1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34 
35 #include <asm/byteorder.h>
36 
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44 
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68 
69 #define DP_DPRX_ESI_LEN 14
70 
71 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
72 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
73 #define DP_DSC_MIN_SUPPORTED_BPC		8
74 #define DP_DSC_MAX_SUPPORTED_BPC		10
75 
76 /* DP DSC throughput values used for slice count calculations KPixels/s */
77 #define DP_DSC_PEAK_PIXEL_RATE			2720000
78 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
79 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
80 
81 /* DP DSC FEC Overhead factor = 1/(0.972261) */
82 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
83 
84 /* Compliance test status bits  */
85 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
86 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
87 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
88 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
89 
90 struct dp_link_dpll {
91 	int clock;
92 	struct dpll dpll;
93 };
94 
95 static const struct dp_link_dpll g4x_dpll[] = {
96 	{ 162000,
97 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
98 	{ 270000,
99 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
100 };
101 
102 static const struct dp_link_dpll pch_dpll[] = {
103 	{ 162000,
104 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
105 	{ 270000,
106 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
107 };
108 
109 static const struct dp_link_dpll vlv_dpll[] = {
110 	{ 162000,
111 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
112 	{ 270000,
113 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
114 };
115 
116 /*
117  * CHV supports eDP 1.4 that have  more link rates.
118  * Below only provides the fixed rate but exclude variable rate.
119  */
120 static const struct dp_link_dpll chv_dpll[] = {
121 	/*
122 	 * CHV requires to program fractional division for m2.
123 	 * m2 is stored in fixed point format using formula below
124 	 * (m2_int << 22) | m2_fraction
125 	 */
126 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
127 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
128 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
129 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
130 };
131 
132 /* Constants for DP DSC configurations */
133 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
134 
135 /* With Single pipe configuration, HW is capable of supporting maximum
136  * of 4 slices per line.
137  */
138 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
139 
140 /**
141  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
142  * @intel_dp: DP struct
143  *
144  * If a CPU or PCH DP output is attached to an eDP panel, this function
145  * will return true, and false otherwise.
146  */
intel_dp_is_edp(struct intel_dp * intel_dp)147 bool intel_dp_is_edp(struct intel_dp *intel_dp)
148 {
149 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
150 
151 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
152 }
153 
intel_attached_dp(struct drm_connector * connector)154 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
155 {
156 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
157 }
158 
159 static void intel_dp_link_down(struct intel_encoder *encoder,
160 			       const struct intel_crtc_state *old_crtc_state);
161 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
162 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
163 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
164 					   const struct intel_crtc_state *crtc_state);
165 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
166 				      enum pipe pipe);
167 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
168 
169 /* update sink rates from dpcd */
intel_dp_set_sink_rates(struct intel_dp * intel_dp)170 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
171 {
172 	static const int dp_rates[] = {
173 		162000, 270000, 540000, 810000
174 	};
175 	int i, max_rate;
176 
177 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178 
179 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
180 		if (dp_rates[i] > max_rate)
181 			break;
182 		intel_dp->sink_rates[i] = dp_rates[i];
183 	}
184 
185 	intel_dp->num_sink_rates = i;
186 }
187 
188 /* Get length of rates array potentially limited by max_rate. */
intel_dp_rate_limit_len(const int * rates,int len,int max_rate)189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
190 {
191 	int i;
192 
193 	/* Limit results by potentially reduced max rate */
194 	for (i = 0; i < len; i++) {
195 		if (rates[len - i - 1] <= max_rate)
196 			return len - i;
197 	}
198 
199 	return 0;
200 }
201 
202 /* Get length of common rates array potentially limited by max_rate. */
intel_dp_common_len_rate_limit(const struct intel_dp * intel_dp,int max_rate)203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
204 					  int max_rate)
205 {
206 	return intel_dp_rate_limit_len(intel_dp->common_rates,
207 				       intel_dp->num_common_rates, max_rate);
208 }
209 
210 /* Theoretical max between source and sink */
intel_dp_max_common_rate(struct intel_dp * intel_dp)211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212 {
213 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 }
215 
216 /* Theoretical max between source and sink */
intel_dp_max_common_lane_count(struct intel_dp * intel_dp)217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 {
219 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220 	int source_max = intel_dig_port->max_lanes;
221 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223 
224 	return min3(source_max, sink_max, fia_max);
225 }
226 
intel_dp_max_lane_count(struct intel_dp * intel_dp)227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 {
229 	return intel_dp->max_link_lane_count;
230 }
231 
232 int
intel_dp_link_required(int pixel_clock,int bpp)233 intel_dp_link_required(int pixel_clock, int bpp)
234 {
235 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
236 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 }
238 
239 int
intel_dp_max_data_rate(int max_link_clock,int max_lanes)240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
241 {
242 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
243 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
244 	 * is transmitted every LS_Clk per lane, there is no need to account for
245 	 * the channel encoding that is done in the PHY layer here.
246 	 */
247 
248 	return max_link_clock * max_lanes;
249 }
250 
251 static int
intel_dp_downstream_max_dotclock(struct intel_dp * intel_dp)252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
253 {
254 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
255 	struct intel_encoder *encoder = &intel_dig_port->base;
256 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
257 	int max_dotclk = dev_priv->max_dotclk_freq;
258 	int ds_max_dotclk;
259 
260 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
261 
262 	if (type != DP_DS_PORT_TYPE_VGA)
263 		return max_dotclk;
264 
265 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
266 						    intel_dp->downstream_ports);
267 
268 	if (ds_max_dotclk != 0)
269 		max_dotclk = min(max_dotclk, ds_max_dotclk);
270 
271 	return max_dotclk;
272 }
273 
cnl_max_source_rate(struct intel_dp * intel_dp)274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 {
276 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
277 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
278 	enum port port = dig_port->base.port;
279 
280 	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281 
282 	/* Low voltage SKUs are limited to max of 5.4G */
283 	if (voltage == VOLTAGE_INFO_0_85V)
284 		return 540000;
285 
286 	/* For this SKU 8.1G is supported in all ports */
287 	if (IS_CNL_WITH_PORT_F(dev_priv))
288 		return 810000;
289 
290 	/* For other SKUs, max rate on ports A and D is 5.4G */
291 	if (port == PORT_A || port == PORT_D)
292 		return 540000;
293 
294 	return 810000;
295 }
296 
icl_max_source_rate(struct intel_dp * intel_dp)297 static int icl_max_source_rate(struct intel_dp *intel_dp)
298 {
299 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302 
303 	if (intel_phy_is_combo(dev_priv, phy) &&
304 	    !IS_ELKHARTLAKE(dev_priv) &&
305 	    !intel_dp_is_edp(intel_dp))
306 		return 540000;
307 
308 	return 810000;
309 }
310 
311 static void
intel_dp_set_source_rates(struct intel_dp * intel_dp)312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
313 {
314 	/* The values must be in increasing order */
315 	static const int cnl_rates[] = {
316 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
317 	};
318 	static const int bxt_rates[] = {
319 		162000, 216000, 243000, 270000, 324000, 432000, 540000
320 	};
321 	static const int skl_rates[] = {
322 		162000, 216000, 270000, 324000, 432000, 540000
323 	};
324 	static const int hsw_rates[] = {
325 		162000, 270000, 540000
326 	};
327 	static const int g4x_rates[] = {
328 		162000, 270000
329 	};
330 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
332 	const struct ddi_vbt_port_info *info =
333 		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
334 	const int *source_rates;
335 	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
336 
337 	/* This should only be done once */
338 	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
339 
340 	if (INTEL_GEN(dev_priv) >= 10) {
341 		source_rates = cnl_rates;
342 		size = ARRAY_SIZE(cnl_rates);
343 		if (IS_GEN(dev_priv, 10))
344 			max_rate = cnl_max_source_rate(intel_dp);
345 		else
346 			max_rate = icl_max_source_rate(intel_dp);
347 	} else if (IS_GEN9_LP(dev_priv)) {
348 		source_rates = bxt_rates;
349 		size = ARRAY_SIZE(bxt_rates);
350 	} else if (IS_GEN9_BC(dev_priv)) {
351 		source_rates = skl_rates;
352 		size = ARRAY_SIZE(skl_rates);
353 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
354 		   IS_BROADWELL(dev_priv)) {
355 		source_rates = hsw_rates;
356 		size = ARRAY_SIZE(hsw_rates);
357 	} else {
358 		source_rates = g4x_rates;
359 		size = ARRAY_SIZE(g4x_rates);
360 	}
361 
362 	if (max_rate && vbt_max_rate)
363 		max_rate = min(max_rate, vbt_max_rate);
364 	else if (vbt_max_rate)
365 		max_rate = vbt_max_rate;
366 
367 	if (max_rate)
368 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
369 
370 	intel_dp->source_rates = source_rates;
371 	intel_dp->num_source_rates = size;
372 }
373 
intersect_rates(const int * source_rates,int source_len,const int * sink_rates,int sink_len,int * common_rates)374 static int intersect_rates(const int *source_rates, int source_len,
375 			   const int *sink_rates, int sink_len,
376 			   int *common_rates)
377 {
378 	int i = 0, j = 0, k = 0;
379 
380 	while (i < source_len && j < sink_len) {
381 		if (source_rates[i] == sink_rates[j]) {
382 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
383 				return k;
384 			common_rates[k] = source_rates[i];
385 			++k;
386 			++i;
387 			++j;
388 		} else if (source_rates[i] < sink_rates[j]) {
389 			++i;
390 		} else {
391 			++j;
392 		}
393 	}
394 	return k;
395 }
396 
397 /* return index of rate in rates array, or -1 if not found */
intel_dp_rate_index(const int * rates,int len,int rate)398 static int intel_dp_rate_index(const int *rates, int len, int rate)
399 {
400 	int i;
401 
402 	for (i = 0; i < len; i++)
403 		if (rate == rates[i])
404 			return i;
405 
406 	return -1;
407 }
408 
intel_dp_set_common_rates(struct intel_dp * intel_dp)409 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
410 {
411 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
412 
413 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
414 						     intel_dp->num_source_rates,
415 						     intel_dp->sink_rates,
416 						     intel_dp->num_sink_rates,
417 						     intel_dp->common_rates);
418 
419 	/* Paranoia, there should always be something in common. */
420 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
421 		intel_dp->common_rates[0] = 162000;
422 		intel_dp->num_common_rates = 1;
423 	}
424 }
425 
intel_dp_link_params_valid(struct intel_dp * intel_dp,int link_rate,u8 lane_count)426 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
427 				       u8 lane_count)
428 {
429 	/*
430 	 * FIXME: we need to synchronize the current link parameters with
431 	 * hardware readout. Currently fast link training doesn't work on
432 	 * boot-up.
433 	 */
434 	if (link_rate == 0 ||
435 	    link_rate > intel_dp->max_link_rate)
436 		return false;
437 
438 	if (lane_count == 0 ||
439 	    lane_count > intel_dp_max_lane_count(intel_dp))
440 		return false;
441 
442 	return true;
443 }
444 
intel_dp_can_link_train_fallback_for_edp(struct intel_dp * intel_dp,int link_rate,u8 lane_count)445 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
446 						     int link_rate,
447 						     u8 lane_count)
448 {
449 	const struct drm_display_mode *fixed_mode =
450 		intel_dp->attached_connector->panel.fixed_mode;
451 	int mode_rate, max_rate;
452 
453 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
454 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
455 	if (mode_rate > max_rate)
456 		return false;
457 
458 	return true;
459 }
460 
intel_dp_get_link_train_fallback_values(struct intel_dp * intel_dp,int link_rate,u8 lane_count)461 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
462 					    int link_rate, u8 lane_count)
463 {
464 	int index;
465 
466 	index = intel_dp_rate_index(intel_dp->common_rates,
467 				    intel_dp->num_common_rates,
468 				    link_rate);
469 	if (index > 0) {
470 		if (intel_dp_is_edp(intel_dp) &&
471 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
472 							      intel_dp->common_rates[index - 1],
473 							      lane_count)) {
474 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
475 			return 0;
476 		}
477 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
478 		intel_dp->max_link_lane_count = lane_count;
479 	} else if (lane_count > 1) {
480 		if (intel_dp_is_edp(intel_dp) &&
481 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
482 							      intel_dp_max_common_rate(intel_dp),
483 							      lane_count >> 1)) {
484 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
485 			return 0;
486 		}
487 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
488 		intel_dp->max_link_lane_count = lane_count >> 1;
489 	} else {
490 		DRM_ERROR("Link Training Unsuccessful\n");
491 		return -1;
492 	}
493 
494 	return 0;
495 }
496 
intel_dp_mode_to_fec_clock(u32 mode_clock)497 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
498 {
499 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
500 		       DP_DSC_FEC_OVERHEAD_FACTOR);
501 }
502 
intel_dp_dsc_get_output_bpp(u32 link_clock,u32 lane_count,u32 mode_clock,u32 mode_hdisplay)503 static u16 intel_dp_dsc_get_output_bpp(u32 link_clock, u32 lane_count,
504 				       u32 mode_clock, u32 mode_hdisplay)
505 {
506 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
507 	int i;
508 
509 	/*
510 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
511 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
512 	 * for SST -> TimeSlotsPerMTP is 1,
513 	 * for MST -> TimeSlotsPerMTP has to be calculated
514 	 */
515 	bits_per_pixel = (link_clock * lane_count * 8) /
516 			 intel_dp_mode_to_fec_clock(mode_clock);
517 	DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
518 
519 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
520 	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER / mode_hdisplay;
521 	DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
522 
523 	/*
524 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
525 	 * check, output bpp from small joiner RAM check)
526 	 */
527 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
528 
529 	/* Error out if the max bpp is less than smallest allowed valid bpp */
530 	if (bits_per_pixel < valid_dsc_bpp[0]) {
531 		DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
532 			      bits_per_pixel, valid_dsc_bpp[0]);
533 		return 0;
534 	}
535 
536 	/* Find the nearest match in the array of known BPPs from VESA */
537 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
538 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
539 			break;
540 	}
541 	bits_per_pixel = valid_dsc_bpp[i];
542 
543 	/*
544 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
545 	 * fractional part is 0
546 	 */
547 	return bits_per_pixel << 4;
548 }
549 
intel_dp_dsc_get_slice_count(struct intel_dp * intel_dp,int mode_clock,int mode_hdisplay)550 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
551 				       int mode_clock, int mode_hdisplay)
552 {
553 	u8 min_slice_count, i;
554 	int max_slice_width;
555 
556 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
557 		min_slice_count = DIV_ROUND_UP(mode_clock,
558 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
559 	else
560 		min_slice_count = DIV_ROUND_UP(mode_clock,
561 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
562 
563 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
564 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
565 		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
566 			      max_slice_width);
567 		return 0;
568 	}
569 	/* Also take into account max slice width */
570 	min_slice_count = min_t(u8, min_slice_count,
571 				DIV_ROUND_UP(mode_hdisplay,
572 					     max_slice_width));
573 
574 	/* Find the closest match to the valid slice count values */
575 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
576 		if (valid_dsc_slicecount[i] >
577 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
578 						    false))
579 			break;
580 		if (min_slice_count  <= valid_dsc_slicecount[i])
581 			return valid_dsc_slicecount[i];
582 	}
583 
584 	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
585 	return 0;
586 }
587 
588 static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)589 intel_dp_mode_valid(struct drm_connector *connector,
590 		    struct drm_display_mode *mode)
591 {
592 	struct intel_dp *intel_dp = intel_attached_dp(connector);
593 	struct intel_connector *intel_connector = to_intel_connector(connector);
594 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
595 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
596 	int target_clock = mode->clock;
597 	int max_rate, mode_rate, max_lanes, max_link_clock;
598 	int max_dotclk;
599 	u16 dsc_max_output_bpp = 0;
600 	u8 dsc_slice_count = 0;
601 
602 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
603 		return MODE_NO_DBLESCAN;
604 
605 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
606 
607 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
608 		if (mode->hdisplay > fixed_mode->hdisplay)
609 			return MODE_PANEL;
610 
611 		if (mode->vdisplay > fixed_mode->vdisplay)
612 			return MODE_PANEL;
613 
614 		target_clock = fixed_mode->clock;
615 	}
616 
617 	max_link_clock = intel_dp_max_link_rate(intel_dp);
618 	max_lanes = intel_dp_max_lane_count(intel_dp);
619 
620 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
621 	mode_rate = intel_dp_link_required(target_clock, 18);
622 
623 	/*
624 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
625 	 * integer value since we support only integer values of bpp.
626 	 */
627 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
628 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
629 		if (intel_dp_is_edp(intel_dp)) {
630 			dsc_max_output_bpp =
631 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
632 			dsc_slice_count =
633 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
634 								true);
635 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
636 			dsc_max_output_bpp =
637 				intel_dp_dsc_get_output_bpp(max_link_clock,
638 							    max_lanes,
639 							    target_clock,
640 							    mode->hdisplay) >> 4;
641 			dsc_slice_count =
642 				intel_dp_dsc_get_slice_count(intel_dp,
643 							     target_clock,
644 							     mode->hdisplay);
645 		}
646 	}
647 
648 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
649 	    target_clock > max_dotclk)
650 		return MODE_CLOCK_HIGH;
651 
652 	if (mode->clock < 10000)
653 		return MODE_CLOCK_LOW;
654 
655 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
656 		return MODE_H_ILLEGAL;
657 
658 	return MODE_OK;
659 }
660 
intel_dp_pack_aux(const u8 * src,int src_bytes)661 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
662 {
663 	int i;
664 	u32 v = 0;
665 
666 	if (src_bytes > 4)
667 		src_bytes = 4;
668 	for (i = 0; i < src_bytes; i++)
669 		v |= ((u32)src[i]) << ((3 - i) * 8);
670 	return v;
671 }
672 
intel_dp_unpack_aux(u32 src,u8 * dst,int dst_bytes)673 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
674 {
675 	int i;
676 	if (dst_bytes > 4)
677 		dst_bytes = 4;
678 	for (i = 0; i < dst_bytes; i++)
679 		dst[i] = src >> ((3-i) * 8);
680 }
681 
682 static void
683 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
684 static void
685 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
686 					      bool force_disable_vdd);
687 static void
688 intel_dp_pps_init(struct intel_dp *intel_dp);
689 
690 static intel_wakeref_t
pps_lock(struct intel_dp * intel_dp)691 pps_lock(struct intel_dp *intel_dp)
692 {
693 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
694 	intel_wakeref_t wakeref;
695 
696 	/*
697 	 * See intel_power_sequencer_reset() why we need
698 	 * a power domain reference here.
699 	 */
700 	wakeref = intel_display_power_get(dev_priv,
701 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
702 
703 	mutex_lock(&dev_priv->pps_mutex);
704 
705 	return wakeref;
706 }
707 
708 static intel_wakeref_t
pps_unlock(struct intel_dp * intel_dp,intel_wakeref_t wakeref)709 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
710 {
711 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
712 
713 	mutex_unlock(&dev_priv->pps_mutex);
714 	intel_display_power_put(dev_priv,
715 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
716 				wakeref);
717 	return 0;
718 }
719 
720 #define with_pps_lock(dp, wf) \
721 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
722 
723 static void
vlv_power_sequencer_kick(struct intel_dp * intel_dp)724 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
725 {
726 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
727 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
728 	enum pipe pipe = intel_dp->pps_pipe;
729 	bool pll_enabled, release_cl_override = false;
730 	enum dpio_phy phy = DPIO_PHY(pipe);
731 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
732 	u32 DP;
733 
734 	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
735 		 "skipping pipe %c power sequencer kick due to port %c being active\n",
736 		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
737 		return;
738 
739 	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
740 		      pipe_name(pipe), port_name(intel_dig_port->base.port));
741 
742 	/* Preserve the BIOS-computed detected bit. This is
743 	 * supposed to be read-only.
744 	 */
745 	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
746 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
747 	DP |= DP_PORT_WIDTH(1);
748 	DP |= DP_LINK_TRAIN_PAT_1;
749 
750 	if (IS_CHERRYVIEW(dev_priv))
751 		DP |= DP_PIPE_SEL_CHV(pipe);
752 	else
753 		DP |= DP_PIPE_SEL(pipe);
754 
755 	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
756 
757 	/*
758 	 * The DPLL for the pipe must be enabled for this to work.
759 	 * So enable temporarily it if it's not already enabled.
760 	 */
761 	if (!pll_enabled) {
762 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
763 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
764 
765 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
766 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
767 			DRM_ERROR("Failed to force on pll for pipe %c!\n",
768 				  pipe_name(pipe));
769 			return;
770 		}
771 	}
772 
773 	/*
774 	 * Similar magic as in intel_dp_enable_port().
775 	 * We _must_ do this port enable + disable trick
776 	 * to make this power sequencer lock onto the port.
777 	 * Otherwise even VDD force bit won't work.
778 	 */
779 	I915_WRITE(intel_dp->output_reg, DP);
780 	POSTING_READ(intel_dp->output_reg);
781 
782 	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
783 	POSTING_READ(intel_dp->output_reg);
784 
785 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
786 	POSTING_READ(intel_dp->output_reg);
787 
788 	if (!pll_enabled) {
789 		vlv_force_pll_off(dev_priv, pipe);
790 
791 		if (release_cl_override)
792 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
793 	}
794 }
795 
vlv_find_free_pps(struct drm_i915_private * dev_priv)796 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
797 {
798 	struct intel_encoder *encoder;
799 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
800 
801 	/*
802 	 * We don't have power sequencer currently.
803 	 * Pick one that's not used by other ports.
804 	 */
805 	for_each_intel_dp(&dev_priv->drm, encoder) {
806 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
807 
808 		if (encoder->type == INTEL_OUTPUT_EDP) {
809 			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
810 				intel_dp->active_pipe != intel_dp->pps_pipe);
811 
812 			if (intel_dp->pps_pipe != INVALID_PIPE)
813 				pipes &= ~(1 << intel_dp->pps_pipe);
814 		} else {
815 			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
816 
817 			if (intel_dp->active_pipe != INVALID_PIPE)
818 				pipes &= ~(1 << intel_dp->active_pipe);
819 		}
820 	}
821 
822 	if (pipes == 0)
823 		return INVALID_PIPE;
824 
825 	return ffs(pipes) - 1;
826 }
827 
828 static enum pipe
vlv_power_sequencer_pipe(struct intel_dp * intel_dp)829 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
830 {
831 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
832 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
833 	enum pipe pipe;
834 
835 	lockdep_assert_held(&dev_priv->pps_mutex);
836 
837 	/* We should never land here with regular DP ports */
838 	WARN_ON(!intel_dp_is_edp(intel_dp));
839 
840 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
841 		intel_dp->active_pipe != intel_dp->pps_pipe);
842 
843 	if (intel_dp->pps_pipe != INVALID_PIPE)
844 		return intel_dp->pps_pipe;
845 
846 	pipe = vlv_find_free_pps(dev_priv);
847 
848 	/*
849 	 * Didn't find one. This should not happen since there
850 	 * are two power sequencers and up to two eDP ports.
851 	 */
852 	if (WARN_ON(pipe == INVALID_PIPE))
853 		pipe = PIPE_A;
854 
855 	vlv_steal_power_sequencer(dev_priv, pipe);
856 	intel_dp->pps_pipe = pipe;
857 
858 	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
859 		      pipe_name(intel_dp->pps_pipe),
860 		      port_name(intel_dig_port->base.port));
861 
862 	/* init power sequencer on this pipe and port */
863 	intel_dp_init_panel_power_sequencer(intel_dp);
864 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
865 
866 	/*
867 	 * Even vdd force doesn't work until we've made
868 	 * the power sequencer lock in on the port.
869 	 */
870 	vlv_power_sequencer_kick(intel_dp);
871 
872 	return intel_dp->pps_pipe;
873 }
874 
875 static int
bxt_power_sequencer_idx(struct intel_dp * intel_dp)876 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
877 {
878 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
879 	int backlight_controller = dev_priv->vbt.backlight.controller;
880 
881 	lockdep_assert_held(&dev_priv->pps_mutex);
882 
883 	/* We should never land here with regular DP ports */
884 	WARN_ON(!intel_dp_is_edp(intel_dp));
885 
886 	if (!intel_dp->pps_reset)
887 		return backlight_controller;
888 
889 	intel_dp->pps_reset = false;
890 
891 	/*
892 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
893 	 * has been setup during connector init.
894 	 */
895 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
896 
897 	return backlight_controller;
898 }
899 
900 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
901 			       enum pipe pipe);
902 
vlv_pipe_has_pp_on(struct drm_i915_private * dev_priv,enum pipe pipe)903 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
904 			       enum pipe pipe)
905 {
906 	return I915_READ(PP_STATUS(pipe)) & PP_ON;
907 }
908 
vlv_pipe_has_vdd_on(struct drm_i915_private * dev_priv,enum pipe pipe)909 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
910 				enum pipe pipe)
911 {
912 	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
913 }
914 
vlv_pipe_any(struct drm_i915_private * dev_priv,enum pipe pipe)915 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
916 			 enum pipe pipe)
917 {
918 	return true;
919 }
920 
921 static enum pipe
vlv_initial_pps_pipe(struct drm_i915_private * dev_priv,enum port port,vlv_pipe_check pipe_check)922 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
923 		     enum port port,
924 		     vlv_pipe_check pipe_check)
925 {
926 	enum pipe pipe;
927 
928 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
929 		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
930 			PANEL_PORT_SELECT_MASK;
931 
932 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
933 			continue;
934 
935 		if (!pipe_check(dev_priv, pipe))
936 			continue;
937 
938 		return pipe;
939 	}
940 
941 	return INVALID_PIPE;
942 }
943 
944 static void
vlv_initial_power_sequencer_setup(struct intel_dp * intel_dp)945 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
946 {
947 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
948 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
949 	enum port port = intel_dig_port->base.port;
950 
951 	lockdep_assert_held(&dev_priv->pps_mutex);
952 
953 	/* try to find a pipe with this port selected */
954 	/* first pick one where the panel is on */
955 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
956 						  vlv_pipe_has_pp_on);
957 	/* didn't find one? pick one where vdd is on */
958 	if (intel_dp->pps_pipe == INVALID_PIPE)
959 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
960 							  vlv_pipe_has_vdd_on);
961 	/* didn't find one? pick one with just the correct port */
962 	if (intel_dp->pps_pipe == INVALID_PIPE)
963 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
964 							  vlv_pipe_any);
965 
966 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
967 	if (intel_dp->pps_pipe == INVALID_PIPE) {
968 		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
969 			      port_name(port));
970 		return;
971 	}
972 
973 	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
974 		      port_name(port), pipe_name(intel_dp->pps_pipe));
975 
976 	intel_dp_init_panel_power_sequencer(intel_dp);
977 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
978 }
979 
intel_power_sequencer_reset(struct drm_i915_private * dev_priv)980 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
981 {
982 	struct intel_encoder *encoder;
983 
984 	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
985 		    !IS_GEN9_LP(dev_priv)))
986 		return;
987 
988 	/*
989 	 * We can't grab pps_mutex here due to deadlock with power_domain
990 	 * mutex when power_domain functions are called while holding pps_mutex.
991 	 * That also means that in order to use pps_pipe the code needs to
992 	 * hold both a power domain reference and pps_mutex, and the power domain
993 	 * reference get/put must be done while _not_ holding pps_mutex.
994 	 * pps_{lock,unlock}() do these steps in the correct order, so one
995 	 * should use them always.
