1 /*
2 *
3 * Bluetooth HCI UART driver for Intel devices
4 *
5 * Copyright (C) 2015 Intel Corporation
6 *
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39
40 #include "hci_uart.h"
41 #include "btintel.h"
42
43 #define STATE_BOOTLOADER 0
44 #define STATE_DOWNLOADING 1
45 #define STATE_FIRMWARE_LOADED 2
46 #define STATE_FIRMWARE_FAILED 3
47 #define STATE_BOOTING 4
48 #define STATE_LPM_ENABLED 5
49 #define STATE_TX_ACTIVE 6
50 #define STATE_SUSPENDED 7
51 #define STATE_LPM_TRANSACTION 8
52
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61
62 #define LPM_SUSPEND_DELAY_MS 1000
63
64 struct hci_lpm_pkt {
65 __u8 opcode;
66 __u8 dlen;
67 __u8 data[0];
68 } __packed;
69
70 struct intel_device {
71 struct list_head list;
72 struct platform_device *pdev;
73 struct gpio_desc *reset;
74 struct hci_uart *hu;
75 struct mutex hu_lock;
76 int irq;
77 };
78
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81
82 struct intel_data {
83 struct sk_buff *rx_skb;
84 struct sk_buff_head txq;
85 struct work_struct busy_work;
86 struct hci_uart *hu;
87 unsigned long flags;
88 };
89
intel_convert_speed(unsigned int speed)90 static u8 intel_convert_speed(unsigned int speed)
91 {
92 switch (speed) {
93 case 9600:
94 return 0x00;
95 case 19200:
96 return 0x01;
97 case 38400:
98 return 0x02;
99 case 57600:
100 return 0x03;
101 case 115200:
102 return 0x04;
103 case 230400:
104 return 0x05;
105 case 460800:
106 return 0x06;
107 case 921600:
108 return 0x07;
109 case 1843200:
110 return 0x08;
111 case 3250000:
112 return 0x09;
113 case 2000000:
114 return 0x0a;
115 case 3000000:
116 return 0x0b;
117 default:
118 return 0xff;
119 }
120 }
121
intel_wait_booting(struct hci_uart * hu)122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124 struct intel_data *intel = hu->priv;
125 int err;
126
127 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 TASK_INTERRUPTIBLE,
129 msecs_to_jiffies(1000));
130
131 if (err == -EINTR) {
132 bt_dev_err(hu->hdev, "Device boot interrupted");
133 return -EINTR;
134 }
135
136 if (err) {
137 bt_dev_err(hu->hdev, "Device boot timeout");
138 return -ETIMEDOUT;
139 }
140
141 return err;
142 }
143
144 #ifdef CONFIG_PM
intel_wait_lpm_transaction(struct hci_uart * hu)145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147 struct intel_data *intel = hu->priv;
148 int err;
149
150 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 TASK_INTERRUPTIBLE,
152 msecs_to_jiffies(1000));
153
154 if (err == -EINTR) {
155 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 return -EINTR;
157 }
158
159 if (err) {
160 bt_dev_err(hu->hdev, "LPM transaction timeout");
161 return -ETIMEDOUT;
162 }
163
164 return err;
165 }
166
intel_lpm_suspend(struct hci_uart * hu)167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 struct intel_data *intel = hu->priv;
171 struct sk_buff *skb;
172
173 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 test_bit(STATE_SUSPENDED, &intel->flags))
175 return 0;
176
177 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 return -EAGAIN;
179
180 bt_dev_dbg(hu->hdev, "Suspending");
181
182 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 if (!skb) {
184 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 return -ENOMEM;
186 }
187
188 skb_put_data(skb, suspend, sizeof(suspend));
189 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190
191 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192
193 /* LPM flow is a priority, enqueue packet at list head */
194 skb_queue_head(&intel->txq, skb);
195 hci_uart_tx_wakeup(hu);
196
197 intel_wait_lpm_transaction(hu);
198 /* Even in case of failure, continue and test the suspended flag */
199
200 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201
