1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_damage_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fourcc.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_rect.h>
45
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dp_mst.h"
50 #include "display/intel_dpll_mgr.h"
51 #include "display/intel_dsi.h"
52 #include "display/intel_dvo.h"
53 #include "display/intel_gmbus.h"
54 #include "display/intel_hdmi.h"
55 #include "display/intel_lvds.h"
56 #include "display/intel_sdvo.h"
57 #include "display/intel_tv.h"
58 #include "display/intel_vdsc.h"
59
60 #include "gt/intel_rps.h"
61
62 #include "i915_drv.h"
63 #include "i915_trace.h"
64 #include "intel_acpi.h"
65 #include "intel_atomic.h"
66 #include "intel_atomic_plane.h"
67 #include "intel_bw.h"
68 #include "intel_cdclk.h"
69 #include "intel_color.h"
70 #include "intel_csr.h"
71 #include "intel_display_types.h"
72 #include "intel_dp_link_training.h"
73 #include "intel_fbc.h"
74 #include "intel_fbdev.h"
75 #include "intel_fifo_underrun.h"
76 #include "intel_frontbuffer.h"
77 #include "intel_hdcp.h"
78 #include "intel_hotplug.h"
79 #include "intel_overlay.h"
80 #include "intel_pipe_crc.h"
81 #include "intel_pm.h"
82 #include "intel_psr.h"
83 #include "intel_quirks.h"
84 #include "intel_sideband.h"
85 #include "intel_sprite.h"
86 #include "intel_tc.h"
87 #include "intel_vga.h"
88
89 /* Primary plane formats for gen <= 3 */
90 static const u32 i8xx_primary_formats[] = {
91 DRM_FORMAT_C8,
92 DRM_FORMAT_XRGB1555,
93 DRM_FORMAT_RGB565,
94 DRM_FORMAT_XRGB8888,
95 };
96
97 /* Primary plane formats for ivb (no fp16 due to hw issue) */
98 static const u32 ivb_primary_formats[] = {
99 DRM_FORMAT_C8,
100 DRM_FORMAT_RGB565,
101 DRM_FORMAT_XRGB8888,
102 DRM_FORMAT_XBGR8888,
103 DRM_FORMAT_XRGB2101010,
104 DRM_FORMAT_XBGR2101010,
105 };
106
107 /* Primary plane formats for gen >= 4, except ivb */
108 static const u32 i965_primary_formats[] = {
109 DRM_FORMAT_C8,
110 DRM_FORMAT_RGB565,
111 DRM_FORMAT_XRGB8888,
112 DRM_FORMAT_XBGR8888,
113 DRM_FORMAT_XRGB2101010,
114 DRM_FORMAT_XBGR2101010,
115 DRM_FORMAT_XBGR16161616F,
116 };
117
118 /* Primary plane formats for vlv/chv */
119 static const u32 vlv_primary_formats[] = {
120 DRM_FORMAT_C8,
121 DRM_FORMAT_RGB565,
122 DRM_FORMAT_XRGB8888,
123 DRM_FORMAT_XBGR8888,
124 DRM_FORMAT_ARGB8888,
125 DRM_FORMAT_ABGR8888,
126 DRM_FORMAT_XRGB2101010,
127 DRM_FORMAT_XBGR2101010,
128 DRM_FORMAT_ARGB2101010,
129 DRM_FORMAT_ABGR2101010,
130 DRM_FORMAT_XBGR16161616F,
131 };
132
133 static const u64 i9xx_format_modifiers[] = {
134 I915_FORMAT_MOD_X_TILED,
135 DRM_FORMAT_MOD_LINEAR,
136 DRM_FORMAT_MOD_INVALID
137 };
138
139 /* Cursor formats */
140 static const u32 intel_cursor_formats[] = {
141 DRM_FORMAT_ARGB8888,
142 };
143
144 static const u64 cursor_format_modifiers[] = {
145 DRM_FORMAT_MOD_LINEAR,
146 DRM_FORMAT_MOD_INVALID
147 };
148
149 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
150 struct intel_crtc_state *pipe_config);
151 static void ilk_pch_clock_get(struct intel_crtc *crtc,
152 struct intel_crtc_state *pipe_config);
153
154 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
155 struct drm_i915_gem_object *obj,
156 struct drm_mode_fb_cmd2 *mode_cmd);
157 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
158 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
159 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
160 const struct intel_link_m_n *m_n,
161 const struct intel_link_m_n *m2_n2);
162 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
163 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state);
164 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state);
165 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
166 static void vlv_prepare_pll(struct intel_crtc *crtc,
167 const struct intel_crtc_state *pipe_config);
168 static void chv_prepare_pll(struct intel_crtc *crtc,
169 const struct intel_crtc_state *pipe_config);
170 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state);
171 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
172 static void intel_modeset_setup_hw_state(struct drm_device *dev,
173 struct drm_modeset_acquire_ctx *ctx);
174 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
175
176 struct intel_limit {
177 struct {
178 int min, max;
179 } dot, vco, n, m, m1, m2, p, p1;
180
181 struct {
182 int dot_limit;
183 int p2_slow, p2_fast;
184 } p2;
185 };
186
187 /* returns HPLL frequency in kHz */
vlv_get_hpll_vco(struct drm_i915_private * dev_priv)188 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
189 {
190 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
191
192 /* Obtain SKU information */
193 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
194 CCK_FUSE_HPLL_FREQ_MASK;
195
196 return vco_freq[hpll_freq] * 1000;
197 }
198
vlv_get_cck_clock(struct drm_i915_private * dev_priv,const char * name,u32 reg,int ref_freq)199 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
200 const char *name, u32 reg, int ref_freq)
201 {
202 u32 val;
203 int divider;
204
205 val = vlv_cck_read(dev_priv, reg);
206 divider = val & CCK_FREQUENCY_VALUES;
207
208 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) !=
209 (divider << CCK_FREQUENCY_STATUS_SHIFT),
210 "%s change in progress\n", name);
211
212 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
213 }
214
vlv_get_cck_clock_hpll(struct drm_i915_private * dev_priv,const char * name,u32 reg)215 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
216 const char *name, u32 reg)
217 {
218 int hpll;
219
220 vlv_cck_get(dev_priv);
221
222 if (dev_priv->hpll_freq == 0)
223 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
224
225 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
226
227 vlv_cck_put(dev_priv);
228
229 return hpll;
230 }
231
intel_update_czclk(struct drm_i915_private * dev_priv)232 static void intel_update_czclk(struct drm_i915_private *dev_priv)
233 {
234 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
235 return;
236
237 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
238 CCK_CZ_CLOCK_CONTROL);
239
240 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n",
241 dev_priv->czclk_freq);
242 }
243
244 /* units of 100MHz */
intel_fdi_link_freq(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)245 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
246 const struct intel_crtc_state *pipe_config)
247 {
248 if (HAS_DDI(dev_priv))
249 return pipe_config->port_clock; /* SPLL */
250 else
251 return dev_priv->fdi_pll_freq;
252 }
253
254 static const struct intel_limit intel_limits_i8xx_dac = {
255 .dot = { .min = 25000, .max = 350000 },
256 .vco = { .min = 908000, .max = 1512000 },
257 .n = { .min = 2, .max = 16 },
258 .m = { .min = 96, .max = 140 },
259 .m1 = { .min = 18, .max = 26 },
260 .m2 = { .min = 6, .max = 16 },
261 .p = { .min = 4, .max = 128 },
262 .p1 = { .min = 2, .max = 33 },
263 .p2 = { .dot_limit = 165000,
264 .p2_slow = 4, .p2_fast = 2 },
265 };
266
267 static const struct intel_limit intel_limits_i8xx_dvo = {
268 .dot = { .min = 25000, .max = 350000 },
269 .vco = { .min = 908000, .max = 1512000 },
270 .n = { .min = 2, .max = 16 },
271 .m = { .min = 96, .max = 140 },
272 .m1 = { .min = 18, .max = 26 },
273 .m2 = { .min = 6, .max = 16 },
274 .p = { .min = 4, .max = 128 },
275 .p1 = { .min = 2, .max = 33 },
276 .p2 = { .dot_limit = 165000,
277 .p2_slow = 4, .p2_fast = 4 },
278 };
279
280 static const struct intel_limit intel_limits_i8xx_lvds = {
281 .dot = { .min = 25000, .max = 350000 },
282 .vco = { .min = 908000, .max = 1512000 },
283 .n = { .min = 2, .max = 16 },
284 .m = { .min = 96, .max = 140 },
285 .m1 = { .min = 18, .max = 26 },
286 .m2 = { .min = 6, .max = 16 },
287 .p = { .min = 4, .max = 128 },
288 .p1 = { .min = 1, .max = 6 },
289 .p2 = { .dot_limit = 165000,
290 .p2_slow = 14, .p2_fast = 7 },
291 };
292
293 static const struct intel_limit intel_limits_i9xx_sdvo = {
294 .dot = { .min = 20000, .max = 400000 },
295 .vco = { .min = 1400000, .max = 2800000 },
296 .n = { .min = 1, .max = 6 },
297 .m = { .min = 70, .max = 120 },
298 .m1 = { .min = 8, .max = 18 },
299 .m2 = { .min = 3, .max = 7 },
300 .p = { .min = 5, .max = 80 },
301 .p1 = { .min = 1, .max = 8 },
302 .p2 = { .dot_limit = 200000,
303 .p2_slow = 10, .p2_fast = 5 },
304 };
305
306 static const struct intel_limit intel_limits_i9xx_lvds = {
307 .dot = { .min = 20000, .max = 400000 },
308 .vco = { .min = 1400000, .max = 2800000 },
309 .n = { .min = 1, .max = 6 },
310 .m = { .min = 70, .max = 120 },
311 .m1 = { .min = 8, .max = 18 },
312 .m2 = { .min = 3, .max = 7 },
313 .p = { .min = 7, .max = 98 },
314 .p1 = { .min = 1, .max = 8 },
315 .p2 = { .dot_limit = 112000,
316 .p2_slow = 14, .p2_fast = 7 },
317 };
318
319
320 static const struct intel_limit intel_limits_g4x_sdvo = {
321 .dot = { .min = 25000, .max = 270000 },
322 .vco = { .min = 1750000, .max = 3500000},
323 .n = { .min = 1, .max = 4 },
324 .m = { .min = 104, .max = 138 },
325 .m1 = { .min = 17, .max = 23 },
326 .m2 = { .min = 5, .max = 11 },
327 .p = { .min = 10, .max = 30 },
328 .p1 = { .min = 1, .max = 3},
329 .p2 = { .dot_limit = 270000,
330 .p2_slow = 10,
331 .p2_fast = 10
332 },
333 };
334
335 static const struct intel_limit intel_limits_g4x_hdmi = {
336 .dot = { .min = 22000, .max = 400000 },
337 .vco = { .min = 1750000, .max = 3500000},
338 .n = { .min = 1, .max = 4 },
339 .m = { .min = 104, .max = 138 },
340 .m1 = { .min = 16, .max = 23 },
341 .m2 = { .min = 5, .max = 11 },
342 .p = { .min = 5, .max = 80 },
343 .p1 = { .min = 1, .max = 8},
344 .p2 = { .dot_limit = 165000,
345 .p2_slow = 10, .p2_fast = 5 },
346 };
347
348 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
349 .dot = { .min = 20000, .max = 115000 },
350 .vco = { .min = 1750000, .max = 3500000 },
351 .n = { .min = 1, .max = 3 },
352 .m = { .min = 104, .max = 138 },
353 .m1 = { .min = 17, .max = 23 },
354 .m2 = { .min = 5, .max = 11 },
355 .p = { .min = 28, .max = 112 },
356 .p1 = { .min = 2, .max = 8 },
357 .p2 = { .dot_limit = 0,
358 .p2_slow = 14, .p2_fast = 14
359 },
360 };
361
362 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
363 .dot = { .min = 80000, .max = 224000 },
364 .vco = { .min = 1750000, .max = 3500000 },
365 .n = { .min = 1, .max = 3 },
366 .m = { .min = 104, .max = 138 },
367 .m1 = { .min = 17, .max = 23 },
368 .m2 = { .min = 5, .max = 11 },
369 .p = { .min = 14, .max = 42 },
370 .p1 = { .min = 2, .max = 6 },
371 .p2 = { .dot_limit = 0,
372 .p2_slow = 7, .p2_fast = 7
373 },
374 };
375
376 static const struct intel_limit pnv_limits_sdvo = {
377 .dot = { .min = 20000, .max = 400000},
378 .vco = { .min = 1700000, .max = 3500000 },
379 /* Pineview's Ncounter is a ring counter */
380 .n = { .min = 3, .max = 6 },
381 .m = { .min = 2, .max = 256 },
382 /* Pineview only has one combined m divider, which we treat as m2. */
383 .m1 = { .min = 0, .max = 0 },
384 .m2 = { .min = 0, .max = 254 },
385 .p = { .min = 5, .max = 80 },
386 .p1 = { .min = 1, .max = 8 },
387 .p2 = { .dot_limit = 200000,
388 .p2_slow = 10, .p2_fast = 5 },
389 };
390
391 static const struct intel_limit pnv_limits_lvds = {
392 .dot = { .min = 20000, .max = 400000 },
393 .vco = { .min = 1700000, .max = 3500000 },
394 .n = { .min = 3, .max = 6 },
395 .m = { .min = 2, .max = 256 },
396 .m1 = { .min = 0, .max = 0 },
397 .m2 = { .min = 0, .max = 254 },
398 .p = { .min = 7, .max = 112 },
399 .p1 = { .min = 1, .max = 8 },
400 .p2 = { .dot_limit = 112000,
401 .p2_slow = 14, .p2_fast = 14 },
402 };
403
404 /* Ironlake / Sandybridge
405 *
406 * We calculate clock using (register_value + 2) for N/M1/M2, so here
407 * the range value for them is (actual_value - 2).
408 */
409 static const struct intel_limit ilk_limits_dac = {
410 .dot = { .min = 25000, .max = 350000 },
411 .vco = { .min = 1760000, .max = 3510000 },
412 .n = { .min = 1, .max = 5 },
413 .m = { .min = 79, .max = 127 },
414 .m1 = { .min = 12, .max = 22 },
415 .m2 = { .min = 5, .max = 9 },
416 .p = { .min = 5, .max = 80 },
417 .p1 = { .min = 1, .max = 8 },
418 .p2 = { .dot_limit = 225000,
419 .p2_slow = 10, .p2_fast = 5 },
420 };
421
422 static const struct intel_limit ilk_limits_single_lvds = {
423 .dot = { .min = 25000, .max = 350000 },
424 .vco = { .min = 1760000, .max = 3510000 },
425 .n = { .min = 1, .max = 3 },
426 .m = { .min = 79, .max = 118 },
427 .m1 = { .min = 12, .max = 22 },
428 .m2 = { .min = 5, .max = 9 },
429 .p = { .min = 28, .max = 112 },
430 .p1 = { .min = 2, .max = 8 },
431 .p2 = { .dot_limit = 225000,
432 .p2_slow = 14, .p2_fast = 14 },
433 };
434
435 static const struct intel_limit ilk_limits_dual_lvds = {
436 .dot = { .min = 25000, .max = 350000 },
437 .vco = { .min = 1760000, .max = 3510000 },
438 .n = { .min = 1, .max = 3 },
439 .m = { .min = 79, .max = 127 },
440 .m1 = { .min = 12, .max = 22 },
441 .m2 = { .min = 5, .max = 9 },
442 .p = { .min = 14, .max = 56 },
443 .p1 = { .min = 2, .max = 8 },
444 .p2 = { .dot_limit = 225000,
445 .p2_slow = 7, .p2_fast = 7 },
446 };
447
448 /* LVDS 100mhz refclk limits. */
449 static const struct intel_limit ilk_limits_single_lvds_100m = {
450 .dot = { .min = 25000, .max = 350000 },
451 .vco = { .min = 1760000, .max = 3510000 },
452 .n = { .min = 1, .max = 2 },
453 .m = { .min = 79, .max = 126 },
454 .m1 = { .min = 12, .max = 22 },
455 .m2 = { .min = 5, .max = 9 },
456 .p = { .min = 28, .max = 112 },
457 .p1 = { .min = 2, .max = 8 },
458 .p2 = { .dot_limit = 225000,
459 .p2_slow = 14, .p2_fast = 14 },
460 };
461
462 static const struct intel_limit ilk_limits_dual_lvds_100m = {
463 .dot = { .min = 25000, .max = 350000 },
464 .vco = { .min = 1760000, .max = 3510000 },
465 .n = { .min = 1, .max = 3 },
466 .m = { .min = 79, .max = 126 },
467 .m1 = { .min = 12, .max = 22 },
468 .m2 = { .min = 5, .max = 9 },
469 .p = { .min = 14, .max = 42 },
470 .p1 = { .min = 2, .max = 6 },
471 .p2 = { .dot_limit = 225000,
472 .p2_slow = 7, .p2_fast = 7 },
473 };
474
475 static const struct intel_limit intel_limits_vlv = {
476 /*
477 * These are the data rate limits (measured in fast clocks)
478 * since those are the strictest limits we have. The fast
479 * clock and actual rate limits are more relaxed, so checking
480 * them would make no difference.
481 */
482 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
483 .vco = { .min = 4000000, .max = 6000000 },
484 .n = { .min = 1, .max = 7 },
485 .m1 = { .min = 2, .max = 3 },
486 .m2 = { .min = 11, .max = 156 },
487 .p1 = { .min = 2, .max = 3 },
488 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
489 };
490
491 static const struct intel_limit intel_limits_chv = {
492 /*
493 * These are the data rate limits (measured in fast clocks)
494 * since those are the strictest limits we have. The fast
495 * clock and actual rate limits are more relaxed, so checking
496 * them would make no difference.
497 */
498 .dot = { .min = 25000 * 5, .max = 540000 * 5},
499 .vco = { .min = 4800000, .max = 6480000 },
500 .n = { .min = 1, .max = 1 },
501 .m1 = { .min = 2, .max = 2 },
502 .m2 = { .min = 24 << 22, .max = 175 << 22 },
503 .p1 = { .min = 2, .max = 4 },
504 .p2 = { .p2_slow = 1, .p2_fast = 14 },
505 };
506
507 static const struct intel_limit intel_limits_bxt = {
508 /* FIXME: find real dot limits */
509 .dot = { .min = 0, .max = INT_MAX },
510 .vco = { .min = 4800000, .max = 6700000 },
511 .n = { .min = 1, .max = 1 },
512 .m1 = { .min = 2, .max = 2 },
513 /* FIXME: find real m2 limits */
514 .m2 = { .min = 2 << 22, .max = 255 << 22 },
515 .p1 = { .min = 2, .max = 4 },
516 .p2 = { .p2_slow = 1, .p2_fast = 20 },
517 };
518
519 /* WA Display #0827: Gen9:all */
520 static void
skl_wa_827(struct drm_i915_private * dev_priv,enum pipe pipe,bool enable)521 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
522 {
523 if (enable)
524 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
525 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS);
526 else
527 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
528 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
529 }
530
531 /* Wa_2006604312:icl,ehl */
532 static void
icl_wa_scalerclkgating(struct drm_i915_private * dev_priv,enum pipe pipe,bool enable)533 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
534 bool enable)
535 {
536 if (enable)
537 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
538 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
539 else
540 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
541 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
542 }
543
544 static bool
needs_modeset(const struct intel_crtc_state * state)545 needs_modeset(const struct intel_crtc_state *state)
546 {
547 return drm_atomic_crtc_needs_modeset(&state->uapi);
548 }
549
550 static bool
is_trans_port_sync_slave(const struct intel_crtc_state * crtc_state)551 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
552 {
553 return crtc_state->master_transcoder != INVALID_TRANSCODER;
554 }
555
556 static bool
is_trans_port_sync_master(const struct intel_crtc_state * crtc_state)557 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
558 {
559 return crtc_state->sync_mode_slaves_mask != 0;
560 }
561
562 bool
is_trans_port_sync_mode(const struct intel_crtc_state * crtc_state)563 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
564 {
565 return is_trans_port_sync_master(crtc_state) ||
566 is_trans_port_sync_slave(crtc_state);
567 }
568
569 /*
570 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
571 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
572 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
573 * The helpers' return value is the rate of the clock that is fed to the
574 * display engine's pipe which can be the above fast dot clock rate or a
575 * divided-down version of it.
576 */
577 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)578 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
579 {
580 clock->m = clock->m2 + 2;
581 clock->p = clock->p1 * clock->p2;
582 if (WARN_ON(clock->n == 0 || clock->p == 0))
583 return 0;
584 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
585 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
586
587 return clock->dot;
588 }
589
i9xx_dpll_compute_m(struct dpll * dpll)590 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
591 {
592 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
593 }
594
i9xx_calc_dpll_params(int refclk,struct dpll * clock)595 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
596 {
597 clock->m = i9xx_dpll_compute_m(clock);
598 clock->p = clock->p1 * clock->p2;
599 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
600 return 0;
601 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
602 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603
604 return clock->dot;
605 }
606
vlv_calc_dpll_params(int refclk,struct dpll * clock)607 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
608 {
609 clock->m = clock->m1 * clock->m2;
610 clock->p = clock->p1 * clock->p2;
611 if (WARN_ON(clock->n == 0 || clock->p == 0))
612 return 0;
613 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
614 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
615
616 return clock->dot / 5;
617 }
618
chv_calc_dpll_params(int refclk,struct dpll * clock)619 int chv_calc_dpll_params(int refclk, struct dpll *clock)
620 {
621 clock->m = clock->m1 * clock->m2;
622 clock->p = clock->p1 * clock->p2;
623 if (WARN_ON(clock->n == 0 || clock->p == 0))
624 return 0;
625 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
626 clock->n << 22);
627 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
628
629 return clock->dot / 5;
630 }
631
632 /*
633 * Returns whether the given set of divisors are valid for a given refclk with
634 * the given connectors.
635 */
intel_pll_is_valid(struct drm_i915_private * dev_priv,const struct intel_limit * limit,const struct dpll * clock)636 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
637 const struct intel_limit *limit,
638 const struct dpll *clock)
639 {
640 if (clock->n < limit->n.min || limit->n.max < clock->n)
641 return false;
642 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
643 return false;
644 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
645 return false;
646 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
647 return false;
648
649 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
650 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
651 if (clock->m1 <= clock->m2)
652 return false;
653
654 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
655 !IS_GEN9_LP(dev_priv)) {
656 if (clock->p < limit->p.min || limit->p.max < clock->p)
657 return false;
658 if (clock->m < limit->m.min || limit->m.max < clock->m)
659 return false;
660 }
661
662 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
663 return false;
664 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
665 * connector, etc., rather than just a single range.
