1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 #include <drm/i915_pciids.h>
27 
28 #include "display/intel_cdclk.h"
29 #include "display/intel_de.h"
30 #include "intel_device_info.h"
31 #include "i915_drv.h"
32 
33 #define PLATFORM_NAME(x) [INTEL_##x] = #x
34 static const char * const platform_names[] = {
35 	PLATFORM_NAME(I830),
36 	PLATFORM_NAME(I845G),
37 	PLATFORM_NAME(I85X),
38 	PLATFORM_NAME(I865G),
39 	PLATFORM_NAME(I915G),
40 	PLATFORM_NAME(I915GM),
41 	PLATFORM_NAME(I945G),
42 	PLATFORM_NAME(I945GM),
43 	PLATFORM_NAME(G33),
44 	PLATFORM_NAME(PINEVIEW),
45 	PLATFORM_NAME(I965G),
46 	PLATFORM_NAME(I965GM),
47 	PLATFORM_NAME(G45),
48 	PLATFORM_NAME(GM45),
49 	PLATFORM_NAME(IRONLAKE),
50 	PLATFORM_NAME(SANDYBRIDGE),
51 	PLATFORM_NAME(IVYBRIDGE),
52 	PLATFORM_NAME(VALLEYVIEW),
53 	PLATFORM_NAME(HASWELL),
54 	PLATFORM_NAME(BROADWELL),
55 	PLATFORM_NAME(CHERRYVIEW),
56 	PLATFORM_NAME(SKYLAKE),
57 	PLATFORM_NAME(BROXTON),
58 	PLATFORM_NAME(KABYLAKE),
59 	PLATFORM_NAME(GEMINILAKE),
60 	PLATFORM_NAME(COFFEELAKE),
61 	PLATFORM_NAME(COMETLAKE),
62 	PLATFORM_NAME(CANNONLAKE),
63 	PLATFORM_NAME(ICELAKE),
64 	PLATFORM_NAME(ELKHARTLAKE),
65 	PLATFORM_NAME(TIGERLAKE),
66 	PLATFORM_NAME(ROCKETLAKE),
67 	PLATFORM_NAME(DG1),
68 };
69 #undef PLATFORM_NAME
70 
intel_platform_name(enum intel_platform platform)71 const char *intel_platform_name(enum intel_platform platform)
72 {
73 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
74 
75 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
76 			 platform_names[platform] == NULL))
77 		return "<unknown>";
78 
79 	return platform_names[platform];
80 }
81 
iommu_name(void)82 static const char *iommu_name(void)
83 {
84 	const char *msg = "n/a";
85 
86 #ifdef CONFIG_INTEL_IOMMU
87 	msg = enableddisabled(intel_iommu_gfx_mapped);
88 #endif
89 
90 	return msg;
91 }
92 
intel_device_info_print_static(const struct intel_device_info * info,struct drm_printer * p)93 void intel_device_info_print_static(const struct intel_device_info *info,
94 				    struct drm_printer *p)
95 {
96 	drm_printf(p, "gen: %d\n", info->gen);
97 	drm_printf(p, "gt: %d\n", info->gt);
98 	drm_printf(p, "iommu: %s\n", iommu_name());
99 	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
100 	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
101 	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
102 	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
103 	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
104 	drm_printf(p, "dma_mask_size: %u\n", info->dma_mask_size);
105 
106 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
107 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
108 #undef PRINT_FLAG
109 
110 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
111 	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
112 #undef PRINT_FLAG
113 }
114 
intel_device_info_print_runtime(const struct intel_runtime_info * info,struct drm_printer * p)115 void intel_device_info_print_runtime(const struct intel_runtime_info *info,
116 				     struct drm_printer *p)
117 {
118 	drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
119 	drm_printf(p, "CS timestamp frequency: %u Hz\n",
120 		   info->cs_timestamp_frequency_hz);
121 }
122 
read_reference_ts_freq(struct drm_i915_private * dev_priv)123 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
124 {
125 	u32 ts_override = intel_uncore_read(&dev_priv->uncore,
126 					    GEN9_TIMESTAMP_OVERRIDE);
127 	u32 base_freq, frac_freq;
128 
129 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
130 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
131 	base_freq *= 1000000;
132 
133 	frac_freq = ((ts_override &
134 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
135 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
136 	frac_freq = 1000000 / (frac_freq + 1);
137 
138 	return base_freq + frac_freq;
139 }
140 