202 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 bt_dev_err(hu->hdev, "Device suspend error");
204 return -EINVAL;
205 }
206
207 bt_dev_dbg(hu->hdev, "Suspended");
208
209 hci_uart_set_flow_control(hu, true);
210
211 return 0;
212 }
213
intel_lpm_resume(struct hci_uart * hu)214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216 struct intel_data *intel = hu->priv;
217 struct sk_buff *skb;
218
219 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 !test_bit(STATE_SUSPENDED, &intel->flags))
221 return 0;
222
223 bt_dev_dbg(hu->hdev, "Resuming");
224
225 hci_uart_set_flow_control(hu, false);
226
227 skb = bt_skb_alloc(0, GFP_KERNEL);
228 if (!skb) {
229 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 return -ENOMEM;
231 }
232
233 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234
235 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236
237 /* LPM flow is a priority, enqueue packet at list head */
238 skb_queue_head(&intel->txq, skb);
239 hci_uart_tx_wakeup(hu);
240
241 intel_wait_lpm_transaction(hu);
242 /* Even in case of failure, continue and test the suspended flag */
243
244 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245
246 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 bt_dev_err(hu->hdev, "Device resume error");
248 return -EINVAL;
249 }
250
251 bt_dev_dbg(hu->hdev, "Resumed");
252
253 return 0;
254 }
255 #endif /* CONFIG_PM */
256
intel_lpm_host_wake(struct hci_uart * hu)257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 struct intel_data *intel = hu->priv;
261 struct sk_buff *skb;
262
263 hci_uart_set_flow_control(hu, false);
264
265 clear_bit(STATE_SUSPENDED, &intel->flags);
266
267 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 if (!skb) {
269 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 return -ENOMEM;
271 }
272
273 skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
274 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
275
276 /* LPM flow is a priority, enqueue packet at list head */
277 skb_queue_head(&intel->txq, skb);
278 hci_uart_tx_wakeup(hu);
279
280 bt_dev_dbg(hu->hdev, "Resumed by controller");
281
282 return 0;
283 }
284
intel_irq(int irq,void * dev_id)285 static irqreturn_t intel_irq(int irq, void *dev_id)
286 {
287 struct intel_device *idev = dev_id;
288
289 dev_info(&idev->pdev->dev, "hci_intel irq\n");
290
291 mutex_lock(&idev->hu_lock);
292 if (idev->hu)
293 intel_lpm_host_wake(idev->hu);
294 mutex_unlock(&idev->hu_lock);
295
296 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
297 pm_runtime_get(&idev->pdev->dev);
298 pm_runtime_mark_last_busy(&idev->pdev->dev);
299 pm_runtime_put_autosuspend(&idev->pdev->dev);
300
301 return IRQ_HANDLED;
302 }
303
intel_set_power(struct hci_uart * hu,bool powered)304 static int intel_set_power(struct hci_uart *hu, bool powered)
305 {
306 struct list_head *p;
307 int err = -ENODEV;
308
309 if (!hu->tty->dev)
310 return err;
311
312 mutex_lock(&intel_device_list_lock);
313
314 list_for_each(p, &intel_device_list) {
315 struct intel_device *idev = list_entry(p, struct intel_device,
316 list);
317
318 /* tty device and pdev device should share the same parent
319 * which is the UART port.
320 */
321 if (hu->tty->dev->parent != idev->pdev->dev.parent)
322 continue;
323
324 if (!idev->reset) {
325 err = -ENOTSUPP;
326 break;
327 }
328
329 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
330 hu, dev_name(&idev->pdev->dev), powered);
331
332 gpiod_set_value(idev->reset, powered);
333
334 /* Provide to idev a hu reference which is used to run LPM
335 * transactions (lpm suspend/resume) from PM callbacks.
336 * hu needs to be protected against concurrent removing during
337 * these PM ops.