666 */
667 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
668 return false;
669
670 return true;
671 }
672
673 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)674 i9xx_select_p2_div(const struct intel_limit *limit,
675 const struct intel_crtc_state *crtc_state,
676 int target)
677 {
678 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
679
680 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
681 /*
682 * For LVDS just rely on its current settings for dual-channel.
683 * We haven't figured out how to reliably set up different
684 * single/dual channel state, if we even can.
685 */
686 if (intel_is_dual_link_lvds(dev_priv))
687 return limit->p2.p2_fast;
688 else
689 return limit->p2.p2_slow;
690 } else {
691 if (target < limit->p2.dot_limit)
692 return limit->p2.p2_slow;
693 else
694 return limit->p2.p2_fast;
695 }
696 }
697
698 /*
699 * Returns a set of divisors for the desired target clock with the given
700 * refclk, or FALSE. The returned values represent the clock equation:
701 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
702 *
703 * Target and reference clocks are specified in kHz.
704 *
705 * If match_clock is provided, then best_clock P divider must match the P
706 * divider from @match_clock used for LVDS downclocking.
707 */
708 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)709 i9xx_find_best_dpll(const struct intel_limit *limit,
710 struct intel_crtc_state *crtc_state,
711 int target, int refclk, struct dpll *match_clock,
712 struct dpll *best_clock)
713 {
714 struct drm_device *dev = crtc_state->uapi.crtc->dev;
715 struct dpll clock;
716 int err = target;
717
718 memset(best_clock, 0, sizeof(*best_clock));
719
720 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
721
722 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
723 clock.m1++) {
724 for (clock.m2 = limit->m2.min;
725 clock.m2 <= limit->m2.max; clock.m2++) {
726 if (clock.m2 >= clock.m1)
727 break;
728 for (clock.n = limit->n.min;
729 clock.n <= limit->n.max; clock.n++) {
730 for (clock.p1 = limit->p1.min;
731 clock.p1 <= limit->p1.max; clock.p1++) {
732 int this_err;
733
734 i9xx_calc_dpll_params(refclk, &clock);
735 if (!intel_pll_is_valid(to_i915(dev),
736 limit,
737 &clock))
738 continue;
739 if (match_clock &&
740 clock.p != match_clock->p)
741 continue;
742
743 this_err = abs(clock.dot - target);
744 if (this_err < err) {
745 *best_clock = clock;
746 err = this_err;
747 }
748 }
749 }
750 }
751 }
752
753 return (err != target);
754 }
755
756 /*
757 * Returns a set of divisors for the desired target clock with the given
758 * refclk, or FALSE. The returned values represent the clock equation:
759 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
760 *
761 * Target and reference clocks are specified in kHz.
762 *
763 * If match_clock is provided, then best_clock P divider must match the P
764 * divider from @match_clock used for LVDS downclocking.
765 */
766 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)767 pnv_find_best_dpll(const struct intel_limit *limit,
768 struct intel_crtc_state *crtc_state,
769 int target, int refclk, struct dpll *match_clock,
770 struct dpll *best_clock)
771 {
772 struct drm_device *dev = crtc_state->uapi.crtc->dev;
773 struct dpll clock;
774 int err = target;
775
776 memset(best_clock, 0, sizeof(*best_clock));
777
778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 clock.m1++) {
782 for (clock.m2 = limit->m2.min;
783 clock.m2 <= limit->m2.max; clock.m2++) {
784 for (clock.n = limit->n.min;
785 clock.n <= limit->n.max; clock.n++) {
786 for (clock.p1 = limit->p1.min;
787 clock.p1 <= limit->p1.max; clock.p1++) {
788 int this_err;
789
790 pnv_calc_dpll_params(refclk, &clock);
791 if (!intel_pll_is_valid(to_i915(dev),
792 limit,
793 &clock))
794 continue;
795 if (match_clock &&
796 clock.p != match_clock->p)
797 continue;
798
799 this_err = abs(clock.dot - target);
800 if (this_err < err) {
801 *best_clock = clock;
802 err = this_err;
803 }
804 }
805 }
806 }
807 }
808
809 return (err != target);
810 }
811
812 /*
813 * Returns a set of divisors for the desired target clock with the given
814 * refclk, or FALSE. The returned values represent the clock equation:
815 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
816 *
817 * Target and reference clocks are specified in kHz.
818 *
819 * If match_clock is provided, then best_clock P divider must match the P
820 * divider from @match_clock used for LVDS downclocking.
821 */
822 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)823 g4x_find_best_dpll(const struct intel_limit *limit,
824 struct intel_crtc_state *crtc_state,
825 int target, int refclk, struct dpll *match_clock,
826 struct dpll *best_clock)
827 {
828 struct drm_device *dev = crtc_state->uapi.crtc->dev;
829 struct dpll clock;
830 int max_n;
831 bool found = false;
832 /* approximately equals target * 0.00585 */
833 int err_most = (target >> 8) + (target >> 9);
834
835 memset(best_clock, 0, sizeof(*best_clock));
836
837 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
838
839 max_n = limit->n.max;
840 /* based on hardware requirement, prefer smaller n to precision */
841 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
842 /* based on hardware requirement, prefere larger m1,m2 */
843 for (clock.m1 = limit->m1.max;
844 clock.m1 >= limit->m1.min; clock.m1--) {
845 for (clock.m2 = limit->m2.max;
846 clock.m2 >= limit->m2.min; clock.m2--) {
847 for (clock.p1 = limit->p1.max;
848 clock.p1 >= limit->p1.min; clock.p1--) {
849 int this_err;
850
851 i9xx_calc_dpll_params(refclk, &clock);
852 if (!intel_pll_is_valid(to_i915(dev),
853 limit,
854 &clock))
855 continue;
856
857 this_err = abs(clock.dot - target);
858 if (this_err < err_most) {
859 *best_clock = clock;
860 err_most = this_err;
861 max_n = clock.n;
862 found = true;
863 }
864 }
865 }
866 }
867 }
868 return found;
869 }
870
871 /*
872 * Check if the calculated PLL configuration is more optimal compared to the
873 * best configuration and error found so far. Return the calculated error.
874 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
876 const struct dpll *calculated_clock,
877 const struct dpll *best_clock,
878 unsigned int best_error_ppm,
879 unsigned int *error_ppm)
880 {
881 /*
882 * For CHV ignore the error and consider only the P value.
883 * Prefer a bigger P value based on HW requirements.
884 */
885 if (IS_CHERRYVIEW(to_i915(dev))) {
886 *error_ppm = 0;
887
888 return calculated_clock->p > best_clock->p;
889 }
890
891 if (drm_WARN_ON_ONCE(dev, !target_freq))
892 return false;
893
894 *error_ppm = div_u64(1000000ULL *
895 abs(target_freq - calculated_clock->dot),
896 target_freq);
897 /*
898 * Prefer a better P value over a better (smaller) error if the error
899 * is small. Ensure this preference for future configurations too by
900 * setting the error to 0.
901 */
902 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
903 *error_ppm = 0;
904
905 return true;
906 }
907
908 return *error_ppm + 10 < best_error_ppm;
909 }
910
911 /*
912 * Returns a set of divisors for the desired target clock with the given
913 * refclk, or FALSE. The returned values represent the clock equation:
914 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
915 */
916 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)917 vlv_find_best_dpll(const struct intel_limit *limit,
918 struct intel_crtc_state *crtc_state,
919 int target, int refclk, struct dpll *match_clock,
920 struct dpll *best_clock)
921 {
922 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
923 struct drm_device *dev = crtc->base.dev;
924 struct dpll clock;
925 unsigned int bestppm = 1000000;
926 /* min update 19.2 MHz */
927 int max_n = min(limit->n.max, refclk / 19200);
928 bool found = false;
929
930 target *= 5; /* fast clock */
931
932 memset(best_clock, 0, sizeof(*best_clock));
933
934 /* based on hardware requirement, prefer smaller n to precision */
935 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
936 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
937 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
938 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 clock.p = clock.p1 * clock.p2;
940 /* based on hardware requirement, prefer bigger m1,m2 values */
941 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
942 unsigned int ppm;
943
944 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
945 refclk * clock.m1);
946
947 vlv_calc_dpll_params(refclk, &clock);
948
949 if (!intel_pll_is_valid(to_i915(dev),
950 limit,
951 &clock))
952 continue;
953
954 if (!vlv_PLL_is_optimal(dev, target,
955 &clock,
956 best_clock,
957 bestppm, &ppm))
958 continue;
959
960 *best_clock = clock;
961 bestppm = ppm;
962 found = true;
963 }
964 }
965 }
966 }
967
968 return found;
969 }
970
971 /*
972 * Returns a set of divisors for the desired target clock with the given
973 * refclk, or FALSE. The returned values represent the clock equation:
974 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
975 */
976 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)977 chv_find_best_dpll(const struct intel_limit *limit,
978 struct intel_crtc_state *crtc_state,
979 int target, int refclk, struct dpll *match_clock,
980 struct dpll *best_clock)
981 {
982 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983 struct drm_device *dev = crtc->base.dev;
984 unsigned int best_error_ppm;
985 struct dpll clock;
986 u64 m2;
987 int found = false;
988
989 memset(best_clock, 0, sizeof(*best_clock));
990 best_error_ppm = 1000000;
991
992 /*
993 * Based on hardware doc, the n always set to 1, and m1 always
994 * set to 2. If requires to support 200Mhz refclk, we need to
995 * revisit this because n may not 1 anymore.
996 */
997 clock.n = 1, clock.m1 = 2;
998 target *= 5; /* fast clock */
999
1000 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1001 for (clock.p2 = limit->p2.p2_fast;
1002 clock.p2 >= limit->p2.p2_slow;
1003 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1004 unsigned int error_ppm;
1005
1006 clock.p = clock.p1 * clock.p2;
1007
1008 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1009 refclk * clock.m1);
1010
1011 if (m2 > INT_MAX/clock.m1)
1012 continue;
1013
1014 clock.m2 = m2;
1015
1016 chv_calc_dpll_params(refclk, &clock);
1017
1018 if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
1019 continue;
1020
1021 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1022 best_error_ppm, &error_ppm))
1023 continue;
1024
1025 *best_clock = clock;
1026 best_error_ppm = error_ppm;
1027 found = true;
1028 }
1029 }
1030
1031 return found;
1032 }
1033
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,struct dpll * best_clock)1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1035 struct dpll *best_clock)
1036 {
1037 int refclk = 100000;
1038 const struct intel_limit *limit = &intel_limits_bxt;
1039
1040 return chv_find_best_dpll(limit, crtc_state,
1041 crtc_state->port_clock, refclk,
1042 NULL, best_clock);
1043 }
1044
pipe_scanline_is_moving(struct drm_i915_private * dev_priv,enum pipe pipe)1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1046 enum pipe pipe)
1047 {
1048 i915_reg_t reg = PIPEDSL(pipe);
1049 u32 line1, line2;
1050 u32 line_mask;
1051
1052 if (IS_GEN(dev_priv, 2))
1053 line_mask = DSL_LINEMASK_GEN2;
1054 else
1055 line_mask = DSL_LINEMASK_GEN3;
1056
1057 line1 = intel_de_read(dev_priv, reg) & line_mask;
1058 msleep(5);
1059 line2 = intel_de_read(dev_priv, reg) & line_mask;
1060
1061 return line1 != line2;
1062 }
1063
wait_for_pipe_scanline_moving(struct intel_crtc * crtc,bool state)1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1065 {
1066 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1067 enum pipe pipe = crtc->pipe;
1068
1069 /* Wait for the display line to settle/start moving */
1070 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1071 drm_err(&dev_priv->drm,
1072 "pipe %c scanline %s wait timed out\n",
1073 pipe_name(pipe), onoff(state));
1074 }
1075
intel_wait_for_pipe_scanline_stopped(struct intel_crtc * crtc)1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1077 {
1078 wait_for_pipe_scanline_moving(crtc, false);
1079 }
1080
intel_wait_for_pipe_scanline_moving(struct intel_crtc * crtc)1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1082 {
1083 wait_for_pipe_scanline_moving(crtc, true);
1084 }
1085
1086 static void
intel_wait_for_pipe_off(const struct intel_crtc_state * old_crtc_state)1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1088 {
1089 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1090 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1091
1092 if (INTEL_GEN(dev_priv) >= 4) {
1093 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1094 i915_reg_t reg = PIPECONF(cpu_transcoder);
1095
1096 /* Wait for the Pipe State to go off */
1097 if (intel_de_wait_for_clear(dev_priv, reg,
1098 I965_PIPECONF_ACTIVE, 100))
1099 drm_WARN(&dev_priv->drm, 1,
1100 "pipe_off wait timed out\n");
1101 } else {
1102 intel_wait_for_pipe_scanline_stopped(crtc);
1103 }
1104 }
1105
1106 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1107 void assert_pll(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109 {
1110 u32 val;
1111 bool cur_state;
1112
1113 val = intel_de_read(dev_priv, DPLL(pipe));
1114 cur_state = !!(val & DPLL_VCO_ENABLE);
1115 I915_STATE_WARN(cur_state != state,
1116 "PLL state assertion failure (expected %s, current %s)\n",
1117 onoff(state), onoff(cur_state));
1118 }
1119
1120 /* XXX: the dsi pll is shared between MIPI DSI ports */
assert_dsi_pll(struct drm_i915_private * dev_priv,bool state)1121 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1122 {
1123 u32 val;
1124 bool cur_state;
1125
1126 vlv_cck_get(dev_priv);
1127 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1128 vlv_cck_put(dev_priv);
1129
1130 cur_state = val & DSI_PLL_VCO_EN;
1131 I915_STATE_WARN(cur_state != state,
1132 "DSI PLL state assertion failure (expected %s, current %s)\n",
1133 onoff(state), onoff(cur_state));
1134 }
1135
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1136 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1137 enum pipe pipe, bool state)
1138 {
1139 bool cur_state;
1140
1141 if (HAS_DDI(dev_priv)) {
1142 /*
1143 * DDI does not have a specific FDI_TX register.
1144 *
1145 * FDI is never fed from EDP transcoder
1146 * so pipe->transcoder cast is fine here.
1147 */
1148 enum transcoder cpu_transcoder = (enum transcoder)pipe;
1149 u32 val = intel_de_read(dev_priv,
1150 TRANS_DDI_FUNC_CTL(cpu_transcoder));
1151 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1152 } else {
1153 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1154 cur_state = !!(val & FDI_TX_ENABLE);
1155 }
1156 I915_STATE_WARN(cur_state != state,
1157 "FDI TX state assertion failure (expected %s, current %s)\n",
1158 onoff(state), onoff(cur_state));
1159 }
1160 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1161 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1162
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1163 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1164 enum pipe pipe, bool state)
1165 {
1166 u32 val;
1167 bool cur_state;
1168
1169 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1170 cur_state = !!(val & FDI_RX_ENABLE);
1171 I915_STATE_WARN(cur_state != state,
1172 "FDI RX state assertion failure (expected %s, current %s)\n",
1173 onoff(state), onoff(cur_state));
1174 }
1175 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1176 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1177
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)1178 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1179 enum pipe pipe)
1180 {
1181 u32 val;
1182
1183 /* ILK FDI PLL is always enabled */
1184 if (IS_GEN(dev_priv, 5))
1185 return;
1186
1187 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1188 if (HAS_DDI(dev_priv))
1189 return;
1190
1191 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1192 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1193 }
1194
assert_fdi_rx_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1195 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1196 enum pipe pipe, bool state)
1197 {
1198 u32 val;
1199 bool cur_state;
1200
1201 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1202 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1203 I915_STATE_WARN(cur_state != state,
1204 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1205 onoff(state), onoff(cur_state));
1206 }
1207
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)1208 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1209 {
1210 i915_reg_t pp_reg;
1211 u32 val;
1212 enum pipe panel_pipe = INVALID_PIPE;
1213 bool locked = true;
1214
1215 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv)))
1216 return;
1217
1218 if (HAS_PCH_SPLIT(dev_priv)) {
1219 u32 port_sel;
1220
1221 pp_reg = PP_CONTROL(0);
1222 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1223
1224 switch (port_sel) {
1225 case PANEL_PORT_SELECT_LVDS:
1226 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1227 break;
1228 case PANEL_PORT_SELECT_DPA:
1229 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1230 break;
1231 case PANEL_PORT_SELECT_DPC:
1232 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1233 break;
1234 case PANEL_PORT_SELECT_DPD:
1235 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1236 break;
1237 default:
1238 MISSING_CASE(port_sel);
1239 break;
1240 }
1241 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1242 /* presumably write lock depends on pipe, not port select */
1243 pp_reg = PP_CONTROL(pipe);
1244 panel_pipe = pipe;
1245 } else {
1246 u32 port_sel;
1247
1248 pp_reg = PP_CONTROL(0);
1249 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1250
1251 drm_WARN_ON(&dev_priv->drm,
1252 port_sel != PANEL_PORT_SELECT_LVDS);
1253 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1254 }
1255
1256 val = intel_de_read(dev_priv, pp_reg);
1257 if (!(val & PANEL_POWER_ON) ||
1258 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1259 locked = false;
1260
1261 I915_STATE_WARN(panel_pipe == pipe && locked,
1262 "panel assertion failure, pipe %c regs locked\n",
1263 pipe_name(pipe));
1264 }
1265
assert_pipe(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder,bool state)1266 void assert_pipe(struct drm_i915_private *dev_priv,
1267 enum transcoder cpu_transcoder, bool state)
1268 {
1269 bool cur_state;
1270 enum intel_display_power_domain power_domain;
1271 intel_wakeref_t wakeref;
1272
1273 /* we keep both pipes enabled on 830 */
1274 if (IS_I830(dev_priv))
1275 state = true;
1276
1277 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1278 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1279 if (wakeref) {
1280 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1281 cur_state = !!(val & PIPECONF_ENABLE);
1282
1283 intel_display_power_put(dev_priv, power_domain, wakeref);
1284 } else {
1285 cur_state = false;
1286 }
1287
1288 I915_STATE_WARN(cur_state != state,
1289 "transcoder %s assertion failure (expected %s, current %s)\n",
1290 transcoder_name(cpu_transcoder),
1291 onoff(state), onoff(cur_state));
1292 }
1293
assert_plane(struct intel_plane * plane,bool state)1294 static void assert_plane(struct intel_plane *plane, bool state)
1295 {
1296 enum pipe pipe;
1297 bool cur_state;
1298
1299 cur_state = plane->get_hw_state(plane, &pipe);
1300
1301 I915_STATE_WARN(cur_state != state,
1302 "%s assertion failure (expected %s, current %s)\n",
1303 plane->base.name, onoff(state), onoff(cur_state));
1304 }
1305
1306 #define assert_plane_enabled(p) assert_plane(p, true)
1307 #define assert_plane_disabled(p) assert_plane(p, false)
1308
assert_planes_disabled(struct intel_crtc * crtc)1309 static void assert_planes_disabled(struct intel_crtc *crtc)
1310 {
1311 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1312 struct intel_plane *plane;
1313
1314 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1315 assert_plane_disabled(plane);
1316 }
1317
assert_vblank_disabled(struct drm_crtc * crtc)1318 static void assert_vblank_disabled(struct drm_crtc *crtc)
1319 {
1320 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1321 drm_crtc_vblank_put(crtc);
1322 }
1323
assert_pch_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1324 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe)
1326 {
1327 u32 val;
1328 bool enabled;
1329
1330 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe));
1331 enabled = !!(val & TRANS_ENABLE);
1332 I915_STATE_WARN(enabled,
1333 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1334 pipe_name(pipe));
1335 }
1336
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,enum port port,i915_reg_t dp_reg)1337 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1338 enum pipe pipe, enum port port,
1339 i915_reg_t dp_reg)
1340 {
1341 enum pipe port_pipe;
1342 bool state;
1343
1344 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1345
1346 I915_STATE_WARN(state && port_pipe == pipe,
1347 "PCH DP %c enabled on transcoder %c, should be disabled\n",
1348 port_name(port), pipe_name(pipe));
1349
1350 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1351 "IBX PCH DP %c still using transcoder B\n",
1352 port_name(port));
1353 }
1354
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,enum port port,i915_reg_t hdmi_reg)1355 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1356 enum pipe pipe, enum port port,
1357 i915_reg_t hdmi_reg)
1358 {
1359 enum pipe port_pipe;
1360 bool state;
1361
1362 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1363
1364 I915_STATE_WARN(state && port_pipe == pipe,
1365 "PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1366 port_name(port), pipe_name(pipe));
1367
1368 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1369 "IBX PCH HDMI %c still using transcoder B\n",
1370 port_name(port));
1371 }
1372
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1373 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1374 enum pipe pipe)
1375 {
1376 enum pipe port_pipe;
1377
1378 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1379 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1380 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1381
1382 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1383 port_pipe == pipe,
1384 "PCH VGA enabled on transcoder %c, should be disabled\n",
1385 pipe_name(pipe));
1386
1387 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1388 port_pipe == pipe,
1389 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1390 pipe_name(pipe));
1391
1392 /* PCH SDVOB multiplex with HDMIB */
1393 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1394 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1395 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1396 }
1397
_vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1398 static void _vlv_enable_pll(struct intel_crtc *crtc,
1399 const struct intel_crtc_state *pipe_config)
1400 {
1401 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402 enum pipe pipe = crtc->pipe;
1403
1404 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1405 intel_de_posting_read(dev_priv, DPLL(pipe));
1406 udelay(150);
1407
1408 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1409 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1410 }
1411
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1412 static void vlv_enable_pll(struct intel_crtc *crtc,
1413 const struct intel_crtc_state *pipe_config)
1414 {
1415 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1416 enum pipe pipe = crtc->pipe;
1417
1418 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1419
1420 /* PLL is protected by panel, make sure we can write it */
1421 assert_panel_unlocked(dev_priv, pipe);
1422
1423 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1424 _vlv_enable_pll(crtc, pipe_config);
1425
1426 intel_de_write(dev_priv, DPLL_MD(pipe),
1427 pipe_config->dpll_hw_state.dpll_md);
1428 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1429 }
1430
1431
_chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1432 static void _chv_enable_pll(struct intel_crtc *crtc,
1433 const struct intel_crtc_state *pipe_config)
1434 {
1435 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1436 enum pipe pipe = crtc->pipe;
1437 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1438 u32 tmp;
1439
1440 vlv_dpio_get(dev_priv);
1441
1442 /* Enable back the 10bit clock to display controller */
1443 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1444 tmp |= DPIO_DCLKP_EN;
1445 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1446
1447 vlv_dpio_put(dev_priv);
1448
1449 /*
1450 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1451 */
1452 udelay(1);
1453
1454 /* Enable PLL */
1455 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1456
1457 /* Check PLL is locked */
1458 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1459 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1460 }
1461
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1462 static void chv_enable_pll(struct intel_crtc *crtc,
1463 const struct intel_crtc_state *pipe_config)
1464 {
1465 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1466 enum pipe pipe = crtc->pipe;
1467
1468 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1469
1470 /* PLL is protected by panel, make sure we can write it */
1471 assert_panel_unlocked(dev_priv, pipe);
1472
1473 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1474 _chv_enable_pll(crtc, pipe_config);
1475
1476 if (pipe != PIPE_A) {
1477 /*
1478 * WaPixelRepeatModeFixForC0:chv
1479 *
1480 * DPLLCMD is AWOL. Use chicken bits to propagate
1481 * the value from DPLLBMD to either pipe B or C.
