as the panel syncs with the eDP
2400 * link. So delay a bit to make sure the image is solid before
2401 * allowing it to appear.
2402 */
2403 wait_backlight_on(intel_dp);
2404
2405 pps_lock(intel_dp);
2406
2407 pp = ironlake_get_pp_control(intel_dp);
2408 pp |= EDP_BLC_ENABLE;
2409
2410 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2411
2412 I915_WRITE(pp_ctrl_reg, pp);
2413 POSTING_READ(pp_ctrl_reg);
2414
2415 pps_unlock(intel_dp);
2416 }
2417
2418 /* Enable backlight PWM and backlight PP control. */
intel_edp_backlight_on(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2419 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2420 const struct drm_connector_state *conn_state)
2421 {
2422 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2423
2424 if (!intel_dp_is_edp(intel_dp))
2425 return;
2426
2427 DRM_DEBUG_KMS("\n");
2428
2429 intel_panel_enable_backlight(crtc_state, conn_state);
2430 _intel_edp_backlight_on(intel_dp);
2431 }
2432
2433 /* Disable backlight in the panel power control. */
_intel_edp_backlight_off(struct intel_dp * intel_dp)2434 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2435 {
2436 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2437 u32 pp;
2438 i915_reg_t pp_ctrl_reg;
2439
2440 if (!intel_dp_is_edp(intel_dp))
2441 return;
2442
2443 pps_lock(intel_dp);
2444
2445 pp = ironlake_get_pp_control(intel_dp);
2446 pp &= ~EDP_BLC_ENABLE;
2447
2448 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2449
2450 I915_WRITE(pp_ctrl_reg, pp);
2451 POSTING_READ(pp_ctrl_reg);
2452
2453 pps_unlock(intel_dp);
2454
2455 intel_dp->last_backlight_off = jiffies;
2456 edp_wait_backlight_off(intel_dp);
2457 }
2458
2459 /* Disable backlight PP control and backlight PWM. */
intel_edp_backlight_off(const struct drm_connector_state * old_conn_state)2460 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2461 {
2462 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2463
2464 if (!intel_dp_is_edp(intel_dp))
2465 return;
2466
2467 DRM_DEBUG_KMS("\n");
2468
2469 _intel_edp_backlight_off(intel_dp);
2470 intel_panel_disable_backlight(old_conn_state);
2471 }
2472
2473 /*
2474 * Hook for controlling the panel power control backlight through the bl_power
2475 * sysfs attribute. Take care to handle multiple calls.
2476 */
intel_edp_backlight_power(struct intel_connector * connector,bool enable)2477 static void intel_edp_backlight_power(struct intel_connector *connector,
2478 bool enable)
2479 {
2480 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2481 bool is_enabled;
2482
2483 pps_lock(intel_dp);
2484 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2485 pps_unlock(intel_dp);
2486
2487 if (is_enabled == enable)
2488 return;
2489
2490 DRM_DEBUG_KMS("panel power control backlight %s\n",
2491 enable ? "enable" : "disable");
2492
2493 if (enable)
2494 _intel_edp_backlight_on(intel_dp);
2495 else
2496 _intel_edp_backlight_off(intel_dp);
2497 }
2498
assert_dp_port(struct intel_dp * intel_dp,bool state)2499 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2500 {
2501 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2502 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2503 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2504
2505 I915_STATE_WARN(cur_state != state,
2506 "DP port %c state assertion failure (expected %s, current %s)\n",
2507 port_name(dig_port->base.port),
2508 onoff(state), onoff(cur_state));
2509 }
2510 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2511
assert_edp_pll(struct drm_i915_private * dev_priv,bool state)2512 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2513 {
2514 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2515
2516 I915_STATE_WARN(cur_state != state,
2517 "eDP PLL state assertion failure (expected %s, current %s)\n",
2518 onoff(state), onoff(cur_state));
2519 }
2520 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2521 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2522
ironlake_edp_pll_on(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)2523 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2524 const struct intel_crtc_state *pipe_config)
2525 {
2526 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2527 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2528
2529 assert_pipe_disabled(dev_priv, crtc->pipe);
2530 assert_dp_port_disabled(intel_dp);
2531 assert_edp_pll_disabled(dev_priv);
2532
2533 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2534 pipe_config->port_clock);
2535
2536 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2537
2538 if (pipe_config->port_clock == 162000)
2539 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2540 else
2541 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2542
2543 I915_WRITE(DP_A, intel_dp->DP);
2544 POSTING_READ(DP_A);
2545 udelay(500);
2546
2547 /*
2548 * [DevILK] Work around required when enabling DP PLL
2549 * while a pipe is enabled going to FDI:
2550 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2551 * 2. Program DP PLL enable
2552 */
2553 if (IS_GEN5(dev_priv))
2554 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2555
2556 intel_dp->DP |= DP_PLL_ENABLE;
2557
2558 I915_WRITE(DP_A, intel_dp->DP);
2559 POSTING_READ(DP_A);
2560 udelay(200);
2561 }
2562
ironlake_edp_pll_off(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)2563 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2564 const struct intel_crtc_state *old_crtc_state)
2565 {
2566 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2567 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2568
2569 assert_pipe_disabled(dev_priv, crtc->pipe);
2570 assert_dp_port_disabled(intel_dp);
2571 assert_edp_pll_enabled(dev_priv);
2572
2573 DRM_DEBUG_KMS("disabling eDP PLL\n");
2574
2575 intel_dp->DP &= ~DP_PLL_ENABLE;
2576
2577 I915_WRITE(DP_A, intel_dp->DP);
2578 POSTING_READ(DP_A);
2579 udelay(200);
2580 }
2581
downstream_hpd_needs_d0(struct intel_dp * intel_dp)2582 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
2583 {
2584 /*
2585 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
2586 * be capable of signalling downstream hpd with a long pulse.
2587 * Whether or not that means D3 is safe to use is not clear,
2588 * but let's assume so until proven otherwise.
2589 *
2590 * FIXME should really check all downstream ports...
2591 */
2592 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
2593 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
2594 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
2595 }
2596
2597 /* If the sink supports it, try to set the power state appropriately */
intel_dp_sink_dpms(struct intel_dp * intel_dp,int mode)2598 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2599 {
2600 int ret, i;
2601
2602 /* Should have a valid DPCD by this point */
2603 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2604 return;
2605
2606 if (mode != DRM_MODE_DPMS_ON) {
2607 if (downstream_hpd_needs_d0(intel_dp))
2608 return;
2609
2610 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2611 DP_SET_POWER_D3);
2612 } else {
2613 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2614
2615 /*
2616 * When turning on, we need to retry for 1ms to give the sink
2617 * time to wake up.
2618 */
2619 for (i = 0; i < 3; i++) {
2620 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2621 DP_SET_POWER_D0);
2622 if (ret == 1)
2623 break;
2624 msleep(1);
2625 }
2626
2627 if (ret == 1 && lspcon->active)
2628 lspcon_wait_pcon_mode(lspcon);
2629 }
2630
2631 if (ret != 1)
2632 DRM_DEBUG_KMS("failed to %s sink power state\n",
2633 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2634 }
2635
cpt_dp_port_selected(struct drm_i915_private * dev_priv,enum port port,enum pipe * pipe)2636 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
2637 enum port port, enum pipe *pipe)
2638 {
2639 enum pipe p;
2640
2641 for_each_pipe(dev_priv, p) {
2642 u32 val = I915_READ(TRANS_DP_CTL(p));
2643
2644 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
2645 *pipe = p;
2646 return true;
2647 }
2648 }
2649
2650 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
2651
2652 /* must initialize pipe to something for the asserts */
2653 *pipe = PIPE_A;
2654
2655 return false;
2656 }
2657
intel_dp_port_enabled(struct drm_i915_private * dev_priv,i915_reg_t dp_reg,enum port port,enum pipe * pipe)2658 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
2659 i915_reg_t dp_reg, enum port port,
2660 enum pipe *pipe)
2661 {
2662 bool ret;
2663 u32 val;
2664
2665 val = I915_READ(dp_reg);
2666
2667 ret = val & DP_PORT_EN;
2668
2669 /* asserts want to know the pipe even if the port is disabled */
2670 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
2671 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
2672 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
2673 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
2674 else if (IS_CHERRYVIEW(dev_priv))
2675 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
2676 else
2677 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
2678
2679 return ret;
2680 }
2681
intel_dp_get_hw_state(struct intel_encoder * encoder,enum pipe * pipe)2682 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2683 enum pipe *pipe)
2684 {
2685 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2686 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2687 bool ret;
2688
2689 if (!intel_display_power_get_if_enabled(dev_priv,
2690 encoder->power_domain))
2691 return false;
2692
2693 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
2694 encoder->port, pipe);
2695
2696 intel_display_power_put(dev_priv, encoder->power_domain);
2697
2698 return ret;
2699 }
2700
intel_dp_get_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)2701 static void intel_dp_get_config(struct intel_encoder *encoder,
2702 struct intel_crtc_state *pipe_config)
2703 {
2704 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2705 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2706 u32 tmp, flags = 0;
2707 enum port port = encoder->port;
2708 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2709
2710 if (encoder->type == INTEL_OUTPUT_EDP)
2711 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
2712 else
2713 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
2714
2715 tmp = I915_READ(intel_dp->output_reg);
2716
2717 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2718
2719 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2720 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2721
2722 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2723 flags |= DRM_MODE_FLAG_PHSYNC;
2724 else
2725 flags |= DRM_MODE_FLAG_NHSYNC;
2726
2727 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2728 flags |= DRM_MODE_FLAG_PVSYNC;
2729 else
2730 flags |= DRM_MODE_FLAG_NVSYNC;
2731 } else {
2732 if (tmp & DP_SYNC_HS_HIGH)
2733 flags |= DRM_MODE_FLAG_PHSYNC;
2734 else
2735 flags |= DRM_MODE_FLAG_NHSYNC;
2736
2737 if (tmp & DP_SYNC_VS_HIGH)
2738 flags |= DRM_MODE_FLAG_PVSYNC;
2739 else
2740 flags |= DRM_MODE_FLAG_NVSYNC;
2741 }
2742
2743 pipe_config->base.adjusted_mode.flags |= flags;
2744
2745 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2746 pipe_config->limited_color_range = true;
2747
2748 pipe_config->lane_count =
2749 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2750
2751 intel_dp_get_m_n(crtc, pipe_config);
2752
2753 if (port == PORT_A) {
2754 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2755 pipe_config->port_clock = 162000;
2756 else
2757 pipe_config->port_clock = 270000;
2758 }
2759
2760 pipe_config->base.adjusted_mode.crtc_clock =
2761 intel_dotclock_calculate(pipe_config->port_clock,
2762 &pipe_config->dp_m_n);
2763
2764 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2765 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2766 /*
2767 * This is a big fat ugly hack.
2768 *
2769 * Some machines in UEFI boot mode provide us a VBT that has 18
2770 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2771 * unknown we fail to light up. Yet the same BIOS boots up with
2772 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2773 * max, not what it tells us to use.
2774 *
2775 * Note: This will still be broken if the eDP panel is not lit
2776 * up by the BIOS, and thus we can't get the mode at module
2777 * load.
2778 */
2779 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2780 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2781 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2782 }
2783 }
2784
intel_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)2785 static void intel_disable_dp(struct intel_encoder *encoder,
2786 const struct intel_crtc_state *old_crtc_state,
2787 const struct drm_connector_state *old_conn_state)
2788 {
2789 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2790
2791 intel_dp->link_trained = false;
2792
2793 if (old_crtc_state->has_audio)
2794 intel_audio_codec_disable(encoder,
2795 old_crtc_state, old_conn_state);
2796
2797 /* Make sure the panel is off before trying to change the mode. But also
2798 * ensure that we have vdd while we switch off the panel. */
2799 intel_edp_panel_vdd_on(intel_dp);
2800 intel_edp_backlight_off(old_conn_state);
2801 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2802 intel_edp_panel_off(intel_dp);
2803 }
2804
g4x_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)2805 static void g4x_disable_dp(struct intel_encoder *encoder,
2806 const struct intel_crtc_state *old_crtc_state,
2807 const struct drm_connector_state *old_conn_state)
2808 {
2809 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2810 }
2811
vlv_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)2812 static void vlv_disable_dp(struct intel_encoder *encoder,
2813 const struct intel_crtc_state *old_crtc_state,
2814 const struct drm_connector_state *old_conn_state)
2815 {
2816 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2817 }
2818
g4x_post_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)2819 static void g4x_post_disable_dp(struct intel_encoder *encoder,
2820 const struct intel_crtc_state *old_crtc_state,
2821 const struct drm_connector_state *old_conn_state)
2822 {
2823 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2824 enum port port = encoder->port;
2825
2826 /*
2827 * Bspec does not list a specific disable sequence for g4x DP.
2828 * Follow the ilk+ sequence (disable pipe before the port) for
2829 * g4x DP as it does not suffer from underruns like the normal
2830 * g4x modeset sequence (disable pipe after the port).
2831 */
2832 intel_dp_link_down(encoder, old_crtc_state);
2833
2834 /* Only ilk+ has port A */
2835 if (port == PORT_A)
2836 ironlake_edp_pll_off(intel_dp, old_crtc_state);
2837 }
2838
vlv_post_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)2839 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2840 const struct intel_crtc_state *old_crtc_state,
2841 const struct drm_connector_state *old_conn_state)
2842 {
2843 intel_dp_link_down(encoder, old_crtc_state);
2844 }
2845
chv_post_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)2846 static void chv_post_disable_dp(struct intel_encoder *encoder,
2847 const struct intel_crtc_state *old_crtc_state,
2848 const struct drm_connector_state *old_conn_state)
2849 {
2850 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2851
2852 intel_dp_link_down(encoder, old_crtc_state);
2853
2854 mutex_lock(&dev_priv->sb_lock);
2855
2856 /* Assert data lane reset */
2857 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
2858
2859 mutex_unlock(&dev_priv->sb_lock);
2860 }
2861
2862 static void
_intel_dp_set_link_train(struct intel_dp * intel_dp,uint32_t * DP,uint8_t dp_train_pat)2863 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2864 uint32_t *DP,
2865 uint8_t dp_train_pat)
2866 {
2867 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2868 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2869 enum port port = intel_dig_port->base.port;
2870 uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
2871
2872 if (dp_train_pat & train_pat_mask)
2873 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2874 dp_train_pat & train_pat_mask);
2875
2876 if (HAS_DDI(dev_priv)) {
2877 uint32_t temp = I915_READ(DP_TP_CTL(port));
2878
2879 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2880 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2881 else
2882 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2883
2884 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2885 switch (dp_train_pat & train_pat_mask) {
2886 case DP_TRAINING_PATTERN_DISABLE:
2887 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2888
2889 break;
2890 case DP_TRAINING_PATTERN_1:
2891 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2892 break;
2893 case DP_TRAINING_PATTERN_2:
2894 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2895 break;
2896 case DP_TRAINING_PATTERN_3:
2897 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2898 break;
2899 case DP_TRAINING_PATTERN_4:
2900 temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
2901 break;
2902 }
2903 I915_WRITE(DP_TP_CTL(port), temp);
2904
2905 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
2906 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2907 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2908
2909 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2910 case DP_TRAINING_PATTERN_DISABLE:
2911 *DP |= DP_LINK_TRAIN_OFF_CPT;
2912 break;
2913 case DP_TRAINING_PATTERN_1:
2914 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2915 break;
2916 case DP_TRAINING_PATTERN_2:
2917 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2918 break;
2919 case DP_TRAINING_PATTERN_3:
2920 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2921 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2922 break;
2923 }
2924
2925 } else {
2926 *DP &= ~DP_LINK_TRAIN_MASK;
2927
2928 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2929 case DP_TRAINING_PATTERN_DISABLE:
2930 *DP |= DP_LINK_TRAIN_OFF;
2931 break;
2932 case DP_TRAINING_PATTERN_1:
2933 *DP |= DP_LINK_TRAIN_PAT_1;
2934 break;
2935 case DP_TRAINING_PATTERN_2:
2936 *DP |= DP_LINK_TRAIN_PAT_2;
2937 break;
2938 case DP_TRAINING_PATTERN_3:
2939 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2940 *DP |= DP_LINK_TRAIN_PAT_2;
2941 break;
2942 }
2943 }
2944 }
2945
intel_dp_enable_port(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)2946 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2947 const struct intel_crtc_state *old_crtc_state)
2948 {
2949 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2950
2951 /* enable with pattern 1 (as per spec) */
2952
2953 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2954
2955 /*
2956 * Magic for VLV/CHV. We _must_ first set up the register
2957 * without actually enabling the port, and then do another
2958 * write to enable the port. Otherwise link training will
2959 * fail when the power sequencer is freshly used for this port.