gen10_get_crystal_clock_freq(struct drm_i915_private * dev_priv,u32 rpm_config_reg)141 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
142 					u32 rpm_config_reg)
143 {
144 	u32 f19_2_mhz = 19200000;
145 	u32 f24_mhz = 24000000;
146 	u32 crystal_clock = (rpm_config_reg &
147 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
148 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
149 
150 	switch (crystal_clock) {
151 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
152 		return f19_2_mhz;
153 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
154 		return f24_mhz;
155 	default:
156 		MISSING_CASE(crystal_clock);
157 		return 0;
158 	}
159 }
160 
gen11_get_crystal_clock_freq(struct drm_i915_private * dev_priv,u32 rpm_config_reg)161 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
162 					u32 rpm_config_reg)
163 {
164 	u32 f19_2_mhz = 19200000;
165 	u32 f24_mhz = 24000000;
166 	u32 f25_mhz = 25000000;
167 	u32 f38_4_mhz = 38400000;
168 	u32 crystal_clock = (rpm_config_reg &
169 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
170 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
171 
172 	switch (crystal_clock) {
173 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
174 		return f24_mhz;
175 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
176 		return f19_2_mhz;
177 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
178 		return f38_4_mhz;
179 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
180 		return f25_mhz;
181 	default:
182 		MISSING_CASE(crystal_clock);
183 		return 0;
184 	}
185 }
186 
read_timestamp_frequency(struct drm_i915_private * dev_priv)187 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
188 {
189 	struct intel_uncore *uncore = &dev_priv->uncore;
190 	u32 f12_5_mhz = 12500000;
191 	u32 f19_2_mhz = 19200000;
192 	u32 f24_mhz = 24000000;
193 
194 	if (INTEL_GEN(dev_priv) <= 4) {
195 		/* PRMs say:
196 		 *
197 		 *     "The value in this register increments once every 16
198 		 *      hclks." (through the “Clocking Configuration”
199 		 *      (“CLKCFG”) MCHBAR register)
200 		 */
201 		return RUNTIME_INFO(dev_priv)->rawclk_freq * 1000 / 16;
202 	} else if (INTEL_GEN(dev_priv) <= 8) {
203 		/* PRMs say:
204 		 *
205 		 *     "The PCU TSC counts 10ns increments; this timestamp
206 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
207 		 *      rolling over every 1.5 hours).
208 		 */
209 		return f12_5_mhz;
210 	} else if (INTEL_GEN(dev_priv) <= 9) {
211 		u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
212 		u32 freq = 0;
213 
214 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
215 			freq = read_reference_ts_freq(dev_priv);
216 		} else {
217 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
218 
219 			/* Now figure out how the command stream's timestamp
220 			 * register increments from this frequency (it might
221 			 * increment only every few clock cycle).
222 			 */
223 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
224 				      CTC_SHIFT_PARAMETER_SHIFT);
225 		}
226 
227 		return freq;
228 	} else if (INTEL_GEN(dev_priv) <= 12) {
229 		u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
230 		u32 freq = 0;
231 
232 		/* First figure out the reference frequency. There are 2 ways
233 		 * we can compute the frequency, either through the
234 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
235 		 * tells us which one we should use.
236 		 */
237 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
238 			freq = read_reference_ts_freq(dev_priv);
239 		} else {
240 			u32 rpm_config_reg = intel_uncore_read(uncore, RPM_CONFIG0);
241 
242 			if (INTEL_GEN(dev_priv) <= 10)
243 				freq = gen10_get_crystal_clock_freq(dev_priv,
244 								rpm_config_reg);
245 			else
246 				freq = gen11_get_crystal_clock_freq(dev_priv,
247 								rpm_config_reg);
248 
249 			/* Now figure out how the command stream's timestamp
250 			 * register increments from this frequency (it might
251 			 * increment only every few clock cycle).