338 */
339 mutex_lock(&idev->hu_lock);
340 idev->hu = powered ? hu : NULL;
341 mutex_unlock(&idev->hu_lock);
342
343 if (idev->irq < 0)
344 break;
345
346 if (powered && device_can_wakeup(&idev->pdev->dev)) {
347 err = devm_request_threaded_irq(&idev->pdev->dev,
348 idev->irq, NULL,
349 intel_irq,
350 IRQF_ONESHOT,
351 "bt-host-wake", idev);
352 if (err) {
353 BT_ERR("hu %p, unable to allocate irq-%d",
354 hu, idev->irq);
355 break;
356 }
357
358 device_wakeup_enable(&idev->pdev->dev);
359
360 pm_runtime_set_active(&idev->pdev->dev);
361 pm_runtime_use_autosuspend(&idev->pdev->dev);
362 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
363 LPM_SUSPEND_DELAY_MS);
364 pm_runtime_enable(&idev->pdev->dev);
365 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
366 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
367 device_wakeup_disable(&idev->pdev->dev);
368
369 pm_runtime_disable(&idev->pdev->dev);
370 }
371 }
372
373 mutex_unlock(&intel_device_list_lock);
374
375 return err;
376 }
377
intel_busy_work(struct work_struct * work)378 static void intel_busy_work(struct work_struct *work)
379 {
380 struct list_head *p;
381 struct intel_data *intel = container_of(work, struct intel_data,
382 busy_work);
383
384 if (!intel->hu->tty->dev)
385 return;
386
387 /* Link is busy, delay the suspend */
388 mutex_lock(&intel_device_list_lock);
389 list_for_each(p, &intel_device_list) {
390 struct intel_device *idev = list_entry(p, struct intel_device,
391 list);
392
393 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
394 pm_runtime_get(&idev->pdev->dev);
395 pm_runtime_mark_last_busy(&idev->pdev->dev);
396 pm_runtime_put_autosuspend(&idev->pdev->dev);
397 break;
398 }
399 }
400 mutex_unlock(&intel_device_list_lock);
401 }
402
intel_open(struct hci_uart * hu)403 static int intel_open(struct hci_uart *hu)
404 {
405 struct intel_data *intel;
406
407 BT_DBG("hu %p", hu);
408
409 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
410 if (!intel)
411 return -ENOMEM;
412
413 skb_queue_head_init(&intel->txq);
414 INIT_WORK(&intel->busy_work, intel_busy_work);
415
416 intel->hu = hu;
417
418 hu->priv = intel;
419
420 if (!intel_set_power(hu, true))
421 set_bit(STATE_BOOTING, &intel->flags);
422
423 return 0;
424 }
425
intel_close(struct hci_uart * hu)426 static int intel_close(struct hci_uart *hu)
427 {
428 struct intel_data *intel = hu->priv;
429
430 BT_DBG("hu %p", hu);
431
432 cancel_work_sync(&intel->busy_work);
433
434 intel_set_power(hu, false);
435
436 skb_queue_purge(&intel->txq);
437 kfree_skb(intel->rx_skb);
438 kfree(intel);
439
440 hu->priv = NULL;
441 return 0;
442 }
443
intel_flush(struct hci_uart * hu)444 static int intel_flush(struct hci_uart *hu)
445 {
446 struct intel_data *intel = hu->priv;
447
448 BT_DBG("hu %p", hu);
449
450 skb_queue_purge(&intel->txq);
451
452 return 0;
453 }
454
inject_cmd_complete(struct hci_dev * hdev,__u16 opcode)455 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
456 {
457 struct sk_buff *skb;
458 struct hci_event_hdr *hdr;
459 struct hci_ev_cmd_complete *evt;
460
461 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
462 if (!skb)
463 return -ENOMEM;
464
465 hdr = skb_put(skb, sizeof(*hdr));
466 hdr->evt = HCI_EV_CMD_COMPLETE;
467 hdr->plen = sizeof(*evt) + 1;
468
469 evt = skb_put(skb, sizeof(*evt));
470 evt->ncmd = 0x01;
471 evt->opcode = cpu_to_le16(opcode);
472
473 skb_put_u8(skb, 0x00);
474
475 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
476
477 return hci_recv_frame(hdev, skb);
478 }
479
intel_set_baudrate(struct hci_uart * hu,unsigned int speed)480 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
481 {
482 struct intel_data *intel = hu->priv;
483 struct hci_dev *hdev = hu->hdev;
484 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
485 struct sk_buff *skb;
486 int err;
487
488 /* This can be the first command sent to the chip, check
489 * that the controller is ready.
490 */
491 err = intel_wait_booting(hu);
492
493 clear_bit(STATE_BOOTING, &intel->flags);
494
495 /* In case of timeout, try to continue anyway */
496 if (err && err != -ETIMEDOUT)
497 return err;
498
499 bt_dev_info(hdev, "Change controller speed to %d", speed);
500
501 speed_cmd[3] = intel_convert_speed(speed);
502 if (speed_cmd[3] == 0xff) {
503 bt_dev_err(hdev, "Unsupported speed");
504 return -EINVAL;
505 }
506
507 /* Device will not accept speed change if Intel version has not been
508 * previously requested.