996 	 */
997 
998 	for_each_intel_dp(&dev_priv->drm, encoder) {
999 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1000 
1001 		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1002 
1003 		if (encoder->type != INTEL_OUTPUT_EDP)
1004 			continue;
1005 
1006 		if (IS_GEN9_LP(dev_priv))
1007 			intel_dp->pps_reset = true;
1008 		else
1009 			intel_dp->pps_pipe = INVALID_PIPE;
1010 	}
1011 }
1012 
1013 struct pps_registers {
1014 	i915_reg_t pp_ctrl;
1015 	i915_reg_t pp_stat;
1016 	i915_reg_t pp_on;
1017 	i915_reg_t pp_off;
1018 	i915_reg_t pp_div;
1019 };
1020 
intel_pps_get_registers(struct intel_dp * intel_dp,struct pps_registers * regs)1021 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1022 				    struct pps_registers *regs)
1023 {
1024 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1025 	int pps_idx = 0;
1026 
1027 	memset(regs, 0, sizeof(*regs));
1028 
1029 	if (IS_GEN9_LP(dev_priv))
1030 		pps_idx = bxt_power_sequencer_idx(intel_dp);
1031 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1032 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1033 
1034 	regs->pp_ctrl = PP_CONTROL(pps_idx);
1035 	regs->pp_stat = PP_STATUS(pps_idx);
1036 	regs->pp_on = PP_ON_DELAYS(pps_idx);
1037 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1038 
1039 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1040 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1041 		regs->pp_div = INVALID_MMIO_REG;
1042 	else
1043 		regs->pp_div = PP_DIVISOR(pps_idx);
1044 }
1045 
1046 static i915_reg_t
_pp_ctrl_reg(struct intel_dp * intel_dp)1047 _pp_ctrl_reg(struct intel_dp *intel_dp)
1048 {
1049 	struct pps_registers regs;
1050 
1051 	intel_pps_get_registers(intel_dp, &regs);
1052 
1053 	return regs.pp_ctrl;
1054 }
1055 
1056 static i915_reg_t
_pp_stat_reg(struct intel_dp * intel_dp)1057 _pp_stat_reg(struct intel_dp *intel_dp)
1058 {
1059 	struct pps_registers regs;
1060 
1061 	intel_pps_get_registers(intel_dp, &regs);
1062 
1063 	return regs.pp_stat;
1064 }
1065 
1066 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1067    This function only applicable when panel PM state is not to be tracked */
edp_notify_handler(struct notifier_block * this,unsigned long code,void * unused)1068 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1069 			      void *unused)
1070 {
1071 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1072 						 edp_notifier);
1073 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1074 	intel_wakeref_t wakeref;
1075 
1076 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1077 		return 0;
1078 
1079 	with_pps_lock(intel_dp, wakeref) {
1080 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1081 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1082 			i915_reg_t pp_ctrl_reg, pp_div_reg;
1083 			u32 pp_div;
1084 
1085 			pp_ctrl_reg = PP_CONTROL(pipe);
1086 			pp_div_reg  = PP_DIVISOR(pipe);
1087 			pp_div = I915_READ(pp_div_reg);
1088 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
1089 
1090 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1091 			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1092 			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1093 			msleep(intel_dp->panel_power_cycle_delay);
1094 		}
1095 	}
1096 
1097 	return 0;
1098 }
1099 
edp_have_panel_power(struct intel_dp * intel_dp)1100 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1101 {
1102 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1103 
1104 	lockdep_assert_held(&dev_priv->pps_mutex);
1105 
1106 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1107 	    intel_dp->pps_pipe == INVALID_PIPE)
1108 		return false;
1109 
1110 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1111 }
1112 
edp_have_panel_vdd(struct intel_dp * intel_dp)1113 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1114 {
1115 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1116 
1117 	lockdep_assert_held(&dev_priv->pps_mutex);
1118 
1119 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1120 	    intel_dp->pps_pipe == INVALID_PIPE)
1121 		return false;
1122 
1123 	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1124 }
1125 
1126 static void
intel_dp_check_edp(struct intel_dp * intel_dp)1127 intel_dp_check_edp(struct intel_dp *intel_dp)
1128 {
1129 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1130 
1131 	if (!intel_dp_is_edp(intel_dp))
1132 		return;
1133 
1134 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1135 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
1136 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1137 			      I915_READ(_pp_stat_reg(intel_dp)),
1138 			      I915_READ(_pp_ctrl_reg(intel_dp)));
1139 	}
1140 }
1141 
1142 static u32
intel_dp_aux_wait_done(struct intel_dp * intel_dp)1143 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1144 {
1145 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1146 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1147 	u32 status;
1148 	bool done;
1149 
1150 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1151 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1152 				  msecs_to_jiffies_timeout(10));
1153 
1154 	/* just trace the final value */
1155 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1156 
1157 	if (!done)
1158 		DRM_ERROR("dp aux hw did not signal timeout!\n");
1159 #undef C
1160 
1161 	return status;
1162 }
1163 
g4x_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1164 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1165 {
1166 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1167 
1168 	if (index)
1169 		return 0;
1170 
1171 	/*
1172 	 * The clock divider is based off the hrawclk, and would like to run at
1173 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1174 	 */
1175 	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1176 }
1177 
ilk_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1178 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1179 {
1180 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1181 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1182 
1183 	if (index)
1184 		return 0;
1185 
1186 	/*
1187 	 * The clock divider is based off the cdclk or PCH rawclk, and would
1188 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1189 	 * divide by 2000 and use that
1190 	 */
1191 	if (dig_port->aux_ch == AUX_CH_A)
1192 		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1193 	else
1194 		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1195 }
1196 
hsw_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1197 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1198 {
1199 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1200 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1201 
1202 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1203 		/* Workaround for non-ULT HSW */
1204 		switch (index) {
1205 		case 0: return 63;
1206 		case 1: return 72;
1207 		default: return 0;
1208 		}
1209 	}
1210 
1211 	return ilk_get_aux_clock_divider(intel_dp, index);
1212 }
1213 
skl_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1214 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1215 {
1216 	/*
1217 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
1218 	 * derive the clock from CDCLK automatically). We still implement the
1219 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
1220 	 */
1221 	return index ? 0 : 1;
1222 }
1223 
g4x_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,u32 aux_clock_divider)1224 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1225 				int send_bytes,
1226 				u32 aux_clock_divider)
1227 {
1228 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1229 	struct drm_i915_private *dev_priv =
1230 			to_i915(intel_dig_port->base.base.dev);
1231 	u32 precharge, timeout;
1232 
1233 	if (IS_GEN(dev_priv, 6))
1234 		precharge = 3;
1235 	else
1236 		precharge = 5;
1237 
1238 	if (IS_BROADWELL(dev_priv))
1239 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1240 	else
1241 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1242 
1243 	return DP_AUX_CH_CTL_SEND_BUSY |
1244 	       DP_AUX_CH_CTL_DONE |
1245 	       DP_AUX_CH_CTL_INTERRUPT |
1246 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1247 	       timeout |
1248 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1249 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1250 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1251 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1252 }
1253 
skl_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,u32 unused)1254 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1255 				int send_bytes,
1256 				u32 unused)
1257 {
1258 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1259 	struct drm_i915_private *i915 =
1260 			to_i915(intel_dig_port->base.base.dev);
1261 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1262 	u32 ret;
1263 
1264 	ret = DP_AUX_CH_CTL_SEND_BUSY |
1265 	      DP_AUX_CH_CTL_DONE |
1266 	      DP_AUX_CH_CTL_INTERRUPT |
1267 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
1268 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
1269 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
1270 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1271 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1272 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1273 
1274 	if (intel_phy_is_tc(i915, phy) &&
1275 	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1276 		ret |= DP_AUX_CH_CTL_TBT_IO;
1277 
1278 	return ret;
1279 }
1280 
1281 static int
intel_dp_aux_xfer(struct intel_dp * intel_dp,const u8 * send,int send_bytes,u8 * recv,int recv_size,u32 aux_send_ctl_flags)1282 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1283 		  const u8 *send, int send_bytes,
1284 		  u8 *recv, int recv_size,
1285 		  u32 aux_send_ctl_flags)
1286 {
1287 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1288 	struct drm_i915_private *i915 =
1289 			to_i915(intel_dig_port->base.base.dev);
1290 	struct intel_uncore *uncore = &i915->uncore;
1291 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1292 	bool is_tc_port = intel_phy_is_tc(i915, phy);
1293 	i915_reg_t ch_ctl, ch_data[5];
1294 	u32 aux_clock_divider;
1295 	enum intel_display_power_domain aux_domain =
1296 		intel_aux_power_domain(intel_dig_port);
1297 	intel_wakeref_t aux_wakeref;
1298 	intel_wakeref_t pps_wakeref;
1299 	int i, ret, recv_bytes;
1300 	int try, clock = 0;
1301 	u32 status;
1302 	bool vdd;
1303 
1304 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1305 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1306 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1307 
1308 	if (is_tc_port)
1309 		intel_tc_port_lock(intel_dig_port);
1310 
1311 	aux_wakeref = intel_display_power_get(i915, aux_domain);
1312 	pps_wakeref = pps_lock(intel_dp);
1313 
1314 	/*
1315 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1316 	 * In such cases we want to leave VDD enabled and it's up to upper layers
1317 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1318 	 * ourselves.
1319 	 */
1320 	vdd = edp_panel_vdd_on(intel_dp);
1321 
1322 	/* dp aux is extremely sensitive to irq latency, hence request the
1323 	 * lowest possible wakeup latency and so prevent the cpu from going into
1324 	 * deep sleep states.
1325 	 */
1326 	pm_qos_update_request(&i915->pm_qos, 0);
1327 
1328 	intel_dp_check_edp(intel_dp);
1329 
1330 	/* Try to wait for any previous AUX channel activity */
1331 	for (try = 0; try < 3; try++) {
1332 		status = intel_uncore_read_notrace(uncore, ch_ctl);
1333 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1334 			break;
1335 		msleep(1);
1336 	}
1337 	/* just trace the final value */
1338 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1339 
1340 	if (try == 3) {
1341 		static u32 last_status = -1;
1342 		const u32 status = intel_uncore_read(uncore, ch_ctl);
1343 
1344 		if (status != last_status) {
1345 			WARN(1, "dp_aux_ch not started status 0x%08x\n",
1346 			     status);
1347 			last_status = status;
1348 		}
1349 
1350 		ret = -EBUSY;
1351 		goto out;
1352 	}
1353 
1354 	/* Only 5 data registers! */
1355 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1356 		ret = -E2BIG;
1357 		goto out;
1358 	}
1359 
1360 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1361 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1362 							  send_bytes,
1363 							  aux_clock_divider);
1364 
1365 		send_ctl |= aux_send_ctl_flags;
1366 
1367 		/* Must try at least 3 times according to DP spec */
1368 		for (try = 0; try < 5; try++) {
1369 			/* Load the send data into the aux channel data registers */
1370 			for (i = 0; i < send_bytes; i += 4)
1371 				intel_uncore_write(uncore,
1372 						   ch_data[i >> 2],
1373 						   intel_dp_pack_aux(send + i,
1374 								     send_bytes - i));
1375 
1376 			/* Send the command and wait for it to complete */
1377 			intel_uncore_write(uncore, ch_ctl, send_ctl);
1378 
1379 			status = intel_dp_aux_wait_done(intel_dp);
1380 
1381 			/* Clear done status and any errors */
1382 			intel_uncore_write(uncore,
1383 					   ch_ctl,
1384 					   status |
1385 					   DP_AUX_CH_CTL_DONE |
1386 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
1387 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1388 
1389 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1390 			 *   400us delay required for errors and timeouts
1391 			 *   Timeout errors from the HW already meet this
1392 			 *   requirement so skip to next iteration
1393 			 */
1394 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1395 				continue;
1396 
1397 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1398 				usleep_range(400, 500);
1399 				continue;
1400 			}
1401 			if (status & DP_AUX_CH_CTL_DONE)
1402 				goto done;
1403 		}
1404 	}
1405 
1406 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1407 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1408 		ret = -EBUSY;
1409 		goto out;
1410 	}
1411 
1412 done:
1413 	/* Check for timeout or receive error.
1414 	 * Timeouts occur when the sink is not connected
1415 	 */
1416 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1417 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1418 		ret = -EIO;
1419 		goto out;
1420 	}
1421 
1422 	/* Timeouts occur when the device isn't connected, so they're
1423 	 * "normal" -- don't fill the kernel log with these */
1424 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1425 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1426 		ret = -ETIMEDOUT;
1427 		goto out;
1428 	}
1429 
1430 	/* Unload any bytes sent back from the other side */
1431 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1432 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1433 
1434 	/*
1435 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1436 	 * We have no idea of what happened so we return -EBUSY so
1437 	 * drm layer takes care for the necessary retries.
1438 	 */
1439 	if (recv_bytes == 0 || recv_bytes > 20) {
1440 		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1441 			      recv_bytes);
1442 		ret = -EBUSY;
1443 		goto out;
1444 	}
1445 
1446 	if (recv_bytes > recv_size)
1447 		recv_bytes = recv_size;
1448 
1449 	for (i = 0; i < recv_bytes; i += 4)
1450 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1451 				    recv + i, recv_bytes - i);
1452 
1453 	ret = recv_bytes;
1454 out:
1455 	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1456 
1457 	if (vdd)
1458 		edp_panel_vdd_off(intel_dp, false);
1459 
1460 	pps_unlock(intel_dp, pps_wakeref);
1461 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1462 
1463 	if (is_tc_port)
1464 		intel_tc_port_unlock(intel_dig_port);
1465 
1466 	return ret;
1467 }
1468 
1469 #define BARE_ADDRESS_SIZE	3
1470 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1471 
1472 static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],const struct drm_dp_aux_msg * msg)1473 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1474 		    const struct drm_dp_aux_msg *msg)
1475 {
1476 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1477 	txbuf[1] = (msg->address >> 8) & 0xff;
1478 	txbuf[2] = msg->address & 0xff;
1479 	txbuf[3] = msg->size - 1;
1480 }
1481 
1482 static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1483 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1484 {
1485 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1486 	u8 txbuf[20], rxbuf[20];
1487 	size_t txsize, rxsize;
1488 	int ret;
1489 
1490 	intel_dp_aux_header(txbuf, msg);
1491 
1492 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1493 	case DP_AUX_NATIVE_WRITE:
1494 	case DP_AUX_I2C_WRITE:
1495 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1496 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1497 		rxsize = 2; /* 0 or 1 data bytes */
1498 
1499 		if (WARN_ON(txsize > 20))
1500 			return -E2BIG;
1501 
1502 		WARN_ON(!msg->buffer != !msg->size);
1503 
1504 		if (msg->buffer)
1505 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1506 
1507 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1508 					rxbuf, rxsize, 0);
1509 		if (ret > 0) {
1510 			msg->reply = rxbuf[0] >> 4;
1511 
1512 			if (ret > 1) {
1513 				/* Number of bytes written in a short write. */
1514 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1515 			} else {
1516 				/* Return payload size. */
1517 				ret = msg->size;
1518 			}
1519 		}
1520 		break;
1521 
1522 	case DP_AUX_NATIVE_READ:
1523 	case DP_AUX_I2C_READ:
1524 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1525 		rxsize = msg->size + 1;
1526 
1527 		if (WARN_ON(rxsize > 20))
1528 			return -E2BIG;
1529 
1530 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1531 					rxbuf, rxsize, 0);
1532 		if (ret > 0) {
1533 			msg->reply = rxbuf[0] >> 4;
1534 			/*
1535 			 * Assume happy day, and copy the data. The caller is
1536 			 * expected to check msg->reply before touching it.
1537 			 *
1538 			 * Return payload size.
1539 			 */
1540 			ret--;
1541 			memcpy(msg->buffer, rxbuf + 1, ret);
1542 		}
1543 		break;
1544 
1545 	default:
1546 		ret = -EINVAL;
1547 		break;
1548 	}
1549 
1550 	return ret;
1551 }
1552 
1553 
g4x_aux_ctl_reg(struct intel_dp * intel_dp)1554 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1555 {
1556 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1557 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1558 	enum aux_ch aux_ch = dig_port->aux_ch;
1559 
1560 	switch (aux_ch) {
1561 	case AUX_CH_B:
1562 	case AUX_CH_C:
1563 	case AUX_CH_D:
1564 		return DP_AUX_CH_CTL(aux_ch);
1565 	default:
1566 		MISSING_CASE(aux_ch);
1567 		return DP_AUX_CH_CTL(AUX_CH_B);
1568 	}
1569 }
1570 
g4x_aux_data_reg(struct intel_dp * intel_dp,int index)1571 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1572 {
1573 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1574 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1575 	enum aux_ch aux_ch = dig_port->aux_ch;
1576 
1577 	switch (aux_ch) {
1578 	case AUX_CH_B:
1579 	case AUX_CH_C:
1580 	case AUX_CH_D:
1581 		return DP_AUX_CH_DATA(aux_ch, index);
1582 	default:
1583 		MISSING_CASE(aux_ch);
1584 		return DP_AUX_CH_DATA(AUX_CH_B, index);
1585 	}
1586 }
1587 
ilk_aux_ctl_reg(struct intel_dp * intel_dp)1588 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1589 {
1590 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1591 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1592 	enum aux_ch aux_ch = dig_port->aux_ch;
1593 
1594 	switch (aux_ch) {
1595 	case AUX_CH_A:
1596 		return DP_AUX_CH_CTL(aux_ch);
1597 	case AUX_CH_B:
1598 	case AUX_CH_C:
1599 	case AUX_CH_D:
1600 		return PCH_DP_AUX_CH_CTL(aux_ch);
1601 	default:
1602 		MISSING_CASE(aux_ch);
1603 		return DP_AUX_CH_CTL(AUX_CH_A);
1604 	}
1605 }
1606 
ilk_aux_data_reg(struct intel_dp * intel_dp,int index)1607 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1608 {
1609 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1610 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1611 	enum aux_ch aux_ch = dig_port->aux_ch;
1612 
1613 	switch (aux_ch) {
1614 	case AUX_CH_A:
1615 		return DP_AUX_CH_DATA(aux_ch, index);
1616 	case AUX_CH_B:
1617 	case AUX_CH_C:
1618 	case AUX_CH_D:
1619 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1620 	default:
1621 		MISSING_CASE(aux_ch);
1622 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1623 	}
1624 }
1625 
skl_aux_ctl_reg(struct intel_dp * intel_dp)1626 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1627 {
1628 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1630 	enum aux_ch aux_ch = dig_port->aux_ch;
1631 
1632 	switch (aux_ch) {
1633 	case AUX_CH_A:
1634 	case AUX_CH_B:
1635 	case AUX_CH_C:
1636 	case AUX_CH_D:
1637 	case AUX_CH_E:
1638 	case AUX_CH_F:
1639 		return DP_AUX_CH_CTL(aux_ch);
1640 	default:
1641 		MISSING_CASE(aux_ch);
1642 		return DP_AUX_CH_CTL(AUX_CH_A);
1643 	}
1644 }
1645 
skl_aux_data_reg(struct intel_dp * intel_dp,int index)1646 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1647 {
1648 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1649 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1650 	enum aux_ch aux_ch = dig_port->aux_ch;
1651 
1652 	switch (aux_ch) {
1653 	case AUX_CH_A:
1654 	case AUX_CH_B:
1655 	case AUX_CH_C:
1656 	case AUX_CH_D:
1657 	case AUX_CH_E:
1658 	case AUX_CH_F:
1659 		return DP_AUX_CH_DATA(aux_ch, index);
1660 	default:
1661 		MISSING_CASE(aux_ch);
1662 		return DP_AUX_CH_DATA(AUX_CH_A, index);
1663 	}
1664 }
1665 
1666 static void
intel_dp_aux_fini(struct intel_dp * intel_dp)1667 intel_dp_aux_fini(struct intel_dp *intel_dp)
1668 {
1669 	kfree(intel_dp->aux.name);
1670 }
1671 
1672 static void
intel_dp_aux_init(struct intel_dp * intel_dp)1673 intel_dp_aux_init(struct intel_dp *intel_dp)
1674 {
1675 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1676 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1677 	struct intel_encoder *encoder = &dig_port->base;
1678 
1679 	if (INTEL_GEN(dev_priv) >= 9) {
1680 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1681 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1682 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1683 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1684 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1685 	} else {
1686 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1687 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1688 	}
1689 
1690 	if (INTEL_GEN(dev_priv) >= 9)
1691 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1692 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1693 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1694 	else if (HAS_PCH_SPLIT(dev_priv))
1695 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1696 	else
1697 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1698 
1699 	if (INTEL_GEN(dev_priv) >= 9)
1700 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1701 	else
1702 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1703 
1704 	drm_dp_aux_init(&intel_dp->aux);
1705 
1706 	/* Failure to allocate our preferred name is not critical */
1707 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1708 				       port_name(encoder->port));
1709 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1710 }
1711 
intel_dp_source_supports_hbr2(struct intel_dp * intel_dp)1712 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1713 {
1714 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1715 
1716 	return max_rate >= 540000;
1717 }
1718 
intel_dp_source_supports_hbr3(struct intel_dp * intel_dp)1719 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1720 {
1721 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1722 
1723 	return max_rate >= 810000;
1724 }
1725 
1726 static void
intel_dp_set_clock(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1727 intel_dp_set_clock(struct intel_encoder *encoder,
1728 		   struct intel_crtc_state *pipe_config)
1729 {
1730 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1731 	const struct dp_link_dpll *divisor = NULL;
1732 	int i, count = 0;
1733 
1734 	if (IS_G4X(dev_priv)) {
1735 		divisor = g4x_dpll;
1736 		count = ARRAY_SIZE(g4x_dpll);
1737 	} else if (HAS_PCH_SPLIT(dev_priv)) {
1738 		divisor = pch_dpll;
1739 		count = ARRAY_SIZE(pch_dpll);
1740 	} else if (IS_CHERRYVIEW(dev_priv)) {
1741 		divisor = chv_dpll;
1742 		count = ARRAY_SIZE(chv_dpll);
1743 	} else if (IS_VALLEYVIEW(dev_priv)) {
1744 		divisor = vlv_dpll;
1745 		count = ARRAY_SIZE(vlv_dpll);
1746 	}
1747 
1748 	if (divisor && count) {
1749 		for (i = 0; i < count; i++) {
1750 			if (pipe_config->port_clock == divisor[i].clock) {
1751 				pipe_config->dpll = divisor[i].dpll;
1752 				pipe_config->clock_set = true;
1753 				break;
1754 			}
1755 		}
1756 	}
1757 }
1758 
snprintf_int_array(char * str,size_t len,const int * array,int nelem)1759 static void snprintf_int_array(char *str, size_t len,
1760 			       const int *array, int nelem)
1761 {
1762 	int i;
1763 
1764 	str[0] = '\0';
1765 
1766 	for (i = 0; i < nelem; i++) {
1767 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1768 		if (r >= len)
1769 			return;
1770 		str += r;
1771 		len -= r;
1772 	}
1773 }
1774 
intel_dp_print_rates(struct intel_dp * intel_dp)1775 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1776 {
1777 	char str[128]; /* FIXME: too big for stack? */
1778 
1779 	if ((drm_debug & DRM_UT_KMS) == 0)
1780 		return;
1781 
1782 	snprintf_int_array(str, sizeof(str),
1783 			   intel_dp->source_rates, intel_dp->num_source_rates);
1784 	DRM_DEBUG_KMS("source rates: %s\n", str);
1785 
1786 	snprintf_int_array(str, sizeof(str),
1787 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1788 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1789 
1790 	snprintf_int_array(str, sizeof(str),
1791 			   intel_dp->common_rates, intel_dp->num_common_rates);
1792 	DRM_DEBUG_KMS("common rates: %s\n", str);
1793 }
1794 
1795 int
intel_dp_max_link_rate(struct intel_dp * intel_dp)1796 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1797 {
1798 	int len;
1799 
1800 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1801 	if (WARN_ON(len <= 0))
1802 		return 162000;
1803 
1804 	return intel_dp->common_rates[len - 1];
1805 }
1806 
intel_dp_rate_select(struct intel_dp * intel_dp,int rate)1807 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1808 {
1809 	int i = intel_dp_rate_index(intel_dp->sink_rates,
1810 				    intel_dp->num_sink_rates, rate);
1811 
1812 	if (WARN_ON(i < 0))
1813 		i = 0;
1814 
1815 	return i;
1816 }
1817 
intel_dp_compute_rate(struct intel_dp * intel_dp,int port_clock,u8 * link_bw,u8 * rate_select)1818 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1819 			   u8 *link_bw, u8 *rate_select)
1820 {
1821 	/* eDP 1.4 rate select method. */
1822 	if (intel_dp->use_rate_select) {
1823 		*link_bw = 0;
1824 		*rate_select =
1825 			intel_dp_rate_select(intel_dp, port_clock);
1826 	} else {
1827 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1828 		*rate_select = 0;
1829 	}
1830 }
1831 
intel_dp_source_supports_fec(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)1832 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1833 					 const struct intel_crtc_state *pipe_config)
1834 {
1835 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1836 
1837 	return INTEL_GEN(dev_priv) >= 11 &&
1838 		pipe_config->cpu_transcoder != TRANSCODER_A;
1839 }
1840 
intel_dp_supports_fec(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)1841 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1842 				  const struct intel_crtc_state *pipe_config)
1843 {
1844 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1845 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
1846 }
1847 
intel_dp_source_supports_dsc(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)1848 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1849 					 const struct intel_crtc_state *pipe_config)
1850 {
1851 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1852 
1853 	return INTEL_GEN(dev_priv) >= 10 &&
1854 		pipe_config->cpu_transcoder != TRANSCODER_A;
1855 }
1856 
intel_dp_supports_dsc(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)1857 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1858 				  const struct intel_crtc_state *pipe_config)
1859 {
1860 	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1861 		return false;
1862 
1863 	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1864 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1865 }
1866 
intel_dp_compute_bpp(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config)1867 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1868 				struct intel_crtc_state *pipe_config)
1869 {
1870 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1871 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1872 	int bpp, bpc;
1873 
1874 	bpp = pipe_config->pipe_bpp;
1875 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1876 
1877 	if (bpc > 0)
1878 		bpp = min(bpp, 3*bpc);
1879 
1880 	if (intel_dp_is_edp(intel_dp)) {
1881 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1882 		if (intel_connector->base.display_info.bpc == 0 &&
1883 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1884 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1885 				      dev_priv->vbt.edp.bpp);
1886 			bpp = dev_priv->vbt.edp.bpp;
1887 		}
1888 	}
1889 
1890 	return bpp;
1891 }
1892 
1893 /* Adjust link config limits based on compliance test requests. */
1894 void
intel_dp_adjust_compliance_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,struct link_config_limits * limits)1895 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1896 				  struct intel_crtc_state *pipe_config,
1897 				  struct link_config_limits *limits)
1898 {
1899 	/* For DP Compliance we override the computed bpp for the pipe */
1900 	if (intel_dp->compliance.test_data.bpc != 0) {
1901 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
1902 
1903 		limits->min_bpp = limits->max_bpp = bpp;
1904 		pipe_config->dither_force_disable = bpp == 6 * 3;
1905 
1906 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1907 	}
1908 
1909 	/* Use values requested by Compliance Test Request */
1910 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1911 		int index;
1912 
1913 		/* Validate the compliance test data since max values
1914 		 * might have changed due to link train fallback.
1915 		 */
1916 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1917 					       intel_dp->compliance.test_lane_count)) {
1918 			index = intel_dp_rate_index(intel_dp->common_rates,
1919 						    intel_dp->num_common_rates,
1920 						    intel_dp->compliance.test_link_rate);
1921 			if (index >= 0)
1922 				limits->min_clock = limits->max_clock = index;
1923 			limits->min_lane_count = limits->max_lane_count =
1924 				intel_dp->compliance.test_lane_count;
1925 		}
1926 	}
1927 }
1928 
intel_dp_output_bpp(const struct intel_crtc_state * crtc_state,int bpp)1929 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1930 {
1931 	/*
1932 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1933 	 * format of the number of bytes per pixel will be half the number
1934 	 * of bytes of RGB pixel.