252 			 */
253 			freq >>= 3 - ((rpm_config_reg &
254 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
255 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
256 		}
257 
258 		return freq;
259 	}
260 
261 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
262 	return 0;
263 }
264 
265 #undef INTEL_VGA_DEVICE
266 #define INTEL_VGA_DEVICE(id, info) (id)
267 
268 static const u16 subplatform_ult_ids[] = {
269 	INTEL_HSW_ULT_GT1_IDS(0),
270 	INTEL_HSW_ULT_GT2_IDS(0),
271 	INTEL_HSW_ULT_GT3_IDS(0),
272 	INTEL_BDW_ULT_GT1_IDS(0),
273 	INTEL_BDW_ULT_GT2_IDS(0),
274 	INTEL_BDW_ULT_GT3_IDS(0),
275 	INTEL_BDW_ULT_RSVD_IDS(0),
276 	INTEL_SKL_ULT_GT1_IDS(0),
277 	INTEL_SKL_ULT_GT2_IDS(0),
278 	INTEL_SKL_ULT_GT3_IDS(0),
279 	INTEL_KBL_ULT_GT1_IDS(0),
280 	INTEL_KBL_ULT_GT2_IDS(0),
281 	INTEL_KBL_ULT_GT3_IDS(0),
282 	INTEL_CFL_U_GT2_IDS(0),
283 	INTEL_CFL_U_GT3_IDS(0),
284 	INTEL_WHL_U_GT1_IDS(0),
285 	INTEL_WHL_U_GT2_IDS(0),
286 	INTEL_WHL_U_GT3_IDS(0),
287 	INTEL_CML_U_GT1_IDS(0),
288 	INTEL_CML_U_GT2_IDS(0),
289 };
290 
291 static const u16 subplatform_ulx_ids[] = {
292 	INTEL_HSW_ULX_GT1_IDS(0),
293 	INTEL_HSW_ULX_GT2_IDS(0),
294 	INTEL_BDW_ULX_GT1_IDS(0),
295 	INTEL_BDW_ULX_GT2_IDS(0),
296 	INTEL_BDW_ULX_GT3_IDS(0),
297 	INTEL_BDW_ULX_RSVD_IDS(0),
298 	INTEL_SKL_ULX_GT1_IDS(0),
299 	INTEL_SKL_ULX_GT2_IDS(0),
300 	INTEL_KBL_ULX_GT1_IDS(0),
301 	INTEL_KBL_ULX_GT2_IDS(0),
302 	INTEL_AML_KBL_GT2_IDS(0),
303 	INTEL_AML_CFL_GT2_IDS(0),
304 };
305 
306 static const u16 subplatform_portf_ids[] = {
307 	INTEL_CNL_PORT_F_IDS(0),
308 	INTEL_ICL_PORT_F_IDS(0),
309 };
310 
find_devid(u16 id,const u16 * p,unsigned int num)311 static bool find_devid(u16 id, const u16 *p, unsigned int num)
312 {
313 	for (; num; num--, p++) {
314 		if (*p == id)
315 			return true;
316 	}
317 
318 	return false;
319 }
320 
intel_device_info_subplatform_init(struct drm_i915_private * i915)321 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
322 {
323 	const struct intel_device_info *info = INTEL_INFO(i915);
324 	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
325 	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
326 	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
327 	u16 devid = INTEL_DEVID(i915);
328 	u32 mask = 0;
329 
330 	/* Make sure IS_<platform> checks are working. */
331 	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
332 
333 	/* Find and mark subplatform bits based on the PCI device id. */
334 	if (find_devid(devid, subplatform_ult_ids,
335 		       ARRAY_SIZE(subplatform_ult_ids))) {
336 		mask = BIT(INTEL_SUBPLATFORM_ULT);
337 	} else if (find_devid(devid, subplatform_ulx_ids,
338 			      ARRAY_SIZE(subplatform_ulx_ids))) {
339 		mask = BIT(INTEL_SUBPLATFORM_ULX);
340 		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
341 			/* ULX machines are also considered ULT. */
342 			mask |= BIT(INTEL_SUBPLATFORM_ULT);
343 		}