509 */
510 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
511 if (IS_ERR(skb)) {
512 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
513 PTR_ERR(skb));
514 return PTR_ERR(skb);
515 }
516 kfree_skb(skb);
517
518 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
519 if (!skb) {
520 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
521 return -ENOMEM;
522 }
523
524 skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
525 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
526
527 hci_uart_set_flow_control(hu, true);
528
529 skb_queue_tail(&intel->txq, skb);
530 hci_uart_tx_wakeup(hu);
531
532 /* wait 100ms to change baudrate on controller side */
533 msleep(100);
534
535 hci_uart_set_baudrate(hu, speed);
536 hci_uart_set_flow_control(hu, false);
537
538 return 0;
539 }
540
intel_setup(struct hci_uart * hu)541 static int intel_setup(struct hci_uart *hu)
542 {
543 struct intel_data *intel = hu->priv;
544 struct hci_dev *hdev = hu->hdev;
545 struct sk_buff *skb;
546 struct intel_version ver;
547 struct intel_boot_params params;
548 struct list_head *p;
549 const struct firmware *fw;
550 char fwname[64];
551 u32 boot_param;
552 ktime_t calltime, delta, rettime;
553 unsigned long long duration;
554 unsigned int init_speed, oper_speed;
555 int speed_change = 0;
556 int err;
557
558 bt_dev_dbg(hdev, "start intel_setup");
559
560 hu->hdev->set_diag = btintel_set_diag;
561 hu->hdev->set_bdaddr = btintel_set_bdaddr;
562
563 /* Set the default boot parameter to 0x0 and it is updated to
564 * SKU specific boot parameter after reading Intel_Write_Boot_Params
565 * command while downloading the firmware.
566 */
567 boot_param = 0x00000000;
568
569 calltime = ktime_get();
570
571 if (hu->init_speed)
572 init_speed = hu->init_speed;
573 else
574 init_speed = hu->proto->init_speed;
575
576 if (hu->oper_speed)
577 oper_speed = hu->oper_speed;
578 else
579 oper_speed = hu->proto->oper_speed;
580
581 if (oper_speed && init_speed && oper_speed != init_speed)
582 speed_change = 1;
583
584 /* Check that the controller is ready */
585 err = intel_wait_booting(hu);
586
587 clear_bit(STATE_BOOTING, &intel->flags);
588
589 /* In case of timeout, try to continue anyway */
590 if (err && err != -ETIMEDOUT)
591 return err;
592
593 set_bit(STATE_BOOTLOADER, &intel->flags);
594
595 /* Read the Intel version information to determine if the device
596 * is in bootloader mode or if it already has operational firmware
597 * loaded.
598 */
599 err = btintel_read_version(hdev, &ver);
600 if (err)
601 return err;
602
603 /* The hardware platform number has a fixed value of 0x37 and
604 * for now only accept this single value.
605 */
606 if (ver.hw_platform != 0x37) {
607 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
608 ver.hw_platform);
609 return -EINVAL;
610 }
611
612 /* Check for supported iBT hardware variants of this firmware
613 * loading method.
614 *
615 * This check has been put in place to ensure correct forward
616 * compatibility options when newer hardware variants come along.
617 */
618 switch (ver.hw_variant) {
619 case 0x0b: /* LnP */
620 case 0x0c: /* WsP */
621 case 0x12: /* ThP */
622 break;
623 default:
624 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
625 ver.hw_variant);
626 return -EINVAL;
627 }
628
629 btintel_version_info(hdev, &ver);
630
631 /* The firmware variant determines if the device is in bootloader
632 * mode or is running operational firmware. The value 0x06 identifies
633 * the bootloader and the value 0x23 identifies the operational
634 * firmware.
635 *
636 * When the operational firmware is already present, then only
637 * the check for valid Bluetooth device address is needed. This
638 * determines if the device will be added as configured or
639 * unconfigured controller.
640 *
641 * It is not possible to use the Secure Boot Parameters in this
642 * case since that command is only available in bootloader mode.
643 */
644 if (ver.fw_variant == 0x23) {
645 clear_bit(STATE_BOOTLOADER, &intel->flags);
646 btintel_check_bdaddr(hdev);
647 return 0;
648 }
649
650 /* If the device is not in bootloader mode, then the only possible
651 * choice is to return an error and abort the device initialization.
652 */
653 if (ver.fw_variant != 0x06) {
654 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
655 ver.fw_variant);
656 return -ENODEV;
657 }
658
659 /* Read the secure boot parameters to identify the operating
660 * details of the bootloader.
661 */
662 err = btintel_read_boot_params(hdev, ¶ms);
663 if (err)
664 return err;
665
666 /* It is required that every single firmware fragment is acknowledged
667 * with a command complete event. If the boot parameters indicate
668 * that this bootloader does not send them, then abort the setup.