2960 */
2961 intel_dp->DP |= DP_PORT_EN;
2962 if (old_crtc_state->has_audio)
2963 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2964
2965 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2966 POSTING_READ(intel_dp->output_reg);
2967 }
2968
intel_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)2969 static void intel_enable_dp(struct intel_encoder *encoder,
2970 const struct intel_crtc_state *pipe_config,
2971 const struct drm_connector_state *conn_state)
2972 {
2973 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2974 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2975 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2976 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2977 enum pipe pipe = crtc->pipe;
2978
2979 if (WARN_ON(dp_reg & DP_PORT_EN))
2980 return;
2981
2982 pps_lock(intel_dp);
2983
2984 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2985 vlv_init_panel_power_sequencer(encoder, pipe_config);
2986
2987 intel_dp_enable_port(intel_dp, pipe_config);
2988
2989 edp_panel_vdd_on(intel_dp);
2990 edp_panel_on(intel_dp);
2991 edp_panel_vdd_off(intel_dp, true);
2992
2993 pps_unlock(intel_dp);
2994
2995 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2996 unsigned int lane_mask = 0x0;
2997
2998 if (IS_CHERRYVIEW(dev_priv))
2999 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3000
3001 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3002 lane_mask);
3003 }
3004
3005 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3006 intel_dp_start_link_train(intel_dp);
3007 intel_dp_stop_link_train(intel_dp);
3008
3009 if (pipe_config->has_audio) {
3010 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3011 pipe_name(pipe));
3012 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3013 }
3014 }
3015
g4x_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3016 static void g4x_enable_dp(struct intel_encoder *encoder,
3017 const struct intel_crtc_state *pipe_config,
3018 const struct drm_connector_state *conn_state)
3019 {
3020 intel_enable_dp(encoder, pipe_config, conn_state);
3021 intel_edp_backlight_on(pipe_config, conn_state);
3022 }
3023
vlv_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3024 static void vlv_enable_dp(struct intel_encoder *encoder,
3025 const struct intel_crtc_state *pipe_config,
3026 const struct drm_connector_state *conn_state)
3027 {
3028 intel_edp_backlight_on(pipe_config, conn_state);
3029 }
3030
g4x_pre_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3031 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3032 const struct intel_crtc_state *pipe_config,
3033 const struct drm_connector_state *conn_state)
3034 {
3035 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3036 enum port port = encoder->port;
3037
3038 intel_dp_prepare(encoder, pipe_config);
3039
3040 /* Only ilk+ has port A */
3041 if (port == PORT_A)
3042 ironlake_edp_pll_on(intel_dp, pipe_config);
3043 }
3044
vlv_detach_power_sequencer(struct intel_dp * intel_dp)3045 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3046 {
3047 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3048 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3049 enum pipe pipe = intel_dp->pps_pipe;
3050 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3051
3052 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3053
3054 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3055 return;
3056
3057 edp_panel_vdd_off_sync(intel_dp);
3058
3059 /*
3060 * VLV seems to get confused when multiple power sequencers
3061 * have the same port selected (even if only one has power/vdd
3062 * enabled). The failure manifests as vlv_wait_port_ready() failing
3063 * CHV on the other hand doesn't seem to mind having the same port
3064 * selected in multiple power sequencers, but let's clear the
3065 * port select always when logically disconnecting a power sequencer
3066 * from a port.
3067 */
3068 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3069 pipe_name(pipe), port_name(intel_dig_port->base.port));
3070 I915_WRITE(pp_on_reg, 0);
3071 POSTING_READ(pp_on_reg);
3072
3073 intel_dp->pps_pipe = INVALID_PIPE;
3074 }
3075
vlv_steal_power_sequencer(struct drm_i915_private * dev_priv,enum pipe pipe)3076 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3077 enum pipe pipe)
3078 {
3079 struct intel_encoder *encoder;
3080
3081 lockdep_assert_held(&dev_priv->pps_mutex);
3082
3083 for_each_intel_dp(&dev_priv->drm, encoder) {
3084 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3085 enum port port = encoder->port;
3086
3087 WARN(intel_dp->active_pipe == pipe,
3088 "stealing pipe %c power sequencer from active (e)DP port %c\n",
3089 pipe_name(pipe), port_name(port));
3090
3091 if (intel_dp->pps_pipe != pipe)
3092 continue;
3093
3094 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3095 pipe_name(pipe), port_name(port));
3096
3097 /* make sure vdd is off before we steal it */
3098 vlv_detach_power_sequencer(intel_dp);
3099 }
3100 }
3101
vlv_init_panel_power_sequencer(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3102 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3103 const struct intel_crtc_state *crtc_state)
3104 {
3105 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3106 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3107 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3108
3109 lockdep_assert_held(&dev_priv->pps_mutex);
3110
3111 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3112
3113 if (intel_dp->pps_pipe != INVALID_PIPE &&
3114 intel_dp->pps_pipe != crtc->pipe) {
3115 /*
3116 * If another power sequencer was being used on this
3117 * port previously make sure to turn off vdd there while
3118 * we still have control of it.
3119 */
3120 vlv_detach_power_sequencer(intel_dp);
3121 }
3122
3123 /*
3124 * We may be stealing the power
3125 * sequencer from another port.
3126 */
3127 vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3128
3129 intel_dp->active_pipe = crtc->pipe;
3130
3131 if (!intel_dp_is_edp(intel_dp))
3132 return;
3133
3134 /* now it's all ours */
3135 intel_dp->pps_pipe = crtc->pipe;
3136
3137 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3138 pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3139
3140 /* init power sequencer on this pipe and port */
3141 intel_dp_init_panel_power_sequencer(intel_dp);
3142 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3143 }
3144
vlv_pre_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3145 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3146 const struct intel_crtc_state *pipe_config,
3147 const struct drm_connector_state *conn_state)
3148 {
3149 vlv_phy_pre_encoder_enable(encoder, pipe_config);
3150
3151 intel_enable_dp(encoder, pipe_config, conn_state);
3152 }
3153
vlv_dp_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3154 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3155 const struct intel_crtc_state *pipe_config,
3156 const struct drm_connector_state *conn_state)
3157 {
3158 intel_dp_prepare(encoder, pipe_config);
3159
3160 vlv_phy_pre_pll_enable(encoder, pipe_config);
3161 }
3162
chv_pre_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3163 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3164 const struct intel_crtc_state *pipe_config,
3165 const struct drm_connector_state *conn_state)
3166 {
3167 chv_phy_pre_encoder_enable(encoder, pipe_config);
3168
3169 intel_enable_dp(encoder, pipe_config, conn_state);
3170
3171 /* Second common lane will stay alive on its own now */
3172 chv_phy_release_cl2_override(encoder);
3173 }
3174
chv_dp_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3175 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3176 const struct intel_crtc_state *pipe_config,
3177 const struct drm_connector_state *conn_state)
3178 {
3179 intel_dp_prepare(encoder, pipe_config);
3180
3181 chv_phy_pre_pll_enable(encoder, pipe_config);
3182 }
3183
chv_dp_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3184 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3185 const struct intel_crtc_state *old_crtc_state,
3186 const struct drm_connector_state *old_conn_state)
3187 {
3188 chv_phy_post_pll_disable(encoder, old_crtc_state);
3189 }
3190
3191 /*
3192 * Fetch AUX CH registers 0x202 - 0x207 which contain
3193 * link status information
3194 */
3195 bool
intel_dp_get_link_status(struct intel_dp * intel_dp,uint8_t link_status[DP_LINK_STATUS_SIZE])3196 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3197 {
3198 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3199 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3200 }
3201
3202 /* These are source-specific values. */
3203 uint8_t
intel_dp_voltage_max(struct intel_dp * intel_dp)3204 intel_dp_voltage_max(struct intel_dp *intel_dp)
3205 {
3206 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3207 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3208 enum port port = encoder->port;
3209
3210 if (HAS_DDI(dev_priv))
3211 return intel_ddi_dp_voltage_max(encoder);
3212 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3213 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3214 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3215 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3216 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3217 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3218 else
3219 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3220 }
3221
3222 uint8_t
intel_dp_pre_emphasis_max(struct intel_dp * intel_dp,uint8_t voltage_swing)3223 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3224 {
3225 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3226 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3227 enum port port = encoder->port;
3228
3229 if (HAS_DDI(dev_priv)) {
3230 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3231 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3232 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3233 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3234 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3235 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3236 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3237 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3238 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3239 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3240 default:
3241 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3242 }
3243 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3244 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3245 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3246 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3247 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3248 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3249 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3250 default:
3251 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3252 }
3253 } else {
3254 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3255 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3256 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3257 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3258 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3259 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3260 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3261 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3262 default:
3263 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3264 }
3265 }
3266 }
3267
vlv_signal_levels(struct intel_dp * intel_dp)3268 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3269 {
3270 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3271 unsigned long demph_reg_value, preemph_reg_value,
3272 uniqtranscale_reg_value;
3273 uint8_t train_set = intel_dp->train_set[0];
3274
3275 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3276 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3277 preemph_reg_value = 0x0004000;
3278 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3279 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3280 demph_reg_value = 0x2B405555;
3281 uniqtranscale_reg_value = 0x552AB83A;
3282 break;
3283 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3284 demph_reg_value = 0x2B404040;
3285 uniqtranscale_reg_value = 0x5548B83A;
3286 break;
3287 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3288 demph_reg_value = 0x2B245555;
3289 uniqtranscale_reg_value = 0x5560B83A;
3290 break;
3291 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3292 demph_reg_value = 0x2B405555;
3293 uniqtranscale_reg_value = 0x5598DA3A;
3294 break;
3295 default:
3296 return 0;
3297 }
3298 break;
3299 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3300 preemph_reg_value = 0x0002000;
3301 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3302 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3303 demph_reg_value = 0x2B404040;
3304 uniqtranscale_reg_value = 0x5552B83A;
3305 break;
3306 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3307 demph_reg_value = 0x2B404848;
3308 uniqtranscale_reg_value = 0x5580B83A;
3309 break;
3310 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3311 demph_reg_value = 0x2B404040;
3312 uniqtranscale_reg_value = 0x55ADDA3A;
3313 break;
3314 default:
3315 return 0;
3316 }
3317 break;
3318 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3319 preemph_reg_value = 0x0000000;
3320 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3321 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3322 demph_reg_value = 0x2B305555;
3323 uniqtranscale_reg_value = 0x5570B83A;
3324 break;
3325 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3326 demph_reg_value = 0x2B2B4040;
3327 uniqtranscale_reg_value = 0x55ADDA3A;
3328 break;
3329 default:
3330 return 0;
3331 }
3332 break;
3333 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3334 preemph_reg_value = 0x0006000;
3335 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3336 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3337 demph_reg_value = 0x1B405555;
3338 uniqtranscale_reg_value = 0x55ADDA3A;
3339 break;
3340 default:
3341 return 0;
3342 }
3343 break;
3344 default:
3345 return 0;
3346 }
3347
3348 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3349 uniqtranscale_reg_value, 0);
3350
3351 return 0;
3352 }
3353
chv_signal_levels(struct intel_dp * intel_dp)3354 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3355 {
3356 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3357 u32 deemph_reg_value, margin_reg_value;
3358 bool uniq_trans_scale = false;
3359 uint8_t train_set = intel_dp->train_set[0];
3360
3361 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3362 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3363 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3364 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3365 deemph_reg_value = 128;
3366 margin_reg_value = 52;
3367 break;
3368 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3369 deemph_reg_value = 128;
3370 margin_reg_value = 77;
3371 break;
3372 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3373 deemph_reg_value = 128;
3374 margin_reg_value = 102;
3375 break;
3376 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3377 deemph_reg_value = 128;
3378 margin_reg_value = 154;
3379 uniq_trans_scale = true;
3380 break;
3381 default:
3382 return 0;
3383 }
3384 break;
3385 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3386 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3387 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3388 deemph_reg_value = 85;
3389 margin_reg_value = 78;
3390 break;
3391 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3392 deemph_reg_value = 85;
3393 margin_reg_value = 116;
3394 break;
3395 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3396 deemph_reg_value = 85;
3397 margin_reg_value = 154;
3398 break;
3399 default:
3400 return 0;
3401 }
3402 break;
3403 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3404 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3405 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3406 deemph_reg_value = 64;
3407 margin_reg_value = 104;
3408 break;
3409 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3410 deemph_reg_value = 64;
3411 margin_reg_value = 154;
3412 break;
3413 default:
3414 return 0;
3415 }
3416 break;
3417 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3418 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3419 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3420 deemph_reg_value = 43;
3421 margin_reg_value = 154;
3422 break;
3423 default:
3424 return 0;
3425 }
3426 break;
3427 default:
3428 return 0;
3429 }
3430
3431 chv_set_phy_signal_level(encoder, deemph_reg_value,
3432 margin_reg_value, uniq_trans_scale);
3433
3434 return 0;
3435 }
3436
3437 static uint32_t
g4x_signal_levels(uint8_t train_set)3438 g4x_signal_levels(uint8_t train_set)
3439 {
3440 uint32_t signal_levels = 0;
3441
3442 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3443 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3444 default:
3445 signal_levels |= DP_VOLTAGE_0_4;
3446 break;
3447 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3448 signal_levels |= DP_VOLTAGE_0_6;
3449 break;
3450 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3451 signal_levels |= DP_VOLTAGE_0_8;
3452 break;
3453 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3454 signal_levels |= DP_VOLTAGE_1_2;
3455 break;
3456 }
3457 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3458 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3459 default:
3460 signal_levels |= DP_PRE_EMPHASIS_0;
3461 break;
3462 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3463 signal_levels |= DP_PRE_EMPHASIS_3_5;
3464 break;
3465 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3466 signal_levels |= DP_PRE_EMPHASIS_6;
3467 break;
3468 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3469 signal_levels |= DP_PRE_EMPHASIS_9_5;
3470 break;
3471 }
3472 return signal_levels;
3473 }
3474
3475 /* SNB CPU eDP voltage swing and pre-emphasis control */
3476 static uint32_t
snb_cpu_edp_signal_levels(uint8_t train_set)3477 snb_cpu_edp_signal_levels(uint8_t train_set)
3478 {
3479 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3480 DP_TRAIN_PRE_EMPHASIS_MASK);
3481 switch (signal_levels) {
3482 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3483 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3484 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3485 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3486 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3487 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3488 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3489 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3490 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3491 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3492 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3493 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3494 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3495 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3496 default:
3497 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3498 "0x%x\n", signal_levels);
3499 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3500 }
3501 }
3502
3503 /* IVB CPU eDP voltage swing and pre-emphasis control */
3504 static uint32_t
ivb_cpu_edp_signal_levels(uint8_t train_set)3505 ivb_cpu_edp_signal_levels(uint8_t train_set)
3506 {
3507 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3508 DP_TRAIN_PRE_EMPHASIS_MASK);
3509 switch (signal_levels) {
3510 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3511 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3512 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3513 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3514 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3515 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3516
3517 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3518 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3519 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3520 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3521
3522 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3523 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3524 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3525 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3526
3527 default:
3528 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3529 "0x%x\n", signal_levels);
3530 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3531 }
3532 }
3533
3534 void
intel_dp_set_signal_levels(struct intel_dp * intel_dp)3535 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3536 {
3537 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3538 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3539 enum port port = intel_dig_port->base.port;
3540 uint32_t signal_levels, mask = 0;
3541 uint8_t train_set = intel_dp->train_set[0];
3542
3543 if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
3544 signal_levels = bxt_signal_levels(intel_dp);
3545 } else if (HAS_DDI(dev_priv)) {
3546 signal_levels = ddi_signal_levels(intel_dp);
3547 mask = DDI_BUF_EMP_MASK;
3548 } else if (IS_CHERRYVIEW(dev_priv)) {
3549 signal_levels = chv_signal_levels(intel_dp);
3550 } else if (IS_VALLEYVIEW(dev_priv)) {
3551 signal_levels = vlv_signal_levels(intel_dp);
3552 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3553 signal_levels = ivb_cpu_edp_signal_levels(train_set);
3554 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3555 } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3556 signal_levels = snb_cpu_edp_signal_levels(train_set);
3557 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3558 } else {
3559 signal_levels = g4x_signal_levels(train_set);
3560 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3561 }
3562
3563 if (mask)
3564 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3565
3566 DRM_DEBUG_KMS("Using vswing level %d\n",
3567 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3568 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3569 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3570 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3571
3572 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3573
3574 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3575 POSTING_READ(intel_dp->output_reg);
3576 }
3577
3578 void
intel_dp_program_link_training_pattern(struct intel_dp * intel_dp,uint8_t dp_train_pat)3579 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3580 uint8_t dp_train_pat)
3581 {
3582 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3583 struct drm_i915_private *dev_priv =
3584 to_i915(intel_dig_port->base.base.dev);
3585
3586 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3587
3588 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3589 POSTING_READ(intel_dp->output_reg);
3590 }
3591
intel_dp_set_idle_link_train(struct intel_dp * intel_dp)3592 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3593 {
3594 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3595 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3596 enum port port = intel_dig_port->base.port;
3597 uint32_t val;
3598
3599 if (!HAS_DDI(dev_priv))
3600 return;
3601
3602 val = I915_READ(DP_TP_CTL(port));
3603 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3604 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3605 I915_WRITE(DP_TP_CTL(port), val);
3606
3607 /*
3608 * On PORT_A we can have only eDP in SST mode. There the only reason
3609 * we need to set idle transmission mode is to work around a HW issue
3610 * where we enable the pipe while not in idle link-training mode.