344 	} else if (find_devid(devid, subplatform_portf_ids,
345 			      ARRAY_SIZE(subplatform_portf_ids))) {
346 		mask = BIT(INTEL_SUBPLATFORM_PORTF);
347 	}
348 
349 	if (IS_TIGERLAKE(i915)) {
350 		struct pci_dev *root, *pdev = i915->drm.pdev;
351 
352 		root = list_first_entry(&pdev->bus->devices, typeof(*root), bus_list);
353 
354 		drm_WARN_ON(&i915->drm, mask);
355 		drm_WARN_ON(&i915->drm, (root->device & TGL_ROOT_DEVICE_MASK) !=
356 			    TGL_ROOT_DEVICE_ID);
357 
358 		switch (root->device & TGL_ROOT_DEVICE_SKU_MASK) {
359 		case TGL_ROOT_DEVICE_SKU_ULX:
360 			mask = BIT(INTEL_SUBPLATFORM_ULX);
361 			break;
362 		case TGL_ROOT_DEVICE_SKU_ULT:
363 			mask = BIT(INTEL_SUBPLATFORM_ULT);
364 			break;
365 		}
366 	}
367 
368 	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
369 
370 	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
371 }
372 
373 /**
374  * intel_device_info_runtime_init - initialize runtime info
375  * @dev_priv: the i915 device
376  *
377  * Determine various intel_device_info fields at runtime.
378  *
379  * Use it when either:
380  *   - it's judged too laborious to fill n static structures with the limit
381  *     when a simple if statement does the job,
382  *   - run-time checks (eg read fuse/strap registers) are needed.
383  *
384  * This function needs to be called:
385  *   - after the MMIO has been setup as we are reading registers,
386  *   - after the PCH has been detected,
387  *   - before the first usage of the fields it can tweak.
388  */
intel_device_info_runtime_init(struct drm_i915_private * dev_priv)389 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
390 {
391 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
392 	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
393 	enum pipe pipe;
394 
395 	if (INTEL_GEN(dev_priv) >= 10) {
396 		for_each_pipe(dev_priv, pipe)
397 			runtime->num_scalers[pipe] = 2;
398 	} else if (IS_GEN(dev_priv, 9)) {
399 		runtime->num_scalers[PIPE_A] = 2;
400 		runtime->num_scalers[PIPE_B] = 2;
401 		runtime->num_scalers[PIPE_C] = 1;
402 	}
403 
404 	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
405 
406 	if (IS_ROCKETLAKE(dev_priv))
407 		for_each_pipe(dev_priv, pipe)
408 			runtime->num_sprites[pipe] = 4;
409 	else if (INTEL_GEN(dev_priv) >= 11)
410 		for_each_pipe(dev_priv, pipe)
411 			runtime->num_sprites[pipe] = 6;
412 	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
413 		for_each_pipe(dev_priv, pipe)
414 			runtime->num_sprites[pipe] = 3;
415 	else if (IS_BROXTON(dev_priv)) {
416 		/*
417 		 * Skylake and Broxton currently don't expose the topmost plane as its
418 		 * use is exclusive with the legacy cursor and we only want to expose
419 		 * one of those, not both. Until we can safely expose the topmost plane
420 		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
421 		 * we don't expose the topmost plane at all to prevent ABI breakage
422 		 * down the line.