669 */
670 if (params.limited_cce != 0x00) {
671 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
672 params.limited_cce);
673 return -EINVAL;
674 }
675
676 /* If the OTP has no valid Bluetooth device address, then there will
677 * also be no valid address for the operational firmware.
678 */
679 if (!bacmp(¶ms.otp_bdaddr, BDADDR_ANY)) {
680 bt_dev_info(hdev, "No device address configured");
681 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
682 }
683
684 /* With this Intel bootloader only the hardware variant and device
685 * revision information are used to select the right firmware for SfP
686 * and WsP.
687 *
688 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
689 *
690 * Currently the supported hardware variants are:
691 * 11 (0x0b) for iBT 3.0 (LnP/SfP)
692 * 12 (0x0c) for iBT 3.5 (WsP)
693 *
694 * For ThP/JfP and for future SKU's, the FW name varies based on HW
695 * variant, HW revision and FW revision, as these are dependent on CNVi
696 * and RF Combination.
697 *
698 * 18 (0x12) for iBT3.5 (ThP/JfP)
699 *
700 * The firmware file name for these will be
701 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
702 *
703 */
704 switch (ver.hw_variant) {
705 case 0x0b: /* SfP */
706 case 0x0c: /* WsP */
707 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
708 le16_to_cpu(ver.hw_variant),
709 le16_to_cpu(params.dev_revid));
710 break;
711 case 0x12: /* ThP */
712 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
713 le16_to_cpu(ver.hw_variant),
714 le16_to_cpu(ver.hw_revision),
715 le16_to_cpu(ver.fw_revision));
716 break;
717 default:
718 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
719 ver.hw_variant);
720 return -EINVAL;
721 }
722
723 err = request_firmware(&fw, fwname, &hdev->dev);
724 if (err < 0) {
725 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
726 err);
727 return err;
728 }
729
730 bt_dev_info(hdev, "Found device firmware: %s", fwname);
731
732 /* Save the DDC file name for later */
733 switch (ver.hw_variant) {
734 case 0x0b: /* SfP */
735 case 0x0c: /* WsP */
736 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
737 le16_to_cpu(ver.hw_variant),
738 le16_to_cpu(params.dev_revid));
739 break;
740 case 0x12: /* ThP */
741 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
742 le16_to_cpu(ver.hw_variant),
743 le16_to_cpu(ver.hw_revision),
744 le16_to_cpu(ver.fw_revision));
745 break;
746 default:
747 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
748 ver.hw_variant);
749 return -EINVAL;
750 }
751
752 if (fw->size < 644) {
753 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
754 fw->size);
755 err = -EBADF;
756 goto done;
757 }
758
759 set_bit(STATE_DOWNLOADING, &intel->flags);
760
761 /* Start firmware downloading and get boot parameter */
762 err = btintel_download_firmware(hdev, fw, &boot_param);
763 if (err < 0)
764 goto done;
765
766 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
767
768 bt_dev_info(hdev, "Waiting for firmware download to complete");
769
770 /* Before switching the device into operational mode and with that
771 * booting the loaded firmware, wait for the bootloader notification
772 * that all fragments have been successfully received.
773 *
774 * When the event processing receives the notification, then the
775 * STATE_DOWNLOADING flag will be cleared.
776 *
777 * The firmware loading should not take longer than 5 seconds
778 * and thus just timeout if that happens and fail the setup
779 * of this device.
780 */
781 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
782 TASK_INTERRUPTIBLE,
783 msecs_to_jiffies(5000));
784 if (err == -EINTR) {
785 bt_dev_err(hdev, "Firmware loading interrupted");
786 err = -EINTR;
787 goto done;
788 }
789
790 if (err) {
791 bt_dev_err(hdev, "Firmware loading timeout");
792 err = -ETIMEDOUT;
793 goto done;
794 }
795
796 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
797 bt_dev_err(hdev, "Firmware loading failed");
798 err = -ENOEXEC;
799 goto done;
800 }
801
802 rettime = ktime_get();
803 delta = ktime_sub(rettime, calltime);
804 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
805
806 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
807
808 done:
809 release_firmware(fw);
810
811 if (err < 0)
812 return err;
813
814 /* We need to restore the default speed before Intel reset */
815 if (speed_change) {
816 err = intel_set_baudrate(hu, init_speed);
817 if (err)
818 return err;
819 }
820
821 calltime = ktime_get();
822
823 set_bit(STATE_BOOTING, &intel->flags);
824
825 err = btintel_send_intel_reset(hdev, boot_param);
826 if (err)
827 return err;
828
829 /* The bootloader will not indicate when the device is ready. This
830 * is done by the operational firmware sending bootup notification.