3611 * In this case there is requirement to wait for a minimum number of
3612 * idle patterns to be sent.
3613 */
3614 if (port == PORT_A)
3615 return;
3616
3617 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3618 DP_TP_STATUS_IDLE_DONE,
3619 DP_TP_STATUS_IDLE_DONE,
3620 1))
3621 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3622 }
3623
3624 static void
intel_dp_link_down(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)3625 intel_dp_link_down(struct intel_encoder *encoder,
3626 const struct intel_crtc_state *old_crtc_state)
3627 {
3628 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3629 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3630 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3631 enum port port = encoder->port;
3632 uint32_t DP = intel_dp->DP;
3633
3634 if (WARN_ON(HAS_DDI(dev_priv)))
3635 return;
3636
3637 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3638 return;
3639
3640 DRM_DEBUG_KMS("\n");
3641
3642 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3643 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3644 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3645 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3646 } else {
3647 DP &= ~DP_LINK_TRAIN_MASK;
3648 DP |= DP_LINK_TRAIN_PAT_IDLE;
3649 }
3650 I915_WRITE(intel_dp->output_reg, DP);
3651 POSTING_READ(intel_dp->output_reg);
3652
3653 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3654 I915_WRITE(intel_dp->output_reg, DP);
3655 POSTING_READ(intel_dp->output_reg);
3656
3657 /*
3658 * HW workaround for IBX, we need to move the port
3659 * to transcoder A after disabling it to allow the
3660 * matching HDMI port to be enabled on transcoder A.
3661 */
3662 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3663 /*
3664 * We get CPU/PCH FIFO underruns on the other pipe when
3665 * doing the workaround. Sweep them under the rug.
3666 */
3667 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3668 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3669
3670 /* always enable with pattern 1 (as per spec) */
3671 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
3672 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
3673 DP_LINK_TRAIN_PAT_1;
3674 I915_WRITE(intel_dp->output_reg, DP);
3675 POSTING_READ(intel_dp->output_reg);
3676
3677 DP &= ~DP_PORT_EN;
3678 I915_WRITE(intel_dp->output_reg, DP);
3679 POSTING_READ(intel_dp->output_reg);
3680
3681 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3682 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3683 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3684 }
3685
3686 msleep(intel_dp->panel_power_down_delay);
3687
3688 intel_dp->DP = DP;
3689
3690 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3691 pps_lock(intel_dp);
3692 intel_dp->active_pipe = INVALID_PIPE;
3693 pps_unlock(intel_dp);
3694 }
3695 }
3696
3697 bool
intel_dp_read_dpcd(struct intel_dp * intel_dp)3698 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3699 {
3700 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3701 sizeof(intel_dp->dpcd)) < 0)
3702 return false; /* aux transfer failed */
3703
3704 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3705
3706 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3707 }
3708
3709 static bool
intel_edp_init_dpcd(struct intel_dp * intel_dp)3710 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3711 {
3712 struct drm_i915_private *dev_priv =
3713 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3714
3715 /* this function is meant to be called only once */
3716 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3717
3718 if (!intel_dp_read_dpcd(intel_dp))
3719 return false;
3720
3721 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
3722 drm_dp_is_branch(intel_dp->dpcd));
3723
3724 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3725 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3726 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3727
3728 /*
3729 * Read the eDP display control registers.
3730 *
3731 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
3732 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
3733 * set, but require eDP 1.4+ detection (e.g. for supported link rates
3734 * method). The display control registers should read zero if they're
3735 * not supported anyway.
3736 */
3737 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3738 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3739 sizeof(intel_dp->edp_dpcd))
3740 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3741 intel_dp->edp_dpcd);
3742
3743 /*
3744 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
3745 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
3746 */
3747 intel_psr_init_dpcd(intel_dp);
3748
3749 /* Read the eDP 1.4+ supported link rates. */
3750 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
3751 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3752 int i;
3753
3754 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3755 sink_rates, sizeof(sink_rates));
3756
3757 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3758 int val = le16_to_cpu(sink_rates[i]);
3759
3760 if (val == 0)
3761 break;
3762
3763 /* Value read multiplied by 200kHz gives the per-lane
3764 * link rate in kHz. The source rates are, however,
3765 * stored in terms of LS_Clk kHz. The full conversion
3766 * back to symbols is
3767 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
3768 */
3769 intel_dp->sink_rates[i] = (val * 200) / 10;
3770 }
3771 intel_dp->num_sink_rates = i;
3772 }
3773
3774 /*
3775 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
3776 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
3777 */
3778 if (intel_dp->num_sink_rates)
3779 intel_dp->use_rate_select = true;
3780 else
3781 intel_dp_set_sink_rates(intel_dp);
3782
3783 intel_dp_set_common_rates(intel_dp);
3784
3785 return true;
3786 }
3787
3788
3789 static bool
intel_dp_get_dpcd(struct intel_dp * intel_dp)3790 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3791 {
3792 u8 sink_count;
3793
3794 if (!intel_dp_read_dpcd(intel_dp))
3795 return false;
3796
3797 /* Don't clobber cached eDP rates. */
3798 if (!intel_dp_is_edp(intel_dp)) {
3799 intel_dp_set_sink_rates(intel_dp);
3800 intel_dp_set_common_rates(intel_dp);
3801 }
3802
3803 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3804 return false;
3805
3806 /*
3807 * Sink count can change between short pulse hpd hence
3808 * a member variable in intel_dp will track any changes
3809 * between short pulse interrupts.
3810 */
3811 intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3812
3813 /*
3814 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3815 * a dongle is present but no display. Unless we require to know
3816 * if a dongle is present or not, we don't need to update
3817 * downstream port information. So, an early return here saves
3818 * time from performing other operations which are not required.
3819 */
3820 if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
3821 return false;
3822
3823 if (!drm_dp_is_branch(intel_dp->dpcd))
3824 return true; /* native DP sink */
3825
3826 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3827 return true; /* no per-port downstream info */
3828
3829 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3830 intel_dp->downstream_ports,
3831 DP_MAX_DOWNSTREAM_PORTS) < 0)
3832 return false; /* downstream port status fetch failed */
3833
3834 return true;
3835 }
3836
3837 static bool
intel_dp_can_mst(struct intel_dp * intel_dp)3838 intel_dp_can_mst(struct intel_dp *intel_dp)
3839 {
3840 u8 mstm_cap;
3841
3842 if (!i915_modparams.enable_dp_mst)
3843 return false;
3844
3845 if (!intel_dp->can_mst)
3846 return false;
3847
3848 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3849 return false;
3850
3851 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
3852 return false;
3853
3854 return mstm_cap & DP_MST_CAP;
3855 }
3856
3857 static void
intel_dp_configure_mst(struct intel_dp * intel_dp)3858 intel_dp_configure_mst(struct intel_dp *intel_dp)
3859 {
3860 if (!i915_modparams.enable_dp_mst)
3861 return;
3862
3863 if (!intel_dp->can_mst)
3864 return;
3865
3866 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3867
3868 if (intel_dp->is_mst)
3869 DRM_DEBUG_KMS("Sink is MST capable\n");
3870 else
3871 DRM_DEBUG_KMS("Sink is not MST capable\n");
3872
3873 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3874 intel_dp->is_mst);
3875 }
3876
3877 static bool
intel_dp_get_sink_irq(struct intel_dp * intel_dp,u8 * sink_irq_vector)3878 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3879 {
3880 return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
3881 sink_irq_vector) == 1;
3882 }
3883
3884 static bool
intel_dp_get_sink_irq_esi(struct intel_dp * intel_dp,u8 * sink_irq_vector)3885 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3886 {
3887 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
3888 sink_irq_vector, DP_DPRX_ESI_LEN) ==
3889 DP_DPRX_ESI_LEN;
3890 }
3891
intel_dp_autotest_link_training(struct intel_dp * intel_dp)3892 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3893 {
3894 int status = 0;
3895 int test_link_rate;
3896 uint8_t test_lane_count, test_link_bw;
3897 /* (DP CTS 1.2)
3898 * 4.3.1.11
3899 */
3900 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
3901 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
3902 &test_lane_count);
3903
3904 if (status <= 0) {
3905 DRM_DEBUG_KMS("Lane count read failed\n");
3906 return DP_TEST_NAK;
3907 }
3908 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
3909
3910 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
3911 &test_link_bw);
3912 if (status <= 0) {
3913 DRM_DEBUG_KMS("Link Rate read failed\n");
3914 return DP_TEST_NAK;
3915 }
3916 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
3917
3918 /* Validate the requested link rate and lane count */
3919 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
3920 test_lane_count))
3921 return DP_TEST_NAK;
3922
3923 intel_dp->compliance.test_lane_count = test_lane_count;
3924 intel_dp->compliance.test_link_rate = test_link_rate;
3925
3926 return DP_TEST_ACK;
3927 }
3928
intel_dp_autotest_video_pattern(struct intel_dp * intel_dp)3929 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3930 {
3931 uint8_t test_pattern;
3932 uint8_t test_misc;
3933 __be16 h_width, v_height;
3934 int status = 0;
3935
3936 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
3937 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
3938 &test_pattern);
3939 if (status <= 0) {
3940 DRM_DEBUG_KMS("Test pattern read failed\n");
3941 return DP_TEST_NAK;
3942 }
3943 if (test_pattern != DP_COLOR_RAMP)
3944 return DP_TEST_NAK;
3945
3946 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
3947 &h_width, 2);
3948 if (status <= 0) {
3949 DRM_DEBUG_KMS("H Width read failed\n");
3950 return DP_TEST_NAK;
3951 }
3952
3953 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
3954 &v_height, 2);
3955 if (status <= 0) {
3956 DRM_DEBUG_KMS("V Height read failed\n");
3957 return DP_TEST_NAK;
3958 }
3959
3960 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
3961 &test_misc);
3962 if (status <= 0) {
3963 DRM_DEBUG_KMS("TEST MISC read failed\n");
3964 return DP_TEST_NAK;
3965 }
3966 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
3967 return DP_TEST_NAK;
3968 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
3969 return DP_TEST_NAK;
3970 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
3971 case DP_TEST_BIT_DEPTH_6:
3972 intel_dp->compliance.test_data.bpc = 6;
3973 break;
3974 case DP_TEST_BIT_DEPTH_8:
3975 intel_dp->compliance.test_data.bpc = 8;
3976 break;
3977 default:
3978 return DP_TEST_NAK;
3979 }
3980
3981 intel_dp->compliance.test_data.video_pattern = test_pattern;
3982 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
3983 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
3984 /* Set test active flag here so userspace doesn't interrupt things */
3985 intel_dp->compliance.test_active = 1;
3986
3987 return DP_TEST_ACK;
3988 }
3989
intel_dp_autotest_edid(struct intel_dp * intel_dp)3990 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3991 {
3992 uint8_t test_result = DP_TEST_ACK;
3993 struct intel_connector *intel_connector = intel_dp->attached_connector;
3994 struct drm_connector *connector = &intel_connector->base;
3995
3996 if (intel_connector->detect_edid == NULL ||
3997 connector->edid_corrupt ||
3998 intel_dp->aux.i2c_defer_count > 6) {
3999 /* Check EDID read for NACKs, DEFERs and corruption
4000 * (DP CTS 1.2 Core r1.1)
4001 * 4.2.2.4 : Failed EDID read, I2C_NAK
4002 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4003 * 4.2.2.6 : EDID corruption detected
4004 * Use failsafe mode for all cases
4005 */
4006 if (intel_dp->aux.i2c_nack_count > 0 ||
4007 intel_dp->aux.i2c_defer_count > 0)
4008 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4009 intel_dp->aux.i2c_nack_count,
4010 intel_dp->aux.i2c_defer_count);
4011 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4012 } else {
4013 struct edid *block = intel_connector->detect_edid;
4014
4015 /* We have to write the checksum
4016 * of the last block read
4017 */
4018 block += intel_connector->detect_edid->extensions;
4019
4020 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4021 block->checksum) <= 0)
4022 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4023
4024 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4025 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4026 }
4027
4028 /* Set test active flag here so userspace doesn't interrupt things */
4029 intel_dp->compliance.test_active = 1;
4030
4031 return test_result;
4032 }
4033
intel_dp_autotest_phy_pattern(struct intel_dp * intel_dp)4034 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4035 {
4036 uint8_t test_result = DP_TEST_NAK;
4037 return test_result;
4038 }
4039
intel_dp_handle_test_request(struct intel_dp * intel_dp)4040 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4041 {
4042 uint8_t response = DP_TEST_NAK;
4043 uint8_t request = 0;
4044 int status;
4045
4046 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4047 if (status <= 0) {
4048 DRM_DEBUG_KMS("Could not read test request from sink\n");
4049 goto update_status;
4050 }
4051
4052 switch (request) {
4053 case DP_TEST_LINK_TRAINING:
4054 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4055 response = intel_dp_autotest_link_training(intel_dp);
4056 break;
4057 case DP_TEST_LINK_VIDEO_PATTERN:
4058 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4059 response = intel_dp_autotest_video_pattern(intel_dp);
4060 break;
4061 case DP_TEST_LINK_EDID_READ:
4062 DRM_DEBUG_KMS("EDID test requested\n");
4063 response = intel_dp_autotest_edid(intel_dp);
4064 break;
4065 case DP_TEST_LINK_PHY_TEST_PATTERN:
4066 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4067 response = intel_dp_autotest_phy_pattern(intel_dp);
4068 break;
4069 default:
4070 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4071 break;
4072 }
4073
4074 if (response & DP_TEST_ACK)
4075 intel_dp->compliance.test_type = request;
4076
4077 update_status:
4078 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4079 if (status <= 0)
4080 DRM_DEBUG_KMS("Could not write test response to sink\n");
4081 }
4082