1482 */
1483 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1484 intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1485 pipe_config->dpll_hw_state.dpll_md);
1486 intel_de_write(dev_priv, CBR4_VLV, 0);
1487 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1488
1489 /*
1490 * DPLLB VGA mode also seems to cause problems.
1491 * We should always have it disabled.
1492 */
1493 drm_WARN_ON(&dev_priv->drm,
1494 (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1495 DPLL_VGA_MODE_DIS) == 0);
1496 } else {
1497 intel_de_write(dev_priv, DPLL_MD(pipe),
1498 pipe_config->dpll_hw_state.dpll_md);
1499 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1500 }
1501 }
1502
i9xx_has_pps(struct drm_i915_private * dev_priv)1503 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1504 {
1505 if (IS_I830(dev_priv))
1506 return false;
1507
1508 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1509 }
1510
i9xx_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)1511 static void i9xx_enable_pll(struct intel_crtc *crtc,
1512 const struct intel_crtc_state *crtc_state)
1513 {
1514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 i915_reg_t reg = DPLL(crtc->pipe);
1516 u32 dpll = crtc_state->dpll_hw_state.dpll;
1517 int i;
1518
1519 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1520
1521 /* PLL is protected by panel, make sure we can write it */
1522 if (i9xx_has_pps(dev_priv))
1523 assert_panel_unlocked(dev_priv, crtc->pipe);
1524
1525 /*
1526 * Apparently we need to have VGA mode enabled prior to changing
1527 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1528 * dividers, even though the register value does change.
1529 */
1530 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1531 intel_de_write(dev_priv, reg, dpll);
1532
1533 /* Wait for the clocks to stabilize. */
1534 intel_de_posting_read(dev_priv, reg);
1535 udelay(150);
1536
1537 if (INTEL_GEN(dev_priv) >= 4) {
1538 intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1539 crtc_state->dpll_hw_state.dpll_md);
1540 } else {
1541 /* The pixel multiplier can only be updated once the
1542 * DPLL is enabled and the clocks are stable.
1543 *
1544 * So write it again.
1545 */
1546 intel_de_write(dev_priv, reg, dpll);
1547 }
1548
1549 /* We do this three times for luck */
1550 for (i = 0; i < 3; i++) {
1551 intel_de_write(dev_priv, reg, dpll);
1552 intel_de_posting_read(dev_priv, reg);
1553 udelay(150); /* wait for warmup */
1554 }
1555 }
1556
i9xx_disable_pll(const struct intel_crtc_state * crtc_state)1557 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1558 {
1559 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 enum pipe pipe = crtc->pipe;
1562
1563 /* Don't disable pipe or pipe PLLs if needed */
1564 if (IS_I830(dev_priv))
1565 return;
1566
1567 /* Make sure the pipe isn't still relying on us */
1568 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1569
1570 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1571 intel_de_posting_read(dev_priv, DPLL(pipe));
1572 }
1573
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1574 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1575 {
1576 u32 val;
1577
1578 /* Make sure the pipe isn't still relying on us */
1579 assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1580
1581 val = DPLL_INTEGRATED_REF_CLK_VLV |
1582 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1583 if (pipe != PIPE_A)
1584 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1585
1586 intel_de_write(dev_priv, DPLL(pipe), val);
1587 intel_de_posting_read(dev_priv, DPLL(pipe));
1588 }
1589
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1590 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1591 {
1592 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1593 u32 val;
1594
1595 /* Make sure the pipe isn't still relying on us */
1596 assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1597
1598 val = DPLL_SSC_REF_CLK_CHV |
1599 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1600 if (pipe != PIPE_A)
1601 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1602
1603 intel_de_write(dev_priv, DPLL(pipe), val);
1604 intel_de_posting_read(dev_priv, DPLL(pipe));
1605
1606 vlv_dpio_get(dev_priv);
1607
1608 /* Disable 10bit clock to display controller */
1609 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1610 val &= ~DPIO_DCLKP_EN;
1611 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1612
1613 vlv_dpio_put(dev_priv);
1614 }
1615
vlv_wait_port_ready(struct drm_i915_private * dev_priv,struct intel_digital_port * dig_port,unsigned int expected_mask)1616 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1617 struct intel_digital_port *dig_port,
1618 unsigned int expected_mask)
1619 {
1620 u32 port_mask;
1621 i915_reg_t dpll_reg;
1622
1623 switch (dig_port->base.port) {
1624 case PORT_B:
1625 port_mask = DPLL_PORTB_READY_MASK;
1626 dpll_reg = DPLL(0);
1627 break;
1628 case PORT_C:
1629 port_mask = DPLL_PORTC_READY_MASK;
1630 dpll_reg = DPLL(0);
1631 expected_mask <<= 4;
1632 break;
1633 case PORT_D:
1634 port_mask = DPLL_PORTD_READY_MASK;
1635 dpll_reg = DPIO_PHY_STATUS;
1636 break;
1637 default:
1638 BUG();
1639 }
1640
1641 if (intel_de_wait_for_register(dev_priv, dpll_reg,
1642 port_mask, expected_mask, 1000))
1643 drm_WARN(&dev_priv->drm, 1,
1644 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1645 dig_port->base.base.base.id, dig_port->base.base.name,
1646 intel_de_read(dev_priv, dpll_reg) & port_mask,
1647 expected_mask);
1648 }
1649
ilk_enable_pch_transcoder(const struct intel_crtc_state * crtc_state)1650 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1651 {
1652 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1653 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1654 enum pipe pipe = crtc->pipe;
1655 i915_reg_t reg;
1656 u32 val, pipeconf_val;
1657
1658 /* Make sure PCH DPLL is enabled */
1659 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1660
1661 /* FDI must be feeding us bits for PCH ports */
1662 assert_fdi_tx_enabled(dev_priv, pipe);
1663 assert_fdi_rx_enabled(dev_priv, pipe);
1664
1665 if (HAS_PCH_CPT(dev_priv)) {
1666 reg = TRANS_CHICKEN2(pipe);
1667 val = intel_de_read(dev_priv, reg);
1668 /*
1669 * Workaround: Set the timing override bit
1670 * before enabling the pch transcoder.
1671 */
1672 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1673 /* Configure frame start delay to match the CPU */
1674 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1675 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1676 intel_de_write(dev_priv, reg, val);
1677 }
1678
1679 reg = PCH_TRANSCONF(pipe);
1680 val = intel_de_read(dev_priv, reg);
1681 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe));
1682
1683 if (HAS_PCH_IBX(dev_priv)) {
1684 /* Configure frame start delay to match the CPU */
1685 val &= ~TRANS_FRAME_START_DELAY_MASK;
1686 val |= TRANS_FRAME_START_DELAY(0);
1687
1688 /*
1689 * Make the BPC in transcoder be consistent with
1690 * that in pipeconf reg. For HDMI we must use 8bpc
1691 * here for both 8bpc and 12bpc.
1692 */
1693 val &= ~PIPECONF_BPC_MASK;
1694 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1695 val |= PIPECONF_8BPC;
1696 else
1697 val |= pipeconf_val & PIPECONF_BPC_MASK;
1698 }
1699
1700 val &= ~TRANS_INTERLACE_MASK;
1701 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1702 if (HAS_PCH_IBX(dev_priv) &&
1703 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1704 val |= TRANS_LEGACY_INTERLACED_ILK;
1705 else
1706 val |= TRANS_INTERLACED;
1707 } else {
1708 val |= TRANS_PROGRESSIVE;
1709 }
1710
1711 intel_de_write(dev_priv, reg, val | TRANS_ENABLE);
1712 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1713 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n",
1714 pipe_name(pipe));
1715 }
1716
lpt_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)1717 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1718 enum transcoder cpu_transcoder)
1719 {
1720 u32 val, pipeconf_val;
1721
1722 /* FDI must be feeding us bits for PCH ports */
1723 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1724 assert_fdi_rx_enabled(dev_priv, PIPE_A);
1725
1726 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1727 /* Workaround: set timing override bit. */
1728 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1729 /* Configure frame start delay to match the CPU */
1730 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1731 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1732 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1733
1734 val = TRANS_ENABLE;
1735 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1736
1737 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1738 PIPECONF_INTERLACED_ILK)
1739 val |= TRANS_INTERLACED;
1740 else
1741 val |= TRANS_PROGRESSIVE;
1742
1743 intel_de_write(dev_priv, LPT_TRANSCONF, val);
1744 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1745 TRANS_STATE_ENABLE, 100))
1746 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n");
1747 }
1748
ilk_disable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1749 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750 enum pipe pipe)
1751 {
1752 i915_reg_t reg;
1753 u32 val;
1754
1755 /* FDI relies on the transcoder */
1756 assert_fdi_tx_disabled(dev_priv, pipe);
1757 assert_fdi_rx_disabled(dev_priv, pipe);
1758
1759 /* Ports must be off as well */
1760 assert_pch_ports_disabled(dev_priv, pipe);
1761
1762 reg = PCH_TRANSCONF(pipe);
1763 val = intel_de_read(dev_priv, reg);
1764 val &= ~TRANS_ENABLE;
1765 intel_de_write(dev_priv, reg, val);
1766 /* wait for PCH transcoder off, transcoder state */
1767 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1768 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n",
1769 pipe_name(pipe));
1770
1771 if (HAS_PCH_CPT(dev_priv)) {
1772 /* Workaround: Clear the timing override chicken bit again. */
1773 reg = TRANS_CHICKEN2(pipe);
1774 val = intel_de_read(dev_priv, reg);
1775 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1776 intel_de_write(dev_priv, reg, val);
1777 }
1778 }
1779
lpt_disable_pch_transcoder(struct drm_i915_private * dev_priv)1780 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1781 {
1782 u32 val;
1783
1784 val = intel_de_read(dev_priv, LPT_TRANSCONF);
1785 val &= ~TRANS_ENABLE;
1786 intel_de_write(dev_priv, LPT_TRANSCONF, val);
1787 /* wait for PCH transcoder off, transcoder state */
1788 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1789 TRANS_STATE_ENABLE, 50))
1790 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n");
1791
1792 /* Workaround: clear timing override bit. */
1793 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1794 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1795 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1796 }
1797
intel_crtc_pch_transcoder(struct intel_crtc * crtc)1798 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1799 {
1800 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1801
1802 if (HAS_PCH_LPT(dev_priv))
1803 return PIPE_A;
1804 else
1805 return crtc->pipe;
1806 }
1807
intel_crtc_max_vblank_count(const struct intel_crtc_state * crtc_state)1808 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1809 {
1810 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1811
1812 /*
1813 * On i965gm the hardware frame counter reads
1814 * zero when the TV encoder is enabled :(
1815 */
1816 if (IS_I965GM(dev_priv) &&
1817 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1818 return 0;
1819
1820 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1821 return 0xffffffff; /* full 32 bit counter */
1822 else if (INTEL_GEN(dev_priv) >= 3)
1823 return 0xffffff; /* only 24 bits of frame count */
1824 else
1825 return 0; /* Gen2 doesn't have a hardware frame counter */
1826 }
1827
intel_crtc_vblank_on(const struct intel_crtc_state * crtc_state)1828 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1829 {
1830 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1831
1832 assert_vblank_disabled(&crtc->base);
1833 drm_crtc_set_max_vblank_count(&crtc->base,
1834 intel_crtc_max_vblank_count(crtc_state));
1835 drm_crtc_vblank_on(&crtc->base);
1836 }
1837
intel_crtc_vblank_off(const struct intel_crtc_state * crtc_state)1838 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1839 {
1840 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1841
1842 drm_crtc_vblank_off(&crtc->base);
1843 assert_vblank_disabled(&crtc->base);
1844 }
1845
intel_enable_pipe(const struct intel_crtc_state * new_crtc_state)1846 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1847 {
1848 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1849 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1850 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1851 enum pipe pipe = crtc->pipe;
1852 i915_reg_t reg;
1853 u32 val;
1854
1855 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe));
1856
1857 assert_planes_disabled(crtc);
1858
1859 /*
1860 * A pipe without a PLL won't actually be able to drive bits from
1861 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1862 * need the check.
1863 */
1864 if (HAS_GMCH(dev_priv)) {
1865 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1866 assert_dsi_pll_enabled(dev_priv);
1867 else
1868 assert_pll_enabled(dev_priv, pipe);
1869 } else {
1870 if (new_crtc_state->has_pch_encoder) {
1871 /* if driving the PCH, we need FDI enabled */
1872 assert_fdi_rx_pll_enabled(dev_priv,
1873 intel_crtc_pch_transcoder(crtc));
1874 assert_fdi_tx_pll_enabled(dev_priv,
1875 (enum pipe) cpu_transcoder);
1876 }
1877 /* FIXME: assert CPU port conditions for SNB+ */
1878 }
1879
1880 trace_intel_pipe_enable(crtc);
1881
1882 reg = PIPECONF(cpu_transcoder);
1883 val = intel_de_read(dev_priv, reg);
1884 if (val & PIPECONF_ENABLE) {
1885 /* we keep both pipes enabled on 830 */
1886 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv));
1887 return;
1888 }
1889
1890 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE);
1891 intel_de_posting_read(dev_priv, reg);
1892
1893 /*
1894 * Until the pipe starts PIPEDSL reads will return a stale value,
1895 * which causes an apparent vblank timestamp jump when PIPEDSL
1896 * resets to its proper value. That also messes up the frame count
1897 * when it's derived from the timestamps. So let's wait for the
1898 * pipe to start properly before we call drm_crtc_vblank_on()
1899 */
1900 if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1901 intel_wait_for_pipe_scanline_moving(crtc);
1902 }
1903
intel_disable_pipe(const struct intel_crtc_state * old_crtc_state)1904 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1905 {
1906 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1907 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1908 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1909 enum pipe pipe = crtc->pipe;
1910 i915_reg_t reg;
1911 u32 val;
1912
1913 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe));
1914
1915 /*
1916 * Make sure planes won't keep trying to pump pixels to us,
1917 * or we might hang the display.
1918 */
1919 assert_planes_disabled(crtc);
1920
1921 trace_intel_pipe_disable(crtc);
1922
1923 reg = PIPECONF(cpu_transcoder);
1924 val = intel_de_read(dev_priv, reg);
1925 if ((val & PIPECONF_ENABLE) == 0)
1926 return;
1927
1928 /*
1929 * Double wide has implications for planes
1930 * so best keep it disabled when not needed.
1931 */
1932 if (old_crtc_state->double_wide)
1933 val &= ~PIPECONF_DOUBLE_WIDE;
1934
1935 /* Don't disable pipe or pipe PLLs if needed */
1936 if (!IS_I830(dev_priv))
1937 val &= ~PIPECONF_ENABLE;
1938
1939 intel_de_write(dev_priv, reg, val);
1940 if ((val & PIPECONF_ENABLE) == 0)
1941 intel_wait_for_pipe_off(old_crtc_state);
1942 }
1943
intel_tile_size(const struct drm_i915_private * dev_priv)1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1945 {
1946 return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1947 }
1948
is_ccs_plane(const struct drm_framebuffer * fb,int plane)1949 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1950 {
1951 if (!is_ccs_modifier(fb->modifier))
1952 return false;
1953
1954 return plane >= fb->format->num_planes / 2;
1955 }
1956
is_gen12_ccs_modifier(u64 modifier)1957 static bool is_gen12_ccs_modifier(u64 modifier)
1958 {
1959 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
1960 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
1961
1962 }
1963
is_gen12_ccs_plane(const struct drm_framebuffer * fb,int plane)1964 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1965 {
1966 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1967 }
1968
is_aux_plane(const struct drm_framebuffer * fb,int plane)1969 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1970 {
1971 if (is_ccs_modifier(fb->modifier))
1972 return is_ccs_plane(fb, plane);
1973
1974 return plane == 1;
1975 }
1976
main_to_ccs_plane(const struct drm_framebuffer * fb,int main_plane)1977 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1978 {
1979 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1980 (main_plane && main_plane >= fb->format->num_planes / 2));
1981
1982 return fb->format->num_planes / 2 + main_plane;
1983 }
1984
ccs_to_main_plane(const struct drm_framebuffer * fb,int ccs_plane)1985 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1986 {
1987 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1988 ccs_plane < fb->format->num_planes / 2);
1989
1990 return ccs_plane - fb->format->num_planes / 2;
1991 }
1992
1993 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */
intel_main_to_aux_plane(const struct drm_framebuffer * fb,int main_plane)1994 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
1995 {
1996 if (is_ccs_modifier(fb->modifier))
1997 return main_to_ccs_plane(fb, main_plane);
1998
1999 return 1;
2000 }
2001
2002 bool
intel_format_info_is_yuv_semiplanar(const struct drm_format_info * info,uint64_t modifier)2003 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
2004 uint64_t modifier)
2005 {
2006 return info->is_yuv &&
2007 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
2008 }
2009
is_semiplanar_uv_plane(const struct drm_framebuffer * fb,int color_plane)2010 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb,
2011 int color_plane)
2012 {
2013 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
2014 color_plane == 1;
2015 }
2016
2017 static unsigned int
intel_tile_width_bytes(const struct drm_framebuffer * fb,int color_plane)2018 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
2019 {
2020 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2021 unsigned int cpp = fb->format->cpp[color_plane];
2022
2023 switch (fb->modifier) {
2024 case DRM_FORMAT_MOD_LINEAR:
2025 return intel_tile_size(dev_priv);
2026 case I915_FORMAT_MOD_X_TILED:
2027 if (IS_GEN(dev_priv, 2))
2028 return 128;
2029 else
2030 return 512;
2031 case I915_FORMAT_MOD_Y_TILED_CCS:
2032 if (is_ccs_plane(fb, color_plane))
2033 return 128;
2034 fallthrough;
2035 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2036 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2037 if (is_ccs_plane(fb, color_plane))
2038 return 64;
2039 fallthrough;
2040 case I915_FORMAT_MOD_Y_TILED:
2041 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2042 return 128;
2043 else
2044 return 512;
2045 case I915_FORMAT_MOD_Yf_TILED_CCS:
2046 if (is_ccs_plane(fb, color_plane))
2047 return 128;
2048 fallthrough;
2049 case I915_FORMAT_MOD_Yf_TILED:
2050 switch (cpp) {
2051 case 1:
2052 return 64;
2053 case 2:
2054 case 4:
2055 return 128;
2056 case 8:
2057 case 16:
2058 return 256;
2059 default:
2060 MISSING_CASE(cpp);
2061 return cpp;
2062 }
2063 break;
2064 default:
2065 MISSING_CASE(fb->modifier);
2066 return cpp;
2067 }
2068 }
2069
2070 static unsigned int
intel_tile_height(const struct drm_framebuffer * fb,int color_plane)2071 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2072 {
2073 if (is_gen12_ccs_plane(fb, color_plane))
2074 return 1;
2075
2076 return intel_tile_size(to_i915(fb->dev)) /
2077 intel_tile_width_bytes(fb, color_plane);
2078 }
2079
2080 /* Return the tile dimensions in pixel units */
intel_tile_dims(const struct drm_framebuffer * fb,int color_plane,unsigned int * tile_width,unsigned int * tile_height)2081 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2082 unsigned int *tile_width,
2083 unsigned int *tile_height)
2084 {
2085 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2086 unsigned int cpp = fb->format->cpp[color_plane];
2087
2088 *tile_width = tile_width_bytes / cpp;
2089 *tile_height = intel_tile_height(fb, color_plane);
2090 }
2091
intel_tile_row_size(const struct drm_framebuffer * fb,int color_plane)2092 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb,
2093 int color_plane)
2094 {
2095 unsigned int tile_width, tile_height;
2096
2097 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2098
2099 return fb->pitches[color_plane] * tile_height;
2100 }
2101
2102 unsigned int
intel_fb_align_height(const struct drm_framebuffer * fb,int color_plane,unsigned int height)2103 intel_fb_align_height(const struct drm_framebuffer *fb,
2104 int color_plane, unsigned int height)
2105 {
2106 unsigned int tile_height = intel_tile_height(fb, color_plane);
2107
2108 return ALIGN(height, tile_height);
2109 }
2110
intel_rotation_info_size(const struct intel_rotation_info * rot_info)2111 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2112 {
2113 unsigned int size = 0;
2114 int i;
2115
2116 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2117 size += rot_info->plane[i].width * rot_info->plane[i].height;
2118
2119 return size;
2120 }
2121
intel_remapped_info_size(const struct intel_remapped_info * rem_info)2122 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2123 {
2124 unsigned int size = 0;
2125 int i;
2126
2127 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2128 size += rem_info->plane[i].width * rem_info->plane[i].height;
2129
2130 return size;
2131 }
2132
2133 static void
intel_fill_fb_ggtt_view(struct i915_ggtt_view * view,const struct drm_framebuffer * fb,unsigned int rotation)2134 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2135 const struct drm_framebuffer *fb,
2136 unsigned int rotation)
2137 {
2138 view->type = I915_GGTT_VIEW_NORMAL;
2139 if (drm_rotation_90_or_270(rotation)) {
2140 view->type = I915_GGTT_VIEW_ROTATED;
2141 view->rotated = to_intel_framebuffer(fb)->rot_info;
2142 }
2143 }
2144
intel_cursor_alignment(const struct drm_i915_private * dev_priv)2145 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2146 {
2147 if (IS_I830(dev_priv))
2148 return 16 * 1024;
2149 else if (IS_I85X(dev_priv))
2150 return 256;
2151 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2152 return 32;
2153 else
2154 return 4 * 1024;
2155 }
2156
intel_linear_alignment(const struct drm_i915_private * dev_priv)2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2158 {
2159 if (INTEL_GEN(dev_priv) >= 9)
2160 return 256 * 1024;
2161 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2162 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2163 return 128 * 1024;
2164 else if (INTEL_GEN(dev_priv) >= 4)
2165 return 4 * 1024;
2166 else
2167 return 0;
2168 }
2169
intel_surf_alignment(const struct drm_framebuffer * fb,int color_plane)2170 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2171 int color_plane)
2172 {
2173 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2174
2175 /* AUX_DIST needs only 4K alignment */
2176 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) ||
2177 is_ccs_plane(fb, color_plane))
2178 return 4096;
2179
2180 switch (fb->modifier) {
2181 case DRM_FORMAT_MOD_LINEAR:
2182 return intel_linear_alignment(dev_priv);
2183 case I915_FORMAT_MOD_X_TILED:
2184 if (INTEL_GEN(dev_priv) >= 9)
2185 return 256 * 1024;
2186 return 0;
2187 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2188 if (is_semiplanar_uv_plane(fb, color_plane))
2189 return intel_tile_row_size(fb, color_plane);
2190 fallthrough;
2191 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2192 return 16 * 1024;
2193 case I915_FORMAT_MOD_Y_TILED_CCS:
2194 case I915_FORMAT_MOD_Yf_TILED_CCS:
2195 case I915_FORMAT_MOD_Y_TILED:
2196 if (INTEL_GEN(dev_priv) >= 12 &&
2197 is_semiplanar_uv_plane(fb, color_plane))
2198 return intel_tile_row_size(fb, color_plane);
2199 fallthrough;
2200 case I915_FORMAT_MOD_Yf_TILED:
2201 return 1 * 1024 * 1024;
2202 default:
2203 MISSING_CASE(fb->modifier);
2204 return 0;
2205 }
2206 }
2207
intel_plane_uses_fence(const struct intel_plane_state * plane_state)2208 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2209 {
2210 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2211 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2212
2213 return INTEL_GEN(dev_priv) < 4 ||
2214 (plane->has_fbc &&
2215 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2216 }
2217
2218 struct i915_vma *
intel_pin_and_fence_fb_obj(struct drm_framebuffer * fb,const struct i915_ggtt_view * view,bool uses_fence,unsigned long * out_flags)2219 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2220 const struct i915_ggtt_view *view,
2221 bool uses_fence,
2222 unsigned long *out_flags)
2223 {
2224 struct drm_device *dev = fb->dev;
2225 struct drm_i915_private *dev_priv = to_i915(dev);
2226 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2227 intel_wakeref_t wakeref;
2228 struct i915_vma *vma;
2229 unsigned int pinctl;
2230 u32 alignment;
2231
2232 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj)))
2233 return ERR_PTR(-EINVAL);
2234
2235 alignment = intel_surf_alignment(fb, 0);
2236 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment)))
2237 return ERR_PTR(-EINVAL);
2238
2239 /* Note that the w/a also requires 64 PTE of padding following the
2240 * bo. We currently fill all unused PTE with the shadow page and so
2241 * we should always have valid PTE following the scanout preventing
2242 * the VT-d warning.