1935 	 */
1936 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1937 		bpp /= 2;
1938 
1939 	return bpp;
1940 }
1941 
1942 /* Optimize link config in order: max bpp, min clock, min lanes */
1943 static int
intel_dp_compute_link_config_wide(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,const struct link_config_limits * limits)1944 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1945 				  struct intel_crtc_state *pipe_config,
1946 				  const struct link_config_limits *limits)
1947 {
1948 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1949 	int bpp, clock, lane_count;
1950 	int mode_rate, link_clock, link_avail;
1951 
1952 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1953 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
1954 
1955 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1956 						   output_bpp);
1957 
1958 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1959 			for (lane_count = limits->min_lane_count;
1960 			     lane_count <= limits->max_lane_count;
1961 			     lane_count <<= 1) {
1962 				link_clock = intel_dp->common_rates[clock];
1963 				link_avail = intel_dp_max_data_rate(link_clock,
1964 								    lane_count);
1965 
1966 				if (mode_rate <= link_avail) {
1967 					pipe_config->lane_count = lane_count;
1968 					pipe_config->pipe_bpp = bpp;
1969 					pipe_config->port_clock = link_clock;
1970 
1971 					return 0;
1972 				}
1973 			}
1974 		}
1975 	}
1976 
1977 	return -EINVAL;
1978 }
1979 
intel_dp_dsc_compute_bpp(struct intel_dp * intel_dp,u8 dsc_max_bpc)1980 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
1981 {
1982 	int i, num_bpc;
1983 	u8 dsc_bpc[3] = {0};
1984 
1985 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
1986 						       dsc_bpc);
1987 	for (i = 0; i < num_bpc; i++) {
1988 		if (dsc_max_bpc >= dsc_bpc[i])
1989 			return dsc_bpc[i] * 3;
1990 	}
1991 
1992 	return 0;
1993 }
1994 
intel_dp_dsc_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state,struct link_config_limits * limits)1995 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
1996 				       struct intel_crtc_state *pipe_config,
1997 				       struct drm_connector_state *conn_state,
1998 				       struct link_config_limits *limits)
1999 {
2000 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2001 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2002 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2003 	u8 dsc_max_bpc;
2004 	int pipe_bpp;
2005 	int ret;
2006 
2007 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2008 		intel_dp_supports_fec(intel_dp, pipe_config);
2009 
2010 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2011 		return -EINVAL;
2012 
2013 	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
2014 			    conn_state->max_requested_bpc);
2015 
2016 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2017 	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
2018 		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2019 		return -EINVAL;
2020 	}
2021 
2022 	/*
2023 	 * For now enable DSC for max bpp, max link rate, max lane count.
2024 	 * Optimize this later for the minimum possible link rate/lane count
2025 	 * with DSC enabled for the requested mode.
2026 	 */
2027 	pipe_config->pipe_bpp = pipe_bpp;
2028 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2029 	pipe_config->lane_count = limits->max_lane_count;
2030 
2031 	if (intel_dp_is_edp(intel_dp)) {
2032 		pipe_config->dsc_params.compressed_bpp =
2033 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2034 			      pipe_config->pipe_bpp);
2035 		pipe_config->dsc_params.slice_count =
2036 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2037 							true);
2038 	} else {
2039 		u16 dsc_max_output_bpp;
2040 		u8 dsc_dp_slice_count;
2041 
2042 		dsc_max_output_bpp =
2043 			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
2044 						    pipe_config->lane_count,
2045 						    adjusted_mode->crtc_clock,
2046 						    adjusted_mode->crtc_hdisplay);
2047 		dsc_dp_slice_count =
2048 			intel_dp_dsc_get_slice_count(intel_dp,
2049 						     adjusted_mode->crtc_clock,
2050 						     adjusted_mode->crtc_hdisplay);
2051 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2052 			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2053 			return -EINVAL;
2054 		}
2055 		pipe_config->dsc_params.compressed_bpp = min_t(u16,
2056 							       dsc_max_output_bpp >> 4,
2057 							       pipe_config->pipe_bpp);
2058 		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
2059 	}
2060 	/*
2061 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2062 	 * is greater than the maximum Cdclock and if slice count is even
2063 	 * then we need to use 2 VDSC instances.
2064 	 */
2065 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2066 		if (pipe_config->dsc_params.slice_count > 1) {
2067 			pipe_config->dsc_params.dsc_split = true;
2068 		} else {
2069 			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2070 			return -EINVAL;
2071 		}
2072 	}
2073 
2074 	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
2075 	if (ret < 0) {
2076 		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2077 			      "Compressed BPP = %d\n",
2078 			      pipe_config->pipe_bpp,
2079 			      pipe_config->dsc_params.compressed_bpp);
2080 		return ret;
2081 	}
2082 
2083 	pipe_config->dsc_params.compression_enable = true;
2084 	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2085 		      "Compressed Bpp = %d Slice Count = %d\n",
2086 		      pipe_config->pipe_bpp,
2087 		      pipe_config->dsc_params.compressed_bpp,
2088 		      pipe_config->dsc_params.slice_count);
2089 
2090 	return 0;
2091 }
2092 
intel_dp_min_bpp(const struct intel_crtc_state * crtc_state)2093 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2094 {
2095 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2096 		return 6 * 3;
2097 	else
2098 		return 8 * 3;
2099 }
2100 
2101 static int
intel_dp_compute_link_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2102 intel_dp_compute_link_config(struct intel_encoder *encoder,
2103 			     struct intel_crtc_state *pipe_config,
2104 			     struct drm_connector_state *conn_state)
2105 {
2106 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2107 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2108 	struct link_config_limits limits;
2109 	int common_len;
2110 	int ret;
2111 
2112 	common_len = intel_dp_common_len_rate_limit(intel_dp,
2113 						    intel_dp->max_link_rate);
2114 
2115 	/* No common link rates between source and sink */
2116 	WARN_ON(common_len <= 0);
2117 
2118 	limits.min_clock = 0;
2119 	limits.max_clock = common_len - 1;
2120 
2121 	limits.min_lane_count = 1;
2122 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2123 
2124 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2125 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2126 
2127 	if (intel_dp_is_edp(intel_dp)) {
2128 		/*
2129 		 * Use the maximum clock and number of lanes the eDP panel
2130 		 * advertizes being capable of. The panels are generally
2131 		 * designed to support only a single clock and lane
2132 		 * configuration, and typically these values correspond to the
2133 		 * native resolution of the panel.
2134 		 */
2135 		limits.min_lane_count = limits.max_lane_count;
2136 		limits.min_clock = limits.max_clock;
2137 	}
2138 
2139 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2140 
2141 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
2142 		      "max rate %d max bpp %d pixel clock %iKHz\n",
2143 		      limits.max_lane_count,
2144 		      intel_dp->common_rates[limits.max_clock],
2145 		      limits.max_bpp, adjusted_mode->crtc_clock);
2146 
2147 	/*
2148 	 * Optimize for slow and wide. This is the place to add alternative
2149 	 * optimization policy.
2150 	 */
2151 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2152 
2153 	/* enable compression if the mode doesn't fit available BW */
2154 	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2155 	if (ret || intel_dp->force_dsc_en) {
2156 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2157 						  conn_state, &limits);
2158 		if (ret < 0)
2159 			return ret;
2160 	}
2161 
2162 	if (pipe_config->dsc_params.compression_enable) {
2163 		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2164 			      pipe_config->lane_count, pipe_config->port_clock,
2165 			      pipe_config->pipe_bpp,
2166 			      pipe_config->dsc_params.compressed_bpp);
2167 
2168 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2169 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2170 						     pipe_config->dsc_params.compressed_bpp),
2171 			      intel_dp_max_data_rate(pipe_config->port_clock,
2172 						     pipe_config->lane_count));
2173 	} else {
2174 		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2175 			      pipe_config->lane_count, pipe_config->port_clock,
2176 			      pipe_config->pipe_bpp);
2177 
2178 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2179 			      intel_dp_link_required(adjusted_mode->crtc_clock,
2180 						     pipe_config->pipe_bpp),
2181 			      intel_dp_max_data_rate(pipe_config->port_clock,
2182 						     pipe_config->lane_count));
2183 	}
2184 	return 0;
2185 }
2186 
2187 static int
intel_dp_ycbcr420_config(struct intel_dp * intel_dp,struct drm_connector * connector,struct intel_crtc_state * crtc_state)2188 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2189 			 struct drm_connector *connector,
2190 			 struct intel_crtc_state *crtc_state)
2191 {
2192 	const struct drm_display_info *info = &connector->display_info;
2193 	const struct drm_display_mode *adjusted_mode =
2194 		&crtc_state->base.adjusted_mode;
2195 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2196 	int ret;
2197 
2198 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
2199 	    !intel_dp_get_colorimetry_status(intel_dp) ||
2200 	    !connector->ycbcr_420_allowed)
2201 		return 0;
2202 
2203 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2204 
2205 	/* YCBCR 420 output conversion needs a scaler */
2206 	ret = skl_update_scaler_crtc(crtc_state);
2207 	if (ret) {
2208 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2209 		return ret;
2210 	}
2211 
2212 	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2213 
2214 	return 0;
2215 }
2216 
intel_dp_limited_color_range(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2217 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2218 				  const struct drm_connector_state *conn_state)
2219 {
2220 	const struct intel_digital_connector_state *intel_conn_state =
2221 		to_intel_digital_connector_state(conn_state);
2222 	const struct drm_display_mode *adjusted_mode =
2223 		&crtc_state->base.adjusted_mode;
2224 
2225 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2226 		/*
2227 		 * See:
2228 		 * CEA-861-E - 5.1 Default Encoding Parameters
2229 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2230 		 */
2231 		return crtc_state->pipe_bpp != 18 &&
2232 			drm_default_rgb_quant_range(adjusted_mode) ==
2233 			HDMI_QUANTIZATION_RANGE_LIMITED;
2234 	} else {
2235 		return intel_conn_state->broadcast_rgb ==
2236 			INTEL_BROADCAST_RGB_LIMITED;
2237 	}
2238 }
2239 
2240 int
intel_dp_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2241 intel_dp_compute_config(struct intel_encoder *encoder,
2242 			struct intel_crtc_state *pipe_config,
2243 			struct drm_connector_state *conn_state)
2244 {
2245 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2246 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2247 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2248 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2249 	enum port port = encoder->port;
2250 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2251 	struct intel_connector *intel_connector = intel_dp->attached_connector;
2252 	struct intel_digital_connector_state *intel_conn_state =
2253 		to_intel_digital_connector_state(conn_state);
2254 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2255 					   DP_DPCD_QUIRK_CONSTANT_N);
2256 	int ret = 0, output_bpp;
2257 
2258 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2259 		pipe_config->has_pch_encoder = true;
2260 
2261 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2262 	if (lspcon->active)
2263 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2264 	else
2265 		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2266 					       pipe_config);
2267 
2268 	if (ret)
2269 		return ret;
2270 
2271 	pipe_config->has_drrs = false;
2272 	if (IS_G4X(dev_priv) || port == PORT_A)
2273 		pipe_config->has_audio = false;
2274 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2275 		pipe_config->has_audio = intel_dp->has_audio;
2276 	else
2277 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2278 
2279 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2280 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2281 				       adjusted_mode);
2282 
2283 		if (INTEL_GEN(dev_priv) >= 9) {
2284 			ret = skl_update_scaler_crtc(pipe_config);
2285 			if (ret)
2286 				return ret;
2287 		}
2288 
2289 		if (HAS_GMCH(dev_priv))
2290 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
2291 						 conn_state->scaling_mode);
2292 		else
2293 			intel_pch_panel_fitting(intel_crtc, pipe_config,
2294 						conn_state->scaling_mode);
2295 	}
2296 
2297 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2298 		return -EINVAL;
2299 
2300 	if (HAS_GMCH(dev_priv) &&
2301 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2302 		return -EINVAL;
2303 
2304 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2305 		return -EINVAL;
2306 
2307 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2308 	if (ret < 0)
2309 		return ret;
2310 
2311 	pipe_config->limited_color_range =
2312 		intel_dp_limited_color_range(pipe_config, conn_state);
2313 
2314 	if (pipe_config->dsc_params.compression_enable)
2315 		output_bpp = pipe_config->dsc_params.compressed_bpp;
2316 	else
2317 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2318 
2319 	intel_link_compute_m_n(output_bpp,
2320 			       pipe_config->lane_count,
2321 			       adjusted_mode->crtc_clock,
2322 			       pipe_config->port_clock,
2323 			       &pipe_config->dp_m_n,
2324 			       constant_n, pipe_config->fec_enable);
2325 
2326 	if (intel_connector->panel.downclock_mode != NULL &&
2327 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2328 			pipe_config->has_drrs = true;
2329 			intel_link_compute_m_n(output_bpp,
2330 					       pipe_config->lane_count,
2331 					       intel_connector->panel.downclock_mode->clock,
2332 					       pipe_config->port_clock,
2333 					       &pipe_config->dp_m2_n2,
2334 					       constant_n, pipe_config->fec_enable);
2335 	}
2336 
2337 	if (!HAS_DDI(dev_priv))
2338 		intel_dp_set_clock(encoder, pipe_config);
2339 
2340 	intel_psr_compute_config(intel_dp, pipe_config);
2341 
2342 	return 0;
2343 }
2344 
intel_dp_set_link_params(struct intel_dp * intel_dp,int link_rate,u8 lane_count,bool link_mst)2345 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2346 			      int link_rate, u8 lane_count,
2347 			      bool link_mst)
2348 {
2349 	intel_dp->link_trained = false;
2350 	intel_dp->link_rate = link_rate;
2351 	intel_dp->lane_count = lane_count;
2352 	intel_dp->link_mst = link_mst;
2353 }
2354 
intel_dp_prepare(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)2355 static void intel_dp_prepare(struct intel_encoder *encoder,
2356 			     const struct intel_crtc_state *pipe_config)
2357 {
2358 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2359 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2360 	enum port port = encoder->port;
2361 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2362 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2363 
2364 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2365 				 pipe_config->lane_count,
2366 				 intel_crtc_has_type(pipe_config,
2367 						     INTEL_OUTPUT_DP_MST));
2368 
2369 	/*
2370 	 * There are four kinds of DP registers:
2371 	 *
2372 	 * 	IBX PCH
2373 	 * 	SNB CPU
2374 	 *	IVB CPU
2375 	 * 	CPT PCH
2376 	 *
2377 	 * IBX PCH and CPU are the same for almost everything,
2378 	 * except that the CPU DP PLL is configured in this
2379 	 * register
2380 	 *
2381 	 * CPT PCH is quite different, having many bits moved
2382 	 * to the TRANS_DP_CTL register instead. That
2383 	 * configuration happens (oddly) in ironlake_pch_enable
2384 	 */
2385 
2386 	/* Preserve the BIOS-computed detected bit. This is
2387 	 * supposed to be read-only.
2388 	 */
2389 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2390 
2391 	/* Handle DP bits in common between all three register formats */
2392 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2393 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2394 
2395 	/* Split out the IBX/CPU vs CPT settings */
2396 
2397 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2398 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2399 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2400 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2401 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2402 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2403 
2404 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2405 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2406 
2407 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2408 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2409 		u32 trans_dp;
2410 
2411 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2412 
2413 		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2414 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2415 			trans_dp |= TRANS_DP_ENH_FRAMING;
2416 		else
2417 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2418 		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2419 	} else {
2420 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2421 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2422 
2423 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2424 			intel_dp->DP |= DP_SYNC_HS_HIGH;
2425 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2426 			intel_dp->DP |= DP_SYNC_VS_HIGH;
2427 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
2428 
2429 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2430 			intel_dp->DP |= DP_ENHANCED_FRAMING;
2431 
2432 		if (IS_CHERRYVIEW(dev_priv))
2433 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2434 		else
2435 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2436 	}
2437 }
2438 
2439 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2440 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2441 
2442 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2443 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2444 
2445 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2446 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2447 
2448 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2449 
wait_panel_status(struct intel_dp * intel_dp,u32 mask,u32 value)2450 static void wait_panel_status(struct intel_dp *intel_dp,
2451 				       u32 mask,
2452 				       u32 value)
2453 {
2454 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2455 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2456 
2457 	lockdep_assert_held(&dev_priv->pps_mutex);
2458 
2459 	intel_pps_verify_state(intel_dp);
2460 
2461 	pp_stat_reg = _pp_stat_reg(intel_dp);
2462 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2463 
2464 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2465 			mask, value,
2466 			I915_READ(pp_stat_reg),
2467 			I915_READ(pp_ctrl_reg));
2468 
2469 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2470 				       mask, value, 5000))
2471 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2472 				I915_READ(pp_stat_reg),
2473 				I915_READ(pp_ctrl_reg));
2474 
2475 	DRM_DEBUG_KMS("Wait complete\n");
2476 }
2477 
wait_panel_on(struct intel_dp * intel_dp)2478 static void wait_panel_on(struct intel_dp *intel_dp)
2479 {
2480 	DRM_DEBUG_KMS("Wait for panel power on\n");
2481 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2482 }
2483 
wait_panel_off(struct intel_dp * intel_dp)2484 static void wait_panel_off(struct intel_dp *intel_dp)
2485 {
2486 	DRM_DEBUG_KMS("Wait for panel power off time\n");
2487 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2488 }
2489 
wait_panel_power_cycle(struct intel_dp * intel_dp)2490 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2491 {
2492 	ktime_t panel_power_on_time;
2493 	s64 panel_power_off_duration;
2494 
2495 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2496 
2497 	/* take the difference of currrent time and panel power off time
2498 	 * and then make panel wait for t11_t12 if needed. */
2499 	panel_power_on_time = ktime_get_boottime();
2500 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2501 
2502 	/* When we disable the VDD override bit last we have to do the manual
2503 	 * wait. */
2504 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2505 		wait_remaining_ms_from_jiffies(jiffies,
2506 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2507 
2508 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2509 }
2510 
wait_backlight_on(struct intel_dp * intel_dp)2511 static void wait_backlight_on(struct intel_dp *intel_dp)
2512 {
2513 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2514 				       intel_dp->backlight_on_delay);
2515 }
2516 
edp_wait_backlight_off(struct intel_dp * intel_dp)2517 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2518 {
2519 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2520 				       intel_dp->backlight_off_delay);
2521 }
2522 
2523 /* Read the current pp_control value, unlocking the register if it
2524  * is locked
2525  */
2526 
ironlake_get_pp_control(struct intel_dp * intel_dp)2527 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2528 {
2529 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2530 	u32 control;
2531 
2532 	lockdep_assert_held(&dev_priv->pps_mutex);
2533 
2534 	control = I915_READ(_pp_ctrl_reg(intel_dp));
2535 	if (WARN_ON(!HAS_DDI(dev_priv) &&
2536 		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2537 		control &= ~PANEL_UNLOCK_MASK;
2538 		control |= PANEL_UNLOCK_REGS;
2539 	}
2540 	return control;
2541 }
2542 
2543 /*
2544  * Must be paired with edp_panel_vdd_off().
2545  * Must hold pps_mutex around the whole on/off sequence.
2546  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2547  */
edp_panel_vdd_on(struct intel_dp * intel_dp)2548 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2549 {
2550 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2551 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2552 	u32 pp;
2553 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2554 	bool need_to_disable = !intel_dp->want_panel_vdd;
2555 
2556 	lockdep_assert_held(&dev_priv->pps_mutex);
2557 
2558 	if (!intel_dp_is_edp(intel_dp))
2559 		return false;
2560 
2561 	cancel_delayed_work(&intel_dp->panel_vdd_work);
2562 	intel_dp->want_panel_vdd = true;
2563 
2564 	if (edp_have_panel_vdd(intel_dp))
2565 		return need_to_disable;
2566 
2567 	intel_display_power_get(dev_priv,
2568 				intel_aux_power_domain(intel_dig_port));
2569 
2570 	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2571 		      port_name(intel_dig_port->base.port));
2572 
2573 	if (!edp_have_panel_power(intel_dp))
2574 		wait_panel_power_cycle(intel_dp);
2575 
2576 	pp = ironlake_get_pp_control(intel_dp);
2577 	pp |= EDP_FORCE_VDD;
2578 
2579 	pp_stat_reg = _pp_stat_reg(intel_dp);
2580 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2581 
2582 	I915_WRITE(pp_ctrl_reg, pp);
2583 	POSTING_READ(pp_ctrl_reg);
2584 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2585 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2586 	/*
2587 	 * If the panel wasn't on, delay before accessing aux channel
2588 	 */
2589 	if (!edp_have_panel_power(intel_dp)) {
2590 		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2591 			      port_name(intel_dig_port->base.port));
2592 		msleep(intel_dp->panel_power_up_delay);
2593 	}
2594 
2595 	return need_to_disable;
2596 }
2597 
2598 /*
2599  * Must be paired with intel_edp_panel_vdd_off() or
2600  * intel_edp_panel_off().
2601  * Nested calls to these functions are not allowed since
2602  * we drop the lock. Caller must use some higher level
2603  * locking to prevent nested calls from other threads.
2604  */
intel_edp_panel_vdd_on(struct intel_dp * intel_dp)2605 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2606 {
2607 	intel_wakeref_t wakeref;
2608 	bool vdd;
2609 
2610 	if (!intel_dp_is_edp(intel_dp))
2611 		return;
2612 
2613 	vdd = false;
2614 	with_pps_lock(intel_dp, wakeref)
2615 		vdd = edp_panel_vdd_on(intel_dp);
2616 	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2617 	     port_name(dp_to_dig_port(intel_dp)->base.port));
2618 }
2619 
edp_panel_vdd_off_sync(struct intel_dp * intel_dp)2620 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2621 {
2622 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2623 	struct intel_digital_port *intel_dig_port =
2624 		dp_to_dig_port(intel_dp);
2625 	u32 pp;
2626 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2627 
2628 	lockdep_assert_held(&dev_priv->pps_mutex);
2629 
2630 	WARN_ON(intel_dp->want_panel_vdd);
2631 
2632 	if (!edp_have_panel_vdd(intel_dp))
2633 		return;
2634 
2635 	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2636 		      port_name(intel_dig_port->base.port));
2637 
2638 	pp = ironlake_get_pp_control(intel_dp);
2639 	pp &= ~EDP_FORCE_VDD;
2640 
2641 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2642 	pp_stat_reg = _pp_stat_reg(intel_dp);
2643 
2644 	I915_WRITE(pp_ctrl_reg, pp);
2645 	POSTING_READ(pp_ctrl_reg);
2646 
2647 	/* Make sure sequencer is idle before allowing subsequent activity */
2648 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2649 	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2650 
2651 	if ((pp & PANEL_POWER_ON) == 0)
2652 		intel_dp->panel_power_off_time = ktime_get_boottime();
2653 
2654 	intel_display_power_put_unchecked(dev_priv,
2655 					  intel_aux_power_domain(intel_dig_port));
2656 }
2657 
edp_panel_vdd_work(struct work_struct * __work)2658 static void edp_panel_vdd_work(struct work_struct *__work)
2659 {
2660 	struct intel_dp *intel_dp =
2661 		container_of(to_delayed_work(__work),
2662 			     struct intel_dp, panel_vdd_work);
2663 	intel_wakeref_t wakeref;
2664 
2665 	with_pps_lock(intel_dp, wakeref) {
2666 		if (!intel_dp->want_panel_vdd)
2667 			edp_panel_vdd_off_sync(intel_dp);
2668 	}
2669 }
2670 
edp_panel_vdd_schedule_off(struct intel_dp * intel_dp)2671 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2672 {
2673 	unsigned long delay;
2674 
2675 	/*
2676 	 * Queue the timer to fire a long time from now (relative to the power
2677 	 * down delay) to keep the panel power up across a sequence of
2678 	 * operations.
2679 	 */
2680 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2681 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2682 }
2683 
2684 /*
2685  * Must be paired with edp_panel_vdd_on().
2686  * Must hold pps_mutex around the whole on/off sequence.
2687  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2688  */
edp_panel_vdd_off(struct intel_dp * intel_dp,bool sync)2689 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2690 {
2691 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2692 
2693 	lockdep_assert_held(&dev_priv->pps_mutex);
2694 
2695 	if (!intel_dp_is_edp(intel_dp))
2696 		return;
2697 
2698 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2699 	     port_name(dp_to_dig_port(intel_dp)->base.port));
2700 
2701 	intel_dp->want_panel_vdd = false;
2702 
2703 	if (sync)
2704 		edp_panel_vdd_off_sync(intel_dp);
2705 	else
2706 		edp_panel_vdd_schedule_off(intel_dp);
2707 }
2708 
edp_panel_on(struct intel_dp * intel_dp)2709 static void edp_panel_on(struct intel_dp *intel_dp)
2710 {
2711 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2712 	u32 pp;
2713 	i915_reg_t pp_ctrl_reg;
2714 
2715 	lockdep_assert_held(&dev_priv->pps_mutex);
2716 
2717 	if (!intel_dp_is_edp(intel_dp))
2718 		return;
2719 
2720 	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2721 		      port_name(dp_to_dig_port(intel_dp)->base.port));
2722 
2723 	if (WARN(edp_have_panel_power(intel_dp),
2724 		 "eDP port %c panel power already on\n",
2725 		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2726 		return;
2727 
2728 	wait_panel_power_cycle(intel_dp);
2729 
2730 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2731 	pp = ironlake_get_pp_control(intel_dp);
2732 	if (IS_GEN(dev_priv, 5)) {
2733 		/* ILK workaround: disable reset around power sequence */
2734 		pp &= ~PANEL_POWER_RESET;
2735 		I915_WRITE(pp_ctrl_reg, pp);
2736 		POSTING_READ(pp_ctrl_reg);
2737 	}
2738 
2739 	pp |= PANEL_POWER_ON;
2740 	if (!IS_GEN(dev_priv, 5))
2741 		pp |= PANEL_POWER_RESET;
2742 
2743 	I915_WRITE(pp_ctrl_reg, pp);
2744 	POSTING_READ(pp_ctrl_reg);
2745 
2746 	wait_panel_on(intel_dp);
2747 	intel_dp->last_power_on = jiffies;
2748 
2749 	if (IS_GEN(dev_priv, 5)) {
2750 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2751 		I915_WRITE(pp_ctrl_reg, pp);
2752 		POSTING_READ(pp_ctrl_reg);
2753 	}
2754 }
2755 
intel_edp_panel_on(struct intel_dp * intel_dp)2756 void intel_edp_panel_on(struct intel_dp *intel_dp)
2757 {
2758 	intel_wakeref_t wakeref;
2759 
2760 	if (!intel_dp_is_edp(intel_dp))
2761 		return;
2762 
2763 	with_pps_lock(intel_dp, wakeref)
2764 		edp_panel_on(intel_dp);
2765 }
2766 
2767 
edp_panel_off(struct intel_dp * intel_dp)2768 static void edp_panel_off(struct intel_dp *intel_dp)
2769 {
2770 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2771 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2772 	u32 pp;
2773 	i915_reg_t pp_ctrl_reg;
2774 
2775 	lockdep_assert_held(&dev_priv->pps_mutex);
2776 
2777 	if (!intel_dp_is_edp(intel_dp))
2778 		return;
2779 
2780 	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2781 		      port_name(dig_port->base.port));
2782 
2783 	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2784 	     port_name(dig_port->base.port));
2785 
2786 	pp = ironlake_get_pp_control(intel_dp);
2787 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2788 	 * panels get very unhappy and cease to work. */
2789 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2790 		EDP_BLC_ENABLE);
2791 
2792 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2793 
2794 	intel_dp->want_panel_vdd = false;
2795 
2796 	I915_WRITE(pp_ctrl_reg, pp);
2797 	POSTING_READ(pp_ctrl_reg);
2798 
2799 	wait_panel_off(intel_dp);
2800 	intel_dp->panel_power_off_time = ktime_get_boottime();
2801 
2802 	/* We got a reference when we enabled the VDD. */
2803 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2804 }
2805 
intel_edp_panel_off(struct intel_dp * intel_dp)2806 void intel_edp_panel_off(struct intel_dp *intel_dp)
2807 {
2808 	intel_wakeref_t wakeref;
2809 
2810 	if (!intel_dp_is_edp(intel_dp))
2811 		return;
2812 
2813 	with_pps_lock(intel_dp, wakeref)
2814 		edp_panel_off(intel_dp);
2815 }
2816 
2817 /* Enable backlight in the panel power control. */
_intel_edp_backlight_on(struct intel_dp * intel_dp)2818 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2819 {
2820 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2821 	intel_wakeref_t wakeref;
2822 
2823 	/*
2824 	 * If we enable the backlight right away following a panel power
2825 	 * on, we may see slight flicker as the panel syncs with the eDP
2826 	 * link.  So delay a bit to make sure the image is solid before
2827 	 * allowing it to appear.