4083 static int
intel_dp_check_mst_status(struct intel_dp * intel_dp)4084 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4085 {
4086 bool bret;
4087
4088 if (intel_dp->is_mst) {
4089 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4090 int ret = 0;
4091 int retry;
4092 bool handled;
4093 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4094 go_again:
4095 if (bret == true) {
4096
4097 /* check link status - esi[10] = 0x200c */
4098 if (intel_dp->active_mst_links &&
4099 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4100 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4101 intel_dp_start_link_train(intel_dp);
4102 intel_dp_stop_link_train(intel_dp);
4103 }
4104
4105 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4106 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4107
4108 if (handled) {
4109 for (retry = 0; retry < 3; retry++) {
4110 int wret;
4111 wret = drm_dp_dpcd_write(&intel_dp->aux,
4112 DP_SINK_COUNT_ESI+1,
4113 &esi[1], 3);
4114 if (wret == 3) {
4115 break;
4116 }
4117 }
4118
4119 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4120 if (bret == true) {
4121 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4122 goto go_again;
4123 }
4124 } else
4125 ret = 0;
4126
4127 return ret;
4128 } else {
4129 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4130 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4131 intel_dp->is_mst = false;
4132 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4133 /* send a hotplug event */
4134 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4135 }
4136 }
4137 return -EINVAL;
4138 }
4139
4140 static bool
intel_dp_needs_link_retrain(struct intel_dp * intel_dp)4141 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4142 {
4143 u8 link_status[DP_LINK_STATUS_SIZE];
4144
4145 if (!intel_dp->link_trained)
4146 return false;
4147
4148 if (!intel_dp_get_link_status(intel_dp, link_status))
4149 return false;
4150
4151 /*
4152 * Validate the cached values of intel_dp->link_rate and
4153 * intel_dp->lane_count before attempting to retrain.
4154 */
4155 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4156 intel_dp->lane_count))
4157 return false;
4158
4159 /* Retrain if Channel EQ or CR not ok */
4160 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4161 }
4162
intel_dp_retrain_link(struct intel_encoder * encoder,struct drm_modeset_acquire_ctx * ctx)4163 int intel_dp_retrain_link(struct intel_encoder *encoder,
4164 struct drm_modeset_acquire_ctx *ctx)
4165 {
4166 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4167 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4168 struct intel_connector *connector = intel_dp->attached_connector;
4169 struct drm_connector_state *conn_state;
4170 struct intel_crtc_state *crtc_state;
4171 struct intel_crtc *crtc;
4172 int ret;
4173
4174 /* FIXME handle the MST connectors as well */
4175
4176 if (!connector || connector->base.status != connector_status_connected)
4177 return 0;
4178
4179 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4180 ctx);
4181 if (ret)
4182 return ret;
4183
4184 conn_state = connector->base.state;
4185
4186 crtc = to_intel_crtc(conn_state->crtc);
4187 if (!crtc)
4188 return 0;
4189
4190 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4191 if (ret)
4192 return ret;
4193
4194 crtc_state = to_intel_crtc_state(crtc->base.state);
4195
4196 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4197
4198 if (!crtc_state->base.active)
4199 return 0;
4200
4201 if (conn_state->commit &&
4202 !try_wait_for_completion(&conn_state->commit->hw_done))
4203 return 0;
4204
4205 if (!intel_dp_needs_link_retrain(intel_dp))
4206 return 0;
4207
4208 /* Suppress underruns caused by re-training */
4209 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4210 if (crtc->config->has_pch_encoder)
4211 intel_set_pch_fifo_underrun_reporting(dev_priv,
4212 intel_crtc_pch_transcoder(crtc), false);
4213
4214 intel_dp_start_link_train(intel_dp);
4215 intel_dp_stop_link_train(intel_dp);
4216
4217 /* Keep underrun reporting disabled until things are stable */
4218 intel_wait_for_vblank(dev_priv, crtc->pipe);
4219
4220 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4221 if (crtc->config->has_pch_encoder)
4222 intel_set_pch_fifo_underrun_reporting(dev_priv,
4223 intel_crtc_pch_transcoder(crtc), true);
4224
4225 return 0;
4226 }
4227
4228 /*
4229 * If display is now connected check links status,
4230 * there has been known issues of link loss triggering
4231 * long pulse.
4232 *
4233 * Some sinks (eg. ASUS PB287Q) seem to perform some
4234 * weird HPD ping pong during modesets. So we can apparently
4235 * end up with HPD going low during a modeset, and then
4236 * going back up soon after. And once that happens we must
4237 * retrain the link to get a picture. That's in case no
4238 * userspace component reacted to intermittent HPD dip.
4239 */
intel_dp_hotplug(struct intel_encoder * encoder,struct intel_connector * connector)4240 static bool intel_dp_hotplug(struct intel_encoder *encoder,
4241 struct intel_connector *connector)
4242 {
4243 struct drm_modeset_acquire_ctx ctx;
4244 bool changed;
4245 int ret;
4246
4247 changed = intel_encoder_hotplug(encoder, connector);
4248
4249 drm_modeset_acquire_init(&ctx, 0);
4250
4251 for (;;) {
4252 ret = intel_dp_retrain_link(encoder, &ctx);
4253
4254 if (ret == -EDEADLK) {
4255 drm_modeset_backoff(&ctx);
4256 continue;
4257 }
4258
4259 break;
4260 }
4261
4262 drm_modeset_drop_locks(&ctx);
4263 drm_modeset_acquire_fini(&ctx);
4264 WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4265
4266 return changed;
4267 }
4268
4269 /*
4270 * According to DP spec
4271 * 5.1.2:
4272 * 1. Read DPCD
4273 * 2. Configure link according to Receiver Capabilities
4274 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4275 * 4. Check link status on receipt of hot-plug interrupt
4276 *
4277 * intel_dp_short_pulse - handles short pulse interrupts
4278 * when full detection is not required.
4279 * Returns %true if short pulse is handled and full detection
4280 * is NOT required and %false otherwise.
4281 */
4282 static bool
intel_dp_short_pulse(struct intel_dp * intel_dp)4283 intel_dp_short_pulse(struct intel_dp *intel_dp)
4284 {
4285 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
4286 u8 sink_irq_vector = 0;
4287 u8 old_sink_count = intel_dp->sink_count;
4288 bool ret;
4289
4290 /*
4291 * Clearing compliance test variables to allow capturing
4292 * of values for next automated test request.
4293 */
4294 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4295
4296 /*
4297 * Now read the DPCD to see if it's actually running
4298 * If the current value of sink count doesn't match with
4299 * the value that was stored earlier or dpcd read failed
4300 * we need to do full detection
4301 */
4302 ret = intel_dp_get_dpcd(intel_dp);
4303
4304 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4305 /* No need to proceed if we are going to do full detect */
4306 return false;
4307 }
4308
4309 /* Try to read the source of the interrupt */
4310 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4311 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4312 sink_irq_vector != 0) {
4313 /* Clear interrupt source */
4314 drm_dp_dpcd_writeb(&intel_dp->aux,
4315 DP_DEVICE_SERVICE_IRQ_VECTOR,
4316 sink_irq_vector);
4317
4318 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4319 intel_dp_handle_test_request(intel_dp);
4320 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4321 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4322 }
4323
4324 /* Handle CEC interrupts, if any */
4325 drm_dp_cec_irq(&intel_dp->aux);
4326
4327 /* defer to the hotplug work for link retraining if needed */
4328 if (intel_dp_needs_link_retrain(intel_dp))
4329 return false;
4330
4331 intel_psr_short_pulse(intel_dp);
4332
4333 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4334 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4335 /* Send a Hotplug Uevent to userspace to start modeset */
4336 drm_kms_helper_hotplug_event(&dev_priv->drm);
4337 }
4338
4339 return true;
4340 }
4341
4342 /* XXX this is probably wrong for multiple downstream ports */
4343 static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp * intel_dp)4344 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4345 {
4346 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4347 uint8_t *dpcd = intel_dp->dpcd;
4348 uint8_t type;
4349
4350 if (lspcon->active)
4351 lspcon_resume(lspcon);
4352
4353 if (!intel_dp_get_dpcd(intel_dp))
4354 return connector_status_disconnected;
4355
4356 if (intel_dp_is_edp(intel_dp))
4357 return connector_status_connected;
4358
4359 /* if there's no downstream port, we're done */
4360 if (!drm_dp_is_branch(dpcd))
4361 return connector_status_connected;
4362
4363 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4364 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4365 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4366
4367 return intel_dp->sink_count ?
4368 connector_status_connected : connector_status_disconnected;
4369 }
4370
4371 if (intel_dp_can_mst(intel_dp))
4372 return connector_status_connected;
4373
4374 /* If no HPD, poke DDC gently */
4375 if (drm_probe_ddc(&intel_dp->aux.ddc))
4376 return connector_status_connected;
4377
4378 /* Well we tried, say unknown for unreliable port types */
4379 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4380 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4381 if (type == DP_DS_PORT_TYPE_VGA ||
4382 type == DP_DS_PORT_TYPE_NON_EDID)
4383 return connector_status_unknown;
4384 } else {
4385 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4386 DP_DWN_STRM_PORT_TYPE_MASK;
4387 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4388 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4389 return connector_status_unknown;
4390 }
4391
4392 /* Anything else is out of spec, warn and ignore */
4393 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4394 return connector_status_disconnected;
4395 }
4396
4397 static enum drm_connector_status
edp_detect(struct intel_dp * intel_dp)4398 edp_detect(struct intel_dp *intel_dp)
4399 {
4400 return connector_status_connected;
4401 }
4402
ibx_digital_port_connected(struct intel_encoder * encoder)4403 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4404 {
4405 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4406 u32 bit;
4407
4408 switch (encoder->hpd_pin) {
4409 case HPD_PORT_B:
4410 bit = SDE_PORTB_HOTPLUG;
4411 break;
4412 case HPD_PORT_C:
4413 bit = SDE_PORTC_HOTPLUG;
4414 break;
4415 case HPD_PORT_D:
4416 bit = SDE_PORTD_HOTPLUG;
4417 break;
4418 default:
4419 MISSING_CASE(encoder->hpd_pin);
4420 return false;
4421 }
4422
4423 return I915_READ(SDEISR) & bit;
4424 }
4425
cpt_digital_port_connected(struct intel_encoder * encoder)4426 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4427 {
4428 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4429 u32 bit;
4430
4431 switch (encoder->hpd_pin) {
4432 case HPD_PORT_B:
4433 bit = SDE_PORTB_HOTPLUG_CPT;
4434 break;
4435 case HPD_PORT_C:
4436 bit = SDE_PORTC_HOTPLUG_CPT;
4437 break;
4438 case HPD_PORT_D:
4439 bit = SDE_PORTD_HOTPLUG_CPT;
4440 break;
4441 default:
4442 MISSING_CASE(encoder->hpd_pin);
4443 return false;
4444 }
4445
4446 return I915_READ(SDEISR) & bit;
4447 }
4448
spt_digital_port_connected(struct intel_encoder * encoder)4449 static bool spt_digital_port_connected(struct intel_encoder *encoder)
4450 {
4451 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4452 u32 bit;
4453
4454 switch (encoder->hpd_pin) {
4455 case HPD_PORT_A:
4456 bit = SDE_PORTA_HOTPLUG_SPT;
4457 break;
4458 case HPD_PORT_E:
4459 bit = SDE_PORTE_HOTPLUG_SPT;
4460 break;
4461 default:
4462 return cpt_digital_port_connected(encoder);
4463 }
4464
4465 return I915_READ(SDEISR) & bit;
4466 }
4467
g4x_digital_port_connected(struct intel_encoder * encoder)4468 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4469 {
4470 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4471 u32 bit;
4472
4473 switch (encoder->hpd_pin) {
4474 case HPD_PORT_B:
4475 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4476 break;
4477 case HPD_PORT_C:
4478 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4479 break;
4480 case HPD_PORT_D:
4481 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4482 break;
4483 default:
4484 MISSING_CASE(encoder->hpd_pin);
4485 return false;
4486 }
4487
4488 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4489 }
4490
gm45_digital_port_connected(struct intel_encoder * encoder)4491 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4492 {
4493 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4494 u32 bit;
4495
4496 switch (encoder->hpd_pin) {
4497 case HPD_PORT_B:
4498 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4499 break;
4500 case HPD_PORT_C:
4501 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4502 break;
4503 case HPD_PORT_D:
4504 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4505 break;
4506 default:
4507 MISSING_CASE(encoder->hpd_pin);
4508 return false;
4509 }
4510
4511 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4512 }
4513
ilk_digital_port_connected(struct intel_encoder * encoder)4514 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
4515 {
4516 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4517
4518 if (encoder->hpd_pin == HPD_PORT_A)
4519 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4520 else
4521 return ibx_digital_port_connected(encoder);
4522 }
4523
snb_digital_port_connected(struct intel_encoder * encoder)4524 static bool snb_digital_port_connected(struct intel_encoder *encoder)
4525 {
4526 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4527
4528 if (encoder->hpd_pin == HPD_PORT_A)
4529 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4530 else
4531 return cpt_digital_port_connected(encoder);
4532 }
4533
ivb_digital_port_connected(struct intel_encoder * encoder)4534 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
4535 {
4536 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4537
4538 if (encoder->hpd_pin == HPD_PORT_A)
4539 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
4540 else
4541 return cpt_digital_port_connected(encoder);
4542 }
4543
bdw_digital_port_connected(struct intel_encoder * encoder)4544 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
4545 {
4546 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4547
4548 if (encoder->hpd_pin == HPD_PORT_A)
4549 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
4550 else
4551 return cpt_digital_port_connected(encoder);
4552 }
4553
bxt_digital_port_connected(struct intel_encoder * encoder)4554 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
4555 {
4556 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4557 u32 bit;
4558
4559 switch (encoder->hpd_pin) {
4560 case HPD_PORT_A:
4561 bit = BXT_DE_PORT_HP_DDIA;
4562 break;
4563 case HPD_PORT_B:
4564 bit = BXT_DE_PORT_HP_DDIB;
4565 break;
4566 case HPD_PORT_C:
4567 bit = BXT_DE_PORT_HP_DDIC;
4568 break;
4569 default:
4570 MISSING_CASE(encoder->hpd_pin);
4571 return false;
4572 }
4573
4574 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4575 }
4576
4577 /*
4578 * intel_digital_port_connected - is the specified port connected?