2243 */
2244 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2245 alignment = 256 * 1024;
2246
2247 /*
2248 * Global gtt pte registers are special registers which actually forward
2249 * writes to a chunk of system memory. Which means that there is no risk
2250 * that the register values disappear as soon as we call
2251 * intel_runtime_pm_put(), so it is correct to wrap only the
2252 * pin/unpin/fence and not more.
2253 */
2254 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2255
2256 atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2257
2258 /*
2259 * Valleyview is definitely limited to scanning out the first
2260 * 512MiB. Lets presume this behaviour was inherited from the
2261 * g4x display engine and that all earlier gen are similarly
2262 * limited. Testing suggests that it is a little more
2263 * complicated than this. For example, Cherryview appears quite
2264 * happy to scanout from anywhere within its global aperture.
2265 */
2266 pinctl = 0;
2267 if (HAS_GMCH(dev_priv))
2268 pinctl |= PIN_MAPPABLE;
2269
2270 vma = i915_gem_object_pin_to_display_plane(obj,
2271 alignment, view, pinctl);
2272 if (IS_ERR(vma))
2273 goto err;
2274
2275 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2276 int ret;
2277
2278 /*
2279 * Install a fence for tiled scan-out. Pre-i965 always needs a
2280 * fence, whereas 965+ only requires a fence if using
2281 * framebuffer compression. For simplicity, we always, when
2282 * possible, install a fence as the cost is not that onerous.
2283 *
2284 * If we fail to fence the tiled scanout, then either the
2285 * modeset will reject the change (which is highly unlikely as
2286 * the affected systems, all but one, do not have unmappable
2287 * space) or we will not be able to enable full powersaving
2288 * techniques (also likely not to apply due to various limits
2289 * FBC and the like impose on the size of the buffer, which
2290 * presumably we violated anyway with this unmappable buffer).
2291 * Anyway, it is presumably better to stumble onwards with
2292 * something and try to run the system in a "less than optimal"
2293 * mode that matches the user configuration.
2294 */
2295 ret = i915_vma_pin_fence(vma);
2296 if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2297 i915_gem_object_unpin_from_display_plane(vma);
2298 vma = ERR_PTR(ret);
2299 goto err;
2300 }
2301
2302 if (ret == 0 && vma->fence)
2303 *out_flags |= PLANE_HAS_FENCE;
2304 }
2305
2306 i915_vma_get(vma);
2307 err:
2308 atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2309 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2310 return vma;
2311 }
2312
intel_unpin_fb_vma(struct i915_vma * vma,unsigned long flags)2313 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2314 {
2315 i915_gem_object_lock(vma->obj, NULL);
2316 if (flags & PLANE_HAS_FENCE)
2317 i915_vma_unpin_fence(vma);
2318 i915_gem_object_unpin_from_display_plane(vma);
2319 i915_gem_object_unlock(vma->obj);
2320
2321 i915_vma_put(vma);
2322 }
2323
intel_fb_pitch(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)2324 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2325 unsigned int rotation)
2326 {
2327 if (drm_rotation_90_or_270(rotation))
2328 return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2329 else
2330 return fb->pitches[color_plane];
2331 }
2332
2333 /*
2334 * Convert the x/y offsets into a linear offset.
2335 * Only valid with 0/180 degree rotation, which is fine since linear
2336 * offset is only used with linear buffers on pre-hsw and tiled buffers
2337 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2338 */
intel_fb_xy_to_linear(int x,int y,const struct intel_plane_state * state,int color_plane)2339 u32 intel_fb_xy_to_linear(int x, int y,
2340 const struct intel_plane_state *state,
2341 int color_plane)
2342 {
2343 const struct drm_framebuffer *fb = state->hw.fb;
2344 unsigned int cpp = fb->format->cpp[color_plane];
2345 unsigned int pitch = state->color_plane[color_plane].stride;
2346
2347 return y * pitch + x * cpp;
2348 }
2349
2350 /*
2351 * Add the x/y offsets derived from fb->offsets[] to the user
2352 * specified plane src x/y offsets. The resulting x/y offsets
2353 * specify the start of scanout from the beginning of the gtt mapping.
2354 */
intel_add_fb_offsets(int * x,int * y,const struct intel_plane_state * state,int color_plane)2355 void intel_add_fb_offsets(int *x, int *y,
2356 const struct intel_plane_state *state,
2357 int color_plane)
2358
2359 {
2360 *x += state->color_plane[color_plane].x;
2361 *y += state->color_plane[color_plane].y;
2362 }
2363
intel_adjust_tile_offset(int * x,int * y,unsigned int tile_width,unsigned int tile_height,unsigned int tile_size,unsigned int pitch_tiles,u32 old_offset,u32 new_offset)2364 static u32 intel_adjust_tile_offset(int *x, int *y,
2365 unsigned int tile_width,
2366 unsigned int tile_height,
2367 unsigned int tile_size,
2368 unsigned int pitch_tiles,
2369 u32 old_offset,
2370 u32 new_offset)
2371 {
2372 unsigned int pitch_pixels = pitch_tiles * tile_width;
2373 unsigned int tiles;
2374
2375 WARN_ON(old_offset & (tile_size - 1));
2376 WARN_ON(new_offset & (tile_size - 1));
2377 WARN_ON(new_offset > old_offset);
2378
2379 tiles = (old_offset - new_offset) / tile_size;
2380
2381 *y += tiles / pitch_tiles * tile_height;
2382 *x += tiles % pitch_tiles * tile_width;
2383
2384 /* minimize x in case it got needlessly big */
2385 *y += *x / pitch_pixels * tile_height;
2386 *x %= pitch_pixels;
2387
2388 return new_offset;
2389 }
2390
is_surface_linear(const struct drm_framebuffer * fb,int color_plane)2391 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2392 {
2393 return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2394 is_gen12_ccs_plane(fb, color_plane);
2395 }
2396
intel_adjust_aligned_offset(int * x,int * y,const struct drm_framebuffer * fb,int color_plane,unsigned int rotation,unsigned int pitch,u32 old_offset,u32 new_offset)2397 static u32 intel_adjust_aligned_offset(int *x, int *y,
2398 const struct drm_framebuffer *fb,
2399 int color_plane,
2400 unsigned int rotation,
2401 unsigned int pitch,
2402 u32 old_offset, u32 new_offset)
2403 {
2404 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2405 unsigned int cpp = fb->format->cpp[color_plane];
2406
2407 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset);
2408
2409 if (!is_surface_linear(fb, color_plane)) {
2410 unsigned int tile_size, tile_width, tile_height;
2411 unsigned int pitch_tiles;
2412
2413 tile_size = intel_tile_size(dev_priv);
2414 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2415
2416 if (drm_rotation_90_or_270(rotation)) {
2417 pitch_tiles = pitch / tile_height;
2418 swap(tile_width, tile_height);
2419 } else {
2420 pitch_tiles = pitch / (tile_width * cpp);
2421 }
2422
2423 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2424 tile_size, pitch_tiles,
2425 old_offset, new_offset);
2426 } else {
2427 old_offset += *y * pitch + *x * cpp;
2428
2429 *y = (old_offset - new_offset) / pitch;
2430 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2431 }
2432
2433 return new_offset;
2434 }
2435
2436 /*
2437 * Adjust the tile offset by moving the difference into
2438 * the x/y offsets.
2439 */
intel_plane_adjust_aligned_offset(int * x,int * y,const struct intel_plane_state * state,int color_plane,u32 old_offset,u32 new_offset)2440 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2441 const struct intel_plane_state *state,
2442 int color_plane,
2443 u32 old_offset, u32 new_offset)
2444 {
2445 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2446 state->hw.rotation,
2447 state->color_plane[color_plane].stride,
2448 old_offset, new_offset);
2449 }
2450
2451 /*
2452 * Computes the aligned offset to the base tile and adjusts
2453 * x, y. bytes per pixel is assumed to be a power-of-two.
2454 *
2455 * In the 90/270 rotated case, x and y are assumed
2456 * to be already rotated to match the rotated GTT view, and
2457 * pitch is the tile_height aligned framebuffer height.
2458 *
2459 * This function is used when computing the derived information
2460 * under intel_framebuffer, so using any of that information
2461 * here is not allowed. Anything under drm_framebuffer can be
2462 * used. This is why the user has to pass in the pitch since it
2463 * is specified in the rotated orientation.
2464 */
intel_compute_aligned_offset(struct drm_i915_private * dev_priv,int * x,int * y,const struct drm_framebuffer * fb,int color_plane,unsigned int pitch,unsigned int rotation,u32 alignment)2465 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2466 int *x, int *y,
2467 const struct drm_framebuffer *fb,
2468 int color_plane,
2469 unsigned int pitch,
2470 unsigned int rotation,
2471 u32 alignment)
2472 {
2473 unsigned int cpp = fb->format->cpp[color_plane];
2474 u32 offset, offset_aligned;
2475
2476 if (!is_surface_linear(fb, color_plane)) {
2477 unsigned int tile_size, tile_width, tile_height;
2478 unsigned int tile_rows, tiles, pitch_tiles;
2479
2480 tile_size = intel_tile_size(dev_priv);
2481 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2482
2483 if (drm_rotation_90_or_270(rotation)) {
2484 pitch_tiles = pitch / tile_height;
2485 swap(tile_width, tile_height);
2486 } else {
2487 pitch_tiles = pitch / (tile_width * cpp);
2488 }
2489
2490 tile_rows = *y / tile_height;
2491 *y %= tile_height;
2492
2493 tiles = *x / tile_width;
2494 *x %= tile_width;
2495
2496 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2497
2498 offset_aligned = offset;
2499 if (alignment)
2500 offset_aligned = rounddown(offset_aligned, alignment);
2501
2502 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2503 tile_size, pitch_tiles,
2504 offset, offset_aligned);
2505 } else {
2506 offset = *y * pitch + *x * cpp;
2507 offset_aligned = offset;
2508 if (alignment) {
2509 offset_aligned = rounddown(offset_aligned, alignment);
2510 *y = (offset % alignment) / pitch;
2511 *x = ((offset % alignment) - *y * pitch) / cpp;
2512 } else {
2513 *y = *x = 0;
2514 }
2515 }
2516
2517 return offset_aligned;
2518 }
2519
intel_plane_compute_aligned_offset(int * x,int * y,const struct intel_plane_state * state,int color_plane)2520 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2521 const struct intel_plane_state *state,
2522 int color_plane)
2523 {
2524 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2525 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2526 const struct drm_framebuffer *fb = state->hw.fb;
2527 unsigned int rotation = state->hw.rotation;
2528 int pitch = state->color_plane[color_plane].stride;
2529 u32 alignment;
2530
2531 if (intel_plane->id == PLANE_CURSOR)
2532 alignment = intel_cursor_alignment(dev_priv);
2533 else
2534 alignment = intel_surf_alignment(fb, color_plane);
2535
2536 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2537 pitch, rotation, alignment);
2538 }
2539
2540 /* Convert the fb->offset[] into x/y offsets */
intel_fb_offset_to_xy(int * x,int * y,const struct drm_framebuffer * fb,int color_plane)2541 static int intel_fb_offset_to_xy(int *x, int *y,
2542 const struct drm_framebuffer *fb,
2543 int color_plane)
2544 {
2545 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2546 unsigned int height;
2547 u32 alignment;
2548
2549 if (INTEL_GEN(dev_priv) >= 12 &&
2550 is_semiplanar_uv_plane(fb, color_plane))
2551 alignment = intel_tile_row_size(fb, color_plane);
2552 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR)
2553 alignment = intel_tile_size(dev_priv);
2554 else
2555 alignment = 0;
2556
2557 if (alignment != 0 && fb->offsets[color_plane] % alignment) {
2558 drm_dbg_kms(&dev_priv->drm,
2559 "Misaligned offset 0x%08x for color plane %d\n",
2560 fb->offsets[color_plane], color_plane);
2561 return -EINVAL;
2562 }
2563
2564 height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2565 height = ALIGN(height, intel_tile_height(fb, color_plane));
2566
2567 /* Catch potential overflows early */
2568 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2569 fb->offsets[color_plane])) {
2570 drm_dbg_kms(&dev_priv->drm,
2571 "Bad offset 0x%08x or pitch %d for color plane %d\n",
2572 fb->offsets[color_plane], fb->pitches[color_plane],
2573 color_plane);
2574 return -ERANGE;
2575 }
2576
2577 *x = 0;
2578 *y = 0;
2579
2580 intel_adjust_aligned_offset(x, y,
2581 fb, color_plane, DRM_MODE_ROTATE_0,
2582 fb->pitches[color_plane],
2583 fb->offsets[color_plane], 0);
2584
2585 return 0;
2586 }
2587
intel_fb_modifier_to_tiling(u64 fb_modifier)2588 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2589 {
2590 switch (fb_modifier) {
2591 case I915_FORMAT_MOD_X_TILED:
2592 return I915_TILING_X;
2593 case I915_FORMAT_MOD_Y_TILED:
2594 case I915_FORMAT_MOD_Y_TILED_CCS:
2595 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2596 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2597 return I915_TILING_Y;
2598 default:
2599 return I915_TILING_NONE;
2600 }
2601 }
2602
2603 /*
2604 * From the Sky Lake PRM:
2605 * "The Color Control Surface (CCS) contains the compression status of
2606 * the cache-line pairs. The compression state of the cache-line pair
2607 * is specified by 2 bits in the CCS. Each CCS cache-line represents
2608 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2609 * cache-line-pairs. CCS is always Y tiled."
2610 *
2611 * Since cache line pairs refers to horizontally adjacent cache lines,
2612 * each cache line in the CCS corresponds to an area of 32x16 cache
2613 * lines on the main surface. Since each pixel is 4 bytes, this gives
2614 * us a ratio of one byte in the CCS for each 8x16 pixels in the
2615 * main surface.
2616 */
2617 static const struct drm_format_info skl_ccs_formats[] = {
2618 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2619 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2620 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2621 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2622 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2623 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2624 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2625 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2626 };
2627
2628 /*
2629 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2630 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2631 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2632 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2633 * the main surface.
2634 */
2635 static const struct drm_format_info gen12_ccs_formats[] = {
2636 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2637 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2638 .hsub = 1, .vsub = 1, },
2639 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2640 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2641 .hsub = 1, .vsub = 1, },
2642 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2643 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2644 .hsub = 1, .vsub = 1, .has_alpha = true },
2645 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2646 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2647 .hsub = 1, .vsub = 1, .has_alpha = true },
2648 { .format = DRM_FORMAT_YUYV, .num_planes = 2,
2649 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2650 .hsub = 2, .vsub = 1, .is_yuv = true },
2651 { .format = DRM_FORMAT_YVYU, .num_planes = 2,
2652 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2653 .hsub = 2, .vsub = 1, .is_yuv = true },
2654 { .format = DRM_FORMAT_UYVY, .num_planes = 2,
2655 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2656 .hsub = 2, .vsub = 1, .is_yuv = true },
2657 { .format = DRM_FORMAT_VYUY, .num_planes = 2,
2658 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2659 .hsub = 2, .vsub = 1, .is_yuv = true },
2660 { .format = DRM_FORMAT_NV12, .num_planes = 4,
2661 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 },
2662 .hsub = 2, .vsub = 2, .is_yuv = true },
2663 { .format = DRM_FORMAT_P010, .num_planes = 4,
2664 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2665 .hsub = 2, .vsub = 2, .is_yuv = true },
2666 { .format = DRM_FORMAT_P012, .num_planes = 4,
2667 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2668 .hsub = 2, .vsub = 2, .is_yuv = true },
2669 { .format = DRM_FORMAT_P016, .num_planes = 4,
2670 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2671 .hsub = 2, .vsub = 2, .is_yuv = true },
2672 };
2673
2674 static const struct drm_format_info *
lookup_format_info(const struct drm_format_info formats[],int num_formats,u32 format)2675 lookup_format_info(const struct drm_format_info formats[],
2676 int num_formats, u32 format)
2677 {
2678 int i;
2679
2680 for (i = 0; i < num_formats; i++) {
2681 if (formats[i].format == format)
2682 return &formats[i];
2683 }
2684
2685 return NULL;
2686 }
2687
2688 static const struct drm_format_info *
intel_get_format_info(const struct drm_mode_fb_cmd2 * cmd)2689 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2690 {
2691 switch (cmd->modifier[0]) {
2692 case I915_FORMAT_MOD_Y_TILED_CCS:
2693 case I915_FORMAT_MOD_Yf_TILED_CCS:
2694 return lookup_format_info(skl_ccs_formats,
2695 ARRAY_SIZE(skl_ccs_formats),
2696 cmd->pixel_format);
2697 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2698 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2699 return lookup_format_info(gen12_ccs_formats,
2700 ARRAY_SIZE(gen12_ccs_formats),
2701 cmd->pixel_format);
2702 default:
2703 return NULL;
2704 }
2705 }
2706
is_ccs_modifier(u64 modifier)2707 bool is_ccs_modifier(u64 modifier)
2708 {
2709 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2710 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
2711 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2712 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2713 }
2714
gen12_ccs_aux_stride(struct drm_framebuffer * fb,int ccs_plane)2715 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2716 {
2717 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2718 512) * 64;
2719 }
2720
intel_plane_fb_max_stride(struct drm_i915_private * dev_priv,u32 pixel_format,u64 modifier)2721 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2722 u32 pixel_format, u64 modifier)
2723 {
2724 struct intel_crtc *crtc;
2725 struct intel_plane *plane;
2726
2727 /*
2728 * We assume the primary plane for pipe A has
2729 * the highest stride limits of them all,
2730 * if in case pipe A is disabled, use the first pipe from pipe_mask.
2731 */
2732 crtc = intel_get_first_crtc(dev_priv);
2733 if (!crtc)
2734 return 0;
2735
2736 plane = to_intel_plane(crtc->base.primary);
2737
2738 return plane->max_stride(plane, pixel_format, modifier,
2739 DRM_MODE_ROTATE_0);
2740 }
2741
2742 static
intel_fb_max_stride(struct drm_i915_private * dev_priv,u32 pixel_format,u64 modifier)2743 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2744 u32 pixel_format, u64 modifier)
2745 {
2746 /*
2747 * Arbitrary limit for gen4+ chosen to match the
2748 * render engine max stride.
2749 *
2750 * The new CCS hash mode makes remapping impossible
2751 */
2752 if (!is_ccs_modifier(modifier)) {
2753 if (INTEL_GEN(dev_priv) >= 7)
2754 return 256*1024;
2755 else if (INTEL_GEN(dev_priv) >= 4)
2756 return 128*1024;
2757 }
2758
2759 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2760 }
2761
2762 static u32
intel_fb_stride_alignment(const struct drm_framebuffer * fb,int color_plane)2763 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2764 {
2765 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2766 u32 tile_width;
2767
2768 if (is_surface_linear(fb, color_plane)) {
2769 u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2770 fb->format->format,
2771 fb->modifier);
2772
2773 /*
2774 * To make remapping with linear generally feasible
2775 * we need the stride to be page aligned.
2776 */
2777 if (fb->pitches[color_plane] > max_stride &&
2778 !is_ccs_modifier(fb->modifier))
2779 return intel_tile_size(dev_priv);
2780 else
2781 return 64;
2782 }
2783
2784 tile_width = intel_tile_width_bytes(fb, color_plane);
2785 if (is_ccs_modifier(fb->modifier)) {
2786 /*
2787 * Display WA #0531: skl,bxt,kbl,glk
2788 *
2789 * Render decompression and plane width > 3840
2790 * combined with horizontal panning requires the
2791 * plane stride to be a multiple of 4. We'll just
2792 * require the entire fb to accommodate that to avoid
2793 * potential runtime errors at plane configuration time.
2794 */
2795 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840)
2796 tile_width *= 4;
2797 /*
2798 * The main surface pitch must be padded to a multiple of four
2799 * tile widths.