2828 	 */
2829 	wait_backlight_on(intel_dp);
2830 
2831 	with_pps_lock(intel_dp, wakeref) {
2832 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2833 		u32 pp;
2834 
2835 		pp = ironlake_get_pp_control(intel_dp);
2836 		pp |= EDP_BLC_ENABLE;
2837 
2838 		I915_WRITE(pp_ctrl_reg, pp);
2839 		POSTING_READ(pp_ctrl_reg);
2840 	}
2841 }
2842 
2843 /* Enable backlight PWM and backlight PP control. */
intel_edp_backlight_on(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2844 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2845 			    const struct drm_connector_state *conn_state)
2846 {
2847 	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2848 
2849 	if (!intel_dp_is_edp(intel_dp))
2850 		return;
2851 
2852 	DRM_DEBUG_KMS("\n");
2853 
2854 	intel_panel_enable_backlight(crtc_state, conn_state);
2855 	_intel_edp_backlight_on(intel_dp);
2856 }
2857 
2858 /* Disable backlight in the panel power control. */
_intel_edp_backlight_off(struct intel_dp * intel_dp)2859 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2860 {
2861 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2862 	intel_wakeref_t wakeref;
2863 
2864 	if (!intel_dp_is_edp(intel_dp))
2865 		return;
2866 
2867 	with_pps_lock(intel_dp, wakeref) {
2868 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2869 		u32 pp;
2870 
2871 		pp = ironlake_get_pp_control(intel_dp);
2872 		pp &= ~EDP_BLC_ENABLE;
2873 
2874 		I915_WRITE(pp_ctrl_reg, pp);
2875 		POSTING_READ(pp_ctrl_reg);
2876 	}
2877 
2878 	intel_dp->last_backlight_off = jiffies;
2879 	edp_wait_backlight_off(intel_dp);
2880 }
2881 
2882 /* Disable backlight PP control and backlight PWM. */
intel_edp_backlight_off(const struct drm_connector_state * old_conn_state)2883 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2884 {
2885 	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2886 
2887 	if (!intel_dp_is_edp(intel_dp))
2888 		return;
2889 
2890 	DRM_DEBUG_KMS("\n");
2891 
2892 	_intel_edp_backlight_off(intel_dp);
2893 	intel_panel_disable_backlight(old_conn_state);
2894 }
2895 
2896 /*
2897  * Hook for controlling the panel power control backlight through the bl_power
2898  * sysfs attribute. Take care to handle multiple calls.
2899  */
intel_edp_backlight_power(struct intel_connector * connector,bool enable)2900 static void intel_edp_backlight_power(struct intel_connector *connector,
2901 				      bool enable)
2902 {
2903 	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2904 	intel_wakeref_t wakeref;
2905 	bool is_enabled;
2906 
2907 	is_enabled = false;
2908 	with_pps_lock(intel_dp, wakeref)
2909 		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2910 	if (is_enabled == enable)
2911 		return;
2912 
2913 	DRM_DEBUG_KMS("panel power control backlight %s\n",
2914 		      enable ? "enable" : "disable");
2915 
2916 	if (enable)
2917 		_intel_edp_backlight_on(intel_dp);
2918 	else
2919 		_intel_edp_backlight_off(intel_dp);
2920 }
2921 
assert_dp_port(struct intel_dp * intel_dp,bool state)2922 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2923 {
2924 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2925 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2926 	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2927 
2928 	I915_STATE_WARN(cur_state != state,
2929 			"DP port %c state assertion failure (expected %s, current %s)\n",
2930 			port_name(dig_port->base.port),
2931 			onoff(state), onoff(cur_state));
2932 }
2933 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2934 
assert_edp_pll(struct drm_i915_private * dev_priv,bool state)2935 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2936 {
2937 	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2938 
2939 	I915_STATE_WARN(cur_state != state,
2940 			"eDP PLL state assertion failure (expected %s, current %s)\n",
2941 			onoff(state), onoff(cur_state));
2942 }
2943 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2944 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2945 
ironlake_edp_pll_on(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)2946 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2947 				const struct intel_crtc_state *pipe_config)
2948 {
2949 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2950 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2951 
2952 	assert_pipe_disabled(dev_priv, crtc->pipe);
2953 	assert_dp_port_disabled(intel_dp);
2954 	assert_edp_pll_disabled(dev_priv);
2955 
2956 	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2957 		      pipe_config->port_clock);
2958 
2959 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2960 
2961 	if (pipe_config->port_clock == 162000)
2962 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2963 	else
2964 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2965 
2966 	I915_WRITE(DP_A, intel_dp->DP);
2967 	POSTING_READ(DP_A);
2968 	udelay(500);
2969 
2970 	/*
2971 	 * [DevILK] Work around required when enabling DP PLL
2972 	 * while a pipe is enabled going to FDI:
2973 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2974 	 * 2. Program DP PLL enable
2975 	 */
2976 	if (IS_GEN(dev_priv, 5))
2977 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2978 
2979 	intel_dp->DP |= DP_PLL_ENABLE;
2980 
2981 	I915_WRITE(DP_A, intel_dp->DP);
2982 	POSTING_READ(DP_A);
2983 	udelay(200);
2984 }
2985 
ironlake_edp_pll_off(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)2986 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2987 				 const struct intel_crtc_state *old_crtc_state)
2988 {
2989 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2990 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2991 
2992 	assert_pipe_disabled(dev_priv, crtc->pipe);
2993 	assert_dp_port_disabled(intel_dp);
2994 	assert_edp_pll_enabled(dev_priv);
2995 
2996 	DRM_DEBUG_KMS("disabling eDP PLL\n");
2997 
2998 	intel_dp->DP &= ~DP_PLL_ENABLE;
2999 
3000 	I915_WRITE(DP_A, intel_dp->DP);
3001 	POSTING_READ(DP_A);
3002 	udelay(200);
3003 }
3004 
downstream_hpd_needs_d0(struct intel_dp * intel_dp)3005 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3006 {
3007 	/*
3008 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3009 	 * be capable of signalling downstream hpd with a long pulse.
3010 	 * Whether or not that means D3 is safe to use is not clear,
3011 	 * but let's assume so until proven otherwise.
3012 	 *
3013 	 * FIXME should really check all downstream ports...
3014 	 */
3015 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3016 		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3017 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3018 }
3019 
intel_dp_sink_set_decompression_state(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,bool enable)3020 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3021 					   const struct intel_crtc_state *crtc_state,
3022 					   bool enable)
3023 {
3024 	int ret;
3025 
3026 	if (!crtc_state->dsc_params.compression_enable)
3027 		return;
3028 
3029 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3030 				 enable ? DP_DECOMPRESSION_EN : 0);
3031 	if (ret < 0)
3032 		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3033 			      enable ? "enable" : "disable");
3034 }
3035 
3036 /* If the sink supports it, try to set the power state appropriately */
intel_dp_sink_dpms(struct intel_dp * intel_dp,int mode)3037 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3038 {
3039 	int ret, i;
3040 
3041 	/* Should have a valid DPCD by this point */
3042 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3043 		return;
3044 
3045 	if (mode != DRM_MODE_DPMS_ON) {
3046 		if (downstream_hpd_needs_d0(intel_dp))
3047 			return;
3048 
3049 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3050 					 DP_SET_POWER_D3);
3051 	} else {
3052 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3053 
3054 		/*
3055 		 * When turning on, we need to retry for 1ms to give the sink
3056 		 * time to wake up.
3057 		 */
3058 		for (i = 0; i < 3; i++) {
3059 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3060 						 DP_SET_POWER_D0);
3061 			if (ret == 1)
3062 				break;
3063 			msleep(1);
3064 		}
3065 
3066 		if (ret == 1 && lspcon->active)
3067 			lspcon_wait_pcon_mode(lspcon);
3068 	}
3069 
3070 	if (ret != 1)
3071 		DRM_DEBUG_KMS("failed to %s sink power state\n",
3072 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3073 }
3074 
cpt_dp_port_selected(struct drm_i915_private * dev_priv,enum port port,enum pipe * pipe)3075 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3076 				 enum port port, enum pipe *pipe)
3077 {
3078 	enum pipe p;
3079 
3080 	for_each_pipe(dev_priv, p) {
3081 		u32 val = I915_READ(TRANS_DP_CTL(p));
3082 
3083 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3084 			*pipe = p;
3085 			return true;
3086 		}
3087 	}
3088 
3089 	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3090 
3091 	/* must initialize pipe to something for the asserts */
3092 	*pipe = PIPE_A;
3093 
3094 	return false;
3095 }
3096 
intel_dp_port_enabled(struct drm_i915_private * dev_priv,i915_reg_t dp_reg,enum port port,enum pipe * pipe)3097 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3098 			   i915_reg_t dp_reg, enum port port,
3099 			   enum pipe *pipe)
3100 {
3101 	bool ret;
3102 	u32 val;
3103 
3104 	val = I915_READ(dp_reg);
3105 
3106 	ret = val & DP_PORT_EN;
3107 
3108 	/* asserts want to know the pipe even if the port is disabled */
3109 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3110 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3111 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3112 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3113 	else if (IS_CHERRYVIEW(dev_priv))
3114 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3115 	else
3116 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3117 
3118 	return ret;
3119 }
3120 
intel_dp_get_hw_state(struct intel_encoder * encoder,enum pipe * pipe)3121 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3122 				  enum pipe *pipe)
3123 {
3124 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3125 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3126 	intel_wakeref_t wakeref;
3127 	bool ret;
3128 
3129 	wakeref = intel_display_power_get_if_enabled(dev_priv,
3130 						     encoder->power_domain);
3131 	if (!wakeref)
3132 		return false;
3133 
3134 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3135 				    encoder->port, pipe);
3136 
3137 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3138 
3139 	return ret;
3140 }
3141 
intel_dp_get_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)3142 static void intel_dp_get_config(struct intel_encoder *encoder,
3143 				struct intel_crtc_state *pipe_config)
3144 {
3145 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3146 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3147 	u32 tmp, flags = 0;
3148 	enum port port = encoder->port;
3149 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3150 
3151 	if (encoder->type == INTEL_OUTPUT_EDP)
3152 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3153 	else
3154 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3155 
3156 	tmp = I915_READ(intel_dp->output_reg);
3157 
3158 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3159 
3160 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3161 		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3162 
3163 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3164 			flags |= DRM_MODE_FLAG_PHSYNC;
3165 		else
3166 			flags |= DRM_MODE_FLAG_NHSYNC;
3167 
3168 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3169 			flags |= DRM_MODE_FLAG_PVSYNC;
3170 		else
3171 			flags |= DRM_MODE_FLAG_NVSYNC;
3172 	} else {
3173 		if (tmp & DP_SYNC_HS_HIGH)
3174 			flags |= DRM_MODE_FLAG_PHSYNC;
3175 		else
3176 			flags |= DRM_MODE_FLAG_NHSYNC;
3177 
3178 		if (tmp & DP_SYNC_VS_HIGH)
3179 			flags |= DRM_MODE_FLAG_PVSYNC;
3180 		else
3181 			flags |= DRM_MODE_FLAG_NVSYNC;
3182 	}
3183 
3184 	pipe_config->base.adjusted_mode.flags |= flags;
3185 
3186 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3187 		pipe_config->limited_color_range = true;
3188 
3189 	pipe_config->lane_count =
3190 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3191 
3192 	intel_dp_get_m_n(crtc, pipe_config);
3193 
3194 	if (port == PORT_A) {
3195 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3196 			pipe_config->port_clock = 162000;
3197 		else
3198 			pipe_config->port_clock = 270000;
3199 	}
3200 
3201 	pipe_config->base.adjusted_mode.crtc_clock =
3202 		intel_dotclock_calculate(pipe_config->port_clock,
3203 					 &pipe_config->dp_m_n);
3204 
3205 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3206 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3207 		/*
3208 		 * This is a big fat ugly hack.
3209 		 *
3210 		 * Some machines in UEFI boot mode provide us a VBT that has 18
3211 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3212 		 * unknown we fail to light up. Yet the same BIOS boots up with
3213 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3214 		 * max, not what it tells us to use.
3215 		 *
3216 		 * Note: This will still be broken if the eDP panel is not lit
3217 		 * up by the BIOS, and thus we can't get the mode at module
3218 		 * load.
3219 		 */
3220 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3221 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3222 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3223 	}
3224 }
3225 
intel_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3226 static void intel_disable_dp(struct intel_encoder *encoder,
3227 			     const struct intel_crtc_state *old_crtc_state,
3228 			     const struct drm_connector_state *old_conn_state)
3229 {
3230 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3231 
3232 	intel_dp->link_trained = false;
3233 
3234 	if (old_crtc_state->has_audio)
3235 		intel_audio_codec_disable(encoder,
3236 					  old_crtc_state, old_conn_state);
3237 
3238 	/* Make sure the panel is off before trying to change the mode. But also
3239 	 * ensure that we have vdd while we switch off the panel. */
3240 	intel_edp_panel_vdd_on(intel_dp);
3241 	intel_edp_backlight_off(old_conn_state);
3242 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3243 	intel_edp_panel_off(intel_dp);
3244 }
3245 
g4x_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3246 static void g4x_disable_dp(struct intel_encoder *encoder,
3247 			   const struct intel_crtc_state *old_crtc_state,
3248 			   const struct drm_connector_state *old_conn_state)
3249 {
3250 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3251 }
3252 
vlv_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3253 static void vlv_disable_dp(struct intel_encoder *encoder,
3254 			   const struct intel_crtc_state *old_crtc_state,
3255 			   const struct drm_connector_state *old_conn_state)
3256 {
3257 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3258 }
3259 
g4x_post_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3260 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3261 				const struct intel_crtc_state *old_crtc_state,
3262 				const struct drm_connector_state *old_conn_state)
3263 {
3264 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3265 	enum port port = encoder->port;
3266 
3267 	/*
3268 	 * Bspec does not list a specific disable sequence for g4x DP.
3269 	 * Follow the ilk+ sequence (disable pipe before the port) for
3270 	 * g4x DP as it does not suffer from underruns like the normal
3271 	 * g4x modeset sequence (disable pipe after the port).
3272 	 */
3273 	intel_dp_link_down(encoder, old_crtc_state);
3274 
3275 	/* Only ilk+ has port A */
3276 	if (port == PORT_A)
3277 		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3278 }
3279 
vlv_post_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3280 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3281 				const struct intel_crtc_state *old_crtc_state,
3282 				const struct drm_connector_state *old_conn_state)
3283 {
3284 	intel_dp_link_down(encoder, old_crtc_state);
3285 }
3286 
chv_post_disable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3287 static void chv_post_disable_dp(struct intel_encoder *encoder,
3288 				const struct intel_crtc_state *old_crtc_state,
3289 				const struct drm_connector_state *old_conn_state)
3290 {
3291 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3292 
3293 	intel_dp_link_down(encoder, old_crtc_state);
3294 
3295 	vlv_dpio_get(dev_priv);
3296 
3297 	/* Assert data lane reset */
3298 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3299 
3300 	vlv_dpio_put(dev_priv);
3301 }
3302 
3303 static void
_intel_dp_set_link_train(struct intel_dp * intel_dp,u32 * DP,u8 dp_train_pat)3304 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3305 			 u32 *DP,
3306 			 u8 dp_train_pat)
3307 {
3308 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3309 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3310 	enum port port = intel_dig_port->base.port;
3311 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3312 
3313 	if (dp_train_pat & train_pat_mask)
3314 		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3315 			      dp_train_pat & train_pat_mask);
3316 
3317 	if (HAS_DDI(dev_priv)) {
3318 		u32 temp = I915_READ(DP_TP_CTL(port));
3319 
3320 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3321 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3322 		else
3323 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3324 
3325 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3326 		switch (dp_train_pat & train_pat_mask) {
3327 		case DP_TRAINING_PATTERN_DISABLE:
3328 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3329 
3330 			break;
3331 		case DP_TRAINING_PATTERN_1:
3332 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3333 			break;
3334 		case DP_TRAINING_PATTERN_2:
3335 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3336 			break;
3337 		case DP_TRAINING_PATTERN_3:
3338 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3339 			break;
3340 		case DP_TRAINING_PATTERN_4:
3341 			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3342 			break;
3343 		}
3344 		I915_WRITE(DP_TP_CTL(port), temp);
3345 
3346 	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3347 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3348 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3349 
3350 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3351 		case DP_TRAINING_PATTERN_DISABLE:
3352 			*DP |= DP_LINK_TRAIN_OFF_CPT;
3353 			break;
3354 		case DP_TRAINING_PATTERN_1:
3355 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3356 			break;
3357 		case DP_TRAINING_PATTERN_2:
3358 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3359 			break;
3360 		case DP_TRAINING_PATTERN_3:
3361 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3362 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3363 			break;
3364 		}
3365 
3366 	} else {
3367 		*DP &= ~DP_LINK_TRAIN_MASK;
3368 
3369 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3370 		case DP_TRAINING_PATTERN_DISABLE:
3371 			*DP |= DP_LINK_TRAIN_OFF;
3372 			break;
3373 		case DP_TRAINING_PATTERN_1:
3374 			*DP |= DP_LINK_TRAIN_PAT_1;
3375 			break;
3376 		case DP_TRAINING_PATTERN_2:
3377 			*DP |= DP_LINK_TRAIN_PAT_2;
3378 			break;
3379 		case DP_TRAINING_PATTERN_3:
3380 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3381 			*DP |= DP_LINK_TRAIN_PAT_2;
3382 			break;
3383 		}
3384 	}
3385 }
3386 
intel_dp_enable_port(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)3387 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3388 				 const struct intel_crtc_state *old_crtc_state)
3389 {
3390 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3391 
3392 	/* enable with pattern 1 (as per spec) */
3393 
3394 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3395 
3396 	/*
3397 	 * Magic for VLV/CHV. We _must_ first set up the register
3398 	 * without actually enabling the port, and then do another
3399 	 * write to enable the port. Otherwise link training will
3400 	 * fail when the power sequencer is freshly used for this port.
3401 	 */
3402 	intel_dp->DP |= DP_PORT_EN;
3403 	if (old_crtc_state->has_audio)
3404 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3405 
3406 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3407 	POSTING_READ(intel_dp->output_reg);
3408 }
3409 
intel_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3410 static void intel_enable_dp(struct intel_encoder *encoder,
3411 			    const struct intel_crtc_state *pipe_config,
3412 			    const struct drm_connector_state *conn_state)
3413 {
3414 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3415 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3416 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3417 	u32 dp_reg = I915_READ(intel_dp->output_reg);
3418 	enum pipe pipe = crtc->pipe;
3419 	intel_wakeref_t wakeref;
3420 
3421 	if (WARN_ON(dp_reg & DP_PORT_EN))
3422 		return;
3423 
3424 	with_pps_lock(intel_dp, wakeref) {
3425 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3426 			vlv_init_panel_power_sequencer(encoder, pipe_config);
3427 
3428 		intel_dp_enable_port(intel_dp, pipe_config);
3429 
3430 		edp_panel_vdd_on(intel_dp);
3431 		edp_panel_on(intel_dp);
3432 		edp_panel_vdd_off(intel_dp, true);
3433 	}
3434 
3435 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3436 		unsigned int lane_mask = 0x0;
3437 
3438 		if (IS_CHERRYVIEW(dev_priv))
3439 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3440 
3441 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3442 				    lane_mask);
3443 	}
3444 
3445 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3446 	intel_dp_start_link_train(intel_dp);
3447 	intel_dp_stop_link_train(intel_dp);
3448 
3449 	if (pipe_config->has_audio) {
3450 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3451 				 pipe_name(pipe));
3452 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3453 	}
3454 }
3455 
g4x_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3456 static void g4x_enable_dp(struct intel_encoder *encoder,
3457 			  const struct intel_crtc_state *pipe_config,
3458 			  const struct drm_connector_state *conn_state)
3459 {
3460 	intel_enable_dp(encoder, pipe_config, conn_state);
3461 	intel_edp_backlight_on(pipe_config, conn_state);
3462 }
3463 
vlv_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3464 static void vlv_enable_dp(struct intel_encoder *encoder,
3465 			  const struct intel_crtc_state *pipe_config,
3466 			  const struct drm_connector_state *conn_state)
3467 {
3468 	intel_edp_backlight_on(pipe_config, conn_state);
3469 }
3470 
g4x_pre_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3471 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3472 			      const struct intel_crtc_state *pipe_config,
3473 			      const struct drm_connector_state *conn_state)
3474 {
3475 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3476 	enum port port = encoder->port;
3477 
3478 	intel_dp_prepare(encoder, pipe_config);
3479 
3480 	/* Only ilk+ has port A */
3481 	if (port == PORT_A)
3482 		ironlake_edp_pll_on(intel_dp, pipe_config);
3483 }
3484 
vlv_detach_power_sequencer(struct intel_dp * intel_dp)3485 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3486 {
3487 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3488 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3489 	enum pipe pipe = intel_dp->pps_pipe;
3490 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3491 
3492 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3493 
3494 	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3495 		return;
3496 
3497 	edp_panel_vdd_off_sync(intel_dp);
3498 
3499 	/*
3500 	 * VLV seems to get confused when multiple power sequencers
3501 	 * have the same port selected (even if only one has power/vdd
3502 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
3503 	 * CHV on the other hand doesn't seem to mind having the same port
3504 	 * selected in multiple power sequencers, but let's clear the
3505 	 * port select always when logically disconnecting a power sequencer
3506 	 * from a port.
3507 	 */
3508 	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3509 		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3510 	I915_WRITE(pp_on_reg, 0);
3511 	POSTING_READ(pp_on_reg);
3512 
3513 	intel_dp->pps_pipe = INVALID_PIPE;
3514 }
3515 
vlv_steal_power_sequencer(struct drm_i915_private * dev_priv,enum pipe pipe)3516 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3517 				      enum pipe pipe)
3518 {
3519 	struct intel_encoder *encoder;
3520 
3521 	lockdep_assert_held(&dev_priv->pps_mutex);
3522 
3523 	for_each_intel_dp(&dev_priv->drm, encoder) {
3524 		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3525 		enum port port = encoder->port;
3526 
3527 		WARN(intel_dp->active_pipe == pipe,
3528 		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
3529 		     pipe_name(pipe), port_name(port));
3530 
3531 		if (intel_dp->pps_pipe != pipe)
3532 			continue;
3533 
3534 		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3535 			      pipe_name(pipe), port_name(port));
3536 
3537 		/* make sure vdd is off before we steal it */
3538 		vlv_detach_power_sequencer(intel_dp);
3539 	}
3540 }
3541 
vlv_init_panel_power_sequencer(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3542 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3543 					   const struct intel_crtc_state *crtc_state)
3544 {
3545 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3546 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3547 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3548 
3549 	lockdep_assert_held(&dev_priv->pps_mutex);
3550 
3551 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3552 
3553 	if (intel_dp->pps_pipe != INVALID_PIPE &&
3554 	    intel_dp->pps_pipe != crtc->pipe) {
3555 		/*
3556 		 * If another power sequencer was being used on this
3557 		 * port previously make sure to turn off vdd there while
3558 		 * we still have control of it.
3559 		 */
3560 		vlv_detach_power_sequencer(intel_dp);
3561 	}
3562 
3563 	/*
3564 	 * We may be stealing the power
3565 	 * sequencer from another port.