4579 * @encoder: intel_encoder
4580 *
4581 * Return %true if port is connected, %false otherwise.
4582 */
intel_digital_port_connected(struct intel_encoder * encoder)4583 bool intel_digital_port_connected(struct intel_encoder *encoder)
4584 {
4585 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4586
4587 if (HAS_GMCH_DISPLAY(dev_priv)) {
4588 if (IS_GM45(dev_priv))
4589 return gm45_digital_port_connected(encoder);
4590 else
4591 return g4x_digital_port_connected(encoder);
4592 }
4593
4594 if (IS_GEN5(dev_priv))
4595 return ilk_digital_port_connected(encoder);
4596 else if (IS_GEN6(dev_priv))
4597 return snb_digital_port_connected(encoder);
4598 else if (IS_GEN7(dev_priv))
4599 return ivb_digital_port_connected(encoder);
4600 else if (IS_GEN8(dev_priv))
4601 return bdw_digital_port_connected(encoder);
4602 else if (IS_GEN9_LP(dev_priv))
4603 return bxt_digital_port_connected(encoder);
4604 else
4605 return spt_digital_port_connected(encoder);
4606 }
4607
4608 static struct edid *
intel_dp_get_edid(struct intel_dp * intel_dp)4609 intel_dp_get_edid(struct intel_dp *intel_dp)
4610 {
4611 struct intel_connector *intel_connector = intel_dp->attached_connector;
4612
4613 /* use cached edid if we have one */
4614 if (intel_connector->edid) {
4615 /* invalid edid */
4616 if (IS_ERR(intel_connector->edid))
4617 return NULL;
4618
4619 return drm_edid_duplicate(intel_connector->edid);
4620 } else
4621 return drm_get_edid(&intel_connector->base,
4622 &intel_dp->aux.ddc);
4623 }
4624
4625 static void
intel_dp_set_edid(struct intel_dp * intel_dp)4626 intel_dp_set_edid(struct intel_dp *intel_dp)
4627 {
4628 struct intel_connector *intel_connector = intel_dp->attached_connector;
4629 struct edid *edid;
4630
4631 intel_dp_unset_edid(intel_dp);
4632 edid = intel_dp_get_edid(intel_dp);
4633 intel_connector->detect_edid = edid;
4634
4635 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4636 drm_dp_cec_set_edid(&intel_dp->aux, edid);
4637 }
4638
4639 static void
intel_dp_unset_edid(struct intel_dp * intel_dp)4640 intel_dp_unset_edid(struct intel_dp *intel_dp)
4641 {
4642 struct intel_connector *intel_connector = intel_dp->attached_connector;
4643
4644 drm_dp_cec_unset_edid(&intel_dp->aux);
4645 kfree(intel_connector->detect_edid);
4646 intel_connector->detect_edid = NULL;
4647
4648 intel_dp->has_audio = false;
4649 }
4650
4651 static int
intel_dp_long_pulse(struct intel_connector * connector,struct drm_modeset_acquire_ctx * ctx)4652 intel_dp_long_pulse(struct intel_connector *connector,
4653 struct drm_modeset_acquire_ctx *ctx)
4654 {
4655 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
4656 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
4657 enum drm_connector_status status;
4658 u8 sink_irq_vector = 0;
4659
4660 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
4661
4662 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4663
4664 /* Can't disconnect eDP */
4665 if (intel_dp_is_edp(intel_dp))
4666 status = edp_detect(intel_dp);
4667 else if (intel_digital_port_connected(&dp_to_dig_port(intel_dp)->base))
4668 status = intel_dp_detect_dpcd(intel_dp);
4669 else
4670 status = connector_status_disconnected;
4671
4672 if (status == connector_status_disconnected) {
4673 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4674
4675 if (intel_dp->is_mst) {
4676 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4677 intel_dp->is_mst,
4678 intel_dp->mst_mgr.mst_state);
4679 intel_dp->is_mst = false;
4680 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4681 intel_dp->is_mst);
4682 }
4683
4684 goto out;
4685 }
4686
4687 if (intel_dp->reset_link_params) {
4688 /* Initial max link lane count */
4689 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4690
4691 /* Initial max link rate */
4692 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4693
4694 intel_dp->reset_link_params = false;
4695 }
4696
4697 intel_dp_print_rates(intel_dp);
4698
4699 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4700 drm_dp_is_branch(intel_dp->dpcd));
4701
4702 intel_dp_configure_mst(intel_dp);
4703
4704 if (intel_dp->is_mst) {
4705 /*
4706 * If we are in MST mode then this connector
4707 * won't appear connected or have anything
4708 * with EDID on it
4709 */
4710 status = connector_status_disconnected;
4711 goto out;
4712 } else {
4713 /*
4714 * If display is now connected check links status,
4715 * there has been known issues of link loss triggering
4716 * long pulse.
4717 *
4718 * Some sinks (eg. ASUS PB287Q) seem to perform some
4719 * weird HPD ping pong during modesets. So we can apparently
4720 * end up with HPD going low during a modeset, and then
4721 * going back up soon after. And once that happens we must
4722 * retrain the link to get a picture. That's in case no
4723 * userspace component reacted to intermittent HPD dip.
4724 */
4725 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4726
4727 intel_dp_retrain_link(encoder, ctx);
4728 }
4729
4730 /*
4731 * Clearing NACK and defer counts to get their exact values
4732 * while reading EDID which are required by Compliance tests
4733 * 4.2.2.4 and 4.2.2.5
4734 */
4735 intel_dp->aux.i2c_nack_count = 0;
4736 intel_dp->aux.i2c_defer_count = 0;
4737
4738 intel_dp_set_edid(intel_dp);
4739 if (intel_dp_is_edp(intel_dp) || connector->detect_edid)
4740 status = connector_status_connected;
4741 intel_dp->detect_done = true;
4742
4743 /* Try to read the source of the interrupt */
4744 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4745 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4746 sink_irq_vector != 0) {
4747 /* Clear interrupt source */
4748 drm_dp_dpcd_writeb(&intel_dp->aux,
4749 DP_DEVICE_SERVICE_IRQ_VECTOR,
4750 sink_irq_vector);
4751
4752 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4753 intel_dp_handle_test_request(intel_dp);
4754 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4755 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4756 }
4757
4758 out:
4759 if (status != connector_status_connected && !intel_dp->is_mst)
4760 intel_dp_unset_edid(intel_dp);
4761
4762 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4763 return status;
4764 }
4765
4766 static int
intel_dp_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)4767 intel_dp_detect(struct drm_connector *connector,
4768 struct drm_modeset_acquire_ctx *ctx,
4769 bool force)
4770 {
4771 struct intel_dp *intel_dp = intel_attached_dp(connector);
4772 int status = connector->status;
4773
4774 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4775 connector->base.id, connector->name);
4776
4777 /* If full detect is not performed yet, do a full detect */
4778 if (!intel_dp->detect_done) {
4779 struct drm_crtc *crtc;
4780 int ret;
4781
4782 crtc = connector->state->crtc;
4783 if (crtc) {
4784 ret = drm_modeset_lock(&crtc->mutex, ctx);
4785 if (ret)
4786 return ret;
4787 }
4788
4789 status = intel_dp_long_pulse(intel_dp->attached_connector, ctx);
4790 }
4791
4792 intel_dp->detect_done = false;
4793
4794 return status;
4795 }
4796
4797 static void
intel_dp_force(struct drm_connector * connector)4798 intel_dp_force(struct drm_connector *connector)
4799 {
4800 struct intel_dp *intel_dp = intel_attached_dp(connector);
4801 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4802 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4803
4804 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4805 connector->base.id, connector->name);
4806 intel_dp_unset_edid(intel_dp);
4807
4808 if (connector->status != connector_status_connected)
4809 return;
4810
4811 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4812
4813 intel_dp_set_edid(intel_dp);
4814
4815 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4816 }
4817
intel_dp_get_modes(struct drm_connector * connector)4818 static int intel_dp_get_modes(struct drm_connector *connector)
4819 {
4820 struct intel_connector *intel_connector = to_intel_connector(connector);
4821 struct edid *edid;
4822
4823 edid = intel_connector->detect_edid;
4824 if (edid) {
4825 int ret = intel_connector_update_modes(connector, edid);
4826 if (ret)
4827 return ret;
4828 }
4829
4830 /* if eDP has no EDID, fall back to fixed mode */
4831 if (intel_dp_is_edp(intel_attached_dp(connector)) &&
4832 intel_connector->panel.fixed_mode) {
4833 struct drm_display_mode *mode;
4834
4835 mode = drm_mode_duplicate(connector->dev,
4836 intel_connector->panel.fixed_mode);
4837 if (mode) {
4838 drm_mode_probed_add(connector, mode);
4839 return 1;
4840 }
4841 }
4842
4843 return 0;
4844 }
4845
4846 static int
intel_dp_connector_register(struct drm_connector * connector)4847 intel_dp_connector_register(struct drm_connector *connector)
4848 {
4849 struct intel_dp *intel_dp = intel_attached_dp(connector);
4850 struct drm_device *dev = connector->dev;
4851 int ret;
4852
4853 ret = intel_connector_register(connector);
4854 if (ret)
4855 return ret;
4856
4857 i915_debugfs_connector_add(connector);
4858
4859 DRM_DEBUG_KMS("registering %s bus for %s\n",
4860 intel_dp->aux.name, connector->kdev->kobj.name);
4861
4862 intel_dp->aux.dev = connector->kdev;
4863 ret = drm_dp_aux_register(&intel_dp->aux);
4864 if (!ret)
4865 drm_dp_cec_register_connector(&intel_dp->aux,
4866 connector->name, dev->dev);
4867 return ret;
4868 }
4869
4870 static void
intel_dp_connector_unregister(struct drm_connector * connector)4871 intel_dp_connector_unregister(struct drm_connector *connector)
4872 {
4873 struct intel_dp *intel_dp = intel_attached_dp(connector);
4874
4875 drm_dp_cec_unregister_connector(&intel_dp->aux);
4876 drm_dp_aux_unregister(&intel_dp->aux);
4877 intel_connector_unregister(connector);
4878 }
4879
4880 static void
intel_dp_connector_destroy(struct drm_connector * connector)4881 intel_dp_connector_destroy(struct drm_connector *connector)
4882 {
4883 struct intel_connector *intel_connector = to_intel_connector(connector);
4884
4885 kfree(intel_connector->detect_edid);
4886
4887 if (!IS_ERR_OR_NULL(intel_connector->edid))
4888 kfree(intel_connector->edid);
4889
4890 /*
4891 * Can't call intel_dp_is_edp() since the encoder may have been
4892 * destroyed already.
4893 */
4894 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4895 intel_panel_fini(&intel_connector->panel);
4896
4897 drm_connector_cleanup(connector);
4898 kfree(connector);
4899 }
4900
intel_dp_encoder_destroy(struct drm_encoder * encoder)4901 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4902 {
4903 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4904 struct intel_dp *intel_dp = &intel_dig_port->dp;
4905
4906 intel_dp_mst_encoder_cleanup(intel_dig_port);
4907 if (intel_dp_is_edp(intel_dp)) {
4908 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4909 /*
4910 * vdd might still be enabled do to the delayed vdd off.
4911 * Make sure vdd is actually turned off here.
4912 */
4913 pps_lock(intel_dp);
4914 edp_panel_vdd_off_sync(intel_dp);
4915 pps_unlock(intel_dp);
4916
4917 if (intel_dp->edp_notifier.notifier_call) {
4918 unregister_reboot_notifier(&intel_dp->edp_notifier);
4919 intel_dp->edp_notifier.notifier_call = NULL;
4920 }
4921 }
4922
4923 intel_dp_aux_fini(intel_dp);
4924
4925 drm_encoder_cleanup(encoder);
4926 kfree(intel_dig_port);
4927 }
4928
intel_dp_encoder_suspend(struct intel_encoder * intel_encoder)4929 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4930 {
4931 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4932
4933 if (!intel_dp_is_edp(intel_dp))
4934 return;
4935
4936 /*
4937 * vdd might still be enabled do to the delayed vdd off.
4938 * Make sure vdd is actually turned off here.
4939 */
4940 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4941 pps_lock(intel_dp);
4942 edp_panel_vdd_off_sync(intel_dp);
4943 pps_unlock(intel_dp);
4944 }
4945
4946 static
intel_dp_hdcp_write_an_aksv(struct intel_digital_port * intel_dig_port,u8 * an)4947 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
4948 u8 *an)
4949 {
4950 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
4951 static const struct drm_dp_aux_msg msg = {
4952 .request = DP_AUX_NATIVE_WRITE,
4953 .address = DP_AUX_HDCP_AKSV,
4954 .size = DRM_HDCP_KSV_LEN,
4955 };
4956 uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
4957 ssize_t dpcd_ret;
4958 int ret;
4959
4960 /* Output An first, that's easy */
4961 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
4962 an, DRM_HDCP_AN_LEN);
4963 if (dpcd_ret != DRM_HDCP_AN_LEN) {
4964 DRM_ERROR("Failed to write An over DP/AUX (%zd)\n", dpcd_ret);
4965 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
4966 }
4967
4968 /*
4969 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
4970 * order to get it on the wire, we need to create the AUX header as if
4971 * we were writing the data, and then tickle the hardware to output the
4972 * data once the header is sent out.