831 *
832 * Booting into operational firmware should not take longer than
833 * 1 second. However if that happens, then just fail the setup
834 * since something went wrong.
835 */
836 bt_dev_info(hdev, "Waiting for device to boot");
837
838 err = intel_wait_booting(hu);
839 if (err)
840 return err;
841
842 clear_bit(STATE_BOOTING, &intel->flags);
843
844 rettime = ktime_get();
845 delta = ktime_sub(rettime, calltime);
846 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
847
848 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
849
850 /* Enable LPM if matching pdev with wakeup enabled, set TX active
851 * until further LPM TX notification.
852 */
853 mutex_lock(&intel_device_list_lock);
854 list_for_each(p, &intel_device_list) {
855 struct intel_device *dev = list_entry(p, struct intel_device,
856 list);
857 if (!hu->tty->dev)
858 break;
859 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
860 if (device_may_wakeup(&dev->pdev->dev)) {
861 set_bit(STATE_LPM_ENABLED, &intel->flags);
862 set_bit(STATE_TX_ACTIVE, &intel->flags);
863 }
864 break;
865 }
866 }
867 mutex_unlock(&intel_device_list_lock);
868
869 /* Ignore errors, device can work without DDC parameters */
870 btintel_load_ddc_config(hdev, fwname);
871
872 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
873 if (IS_ERR(skb))
874 return PTR_ERR(skb);
875 kfree_skb(skb);
876
877 if (speed_change) {
878 err = intel_set_baudrate(hu, oper_speed);
879 if (err)
880 return err;
881 }
882
883 bt_dev_info(hdev, "Setup complete");
884
885 clear_bit(STATE_BOOTLOADER, &intel->flags);
886
887 return 0;
888 }
889
intel_recv_event(struct hci_dev * hdev,struct sk_buff * skb)890 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
891 {
892 struct hci_uart *hu = hci_get_drvdata(hdev);
893 struct intel_data *intel = hu->priv;
894 struct hci_event_hdr *hdr;
895
896 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
897 !test_bit(STATE_BOOTING, &intel->flags))
898 goto recv;
899
900 hdr = (void *)skb->data;
901
902 /* When the firmware loading completes the device sends
903 * out a vendor specific event indicating the result of
904 * the firmware loading.
905 */
906 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
907 skb->data[2] == 0x06) {
908 if (skb->data[3] != 0x00)
909 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
910
911 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
912 test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
913 smp_mb__after_atomic();
914 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
915 }
916
917 /* When switching to the operational firmware the device
918 * sends a vendor specific event indicating that the bootup
919 * completed.
920 */
921 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
922 skb->data[2] == 0x02) {
923 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
924 smp_mb__after_atomic();
925 wake_up_bit(&intel->flags, STATE_BOOTING);
926 }
927 }
928 recv:
929 return hci_recv_frame(hdev, skb);
930 }
931
intel_recv_lpm_notify(struct hci_dev * hdev,int value)932 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
933 {
934 struct hci_uart *hu = hci_get_drvdata(hdev);
935 struct intel_data *intel = hu->priv;
936
937 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
938
939 if (value) {
940 set_bit(STATE_TX_ACTIVE, &intel->flags);
941 schedule_work(&intel->busy_work);
942 } else {
943 clear_bit(STATE_TX_ACTIVE, &intel->flags);
944 }
945 }
946
intel_recv_lpm(struct hci_dev * hdev,struct sk_buff * skb)947 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
948 {
949 struct hci_lpm_pkt *lpm = (void *)skb->data;
950 struct hci_uart *hu = hci_get_drvdata(hdev);
951 struct intel_data *intel = hu->priv;
952
953 switch (lpm->opcode) {
954 case LPM_OP_TX_NOTIFY:
955 if (lpm->dlen < 1) {
956 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
957 break;
958 }
959 intel_recv_lpm_notify(hdev, lpm->data[0]);
960 break;
961 case LPM_OP_SUSPEND_ACK:
962 set_bit(STATE_SUSPENDED, &intel->flags);
963 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
964 smp_mb__after_atomic();
965 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
966 }
967 break;