3566 	 */
3567 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3568 
3569 	intel_dp->active_pipe = crtc->pipe;
3570 
3571 	if (!intel_dp_is_edp(intel_dp))
3572 		return;
3573 
3574 	/* now it's all ours */
3575 	intel_dp->pps_pipe = crtc->pipe;
3576 
3577 	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3578 		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3579 
3580 	/* init power sequencer on this pipe and port */
3581 	intel_dp_init_panel_power_sequencer(intel_dp);
3582 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3583 }
3584 
vlv_pre_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3585 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3586 			      const struct intel_crtc_state *pipe_config,
3587 			      const struct drm_connector_state *conn_state)
3588 {
3589 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3590 
3591 	intel_enable_dp(encoder, pipe_config, conn_state);
3592 }
3593 
vlv_dp_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3594 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3595 				  const struct intel_crtc_state *pipe_config,
3596 				  const struct drm_connector_state *conn_state)
3597 {
3598 	intel_dp_prepare(encoder, pipe_config);
3599 
3600 	vlv_phy_pre_pll_enable(encoder, pipe_config);
3601 }
3602 
chv_pre_enable_dp(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3603 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3604 			      const struct intel_crtc_state *pipe_config,
3605 			      const struct drm_connector_state *conn_state)
3606 {
3607 	chv_phy_pre_encoder_enable(encoder, pipe_config);
3608 
3609 	intel_enable_dp(encoder, pipe_config, conn_state);
3610 
3611 	/* Second common lane will stay alive on its own now */
3612 	chv_phy_release_cl2_override(encoder);
3613 }
3614 
chv_dp_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3615 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3616 				  const struct intel_crtc_state *pipe_config,
3617 				  const struct drm_connector_state *conn_state)
3618 {
3619 	intel_dp_prepare(encoder, pipe_config);
3620 
3621 	chv_phy_pre_pll_enable(encoder, pipe_config);
3622 }
3623 
chv_dp_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3624 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3625 				    const struct intel_crtc_state *old_crtc_state,
3626 				    const struct drm_connector_state *old_conn_state)
3627 {
3628 	chv_phy_post_pll_disable(encoder, old_crtc_state);
3629 }
3630 
3631 /*
3632  * Fetch AUX CH registers 0x202 - 0x207 which contain
3633  * link status information
3634  */
3635 bool
intel_dp_get_link_status(struct intel_dp * intel_dp,u8 link_status[DP_LINK_STATUS_SIZE])3636 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3637 {
3638 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3639 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3640 }
3641 
3642 /* These are source-specific values. */
3643 u8
intel_dp_voltage_max(struct intel_dp * intel_dp)3644 intel_dp_voltage_max(struct intel_dp *intel_dp)
3645 {
3646 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3647 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3648 	enum port port = encoder->port;
3649 
3650 	if (HAS_DDI(dev_priv))
3651 		return intel_ddi_dp_voltage_max(encoder);
3652 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3653 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3654 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3655 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3656 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3657 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3658 	else
3659 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3660 }
3661 
3662 u8
intel_dp_pre_emphasis_max(struct intel_dp * intel_dp,u8 voltage_swing)3663 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3664 {
3665 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3666 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3667 	enum port port = encoder->port;
3668 
3669 	if (HAS_DDI(dev_priv)) {
3670 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3671 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3672 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3673 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3674 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3675 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3676 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3677 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3678 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3679 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3680 		default:
3681 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3682 		}
3683 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3684 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3685 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3686 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3687 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3688 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3689 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3690 		default:
3691 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3692 		}
3693 	} else {
3694 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3695 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3696 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3697 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3698 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3699 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3700 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3701 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3702 		default:
3703 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3704 		}
3705 	}
3706 }
3707 
vlv_signal_levels(struct intel_dp * intel_dp)3708 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3709 {
3710 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3711 	unsigned long demph_reg_value, preemph_reg_value,
3712 		uniqtranscale_reg_value;
3713 	u8 train_set = intel_dp->train_set[0];
3714 
3715 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3716 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3717 		preemph_reg_value = 0x0004000;
3718 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3719 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3720 			demph_reg_value = 0x2B405555;
3721 			uniqtranscale_reg_value = 0x552AB83A;
3722 			break;
3723 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3724 			demph_reg_value = 0x2B404040;
3725 			uniqtranscale_reg_value = 0x5548B83A;
3726 			break;
3727 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3728 			demph_reg_value = 0x2B245555;
3729 			uniqtranscale_reg_value = 0x5560B83A;
3730 			break;
3731 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3732 			demph_reg_value = 0x2B405555;
3733 			uniqtranscale_reg_value = 0x5598DA3A;
3734 			break;
3735 		default:
3736 			return 0;
3737 		}
3738 		break;
3739 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3740 		preemph_reg_value = 0x0002000;
3741 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3742 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3743 			demph_reg_value = 0x2B404040;
3744 			uniqtranscale_reg_value = 0x5552B83A;
3745 			break;
3746 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3747 			demph_reg_value = 0x2B404848;
3748 			uniqtranscale_reg_value = 0x5580B83A;
3749 			break;
3750 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3751 			demph_reg_value = 0x2B404040;
3752 			uniqtranscale_reg_value = 0x55ADDA3A;
3753 			break;
3754 		default:
3755 			return 0;
3756 		}
3757 		break;
3758 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3759 		preemph_reg_value = 0x0000000;
3760 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3761 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3762 			demph_reg_value = 0x2B305555;
3763 			uniqtranscale_reg_value = 0x5570B83A;
3764 			break;
3765 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3766 			demph_reg_value = 0x2B2B4040;
3767 			uniqtranscale_reg_value = 0x55ADDA3A;
3768 			break;
3769 		default:
3770 			return 0;
3771 		}
3772 		break;
3773 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3774 		preemph_reg_value = 0x0006000;
3775 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3776 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3777 			demph_reg_value = 0x1B405555;
3778 			uniqtranscale_reg_value = 0x55ADDA3A;
3779 			break;
3780 		default:
3781 			return 0;
3782 		}
3783 		break;
3784 	default:
3785 		return 0;
3786 	}
3787 
3788 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3789 				 uniqtranscale_reg_value, 0);
3790 
3791 	return 0;
3792 }
3793 
chv_signal_levels(struct intel_dp * intel_dp)3794 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3795 {
3796 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3797 	u32 deemph_reg_value, margin_reg_value;
3798 	bool uniq_trans_scale = false;
3799 	u8 train_set = intel_dp->train_set[0];
3800 
3801 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3802 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3803 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3804 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3805 			deemph_reg_value = 128;
3806 			margin_reg_value = 52;
3807 			break;
3808 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3809 			deemph_reg_value = 128;
3810 			margin_reg_value = 77;
3811 			break;
3812 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3813 			deemph_reg_value = 128;
3814 			margin_reg_value = 102;
3815 			break;
3816 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3817 			deemph_reg_value = 128;
3818 			margin_reg_value = 154;
3819 			uniq_trans_scale = true;
3820 			break;
3821 		default:
3822 			return 0;
3823 		}
3824 		break;
3825 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3826 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3827 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3828 			deemph_reg_value = 85;
3829 			margin_reg_value = 78;
3830 			break;
3831 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3832 			deemph_reg_value = 85;
3833 			margin_reg_value = 116;
3834 			break;
3835 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3836 			deemph_reg_value = 85;
3837 			margin_reg_value = 154;
3838 			break;
3839 		default:
3840 			return 0;
3841 		}
3842 		break;
3843 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3844 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3845 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3846 			deemph_reg_value = 64;
3847 			margin_reg_value = 104;
3848 			break;
3849 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3850 			deemph_reg_value = 64;
3851 			margin_reg_value = 154;
3852 			break;
3853 		default:
3854 			return 0;
3855 		}
3856 		break;
3857 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3858 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3859 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3860 			deemph_reg_value = 43;
3861 			margin_reg_value = 154;
3862 			break;
3863 		default:
3864 			return 0;
3865 		}
3866 		break;
3867 	default:
3868 		return 0;
3869 	}
3870 
3871 	chv_set_phy_signal_level(encoder, deemph_reg_value,
3872 				 margin_reg_value, uniq_trans_scale);
3873 
3874 	return 0;
3875 }
3876 
3877 static u32
g4x_signal_levels(u8 train_set)3878 g4x_signal_levels(u8 train_set)
3879 {
3880 	u32 signal_levels = 0;
3881 
3882 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3883 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3884 	default:
3885 		signal_levels |= DP_VOLTAGE_0_4;
3886 		break;
3887 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3888 		signal_levels |= DP_VOLTAGE_0_6;
3889 		break;
3890 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3891 		signal_levels |= DP_VOLTAGE_0_8;
3892 		break;
3893 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3894 		signal_levels |= DP_VOLTAGE_1_2;
3895 		break;
3896 	}
3897 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3898 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3899 	default:
3900 		signal_levels |= DP_PRE_EMPHASIS_0;
3901 		break;
3902 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3903 		signal_levels |= DP_PRE_EMPHASIS_3_5;
3904 		break;
3905 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3906 		signal_levels |= DP_PRE_EMPHASIS_6;
3907 		break;
3908 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3909 		signal_levels |= DP_PRE_EMPHASIS_9_5;
3910 		break;
3911 	}
3912 	return signal_levels;
3913 }
3914 
3915 /* SNB CPU eDP voltage swing and pre-emphasis control */
3916 static u32
snb_cpu_edp_signal_levels(u8 train_set)3917 snb_cpu_edp_signal_levels(u8 train_set)
3918 {
3919 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3920 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3921 	switch (signal_levels) {
3922 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3923 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3924 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3925 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3926 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3927 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3928 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3929 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3930 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3931 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3932 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3933 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3934 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3935 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3936 	default:
3937 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3938 			      "0x%x\n", signal_levels);
3939 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3940 	}
3941 }
3942 
3943 /* IVB CPU eDP voltage swing and pre-emphasis control */
3944 static u32
ivb_cpu_edp_signal_levels(u8 train_set)3945 ivb_cpu_edp_signal_levels(u8 train_set)
3946 {
3947 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3948 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3949 	switch (signal_levels) {
3950 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3951 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3952 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3953 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3954 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3955 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
3956 
3957 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3958 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3959 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3960 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3961 
3962 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3963 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3964 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3965 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3966 
3967 	default:
3968 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3969 			      "0x%x\n", signal_levels);
3970 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
3971 	}
3972 }
3973 
3974 void
intel_dp_set_signal_levels(struct intel_dp * intel_dp)3975 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3976 {
3977 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3978 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3979 	enum port port = intel_dig_port->base.port;
3980 	u32 signal_levels, mask = 0;
3981 	u8 train_set = intel_dp->train_set[0];
3982 
3983 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3984 		signal_levels = bxt_signal_levels(intel_dp);
3985 	} else if (HAS_DDI(dev_priv)) {
3986 		signal_levels = ddi_signal_levels(intel_dp);
3987 		mask = DDI_BUF_EMP_MASK;
3988 	} else if (IS_CHERRYVIEW(dev_priv)) {
3989 		signal_levels = chv_signal_levels(intel_dp);
3990 	} else if (IS_VALLEYVIEW(dev_priv)) {
3991 		signal_levels = vlv_signal_levels(intel_dp);
3992 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3993 		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3994 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3995 	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3996 		signal_levels = snb_cpu_edp_signal_levels(train_set);
3997 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3998 	} else {
3999 		signal_levels = g4x_signal_levels(train_set);
4000 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4001 	}
4002 
4003 	if (mask)
4004 		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4005 
4006 	DRM_DEBUG_KMS("Using vswing level %d\n",
4007 		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4008 	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4009 		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4010 			DP_TRAIN_PRE_EMPHASIS_SHIFT);
4011 
4012 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4013 
4014 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4015 	POSTING_READ(intel_dp->output_reg);
4016 }
4017 
4018 void
intel_dp_program_link_training_pattern(struct intel_dp * intel_dp,u8 dp_train_pat)4019 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4020 				       u8 dp_train_pat)
4021 {
4022 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4023 	struct drm_i915_private *dev_priv =
4024 		to_i915(intel_dig_port->base.base.dev);
4025 
4026 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4027 
4028 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4029 	POSTING_READ(intel_dp->output_reg);
4030 }
4031 
intel_dp_set_idle_link_train(struct intel_dp * intel_dp)4032 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4033 {
4034 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4035 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4036 	enum port port = intel_dig_port->base.port;
4037 	u32 val;
4038 
4039 	if (!HAS_DDI(dev_priv))
4040 		return;
4041 
4042 	val = I915_READ(DP_TP_CTL(port));
4043 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4044 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4045 	I915_WRITE(DP_TP_CTL(port), val);
4046 
4047 	/*
4048 	 * On PORT_A we can have only eDP in SST mode. There the only reason
4049 	 * we need to set idle transmission mode is to work around a HW issue
4050 	 * where we enable the pipe while not in idle link-training mode.
4051 	 * In this case there is requirement to wait for a minimum number of
4052 	 * idle patterns to be sent.
4053 	 */
4054 	if (port == PORT_A)
4055 		return;
4056 
4057 	if (intel_de_wait_for_set(dev_priv, DP_TP_STATUS(port),
4058 				  DP_TP_STATUS_IDLE_DONE, 1))
4059 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
4060 }
4061 
4062 static void
intel_dp_link_down(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)4063 intel_dp_link_down(struct intel_encoder *encoder,
4064 		   const struct intel_crtc_state *old_crtc_state)
4065 {
4066 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4067 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4068 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4069 	enum port port = encoder->port;
4070 	u32 DP = intel_dp->DP;
4071 
4072 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4073 		return;
4074 
4075 	DRM_DEBUG_KMS("\n");
4076 
4077 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4078 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4079 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4080 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4081 	} else {
4082 		DP &= ~DP_LINK_TRAIN_MASK;
4083 		DP |= DP_LINK_TRAIN_PAT_IDLE;
4084 	}
4085 	I915_WRITE(intel_dp->output_reg, DP);
4086 	POSTING_READ(intel_dp->output_reg);
4087 
4088 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4089 	I915_WRITE(intel_dp->output_reg, DP);
4090 	POSTING_READ(intel_dp->output_reg);
4091 
4092 	/*
4093 	 * HW workaround for IBX, we need to move the port
4094 	 * to transcoder A after disabling it to allow the
4095 	 * matching HDMI port to be enabled on transcoder A.
4096 	 */
4097 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4098 		/*
4099 		 * We get CPU/PCH FIFO underruns on the other pipe when
4100 		 * doing the workaround. Sweep them under the rug.
4101 		 */
4102 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4103 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4104 
4105 		/* always enable with pattern 1 (as per spec) */
4106 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4107 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4108 			DP_LINK_TRAIN_PAT_1;
4109 		I915_WRITE(intel_dp->output_reg, DP);
4110 		POSTING_READ(intel_dp->output_reg);
4111 
4112 		DP &= ~DP_PORT_EN;
4113 		I915_WRITE(intel_dp->output_reg, DP);
4114 		POSTING_READ(intel_dp->output_reg);
4115 
4116 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4117 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4118 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4119 	}
4120 
4121 	msleep(intel_dp->panel_power_down_delay);
4122 
4123 	intel_dp->DP = DP;
4124 
4125 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4126 		intel_wakeref_t wakeref;
4127 
4128 		with_pps_lock(intel_dp, wakeref)
4129 			intel_dp->active_pipe = INVALID_PIPE;
4130 	}
4131 }
4132 
4133 static void
intel_dp_extended_receiver_capabilities(struct intel_dp * intel_dp)4134 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4135 {
4136 	u8 dpcd_ext[6];
4137 
4138 	/*
4139 	 * Prior to DP1.3 the bit represented by
4140 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4141 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4142 	 * the true capability of the panel. The only way to check is to
4143 	 * then compare 0000h and 2200h.
4144 	 */
4145 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4146 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4147 		return;
4148 
4149 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4150 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4151 		DRM_ERROR("DPCD failed read at extended capabilities\n");
4152 		return;
4153 	}
4154 
4155 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4156 		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4157 		return;
4158 	}
4159 
4160 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4161 		return;
4162 
4163 	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4164 		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4165 
4166 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4167 }
4168 
4169 bool
intel_dp_read_dpcd(struct intel_dp * intel_dp)4170 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4171 {
4172 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4173 			     sizeof(intel_dp->dpcd)) < 0)
4174 		return false; /* aux transfer failed */
4175 
4176 	intel_dp_extended_receiver_capabilities(intel_dp);
4177 
4178 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4179 
4180 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
4181 }
4182 
intel_dp_get_colorimetry_status(struct intel_dp * intel_dp)4183 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4184 {
4185 	u8 dprx = 0;
4186 
4187 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4188 			      &dprx) != 1)
4189 		return false;
4190 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4191 }
4192 
intel_dp_get_dsc_sink_cap(struct intel_dp * intel_dp)4193 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4194 {
4195 	/*
4196 	 * Clear the cached register set to avoid using stale values
4197 	 * for the sinks that do not support DSC.
4198 	 */
4199 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4200 
4201 	/* Clear fec_capable to avoid using stale values */
4202 	intel_dp->fec_capable = 0;
4203 
4204 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4205 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4206 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4207 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4208 				     intel_dp->dsc_dpcd,
4209 				     sizeof(intel_dp->dsc_dpcd)) < 0)
4210 			DRM_ERROR("Failed to read DPCD register 0x%x\n",
4211 				  DP_DSC_SUPPORT);
4212 
4213 		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4214 			      (int)sizeof(intel_dp->dsc_dpcd),
4215 			      intel_dp->dsc_dpcd);
4216 
4217 		/* FEC is supported only on DP 1.4 */
4218 		if (!intel_dp_is_edp(intel_dp) &&
4219 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4220 				      &intel_dp->fec_capable) < 0)
4221 			DRM_ERROR("Failed to read FEC DPCD register\n");
4222 
4223 		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4224 	}
4225 }
4226 
4227 static bool
intel_edp_init_dpcd(struct intel_dp * intel_dp)4228 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4229 {
4230 	struct drm_i915_private *dev_priv =
4231 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4232 
4233 	/* this function is meant to be called only once */
4234 	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4235 
4236 	if (!intel_dp_read_dpcd(intel_dp))
4237 		return false;
4238 
4239 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4240 			 drm_dp_is_branch(intel_dp->dpcd));
4241 
4242 	/*
4243 	 * Read the eDP display control registers.
4244 	 *
4245 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4246 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4247 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4248 	 * method). The display control registers should read zero if they're
4249 	 * not supported anyway.
4250 	 */
4251 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4252 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4253 			     sizeof(intel_dp->edp_dpcd))
4254 		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4255 			      intel_dp->edp_dpcd);
4256 
4257 	/*
4258 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4259 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4260 	 */
4261 	intel_psr_init_dpcd(intel_dp);
4262 
4263 	/* Read the eDP 1.4+ supported link rates. */
4264 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4265 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4266 		int i;
4267 
4268 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4269 				sink_rates, sizeof(sink_rates));
4270 
4271 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4272 			int val = le16_to_cpu(sink_rates[i]);
4273 
4274 			if (val == 0)
4275 				break;
4276 
4277 			/* Value read multiplied by 200kHz gives the per-lane
4278 			 * link rate in kHz. The source rates are, however,
4279 			 * stored in terms of LS_Clk kHz. The full conversion
4280 			 * back to symbols is
4281 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4282 			 */
4283 			intel_dp->sink_rates[i] = (val * 200) / 10;
4284 		}
4285 		intel_dp->num_sink_rates = i;
4286 	}
4287 
4288 	/*
4289 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4290 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4291 	 */
4292 	if (intel_dp->num_sink_rates)
4293 		intel_dp->use_rate_select = true;
4294 	else
4295 		intel_dp_set_sink_rates(intel_dp);
4296 
4297 	intel_dp_set_common_rates(intel_dp);
4298 
4299 	/* Read the eDP DSC DPCD registers */
4300 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4301 		intel_dp_get_dsc_sink_cap(intel_dp);
4302 
4303 	return true;
4304 }
4305 
4306 
4307 static bool
intel_dp_get_dpcd(struct intel_dp * intel_dp)4308 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4309 {
4310 	if (!intel_dp_read_dpcd(intel_dp))
4311 		return false;
4312 
4313 	/*
4314 	 * Don't clobber cached eDP rates. Also skip re-reading
4315 	 * the OUI/ID since we know it won't change.
4316 	 */
4317 	if (!intel_dp_is_edp(intel_dp)) {
4318 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4319 				 drm_dp_is_branch(intel_dp->dpcd));
4320 
4321 		intel_dp_set_sink_rates(intel_dp);
4322 		intel_dp_set_common_rates(intel_dp);
4323 	}
4324 
4325 	/*
4326 	 * Some eDP panels do not set a valid value for sink count, that is why
4327 	 * it don't care about read it here and in intel_edp_init_dpcd().
4328 	 */
4329 	if (!intel_dp_is_edp(intel_dp) &&
4330 	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4331 		u8 count;
4332 		ssize_t r;
4333 
4334 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4335 		if (r < 1)
4336 			return false;
4337 
4338 		/*
4339 		 * Sink count can change between short pulse hpd hence
4340 		 * a member variable in intel_dp will track any changes
4341 		 * between short pulse interrupts.
4342 		 */
4343 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4344 
4345 		/*
4346 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4347 		 * a dongle is present but no display. Unless we require to know
4348 		 * if a dongle is present or not, we don't need to update
4349 		 * downstream port information. So, an early return here saves
4350 		 * time from performing other operations which are not required.
4351 		 */
4352 		if (!intel_dp->sink_count)
4353 			return false;
4354 	}
4355 
4356 	if (!drm_dp_is_branch(intel_dp->dpcd))
4357 		return true; /* native DP sink */
4358 
4359 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4360 		return true; /* no per-port downstream info */
4361 
4362 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4363 			     intel_dp->downstream_ports,
4364 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4365 		return false; /* downstream port status fetch failed */
4366 
4367 	return true;
4368 }
4369 
4370 static bool
intel_dp_sink_can_mst(struct intel_dp * intel_dp)4371 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4372 {
4373 	u8 mstm_cap;
4374 
4375 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4376 		return false;
4377 
4378 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4379 		return false;
4380 
4381 	return mstm_cap & DP_MST_CAP;
4382 }
4383 
4384 static bool
intel_dp_can_mst(struct intel_dp * intel_dp)4385 intel_dp_can_mst(struct intel_dp *intel_dp)
4386 {
4387 	return i915_modparams.enable_dp_mst &&
4388 		intel_dp->can_mst &&
4389 		intel_dp_sink_can_mst(intel_dp);
4390 }
4391 
4392 static void
intel_dp_configure_mst(struct intel_dp * intel_dp)4393 intel_dp_configure_mst(struct intel_dp *intel_dp)
4394 {
4395 	struct intel_encoder *encoder =
4396 		&dp_to_dig_port(intel_dp)->base;
4397 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4398 
4399 	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
4400 		      port_name(encoder->port), yesno(intel_dp->can_mst),
4401 		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4402 
4403 	if (!intel_dp->can_mst)
4404 		return;
4405 
4406 	intel_dp->is_mst = sink_can_mst &&
4407 		i915_modparams.enable_dp_mst;
4408 
4409 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4410 					intel_dp->is_mst);
4411 }
4412 
4413 static bool
intel_dp_get_sink_irq_esi(struct intel_dp * intel_dp,u8 * sink_irq_vector)4414 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4415 {
4416 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4417 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
4418 		DP_DPRX_ESI_LEN;
4419 }
4420 
4421 static void
intel_pixel_encoding_setup_vsc(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)4422 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp,
4423 			       const struct intel_crtc_state *crtc_state)
4424 {
4425 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4426 	struct dp_sdp vsc_sdp = {};
4427 
4428 	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4429 	vsc_sdp.sdp_header.HB0 = 0;
4430 	vsc_sdp.sdp_header.HB1 = 0x7;
4431 
4432 	/*
4433 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4434 	 * Colorimetry Format indication.
4435 	 */
4436 	vsc_sdp.sdp_header.HB2 = 0x5;
4437 
4438 	/*
4439 	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4440 	 * Colorimetry Format indication (HB2 = 05h).
4441 	 */
4442 	vsc_sdp.sdp_header.HB3 = 0x13;
4443 
4444 	/*
4445 	 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h
4446 	 * DB16[3:0] DP 1.4a spec, Table 2-120
4447 	 */
4448 	vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/
4449 	/* RGB->YCBCR color conversion uses the BT.709 color space. */
4450 	vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4451 
4452 	/*
4453 	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4454 	 * the following Component Bit Depth values are defined:
4455 	 * 001b = 8bpc.
4456 	 * 010b = 10bpc.
4457 	 * 011b = 12bpc.
4458 	 * 100b = 16bpc.
4459 	 */
4460 	switch (crtc_state->pipe_bpp) {
4461 	case 24: /* 8bpc */
4462 		vsc_sdp.db[17] = 0x1;
4463 		break;
4464 	case 30: /* 10bpc */
4465 		vsc_sdp.db[17] = 0x2;
4466 		break;
4467 	case 36: /* 12bpc */
4468 		vsc_sdp.db[17] = 0x3;
4469 		break;
4470 	case 48: /* 16bpc */
4471 		vsc_sdp.db[17] = 0x4;
4472 		break;
4473 	default:
4474 		MISSING_CASE(crtc_state->pipe_bpp);
4475 		break;
4476 	}
4477 
4478 	/*
4479 	 * Dynamic Range (Bit 7)
4480 	 * 0 = VESA range, 1 = CTA range.
4481 	 * all YCbCr are always limited range
4482 	 */
4483 	vsc_sdp.db[17] |= 0x80;
4484 
4485 	/*
4486 	 * Content Type (Bits 2:0)
4487 	 * 000b = Not defined.
4488 	 * 001b = Graphics.
4489 	 * 010b = Photo.
4490 	 * 011b = Video.
4491 	 * 100b = Game
4492 	 * All other values are RESERVED.
4493 	 * Note: See CTA-861-G for the definition and expected
4494 	 * processing by a stream sink for the above contect types.
4495 	 */
4496 	vsc_sdp.db[18] = 0;
4497 
4498 	intel_dig_port->write_infoframe(&intel_dig_port->base,
4499 			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4500 }
4501 
intel_dp_ycbcr_420_enable(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)4502 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
4503 			       const struct intel_crtc_state *crtc_state)
4504 {
4505 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420)
4506 		return;
4507 
4508 	intel_pixel_encoding_setup_vsc(intel_dp, crtc_state);
4509 }
4510 
intel_dp_autotest_link_training(struct intel_dp * intel_dp)4511 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4512 {
4513 	int status = 0;
4514 	int test_link_rate;
4515 	u8 test_lane_count, test_link_bw;
4516 	/* (DP CTS 1.2)
4517 	 * 4.3.1.11
4518 	 */
4519 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4520 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4521 				   &test_lane_count);
4522 
4523 	if (status <= 0) {
4524 		DRM_DEBUG_KMS("Lane count read failed\n");
4525 		return DP_TEST_NAK;
4526 	}
4527 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4528 
4529 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4530 				   &test_link_bw);
4531 	if (status <= 0) {
4532 		DRM_DEBUG_KMS("Link Rate read failed\n");
4533 		return DP_TEST_NAK;
4534 	}
4535 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4536 
4537 	/* Validate the requested link rate and lane count */
4538 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4539 					test_lane_count))
4540 		return DP_TEST_NAK;
4541 
4542 	intel_dp->compliance.test_lane_count = test_lane_count;
4543 	intel_dp->compliance.test_link_rate = test_link_rate;
4544 
4545 	return DP_TEST_ACK;
4546 }
4547 
intel_dp_autotest_video_pattern(struct intel_dp * intel_dp)4548 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4549 {
4550 	u8 test_pattern;
4551 	u8 test_misc;
4552 	__be16 h_width, v_height;
4553 	int status = 0;
4554 
4555 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4556 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4557 				   &test_pattern);
4558 	if (status <= 0) {
4559 		DRM_DEBUG_KMS("Test pattern read failed\n");
4560 		return DP_TEST_NAK;
4561 	}
4562 	if (test_pattern != DP_COLOR_RAMP)
4563 		return DP_TEST_NAK;
4564 
4565 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4566 				  &h_width, 2);
4567 	if (status <= 0) {
4568 		DRM_DEBUG_KMS("H Width read failed\n");
4569 		return DP_TEST_NAK;
4570 	}
4571 
4572 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4573 				  &v_height, 2);
4574 	if (status <= 0) {
4575 		DRM_DEBUG_KMS("V Height read failed\n");
4576 		return DP_TEST_NAK;
4577 	}
4578 
4579 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4580 				   &test_misc);
4581 	if (status <= 0) {
4582 		DRM_DEBUG_KMS("TEST MISC read failed\n");
4583 		return DP_TEST_NAK;
4584 	}
4585 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4586 		return DP_TEST_NAK;
4587 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4588 		return DP_TEST_NAK;
4589 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4590 	case DP_TEST_BIT_DEPTH_6:
4591 		intel_dp->compliance.test_data.bpc = 6;
4592 		break;
4593 	case DP_TEST_BIT_DEPTH_8:
4594 		intel_dp->compliance.test_data.bpc = 8;
4595 		break;
4596 	default:
4597 		return DP_TEST_NAK;
4598 	}
4599 
4600 	intel_dp->compliance.test_data.video_pattern = test_pattern;
4601 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4602 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4603 	/* Set test active flag here so userspace doesn't interrupt things */
4604 	intel_dp->compliance.test_active = 1;
4605 
4606 	return DP_TEST_ACK;
4607 }
4608 
intel_dp_autotest_edid(struct intel_dp * intel_dp)4609 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4610 {
4611 	u8 test_result = DP_TEST_ACK;
4612 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4613 	struct drm_connector *connector = &intel_connector->base;
4614 
4615 	if (intel_connector->detect_edid == NULL ||
4616 	    connector->edid_corrupt ||
4617 	    intel_dp->aux.i2c_defer_count > 6) {
4618 		/* Check EDID read for NACKs, DEFERs and corruption
4619 		 * (DP CTS 1.2 Core r1.1)
4620 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
4621 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
4622 		 *    4.2.2.6 : EDID corruption detected
4623 		 * Use failsafe mode for all cases
4624 		 */
4625 		if (intel_dp->aux.i2c_nack_count > 0 ||
4626 			intel_dp->aux.i2c_defer_count > 0)
4627 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4628 				      intel_dp->aux.i2c_nack_count,
4629 				      intel_dp->aux.i2c_defer_count);
4630 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4631 	} else {
4632 		struct edid *block = intel_connector->detect_edid;
4633 
4634 		/* We have to write the checksum
4635 		 * of the last block read
4636 		 */
4637 		block += intel_connector->detect_edid->extensions;
4638 
4639 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4640 				       block->checksum) <= 0)
4641 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4642 
4643 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4644 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4645 	}
4646 
4647 	/* Set test active flag here so userspace doesn't interrupt things */
4648 	intel_dp->compliance.test_active = 1;
4649 
4650 	return test_result;
4651 }
4652 
intel_dp_autotest_phy_pattern(struct intel_dp * intel_dp)4653 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4654 {
4655 	u8 test_result = DP_TEST_NAK;
4656 	return test_result;
4657 }
4658 
intel_dp_handle_test_request(struct intel_dp * intel_dp)4659 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4660 {
4661 	u8 response = DP_TEST_NAK;
4662 	u8 request = 0;
4663 	int status;
4664 
4665 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4666 	if (status <= 0) {
4667 		DRM_DEBUG_KMS("Could not read test request from sink\n");
4668 		goto update_status;
4669 	}
4670 
4671 	switch (request) {
4672 	case DP_TEST_LINK_TRAINING:
4673 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4674 		response = intel_dp_autotest_link_training(intel_dp);
4675 		break;
4676 	case DP_TEST_LINK_VIDEO_PATTERN:
4677 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4678 		response = intel_dp_autotest_video_pattern(intel_dp);
4679 		break;
4680 	case DP_TEST_LINK_EDID_READ:
4681 		DRM_DEBUG_KMS("EDID test requested\n");
4682 		response = intel_dp_autotest_edid(intel_dp);
4683 		break;
4684 	case DP_TEST_LINK_PHY_TEST_PATTERN:
4685 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4686 		response = intel_dp_autotest_phy_pattern(intel_dp);
4687 		break;
4688 	default:
4689 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4690 		break;
4691 	}
4692 
4693 	if (response & DP_TEST_ACK)
4694 		intel_dp->compliance.test_type = request;
4695 
4696 update_status:
4697 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4698 	if (status <= 0)
4699 		DRM_DEBUG_KMS("Could not write test response to sink\n");
4700 }
4701 
4702 static int
intel_dp_check_mst_status(struct intel_dp * intel_dp)4703 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4704 {
4705 	bool bret;
4706 
4707 	if (intel_dp->is_mst) {
4708 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4709 		int ret = 0;
4710 		int retry;
4711 		bool handled;
4712 
4713 		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4714 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4715 go_again:
4716 		if (bret == true) {
4717 
4718 			/* check link status - esi[10] = 0x200c */
4719 			if (intel_dp->active_mst_links > 0 &&
4720 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4721 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4722 				intel_dp_start_link_train(intel_dp);
4723 				intel_dp_stop_link_train(intel_dp);
4724 			}
4725 
4726 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4727 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4728 
4729 			if (handled) {
4730 				for (retry = 0; retry < 3; retry++) {
4731 					int wret;
4732 					wret = drm_dp_dpcd_write(&intel_dp->aux,
4733 								 DP_SINK_COUNT_ESI+1,
4734 								 &esi[1], 3);
4735 					if (wret == 3) {
4736 						break;
4737 					}
4738 				}
4739 
4740 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4741 				if (bret == true) {
4742 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4743 					goto go_again;
4744 				}
4745 			} else
4746 				ret = 0;
4747 
4748 			return ret;
4749 		} else {
4750 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4751 			intel_dp->is_mst = false;
4752 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4753 							intel_dp->is_mst);
4754 		}
4755 	}
4756 	return -EINVAL;
4757 }
4758 
4759 static bool
intel_dp_needs_link_retrain(struct intel_dp * intel_dp)4760 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4761 {
4762 	u8 link_status[DP_LINK_STATUS_SIZE];
4763 
4764 	if (!intel_dp->link_trained)
4765 		return false;
4766 
4767 	/*
4768 	 * While PSR source HW is enabled, it will control main-link sending
4769 	 * frames, enabling and disabling it so trying to do a retrain will fail
4770 	 * as the link would or not be on or it could mix training patterns
4771 	 * and frame data at the same time causing retrain to fail.