4973 */
4974 intel_dp_aux_header(txbuf, &msg);
4975
4976 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
4977 rxbuf, sizeof(rxbuf),
4978 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
4979 if (ret < 0) {
4980 DRM_ERROR("Write Aksv over DP/AUX failed (%d)\n", ret);
4981 return ret;
4982 } else if (ret == 0) {
4983 DRM_ERROR("Aksv write over DP/AUX was empty\n");
4984 return -EIO;
4985 }
4986
4987 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
4988 return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO;
4989 }
4990
intel_dp_hdcp_read_bksv(struct intel_digital_port * intel_dig_port,u8 * bksv)4991 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
4992 u8 *bksv)
4993 {
4994 ssize_t ret;
4995 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
4996 DRM_HDCP_KSV_LEN);
4997 if (ret != DRM_HDCP_KSV_LEN) {
4998 DRM_ERROR("Read Bksv from DP/AUX failed (%zd)\n", ret);
4999 return ret >= 0 ? -EIO : ret;
5000 }
5001 return 0;
5002 }
5003
intel_dp_hdcp_read_bstatus(struct intel_digital_port * intel_dig_port,u8 * bstatus)5004 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5005 u8 *bstatus)
5006 {
5007 ssize_t ret;
5008 /*
5009 * For some reason the HDMI and DP HDCP specs call this register
5010 * definition by different names. In the HDMI spec, it's called BSTATUS,
5011 * but in DP it's called BINFO.
5012 */
5013 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5014 bstatus, DRM_HDCP_BSTATUS_LEN);
5015 if (ret != DRM_HDCP_BSTATUS_LEN) {
5016 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5017 return ret >= 0 ? -EIO : ret;
5018 }
5019 return 0;
5020 }
5021
5022 static
intel_dp_hdcp_read_bcaps(struct intel_digital_port * intel_dig_port,u8 * bcaps)5023 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5024 u8 *bcaps)
5025 {
5026 ssize_t ret;
5027
5028 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5029 bcaps, 1);
5030 if (ret != 1) {
5031 DRM_ERROR("Read bcaps from DP/AUX failed (%zd)\n", ret);
5032 return ret >= 0 ? -EIO : ret;
5033 }
5034
5035 return 0;
5036 }
5037
5038 static
intel_dp_hdcp_repeater_present(struct intel_digital_port * intel_dig_port,bool * repeater_present)5039 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5040 bool *repeater_present)
5041 {
5042 ssize_t ret;
5043 u8 bcaps;
5044
5045 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5046 if (ret)
5047 return ret;
5048
5049 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5050 return 0;
5051 }
5052
5053 static
intel_dp_hdcp_read_ri_prime(struct intel_digital_port * intel_dig_port,u8 * ri_prime)5054 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5055 u8 *ri_prime)
5056 {
5057 ssize_t ret;
5058 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5059 ri_prime, DRM_HDCP_RI_LEN);
5060 if (ret != DRM_HDCP_RI_LEN) {
5061 DRM_ERROR("Read Ri' from DP/AUX failed (%zd)\n", ret);
5062 return ret >= 0 ? -EIO : ret;
5063 }
5064 return 0;
5065 }
5066
5067 static
intel_dp_hdcp_read_ksv_ready(struct intel_digital_port * intel_dig_port,bool * ksv_ready)5068 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5069 bool *ksv_ready)
5070 {
5071 ssize_t ret;
5072 u8 bstatus;
5073 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5074 &bstatus, 1);
5075 if (ret != 1) {
5076 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5077 return ret >= 0 ? -EIO : ret;
5078 }
5079 *ksv_ready = bstatus & DP_BSTATUS_READY;
5080 return 0;
5081 }
5082
5083 static
intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port * intel_dig_port,int num_downstream,u8 * ksv_fifo)5084 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5085 int num_downstream, u8 *ksv_fifo)
5086 {
5087 ssize_t ret;
5088 int i;
5089
5090 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5091 for (i = 0; i < num_downstream; i += 3) {
5092 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5093 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5094 DP_AUX_HDCP_KSV_FIFO,
5095 ksv_fifo + i * DRM_HDCP_KSV_LEN,
5096 len);
5097 if (ret != len) {
5098 DRM_ERROR("Read ksv[%d] from DP/AUX failed (%zd)\n", i,
5099 ret);
5100 return ret >= 0 ? -EIO : ret;
5101 }
5102 }
5103 return 0;
5104 }
5105
5106 static
intel_dp_hdcp_read_v_prime_part(struct intel_digital_port * intel_dig_port,int i,u32 * part)5107 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5108 int i, u32 *part)
5109 {
5110 ssize_t ret;
5111
5112 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5113 return -EINVAL;
5114
5115 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5116 DP_AUX_HDCP_V_PRIME(i), part,
5117 DRM_HDCP_V_PRIME_PART_LEN);
5118 if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5119 DRM_ERROR("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5120 return ret >= 0 ? -EIO : ret;
5121 }
5122 return 0;
5123 }
5124
5125 static
intel_dp_hdcp_toggle_signalling(struct intel_digital_port * intel_dig_port,bool enable)5126 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5127 bool enable)
5128 {
5129 /* Not used for single stream DisplayPort setups */
5130 return 0;
5131 }
5132
5133 static
intel_dp_hdcp_check_link(struct intel_digital_port * intel_dig_port)5134 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5135 {
5136 ssize_t ret;
5137 u8 bstatus;
5138
5139 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5140 &bstatus, 1);
5141 if (ret != 1) {
5142 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5143 return false;
5144 }
5145
5146 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5147 }
5148
5149 static
intel_dp_hdcp_capable(struct intel_digital_port * intel_dig_port,bool * hdcp_capable)5150 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
5151 bool *hdcp_capable)
5152 {
5153 ssize_t ret;
5154 u8 bcaps;
5155
5156 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5157 if (ret)
5158 return ret;
5159
5160 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
5161 return 0;
5162 }
5163
5164 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
5165 .write_an_aksv = intel_dp_hdcp_write_an_aksv,
5166 .read_bksv = intel_dp_hdcp_read_bksv,
5167 .read_bstatus = intel_dp_hdcp_read_bstatus,
5168 .repeater_present = intel_dp_hdcp_repeater_present,
5169 .read_ri_prime = intel_dp_hdcp_read_ri_prime,
5170 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
5171 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
5172 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
5173 .toggle_signalling = intel_dp_hdcp_toggle_signalling,
5174 .check_link = intel_dp_hdcp_check_link,
5175 .hdcp_capable = intel_dp_hdcp_capable,
5176 };
5177
intel_edp_panel_vdd_sanitize(struct intel_dp * intel_dp)5178 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
5179 {
5180 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5181
5182 lockdep_assert_held(&dev_priv->pps_mutex);
5183
5184 if (!edp_have_panel_vdd(intel_dp))
5185 return;
5186
5187 /*
5188 * The VDD bit needs a power domain reference, so if the bit is
5189 * already enabled when we boot or resume, grab this reference and
5190 * schedule a vdd off, so we don't hold on to the reference
5191 * indefinitely.
5192 */
5193 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5194 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5195
5196 edp_panel_vdd_schedule_off(intel_dp);
5197 }
5198
vlv_active_pipe(struct intel_dp * intel_dp)5199 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
5200 {
5201 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5202 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
5203 enum pipe pipe;
5204
5205 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
5206 encoder->port, &pipe))
5207 return pipe;
5208
5209 return INVALID_PIPE;
5210 }
5211
intel_dp_encoder_reset(struct drm_encoder * encoder)5212 void intel_dp_encoder_reset(struct drm_encoder *encoder)
5213 {
5214 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5215 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5216 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5217
5218 if (!HAS_DDI(dev_priv))
5219 intel_dp->DP = I915_READ(intel_dp->output_reg);
5220
5221 if (lspcon->active)
5222 lspcon_resume(lspcon);
5223
5224 intel_dp->reset_link_params = true;
5225
5226 pps_lock(intel_dp);
5227
5228 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5229 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
5230
5231 if (intel_dp_is_edp(intel_dp)) {
5232 /* Reinit the power sequencer, in case BIOS did something with it. */
5233 intel_dp_pps_init(intel_dp);
5234 intel_edp_panel_vdd_sanitize(intel_dp);
5235 }
5236
5237 pps_unlock(intel_dp);
5238 }
5239
5240 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5241 .force = intel_dp_force,
5242 .fill_modes = drm_helper_probe_single_connector_modes,
5243 .atomic_get_property = intel_digital_connector_atomic_get_property,
5244 .atomic_set_property = intel_digital_connector_atomic_set_property,
5245 .late_register = intel_dp_connector_register,
5246 .early_unregister = intel_dp_connector_unregister,
5247 .destroy = intel_dp_connector_destroy,
5248 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5249 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
5250 };
5251
5252 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5253 .detect_ctx = intel_dp_detect,
5254 .get_modes = intel_dp_get_modes,
5255 .mode_valid = intel_dp_mode_valid,
5256 .atomic_check = intel_digital_connector_atomic_check,
5257 };
5258
5259 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5260 .reset = intel_dp_encoder_reset,
5261 .destroy = intel_dp_encoder_destroy,
5262 };
5263
5264 enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port * intel_dig_port,bool long_hpd)5265 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5266 {
5267 struct intel_dp *intel_dp = &intel_dig_port->dp;
5268 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5269 enum irqreturn ret = IRQ_NONE;
5270
5271 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5272 /*
5273 * vdd off can generate a long pulse on eDP which
5274 * would require vdd on to handle it, and thus we
5275 * would end up in an endless cycle of
5276 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5277 */
5278 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5279 port_name(intel_dig_port->base.port));
5280 return IRQ_HANDLED;
5281 }
5282
5283 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5284 port_name(intel_dig_port->base.port),
5285 long_hpd ? "long" : "short");
5286
5287 if (long_hpd) {
5288 intel_dp->reset_link_params = true;
5289 intel_dp->detect_done = false;
5290 return IRQ_NONE;
5291 }
5292
5293 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5294
5295 if (intel_dp->is_mst) {
5296 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5297 /*
5298 * If we were in MST mode, and device is not
5299 * there, get out of MST mode
5300 */
5301 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5302 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5303 intel_dp->is_mst = false;
5304 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5305 intel_dp->is_mst);
5306 intel_dp->detect_done = false;
5307 goto put_power;
5308 }
5309 }
5310
5311 if (!intel_dp->is_mst) {
5312 bool handled;
5313
5314 handled = intel_dp_short_pulse(intel_dp);
5315
5316 /* Short pulse can signify loss of hdcp authentication */
5317 intel_hdcp_check_link(intel_dp->attached_connector);
5318
5319 if (!handled) {
5320 intel_dp->detect_done = false;
5321 goto put_power;
5322 }
5323 }
5324
5325 ret = IRQ_HANDLED;
5326
5327 put_power:
5328 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5329
5330 return ret;
5331 }
5332
5333 /* check the VBT to see whether the eDP is on another port */
intel_dp_is_port_edp(struct drm_i915_private * dev_priv,enum port port)5334 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5335 {
5336 /*
5337 * eDP not supported on g4x. so bail out early just
5338 * for a bit extra safety in case the VBT is bonkers.
5339 */
5340 if (INTEL_GEN(dev_priv) < 5)
5341 return false;
5342
5343 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5344 return true;
5345
5346 return intel_bios_is_port_edp(dev_priv, port);
5347 }
5348
5349 static void
intel_dp_add_properties(struct intel_dp * intel_dp,struct drm_connector * connector)5350 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5351 {
5352 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5353 enum port port = dp_to_dig_port(intel_dp)->base.port;
5354
5355 if (!IS_G4X(dev_priv) && port != PORT_A)
5356 intel_attach_force_audio_property(connector);
5357
5358 intel_attach_broadcast_rgb_property(connector);
5359
5360 if (intel_dp_is_edp(intel_dp)) {
5361 u32 allowed_scalers;
5362
5363 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
5364 if (!HAS_GMCH_DISPLAY(dev_priv))
5365 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
5366
5367 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
5368
5369 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5370
5371 }
5372 }
5373
intel_dp_init_panel_power_timestamps(struct intel_dp * intel_dp)5374 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5375 {
5376 intel_dp->panel_power_off_time = ktime_get_boottime();
5377 intel_dp->last_power_on = jiffies;
5378 intel_dp->last_backlight_off = jiffies;
5379 }
5380
5381 static void
intel_pps_readout_hw_state(struct intel_dp * intel_dp,struct edp_power_seq * seq)5382 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
5383 {
5384 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5385 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5386 struct pps_registers regs;
5387
5388 intel_pps_get_registers(intel_dp, ®s);
5389
5390 /* Workaround: Need to write PP_CONTROL with the unlock key as
5391 * the very first thing. */
5392 pp_ctl = ironlake_get_pp_control(intel_dp);
5393
5394 pp_on = I915_READ(regs.pp_on);
5395 pp_off = I915_READ(regs.pp_off);
5396 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
5397 !HAS_PCH_ICP(dev_priv)) {
5398 I915_WRITE(regs.pp_ctrl, pp_ctl);
5399 pp_div = I915_READ(regs.pp_div);
5400 }
5401
5402 /* Pull timing values out of registers */
5403 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5404 PANEL_POWER_UP_DELAY_SHIFT;
5405
5406 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5407 PANEL_LIGHT_ON_DELAY_SHIFT;
5408
5409 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5410 PANEL_LIGHT_OFF_DELAY_SHIFT;
5411
5412 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5413 PANEL_POWER_DOWN_DELAY_SHIFT;
5414
5415 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5416 HAS_PCH_ICP(dev_priv)) {
5417 seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5418 BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5419 } else {
5420 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5421 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5422 }
5423 }
5424
5425 static void
intel_pps_dump_state(const char * state_name,const struct edp_power_seq * seq)5426 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5427 {
5428 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5429 state_name,
5430 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5431 }
5432
5433 static void
intel_pps_verify_state(struct intel_dp * intel_dp)5434 intel_pps_verify_state(struct intel_dp *intel_dp)
5435 {
5436 struct edp_power_seq hw;
5437 struct edp_power_seq *sw = &intel_dp->pps_delays;
5438
5439 intel_pps_readout_hw_state(intel_dp, &hw);
5440
5441 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5442 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5443 DRM_ERROR("PPS state mismatch\n");
5444 intel_pps_dump_state("sw", sw);
5445 intel_pps_dump_state("hw", &hw);
5446 }
5447 }
5448
5449 static void
intel_dp_init_panel_power_sequencer(struct intel_dp * intel_dp)5450 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
5451 {
5452 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5453 struct edp_power_seq cur, vbt, spec,
5454 *final = &intel_dp->pps_delays;
5455
5456 lockdep_assert_held(&dev_priv->pps_mutex);
5457
5458 /* already initialized? */
5459 if (final->t11_t12 != 0)
5460 return;
5461
5462 intel_pps_readout_hw_state(intel_dp, &cur);
5463
5464 intel_pps_dump_state("cur", &cur);
5465
5466 vbt = dev_priv->vbt.edp.pps;
5467 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
5468 * of 500ms appears to be too short. Ocassionally the panel
5469 * just fails to power back on. Increasing the delay to 800ms
5470 * seems sufficient to avoid this problem.