968 case LPM_OP_RESUME_ACK:
969 clear_bit(STATE_SUSPENDED, &intel->flags);
970 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
971 smp_mb__after_atomic();
972 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
973 }
974 break;
975 default:
976 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
977 break;
978 }
979
980 kfree_skb(skb);
981
982 return 0;
983 }
984
985 #define INTEL_RECV_LPM \
986 .type = HCI_LPM_PKT, \
987 .hlen = HCI_LPM_HDR_SIZE, \
988 .loff = 1, \
989 .lsize = 1, \
990 .maxlen = HCI_LPM_MAX_SIZE
991
992 static const struct h4_recv_pkt intel_recv_pkts[] = {
993 { H4_RECV_ACL, .recv = hci_recv_frame },
994 { H4_RECV_SCO, .recv = hci_recv_frame },
995 { H4_RECV_EVENT, .recv = intel_recv_event },
996 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
997 };
998
intel_recv(struct hci_uart * hu,const void * data,int count)999 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1000 {
1001 struct intel_data *intel = hu->priv;
1002
1003 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1004 return -EUNATCH;
1005
1006 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1007 intel_recv_pkts,
1008 ARRAY_SIZE(intel_recv_pkts));
1009 if (IS_ERR(intel->rx_skb)) {
1010 int err = PTR_ERR(intel->rx_skb);
1011 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1012 intel->rx_skb = NULL;
1013 return err;
1014 }
1015
1016 return count;
1017 }
1018
intel_enqueue(struct hci_uart * hu,struct sk_buff * skb)1019 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1020 {
1021 struct intel_data *intel = hu->priv;
1022 struct list_head *p;
1023
1024 BT_DBG("hu %p skb %p", hu, skb);
1025
1026 if (!hu->tty->dev)
1027 goto out_enqueue;
1028
1029 /* Be sure our controller is resumed and potential LPM transaction
1030 * completed before enqueuing any packet.
1031 */
1032 mutex_lock(&intel_device_list_lock);
1033 list_for_each(p, &intel_device_list) {
1034 struct intel_device *idev = list_entry(p, struct intel_device,
1035 list);
1036
1037 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1038 pm_runtime_get_sync(&idev->pdev->dev);
1039 pm_runtime_mark_last_busy(&idev->pdev->dev);
1040 pm_runtime_put_autosuspend(&idev->pdev->dev);
1041 break;
1042 }
1043 }
1044 mutex_unlock(&intel_device_list_lock);
1045 out_enqueue:
1046 skb_queue_tail(&intel->txq, skb);
1047
1048 return 0;
1049 }
1050
intel_dequeue(struct hci_uart * hu)1051 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1052 {
1053 struct intel_data *intel = hu->priv;
1054 struct sk_buff *skb;
1055
1056 skb = skb_dequeue(&intel->txq);
1057 if (!skb)
1058 return skb;
1059
1060 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1061 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1062 struct hci_command_hdr *cmd = (void *)skb->data;
1063 __u16 opcode = le16_to_cpu(cmd->opcode);
1064
1065 /* When the 0xfc01 command is issued to boot into
1066 * the operational firmware, it will actually not
1067 * send a command complete event. To keep the flow
1068 * control working inject that event here.
1069 */
1070 if (opcode == 0xfc01)
1071 inject_cmd_complete(hu->hdev, opcode);
1072 }
1073
1074 /* Prepend skb with frame type */
1075 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1076
1077 return skb;
1078 }
1079
1080 static const struct hci_uart_proto intel_proto = {
1081 .id = HCI_UART_INTEL,
1082 .name = "Intel",
1083 .manufacturer = 2,
1084 .init_speed = 115200,
1085 .oper_speed = 3000000,
1086 .open = intel_open,
1087 .close = intel_close,
1088 .flush = intel_flush,
1089 .setup = intel_setup,
1090 .set_baudrate = intel_set_baudrate,
1091 .recv = intel_recv,
1092 .enqueue = intel_enqueue,
1093 .dequeue = intel_dequeue,
1094 };
1095
1096 #ifdef CONFIG_ACPI
1097 static const struct acpi_device_id intel_acpi_match[] = {
1098 { "INT33E1", 0 },
1099 { },
1100 };
1101 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1102 #endif
1103
1104 #ifdef CONFIG_PM
intel_suspend_device(struct device * dev)1105 static int intel_suspend_device(struct device *dev)
1106 {
1107 struct intel_device *idev = dev_get_drvdata(dev);
1108
1109 mutex_lock(&idev->hu_lock);
1110 if (idev->hu)
1111 intel_lpm_suspend(idev->hu);
1112 mutex_unlock(&idev->hu_lock);