4772 	 * Also when exiting PSR, HW will retrain the link anyways fixing
4773 	 * any link status error.
4774 	 */
4775 	if (intel_psr_enabled(intel_dp))
4776 		return false;
4777 
4778 	if (!intel_dp_get_link_status(intel_dp, link_status))
4779 		return false;
4780 
4781 	/*
4782 	 * Validate the cached values of intel_dp->link_rate and
4783 	 * intel_dp->lane_count before attempting to retrain.
4784 	 */
4785 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4786 					intel_dp->lane_count))
4787 		return false;
4788 
4789 	/* Retrain if Channel EQ or CR not ok */
4790 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4791 }
4792 
intel_dp_retrain_link(struct intel_encoder * encoder,struct drm_modeset_acquire_ctx * ctx)4793 int intel_dp_retrain_link(struct intel_encoder *encoder,
4794 			  struct drm_modeset_acquire_ctx *ctx)
4795 {
4796 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4797 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4798 	struct intel_connector *connector = intel_dp->attached_connector;
4799 	struct drm_connector_state *conn_state;
4800 	struct intel_crtc_state *crtc_state;
4801 	struct intel_crtc *crtc;
4802 	int ret;
4803 
4804 	/* FIXME handle the MST connectors as well */
4805 
4806 	if (!connector || connector->base.status != connector_status_connected)
4807 		return 0;
4808 
4809 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4810 			       ctx);
4811 	if (ret)
4812 		return ret;
4813 
4814 	conn_state = connector->base.state;
4815 
4816 	crtc = to_intel_crtc(conn_state->crtc);
4817 	if (!crtc)
4818 		return 0;
4819 
4820 	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4821 	if (ret)
4822 		return ret;
4823 
4824 	crtc_state = to_intel_crtc_state(crtc->base.state);
4825 
4826 	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4827 
4828 	if (!crtc_state->base.active)
4829 		return 0;
4830 
4831 	if (conn_state->commit &&
4832 	    !try_wait_for_completion(&conn_state->commit->hw_done))
4833 		return 0;
4834 
4835 	if (!intel_dp_needs_link_retrain(intel_dp))
4836 		return 0;
4837 
4838 	/* Suppress underruns caused by re-training */
4839 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4840 	if (crtc_state->has_pch_encoder)
4841 		intel_set_pch_fifo_underrun_reporting(dev_priv,
4842 						      intel_crtc_pch_transcoder(crtc), false);
4843 
4844 	intel_dp_start_link_train(intel_dp);
4845 	intel_dp_stop_link_train(intel_dp);
4846 
4847 	/* Keep underrun reporting disabled until things are stable */
4848 	intel_wait_for_vblank(dev_priv, crtc->pipe);
4849 
4850 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4851 	if (crtc_state->has_pch_encoder)
4852 		intel_set_pch_fifo_underrun_reporting(dev_priv,
4853 						      intel_crtc_pch_transcoder(crtc), true);
4854 
4855 	return 0;
4856 }
4857 
4858 /*
4859  * If display is now connected check links status,
4860  * there has been known issues of link loss triggering
4861  * long pulse.
4862  *
4863  * Some sinks (eg. ASUS PB287Q) seem to perform some
4864  * weird HPD ping pong during modesets. So we can apparently
4865  * end up with HPD going low during a modeset, and then
4866  * going back up soon after. And once that happens we must
4867  * retrain the link to get a picture. That's in case no
4868  * userspace component reacted to intermittent HPD dip.
4869  */
4870 static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder * encoder,struct intel_connector * connector,bool irq_received)4871 intel_dp_hotplug(struct intel_encoder *encoder,
4872 		 struct intel_connector *connector,
4873 		 bool irq_received)
4874 {
4875 	struct drm_modeset_acquire_ctx ctx;
4876 	enum intel_hotplug_state state;
4877 	int ret;
4878 
4879 	state = intel_encoder_hotplug(encoder, connector, irq_received);
4880 
4881 	drm_modeset_acquire_init(&ctx, 0);
4882 
4883 	for (;;) {
4884 		ret = intel_dp_retrain_link(encoder, &ctx);
4885 
4886 		if (ret == -EDEADLK) {
4887 			drm_modeset_backoff(&ctx);
4888 			continue;
4889 		}
4890 
4891 		break;
4892 	}
4893 
4894 	drm_modeset_drop_locks(&ctx);
4895 	drm_modeset_acquire_fini(&ctx);
4896 	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4897 
4898 	/*
4899 	 * Keeping it consistent with intel_ddi_hotplug() and
4900 	 * intel_hdmi_hotplug().
4901 	 */
4902 	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
4903 		state = INTEL_HOTPLUG_RETRY;
4904 
4905 	return state;
4906 }
4907 
intel_dp_check_service_irq(struct intel_dp * intel_dp)4908 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
4909 {
4910 	u8 val;
4911 
4912 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
4913 		return;
4914 
4915 	if (drm_dp_dpcd_readb(&intel_dp->aux,
4916 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
4917 		return;
4918 
4919 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
4920 
4921 	if (val & DP_AUTOMATED_TEST_REQUEST)
4922 		intel_dp_handle_test_request(intel_dp);
4923 
4924 	if (val & DP_CP_IRQ)
4925 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4926 
4927 	if (val & DP_SINK_SPECIFIC_IRQ)
4928 		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4929 }
4930 
4931 /*
4932  * According to DP spec
4933  * 5.1.2:
4934  *  1. Read DPCD
4935  *  2. Configure link according to Receiver Capabilities
4936  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4937  *  4. Check link status on receipt of hot-plug interrupt
4938  *
4939  * intel_dp_short_pulse -  handles short pulse interrupts
4940  * when full detection is not required.
4941  * Returns %true if short pulse is handled and full detection
4942  * is NOT required and %false otherwise.
4943  */
4944 static bool
intel_dp_short_pulse(struct intel_dp * intel_dp)4945 intel_dp_short_pulse(struct intel_dp *intel_dp)
4946 {
4947 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4948 	u8 old_sink_count = intel_dp->sink_count;
4949 	bool ret;
4950 
4951 	/*
4952 	 * Clearing compliance test variables to allow capturing
4953 	 * of values for next automated test request.
4954 	 */
4955 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4956 
4957 	/*
4958 	 * Now read the DPCD to see if it's actually running
4959 	 * If the current value of sink count doesn't match with
4960 	 * the value that was stored earlier or dpcd read failed
4961 	 * we need to do full detection
4962 	 */
4963 	ret = intel_dp_get_dpcd(intel_dp);
4964 
4965 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
4966 		/* No need to proceed if we are going to do full detect */
4967 		return false;
4968 	}
4969 
4970 	intel_dp_check_service_irq(intel_dp);
4971 
4972 	/* Handle CEC interrupts, if any */
4973 	drm_dp_cec_irq(&intel_dp->aux);
4974 
4975 	/* defer to the hotplug work for link retraining if needed */
4976 	if (intel_dp_needs_link_retrain(intel_dp))
4977 		return false;
4978 
4979 	intel_psr_short_pulse(intel_dp);
4980 
4981 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4982 		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4983 		/* Send a Hotplug Uevent to userspace to start modeset */
4984 		drm_kms_helper_hotplug_event(&dev_priv->drm);
4985 	}
4986 
4987 	return true;
4988 }
4989 
4990 /* XXX this is probably wrong for multiple downstream ports */
4991 static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp * intel_dp)4992 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4993 {
4994 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4995 	u8 *dpcd = intel_dp->dpcd;
4996 	u8 type;
4997 
4998 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
4999 		return connector_status_connected;
5000 
5001 	if (lspcon->active)
5002 		lspcon_resume(lspcon);
5003 
5004 	if (!intel_dp_get_dpcd(intel_dp))
5005 		return connector_status_disconnected;
5006 
5007 	/* if there's no downstream port, we're done */
5008 	if (!drm_dp_is_branch(dpcd))
5009 		return connector_status_connected;
5010 
5011 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5012 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5013 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5014 
5015 		return intel_dp->sink_count ?
5016 		connector_status_connected : connector_status_disconnected;
5017 	}
5018 
5019 	if (intel_dp_can_mst(intel_dp))
5020 		return connector_status_connected;
5021 
5022 	/* If no HPD, poke DDC gently */
5023 	if (drm_probe_ddc(&intel_dp->aux.ddc))
5024 		return connector_status_connected;
5025 
5026 	/* Well we tried, say unknown for unreliable port types */
5027 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5028 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5029 		if (type == DP_DS_PORT_TYPE_VGA ||
5030 		    type == DP_DS_PORT_TYPE_NON_EDID)
5031 			return connector_status_unknown;
5032 	} else {
5033 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5034 			DP_DWN_STRM_PORT_TYPE_MASK;
5035 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5036 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5037 			return connector_status_unknown;
5038 	}
5039 
5040 	/* Anything else is out of spec, warn and ignore */
5041 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5042 	return connector_status_disconnected;
5043 }
5044 
5045 static enum drm_connector_status
edp_detect(struct intel_dp * intel_dp)5046 edp_detect(struct intel_dp *intel_dp)
5047 {
5048 	return connector_status_connected;
5049 }
5050 
ibx_digital_port_connected(struct intel_encoder * encoder)5051 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5052 {
5053 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5054 	u32 bit;
5055 
5056 	switch (encoder->hpd_pin) {
5057 	case HPD_PORT_B:
5058 		bit = SDE_PORTB_HOTPLUG;
5059 		break;
5060 	case HPD_PORT_C:
5061 		bit = SDE_PORTC_HOTPLUG;
5062 		break;
5063 	case HPD_PORT_D:
5064 		bit = SDE_PORTD_HOTPLUG;
5065 		break;
5066 	default:
5067 		MISSING_CASE(encoder->hpd_pin);
5068 		return false;
5069 	}
5070 
5071 	return I915_READ(SDEISR) & bit;
5072 }
5073 
cpt_digital_port_connected(struct intel_encoder * encoder)5074 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5075 {
5076 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5077 	u32 bit;
5078 
5079 	switch (encoder->hpd_pin) {
5080 	case HPD_PORT_B:
5081 		bit = SDE_PORTB_HOTPLUG_CPT;
5082 		break;
5083 	case HPD_PORT_C:
5084 		bit = SDE_PORTC_HOTPLUG_CPT;
5085 		break;
5086 	case HPD_PORT_D:
5087 		bit = SDE_PORTD_HOTPLUG_CPT;
5088 		break;
5089 	default:
5090 		MISSING_CASE(encoder->hpd_pin);
5091 		return false;
5092 	}
5093 
5094 	return I915_READ(SDEISR) & bit;
5095 }
5096 
spt_digital_port_connected(struct intel_encoder * encoder)5097 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5098 {
5099 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5100 	u32 bit;
5101 
5102 	switch (encoder->hpd_pin) {
5103 	case HPD_PORT_A:
5104 		bit = SDE_PORTA_HOTPLUG_SPT;
5105 		break;
5106 	case HPD_PORT_E:
5107 		bit = SDE_PORTE_HOTPLUG_SPT;
5108 		break;
5109 	default:
5110 		return cpt_digital_port_connected(encoder);
5111 	}
5112 
5113 	return I915_READ(SDEISR) & bit;
5114 }
5115 
g4x_digital_port_connected(struct intel_encoder * encoder)5116 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5117 {
5118 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5119 	u32 bit;
5120 
5121 	switch (encoder->hpd_pin) {
5122 	case HPD_PORT_B:
5123 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5124 		break;
5125 	case HPD_PORT_C:
5126 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5127 		break;
5128 	case HPD_PORT_D:
5129 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5130 		break;
5131 	default:
5132 		MISSING_CASE(encoder->hpd_pin);
5133 		return false;
5134 	}
5135 
5136 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5137 }
5138 
gm45_digital_port_connected(struct intel_encoder * encoder)5139 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5140 {
5141 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5142 	u32 bit;
5143 
5144 	switch (encoder->hpd_pin) {
5145 	case HPD_PORT_B:
5146 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5147 		break;
5148 	case HPD_PORT_C:
5149 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5150 		break;
5151 	case HPD_PORT_D:
5152 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5153 		break;
5154 	default:
5155 		MISSING_CASE(encoder->hpd_pin);
5156 		return false;
5157 	}
5158 
5159 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5160 }
5161 
ilk_digital_port_connected(struct intel_encoder * encoder)5162 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5163 {
5164 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5165 
5166 	if (encoder->hpd_pin == HPD_PORT_A)
5167 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5168 	else
5169 		return ibx_digital_port_connected(encoder);
5170 }
5171 
snb_digital_port_connected(struct intel_encoder * encoder)5172 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5173 {
5174 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5175 
5176 	if (encoder->hpd_pin == HPD_PORT_A)
5177 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5178 	else
5179 		return cpt_digital_port_connected(encoder);
5180 }
5181 
ivb_digital_port_connected(struct intel_encoder * encoder)5182 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5183 {
5184 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5185 
5186 	if (encoder->hpd_pin == HPD_PORT_A)
5187 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5188 	else
5189 		return cpt_digital_port_connected(encoder);
5190 }
5191 
bdw_digital_port_connected(struct intel_encoder * encoder)5192 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5193 {
5194 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5195 
5196 	if (encoder->hpd_pin == HPD_PORT_A)
5197 		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5198 	else
5199 		return cpt_digital_port_connected(encoder);
5200 }
5201 
bxt_digital_port_connected(struct intel_encoder * encoder)5202 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5203 {
5204 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5205 	u32 bit;
5206 
5207 	switch (encoder->hpd_pin) {
5208 	case HPD_PORT_A:
5209 		bit = BXT_DE_PORT_HP_DDIA;
5210 		break;
5211 	case HPD_PORT_B:
5212 		bit = BXT_DE_PORT_HP_DDIB;
5213 		break;
5214 	case HPD_PORT_C:
5215 		bit = BXT_DE_PORT_HP_DDIC;
5216 		break;
5217 	default:
5218 		MISSING_CASE(encoder->hpd_pin);
5219 		return false;
5220 	}
5221 
5222 	return I915_READ(GEN8_DE_PORT_ISR) & bit;
5223 }
5224 
icl_combo_port_connected(struct drm_i915_private * dev_priv,struct intel_digital_port * intel_dig_port)5225 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
5226 				     struct intel_digital_port *intel_dig_port)
5227 {
5228 	enum port port = intel_dig_port->base.port;
5229 
5230 	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
5231 }
5232 
icl_digital_port_connected(struct intel_encoder * encoder)5233 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5234 {
5235 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5236 	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5237 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5238 
5239 	if (intel_phy_is_combo(dev_priv, phy))
5240 		return icl_combo_port_connected(dev_priv, dig_port);
5241 	else if (intel_phy_is_tc(dev_priv, phy))
5242 		return intel_tc_port_connected(dig_port);
5243 	else
5244 		MISSING_CASE(encoder->hpd_pin);
5245 
5246 	return false;
5247 }
5248 
5249 /*
5250  * intel_digital_port_connected - is the specified port connected?
5251  * @encoder: intel_encoder
5252  *
5253  * In cases where there's a connector physically connected but it can't be used
5254  * by our hardware we also return false, since the rest of the driver should
5255  * pretty much treat the port as disconnected. This is relevant for type-C
5256  * (starting on ICL) where there's ownership involved.
5257  *
5258  * Return %true if port is connected, %false otherwise.
5259  */
__intel_digital_port_connected(struct intel_encoder * encoder)5260 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5261 {
5262 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5263 
5264 	if (HAS_GMCH(dev_priv)) {
5265 		if (IS_GM45(dev_priv))
5266 			return gm45_digital_port_connected(encoder);
5267 		else
5268 			return g4x_digital_port_connected(encoder);
5269 	}
5270 
5271 	if (INTEL_GEN(dev_priv) >= 11)
5272 		return icl_digital_port_connected(encoder);
5273 	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5274 		return spt_digital_port_connected(encoder);
5275 	else if (IS_GEN9_LP(dev_priv))
5276 		return bxt_digital_port_connected(encoder);
5277 	else if (IS_GEN(dev_priv, 8))
5278 		return bdw_digital_port_connected(encoder);
5279 	else if (IS_GEN(dev_priv, 7))
5280 		return ivb_digital_port_connected(encoder);
5281 	else if (IS_GEN(dev_priv, 6))
5282 		return snb_digital_port_connected(encoder);
5283 	else if (IS_GEN(dev_priv, 5))
5284 		return ilk_digital_port_connected(encoder);
5285 
5286 	MISSING_CASE(INTEL_GEN(dev_priv));
5287 	return false;
5288 }
5289 
intel_digital_port_connected(struct intel_encoder * encoder)5290 bool intel_digital_port_connected(struct intel_encoder *encoder)
5291 {
5292 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5293 	bool is_connected = false;
5294 	intel_wakeref_t wakeref;
5295 
5296 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5297 		is_connected = __intel_digital_port_connected(encoder);
5298 
5299 	return is_connected;
5300 }
5301 
5302 static struct edid *
intel_dp_get_edid(struct intel_dp * intel_dp)5303 intel_dp_get_edid(struct intel_dp *intel_dp)
5304 {
5305 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5306 
5307 	/* use cached edid if we have one */
5308 	if (intel_connector->edid) {
5309 		/* invalid edid */
5310 		if (IS_ERR(intel_connector->edid))
5311 			return NULL;
5312 
5313 		return drm_edid_duplicate(intel_connector->edid);
5314 	} else
5315 		return drm_get_edid(&intel_connector->base,
5316 				    &intel_dp->aux.ddc);
5317 }
5318 
5319 static void
intel_dp_set_edid(struct intel_dp * intel_dp)5320 intel_dp_set_edid(struct intel_dp *intel_dp)
5321 {
5322 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5323 	struct edid *edid;
5324 
5325 	intel_dp_unset_edid(intel_dp);
5326 	edid = intel_dp_get_edid(intel_dp);
5327 	intel_connector->detect_edid = edid;
5328 
5329 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5330 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5331 }
5332 
5333 static void
intel_dp_unset_edid(struct intel_dp * intel_dp)5334 intel_dp_unset_edid(struct intel_dp *intel_dp)
5335 {
5336 	struct intel_connector *intel_connector = intel_dp->attached_connector;
5337 
5338 	drm_dp_cec_unset_edid(&intel_dp->aux);
5339 	kfree(intel_connector->detect_edid);
5340 	intel_connector->detect_edid = NULL;
5341 
5342 	intel_dp->has_audio = false;
5343 }
5344 
5345 static int
intel_dp_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)5346 intel_dp_detect(struct drm_connector *connector,
5347 		struct drm_modeset_acquire_ctx *ctx,
5348 		bool force)
5349 {
5350 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5351 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5352 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5353 	struct intel_encoder *encoder = &dig_port->base;
5354 	enum drm_connector_status status;
5355 
5356 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5357 		      connector->base.id, connector->name);
5358 	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5359 
5360 	/* Can't disconnect eDP */
5361 	if (intel_dp_is_edp(intel_dp))
5362 		status = edp_detect(intel_dp);
5363 	else if (intel_digital_port_connected(encoder))
5364 		status = intel_dp_detect_dpcd(intel_dp);
5365 	else
5366 		status = connector_status_disconnected;
5367 
5368 	if (status == connector_status_disconnected) {
5369 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5370 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5371 
5372 		if (intel_dp->is_mst) {
5373 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5374 				      intel_dp->is_mst,
5375 				      intel_dp->mst_mgr.mst_state);
5376 			intel_dp->is_mst = false;
5377 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5378 							intel_dp->is_mst);
5379 		}
5380 
5381 		goto out;
5382 	}
5383 
5384 	if (intel_dp->reset_link_params) {
5385 		/* Initial max link lane count */
5386 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5387 
5388 		/* Initial max link rate */
5389 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5390 
5391 		intel_dp->reset_link_params = false;
5392 	}
5393 
5394 	intel_dp_print_rates(intel_dp);
5395 
5396 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5397 	if (INTEL_GEN(dev_priv) >= 11)
5398 		intel_dp_get_dsc_sink_cap(intel_dp);
5399 
5400 	intel_dp_configure_mst(intel_dp);
5401 
5402 	if (intel_dp->is_mst) {
5403 		/*
5404 		 * If we are in MST mode then this connector
5405 		 * won't appear connected or have anything
5406 		 * with EDID on it
5407 		 */
5408 		status = connector_status_disconnected;
5409 		goto out;
5410 	}
5411 
5412 	/*
5413 	 * Some external monitors do not signal loss of link synchronization
5414 	 * with an IRQ_HPD, so force a link status check.
5415 	 */
5416 	if (!intel_dp_is_edp(intel_dp)) {
5417 		int ret;
5418 
5419 		ret = intel_dp_retrain_link(encoder, ctx);
5420 		if (ret)
5421 			return ret;
5422 	}
5423 
5424 	/*
5425 	 * Clearing NACK and defer counts to get their exact values
5426 	 * while reading EDID which are required by Compliance tests
5427 	 * 4.2.2.4 and 4.2.2.5
5428 	 */
5429 	intel_dp->aux.i2c_nack_count = 0;
5430 	intel_dp->aux.i2c_defer_count = 0;
5431 
5432 	intel_dp_set_edid(intel_dp);
5433 	if (intel_dp_is_edp(intel_dp) ||
5434 	    to_intel_connector(connector)->detect_edid)
5435 		status = connector_status_connected;
5436 
5437 	intel_dp_check_service_irq(intel_dp);
5438 
5439 out:
5440 	if (status != connector_status_connected && !intel_dp->is_mst)
5441 		intel_dp_unset_edid(intel_dp);
5442 
5443 	/*
5444 	 * Make sure the refs for power wells enabled during detect are
5445 	 * dropped to avoid a new detect cycle triggered by HPD polling.
5446 	 */
5447 	intel_display_power_flush_work(dev_priv);
5448 
5449 	return status;
5450 }
5451 
5452 static void
intel_dp_force(struct drm_connector * connector)5453 intel_dp_force(struct drm_connector *connector)
5454 {
5455 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5456 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5457 	struct intel_encoder *intel_encoder = &dig_port->base;
5458 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5459 	enum intel_display_power_domain aux_domain =
5460 		intel_aux_power_domain(dig_port);
5461 	intel_wakeref_t wakeref;
5462 
5463 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5464 		      connector->base.id, connector->name);
5465 	intel_dp_unset_edid(intel_dp);
5466 
5467 	if (connector->status != connector_status_connected)
5468 		return;
5469 
5470 	wakeref = intel_display_power_get(dev_priv, aux_domain);
5471 
5472 	intel_dp_set_edid(intel_dp);
5473 
5474 	intel_display_power_put(dev_priv, aux_domain, wakeref);
5475 }
5476 
intel_dp_get_modes(struct drm_connector * connector)5477 static int intel_dp_get_modes(struct drm_connector *connector)
5478 {
5479 	struct intel_connector *intel_connector = to_intel_connector(connector);
5480 	struct edid *edid;
5481 
5482 	edid = intel_connector->detect_edid;
5483 	if (edid) {
5484 		int ret = intel_connector_update_modes(connector, edid);
5485 		if (ret)
5486 			return ret;
5487 	}
5488 
5489 	/* if eDP has no EDID, fall back to fixed mode */
5490 	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5491 	    intel_connector->panel.fixed_mode) {
5492 		struct drm_display_mode *mode;
5493 
5494 		mode = drm_mode_duplicate(connector->dev,
5495 					  intel_connector->panel.fixed_mode);
5496 		if (mode) {
5497 			drm_mode_probed_add(connector, mode);
5498 			return 1;
5499 		}
5500 	}
5501 
5502 	return 0;
5503 }
5504 
5505 static int
intel_dp_connector_register(struct drm_connector * connector)5506 intel_dp_connector_register(struct drm_connector *connector)
5507 {
5508 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5509 	struct drm_device *dev = connector->dev;
5510 	int ret;
5511 
5512 	ret = intel_connector_register(connector);
5513 	if (ret)
5514 		return ret;
5515 
5516 	i915_debugfs_connector_add(connector);
5517 
5518 	DRM_DEBUG_KMS("registering %s bus for %s\n",
5519 		      intel_dp->aux.name, connector->kdev->kobj.name);
5520 
5521 	intel_dp->aux.dev = connector->kdev;
5522 	ret = drm_dp_aux_register(&intel_dp->aux);
5523 	if (!ret)
5524 		drm_dp_cec_register_connector(&intel_dp->aux,
5525 					      connector->name, dev->dev);
5526 	return ret;
5527 }
5528 
5529 static void
intel_dp_connector_unregister(struct drm_connector * connector)5530 intel_dp_connector_unregister(struct drm_connector *connector)
5531 {
5532 	struct intel_dp *intel_dp = intel_attached_dp(connector);
5533 
5534 	drm_dp_cec_unregister_connector(&intel_dp->aux);
5535 	drm_dp_aux_unregister(&intel_dp->aux);
5536 	intel_connector_unregister(connector);
5537 }
5538 
intel_dp_encoder_flush_work(struct drm_encoder * encoder)5539 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5540 {
5541 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5542 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5543 
5544 	intel_dp_mst_encoder_cleanup(intel_dig_port);
5545 	if (intel_dp_is_edp(intel_dp)) {
5546 		intel_wakeref_t wakeref;
5547 
5548 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5549 		/*
5550 		 * vdd might still be enabled do to the delayed vdd off.
5551 		 * Make sure vdd is actually turned off here.