5471 */
5472 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5473 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5474 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
5475 vbt.t11_t12);
5476 }
5477 /* T11_T12 delay is special and actually in units of 100ms, but zero
5478 * based in the hw (so we need to add 100 ms). But the sw vbt
5479 * table multiplies it with 1000 to make it in units of 100usec,
5480 * too. */
5481 vbt.t11_t12 += 100 * 10;
5482
5483 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5484 * our hw here, which are all in 100usec. */
5485 spec.t1_t3 = 210 * 10;
5486 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5487 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5488 spec.t10 = 500 * 10;
5489 /* This one is special and actually in units of 100ms, but zero
5490 * based in the hw (so we need to add 100 ms). But the sw vbt
5491 * table multiplies it with 1000 to make it in units of 100usec,
5492 * too. */
5493 spec.t11_t12 = (510 + 100) * 10;
5494
5495 intel_pps_dump_state("vbt", &vbt);
5496
5497 /* Use the max of the register settings and vbt. If both are
5498 * unset, fall back to the spec limits. */
5499 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5500 spec.field : \
5501 max(cur.field, vbt.field))
5502 assign_final(t1_t3);
5503 assign_final(t8);
5504 assign_final(t9);
5505 assign_final(t10);
5506 assign_final(t11_t12);
5507 #undef assign_final
5508
5509 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5510 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5511 intel_dp->backlight_on_delay = get_delay(t8);
5512 intel_dp->backlight_off_delay = get_delay(t9);
5513 intel_dp->panel_power_down_delay = get_delay(t10);
5514 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5515 #undef get_delay
5516
5517 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5518 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5519 intel_dp->panel_power_cycle_delay);
5520
5521 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5522 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5523
5524 /*
5525 * We override the HW backlight delays to 1 because we do manual waits
5526 * on them. For T8, even BSpec recommends doing it. For T9, if we
5527 * don't do this, we'll end up waiting for the backlight off delay
5528 * twice: once when we do the manual sleep, and once when we disable
5529 * the panel and wait for the PP_STATUS bit to become zero.
5530 */
5531 final->t8 = 1;
5532 final->t9 = 1;
5533
5534 /*
5535 * HW has only a 100msec granularity for t11_t12 so round it up
5536 * accordingly.
5537 */
5538 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5539 }
5540
5541 static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp * intel_dp,bool force_disable_vdd)5542 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
5543 bool force_disable_vdd)
5544 {
5545 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5546 u32 pp_on, pp_off, pp_div, port_sel = 0;
5547 int div = dev_priv->rawclk_freq / 1000;
5548 struct pps_registers regs;
5549 enum port port = dp_to_dig_port(intel_dp)->base.port;
5550 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5551
5552 lockdep_assert_held(&dev_priv->pps_mutex);
5553
5554 intel_pps_get_registers(intel_dp, ®s);
5555
5556 /*
5557 * On some VLV machines the BIOS can leave the VDD
5558 * enabled even on power sequencers which aren't
5559 * hooked up to any port. This would mess up the
5560 * power domain tracking the first time we pick
5561 * one of these power sequencers for use since
5562 * edp_panel_vdd_on() would notice that the VDD was
5563 * already on and therefore wouldn't grab the power
5564 * domain reference. Disable VDD first to avoid this.
5565 * This also avoids spuriously turning the VDD on as
5566 * soon as the new power sequencer gets initialized.
5567 */
5568 if (force_disable_vdd) {
5569 u32 pp = ironlake_get_pp_control(intel_dp);
5570
5571 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5572
5573 if (pp & EDP_FORCE_VDD)
5574 DRM_DEBUG_KMS("VDD already on, disabling first\n");
5575
5576 pp &= ~EDP_FORCE_VDD;
5577
5578 I915_WRITE(regs.pp_ctrl, pp);
5579 }
5580
5581 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5582 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5583 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5584 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5585 /* Compute the divisor for the pp clock, simply match the Bspec
5586 * formula. */
5587 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5588 HAS_PCH_ICP(dev_priv)) {
5589 pp_div = I915_READ(regs.pp_ctrl);
5590 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5591 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5592 << BXT_POWER_CYCLE_DELAY_SHIFT);
5593 } else {
5594 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5595 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5596 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5597 }
5598
5599 /* Haswell doesn't have any port selection bits for the panel
5600 * power sequencer any more. */
5601 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5602 port_sel = PANEL_PORT_SELECT_VLV(port);
5603 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5604 switch (port) {
5605 case PORT_A:
5606 port_sel = PANEL_PORT_SELECT_DPA;
5607 break;
5608 case PORT_C:
5609 port_sel = PANEL_PORT_SELECT_DPC;
5610 break;
5611 case PORT_D:
5612 port_sel = PANEL_PORT_SELECT_DPD;
5613 break;
5614 default:
5615 MISSING_CASE(port);
5616 break;
5617 }
5618 }
5619
5620 pp_on |= port_sel;
5621
5622 I915_WRITE(regs.pp_on, pp_on);
5623 I915_WRITE(regs.pp_off, pp_off);
5624 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5625 HAS_PCH_ICP(dev_priv))
5626 I915_WRITE(regs.pp_ctrl, pp_div);
5627 else
5628 I915_WRITE(regs.pp_div, pp_div);
5629
5630 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5631 I915_READ(regs.pp_on),
5632 I915_READ(regs.pp_off),
5633 (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5634 HAS_PCH_ICP(dev_priv)) ?
5635 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5636 I915_READ(regs.pp_div));
5637 }
5638
intel_dp_pps_init(struct intel_dp * intel_dp)5639 static void intel_dp_pps_init(struct intel_dp *intel_dp)
5640 {
5641 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5642
5643 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5644 vlv_initial_power_sequencer_setup(intel_dp);
5645 } else {
5646 intel_dp_init_panel_power_sequencer(intel_dp);
5647 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
5648 }
5649 }
5650
5651 /**
5652 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5653 * @dev_priv: i915 device
5654 * @crtc_state: a pointer to the active intel_crtc_state
5655 * @refresh_rate: RR to be programmed
5656 *
5657 * This function gets called when refresh rate (RR) has to be changed from
5658 * one frequency to another. Switches can be between high and low RR
5659 * supported by the panel or to any other RR based on media playback (in
5660 * this case, RR value needs to be passed from user space).
5661 *
5662 * The caller of this function needs to take a lock on dev_priv->drrs.
5663 */
intel_dp_set_drrs_state(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state,int refresh_rate)5664 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5665 const struct intel_crtc_state *crtc_state,
5666 int refresh_rate)
5667 {
5668 struct intel_encoder *encoder;
5669 struct intel_digital_port *dig_port = NULL;
5670 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5671 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5672 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5673
5674 if (refresh_rate <= 0) {
5675 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5676 return;
5677 }
5678
5679 if (intel_dp == NULL) {
5680 DRM_DEBUG_KMS("DRRS not supported.\n");
5681 return;
5682 }
5683
5684 dig_port = dp_to_dig_port(intel_dp);
5685 encoder = &dig_port->base;
5686
5687 if (!intel_crtc) {
5688 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5689 return;
5690 }
5691
5692 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5693 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5694 return;
5695 }
5696
5697 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5698 refresh_rate)
5699 index = DRRS_LOW_RR;
5700
5701 if (index == dev_priv->drrs.refresh_rate_type) {
5702 DRM_DEBUG_KMS(
5703 "DRRS requested for previously set RR...ignoring\n");
5704 return;
5705 }
5706
5707 if (!crtc_state->base.active) {
5708 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5709 return;
5710 }
5711
5712 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5713 switch (index) {
5714 case DRRS_HIGH_RR:
5715 intel_dp_set_m_n(intel_crtc, M1_N1);
5716 break;
5717 case DRRS_LOW_RR:
5718 intel_dp_set_m_n(intel_crtc, M2_N2);
5719 break;
5720 case DRRS_MAX_RR:
5721 default:
5722 DRM_ERROR("Unsupported refreshrate type\n");
5723 }
5724 } else if (INTEL_GEN(dev_priv) > 6) {
5725 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5726 u32 val;
5727
5728 val = I915_READ(reg);
5729 if (index > DRRS_HIGH_RR) {
5730 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5731 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5732 else
5733 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5734 } else {
5735 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5736 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5737 else
5738 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5739 }
5740 I915_WRITE(reg, val);
5741 }
5742
5743 dev_priv->drrs.refresh_rate_type = index;
5744
5745 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5746 }
5747
5748 /**
5749 * intel_edp_drrs_enable - init drrs struct if supported
5750 * @intel_dp: DP struct
5751 * @crtc_state: A pointer to the active crtc state.
5752 *
5753 * Initializes frontbuffer_bits and drrs.dp
5754 */
intel_edp_drrs_enable(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)5755 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5756 const struct intel_crtc_state *crtc_state)
5757 {
5758 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5759
5760 if (!crtc_state->has_drrs) {
5761 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5762 return;
5763 }
5764
5765 if (dev_priv->psr.enabled) {
5766 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
5767 return;
5768 }
5769
5770 mutex_lock(&dev_priv->drrs.mutex);
5771 if (WARN_ON(dev_priv->drrs.dp)) {
5772 DRM_ERROR("DRRS already enabled\n");
5773 goto unlock;
5774 }
5775
5776 dev_priv->drrs.busy_frontbuffer_bits = 0;
5777
5778 dev_priv->drrs.dp = intel_dp;
5779
5780 unlock:
5781 mutex_unlock(&dev_priv->drrs.mutex);
5782 }
5783
5784 /**
5785 * intel_edp_drrs_disable - Disable DRRS
5786 * @intel_dp: DP struct
5787 * @old_crtc_state: Pointer to old crtc_state.
5788 *
5789 */
intel_edp_drrs_disable(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)5790 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5791 const struct intel_crtc_state *old_crtc_state)
5792 {
5793 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5794
5795 if (!old_crtc_state->has_drrs)
5796 return;
5797
5798 mutex_lock(&dev_priv->drrs.mutex);
5799 if (!dev_priv->drrs.dp) {
5800 mutex_unlock(&dev_priv->drrs.mutex);
5801 return;
5802 }
5803
5804 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5805 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5806 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5807
5808 dev_priv->drrs.dp = NULL;
5809 mutex_unlock(&dev_priv->drrs.mutex);
5810
5811 cancel_delayed_work_sync(&dev_priv->drrs.work);
5812 }
5813
intel_edp_drrs_downclock_work(struct work_struct * work)5814 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5815 {
5816 struct drm_i915_private *dev_priv =
5817 container_of(work, typeof(*dev_priv), drrs.work.work);
5818 struct intel_dp *intel_dp;
5819
5820 mutex_lock(&dev_priv->drrs.mutex);
5821
5822 intel_dp = dev_priv->drrs.dp;
5823
5824 if (!intel_dp)
5825 goto unlock;
5826
5827 /*
5828 * The delayed work can race with an invalidate hence we need to
5829 * recheck.
5830 */
5831
5832 if (dev_priv->drrs.busy_frontbuffer_bits)
5833 goto unlock;
5834
5835 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5836 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5837
5838 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5839 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5840 }
5841
5842 unlock:
5843 mutex_unlock(&dev_priv->drrs.mutex);
5844 }
5845
5846 /**
5847 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5848 * @dev_priv: i915 device
5849 * @frontbuffer_bits: frontbuffer plane tracking bits
5850 *
5851 * This function gets called everytime rendering on the given planes start.
5852 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5853 *
5854 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5855 */
intel_edp_drrs_invalidate(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)5856 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5857 unsigned int frontbuffer_bits)
5858 {
5859 struct drm_crtc *crtc;
5860 enum pipe pipe;
5861
5862 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5863 return;
5864
5865 cancel_delayed_work(&dev_priv->drrs.work);
5866
5867 mutex_lock(&dev_priv->drrs.mutex);
5868 if (!dev_priv->drrs.dp) {
5869 mutex_unlock(&dev_priv->drrs.mutex);
5870 return;
5871 }
5872
5873 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5874 pipe = to_intel_crtc(crtc)->pipe;
5875
5876 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5877 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5878
5879 /* invalidate means busy screen hence upclock */
5880 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5881 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5882 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5883
5884 mutex_unlock(&dev_priv->drrs.mutex);
5885 }
5886
5887 /**
5888 * intel_edp_drrs_flush - Restart Idleness DRRS
5889 * @dev_priv: i915 device
5890 * @frontbuffer_bits: frontbuffer plane tracking bits
5891 *
5892 * This function gets called every time rendering on the given planes has
5893 * completed or flip on a crtc is completed. So DRRS should be upclocked
5894 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5895 * if no other planes are dirty.
5896 *
5897 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5898 */
intel_edp_drrs_flush(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)5899 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5900 unsigned int frontbuffer_bits)
5901 {
5902 struct drm_crtc *crtc;
5903 enum pipe pipe;
5904
5905 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5906 return;
5907
5908 cancel_delayed_work(&dev_priv->drrs.work);
5909
5910 mutex_lock(&dev_priv->drrs.mutex);
5911 if (!dev_priv->drrs.dp) {
5912 mutex_unlock(&dev_priv->drrs.mutex);
5913 return;
5914 }
5915
5916 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5917 pipe = to_intel_crtc(crtc)->pipe;
5918
5919 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5920 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5921
5922 /* flush means busy screen hence upclock */
5923 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5924 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5925 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5926
5927 /*
5928 * flush also means no more activity hence schedule downclock, if all
5929 * other fbs are quiescent too
5930 */
5931 if (!dev_priv->drrs.busy_frontbuffer_bits)
5932 schedule_delayed_work(&dev_priv->drrs.work,
5933 msecs_to_jiffies(1000));
5934 mutex_unlock(&dev_priv->drrs.mutex);
5935 }
5936
5937 /**
5938 * DOC: Display Refresh Rate Switching (DRRS)
5939 *
5940 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5941 * which enables swtching between low and high refresh rates,
5942 * dynamically, based on the usage scenario. This feature is applicable
5943 * for internal panels.
5944 *
5945 * Indication that the panel supports DRRS is given by the panel EDID, which
5946 * would list multiple refresh rates for one resolution.
5947 *
5948 * DRRS is of 2 types - static and seamless.
5949 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5950 * (may appear as a blink on screen) and is used in dock-undock scenario.
5951 * Seamless DRRS involves changing RR without any visual effect to the user
5952 * and can be used during normal system usage. This is done by programming
5953 * certain registers.
5954 *
5955 * Support for static/seamless DRRS may be indicated in the VBT based on
5956 * inputs from the panel spec.
5957 *
5958 * DRRS saves power by switching to low RR based on usage scenarios.