2800 */
2801 else if (INTEL_GEN(dev_priv) >= 12)
2802 tile_width *= 4;
2803 }
2804 return tile_width;
2805 }
2806
intel_plane_can_remap(const struct intel_plane_state * plane_state)2807 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2808 {
2809 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2810 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2811 const struct drm_framebuffer *fb = plane_state->hw.fb;
2812 int i;
2813
2814 /* We don't want to deal with remapping with cursors */
2815 if (plane->id == PLANE_CURSOR)
2816 return false;
2817
2818 /*
2819 * The display engine limits already match/exceed the
2820 * render engine limits, so not much point in remapping.
2821 * Would also need to deal with the fence POT alignment
2822 * and gen2 2KiB GTT tile size.
2823 */
2824 if (INTEL_GEN(dev_priv) < 4)
2825 return false;
2826
2827 /*
2828 * The new CCS hash mode isn't compatible with remapping as
2829 * the virtual address of the pages affects the compressed data.
2830 */
2831 if (is_ccs_modifier(fb->modifier))
2832 return false;
2833
2834 /* Linear needs a page aligned stride for remapping */
2835 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2836 unsigned int alignment = intel_tile_size(dev_priv) - 1;
2837
2838 for (i = 0; i < fb->format->num_planes; i++) {
2839 if (fb->pitches[i] & alignment)
2840 return false;
2841 }
2842 }
2843
2844 return true;
2845 }
2846
intel_plane_needs_remap(const struct intel_plane_state * plane_state)2847 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2848 {
2849 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2850 const struct drm_framebuffer *fb = plane_state->hw.fb;
2851 unsigned int rotation = plane_state->hw.rotation;
2852 u32 stride, max_stride;
2853
2854 /*
2855 * No remapping for invisible planes since we don't have
2856 * an actual source viewport to remap.
2857 */
2858 if (!plane_state->uapi.visible)
2859 return false;
2860
2861 if (!intel_plane_can_remap(plane_state))
2862 return false;
2863
2864 /*
2865 * FIXME: aux plane limits on gen9+ are
2866 * unclear in Bspec, for now no checking.
2867 */
2868 stride = intel_fb_pitch(fb, 0, rotation);
2869 max_stride = plane->max_stride(plane, fb->format->format,
2870 fb->modifier, rotation);
2871
2872 return stride > max_stride;
2873 }
2874
2875 static void
intel_fb_plane_get_subsampling(int * hsub,int * vsub,const struct drm_framebuffer * fb,int color_plane)2876 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2877 const struct drm_framebuffer *fb,
2878 int color_plane)
2879 {
2880 int main_plane;
2881
2882 if (color_plane == 0) {
2883 *hsub = 1;
2884 *vsub = 1;
2885
2886 return;
2887 }
2888
2889 /*
2890 * TODO: Deduct the subsampling from the char block for all CCS
2891 * formats and planes.
2892 */
2893 if (!is_gen12_ccs_plane(fb, color_plane)) {
2894 *hsub = fb->format->hsub;
2895 *vsub = fb->format->vsub;
2896
2897 return;
2898 }
2899
2900 main_plane = ccs_to_main_plane(fb, color_plane);
2901 *hsub = drm_format_info_block_width(fb->format, color_plane) /
2902 drm_format_info_block_width(fb->format, main_plane);
2903
2904 /*
2905 * The min stride check in the core framebuffer_check() function
2906 * assumes that format->hsub applies to every plane except for the
2907 * first plane. That's incorrect for the CCS AUX plane of the first
2908 * plane, but for the above check to pass we must define the block
2909 * width with that subsampling applied to it. Adjust the width here
2910 * accordingly, so we can calculate the actual subsampling factor.
2911 */
2912 if (main_plane == 0)
2913 *hsub *= fb->format->hsub;
2914
2915 *vsub = 32;
2916 }
2917 static int
intel_fb_check_ccs_xy(struct drm_framebuffer * fb,int ccs_plane,int x,int y)2918 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2919 {
2920 struct drm_i915_private *i915 = to_i915(fb->dev);
2921 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2922 int main_plane;
2923 int hsub, vsub;
2924 int tile_width, tile_height;
2925 int ccs_x, ccs_y;
2926 int main_x, main_y;
2927
2928 if (!is_ccs_plane(fb, ccs_plane))
2929 return 0;
2930
2931 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2932 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2933
2934 tile_width *= hsub;
2935 tile_height *= vsub;
2936
2937 ccs_x = (x * hsub) % tile_width;
2938 ccs_y = (y * vsub) % tile_height;
2939
2940 main_plane = ccs_to_main_plane(fb, ccs_plane);
2941 main_x = intel_fb->normal[main_plane].x % tile_width;
2942 main_y = intel_fb->normal[main_plane].y % tile_height;
2943
2944 /*
2945 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2946 * x/y offsets must match between CCS and the main surface.
2947 */
2948 if (main_x != ccs_x || main_y != ccs_y) {
2949 drm_dbg_kms(&i915->drm,
2950 "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2951 main_x, main_y,
2952 ccs_x, ccs_y,
2953 intel_fb->normal[main_plane].x,
2954 intel_fb->normal[main_plane].y,
2955 x, y);
2956 return -EINVAL;
2957 }
2958
2959 return 0;
2960 }
2961
2962 static void
intel_fb_plane_dims(int * w,int * h,struct drm_framebuffer * fb,int color_plane)2963 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2964 {
2965 int main_plane = is_ccs_plane(fb, color_plane) ?
2966 ccs_to_main_plane(fb, color_plane) : 0;
2967 int main_hsub, main_vsub;
2968 int hsub, vsub;
2969
2970 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane);
2971 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2972 *w = fb->width / main_hsub / hsub;
2973 *h = fb->height / main_vsub / vsub;
2974 }
2975
2976 /*
2977 * Setup the rotated view for an FB plane and return the size the GTT mapping
2978 * requires for this view.
2979 */
2980 static u32
setup_fb_rotation(int plane,const struct intel_remapped_plane_info * plane_info,u32 gtt_offset_rotated,int x,int y,unsigned int width,unsigned int height,unsigned int tile_size,unsigned int tile_width,unsigned int tile_height,struct drm_framebuffer * fb)2981 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2982 u32 gtt_offset_rotated, int x, int y,
2983 unsigned int width, unsigned int height,
2984 unsigned int tile_size,
2985 unsigned int tile_width, unsigned int tile_height,
2986 struct drm_framebuffer *fb)
2987 {
2988 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2989 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2990 unsigned int pitch_tiles;
2991 struct drm_rect r;
2992
2993 /* Y or Yf modifiers required for 90/270 rotation */
2994 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
2995 fb->modifier != I915_FORMAT_MOD_Yf_TILED)
2996 return 0;
2997
2998 if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane)))
2999 return 0;
3000
3001 rot_info->plane[plane] = *plane_info;
3002
3003 intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
3004
3005 /* rotate the x/y offsets to match the GTT view */
3006 drm_rect_init(&r, x, y, width, height);
3007 drm_rect_rotate(&r,
3008 plane_info->width * tile_width,
3009 plane_info->height * tile_height,
3010 DRM_MODE_ROTATE_270);
3011 x = r.x1;
3012 y = r.y1;
3013
3014 /* rotate the tile dimensions to match the GTT view */
3015 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
3016 swap(tile_width, tile_height);
3017
3018 /*
3019 * We only keep the x/y offsets, so push all of the
3020 * gtt offset into the x/y offsets.
3021 */
3022 intel_adjust_tile_offset(&x, &y,
3023 tile_width, tile_height,
3024 tile_size, pitch_tiles,
3025 gtt_offset_rotated * tile_size, 0);
3026
3027 /*
3028 * First pixel of the framebuffer from
3029 * the start of the rotated gtt mapping.
3030 */
3031 intel_fb->rotated[plane].x = x;
3032 intel_fb->rotated[plane].y = y;
3033
3034 return plane_info->width * plane_info->height;
3035 }
3036
3037 static int
intel_fill_fb_info(struct drm_i915_private * dev_priv,struct drm_framebuffer * fb)3038 intel_fill_fb_info(struct drm_i915_private *dev_priv,
3039 struct drm_framebuffer *fb)
3040 {
3041 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3042 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3043 u32 gtt_offset_rotated = 0;
3044 unsigned int max_size = 0;
3045 int i, num_planes = fb->format->num_planes;
3046 unsigned int tile_size = intel_tile_size(dev_priv);
3047
3048 for (i = 0; i < num_planes; i++) {
3049 unsigned int width, height;
3050 unsigned int cpp, size;
3051 u32 offset;
3052 int x, y;
3053 int ret;
3054
3055 cpp = fb->format->cpp[i];
3056 intel_fb_plane_dims(&width, &height, fb, i);
3057
3058 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
3059 if (ret) {
3060 drm_dbg_kms(&dev_priv->drm,
3061 "bad fb plane %d offset: 0x%x\n",
3062 i, fb->offsets[i]);
3063 return ret;
3064 }
3065
3066 ret = intel_fb_check_ccs_xy(fb, i, x, y);
3067 if (ret)
3068 return ret;
3069
3070 /*
3071 * The fence (if used) is aligned to the start of the object
3072 * so having the framebuffer wrap around across the edge of the
3073 * fenced region doesn't really work. We have no API to configure
3074 * the fence start offset within the object (nor could we probably
3075 * on gen2/3). So it's just easier if we just require that the
3076 * fb layout agrees with the fence layout. We already check that the
3077 * fb stride matches the fence stride elsewhere.
3078 */
3079 if (i == 0 && i915_gem_object_is_tiled(obj) &&
3080 (x + width) * cpp > fb->pitches[i]) {
3081 drm_dbg_kms(&dev_priv->drm,
3082 "bad fb plane %d offset: 0x%x\n",
3083 i, fb->offsets[i]);
3084 return -EINVAL;
3085 }
3086
3087 /*
3088 * First pixel of the framebuffer from
3089 * the start of the normal gtt mapping.
3090 */
3091 intel_fb->normal[i].x = x;
3092 intel_fb->normal[i].y = y;
3093
3094 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3095 fb->pitches[i],
3096 DRM_MODE_ROTATE_0,
3097 tile_size);
3098 offset /= tile_size;
3099
3100 if (!is_surface_linear(fb, i)) {
3101 struct intel_remapped_plane_info plane_info;
3102 unsigned int tile_width, tile_height;
3103
3104 intel_tile_dims(fb, i, &tile_width, &tile_height);
3105
3106 plane_info.offset = offset;
3107 plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3108 tile_width * cpp);
3109 plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3110 plane_info.height = DIV_ROUND_UP(y + height,
3111 tile_height);
3112
3113 /* how many tiles does this plane need */
3114 size = plane_info.stride * plane_info.height;
3115 /*
3116 * If the plane isn't horizontally tile aligned,
3117 * we need one more tile.
3118 */
3119 if (x != 0)
3120 size++;
3121
3122 gtt_offset_rotated +=
3123 setup_fb_rotation(i, &plane_info,
3124 gtt_offset_rotated,
3125 x, y, width, height,
3126 tile_size,
3127 tile_width, tile_height,
3128 fb);
3129 } else {
3130 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3131 x * cpp, tile_size);
3132 }
3133
3134 /* how many tiles in total needed in the bo */
3135 max_size = max(max_size, offset + size);
3136 }
3137
3138 if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3139 drm_dbg_kms(&dev_priv->drm,
3140 "fb too big for bo (need %llu bytes, have %zu bytes)\n",
3141 mul_u32_u32(max_size, tile_size), obj->base.size);
3142 return -EINVAL;
3143 }
3144
3145 return 0;
3146 }
3147
3148 static void
intel_plane_remap_gtt(struct intel_plane_state * plane_state)3149 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3150 {
3151 struct drm_i915_private *dev_priv =
3152 to_i915(plane_state->uapi.plane->dev);
3153 struct drm_framebuffer *fb = plane_state->hw.fb;
3154 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3155 struct intel_rotation_info *info = &plane_state->view.rotated;
3156 unsigned int rotation = plane_state->hw.rotation;
3157 int i, num_planes = fb->format->num_planes;
3158 unsigned int tile_size = intel_tile_size(dev_priv);
3159 unsigned int src_x, src_y;
3160 unsigned int src_w, src_h;
3161 u32 gtt_offset = 0;
3162
3163 memset(&plane_state->view, 0, sizeof(plane_state->view));
3164 plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3165 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3166
3167 src_x = plane_state->uapi.src.x1 >> 16;
3168 src_y = plane_state->uapi.src.y1 >> 16;
3169 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3170 src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3171
3172 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier));
3173
3174 /* Make src coordinates relative to the viewport */
3175 drm_rect_translate(&plane_state->uapi.src,
3176 -(src_x << 16), -(src_y << 16));
3177
3178 /* Rotate src coordinates to match rotated GTT view */
3179 if (drm_rotation_90_or_270(rotation))
3180 drm_rect_rotate(&plane_state->uapi.src,
3181 src_w << 16, src_h << 16,
3182 DRM_MODE_ROTATE_270);
3183
3184 for (i = 0; i < num_planes; i++) {
3185 unsigned int hsub = i ? fb->format->hsub : 1;
3186 unsigned int vsub = i ? fb->format->vsub : 1;
3187 unsigned int cpp = fb->format->cpp[i];
3188 unsigned int tile_width, tile_height;
3189 unsigned int width, height;
3190 unsigned int pitch_tiles;
3191 unsigned int x, y;
3192 u32 offset;
3193
3194 intel_tile_dims(fb, i, &tile_width, &tile_height);
3195
3196 x = src_x / hsub;
3197 y = src_y / vsub;
3198 width = src_w / hsub;
3199 height = src_h / vsub;
3200
3201 /*
3202 * First pixel of the src viewport from the
3203 * start of the normal gtt mapping.
3204 */
3205 x += intel_fb->normal[i].x;
3206 y += intel_fb->normal[i].y;
3207
3208 offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3209 fb, i, fb->pitches[i],
3210 DRM_MODE_ROTATE_0, tile_size);
3211 offset /= tile_size;
3212
3213 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane));
3214 info->plane[i].offset = offset;
3215 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3216 tile_width * cpp);
3217 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3218 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3219
3220 if (drm_rotation_90_or_270(rotation)) {
3221 struct drm_rect r;
3222
3223 /* rotate the x/y offsets to match the GTT view */
3224 drm_rect_init(&r, x, y, width, height);
3225 drm_rect_rotate(&r,
3226 info->plane[i].width * tile_width,
3227 info->plane[i].height * tile_height,
3228 DRM_MODE_ROTATE_270);
3229 x = r.x1;
3230 y = r.y1;
3231
3232 pitch_tiles = info->plane[i].height;
3233 plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3234
3235 /* rotate the tile dimensions to match the GTT view */
3236 swap(tile_width, tile_height);
3237 } else {
3238 pitch_tiles = info->plane[i].width;
3239 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3240 }
3241
3242 /*
3243 * We only keep the x/y offsets, so push all of the
3244 * gtt offset into the x/y offsets.
3245 */
3246 intel_adjust_tile_offset(&x, &y,
3247 tile_width, tile_height,
3248 tile_size, pitch_tiles,
3249 gtt_offset * tile_size, 0);
3250
3251 gtt_offset += info->plane[i].width * info->plane[i].height;
3252
3253 plane_state->color_plane[i].offset = 0;
3254 plane_state->color_plane[i].x = x;
3255 plane_state->color_plane[i].y = y;
3256 }
3257 }
3258
3259 static int
intel_plane_compute_gtt(struct intel_plane_state * plane_state)3260 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3261 {
3262 const struct intel_framebuffer *fb =
3263 to_intel_framebuffer(plane_state->hw.fb);
3264 unsigned int rotation = plane_state->hw.rotation;
3265 int i, num_planes;
3266
3267 if (!fb)
3268 return 0;
3269
3270 num_planes = fb->base.format->num_planes;
3271
3272 if (intel_plane_needs_remap(plane_state)) {
3273 intel_plane_remap_gtt(plane_state);
3274
3275 /*
3276 * Sometimes even remapping can't overcome
3277 * the stride limitations :( Can happen with
3278 * big plane sizes and suitably misaligned
3279 * offsets.
3280 */
3281 return intel_plane_check_stride(plane_state);
3282 }
3283
3284 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3285
3286 for (i = 0; i < num_planes; i++) {
3287 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3288 plane_state->color_plane[i].offset = 0;
3289
3290 if (drm_rotation_90_or_270(rotation)) {
3291 plane_state->color_plane[i].x = fb->rotated[i].x;
3292 plane_state->color_plane[i].y = fb->rotated[i].y;
3293 } else {
3294 plane_state->color_plane[i].x = fb->normal[i].x;
3295 plane_state->color_plane[i].y = fb->normal[i].y;
3296 }
3297 }
3298
3299 /* Rotate src coordinates to match rotated GTT view */
3300 if (drm_rotation_90_or_270(rotation))
3301 drm_rect_rotate(&plane_state->uapi.src,
3302 fb->base.width << 16, fb->base.height << 16,
3303 DRM_MODE_ROTATE_270);
3304
3305 return intel_plane_check_stride(plane_state);
3306 }
3307
i9xx_format_to_fourcc(int format)3308 static int i9xx_format_to_fourcc(int format)
3309 {
3310 switch (format) {
3311 case DISPPLANE_8BPP:
3312 return DRM_FORMAT_C8;
3313 case DISPPLANE_BGRA555:
3314 return DRM_FORMAT_ARGB1555;
3315 case DISPPLANE_BGRX555:
3316 return DRM_FORMAT_XRGB1555;
3317 case DISPPLANE_BGRX565:
3318 return DRM_FORMAT_RGB565;
3319 default:
3320 case DISPPLANE_BGRX888:
3321 return DRM_FORMAT_XRGB8888;
3322 case DISPPLANE_RGBX888:
3323 return DRM_FORMAT_XBGR8888;
3324 case DISPPLANE_BGRA888:
3325 return DRM_FORMAT_ARGB8888;
3326 case DISPPLANE_RGBA888:
3327 return DRM_FORMAT_ABGR8888;
3328 case DISPPLANE_BGRX101010:
3329 return DRM_FORMAT_XRGB2101010;
3330 case DISPPLANE_RGBX101010:
3331 return DRM_FORMAT_XBGR2101010;
3332 case DISPPLANE_BGRA101010:
3333 return DRM_FORMAT_ARGB2101010;
3334 case DISPPLANE_RGBA101010:
3335 return DRM_FORMAT_ABGR2101010;
3336 case DISPPLANE_RGBX161616:
3337 return DRM_FORMAT_XBGR16161616F;
3338 }
3339 }
3340
skl_format_to_fourcc(int format,bool rgb_order,bool alpha)3341 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3342 {
3343 switch (format) {
3344 case PLANE_CTL_FORMAT_RGB_565:
3345 return DRM_FORMAT_RGB565;
3346 case PLANE_CTL_FORMAT_NV12:
3347 return DRM_FORMAT_NV12;
3348 case PLANE_CTL_FORMAT_XYUV:
3349 return DRM_FORMAT_XYUV8888;
3350 case PLANE_CTL_FORMAT_P010:
3351 return DRM_FORMAT_P010;
3352 case PLANE_CTL_FORMAT_P012:
3353 return DRM_FORMAT_P012;
3354 case PLANE_CTL_FORMAT_P016:
3355 return DRM_FORMAT_P016;
3356 case PLANE_CTL_FORMAT_Y210:
3357 return DRM_FORMAT_Y210;
3358 case PLANE_CTL_FORMAT_Y212:
3359 return DRM_FORMAT_Y212;
3360 case PLANE_CTL_FORMAT_Y216:
3361 return DRM_FORMAT_Y216;
3362 case PLANE_CTL_FORMAT_Y410:
3363 return DRM_FORMAT_XVYU2101010;
3364 case PLANE_CTL_FORMAT_Y412:
3365 return DRM_FORMAT_XVYU12_16161616;
3366 case PLANE_CTL_FORMAT_Y416:
3367 return DRM_FORMAT_XVYU16161616;
3368 default:
3369 case PLANE_CTL_FORMAT_XRGB_8888:
3370 if (rgb_order) {
3371 if (alpha)
3372 return DRM_FORMAT_ABGR8888;
3373 else
3374 return DRM_FORMAT_XBGR8888;
3375 } else {
3376 if (alpha)
3377 return DRM_FORMAT_ARGB8888;
3378 else
3379 return DRM_FORMAT_XRGB8888;
3380 }
3381 case PLANE_CTL_FORMAT_XRGB_2101010:
3382 if (rgb_order) {
3383 if (alpha)
3384 return DRM_FORMAT_ABGR2101010;
3385 else
3386 return DRM_FORMAT_XBGR2101010;
3387 } else {
3388 if (alpha)
3389 return DRM_FORMAT_ARGB2101010;
3390 else
3391 return DRM_FORMAT_XRGB2101010;
3392 }
3393 case PLANE_CTL_FORMAT_XRGB_16161616F:
3394 if (rgb_order) {
3395 if (alpha)
3396 return DRM_FORMAT_ABGR16161616F;
3397 else
3398 return DRM_FORMAT_XBGR16161616F;
3399 } else {
3400 if (alpha)
3401 return DRM_FORMAT_ARGB16161616F;
3402 else
3403 return DRM_FORMAT_XRGB16161616F;
3404 }
3405 }
3406 }
3407
3408 static struct i915_vma *
initial_plane_vma(struct drm_i915_private * i915,struct intel_initial_plane_config * plane_config)3409 initial_plane_vma(struct drm_i915_private *i915,
3410 struct intel_initial_plane_config *plane_config)
3411 {
3412 struct drm_i915_gem_object *obj;
3413 struct i915_vma *vma;
3414 u32 base, size;
3415
3416 if (plane_config->size == 0)
3417 return NULL;
3418
3419 base = round_down(plane_config->base,
3420 I915_GTT_MIN_ALIGNMENT);
3421 size = round_up(plane_config->base + plane_config->size,
3422 I915_GTT_MIN_ALIGNMENT);
3423 size -= base;
3424
3425 /*
3426 * If the FB is too big, just don't use it since fbdev is not very
3427 * important and we should probably use that space with FBC or other
3428 * features.
3429 */
3430 if (size * 2 > i915->stolen_usable_size)
3431 return NULL;
3432
3433 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size);
3434 if (IS_ERR(obj))
3435 return NULL;
3436
3437 /*
3438 * Mark it WT ahead of time to avoid changing the
3439 * cache_level during fbdev initialization. The
3440 * unbind there would get stuck waiting for rcu.
3441 */
3442 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ?