5552 		 */
5553 		with_pps_lock(intel_dp, wakeref)
5554 			edp_panel_vdd_off_sync(intel_dp);
5555 
5556 		if (intel_dp->edp_notifier.notifier_call) {
5557 			unregister_reboot_notifier(&intel_dp->edp_notifier);
5558 			intel_dp->edp_notifier.notifier_call = NULL;
5559 		}
5560 	}
5561 
5562 	intel_dp_aux_fini(intel_dp);
5563 }
5564 
intel_dp_encoder_destroy(struct drm_encoder * encoder)5565 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5566 {
5567 	intel_dp_encoder_flush_work(encoder);
5568 
5569 	drm_encoder_cleanup(encoder);
5570 	kfree(enc_to_dig_port(encoder));
5571 }
5572 
intel_dp_encoder_suspend(struct intel_encoder * intel_encoder)5573 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5574 {
5575 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5576 	intel_wakeref_t wakeref;
5577 
5578 	if (!intel_dp_is_edp(intel_dp))
5579 		return;
5580 
5581 	/*
5582 	 * vdd might still be enabled do to the delayed vdd off.
5583 	 * Make sure vdd is actually turned off here.
5584 	 */
5585 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5586 	with_pps_lock(intel_dp, wakeref)
5587 		edp_panel_vdd_off_sync(intel_dp);
5588 }
5589 
intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp * hdcp,int timeout)5590 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5591 {
5592 	long ret;
5593 
5594 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5595 	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5596 					       msecs_to_jiffies(timeout));
5597 
5598 	if (!ret)
5599 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5600 }
5601 
5602 static
intel_dp_hdcp_write_an_aksv(struct intel_digital_port * intel_dig_port,u8 * an)5603 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5604 				u8 *an)
5605 {
5606 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5607 	static const struct drm_dp_aux_msg msg = {
5608 		.request = DP_AUX_NATIVE_WRITE,
5609 		.address = DP_AUX_HDCP_AKSV,
5610 		.size = DRM_HDCP_KSV_LEN,
5611 	};
5612 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5613 	ssize_t dpcd_ret;
5614 	int ret;
5615 
5616 	/* Output An first, that's easy */
5617 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5618 				     an, DRM_HDCP_AN_LEN);
5619 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5620 		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5621 			      dpcd_ret);
5622 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5623 	}
5624 
5625 	/*
5626 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5627 	 * order to get it on the wire, we need to create the AUX header as if
5628 	 * we were writing the data, and then tickle the hardware to output the
5629 	 * data once the header is sent out.
5630 	 */
5631 	intel_dp_aux_header(txbuf, &msg);
5632 
5633 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5634 				rxbuf, sizeof(rxbuf),
5635 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5636 	if (ret < 0) {
5637 		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5638 		return ret;
5639 	} else if (ret == 0) {
5640 		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5641 		return -EIO;
5642 	}
5643 
5644 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5645 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5646 		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5647 			      reply);
5648 		return -EIO;
5649 	}
5650 	return 0;
5651 }
5652 
intel_dp_hdcp_read_bksv(struct intel_digital_port * intel_dig_port,u8 * bksv)5653 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5654 				   u8 *bksv)
5655 {
5656 	ssize_t ret;
5657 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5658 			       DRM_HDCP_KSV_LEN);
5659 	if (ret != DRM_HDCP_KSV_LEN) {
5660 		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5661 		return ret >= 0 ? -EIO : ret;
5662 	}
5663 	return 0;
5664 }
5665 
intel_dp_hdcp_read_bstatus(struct intel_digital_port * intel_dig_port,u8 * bstatus)5666 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5667 				      u8 *bstatus)
5668 {
5669 	ssize_t ret;
5670 	/*
5671 	 * For some reason the HDMI and DP HDCP specs call this register
5672 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
5673 	 * but in DP it's called BINFO.
5674 	 */
5675 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5676 			       bstatus, DRM_HDCP_BSTATUS_LEN);
5677 	if (ret != DRM_HDCP_BSTATUS_LEN) {
5678 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5679 		return ret >= 0 ? -EIO : ret;
5680 	}
5681 	return 0;
5682 }
5683 
5684 static
intel_dp_hdcp_read_bcaps(struct intel_digital_port * intel_dig_port,u8 * bcaps)5685 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5686 			     u8 *bcaps)
5687 {
5688 	ssize_t ret;
5689 
5690 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5691 			       bcaps, 1);
5692 	if (ret != 1) {
5693 		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5694 		return ret >= 0 ? -EIO : ret;
5695 	}
5696 
5697 	return 0;
5698 }
5699 
5700 static
intel_dp_hdcp_repeater_present(struct intel_digital_port * intel_dig_port,bool * repeater_present)5701 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5702 				   bool *repeater_present)
5703 {
5704 	ssize_t ret;
5705 	u8 bcaps;
5706 
5707 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5708 	if (ret)
5709 		return ret;
5710 
5711 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5712 	return 0;
5713 }
5714 
5715 static
intel_dp_hdcp_read_ri_prime(struct intel_digital_port * intel_dig_port,u8 * ri_prime)5716 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5717 				u8 *ri_prime)
5718 {
5719 	ssize_t ret;
5720 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5721 			       ri_prime, DRM_HDCP_RI_LEN);
5722 	if (ret != DRM_HDCP_RI_LEN) {
5723 		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5724 		return ret >= 0 ? -EIO : ret;
5725 	}
5726 	return 0;
5727 }
5728 
5729 static
intel_dp_hdcp_read_ksv_ready(struct intel_digital_port * intel_dig_port,bool * ksv_ready)5730 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5731 				 bool *ksv_ready)
5732 {
5733 	ssize_t ret;
5734 	u8 bstatus;
5735 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5736 			       &bstatus, 1);
5737 	if (ret != 1) {
5738 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5739 		return ret >= 0 ? -EIO : ret;
5740 	}
5741 	*ksv_ready = bstatus & DP_BSTATUS_READY;
5742 	return 0;
5743 }
5744 
5745 static
intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port * intel_dig_port,int num_downstream,u8 * ksv_fifo)5746 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5747 				int num_downstream, u8 *ksv_fifo)
5748 {
5749 	ssize_t ret;
5750 	int i;
5751 
5752 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5753 	for (i = 0; i < num_downstream; i += 3) {
5754 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5755 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5756 				       DP_AUX_HDCP_KSV_FIFO,
5757 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
5758 				       len);
5759 		if (ret != len) {
5760 			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
5761 				      i, ret);
5762 			return ret >= 0 ? -EIO : ret;
5763 		}
5764 	}
5765 	return 0;
5766 }
5767 
5768 static
intel_dp_hdcp_read_v_prime_part(struct intel_digital_port * intel_dig_port,int i,u32 * part)5769 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5770 				    int i, u32 *part)
5771 {
5772 	ssize_t ret;
5773 
5774 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5775 		return -EINVAL;
5776 
5777 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5778 			       DP_AUX_HDCP_V_PRIME(i), part,
5779 			       DRM_HDCP_V_PRIME_PART_LEN);
5780 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5781 		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5782 		return ret >= 0 ? -EIO : ret;
5783 	}
5784 	return 0;
5785 }
5786 
5787 static
intel_dp_hdcp_toggle_signalling(struct intel_digital_port * intel_dig_port,bool enable)5788 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5789 				    bool enable)
5790 {
5791 	/* Not used for single stream DisplayPort setups */
5792 	return 0;
5793 }
5794 
5795 static
intel_dp_hdcp_check_link(struct intel_digital_port * intel_dig_port)5796 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5797 {
5798 	ssize_t ret;
5799 	u8 bstatus;
5800 
5801 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5802 			       &bstatus, 1);
5803 	if (ret != 1) {
5804 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5805 		return false;
5806 	}
5807 
5808 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5809 }
5810 
5811 static
intel_dp_hdcp_capable(struct intel_digital_port * intel_dig_port,bool * hdcp_capable)5812 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
5813 			  bool *hdcp_capable)
5814 {
5815 	ssize_t ret;
5816 	u8 bcaps;
5817 
5818 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5819 	if (ret)
5820 		return ret;
5821 
5822 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
5823 	return 0;
5824 }
5825 
5826 struct hdcp2_dp_errata_stream_type {
5827 	u8	msg_id;
5828 	u8	stream_type;
5829 } __packed;
5830 
5831 struct hdcp2_dp_msg_data {
5832 	u8 msg_id;
5833 	u32 offset;
5834 	bool msg_detectable;
5835 	u32 timeout;
5836 	u32 timeout2; /* Added for non_paired situation */
5837 };
5838 
5839 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
5840 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
5841 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
5842 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
5843 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
5844 	  false, 0, 0 },
5845 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
5846 	  false, 0, 0 },
5847 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
5848 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
5849 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
5850 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
5851 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
5852 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
5853 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
5854 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
5855 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
5856 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
5857 	  0, 0 },
5858 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
5859 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
5860 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
5861 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
5862 	  0, 0 },
5863 	{ HDCP_2_2_REP_STREAM_MANAGE,
5864 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
5865 	  0, 0 },
5866 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
5867 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
5868 /* local define to shovel this through the write_2_2 interface */
5869 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
5870 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
5871 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
5872 	  0, 0 },
5873 };
5874 
5875 static inline
intel_dp_hdcp2_read_rx_status(struct intel_digital_port * intel_dig_port,u8 * rx_status)5876 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
5877 				  u8 *rx_status)
5878 {
5879 	ssize_t ret;
5880 
5881 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5882 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
5883 			       HDCP_2_2_DP_RXSTATUS_LEN);
5884 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
5885 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5886 		return ret >= 0 ? -EIO : ret;
5887 	}
5888 
5889 	return 0;
5890 }
5891 
5892 static
hdcp2_detect_msg_availability(struct intel_digital_port * intel_dig_port,u8 msg_id,bool * msg_ready)5893 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
5894 				  u8 msg_id, bool *msg_ready)
5895 {
5896 	u8 rx_status;
5897 	int ret;
5898 
5899 	*msg_ready = false;
5900 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
5901 	if (ret < 0)
5902 		return ret;
5903 
5904 	switch (msg_id) {
5905 	case HDCP_2_2_AKE_SEND_HPRIME:
5906 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
5907 			*msg_ready = true;
5908 		break;
5909 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
5910 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
5911 			*msg_ready = true;
5912 		break;
5913 	case HDCP_2_2_REP_SEND_RECVID_LIST:
5914 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
5915 			*msg_ready = true;
5916 		break;
5917 	default:
5918 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
5919 		return -EINVAL;
5920 	}
5921 
5922 	return 0;
5923 }
5924 
5925 static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port * intel_dig_port,const struct hdcp2_dp_msg_data * hdcp2_msg_data)5926 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
5927 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
5928 {
5929 	struct intel_dp *dp = &intel_dig_port->dp;
5930 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
5931 	u8 msg_id = hdcp2_msg_data->msg_id;
5932 	int ret, timeout;
5933 	bool msg_ready = false;
5934 
5935 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
5936 		timeout = hdcp2_msg_data->timeout2;
5937 	else
5938 		timeout = hdcp2_msg_data->timeout;
5939 
5940 	/*
5941 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
5942 	 * availability. So Wait for timeout and read the msg.
5943 	 */
5944 	if (!hdcp2_msg_data->msg_detectable) {
5945 		mdelay(timeout);
5946 		ret = 0;
5947 	} else {
5948 		/*
5949 		 * As we want to check the msg availability at timeout, Ignoring
5950 		 * the timeout at wait for CP_IRQ.
5951 		 */
5952 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
5953 		ret = hdcp2_detect_msg_availability(intel_dig_port,
5954 						    msg_id, &msg_ready);
5955 		if (!msg_ready)
5956 			ret = -ETIMEDOUT;
5957 	}
5958 
5959 	if (ret)
5960 		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
5961 			      hdcp2_msg_data->msg_id, ret, timeout);
5962 
5963 	return ret;
5964 }
5965 
get_hdcp2_dp_msg_data(u8 msg_id)5966 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
5967 {
5968 	int i;
5969 
5970 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
5971 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
5972 			return &hdcp2_dp_msg_data[i];
5973 
5974 	return NULL;
5975 }
5976 
5977 static
intel_dp_hdcp2_write_msg(struct intel_digital_port * intel_dig_port,void * buf,size_t size)5978 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
5979 			     void *buf, size_t size)
5980 {
5981 	struct intel_dp *dp = &intel_dig_port->dp;
5982 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
5983 	unsigned int offset;
5984 	u8 *byte = buf;
5985 	ssize_t ret, bytes_to_write, len;
5986 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
5987 
5988 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
5989 	if (!hdcp2_msg_data)
5990 		return -EINVAL;
5991 
5992 	offset = hdcp2_msg_data->offset;
5993 
5994 	/* No msg_id in DP HDCP2.2 msgs */
5995 	bytes_to_write = size - 1;
5996 	byte++;
5997 
5998 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
5999 
6000 	while (bytes_to_write) {
6001 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6002 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6003 
6004 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6005 					offset, (void *)byte, len);
6006 		if (ret < 0)
6007 			return ret;
6008 
6009 		bytes_to_write -= ret;
6010 		byte += ret;
6011 		offset += ret;
6012 	}
6013 
6014 	return size;
6015 }
6016 
6017 static
get_receiver_id_list_size(struct intel_digital_port * intel_dig_port)6018 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6019 {
6020 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
6021 	u32 dev_cnt;
6022 	ssize_t ret;
6023 
6024 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6025 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
6026 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6027 	if (ret != HDCP_2_2_RXINFO_LEN)
6028 		return ret >= 0 ? -EIO : ret;
6029 
6030 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6031 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6032 
6033 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6034 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6035 
6036 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6037 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6038 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6039 
6040 	return ret;
6041 }
6042 
6043 static
intel_dp_hdcp2_read_msg(struct intel_digital_port * intel_dig_port,u8 msg_id,void * buf,size_t size)6044 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6045 			    u8 msg_id, void *buf, size_t size)
6046 {
6047 	unsigned int offset;
6048 	u8 *byte = buf;
6049 	ssize_t ret, bytes_to_recv, len;
6050 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6051 
6052 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6053 	if (!hdcp2_msg_data)
6054 		return -EINVAL;
6055 	offset = hdcp2_msg_data->offset;
6056 
6057 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6058 	if (ret < 0)
6059 		return ret;
6060 
6061 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6062 		ret = get_receiver_id_list_size(intel_dig_port);
6063 		if (ret < 0)
6064 			return ret;
6065 
6066 		size = ret;
6067 	}
6068 	bytes_to_recv = size - 1;
6069 
6070 	/* DP adaptation msgs has no msg_id */
6071 	byte++;
6072 
6073 	while (bytes_to_recv) {
6074 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6075 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6076 
6077 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6078 				       (void *)byte, len);
6079 		if (ret < 0) {
6080 			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6081 			return ret;
6082 		}
6083 
6084 		bytes_to_recv -= ret;
6085 		byte += ret;
6086 		offset += ret;
6087 	}
6088 	byte = buf;
6089 	*byte = msg_id;
6090 
6091 	return size;
6092 }
6093 
6094 static
intel_dp_hdcp2_config_stream_type(struct intel_digital_port * intel_dig_port,bool is_repeater,u8 content_type)6095 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6096 				      bool is_repeater, u8 content_type)
6097 {
6098 	struct hdcp2_dp_errata_stream_type stream_type_msg;
6099 
6100 	if (is_repeater)
6101 		return 0;
6102 
6103 	/*
6104 	 * Errata for DP: As Stream type is used for encryption, Receiver
6105 	 * should be communicated with stream type for the decryption of the
6106 	 * content.
6107 	 * Repeater will be communicated with stream type as a part of it's
6108 	 * auth later in time.
6109 	 */
6110 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6111 	stream_type_msg.stream_type = content_type;
6112 
6113 	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6114 					sizeof(stream_type_msg));
6115 }
6116 
6117 static
intel_dp_hdcp2_check_link(struct intel_digital_port * intel_dig_port)6118 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6119 {
6120 	u8 rx_status;
6121 	int ret;
6122 
6123 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6124 	if (ret)
6125 		return ret;
6126 
6127 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6128 		ret = HDCP_REAUTH_REQUEST;
6129 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6130 		ret = HDCP_LINK_INTEGRITY_FAILURE;
6131 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6132 		ret = HDCP_TOPOLOGY_CHANGE;
6133 
6134 	return ret;
6135 }
6136 
6137 static
intel_dp_hdcp2_capable(struct intel_digital_port * intel_dig_port,bool * capable)6138 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6139 			   bool *capable)
6140 {
6141 	u8 rx_caps[3];
6142 	int ret;
6143 
6144 	*capable = false;
6145 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6146 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6147 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
6148 	if (ret != HDCP_2_2_RXCAPS_LEN)
6149 		return ret >= 0 ? -EIO : ret;
6150 
6151 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6152 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6153 		*capable = true;
6154 
6155 	return 0;
6156 }
6157 
6158 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6159 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
6160 	.read_bksv = intel_dp_hdcp_read_bksv,
6161 	.read_bstatus = intel_dp_hdcp_read_bstatus,
6162 	.repeater_present = intel_dp_hdcp_repeater_present,
6163 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
6164 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6165 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6166 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6167 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
6168 	.check_link = intel_dp_hdcp_check_link,
6169 	.hdcp_capable = intel_dp_hdcp_capable,
6170 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
6171 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
6172 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
6173 	.check_2_2_link = intel_dp_hdcp2_check_link,
6174 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
6175 	.protocol = HDCP_PROTOCOL_DP,
6176 };
6177 
intel_edp_panel_vdd_sanitize(struct intel_dp * intel_dp)6178 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6179 {
6180 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6181 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6182 
6183 	lockdep_assert_held(&dev_priv->pps_mutex);
6184 
6185 	if (!edp_have_panel_vdd(intel_dp))
6186 		return;
6187 
6188 	/*
6189 	 * The VDD bit needs a power domain reference, so if the bit is
6190 	 * already enabled when we boot or resume, grab this reference and
6191 	 * schedule a vdd off, so we don't hold on to the reference
6192 	 * indefinitely.
6193 	 */
6194 	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6195 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6196 
6197 	edp_panel_vdd_schedule_off(intel_dp);
6198 }
6199 
vlv_active_pipe(struct intel_dp * intel_dp)6200 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6201 {
6202 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6203 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6204 	enum pipe pipe;
6205 
6206 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6207 				  encoder->port, &pipe))
6208 		return pipe;
6209 
6210 	return INVALID_PIPE;
6211 }
6212 
intel_dp_encoder_reset(struct drm_encoder * encoder)6213 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6214 {
6215 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6216 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6217 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6218 	intel_wakeref_t wakeref;
6219 
6220 	if (!HAS_DDI(dev_priv))
6221 		intel_dp->DP = I915_READ(intel_dp->output_reg);
6222 
6223 	if (lspcon->active)
6224 		lspcon_resume(lspcon);
6225 
6226 	intel_dp->reset_link_params = true;
6227 
6228 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6229 	    !intel_dp_is_edp(intel_dp))
6230 		return;
6231 
6232 	with_pps_lock(intel_dp, wakeref) {
6233 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6234 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6235 
6236 		if (intel_dp_is_edp(intel_dp)) {
6237 			/*
6238 			 * Reinit the power sequencer, in case BIOS did
6239 			 * something nasty with it.
6240 			 */
6241 			intel_dp_pps_init(intel_dp);
6242 			intel_edp_panel_vdd_sanitize(intel_dp);
6243 		}
6244 	}
6245 }
6246 
6247 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6248 	.force = intel_dp_force,
6249 	.fill_modes = drm_helper_probe_single_connector_modes,
6250 	.atomic_get_property = intel_digital_connector_atomic_get_property,
6251 	.atomic_set_property = intel_digital_connector_atomic_set_property,
6252 	.late_register = intel_dp_connector_register,
6253 	.early_unregister = intel_dp_connector_unregister,
6254 	.destroy = intel_connector_destroy,
6255 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6256 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6257 };
6258 
6259 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6260 	.detect_ctx = intel_dp_detect,
6261 	.get_modes = intel_dp_get_modes,
6262 	.mode_valid = intel_dp_mode_valid,
6263 	.atomic_check = intel_digital_connector_atomic_check,
6264 };
6265 
6266 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6267 	.reset = intel_dp_encoder_reset,
6268 	.destroy = intel_dp_encoder_destroy,
6269 };
6270 
6271 enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port * intel_dig_port,bool long_hpd)6272 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6273 {
6274 	struct intel_dp *intel_dp = &intel_dig_port->dp;
6275 
6276 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6277 		/*
6278 		 * vdd off can generate a long pulse on eDP which
6279 		 * would require vdd on to handle it, and thus we
6280 		 * would end up in an endless cycle of
6281 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6282 		 */
6283 		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6284 			      port_name(intel_dig_port->base.port));
6285 		return IRQ_HANDLED;
6286 	}
6287 
6288 	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6289 		      port_name(intel_dig_port->base.port),
6290 		      long_hpd ? "long" : "short");
6291 
6292 	if (long_hpd) {
6293 		intel_dp->reset_link_params = true;
6294 		return IRQ_NONE;
6295 	}
6296 
6297 	if (intel_dp->is_mst) {
6298 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6299 			/*
6300 			 * If we were in MST mode, and device is not
6301 			 * there, get out of MST mode
6302 			 */
6303 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6304 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6305 			intel_dp->is_mst = false;
6306 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6307 							intel_dp->is_mst);
6308 
6309 			return IRQ_NONE;
6310 		}
6311 	}
6312 
6313 	if (!intel_dp->is_mst) {
6314 		bool handled;
6315 
6316 		handled = intel_dp_short_pulse(intel_dp);
6317 
6318 		if (!handled)
6319 			return IRQ_NONE;
6320 	}
6321 
6322 	return IRQ_HANDLED;
6323 }
6324 
6325 /* check the VBT to see whether the eDP is on another port */
intel_dp_is_port_edp(struct drm_i915_private * dev_priv,enum port port)6326 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6327 {
6328 	/*
6329 	 * eDP not supported on g4x. so bail out early just
6330 	 * for a bit extra safety in case the VBT is bonkers.
6331 	 */
6332 	if (INTEL_GEN(dev_priv) < 5)
6333 		return false;
6334 
6335 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6336 		return true;
6337 
6338 	return intel_bios_is_port_edp(dev_priv, port);
6339 }
6340 
6341 static void
intel_dp_add_properties(struct intel_dp * intel_dp,struct drm_connector * connector)6342 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6343 {
6344 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6345 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6346 
6347 	if (!IS_G4X(dev_priv) && port != PORT_A)
6348 		intel_attach_force_audio_property(connector);
6349 
6350 	intel_attach_broadcast_rgb_property(connector);
6351 	if (HAS_GMCH(dev_priv))
6352 		drm_connector_attach_max_bpc_property(connector, 6, 10);
6353 	else if (INTEL_GEN(dev_priv) >= 5)
6354 		drm_connector_attach_max_bpc_property(connector, 6, 12);
6355 
6356 	if (intel_dp_is_edp(intel_dp)) {
6357 		u32 allowed_scalers;
6358 
6359 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6360 		if (!HAS_GMCH(dev_priv))
6361 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6362 
6363 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6364 
6365 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6366 
6367 	}
6368 }
6369 
intel_dp_init_panel_power_timestamps(struct intel_dp * intel_dp)6370 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6371 {
6372 	intel_dp->panel_power_off_time = ktime_get_boottime();
6373 	intel_dp->last_power_on = jiffies;
6374 	intel_dp->last_backlight_off = jiffies;
6375 }
6376 
6377 static void
intel_pps_readout_hw_state(struct intel_dp * intel_dp,struct edp_power_seq * seq)6378 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6379 {
6380 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6381 	u32 pp_on, pp_off, pp_ctl;
6382 	struct pps_registers regs;
6383 
6384 	intel_pps_get_registers(intel_dp, &regs);
6385 
6386 	pp_ctl = ironlake_get_pp_control(intel_dp);
6387 
6388 	/* Ensure PPS is unlocked */
6389 	if (!HAS_DDI(dev_priv))
6390 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6391 
6392 	pp_on = I915_READ(regs.pp_on);
6393 	pp_off = I915_READ(regs.pp_off);
6394 
6395 	/* Pull timing values out of registers */
6396 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6397 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6398 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6399 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6400 
6401 	if (i915_mmio_reg_valid(regs.pp_div)) {
6402 		u32 pp_div;
6403 
6404 		pp_div = I915_READ(regs.pp_div);
6405 
6406 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6407 	} else {
6408 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6409 	}
6410 }
6411 
6412 static void
intel_pps_dump_state(const char * state_name,const struct edp_power_seq * seq)6413 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6414 {
6415 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6416 		      state_name,
6417 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6418 }
6419 
6420 static void
intel_pps_verify_state(struct intel_dp * intel_dp)6421 intel_pps_verify_state(struct intel_dp *intel_dp)
6422 {
6423 	struct edp_power_seq hw;
6424 	struct edp_power_seq *sw = &intel_dp->pps_delays;
6425 
6426 	intel_pps_readout_hw_state(intel_dp, &hw);
6427 
6428 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6429 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6430 		DRM_ERROR("PPS state mismatch\n");
6431 		intel_pps_dump_state("sw", sw);
6432 		intel_pps_dump_state("hw", &hw);
6433 	}
6434 }
6435 
6436 static void
intel_dp_init_panel_power_sequencer(struct intel_dp * intel_dp)6437 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6438 {
6439 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6440 	struct edp_power_seq cur, vbt, spec,
6441 		*final = &intel_dp->pps_delays;
6442 
6443 	lockdep_assert_held(&dev_priv->pps_mutex);
6444 
6445 	/* already initialized? */
6446 	if (final->t11_t12 != 0)
6447 		return;
6448 
6449 	intel_pps_readout_hw_state(intel_dp, &cur);
6450 
6451 	intel_pps_dump_state("cur", &cur);
6452 
6453 	vbt = dev_priv->vbt.edp.pps;
6454 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6455 	 * of 500ms appears to be too short. Ocassionally the panel
6456 	 * just fails to power back on. Increasing the delay to 800ms
6457 	 * seems sufficient to avoid this problem.
6458 	 */
6459 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6460 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6461 		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6462 			      vbt.t11_t12);
6463 	}
6464 	/* T11_T12 delay is special and actually in units of 100ms, but zero
6465 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6466 	 * table multiplies it with 1000 to make it in units of 100usec,
6467 	 * too. */
6468 	vbt.t11_t12 += 100 * 10;
6469 
6470 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6471 	 * our hw here, which are all in 100usec. */
6472 	spec.t1_t3 = 210 * 10;
6473 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6474 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6475 	spec.t10 = 500 * 10;
6476 	/* This one is special and actually in units of 100ms, but zero
6477 	 * based in the hw (so we need to add 100 ms). But the sw vbt
6478 	 * table multiplies it with 1000 to make it in units of 100usec,
6479 	 * too. */
6480 	spec.t11_t12 = (510 + 100) * 10;
6481 
6482 	intel_pps_dump_state("vbt", &vbt);
6483 
6484 	/* Use the max of the register settings and vbt. If both are
6485 	 * unset, fall back to the spec limits. */
6486 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6487 				       spec.field : \
6488 				       max(cur.field, vbt.field))
6489 	assign_final(t1_t3);
6490 	assign_final(t8);
6491 	assign_final(t9);
6492 	assign_final(t10);
6493 	assign_final(t11_t12);
6494 #undef assign_final
6495 
6496 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6497 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
6498 	intel_dp->backlight_on_delay = get_delay(t8);
6499 	intel_dp->backlight_off_delay = get_delay(t9);
6500 	intel_dp->panel_power_down_delay = get_delay(t10);
6501 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6502 #undef get_delay
6503 
6504 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6505 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6506 		      intel_dp->panel_power_cycle_delay);
6507 
6508 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6509 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6510 
6511 	/*
6512 	 * We override the HW backlight delays to 1 because we do manual waits
6513 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
6514 	 * don't do this, we'll end up waiting for the backlight off delay
6515 	 * twice: once when we do the manual sleep, and once when we disable
6516 	 * the panel and wait for the PP_STATUS bit to become zero.
6517 	 */
6518 	final->t8 = 1;
6519 	final->t9 = 1;
6520 
6521 	/*
6522 	 * HW has only a 100msec granularity for t11_t12 so round it up
6523 	 * accordingly.