1113
1114 return 0;
1115 }
1116
intel_resume_device(struct device * dev)1117 static int intel_resume_device(struct device *dev)
1118 {
1119 struct intel_device *idev = dev_get_drvdata(dev);
1120
1121 mutex_lock(&idev->hu_lock);
1122 if (idev->hu)
1123 intel_lpm_resume(idev->hu);
1124 mutex_unlock(&idev->hu_lock);
1125
1126 return 0;
1127 }
1128 #endif
1129
1130 #ifdef CONFIG_PM_SLEEP
intel_suspend(struct device * dev)1131 static int intel_suspend(struct device *dev)
1132 {
1133 struct intel_device *idev = dev_get_drvdata(dev);
1134
1135 if (device_may_wakeup(dev))
1136 enable_irq_wake(idev->irq);
1137
1138 return intel_suspend_device(dev);
1139 }
1140
intel_resume(struct device * dev)1141 static int intel_resume(struct device *dev)
1142 {
1143 struct intel_device *idev = dev_get_drvdata(dev);
1144
1145 if (device_may_wakeup(dev))
1146 disable_irq_wake(idev->irq);
1147
1148 return intel_resume_device(dev);
1149 }
1150 #endif
1151
1152 static const struct dev_pm_ops intel_pm_ops = {
1153 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1154 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1155 };
1156
1157 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1158 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1159
1160 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1161 { "reset-gpios", &reset_gpios, 1 },
1162 { "host-wake-gpios", &host_wake_gpios, 1 },
1163 { },
1164 };
1165
intel_probe(struct platform_device * pdev)1166 static int intel_probe(struct platform_device *pdev)
1167 {
1168 struct intel_device *idev;
1169 int ret;
1170
1171 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1172 if (!idev)
1173 return -ENOMEM;
1174
1175 mutex_init(&idev->hu_lock);
1176
1177 idev->pdev = pdev;
1178
1179 ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1180 if (ret)
1181 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1182
1183 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1184 if (IS_ERR(idev->reset)) {
1185 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1186 return PTR_ERR(idev->reset);
1187 }
1188
1189 idev->irq = platform_get_irq(pdev, 0);
1190 if (idev->irq < 0) {
1191 struct gpio_desc *host_wake;
1192
1193 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1194
1195 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1196 if (IS_ERR(host_wake)) {
1197 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1198 goto no_irq;
1199 }
1200
1201 idev->irq = gpiod_to_irq(host_wake);
1202 if (idev->irq < 0) {
1203 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1204 goto no_irq;
1205 }
1206 }
1207
1208 /* Only enable wake-up/irq when controller is powered */
1209 device_set_wakeup_capable(&pdev->dev, true);
1210 device_wakeup_disable(&pdev->dev);
1211
1212 no_irq:
1213 platform_set_drvdata(pdev, idev);
1214
1215 /* Place this instance on the device list */
1216 mutex_lock(&intel_device_list_lock);
1217 list_add_tail(&idev->list, &intel_device_list);
1218 mutex_unlock(&intel_device_list_lock);
1219
1220 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1221 desc_to_gpio(idev->reset), idev->irq);
1222
1223 return 0;
1224 }
1225
intel_remove(struct platform_device * pdev)1226 static int intel_remove(struct platform_device *pdev)
1227 {
1228 struct intel_device *idev = platform_get_drvdata(pdev);
1229
1230 device_wakeup_disable(&pdev->dev);
1231
1232 mutex_lock(&intel_device_list_lock);
1233 list_del(&idev->list);
1234 mutex_unlock(&intel_device_list_lock);
1235
1236 dev_info(&pdev->dev, "unregistered.\n");
1237
1238 return 0;
1239 }
1240
1241 static struct platform_driver intel_driver = {
1242 .probe = intel_probe,
1243 .remove = intel_remove,
1244 .driver = {
1245 .name = "hci_intel",
1246 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1247 .pm = &intel_pm_ops,
1248 },
1249 };
1250
intel_init(void)1251 int __init intel_init(void)
1252 {
1253 platform_driver_register(&intel_driver);
1254
1255 return hci_uart_register_proto(&intel_proto);
1256 }
1257
intel_deinit(void)1258 int __exit intel_deinit(void)
1259 {
1260 platform_driver_unregister(&intel_driver);
1261
1262 return hci_uart_unregister_proto(&intel_proto);
1263 }
1264