3443 I915_CACHE_WT : I915_CACHE_NONE);
3444
3445 switch (plane_config->tiling) {
3446 case I915_TILING_NONE:
3447 break;
3448 case I915_TILING_X:
3449 case I915_TILING_Y:
3450 obj->tiling_and_stride =
3451 plane_config->fb->base.pitches[0] |
3452 plane_config->tiling;
3453 break;
3454 default:
3455 MISSING_CASE(plane_config->tiling);
3456 goto err_obj;
3457 }
3458
3459 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
3460 if (IS_ERR(vma))
3461 goto err_obj;
3462
3463 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base))
3464 goto err_obj;
3465
3466 if (i915_gem_object_is_tiled(obj) &&
3467 !i915_vma_is_map_and_fenceable(vma))
3468 goto err_obj;
3469
3470 return vma;
3471
3472 err_obj:
3473 i915_gem_object_put(obj);
3474 return NULL;
3475 }
3476
3477 static bool
intel_alloc_initial_plane_obj(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)3478 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3479 struct intel_initial_plane_config *plane_config)
3480 {
3481 struct drm_device *dev = crtc->base.dev;
3482 struct drm_i915_private *dev_priv = to_i915(dev);
3483 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3484 struct drm_framebuffer *fb = &plane_config->fb->base;
3485 struct i915_vma *vma;
3486
3487 switch (fb->modifier) {
3488 case DRM_FORMAT_MOD_LINEAR:
3489 case I915_FORMAT_MOD_X_TILED:
3490 case I915_FORMAT_MOD_Y_TILED:
3491 break;
3492 default:
3493 drm_dbg(&dev_priv->drm,
3494 "Unsupported modifier for initial FB: 0x%llx\n",
3495 fb->modifier);
3496 return false;
3497 }
3498
3499 vma = initial_plane_vma(dev_priv, plane_config);
3500 if (!vma)
3501 return false;
3502
3503 mode_cmd.pixel_format = fb->format->format;
3504 mode_cmd.width = fb->width;
3505 mode_cmd.height = fb->height;
3506 mode_cmd.pitches[0] = fb->pitches[0];
3507 mode_cmd.modifier[0] = fb->modifier;
3508 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3509
3510 if (intel_framebuffer_init(to_intel_framebuffer(fb),
3511 vma->obj, &mode_cmd)) {
3512 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n");
3513 goto err_vma;
3514 }
3515
3516 plane_config->vma = vma;
3517 return true;
3518
3519 err_vma:
3520 i915_vma_put(vma);
3521 return false;
3522 }
3523
3524 static void
intel_set_plane_visible(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state,bool visible)3525 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3526 struct intel_plane_state *plane_state,
3527 bool visible)
3528 {
3529 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3530
3531 plane_state->uapi.visible = visible;
3532
3533 if (visible)
3534 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3535 else
3536 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3537 }
3538
fixup_active_planes(struct intel_crtc_state * crtc_state)3539 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3540 {
3541 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3542 struct drm_plane *plane;
3543
3544 /*
3545 * Active_planes aliases if multiple "primary" or cursor planes
3546 * have been used on the same (or wrong) pipe. plane_mask uses
3547 * unique ids, hence we can use that to reconstruct active_planes.
3548 */
3549 crtc_state->active_planes = 0;
3550
3551 drm_for_each_plane_mask(plane, &dev_priv->drm,
3552 crtc_state->uapi.plane_mask)
3553 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3554 }
3555
intel_plane_disable_noatomic(struct intel_crtc * crtc,struct intel_plane * plane)3556 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3557 struct intel_plane *plane)
3558 {
3559 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3560 struct intel_crtc_state *crtc_state =
3561 to_intel_crtc_state(crtc->base.state);
3562 struct intel_plane_state *plane_state =
3563 to_intel_plane_state(plane->base.state);
3564
3565 drm_dbg_kms(&dev_priv->drm,
3566 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3567 plane->base.base.id, plane->base.name,
3568 crtc->base.base.id, crtc->base.name);
3569
3570 intel_set_plane_visible(crtc_state, plane_state, false);
3571 fixup_active_planes(crtc_state);
3572 crtc_state->data_rate[plane->id] = 0;
3573 crtc_state->min_cdclk[plane->id] = 0;
3574
3575 if (plane->id == PLANE_PRIMARY)
3576 hsw_disable_ips(crtc_state);
3577
3578 /*
3579 * Vblank time updates from the shadow to live plane control register
3580 * are blocked if the memory self-refresh mode is active at that
3581 * moment. So to make sure the plane gets truly disabled, disable
3582 * first the self-refresh mode. The self-refresh enable bit in turn
3583 * will be checked/applied by the HW only at the next frame start
3584 * event which is after the vblank start event, so we need to have a
3585 * wait-for-vblank between disabling the plane and the pipe.
3586 */
3587 if (HAS_GMCH(dev_priv) &&
3588 intel_set_memory_cxsr(dev_priv, false))
3589 intel_wait_for_vblank(dev_priv, crtc->pipe);
3590
3591 /*
3592 * Gen2 reports pipe underruns whenever all planes are disabled.
3593 * So disable underrun reporting before all the planes get disabled.
3594 */
3595 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3596 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3597
3598 intel_disable_plane(plane, crtc_state);
3599 }
3600
3601 static struct intel_frontbuffer *
to_intel_frontbuffer(struct drm_framebuffer * fb)3602 to_intel_frontbuffer(struct drm_framebuffer *fb)
3603 {
3604 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3605 }
3606
3607 static void
intel_find_initial_plane_obj(struct intel_crtc * intel_crtc,struct intel_initial_plane_config * plane_config)3608 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3609 struct intel_initial_plane_config *plane_config)
3610 {
3611 struct drm_device *dev = intel_crtc->base.dev;
3612 struct drm_i915_private *dev_priv = to_i915(dev);
3613 struct drm_crtc *c;
3614 struct drm_plane *primary = intel_crtc->base.primary;
3615 struct drm_plane_state *plane_state = primary->state;
3616 struct intel_plane *intel_plane = to_intel_plane(primary);
3617 struct intel_plane_state *intel_state =
3618 to_intel_plane_state(plane_state);
3619 struct drm_framebuffer *fb;
3620 struct i915_vma *vma;
3621
3622 if (!plane_config->fb)
3623 return;
3624
3625 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3626 fb = &plane_config->fb->base;
3627 vma = plane_config->vma;
3628 goto valid_fb;
3629 }
3630
3631 /*
3632 * Failed to alloc the obj, check to see if we should share
3633 * an fb with another CRTC instead
3634 */
3635 for_each_crtc(dev, c) {
3636 struct intel_plane_state *state;
3637
3638 if (c == &intel_crtc->base)
3639 continue;
3640
3641 if (!to_intel_crtc(c)->active)
3642 continue;
3643
3644 state = to_intel_plane_state(c->primary->state);
3645 if (!state->vma)
3646 continue;
3647
3648 if (intel_plane_ggtt_offset(state) == plane_config->base) {
3649 fb = state->hw.fb;
3650 vma = state->vma;
3651 goto valid_fb;
3652 }
3653 }
3654
3655 /*
3656 * We've failed to reconstruct the BIOS FB. Current display state
3657 * indicates that the primary plane is visible, but has a NULL FB,
3658 * which will lead to problems later if we don't fix it up. The
3659 * simplest solution is to just disable the primary plane now and
3660 * pretend the BIOS never had it enabled.
3661 */
3662 intel_plane_disable_noatomic(intel_crtc, intel_plane);
3663
3664 return;
3665
3666 valid_fb:
3667 intel_state->hw.rotation = plane_config->rotation;
3668 intel_fill_fb_ggtt_view(&intel_state->view, fb,
3669 intel_state->hw.rotation);
3670 intel_state->color_plane[0].stride =
3671 intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3672
3673 __i915_vma_pin(vma);
3674 intel_state->vma = i915_vma_get(vma);
3675 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0)
3676 if (vma->fence)
3677 intel_state->flags |= PLANE_HAS_FENCE;
3678
3679 plane_state->src_x = 0;
3680 plane_state->src_y = 0;
3681 plane_state->src_w = fb->width << 16;
3682 plane_state->src_h = fb->height << 16;
3683
3684 plane_state->crtc_x = 0;
3685 plane_state->crtc_y = 0;
3686 plane_state->crtc_w = fb->width;
3687 plane_state->crtc_h = fb->height;
3688
3689 intel_state->uapi.src = drm_plane_state_src(plane_state);
3690 intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3691
3692 if (plane_config->tiling)
3693 dev_priv->preserve_bios_swizzle = true;
3694
3695 plane_state->fb = fb;
3696 drm_framebuffer_get(fb);
3697
3698 plane_state->crtc = &intel_crtc->base;
3699 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state);
3700
3701 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3702
3703 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3704 &to_intel_frontbuffer(fb)->bits);
3705 }
3706
skl_max_plane_width(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)3707 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3708 int color_plane,
3709 unsigned int rotation)
3710 {
3711 int cpp = fb->format->cpp[color_plane];
3712
3713 switch (fb->modifier) {
3714 case DRM_FORMAT_MOD_LINEAR:
3715 case I915_FORMAT_MOD_X_TILED:
3716 /*
3717 * Validated limit is 4k, but has 5k should
3718 * work apart from the following features:
3719 * - Ytile (already limited to 4k)
3720 * - FP16 (already limited to 4k)
3721 * - render compression (already limited to 4k)
3722 * - KVMR sprite and cursor (don't care)
3723 * - horizontal panning (TODO verify this)
3724 * - pipe and plane scaling (TODO verify this)
3725 */
3726 if (cpp == 8)
3727 return 4096;
3728 else
3729 return 5120;
3730 case I915_FORMAT_MOD_Y_TILED_CCS:
3731 case I915_FORMAT_MOD_Yf_TILED_CCS:
3732 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
3733 /* FIXME AUX plane? */
3734 case I915_FORMAT_MOD_Y_TILED:
3735 case I915_FORMAT_MOD_Yf_TILED:
3736 if (cpp == 8)
3737 return 2048;
3738 else
3739 return 4096;
3740 default:
3741 MISSING_CASE(fb->modifier);
3742 return 2048;
3743 }
3744 }
3745
glk_max_plane_width(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)3746 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3747 int color_plane,
3748 unsigned int rotation)
3749 {
3750 int cpp = fb->format->cpp[color_plane];
3751
3752 switch (fb->modifier) {
3753 case DRM_FORMAT_MOD_LINEAR:
3754 case I915_FORMAT_MOD_X_TILED:
3755 if (cpp == 8)
3756 return 4096;
3757 else
3758 return 5120;
3759 case I915_FORMAT_MOD_Y_TILED_CCS:
3760 case I915_FORMAT_MOD_Yf_TILED_CCS:
3761 /* FIXME AUX plane? */
3762 case I915_FORMAT_MOD_Y_TILED:
3763 case I915_FORMAT_MOD_Yf_TILED:
3764 if (cpp == 8)
3765 return 2048;
3766 else
3767 return 5120;
3768 default:
3769 MISSING_CASE(fb->modifier);
3770 return 2048;
3771 }
3772 }
3773
icl_min_plane_width(const struct drm_framebuffer * fb)3774 static int icl_min_plane_width(const struct drm_framebuffer *fb)
3775 {
3776 /* Wa_14011264657, Wa_14011050563: gen11+ */
3777 switch (fb->format->format) {
3778 case DRM_FORMAT_C8:
3779 return 18;
3780 case DRM_FORMAT_RGB565:
3781 return 10;
3782 case DRM_FORMAT_XRGB8888:
3783 case DRM_FORMAT_XBGR8888:
3784 case DRM_FORMAT_ARGB8888:
3785 case DRM_FORMAT_ABGR8888:
3786 case DRM_FORMAT_XRGB2101010:
3787 case DRM_FORMAT_XBGR2101010:
3788 case DRM_FORMAT_ARGB2101010:
3789 case DRM_FORMAT_ABGR2101010:
3790 case DRM_FORMAT_XVYU2101010:
3791 case DRM_FORMAT_Y212:
3792 case DRM_FORMAT_Y216:
3793 return 6;
3794 case DRM_FORMAT_NV12:
3795 return 20;
3796 case DRM_FORMAT_P010:
3797 case DRM_FORMAT_P012:
3798 case DRM_FORMAT_P016:
3799 return 12;
3800 case DRM_FORMAT_XRGB16161616F:
3801 case DRM_FORMAT_XBGR16161616F:
3802 case DRM_FORMAT_ARGB16161616F:
3803 case DRM_FORMAT_ABGR16161616F:
3804 case DRM_FORMAT_XVYU12_16161616:
3805 case DRM_FORMAT_XVYU16161616:
3806 return 4;
3807 default:
3808 return 1;
3809 }
3810 }
3811
icl_max_plane_width(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)3812 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3813 int color_plane,
3814 unsigned int rotation)
3815 {
3816 return 5120;
3817 }
3818
skl_max_plane_height(void)3819 static int skl_max_plane_height(void)
3820 {
3821 return 4096;
3822 }
3823
icl_max_plane_height(void)3824 static int icl_max_plane_height(void)
3825 {
3826 return 4320;
3827 }
3828
3829 static bool
skl_check_main_ccs_coordinates(struct intel_plane_state * plane_state,int main_x,int main_y,u32 main_offset,int ccs_plane)3830 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3831 int main_x, int main_y, u32 main_offset,
3832 int ccs_plane)
3833 {
3834 const struct drm_framebuffer *fb = plane_state->hw.fb;
3835 int aux_x = plane_state->color_plane[ccs_plane].x;
3836 int aux_y = plane_state->color_plane[ccs_plane].y;
3837 u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3838 u32 alignment = intel_surf_alignment(fb, ccs_plane);
3839 int hsub;
3840 int vsub;
3841
3842 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3843 while (aux_offset >= main_offset && aux_y <= main_y) {
3844 int x, y;
3845
3846 if (aux_x == main_x && aux_y == main_y)
3847 break;
3848
3849 if (aux_offset == 0)
3850 break;
3851
3852 x = aux_x / hsub;
3853 y = aux_y / vsub;
3854 aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3855 plane_state,
3856 ccs_plane,
3857 aux_offset,
3858 aux_offset -
3859 alignment);
3860 aux_x = x * hsub + aux_x % hsub;
3861 aux_y = y * vsub + aux_y % vsub;
3862 }
3863
3864 if (aux_x != main_x || aux_y != main_y)
3865 return false;
3866
3867 plane_state->color_plane[ccs_plane].offset = aux_offset;
3868 plane_state->color_plane[ccs_plane].x = aux_x;
3869 plane_state->color_plane[ccs_plane].y = aux_y;
3870
3871 return true;
3872 }
3873
3874 unsigned int
intel_plane_fence_y_offset(const struct intel_plane_state * plane_state)3875 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
3876 {
3877 int x = 0, y = 0;
3878
3879 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3880 plane_state->color_plane[0].offset, 0);
3881
3882 return y;
3883 }
3884
skl_check_main_surface(struct intel_plane_state * plane_state)3885 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3886 {
3887 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev);
3888 const struct drm_framebuffer *fb = plane_state->hw.fb;
3889 unsigned int rotation = plane_state->hw.rotation;
3890 int x = plane_state->uapi.src.x1 >> 16;
3891 int y = plane_state->uapi.src.y1 >> 16;
3892 int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3893 int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3894 int max_width, min_width, max_height;
3895 u32 alignment, offset;
3896 int aux_plane = intel_main_to_aux_plane(fb, 0);
3897 u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3898
3899 if (INTEL_GEN(dev_priv) >= 11) {
3900 max_width = icl_max_plane_width(fb, 0, rotation);
3901 min_width = icl_min_plane_width(fb);
3902 } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
3903 max_width = glk_max_plane_width(fb, 0, rotation);
3904 min_width = 1;
3905 } else {
3906 max_width = skl_max_plane_width(fb, 0, rotation);
3907 min_width = 1;
3908 }
3909
3910 if (INTEL_GEN(dev_priv) >= 11)
3911 max_height = icl_max_plane_height();
3912 else
3913 max_height = skl_max_plane_height();
3914
3915 if (w > max_width || w < min_width || h > max_height) {
3916 drm_dbg_kms(&dev_priv->drm,
3917 "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n",
3918 w, h, min_width, max_width, max_height);
3919 return -EINVAL;
3920 }
3921
3922 intel_add_fb_offsets(&x, &y, plane_state, 0);
3923 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3924 alignment = intel_surf_alignment(fb, 0);
3925 if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment)))
3926 return -EINVAL;
3927
3928 /*
3929 * AUX surface offset is specified as the distance from the
3930 * main surface offset, and it must be non-negative. Make
3931 * sure that is what we will get.
3932 */
3933 if (offset > aux_offset)
3934 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3935 offset, aux_offset & ~(alignment - 1));
3936
3937 /*
3938 * When using an X-tiled surface, the plane blows up
3939 * if the x offset + width exceed the stride.
3940 *
3941 * TODO: linear and Y-tiled seem fine, Yf untested,
3942 */
3943 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3944 int cpp = fb->format->cpp[0];
3945
3946 while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3947 if (offset == 0) {
3948 drm_dbg_kms(&dev_priv->drm,
3949 "Unable to find suitable display surface offset due to X-tiling\n");
3950 return -EINVAL;
3951 }
3952
3953 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3954 offset, offset - alignment);
3955 }
3956 }
3957
3958 /*
3959 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3960 * they match with the main surface x/y offsets.
3961 */
3962 if (is_ccs_modifier(fb->modifier)) {
3963 while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3964 offset, aux_plane)) {
3965 if (offset == 0)
3966 break;
3967
3968 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3969 offset, offset - alignment);
3970 }
3971
3972 if (x != plane_state->color_plane[aux_plane].x ||
3973 y != plane_state->color_plane[aux_plane].y) {
3974 drm_dbg_kms(&dev_priv->drm,
3975 "Unable to find suitable display surface offset due to CCS\n");
3976 return -EINVAL;
3977 }
3978 }
3979
3980 plane_state->color_plane[0].offset = offset;
3981 plane_state->color_plane[0].x = x;
3982 plane_state->color_plane[0].y = y;
3983
3984 /*
3985 * Put the final coordinates back so that the src
3986 * coordinate checks will see the right values.
3987 */
3988 drm_rect_translate_to(&plane_state->uapi.src,
3989 x << 16, y << 16);
3990
3991 return 0;
3992 }
3993
skl_check_nv12_aux_surface(struct intel_plane_state * plane_state)3994 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3995 {
3996 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
3997 const struct drm_framebuffer *fb = plane_state->hw.fb;
3998 unsigned int rotation = plane_state->hw.rotation;
3999 int uv_plane = 1;
4000 int max_width = skl_max_plane_width(fb, uv_plane, rotation);
4001 int max_height = 4096;
4002 int x = plane_state->uapi.src.x1 >> 17;
4003 int y = plane_state->uapi.src.y1 >> 17;
4004 int w = drm_rect_width(&plane_state->uapi.src) >> 17;
4005 int h = drm_rect_height(&plane_state->uapi.src) >> 17;
4006 u32 offset;
4007
4008 intel_add_fb_offsets(&x, &y, plane_state, uv_plane);
4009 offset = intel_plane_compute_aligned_offset(&x, &y,
4010 plane_state, uv_plane);
4011
4012 /* FIXME not quite sure how/if these apply to the chroma plane */
4013 if (w > max_width || h > max_height) {
4014 drm_dbg_kms(&i915->drm,
4015 "CbCr source size %dx%d too big (limit %dx%d)\n",
4016 w, h, max_width, max_height);
4017 return -EINVAL;
4018 }
4019
4020 if (is_ccs_modifier(fb->modifier)) {
4021 int ccs_plane = main_to_ccs_plane(fb, uv_plane);
4022 int aux_offset = plane_state->color_plane[ccs_plane].offset;
4023 int alignment = intel_surf_alignment(fb, uv_plane);
4024
4025 if (offset > aux_offset)
4026 offset = intel_plane_adjust_aligned_offset(&x, &y,
4027 plane_state,
4028 uv_plane,
4029 offset,
4030 aux_offset & ~(alignment - 1));
4031
4032 while (!skl_check_main_ccs_coordinates(plane_state, x, y,
4033 offset, ccs_plane)) {
4034 if (offset == 0)
4035 break;
4036
4037 offset = intel_plane_adjust_aligned_offset(&x, &y,
4038 plane_state,
4039 uv_plane,
4040 offset, offset - alignment);
4041 }
4042
4043 if (x != plane_state->color_plane[ccs_plane].x ||
4044 y != plane_state->color_plane[ccs_plane].y) {
4045 drm_dbg_kms(&i915->drm,
4046 "Unable to find suitable display surface offset due to CCS\n");
4047 return -EINVAL;
4048 }
4049 }
4050
4051 plane_state->color_plane[uv_plane].offset = offset;
4052 plane_state->color_plane[uv_plane].x = x;
4053 plane_state->color_plane[uv_plane].y = y;
4054
4055 return 0;
4056 }
4057
skl_check_ccs_aux_surface(struct intel_plane_state * plane_state)4058 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
4059 {
4060 const struct drm_framebuffer *fb = plane_state->hw.fb;
4061 int src_x = plane_state->uapi.src.x1 >> 16;
4062 int src_y = plane_state->uapi.src.y1 >> 16;
4063 u32 offset;
4064 int ccs_plane;
4065
4066 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) {
4067 int main_hsub, main_vsub;
4068 int hsub, vsub;
4069 int x, y;
4070
4071 if (!is_ccs_plane(fb, ccs_plane))
4072 continue;
4073
4074 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb,
4075 ccs_to_main_plane(fb, ccs_plane));
4076 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
4077
4078 hsub *= main_hsub;
4079 vsub *= main_vsub;
4080 x = src_x / hsub;
4081 y = src_y / vsub;
4082
4083 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane);
4084
4085 offset = intel_plane_compute_aligned_offset(&x, &y,
4086 plane_state,
4087 ccs_plane);
4088
4089 plane_state->color_plane[ccs_plane].offset = offset;
4090 plane_state->color_plane[ccs_plane].x = (x * hsub +
4091 src_x % hsub) /
4092 main_hsub;
4093 plane_state->color_plane[ccs_plane].y = (y * vsub +
4094 src_y % vsub) /
4095 main_vsub;
4096 }
4097
4098 return 0;
4099 }
4100
skl_check_plane_surface(struct intel_plane_state * plane_state)4101 int skl_check_plane_surface(struct intel_plane_state *plane_state)
4102 {
4103 const struct drm_framebuffer *fb = plane_state->hw.fb;
4104 int ret, i;
4105
4106 ret = intel_plane_compute_gtt(plane_state);
4107 if (ret)
4108 return ret;
4109
4110 if (!plane_state->uapi.visible)
4111 return 0;
4112
4113 /*
4114 * Handle the AUX surface first since the main surface setup depends on
4115 * it.