5959 *
5960 * The implementation is based on frontbuffer tracking implementation. When
5961 * there is a disturbance on the screen triggered by user activity or a periodic
5962 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5963 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5964 * made.
5965 *
5966 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5967 * and intel_edp_drrs_flush() are called.
5968 *
5969 * DRRS can be further extended to support other internal panels and also
5970 * the scenario of video playback wherein RR is set based on the rate
5971 * requested by userspace.
5972 */
5973
5974 /**
5975 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5976 * @connector: eDP connector
5977 * @fixed_mode: preferred mode of panel
5978 *
5979 * This function is called only once at driver load to initialize basic
5980 * DRRS stuff.
5981 *
5982 * Returns:
5983 * Downclock mode if panel supports it, else return NULL.
5984 * DRRS support is determined by the presence of downclock mode (apart
5985 * from VBT setting).
5986 */
5987 static struct drm_display_mode *
intel_dp_drrs_init(struct intel_connector * connector,struct drm_display_mode * fixed_mode)5988 intel_dp_drrs_init(struct intel_connector *connector,
5989 struct drm_display_mode *fixed_mode)
5990 {
5991 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
5992 struct drm_display_mode *downclock_mode = NULL;
5993
5994 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5995 mutex_init(&dev_priv->drrs.mutex);
5996
5997 if (INTEL_GEN(dev_priv) <= 6) {
5998 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5999 return NULL;
6000 }
6001
6002 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6003 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6004 return NULL;
6005 }
6006
6007 downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
6008 &connector->base);
6009
6010 if (!downclock_mode) {
6011 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6012 return NULL;
6013 }
6014
6015 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6016
6017 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6018 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6019 return downclock_mode;
6020 }
6021
intel_edp_init_connector(struct intel_dp * intel_dp,struct intel_connector * intel_connector)6022 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6023 struct intel_connector *intel_connector)
6024 {
6025 struct drm_device *dev = intel_dp_to_dev(intel_dp);
6026 struct drm_i915_private *dev_priv = to_i915(dev);
6027 struct drm_connector *connector = &intel_connector->base;
6028 struct drm_display_mode *fixed_mode = NULL;
6029 struct drm_display_mode *downclock_mode = NULL;
6030 bool has_dpcd;
6031 struct drm_display_mode *scan;
6032 struct edid *edid;
6033 enum pipe pipe = INVALID_PIPE;
6034
6035 if (!intel_dp_is_edp(intel_dp))
6036 return true;
6037
6038 /*
6039 * On IBX/CPT we may get here with LVDS already registered. Since the
6040 * driver uses the only internal power sequencer available for both
6041 * eDP and LVDS bail out early in this case to prevent interfering
6042 * with an already powered-on LVDS power sequencer.
6043 */
6044 if (intel_get_lvds_encoder(&dev_priv->drm)) {
6045 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
6046 DRM_INFO("LVDS was detected, not registering eDP\n");
6047
6048 return false;
6049 }
6050
6051 pps_lock(intel_dp);
6052
6053 intel_dp_init_panel_power_timestamps(intel_dp);
6054 intel_dp_pps_init(intel_dp);
6055 intel_edp_panel_vdd_sanitize(intel_dp);
6056
6057 pps_unlock(intel_dp);
6058
6059 /* Cache DPCD and EDID for edp. */
6060 has_dpcd = intel_edp_init_dpcd(intel_dp);
6061
6062 if (!has_dpcd) {
6063 /* if this fails, presume the device is a ghost */
6064 DRM_INFO("failed to retrieve link info, disabling eDP\n");
6065 goto out_vdd_off;
6066 }
6067
6068 mutex_lock(&dev->mode_config.mutex);
6069 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6070 if (edid) {
6071 if (drm_add_edid_modes(connector, edid)) {
6072 drm_connector_update_edid_property(connector,
6073 edid);
6074 } else {
6075 kfree(edid);
6076 edid = ERR_PTR(-EINVAL);
6077 }
6078 } else {
6079 edid = ERR_PTR(-ENOENT);
6080 }
6081 intel_connector->edid = edid;
6082
6083 /* prefer fixed mode from EDID if available */
6084 list_for_each_entry(scan, &connector->probed_modes, head) {
6085 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
6086 fixed_mode = drm_mode_duplicate(dev, scan);
6087 downclock_mode = intel_dp_drrs_init(
6088 intel_connector, fixed_mode);
6089 break;
6090 }
6091 }
6092
6093 /* fallback to VBT if available for eDP */
6094 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
6095 fixed_mode = drm_mode_duplicate(dev,
6096 dev_priv->vbt.lfp_lvds_vbt_mode);
6097 if (fixed_mode) {
6098 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6099 connector->display_info.width_mm = fixed_mode->width_mm;
6100 connector->display_info.height_mm = fixed_mode->height_mm;
6101 }
6102 }
6103 mutex_unlock(&dev->mode_config.mutex);
6104
6105 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6106 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
6107 register_reboot_notifier(&intel_dp->edp_notifier);
6108
6109 /*
6110 * Figure out the current pipe for the initial backlight setup.
6111 * If the current pipe isn't valid, try the PPS pipe, and if that
6112 * fails just assume pipe A.
6113 */
6114 pipe = vlv_active_pipe(intel_dp);
6115
6116 if (pipe != PIPE_A && pipe != PIPE_B)
6117 pipe = intel_dp->pps_pipe;
6118
6119 if (pipe != PIPE_A && pipe != PIPE_B)
6120 pipe = PIPE_A;
6121
6122 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
6123 pipe_name(pipe));
6124 }
6125
6126 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6127 intel_connector->panel.backlight.power = intel_edp_backlight_power;
6128 intel_panel_setup_backlight(connector, pipe);
6129
6130 return true;
6131
6132 out_vdd_off:
6133 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6134 /*
6135 * vdd might still be enabled do to the delayed vdd off.
6136 * Make sure vdd is actually turned off here.
6137 */
6138 pps_lock(intel_dp);
6139 edp_panel_vdd_off_sync(intel_dp);
6140 pps_unlock(intel_dp);
6141
6142 return false;
6143 }
6144
intel_dp_modeset_retry_work_fn(struct work_struct * work)6145 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
6146 {
6147 struct intel_connector *intel_connector;
6148 struct drm_connector *connector;
6149
6150 intel_connector = container_of(work, typeof(*intel_connector),
6151 modeset_retry_work);
6152 connector = &intel_connector->base;
6153 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
6154 connector->name);
6155
6156 /* Grab the locks before changing connector property*/
6157 mutex_lock(&connector->dev->mode_config.mutex);
6158 /* Set connector link status to BAD and send a Uevent to notify
6159 * userspace to do a modeset.
6160 */
6161 drm_connector_set_link_status_property(connector,
6162 DRM_MODE_LINK_STATUS_BAD);
6163 mutex_unlock(&connector->dev->mode_config.mutex);
6164 /* Send Hotplug uevent so userspace can reprobe */
6165 drm_kms_helper_hotplug_event(connector->dev);
6166 }
6167
6168 bool
intel_dp_init_connector(struct intel_digital_port * intel_dig_port,struct intel_connector * intel_connector)6169 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
6170 struct intel_connector *intel_connector)
6171 {
6172 struct drm_connector *connector = &intel_connector->base;
6173 struct intel_dp *intel_dp = &intel_dig_port->dp;
6174 struct intel_encoder *intel_encoder = &intel_dig_port->base;
6175 struct drm_device *dev = intel_encoder->base.dev;
6176 struct drm_i915_private *dev_priv = to_i915(dev);
6177 enum port port = intel_encoder->port;
6178 int type;
6179
6180 /* Initialize the work for modeset in case of link train failure */
6181 INIT_WORK(&intel_connector->modeset_retry_work,
6182 intel_dp_modeset_retry_work_fn);
6183
6184 if (WARN(intel_dig_port->max_lanes < 1,
6185 "Not enough lanes (%d) for DP on port %c\n",
6186 intel_dig_port->max_lanes, port_name(port)))
6187 return false;
6188
6189 intel_dp_set_source_rates(intel_dp);
6190
6191 intel_dp->reset_link_params = true;
6192 intel_dp->pps_pipe = INVALID_PIPE;
6193 intel_dp->active_pipe = INVALID_PIPE;
6194
6195 /* intel_dp vfuncs */
6196 if (HAS_DDI(dev_priv))
6197 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
6198
6199 /* Preserve the current hw state. */
6200 intel_dp->DP = I915_READ(intel_dp->output_reg);
6201 intel_dp->attached_connector = intel_connector;
6202
6203 if (intel_dp_is_port_edp(dev_priv, port))
6204 type = DRM_MODE_CONNECTOR_eDP;
6205 else
6206 type = DRM_MODE_CONNECTOR_DisplayPort;
6207
6208 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6209 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6210
6211 /*
6212 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6213 * for DP the encoder type can be set by the caller to
6214 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6215 */
6216 if (type == DRM_MODE_CONNECTOR_eDP)
6217 intel_encoder->type = INTEL_OUTPUT_EDP;
6218
6219 /* eDP only on port B and/or C on vlv/chv */
6220 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6221 intel_dp_is_edp(intel_dp) &&
6222 port != PORT_B && port != PORT_C))
6223 return false;
6224
6225 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6226 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6227 port_name(port));
6228
6229 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6230 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6231
6232 if (!HAS_GMCH_DISPLAY(dev_priv))
6233 connector->interlace_allowed = true;
6234 connector->doublescan_allowed = 0;
6235
6236 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6237
6238 intel_dp_aux_init(intel_dp);
6239
6240 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6241 edp_panel_vdd_work);
6242
6243 intel_connector_attach_encoder(intel_connector, intel_encoder);
6244
6245 if (HAS_DDI(dev_priv))
6246 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6247 else
6248 intel_connector->get_hw_state = intel_connector_get_hw_state;
6249
6250 /* init MST on ports that can support it */
6251 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6252 (port == PORT_B || port == PORT_C ||
6253 port == PORT_D || port == PORT_F))
6254 intel_dp_mst_encoder_init(intel_dig_port,
6255 intel_connector->base.base.id);
6256
6257 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6258 intel_dp_aux_fini(intel_dp);
6259 intel_dp_mst_encoder_cleanup(intel_dig_port);
6260 goto fail;
6261 }
6262
6263 intel_dp_add_properties(intel_dp, connector);
6264
6265 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6266 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
6267 if (ret)
6268 DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
6269 }
6270
6271 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6272 * 0xd. Failure to do so will result in spurious interrupts being
6273 * generated on the port when a cable is not attached.
6274 */
6275 if (IS_G45(dev_priv)) {
6276 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6277 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6278 }
6279
6280 return true;
6281
6282 fail:
6283 drm_connector_cleanup(connector);
6284
6285 return false;
6286 }
6287
intel_dp_init(struct drm_i915_private * dev_priv,i915_reg_t output_reg,enum port port)6288 bool intel_dp_init(struct drm_i915_private *dev_priv,
6289 i915_reg_t output_reg,
6290 enum port port)
6291 {
6292 struct intel_digital_port *intel_dig_port;
6293 struct intel_encoder *intel_encoder;
6294 struct drm_encoder *encoder;
6295 struct intel_connector *intel_connector;
6296
6297 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6298 if (!intel_dig_port)
6299 return false;
6300
6301 intel_connector = intel_connector_alloc();
6302 if (!intel_connector)
6303 goto err_connector_alloc;
6304
6305 intel_encoder = &intel_dig_port->base;
6306 encoder = &intel_encoder->base;
6307
6308 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
6309 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
6310 "DP %c", port_name(port)))
6311 goto err_encoder_init;
6312
6313 intel_encoder->hotplug = intel_dp_hotplug;
6314 intel_encoder->compute_config = intel_dp_compute_config;
6315 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6316 intel_encoder->get_config = intel_dp_get_config;
6317 intel_encoder->suspend = intel_dp_encoder_suspend;
6318 if (IS_CHERRYVIEW(dev_priv)) {
6319 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6320 intel_encoder->pre_enable = chv_pre_enable_dp;
6321 intel_encoder->enable = vlv_enable_dp;
6322 intel_encoder->disable = vlv_disable_dp;
6323 intel_encoder->post_disable = chv_post_disable_dp;
6324 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6325 } else if (IS_VALLEYVIEW(dev_priv)) {
6326 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6327 intel_encoder->pre_enable = vlv_pre_enable_dp;
6328 intel_encoder->enable = vlv_enable_dp;
6329 intel_encoder->disable = vlv_disable_dp;
6330 intel_encoder->post_disable = vlv_post_disable_dp;
6331 } else {
6332 intel_encoder->pre_enable = g4x_pre_enable_dp;
6333 intel_encoder->enable = g4x_enable_dp;
6334 intel_encoder->disable = g4x_disable_dp;
6335 intel_encoder->post_disable = g4x_post_disable_dp;
6336 }
6337
6338 intel_dig_port->dp.output_reg = output_reg;
6339 intel_dig_port->max_lanes = 4;
6340
6341 intel_encoder->type = INTEL_OUTPUT_DP;
6342 intel_encoder->power_domain = intel_port_to_power_domain(port);
6343 if (IS_CHERRYVIEW(dev_priv)) {
6344 if (port == PORT_D)
6345 intel_encoder->crtc_mask = 1 << 2;
6346 else
6347 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6348 } else {
6349 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6350 }
6351 intel_encoder->cloneable = 0;
6352 intel_encoder->port = port;
6353
6354 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6355
6356 if (port != PORT_A)
6357 intel_infoframe_init(intel_dig_port);
6358
6359 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6360 goto err_init_connector;
6361
6362 return true;
6363
6364 err_init_connector:
6365 drm_encoder_cleanup(encoder);
6366 err_encoder_init:
6367 kfree(intel_connector);
6368 err_connector_alloc:
6369 kfree(intel_dig_port);
6370 return false;
6371 }
6372
intel_dp_mst_suspend(struct drm_i915_private * dev_priv)6373 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
6374 {
6375 struct intel_encoder *encoder;
6376
6377 for_each_intel_encoder(&dev_priv->drm, encoder) {
6378 struct intel_dp *intel_dp;
6379
6380 if (encoder->type != INTEL_OUTPUT_DDI)
6381 continue;
6382
6383 intel_dp = enc_to_intel_dp(&encoder->base);
6384
6385 if (!intel_dp->can_mst)
6386 continue;
6387
6388 if (intel_dp->is_mst)
6389 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
6390 }
6391 }
6392
intel_dp_mst_resume(struct drm_i915_private * dev_priv)6393 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
6394 {
6395 struct intel_encoder *encoder;
6396
6397 for_each_intel_encoder(&dev_priv->drm, encoder) {
6398 struct intel_dp *intel_dp;
6399 int ret;
6400
6401 if (encoder->type != INTEL_OUTPUT_DDI)
6402 continue;
6403
6404 intel_dp = enc_to_intel_dp(&encoder->base);
6405
6406 if (!intel_dp->can_mst)
6407 continue;
6408
6409 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
6410 if (ret)
6411 intel_dp_check_mst_status(intel_dp);
6412 }
6413 }
6414