6524 	 */
6525 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6526 }
6527 
6528 static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp * intel_dp,bool force_disable_vdd)6529 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6530 					      bool force_disable_vdd)
6531 {
6532 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6533 	u32 pp_on, pp_off, port_sel = 0;
6534 	int div = dev_priv->rawclk_freq / 1000;
6535 	struct pps_registers regs;
6536 	enum port port = dp_to_dig_port(intel_dp)->base.port;
6537 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6538 
6539 	lockdep_assert_held(&dev_priv->pps_mutex);
6540 
6541 	intel_pps_get_registers(intel_dp, &regs);
6542 
6543 	/*
6544 	 * On some VLV machines the BIOS can leave the VDD
6545 	 * enabled even on power sequencers which aren't
6546 	 * hooked up to any port. This would mess up the
6547 	 * power domain tracking the first time we pick
6548 	 * one of these power sequencers for use since
6549 	 * edp_panel_vdd_on() would notice that the VDD was
6550 	 * already on and therefore wouldn't grab the power
6551 	 * domain reference. Disable VDD first to avoid this.
6552 	 * This also avoids spuriously turning the VDD on as
6553 	 * soon as the new power sequencer gets initialized.
6554 	 */
6555 	if (force_disable_vdd) {
6556 		u32 pp = ironlake_get_pp_control(intel_dp);
6557 
6558 		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6559 
6560 		if (pp & EDP_FORCE_VDD)
6561 			DRM_DEBUG_KMS("VDD already on, disabling first\n");
6562 
6563 		pp &= ~EDP_FORCE_VDD;
6564 
6565 		I915_WRITE(regs.pp_ctrl, pp);
6566 	}
6567 
6568 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6569 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6570 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6571 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6572 
6573 	/* Haswell doesn't have any port selection bits for the panel
6574 	 * power sequencer any more. */
6575 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6576 		port_sel = PANEL_PORT_SELECT_VLV(port);
6577 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6578 		switch (port) {
6579 		case PORT_A:
6580 			port_sel = PANEL_PORT_SELECT_DPA;
6581 			break;
6582 		case PORT_C:
6583 			port_sel = PANEL_PORT_SELECT_DPC;
6584 			break;
6585 		case PORT_D:
6586 			port_sel = PANEL_PORT_SELECT_DPD;
6587 			break;
6588 		default:
6589 			MISSING_CASE(port);
6590 			break;
6591 		}
6592 	}
6593 
6594 	pp_on |= port_sel;
6595 
6596 	I915_WRITE(regs.pp_on, pp_on);
6597 	I915_WRITE(regs.pp_off, pp_off);
6598 
6599 	/*
6600 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
6601 	 */
6602 	if (i915_mmio_reg_valid(regs.pp_div)) {
6603 		I915_WRITE(regs.pp_div,
6604 			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6605 			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6606 	} else {
6607 		u32 pp_ctl;
6608 
6609 		pp_ctl = I915_READ(regs.pp_ctrl);
6610 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6611 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6612 		I915_WRITE(regs.pp_ctrl, pp_ctl);
6613 	}
6614 
6615 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6616 		      I915_READ(regs.pp_on),
6617 		      I915_READ(regs.pp_off),
6618 		      i915_mmio_reg_valid(regs.pp_div) ?
6619 		      I915_READ(regs.pp_div) :
6620 		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6621 }
6622 
intel_dp_pps_init(struct intel_dp * intel_dp)6623 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6624 {
6625 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6626 
6627 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6628 		vlv_initial_power_sequencer_setup(intel_dp);
6629 	} else {
6630 		intel_dp_init_panel_power_sequencer(intel_dp);
6631 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6632 	}
6633 }
6634 
6635 /**
6636  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6637  * @dev_priv: i915 device
6638  * @crtc_state: a pointer to the active intel_crtc_state
6639  * @refresh_rate: RR to be programmed
6640  *
6641  * This function gets called when refresh rate (RR) has to be changed from
6642  * one frequency to another. Switches can be between high and low RR
6643  * supported by the panel or to any other RR based on media playback (in
6644  * this case, RR value needs to be passed from user space).
6645  *
6646  * The caller of this function needs to take a lock on dev_priv->drrs.
6647  */
intel_dp_set_drrs_state(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state,int refresh_rate)6648 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6649 				    const struct intel_crtc_state *crtc_state,
6650 				    int refresh_rate)
6651 {
6652 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6653 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6654 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6655 
6656 	if (refresh_rate <= 0) {
6657 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6658 		return;
6659 	}
6660 
6661 	if (intel_dp == NULL) {
6662 		DRM_DEBUG_KMS("DRRS not supported.\n");
6663 		return;
6664 	}
6665 
6666 	if (!intel_crtc) {
6667 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6668 		return;
6669 	}
6670 
6671 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6672 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6673 		return;
6674 	}
6675 
6676 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6677 			refresh_rate)
6678 		index = DRRS_LOW_RR;
6679 
6680 	if (index == dev_priv->drrs.refresh_rate_type) {
6681 		DRM_DEBUG_KMS(
6682 			"DRRS requested for previously set RR...ignoring\n");
6683 		return;
6684 	}
6685 
6686 	if (!crtc_state->base.active) {
6687 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6688 		return;
6689 	}
6690 
6691 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6692 		switch (index) {
6693 		case DRRS_HIGH_RR:
6694 			intel_dp_set_m_n(crtc_state, M1_N1);
6695 			break;
6696 		case DRRS_LOW_RR:
6697 			intel_dp_set_m_n(crtc_state, M2_N2);
6698 			break;
6699 		case DRRS_MAX_RR:
6700 		default:
6701 			DRM_ERROR("Unsupported refreshrate type\n");
6702 		}
6703 	} else if (INTEL_GEN(dev_priv) > 6) {
6704 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6705 		u32 val;
6706 
6707 		val = I915_READ(reg);
6708 		if (index > DRRS_HIGH_RR) {
6709 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6710 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6711 			else
6712 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6713 		} else {
6714 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6715 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6716 			else
6717 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6718 		}
6719 		I915_WRITE(reg, val);
6720 	}
6721 
6722 	dev_priv->drrs.refresh_rate_type = index;
6723 
6724 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6725 }
6726 
6727 /**
6728  * intel_edp_drrs_enable - init drrs struct if supported
6729  * @intel_dp: DP struct
6730  * @crtc_state: A pointer to the active crtc state.
6731  *
6732  * Initializes frontbuffer_bits and drrs.dp
6733  */
intel_edp_drrs_enable(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)6734 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6735 			   const struct intel_crtc_state *crtc_state)
6736 {
6737 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6738 
6739 	if (!crtc_state->has_drrs) {
6740 		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
6741 		return;
6742 	}
6743 
6744 	if (dev_priv->psr.enabled) {
6745 		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
6746 		return;
6747 	}
6748 
6749 	mutex_lock(&dev_priv->drrs.mutex);
6750 	if (dev_priv->drrs.dp) {
6751 		DRM_DEBUG_KMS("DRRS already enabled\n");
6752 		goto unlock;
6753 	}
6754 
6755 	dev_priv->drrs.busy_frontbuffer_bits = 0;
6756 
6757 	dev_priv->drrs.dp = intel_dp;
6758 
6759 unlock:
6760 	mutex_unlock(&dev_priv->drrs.mutex);
6761 }
6762 
6763 /**
6764  * intel_edp_drrs_disable - Disable DRRS
6765  * @intel_dp: DP struct
6766  * @old_crtc_state: Pointer to old crtc_state.
6767  *
6768  */
intel_edp_drrs_disable(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)6769 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6770 			    const struct intel_crtc_state *old_crtc_state)
6771 {
6772 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6773 
6774 	if (!old_crtc_state->has_drrs)
6775 		return;
6776 
6777 	mutex_lock(&dev_priv->drrs.mutex);
6778 	if (!dev_priv->drrs.dp) {
6779 		mutex_unlock(&dev_priv->drrs.mutex);
6780 		return;
6781 	}
6782 
6783 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6784 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
6785 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
6786 
6787 	dev_priv->drrs.dp = NULL;
6788 	mutex_unlock(&dev_priv->drrs.mutex);
6789 
6790 	cancel_delayed_work_sync(&dev_priv->drrs.work);
6791 }
6792 
intel_edp_drrs_downclock_work(struct work_struct * work)6793 static void intel_edp_drrs_downclock_work(struct work_struct *work)
6794 {
6795 	struct drm_i915_private *dev_priv =
6796 		container_of(work, typeof(*dev_priv), drrs.work.work);
6797 	struct intel_dp *intel_dp;
6798 
6799 	mutex_lock(&dev_priv->drrs.mutex);
6800 
6801 	intel_dp = dev_priv->drrs.dp;
6802 
6803 	if (!intel_dp)
6804 		goto unlock;
6805 
6806 	/*
6807 	 * The delayed work can race with an invalidate hence we need to
6808 	 * recheck.
6809 	 */
6810 
6811 	if (dev_priv->drrs.busy_frontbuffer_bits)
6812 		goto unlock;
6813 
6814 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
6815 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
6816 
6817 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6818 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
6819 	}
6820 
6821 unlock:
6822 	mutex_unlock(&dev_priv->drrs.mutex);
6823 }
6824 
6825 /**
6826  * intel_edp_drrs_invalidate - Disable Idleness DRRS
6827  * @dev_priv: i915 device
6828  * @frontbuffer_bits: frontbuffer plane tracking bits
6829  *
6830  * This function gets called everytime rendering on the given planes start.
6831  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6832  *
6833  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6834  */
intel_edp_drrs_invalidate(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)6835 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
6836 			       unsigned int frontbuffer_bits)
6837 {
6838 	struct drm_crtc *crtc;
6839 	enum pipe pipe;
6840 
6841 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6842 		return;
6843 
6844 	cancel_delayed_work(&dev_priv->drrs.work);
6845 
6846 	mutex_lock(&dev_priv->drrs.mutex);
6847 	if (!dev_priv->drrs.dp) {
6848 		mutex_unlock(&dev_priv->drrs.mutex);
6849 		return;
6850 	}
6851 
6852 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6853 	pipe = to_intel_crtc(crtc)->pipe;
6854 
6855 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6856 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
6857 
6858 	/* invalidate means busy screen hence upclock */
6859 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6860 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6861 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6862 
6863 	mutex_unlock(&dev_priv->drrs.mutex);
6864 }
6865 
6866 /**
6867  * intel_edp_drrs_flush - Restart Idleness DRRS
6868  * @dev_priv: i915 device
6869  * @frontbuffer_bits: frontbuffer plane tracking bits
6870  *
6871  * This function gets called every time rendering on the given planes has
6872  * completed or flip on a crtc is completed. So DRRS should be upclocked
6873  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
6874  * if no other planes are dirty.
6875  *
6876  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6877  */
intel_edp_drrs_flush(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)6878 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
6879 			  unsigned int frontbuffer_bits)
6880 {
6881 	struct drm_crtc *crtc;
6882 	enum pipe pipe;
6883 
6884 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6885 		return;
6886 
6887 	cancel_delayed_work(&dev_priv->drrs.work);
6888 
6889 	mutex_lock(&dev_priv->drrs.mutex);
6890 	if (!dev_priv->drrs.dp) {
6891 		mutex_unlock(&dev_priv->drrs.mutex);
6892 		return;
6893 	}
6894 
6895 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6896 	pipe = to_intel_crtc(crtc)->pipe;
6897 
6898 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6899 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
6900 
6901 	/* flush means busy screen hence upclock */
6902 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6903 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6904 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6905 
6906 	/*
6907 	 * flush also means no more activity hence schedule downclock, if all
6908 	 * other fbs are quiescent too
6909 	 */
6910 	if (!dev_priv->drrs.busy_frontbuffer_bits)
6911 		schedule_delayed_work(&dev_priv->drrs.work,
6912 				msecs_to_jiffies(1000));
6913 	mutex_unlock(&dev_priv->drrs.mutex);
6914 }
6915 
6916 /**
6917  * DOC: Display Refresh Rate Switching (DRRS)
6918  *
6919  * Display Refresh Rate Switching (DRRS) is a power conservation feature
6920  * which enables swtching between low and high refresh rates,
6921  * dynamically, based on the usage scenario. This feature is applicable
6922  * for internal panels.
6923  *
6924  * Indication that the panel supports DRRS is given by the panel EDID, which
6925  * would list multiple refresh rates for one resolution.
6926  *
6927  * DRRS is of 2 types - static and seamless.
6928  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
6929  * (may appear as a blink on screen) and is used in dock-undock scenario.
6930  * Seamless DRRS involves changing RR without any visual effect to the user
6931  * and can be used during normal system usage. This is done by programming
6932  * certain registers.
6933  *
6934  * Support for static/seamless DRRS may be indicated in the VBT based on
6935  * inputs from the panel spec.
6936  *
6937  * DRRS saves power by switching to low RR based on usage scenarios.
6938  *
6939  * The implementation is based on frontbuffer tracking implementation.  When
6940  * there is a disturbance on the screen triggered by user activity or a periodic
6941  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
6942  * no movement on screen, after a timeout of 1 second, a switch to low RR is
6943  * made.
6944  *
6945  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
6946  * and intel_edp_drrs_flush() are called.
6947  *
6948  * DRRS can be further extended to support other internal panels and also
6949  * the scenario of video playback wherein RR is set based on the rate
6950  * requested by userspace.
6951  */
6952 
6953 /**
6954  * intel_dp_drrs_init - Init basic DRRS work and mutex.
6955  * @connector: eDP connector
6956  * @fixed_mode: preferred mode of panel
6957  *
6958  * This function is  called only once at driver load to initialize basic
6959  * DRRS stuff.
6960  *
6961  * Returns:
6962  * Downclock mode if panel supports it, else return NULL.
6963  * DRRS support is determined by the presence of downclock mode (apart
6964  * from VBT setting).
6965  */
6966 static struct drm_display_mode *
intel_dp_drrs_init(struct intel_connector * connector,struct drm_display_mode * fixed_mode)6967 intel_dp_drrs_init(struct intel_connector *connector,
6968 		   struct drm_display_mode *fixed_mode)
6969 {
6970 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6971 	struct drm_display_mode *downclock_mode = NULL;
6972 
6973 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
6974 	mutex_init(&dev_priv->drrs.mutex);
6975 
6976 	if (INTEL_GEN(dev_priv) <= 6) {
6977 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
6978 		return NULL;
6979 	}
6980 
6981 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6982 		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6983 		return NULL;
6984 	}
6985 
6986 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
6987 	if (!downclock_mode) {
6988 		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6989 		return NULL;
6990 	}
6991 
6992 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6993 
6994 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6995 	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6996 	return downclock_mode;
6997 }
6998 
intel_edp_init_connector(struct intel_dp * intel_dp,struct intel_connector * intel_connector)6999 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7000 				     struct intel_connector *intel_connector)
7001 {
7002 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7003 	struct drm_device *dev = &dev_priv->drm;
7004 	struct drm_connector *connector = &intel_connector->base;
7005 	struct drm_display_mode *fixed_mode = NULL;
7006 	struct drm_display_mode *downclock_mode = NULL;
7007 	bool has_dpcd;
7008 	enum pipe pipe = INVALID_PIPE;
7009 	intel_wakeref_t wakeref;
7010 	struct edid *edid;
7011 
7012 	if (!intel_dp_is_edp(intel_dp))
7013 		return true;
7014 
7015 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7016 
7017 	/*
7018 	 * On IBX/CPT we may get here with LVDS already registered. Since the
7019 	 * driver uses the only internal power sequencer available for both
7020 	 * eDP and LVDS bail out early in this case to prevent interfering
7021 	 * with an already powered-on LVDS power sequencer.
7022 	 */
7023 	if (intel_get_lvds_encoder(dev_priv)) {
7024 		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7025 		DRM_INFO("LVDS was detected, not registering eDP\n");
7026 
7027 		return false;
7028 	}
7029 
7030 	with_pps_lock(intel_dp, wakeref) {
7031 		intel_dp_init_panel_power_timestamps(intel_dp);
7032 		intel_dp_pps_init(intel_dp);
7033 		intel_edp_panel_vdd_sanitize(intel_dp);
7034 	}
7035 
7036 	/* Cache DPCD and EDID for edp. */
7037 	has_dpcd = intel_edp_init_dpcd(intel_dp);
7038 
7039 	if (!has_dpcd) {
7040 		/* if this fails, presume the device is a ghost */
7041 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7042 		goto out_vdd_off;
7043 	}
7044 
7045 	mutex_lock(&dev->mode_config.mutex);
7046 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7047 	if (edid) {
7048 		if (drm_add_edid_modes(connector, edid)) {
7049 			drm_connector_update_edid_property(connector,
7050 								edid);
7051 		} else {
7052 			kfree(edid);
7053 			edid = ERR_PTR(-EINVAL);
7054 		}
7055 	} else {
7056 		edid = ERR_PTR(-ENOENT);
7057 	}
7058 	intel_connector->edid = edid;
7059 
7060 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7061 	if (fixed_mode)
7062 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7063 
7064 	/* fallback to VBT if available for eDP */
7065 	if (!fixed_mode)
7066 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7067 	mutex_unlock(&dev->mode_config.mutex);
7068 
7069 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7070 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7071 		register_reboot_notifier(&intel_dp->edp_notifier);
7072 
7073 		/*
7074 		 * Figure out the current pipe for the initial backlight setup.
7075 		 * If the current pipe isn't valid, try the PPS pipe, and if that
7076 		 * fails just assume pipe A.
7077 		 */
7078 		pipe = vlv_active_pipe(intel_dp);
7079 
7080 		if (pipe != PIPE_A && pipe != PIPE_B)
7081 			pipe = intel_dp->pps_pipe;
7082 
7083 		if (pipe != PIPE_A && pipe != PIPE_B)
7084 			pipe = PIPE_A;
7085 
7086 		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7087 			      pipe_name(pipe));
7088 	}
7089 
7090 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7091 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7092 	intel_panel_setup_backlight(connector, pipe);
7093 
7094 	if (fixed_mode)
7095 		drm_connector_init_panel_orientation_property(
7096 			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7097 
7098 	return true;
7099 
7100 out_vdd_off:
7101 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7102 	/*
7103 	 * vdd might still be enabled do to the delayed vdd off.
7104 	 * Make sure vdd is actually turned off here.
7105 	 */
7106 	with_pps_lock(intel_dp, wakeref)
7107 		edp_panel_vdd_off_sync(intel_dp);
7108 
7109 	return false;
7110 }
7111 
intel_dp_modeset_retry_work_fn(struct work_struct * work)7112 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7113 {
7114 	struct intel_connector *intel_connector;
7115 	struct drm_connector *connector;
7116 
7117 	intel_connector = container_of(work, typeof(*intel_connector),
7118 				       modeset_retry_work);
7119 	connector = &intel_connector->base;
7120 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7121 		      connector->name);
7122 
7123 	/* Grab the locks before changing connector property*/
7124 	mutex_lock(&connector->dev->mode_config.mutex);
7125 	/* Set connector link status to BAD and send a Uevent to notify
7126 	 * userspace to do a modeset.
7127 	 */
7128 	drm_connector_set_link_status_property(connector,
7129 					       DRM_MODE_LINK_STATUS_BAD);
7130 	mutex_unlock(&connector->dev->mode_config.mutex);
7131 	/* Send Hotplug uevent so userspace can reprobe */
7132 	drm_kms_helper_hotplug_event(connector->dev);
7133 }
7134 
7135 bool
intel_dp_init_connector(struct intel_digital_port * intel_dig_port,struct intel_connector * intel_connector)7136 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7137 			struct intel_connector *intel_connector)
7138 {
7139 	struct drm_connector *connector = &intel_connector->base;
7140 	struct intel_dp *intel_dp = &intel_dig_port->dp;
7141 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
7142 	struct drm_device *dev = intel_encoder->base.dev;
7143 	struct drm_i915_private *dev_priv = to_i915(dev);
7144 	enum port port = intel_encoder->port;
7145 	enum phy phy = intel_port_to_phy(dev_priv, port);
7146 	int type;
7147 
7148 	/* Initialize the work for modeset in case of link train failure */
7149 	INIT_WORK(&intel_connector->modeset_retry_work,
7150 		  intel_dp_modeset_retry_work_fn);
7151 
7152 	if (WARN(intel_dig_port->max_lanes < 1,
7153 		 "Not enough lanes (%d) for DP on port %c\n",
7154 		 intel_dig_port->max_lanes, port_name(port)))
7155 		return false;
7156 
7157 	intel_dp_set_source_rates(intel_dp);
7158 
7159 	intel_dp->reset_link_params = true;
7160 	intel_dp->pps_pipe = INVALID_PIPE;
7161 	intel_dp->active_pipe = INVALID_PIPE;
7162 
7163 	/* Preserve the current hw state. */
7164 	intel_dp->DP = I915_READ(intel_dp->output_reg);
7165 	intel_dp->attached_connector = intel_connector;
7166 
7167 	if (intel_dp_is_port_edp(dev_priv, port)) {
7168 		/*
7169 		 * Currently we don't support eDP on TypeC ports, although in
7170 		 * theory it could work on TypeC legacy ports.
7171 		 */
7172 		WARN_ON(intel_phy_is_tc(dev_priv, phy));
7173 		type = DRM_MODE_CONNECTOR_eDP;
7174 	} else {
7175 		type = DRM_MODE_CONNECTOR_DisplayPort;
7176 	}
7177 
7178 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7179 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7180 
7181 	/*
7182 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7183 	 * for DP the encoder type can be set by the caller to
7184 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7185 	 */
7186 	if (type == DRM_MODE_CONNECTOR_eDP)
7187 		intel_encoder->type = INTEL_OUTPUT_EDP;
7188 
7189 	/* eDP only on port B and/or C on vlv/chv */
7190 	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7191 		    intel_dp_is_edp(intel_dp) &&
7192 		    port != PORT_B && port != PORT_C))
7193 		return false;
7194 
7195 	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
7196 			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7197 			port_name(port));
7198 
7199 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7200 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7201 
7202 	if (!HAS_GMCH(dev_priv))
7203 		connector->interlace_allowed = true;
7204 	connector->doublescan_allowed = 0;
7205 
7206 	if (INTEL_GEN(dev_priv) >= 11)
7207 		connector->ycbcr_420_allowed = true;
7208 
7209 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7210 
7211 	intel_dp_aux_init(intel_dp);
7212 
7213 	intel_connector_attach_encoder(intel_connector, intel_encoder);
7214 
7215 	if (HAS_DDI(dev_priv))
7216 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7217 	else
7218 		intel_connector->get_hw_state = intel_connector_get_hw_state;
7219 
7220 	/* init MST on ports that can support it */
7221 	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7222 	    (port == PORT_B || port == PORT_C ||
7223 	     port == PORT_D || port == PORT_F))
7224 		intel_dp_mst_encoder_init(intel_dig_port,
7225 					  intel_connector->base.base.id);
7226 
7227 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7228 		intel_dp_aux_fini(intel_dp);
7229 		intel_dp_mst_encoder_cleanup(intel_dig_port);
7230 		goto fail;
7231 	}
7232 
7233 	intel_dp_add_properties(intel_dp, connector);
7234 
7235 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7236 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7237 		if (ret)
7238 			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7239 	}
7240 
7241 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7242 	 * 0xd.  Failure to do so will result in spurious interrupts being
7243 	 * generated on the port when a cable is not attached.
7244 	 */
7245 	if (IS_G45(dev_priv)) {
7246 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7247 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7248 	}
7249 
7250 	return true;
7251 
7252 fail:
7253 	drm_connector_cleanup(connector);
7254 
7255 	return false;
7256 }
7257 
intel_dp_init(struct drm_i915_private * dev_priv,i915_reg_t output_reg,enum port port)7258 bool intel_dp_init(struct drm_i915_private *dev_priv,
7259 		   i915_reg_t output_reg,
7260 		   enum port port)
7261 {
7262 	struct intel_digital_port *intel_dig_port;
7263 	struct intel_encoder *intel_encoder;
7264 	struct drm_encoder *encoder;
7265 	struct intel_connector *intel_connector;
7266 
7267 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7268 	if (!intel_dig_port)
7269 		return false;
7270 
7271 	intel_connector = intel_connector_alloc();
7272 	if (!intel_connector)
7273 		goto err_connector_alloc;
7274 
7275 	intel_encoder = &intel_dig_port->base;
7276 	encoder = &intel_encoder->base;
7277 
7278 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7279 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7280 			     "DP %c", port_name(port)))
7281 		goto err_encoder_init;
7282 
7283 	intel_encoder->hotplug = intel_dp_hotplug;
7284 	intel_encoder->compute_config = intel_dp_compute_config;
7285 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7286 	intel_encoder->get_config = intel_dp_get_config;
7287 	intel_encoder->update_pipe = intel_panel_update_backlight;
7288 	intel_encoder->suspend = intel_dp_encoder_suspend;
7289 	if (IS_CHERRYVIEW(dev_priv)) {
7290 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7291 		intel_encoder->pre_enable = chv_pre_enable_dp;
7292 		intel_encoder->enable = vlv_enable_dp;
7293 		intel_encoder->disable = vlv_disable_dp;
7294 		intel_encoder->post_disable = chv_post_disable_dp;
7295 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7296 	} else if (IS_VALLEYVIEW(dev_priv)) {
7297 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7298 		intel_encoder->pre_enable = vlv_pre_enable_dp;
7299 		intel_encoder->enable = vlv_enable_dp;
7300 		intel_encoder->disable = vlv_disable_dp;
7301 		intel_encoder->post_disable = vlv_post_disable_dp;
7302 	} else {
7303 		intel_encoder->pre_enable = g4x_pre_enable_dp;
7304 		intel_encoder->enable = g4x_enable_dp;
7305 		intel_encoder->disable = g4x_disable_dp;
7306 		intel_encoder->post_disable = g4x_post_disable_dp;
7307 	}
7308 
7309 	intel_dig_port->dp.output_reg = output_reg;
7310 	intel_dig_port->max_lanes = 4;
7311 
7312 	intel_encoder->type = INTEL_OUTPUT_DP;
7313 	intel_encoder->power_domain = intel_port_to_power_domain(port);
7314 	if (IS_CHERRYVIEW(dev_priv)) {
7315 		if (port == PORT_D)
7316 			intel_encoder->crtc_mask = 1 << 2;
7317 		else
7318 			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
7319 	} else {
7320 		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
7321 	}
7322 	intel_encoder->cloneable = 0;
7323 	intel_encoder->port = port;
7324 
7325 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7326 
7327 	if (port != PORT_A)
7328 		intel_infoframe_init(intel_dig_port);
7329 
7330 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7331 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7332 		goto err_init_connector;
7333 
7334 	return true;
7335 
7336 err_init_connector:
7337 	drm_encoder_cleanup(encoder);
7338 err_encoder_init:
7339 	kfree(intel_connector);
7340 err_connector_alloc:
7341 	kfree(intel_dig_port);
7342 	return false;
7343 }
7344 
intel_dp_mst_suspend(struct drm_i915_private * dev_priv)7345 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7346 {
7347 	struct intel_encoder *encoder;
7348 
7349 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7350 		struct intel_dp *intel_dp;
7351 
7352 		if (encoder->type != INTEL_OUTPUT_DDI)
7353 			continue;
7354 
7355 		intel_dp = enc_to_intel_dp(&encoder->base);
7356 
7357 		if (!intel_dp->can_mst)
7358 			continue;
7359 
7360 		if (intel_dp->is_mst)
7361 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7362 	}
7363 }
7364 
intel_dp_mst_resume(struct drm_i915_private * dev_priv)7365 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7366 {
7367 	struct intel_encoder *encoder;
7368 
7369 	for_each_intel_encoder(&dev_priv->drm, encoder) {
7370 		struct intel_dp *intel_dp;
7371 		int ret;
7372 
7373 		if (encoder->type != INTEL_OUTPUT_DDI)
7374 			continue;
7375 
7376 		intel_dp = enc_to_intel_dp(&encoder->base);
7377 
7378 		if (!intel_dp->can_mst)
7379 			continue;
7380 
7381 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7382 		if (ret) {
7383 			intel_dp->is_mst = false;
7384 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7385 							false);
7386 		}
7387 	}
7388 }
7389