4116 */
4117 if (is_ccs_modifier(fb->modifier)) {
4118 ret = skl_check_ccs_aux_surface(plane_state);
4119 if (ret)
4120 return ret;
4121 }
4122
4123 if (intel_format_info_is_yuv_semiplanar(fb->format,
4124 fb->modifier)) {
4125 ret = skl_check_nv12_aux_surface(plane_state);
4126 if (ret)
4127 return ret;
4128 }
4129
4130 for (i = fb->format->num_planes; i < ARRAY_SIZE(plane_state->color_plane); i++) {
4131 plane_state->color_plane[i].offset = ~0xfff;
4132 plane_state->color_plane[i].x = 0;
4133 plane_state->color_plane[i].y = 0;
4134 }
4135
4136 ret = skl_check_main_surface(plane_state);
4137 if (ret)
4138 return ret;
4139
4140 return 0;
4141 }
4142
i9xx_plane_ratio(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,unsigned int * num,unsigned int * den)4143 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
4144 const struct intel_plane_state *plane_state,
4145 unsigned int *num, unsigned int *den)
4146 {
4147 const struct drm_framebuffer *fb = plane_state->hw.fb;
4148 unsigned int cpp = fb->format->cpp[0];
4149
4150 /*
4151 * g4x bspec says 64bpp pixel rate can't exceed 80%
4152 * of cdclk when the sprite plane is enabled on the
4153 * same pipe. ilk/snb bspec says 64bpp pixel rate is
4154 * never allowed to exceed 80% of cdclk. Let's just go
4155 * with the ilk/snb limit always.
4156 */
4157 if (cpp == 8) {
4158 *num = 10;
4159 *den = 8;
4160 } else {
4161 *num = 1;
4162 *den = 1;
4163 }
4164 }
4165
i9xx_plane_min_cdclk(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4166 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
4167 const struct intel_plane_state *plane_state)
4168 {
4169 unsigned int pixel_rate;
4170 unsigned int num, den;
4171
4172 /*
4173 * Note that crtc_state->pixel_rate accounts for both
4174 * horizontal and vertical panel fitter downscaling factors.
4175 * Pre-HSW bspec tells us to only consider the horizontal
4176 * downscaling factor here. We ignore that and just consider
4177 * both for simplicity.
4178 */
4179 pixel_rate = crtc_state->pixel_rate;
4180
4181 i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
4182
4183 /* two pixels per clock with double wide pipe */
4184 if (crtc_state->double_wide)
4185 den *= 2;
4186
4187 return DIV_ROUND_UP(pixel_rate * num, den);
4188 }
4189
4190 unsigned int
i9xx_plane_max_stride(struct intel_plane * plane,u32 pixel_format,u64 modifier,unsigned int rotation)4191 i9xx_plane_max_stride(struct intel_plane *plane,
4192 u32 pixel_format, u64 modifier,
4193 unsigned int rotation)
4194 {
4195 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4196
4197 if (!HAS_GMCH(dev_priv)) {
4198 return 32*1024;
4199 } else if (INTEL_GEN(dev_priv) >= 4) {
4200 if (modifier == I915_FORMAT_MOD_X_TILED)
4201 return 16*1024;
4202 else
4203 return 32*1024;
4204 } else if (INTEL_GEN(dev_priv) >= 3) {
4205 if (modifier == I915_FORMAT_MOD_X_TILED)
4206 return 8*1024;
4207 else
4208 return 16*1024;
4209 } else {
4210 if (plane->i9xx_plane == PLANE_C)
4211 return 4*1024;
4212 else
4213 return 8*1024;
4214 }
4215 }
4216
i9xx_plane_ctl_crtc(const struct intel_crtc_state * crtc_state)4217 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4218 {
4219 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4220 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4221 u32 dspcntr = 0;
4222
4223 if (crtc_state->gamma_enable)
4224 dspcntr |= DISPPLANE_GAMMA_ENABLE;
4225
4226 if (crtc_state->csc_enable)
4227 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
4228
4229 if (INTEL_GEN(dev_priv) < 5)
4230 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
4231
4232 return dspcntr;
4233 }
4234
i9xx_plane_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4235 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
4236 const struct intel_plane_state *plane_state)
4237 {
4238 struct drm_i915_private *dev_priv =
4239 to_i915(plane_state->uapi.plane->dev);
4240 const struct drm_framebuffer *fb = plane_state->hw.fb;
4241 unsigned int rotation = plane_state->hw.rotation;
4242 u32 dspcntr;
4243
4244 dspcntr = DISPLAY_PLANE_ENABLE;
4245
4246 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
4247 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4248 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4249
4250 switch (fb->format->format) {
4251 case DRM_FORMAT_C8:
4252 dspcntr |= DISPPLANE_8BPP;
4253 break;
4254 case DRM_FORMAT_XRGB1555:
4255 dspcntr |= DISPPLANE_BGRX555;
4256 break;
4257 case DRM_FORMAT_ARGB1555:
4258 dspcntr |= DISPPLANE_BGRA555;
4259 break;
4260 case DRM_FORMAT_RGB565:
4261 dspcntr |= DISPPLANE_BGRX565;
4262 break;
4263 case DRM_FORMAT_XRGB8888:
4264 dspcntr |= DISPPLANE_BGRX888;
4265 break;
4266 case DRM_FORMAT_XBGR8888:
4267 dspcntr |= DISPPLANE_RGBX888;
4268 break;
4269 case DRM_FORMAT_ARGB8888:
4270 dspcntr |= DISPPLANE_BGRA888;
4271 break;
4272 case DRM_FORMAT_ABGR8888:
4273 dspcntr |= DISPPLANE_RGBA888;
4274 break;
4275 case DRM_FORMAT_XRGB2101010:
4276 dspcntr |= DISPPLANE_BGRX101010;
4277 break;
4278 case DRM_FORMAT_XBGR2101010:
4279 dspcntr |= DISPPLANE_RGBX101010;
4280 break;
4281 case DRM_FORMAT_ARGB2101010:
4282 dspcntr |= DISPPLANE_BGRA101010;
4283 break;
4284 case DRM_FORMAT_ABGR2101010:
4285 dspcntr |= DISPPLANE_RGBA101010;
4286 break;
4287 case DRM_FORMAT_XBGR16161616F:
4288 dspcntr |= DISPPLANE_RGBX161616;
4289 break;
4290 default:
4291 MISSING_CASE(fb->format->format);
4292 return 0;
4293 }
4294
4295 if (INTEL_GEN(dev_priv) >= 4 &&
4296 fb->modifier == I915_FORMAT_MOD_X_TILED)
4297 dspcntr |= DISPPLANE_TILED;
4298
4299 if (rotation & DRM_MODE_ROTATE_180)
4300 dspcntr |= DISPPLANE_ROTATE_180;
4301
4302 if (rotation & DRM_MODE_REFLECT_X)
4303 dspcntr |= DISPPLANE_MIRROR;
4304
4305 return dspcntr;
4306 }
4307
i9xx_check_plane_surface(struct intel_plane_state * plane_state)4308 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4309 {
4310 struct drm_i915_private *dev_priv =
4311 to_i915(plane_state->uapi.plane->dev);
4312 const struct drm_framebuffer *fb = plane_state->hw.fb;
4313 int src_x, src_y, src_w;
4314 u32 offset;
4315 int ret;
4316
4317 ret = intel_plane_compute_gtt(plane_state);
4318 if (ret)
4319 return ret;
4320
4321 if (!plane_state->uapi.visible)
4322 return 0;
4323
4324 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4325 src_x = plane_state->uapi.src.x1 >> 16;
4326 src_y = plane_state->uapi.src.y1 >> 16;
4327
4328 /* Undocumented hardware limit on i965/g4x/vlv/chv */
4329 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4330 return -EINVAL;
4331
4332 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4333
4334 if (INTEL_GEN(dev_priv) >= 4)
4335 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4336 plane_state, 0);
4337 else
4338 offset = 0;
4339
4340 /*
4341 * Put the final coordinates back so that the src
4342 * coordinate checks will see the right values.
4343 */
4344 drm_rect_translate_to(&plane_state->uapi.src,
4345 src_x << 16, src_y << 16);
4346
4347 /* HSW/BDW do this automagically in hardware */
4348 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4349 unsigned int rotation = plane_state->hw.rotation;
4350 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4351 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4352
4353 if (rotation & DRM_MODE_ROTATE_180) {
4354 src_x += src_w - 1;
4355 src_y += src_h - 1;
4356 } else if (rotation & DRM_MODE_REFLECT_X) {
4357 src_x += src_w - 1;
4358 }
4359 }
4360
4361 plane_state->color_plane[0].offset = offset;
4362 plane_state->color_plane[0].x = src_x;
4363 plane_state->color_plane[0].y = src_y;
4364
4365 return 0;
4366 }
4367
i9xx_plane_has_windowing(struct intel_plane * plane)4368 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4369 {
4370 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4371 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4372
4373 if (IS_CHERRYVIEW(dev_priv))
4374 return i9xx_plane == PLANE_B;
4375 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4376 return false;
4377 else if (IS_GEN(dev_priv, 4))
4378 return i9xx_plane == PLANE_C;
4379 else
4380 return i9xx_plane == PLANE_B ||
4381 i9xx_plane == PLANE_C;
4382 }
4383
4384 static int
i9xx_plane_check(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)4385 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4386 struct intel_plane_state *plane_state)
4387 {
4388 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4389 int ret;
4390
4391 ret = chv_plane_check_rotation(plane_state);
4392 if (ret)
4393 return ret;
4394
4395 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
4396 &crtc_state->uapi,
4397 DRM_PLANE_HELPER_NO_SCALING,
4398 DRM_PLANE_HELPER_NO_SCALING,
4399 i9xx_plane_has_windowing(plane),
4400 true);
4401 if (ret)
4402 return ret;
4403
4404 ret = i9xx_check_plane_surface(plane_state);
4405 if (ret)
4406 return ret;
4407
4408 if (!plane_state->uapi.visible)
4409 return 0;
4410
4411 ret = intel_plane_check_src_coordinates(plane_state);
4412 if (ret)
4413 return ret;
4414
4415 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4416
4417 return 0;
4418 }
4419
i9xx_update_plane(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4420 static void i9xx_update_plane(struct intel_plane *plane,
4421 const struct intel_crtc_state *crtc_state,
4422 const struct intel_plane_state *plane_state)
4423 {
4424 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4425 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4426 u32 linear_offset;
4427 int x = plane_state->color_plane[0].x;
4428 int y = plane_state->color_plane[0].y;
4429 int crtc_x = plane_state->uapi.dst.x1;
4430 int crtc_y = plane_state->uapi.dst.y1;
4431 int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4432 int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4433 unsigned long irqflags;
4434 u32 dspaddr_offset;
4435 u32 dspcntr;
4436
4437 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4438
4439 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4440
4441 if (INTEL_GEN(dev_priv) >= 4)
4442 dspaddr_offset = plane_state->color_plane[0].offset;
4443 else
4444 dspaddr_offset = linear_offset;
4445
4446 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4447
4448 intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane),
4449 plane_state->color_plane[0].stride);
4450
4451 if (INTEL_GEN(dev_priv) < 4) {
4452 /*
4453 * PLANE_A doesn't actually have a full window
4454 * generator but let's assume we still need to
4455 * program whatever is there.
4456 */
4457 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane),
4458 (crtc_y << 16) | crtc_x);
4459 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane),
4460 ((crtc_h - 1) << 16) | (crtc_w - 1));
4461 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4462 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane),
4463 (crtc_y << 16) | crtc_x);
4464 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane),
4465 ((crtc_h - 1) << 16) | (crtc_w - 1));
4466 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0);
4467 }
4468
4469 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4470 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane),
4471 (y << 16) | x);
4472 } else if (INTEL_GEN(dev_priv) >= 4) {
4473 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane),
4474 linear_offset);
4475 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane),
4476 (y << 16) | x);
4477 }
4478
4479 /*
4480 * The control register self-arms if the plane was previously
4481 * disabled. Try to make the plane enable atomic by writing
4482 * the control register just before the surface register.
4483 */
4484 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4485 if (INTEL_GEN(dev_priv) >= 4)
4486 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane),
4487 intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4488 else
4489 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane),
4490 intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4491
4492 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4493 }
4494
i9xx_disable_plane(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)4495 static void i9xx_disable_plane(struct intel_plane *plane,
4496 const struct intel_crtc_state *crtc_state)
4497 {
4498 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4499 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4500 unsigned long irqflags;
4501 u32 dspcntr;
4502
4503 /*
4504 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4505 * enable on ilk+ affect the pipe bottom color as
4506 * well, so we must configure them even if the plane
4507 * is disabled.
4508 *
4509 * On pre-g4x there is no way to gamma correct the
4510 * pipe bottom color but we'll keep on doing this
4511 * anyway so that the crtc state readout works correctly.
4512 */
4513 dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4514
4515 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4516
4517 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4518 if (INTEL_GEN(dev_priv) >= 4)
4519 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0);
4520 else
4521 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0);
4522
4523 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4524 }
4525
i9xx_plane_get_hw_state(struct intel_plane * plane,enum pipe * pipe)4526 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4527 enum pipe *pipe)
4528 {
4529 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4530 enum intel_display_power_domain power_domain;
4531 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4532 intel_wakeref_t wakeref;
4533 bool ret;
4534 u32 val;
4535
4536 /*
4537 * Not 100% correct for planes that can move between pipes,
4538 * but that's only the case for gen2-4 which don't have any
4539 * display power wells.
4540 */
4541 power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4542 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4543 if (!wakeref)
4544 return false;
4545
4546 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
4547
4548 ret = val & DISPLAY_PLANE_ENABLE;
4549
4550 if (INTEL_GEN(dev_priv) >= 5)
4551 *pipe = plane->pipe;
4552 else
4553 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4554 DISPPLANE_SEL_PIPE_SHIFT;
4555
4556 intel_display_power_put(dev_priv, power_domain, wakeref);
4557
4558 return ret;
4559 }
4560
skl_detach_scaler(struct intel_crtc * intel_crtc,int id)4561 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4562 {
4563 struct drm_device *dev = intel_crtc->base.dev;
4564 struct drm_i915_private *dev_priv = to_i915(dev);
4565 unsigned long irqflags;
4566
4567 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4568
4569 intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4570 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4571 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4572
4573 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4574 }
4575
4576 /*
4577 * This function detaches (aka. unbinds) unused scalers in hardware
4578 */
skl_detach_scalers(const struct intel_crtc_state * crtc_state)4579 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4580 {
4581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4582 const struct intel_crtc_scaler_state *scaler_state =
4583 &crtc_state->scaler_state;
4584 int i;
4585
4586 /* loop through and disable scalers that aren't in use */
4587 for (i = 0; i < intel_crtc->num_scalers; i++) {
4588 if (!scaler_state->scalers[i].in_use)
4589 skl_detach_scaler(intel_crtc, i);
4590 }
4591 }
4592
skl_plane_stride_mult(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)4593 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4594 int color_plane, unsigned int rotation)
4595 {
4596 /*
4597 * The stride is either expressed as a multiple of 64 bytes chunks for
4598 * linear buffers or in number of tiles for tiled buffers.
4599 */
4600 if (is_surface_linear(fb, color_plane))
4601 return 64;
4602 else if (drm_rotation_90_or_270(rotation))
4603 return intel_tile_height(fb, color_plane);
4604 else
4605 return intel_tile_width_bytes(fb, color_plane);
4606 }
4607
skl_plane_stride(const struct intel_plane_state * plane_state,int color_plane)4608 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4609 int color_plane)
4610 {
4611 const struct drm_framebuffer *fb = plane_state->hw.fb;
4612 unsigned int rotation = plane_state->hw.rotation;
4613 u32 stride = plane_state->color_plane[color_plane].stride;
4614
4615 if (color_plane >= fb->format->num_planes)
4616 return 0;
4617
4618 return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4619 }
4620
skl_plane_ctl_format(u32 pixel_format)4621 static u32 skl_plane_ctl_format(u32 pixel_format)
4622 {
4623 switch (pixel_format) {
4624 case DRM_FORMAT_C8:
4625 return PLANE_CTL_FORMAT_INDEXED;
4626 case DRM_FORMAT_RGB565:
4627 return PLANE_CTL_FORMAT_RGB_565;
4628 case DRM_FORMAT_XBGR8888:
4629 case DRM_FORMAT_ABGR8888:
4630 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4631 case DRM_FORMAT_XRGB8888:
4632 case DRM_FORMAT_ARGB8888:
4633 return PLANE_CTL_FORMAT_XRGB_8888;
4634 case DRM_FORMAT_XBGR2101010:
4635 case DRM_FORMAT_ABGR2101010:
4636 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4637 case DRM_FORMAT_XRGB2101010:
4638 case DRM_FORMAT_ARGB2101010:
4639 return PLANE_CTL_FORMAT_XRGB_2101010;
4640 case DRM_FORMAT_XBGR16161616F:
4641 case DRM_FORMAT_ABGR16161616F:
4642 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4643 case DRM_FORMAT_XRGB16161616F:
4644 case DRM_FORMAT_ARGB16161616F:
4645 return PLANE_CTL_FORMAT_XRGB_16161616F;
4646 case DRM_FORMAT_XYUV8888:
4647 return PLANE_CTL_FORMAT_XYUV;
4648 case DRM_FORMAT_YUYV:
4649 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4650 case DRM_FORMAT_YVYU:
4651 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4652 case DRM_FORMAT_UYVY:
4653 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4654 case DRM_FORMAT_VYUY:
4655 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4656 case DRM_FORMAT_NV12:
4657 return PLANE_CTL_FORMAT_NV12;
4658 case DRM_FORMAT_P010:
4659 return PLANE_CTL_FORMAT_P010;
4660 case DRM_FORMAT_P012:
4661 return PLANE_CTL_FORMAT_P012;
4662 case DRM_FORMAT_P016:
4663 return PLANE_CTL_FORMAT_P016;
4664 case DRM_FORMAT_Y210:
4665 return PLANE_CTL_FORMAT_Y210;
4666 case DRM_FORMAT_Y212:
4667 return PLANE_CTL_FORMAT_Y212;
4668 case DRM_FORMAT_Y216:
4669 return PLANE_CTL_FORMAT_Y216;
4670 case DRM_FORMAT_XVYU2101010:
4671 return PLANE_CTL_FORMAT_Y410;
4672 case DRM_FORMAT_XVYU12_16161616:
4673 return PLANE_CTL_FORMAT_Y412;
4674 case DRM_FORMAT_XVYU16161616:
4675 return PLANE_CTL_FORMAT_Y416;
4676 default:
4677 MISSING_CASE(pixel_format);
4678 }
4679
4680 return 0;
4681 }
4682
skl_plane_ctl_alpha(const struct intel_plane_state * plane_state)4683 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4684 {
4685 if (!plane_state->hw.fb->format->has_alpha)
4686 return PLANE_CTL_ALPHA_DISABLE;
4687
4688 switch (plane_state->hw.pixel_blend_mode) {
4689 case DRM_MODE_BLEND_PIXEL_NONE:
4690 return PLANE_CTL_ALPHA_DISABLE;
4691 case DRM_MODE_BLEND_PREMULTI:
4692 return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4693 case DRM_MODE_BLEND_COVERAGE:
4694 return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4695 default:
4696 MISSING_CASE(plane_state->hw.pixel_blend_mode);
4697 return PLANE_CTL_ALPHA_DISABLE;
4698 }
4699 }
4700
glk_plane_color_ctl_alpha(const struct intel_plane_state * plane_state)4701 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4702 {
4703 if (!plane_state->hw.fb->format->has_alpha)
4704 return PLANE_COLOR_ALPHA_DISABLE;
4705
4706 switch (plane_state->hw.pixel_blend_mode) {
4707 case DRM_MODE_BLEND_PIXEL_NONE:
4708 return PLANE_COLOR_ALPHA_DISABLE;
4709 case DRM_MODE_BLEND_PREMULTI:
4710 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4711 case DRM_MODE_BLEND_COVERAGE:
4712 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4713 default:
4714 MISSING_CASE(plane_state->hw.pixel_blend_mode);
4715 return PLANE_COLOR_ALPHA_DISABLE;
4716 }
4717 }
4718
skl_plane_ctl_tiling(u64 fb_modifier)4719 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4720 {
4721 switch (fb_modifier) {
4722 case DRM_FORMAT_MOD_LINEAR:
4723 break;
4724 case I915_FORMAT_MOD_X_TILED:
4725 return PLANE_CTL_TILED_X;
4726 case I915_FORMAT_MOD_Y_TILED:
4727 return PLANE_CTL_TILED_Y;
4728 case I915_FORMAT_MOD_Y_TILED_CCS:
4729 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4730 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4731 return PLANE_CTL_TILED_Y |
4732 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4733 PLANE_CTL_CLEAR_COLOR_DISABLE;
4734 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
4735 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE;
4736 case I915_FORMAT_MOD_Yf_TILED:
4737 return PLANE_CTL_TILED_YF;
4738 case I915_FORMAT_MOD_Yf_TILED_CCS:
4739 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4740 default:
4741 MISSING_CASE(fb_modifier);
4742 }
4743
4744 return 0;
4745 }
4746
skl_plane_ctl_rotate(unsigned int rotate)4747 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4748 {
4749 switch (rotate) {
4750 case DRM_MODE_ROTATE_0:
4751 break;
4752 /*
4753 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4754 * while i915 HW rotation is clockwise, thats why this swapping.