423 		 */
424 
425 		runtime->num_sprites[PIPE_A] = 2;
426 		runtime->num_sprites[PIPE_B] = 2;
427 		runtime->num_sprites[PIPE_C] = 1;
428 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
429 		for_each_pipe(dev_priv, pipe)
430 			runtime->num_sprites[pipe] = 2;
431 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
432 		for_each_pipe(dev_priv, pipe)
433 			runtime->num_sprites[pipe] = 1;
434 	}
435 
436 	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
437 	    HAS_PCH_SPLIT(dev_priv)) {
438 		u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
439 		u32 sfuse_strap = intel_de_read(dev_priv, SFUSE_STRAP);
440 
441 		/*
442 		 * SFUSE_STRAP is supposed to have a bit signalling the display
443 		 * is fused off. Unfortunately it seems that, at least in
444 		 * certain cases, fused off display means that PCH display
445 		 * reads don't land anywhere. In that case, we read 0s.
446 		 *
447 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
448 		 * should be set when taking over after the firmware.
449 		 */
450 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
451 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
452 		    (HAS_PCH_CPT(dev_priv) &&
453 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
454 			drm_info(&dev_priv->drm,
455 				 "Display fused off, disabling\n");
456 			info->pipe_mask = 0;
457 			info->cpu_transcoder_mask = 0;
458 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
459 			drm_info(&dev_priv->drm, "PipeC fused off\n");
460 			info->pipe_mask &= ~BIT(PIPE_C);
461 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
462 		}
463 	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
464 		u32 dfsm = intel_de_read(dev_priv, SKL_DFSM);
465 
466 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE) {
467 			info->pipe_mask &= ~BIT(PIPE_A);
468 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_A);
469 		}
470 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE) {
471 			info->pipe_mask &= ~BIT(PIPE_B);
472 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_B);
473 		}
474 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE) {
475 			info->pipe_mask &= ~BIT(PIPE_C);
476 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
477 		}
478 		if (INTEL_GEN(dev_priv) >= 12 &&
479 		    (dfsm & TGL_DFSM_PIPE_D_DISABLE)) {
480 			info->pipe_mask &= ~BIT(PIPE_D);
481 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_D);
482 		}
483 
484 		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
485 			info->display.has_hdcp = 0;
486 
487 		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
488 			info->display.has_fbc = 0;
489 
490 		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
491 			info->display.has_csr = 0;
492 
493 		if (INTEL_GEN(dev_priv) >= 10 &&
494 		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
495 			info->display.has_dsc = 0;
496 	}
497 
498 	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
499 		drm_info(&dev_priv->drm,
500 			 "Disabling ppGTT for VT-d support\n");
501 		info->ppgtt_type = INTEL_PPGTT_NONE;
502 	}
503 
504 	runtime->rawclk_freq = intel_read_rawclk(dev_priv);
505 	drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
506 
507 	/* Initialize command stream timestamp frequency */
508 	runtime->cs_timestamp_frequency_hz =
509 		read_timestamp_frequency(dev_priv);
510 	if (runtime->cs_timestamp_frequency_hz) {
511 		runtime->cs_timestamp_period_ns =
512 			i915_cs_timestamp_ticks_to_ns(dev_priv, 1);
513 		drm_dbg(&dev_priv->drm,
514 			"CS timestamp wraparound in %lldms\n",
515 			div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
516 					    S32_MAX),
517 				USEC_PER_SEC));
518 	}
519 
520 	if (!HAS_DISPLAY(dev_priv)) {
521 		dev_priv->drm.driver_features &= ~(DRIVER_MODESET |
522 						   DRIVER_ATOMIC);
523 		memset(&info->display, 0, sizeof(info->display));
524 		memset(runtime->num_sprites, 0, sizeof(runtime->num_sprites));
525 		memset(runtime->num_scalers, 0, sizeof(runtime->num_scalers));
526 	}
527 }
528 
intel_driver_caps_print(const struct intel_driver_caps * caps,struct drm_printer * p)529 void intel_driver_caps_print(const struct intel_driver_caps *caps,
530 			     struct drm_printer *p)
531 {
532 	drm_printf(p, "Has logical contexts? %s\n",
533 		   yesno(caps->has_logical_contexts));
534 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
535 }
536