4755 */
4756 case DRM_MODE_ROTATE_90:
4757 return PLANE_CTL_ROTATE_270;
4758 case DRM_MODE_ROTATE_180:
4759 return PLANE_CTL_ROTATE_180;
4760 case DRM_MODE_ROTATE_270:
4761 return PLANE_CTL_ROTATE_90;
4762 default:
4763 MISSING_CASE(rotate);
4764 }
4765
4766 return 0;
4767 }
4768
cnl_plane_ctl_flip(unsigned int reflect)4769 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4770 {
4771 switch (reflect) {
4772 case 0:
4773 break;
4774 case DRM_MODE_REFLECT_X:
4775 return PLANE_CTL_FLIP_HORIZONTAL;
4776 case DRM_MODE_REFLECT_Y:
4777 default:
4778 MISSING_CASE(reflect);
4779 }
4780
4781 return 0;
4782 }
4783
skl_plane_ctl_crtc(const struct intel_crtc_state * crtc_state)4784 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4785 {
4786 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4787 u32 plane_ctl = 0;
4788
4789 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4790 return plane_ctl;
4791
4792 if (crtc_state->gamma_enable)
4793 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4794
4795 if (crtc_state->csc_enable)
4796 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4797
4798 return plane_ctl;
4799 }
4800
skl_plane_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4801 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4802 const struct intel_plane_state *plane_state)
4803 {
4804 struct drm_i915_private *dev_priv =
4805 to_i915(plane_state->uapi.plane->dev);
4806 const struct drm_framebuffer *fb = plane_state->hw.fb;
4807 unsigned int rotation = plane_state->hw.rotation;
4808 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4809 u32 plane_ctl;
4810
4811 plane_ctl = PLANE_CTL_ENABLE;
4812
4813 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4814 plane_ctl |= skl_plane_ctl_alpha(plane_state);
4815 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4816
4817 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4818 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4819
4820 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4821 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4822 }
4823
4824 plane_ctl |= skl_plane_ctl_format(fb->format->format);
4825 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4826 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4827
4828 if (INTEL_GEN(dev_priv) >= 10)
4829 plane_ctl |= cnl_plane_ctl_flip(rotation &
4830 DRM_MODE_REFLECT_MASK);
4831
4832 if (key->flags & I915_SET_COLORKEY_DESTINATION)
4833 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4834 else if (key->flags & I915_SET_COLORKEY_SOURCE)
4835 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4836
4837 return plane_ctl;
4838 }
4839
glk_plane_color_ctl_crtc(const struct intel_crtc_state * crtc_state)4840 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4841 {
4842 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4843 u32 plane_color_ctl = 0;
4844
4845 if (INTEL_GEN(dev_priv) >= 11)
4846 return plane_color_ctl;
4847
4848 if (crtc_state->gamma_enable)
4849 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4850
4851 if (crtc_state->csc_enable)
4852 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4853
4854 return plane_color_ctl;
4855 }
4856
glk_plane_color_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4857 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4858 const struct intel_plane_state *plane_state)
4859 {
4860 struct drm_i915_private *dev_priv =
4861 to_i915(plane_state->uapi.plane->dev);
4862 const struct drm_framebuffer *fb = plane_state->hw.fb;
4863 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4864 u32 plane_color_ctl = 0;
4865
4866 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4867 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4868
4869 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4870 switch (plane_state->hw.color_encoding) {
4871 case DRM_COLOR_YCBCR_BT709:
4872 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4873 break;
4874 case DRM_COLOR_YCBCR_BT2020:
4875 plane_color_ctl |=
4876 PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020;
4877 break;
4878 default:
4879 plane_color_ctl |=
4880 PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601;
4881 }
4882 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4883 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4884 } else if (fb->format->is_yuv) {
4885 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4886 }
4887
4888 return plane_color_ctl;
4889 }
4890
4891 static int
__intel_display_resume(struct drm_device * dev,struct drm_atomic_state * state,struct drm_modeset_acquire_ctx * ctx)4892 __intel_display_resume(struct drm_device *dev,
4893 struct drm_atomic_state *state,
4894 struct drm_modeset_acquire_ctx *ctx)
4895 {
4896 struct drm_crtc_state *crtc_state;
4897 struct drm_crtc *crtc;
4898 int i, ret;
4899
4900 intel_modeset_setup_hw_state(dev, ctx);
4901 intel_vga_redisable(to_i915(dev));
4902
4903 if (!state)
4904 return 0;
4905
4906 /*
4907 * We've duplicated the state, pointers to the old state are invalid.
4908 *
4909 * Don't attempt to use the old state until we commit the duplicated state.
4910 */
4911 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4912 /*
4913 * Force recalculation even if we restore
4914 * current state. With fast modeset this may not result
4915 * in a modeset when the state is compatible.
4916 */
4917 crtc_state->mode_changed = true;
4918 }
4919
4920 /* ignore any reset values/BIOS leftovers in the WM registers */
4921 if (!HAS_GMCH(to_i915(dev)))
4922 to_intel_atomic_state(state)->skip_intermediate_wm = true;
4923
4924 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4925
4926 drm_WARN_ON(dev, ret == -EDEADLK);
4927 return ret;
4928 }
4929
gpu_reset_clobbers_display(struct drm_i915_private * dev_priv)4930 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4931 {
4932 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4933 intel_has_gpu_reset(&dev_priv->gt));
4934 }
4935
intel_prepare_reset(struct drm_i915_private * dev_priv)4936 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4937 {
4938 struct drm_device *dev = &dev_priv->drm;
4939 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4940 struct drm_atomic_state *state;
4941 int ret;
4942
4943 /* reset doesn't touch the display */
4944 if (!dev_priv->params.force_reset_modeset_test &&
4945 !gpu_reset_clobbers_display(dev_priv))
4946 return;
4947
4948 /* We have a modeset vs reset deadlock, defensively unbreak it. */
4949 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4950 smp_mb__after_atomic();
4951 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4952
4953 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4954 drm_dbg_kms(&dev_priv->drm,
4955 "Modeset potentially stuck, unbreaking through wedging\n");
4956 intel_gt_set_wedged(&dev_priv->gt);
4957 }
4958
4959 /*
4960 * Need mode_config.mutex so that we don't
4961 * trample ongoing ->detect() and whatnot.
4962 */
4963 mutex_lock(&dev->mode_config.mutex);
4964 drm_modeset_acquire_init(ctx, 0);
4965 while (1) {
4966 ret = drm_modeset_lock_all_ctx(dev, ctx);
4967 if (ret != -EDEADLK)
4968 break;
4969
4970 drm_modeset_backoff(ctx);
4971 }
4972 /*
4973 * Disabling the crtcs gracefully seems nicer. Also the
4974 * g33 docs say we should at least disable all the planes.
4975 */
4976 state = drm_atomic_helper_duplicate_state(dev, ctx);
4977 if (IS_ERR(state)) {
4978 ret = PTR_ERR(state);
4979 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n",
4980 ret);
4981 return;
4982 }
4983
4984 ret = drm_atomic_helper_disable_all(dev, ctx);
4985 if (ret) {
4986 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
4987 ret);
4988 drm_atomic_state_put(state);
4989 return;
4990 }
4991
4992 dev_priv->modeset_restore_state = state;
4993 state->acquire_ctx = ctx;
4994 }
4995
intel_finish_reset(struct drm_i915_private * dev_priv)4996 void intel_finish_reset(struct drm_i915_private *dev_priv)
4997 {
4998 struct drm_device *dev = &dev_priv->drm;
4999 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
5000 struct drm_atomic_state *state;
5001 int ret;
5002
5003 /* reset doesn't touch the display */
5004 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
5005 return;
5006
5007 state = fetch_and_zero(&dev_priv->modeset_restore_state);
5008 if (!state)
5009 goto unlock;
5010
5011 /* reset doesn't touch the display */
5012 if (!gpu_reset_clobbers_display(dev_priv)) {
5013 /* for testing only restore the display */
5014 ret = __intel_display_resume(dev, state, ctx);
5015 if (ret)
5016 drm_err(&dev_priv->drm,
5017 "Restoring old state failed with %i\n", ret);
5018 } else {
5019 /*
5020 * The display has been reset as well,
5021 * so need a full re-initialization.
5022 */
5023 intel_pps_unlock_regs_wa(dev_priv);
5024 intel_modeset_init_hw(dev_priv);
5025 intel_init_clock_gating(dev_priv);
5026
5027 spin_lock_irq(&dev_priv->irq_lock);
5028 if (dev_priv->display.hpd_irq_setup)
5029 dev_priv->display.hpd_irq_setup(dev_priv);
5030 spin_unlock_irq(&dev_priv->irq_lock);
5031
5032 ret = __intel_display_resume(dev, state, ctx);
5033 if (ret)
5034 drm_err(&dev_priv->drm,
5035 "Restoring old state failed with %i\n", ret);
5036
5037 intel_hpd_init(dev_priv);
5038 }
5039
5040 drm_atomic_state_put(state);
5041 unlock:
5042 drm_modeset_drop_locks(ctx);
5043 drm_modeset_acquire_fini(ctx);
5044 mutex_unlock(&dev->mode_config.mutex);
5045
5046 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
5047 }
5048
icl_set_pipe_chicken(struct intel_crtc * crtc)5049 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
5050 {
5051 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5052 enum pipe pipe = crtc->pipe;
5053 u32 tmp;
5054
5055 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe));
5056
5057 /*
5058 * Display WA #1153: icl
5059 * enable hardware to bypass the alpha math
5060 * and rounding for per-pixel values 00 and 0xff
5061 */
5062 tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
5063 /*
5064 * Display WA # 1605353570: icl
5065 * Set the pixel rounding bit to 1 for allowing
5066 * passthrough of Frame buffer pixels unmodified
5067 * across pipe
5068 */
5069 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
5070 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp);
5071 }
5072
intel_fdi_normal_train(struct intel_crtc * crtc)5073 static void intel_fdi_normal_train(struct intel_crtc *crtc)
5074 {
5075 struct drm_device *dev = crtc->base.dev;
5076 struct drm_i915_private *dev_priv = to_i915(dev);
5077 enum pipe pipe = crtc->pipe;
5078 i915_reg_t reg;
5079 u32 temp;
5080
5081 /* enable normal train */
5082 reg = FDI_TX_CTL(pipe);
5083 temp = intel_de_read(dev_priv, reg);
5084 if (IS_IVYBRIDGE(dev_priv)) {
5085 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5086 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
5087 } else {
5088 temp &= ~FDI_LINK_TRAIN_NONE;
5089 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
5090 }
5091 intel_de_write(dev_priv, reg, temp);
5092
5093 reg = FDI_RX_CTL(pipe);
5094 temp = intel_de_read(dev_priv, reg);
5095 if (HAS_PCH_CPT(dev_priv)) {
5096 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5097 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
5098 } else {
5099 temp &= ~FDI_LINK_TRAIN_NONE;
5100 temp |= FDI_LINK_TRAIN_NONE;
5101 }
5102 intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
5103
5104 /* wait one idle pattern time */
5105 intel_de_posting_read(dev_priv, reg);
5106 udelay(1000);
5107
5108 /* IVB wants error correction enabled */
5109 if (IS_IVYBRIDGE(dev_priv))
5110 intel_de_write(dev_priv, reg,
5111 intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
5112 }
5113
5114 /* The FDI link training functions for ILK/Ibexpeak. */
ilk_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)5115 static void ilk_fdi_link_train(struct intel_crtc *crtc,
5116 const struct intel_crtc_state *crtc_state)
5117 {
5118 struct drm_device *dev = crtc->base.dev;
5119 struct drm_i915_private *dev_priv = to_i915(dev);
5120 enum pipe pipe = crtc->pipe;
5121 i915_reg_t reg;
5122 u32 temp, tries;
5123
5124 /* FDI needs bits from pipe first */
5125 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
5126
5127 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5128 for train result */
5129 reg = FDI_RX_IMR(pipe);
5130 temp = intel_de_read(dev_priv, reg);
5131 temp &= ~FDI_RX_SYMBOL_LOCK;
5132 temp &= ~FDI_RX_BIT_LOCK;
5133 intel_de_write(dev_priv, reg, temp);
5134 intel_de_read(dev_priv, reg);
5135 udelay(150);
5136
5137 /* enable CPU FDI TX and PCH FDI RX */
5138 reg = FDI_TX_CTL(pipe);
5139 temp = intel_de_read(dev_priv, reg);
5140 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5141 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5142 temp &= ~FDI_LINK_TRAIN_NONE;
5143 temp |= FDI_LINK_TRAIN_PATTERN_1;
5144 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5145
5146 reg = FDI_RX_CTL(pipe);
5147 temp = intel_de_read(dev_priv, reg);
5148 temp &= ~FDI_LINK_TRAIN_NONE;
5149 temp |= FDI_LINK_TRAIN_PATTERN_1;
5150 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5151
5152 intel_de_posting_read(dev_priv, reg);
5153 udelay(150);
5154
5155 /* Ironlake workaround, enable clock pointer after FDI enable*/
5156 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5157 FDI_RX_PHASE_SYNC_POINTER_OVR);
5158 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5159 FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN);
5160
5161 reg = FDI_RX_IIR(pipe);
5162 for (tries = 0; tries < 5; tries++) {
5163 temp = intel_de_read(dev_priv, reg);
5164 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5165
5166 if ((temp & FDI_RX_BIT_LOCK)) {
5167 drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n");
5168 intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK);
5169 break;
5170 }
5171 }
5172 if (tries == 5)
5173 drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5174
5175 /* Train 2 */
5176 reg = FDI_TX_CTL(pipe);
5177 temp = intel_de_read(dev_priv, reg);
5178 temp &= ~FDI_LINK_TRAIN_NONE;
5179 temp |= FDI_LINK_TRAIN_PATTERN_2;
5180 intel_de_write(dev_priv, reg, temp);
5181
5182 reg = FDI_RX_CTL(pipe);
5183 temp = intel_de_read(dev_priv, reg);
5184 temp &= ~FDI_LINK_TRAIN_NONE;
5185 temp |= FDI_LINK_TRAIN_PATTERN_2;
5186 intel_de_write(dev_priv, reg, temp);
5187
5188 intel_de_posting_read(dev_priv, reg);
5189 udelay(150);
5190
5191 reg = FDI_RX_IIR(pipe);
5192 for (tries = 0; tries < 5; tries++) {
5193 temp = intel_de_read(dev_priv, reg);
5194 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5195
5196 if (temp & FDI_RX_SYMBOL_LOCK) {
5197 intel_de_write(dev_priv, reg,
5198 temp | FDI_RX_SYMBOL_LOCK);
5199 drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n");
5200 break;
5201 }
5202 }
5203 if (tries == 5)
5204 drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5205
5206 drm_dbg_kms(&dev_priv->drm, "FDI train done\n");
5207
5208 }
5209
5210 static const int snb_b_fdi_train_param[] = {
5211 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
5212 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
5213 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
5214 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
5215 };
5216
5217 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)5218 static void gen6_fdi_link_train(struct intel_crtc *crtc,
5219 const struct intel_crtc_state *crtc_state)
5220 {
5221 struct drm_device *dev = crtc->base.dev;
5222 struct drm_i915_private *dev_priv = to_i915(dev);
5223 enum pipe pipe = crtc->pipe;
5224 i915_reg_t reg;
5225 u32 temp, i, retry;
5226
5227 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5228 for train result */
5229 reg = FDI_RX_IMR(pipe);
5230 temp = intel_de_read(dev_priv, reg);
5231 temp &= ~FDI_RX_SYMBOL_LOCK;
5232 temp &= ~FDI_RX_BIT_LOCK;
5233 intel_de_write(dev_priv, reg, temp);
5234
5235 intel_de_posting_read(dev_priv, reg);
5236 udelay(150);
5237
5238 /* enable CPU FDI TX and PCH FDI RX */
5239 reg = FDI_TX_CTL(pipe);
5240 temp = intel_de_read(dev_priv, reg);
5241 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5242 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5243 temp &= ~FDI_LINK_TRAIN_NONE;
5244 temp |= FDI_LINK_TRAIN_PATTERN_1;
5245 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5246 /* SNB-B */
5247 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5248 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5249
5250 intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5251 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5252
5253 reg = FDI_RX_CTL(pipe);
5254 temp = intel_de_read(dev_priv, reg);
5255 if (HAS_PCH_CPT(dev_priv)) {
5256 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5257 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5258 } else {
5259 temp &= ~FDI_LINK_TRAIN_NONE;
5260 temp |= FDI_LINK_TRAIN_PATTERN_1;
5261 }
5262 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5263
5264 intel_de_posting_read(dev_priv, reg);
5265 udelay(150);
5266
5267 for (i = 0; i < 4; i++) {
5268 reg = FDI_TX_CTL(pipe);
5269 temp = intel_de_read(dev_priv, reg);
5270 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5271 temp |= snb_b_fdi_train_param[i];
5272 intel_de_write(dev_priv, reg, temp);
5273
5274 intel_de_posting_read(dev_priv, reg);
5275 udelay(500);
5276
5277 for (retry = 0; retry < 5; retry++) {
5278 reg = FDI_RX_IIR(pipe);
5279 temp = intel_de_read(dev_priv, reg);
5280 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5281 if (temp & FDI_RX_BIT_LOCK) {
5282 intel_de_write(dev_priv, reg,
5283 temp | FDI_RX_BIT_LOCK);
5284 drm_dbg_kms(&dev_priv->drm,
5285 "FDI train 1 done.\n");
5286 break;
5287 }
5288 udelay(50);
5289 }
5290 if (retry < 5)
5291 break;
5292 }
5293 if (i == 4)
5294 drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5295
5296 /* Train 2 */
5297 reg = FDI_TX_CTL(pipe);
5298 temp = intel_de_read(dev_priv, reg);
5299 temp &= ~FDI_LINK_TRAIN_NONE;
5300 temp |= FDI_LINK_TRAIN_PATTERN_2;
5301 if (IS_GEN(dev_priv, 6)) {
5302 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5303 /* SNB-B */
5304 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5305 }
5306 intel_de_write(dev_priv, reg, temp);
5307
5308 reg = FDI_RX_CTL(pipe);
5309 temp = intel_de_read(dev_priv, reg);
5310 if (HAS_PCH_CPT(dev_priv)) {
5311 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5312 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5313 } else {
5314 temp &= ~FDI_LINK_TRAIN_NONE;
5315 temp |= FDI_LINK_TRAIN_PATTERN_2;
5316 }
5317 intel_de_write(dev_priv, reg, temp);
5318
5319 intel_de_posting_read(dev_priv, reg);
5320 udelay(150);
5321
5322 for (i = 0; i < 4; i++) {
5323 reg = FDI_TX_CTL(pipe);
5324 temp = intel_de_read(dev_priv, reg);
5325 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5326 temp |= snb_b_fdi_train_param[i];
5327 intel_de_write(dev_priv, reg, temp);
5328
5329 intel_de_posting_read(dev_priv, reg);
5330 udelay(500);
5331
5332 for (retry = 0; retry < 5; retry++) {
5333 reg = FDI_RX_IIR(pipe);
5334 temp = intel_de_read(dev_priv, reg);
5335 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5336 if (temp & FDI_RX_SYMBOL_LOCK) {
5337 intel_de_write(dev_priv, reg,
5338 temp | FDI_RX_SYMBOL_LOCK);
5339 drm_dbg_kms(&dev_priv->drm,
5340 "FDI train 2 done.\n");
5341 break;
5342 }
5343 udelay(50);
5344 }
5345 if (retry < 5)
5346 break;
5347 }
5348 if (i == 4)
5349 drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5350
5351 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5352 }
5353
5354 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)5355 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5356 const struct intel_crtc_state *crtc_state)
5357 {
5358 struct drm_device *dev = crtc->base.dev;
5359 struct drm_i915_private *dev_priv = to_i915(dev);
5360 enum pipe pipe = crtc->pipe;
5361 i915_reg_t reg;
5362 u32 temp, i, j;
5363
5364 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5365 for train result */
5366 reg = FDI_RX_IMR(pipe);
5367 temp = intel_de_read(dev_priv, reg);
5368 temp &= ~FDI_RX_SYMBOL_LOCK;
5369 temp &= ~FDI_RX_BIT_LOCK;
5370 intel_de_write(dev_priv, reg, temp);
5371
5372 intel_de_posting_read(dev_priv, reg);
5373 udelay(150);
5374
5375 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n",
5376 intel_de_read(dev_priv, FDI_RX_IIR(pipe)));
5377
5378 /* Try each vswing and preemphasis setting twice before moving on */
5379 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5380 /* disable first in case we need to retry */
5381 reg = FDI_TX_CTL(pipe);
5382 temp = intel_de_read(dev_priv, reg);
5383 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5384 temp &= ~FDI_TX_ENABLE;
5385 intel_de_write(dev_priv, reg, temp);
5386
5387 reg = FDI_RX_CTL(pipe);
5388 temp = intel_de_read(dev_priv, reg);
5389 temp &= ~FDI_LINK_TRAIN_AUTO;
5390 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5391 temp &= ~FDI_RX_ENABLE;
5392 intel_de_write(dev_priv, reg, temp);
5393
5394 /* enable CPU FDI TX and PCH FDI RX */
5395 reg = FDI_TX_CTL(pipe);
5396 temp = intel_de_read(dev_priv, reg);
5397 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5398 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5399 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5400 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5401 temp |= snb_b_fdi_train_param[j/2];
5402 temp |= FDI_COMPOSITE_SYNC;
5403 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5404
5405 intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5406 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5407
5408 reg = FDI_RX_CTL(pipe);
5409 temp = intel_de_read(dev_priv, reg);
5410 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5411 temp |= FDI_COMPOSITE_SYNC;
5412 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5413
5414 intel_de_posting_read(dev_priv, reg);
5415 udelay(1); /* should be 0.5us */
5416
5417 for (i = 0; i < 4; i++) {
5418 reg = FDI_RX_IIR(pipe);
5419 temp = intel_de_read(dev_priv, reg);
5420 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5421
5422 if (temp & FDI_RX_BIT_LOCK ||
5423 (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) {
5424 intel_de_write(dev_priv, reg,
5425 temp | FDI_RX_BIT_LOCK);
5426 drm_dbg_kms(&dev_priv->drm,
5427 "FDI train 1 done, level %i.\n",
5428 i);
5429 break;
5430 }
5431 udelay(1); /* should be 0.5us */
5432 }
5433 if (i == 4) {
5434 drm_dbg_kms(&dev_priv->drm,
5435 "FDI train 1 fail on vswing %d\n", j / 2);
5436 continue;
5437 }
5438
5439 /* Train 2 */
5440 reg = FDI_TX_CTL(pipe);
5441 temp = intel_de_read(dev_priv, reg);
5442 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5443 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5444 intel_de_write(dev_priv, reg, temp);
5445
5446 reg = FDI_RX_CTL(pipe);
5447 temp = intel_de_read(dev_priv, reg);
5448 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5449 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5450 intel_de_write(dev_priv, reg, temp);
5451
5452 intel_de_posting_read(dev_priv, reg);
5453 udelay(2); /* should be 1.5us */
5454
5455 for (i = 0; i < 4; i++) {
5456 reg = FDI_RX_IIR(pipe);
5457 temp = intel_de_read(dev_priv, reg);
5458 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5459
5460 if (temp & FDI_RX_SYMBOL_LOCK ||
5461 (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) {
5462 intel_de_write(dev_priv, reg,
5463 temp | FDI_RX_SYMBOL_LOCK);
5464 drm_dbg_kms(&dev_priv->drm,
5465 "FDI train 2 done, level %i.\n",
5466 i);
5467 goto train_done;
5468 }
5469 udelay(2); /* should be 1.5us */
5470 }
5471 if (i == 4)
5472 drm_dbg_kms(&dev_priv->drm,
5473 "FDI train 2 fail on vswing %d\n", j / 2);
5474 }
5475
5476 train_done:
5477 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5478 }
5479
ilk_fdi_pll_enable(const struct intel_crtc_state * crtc_state)5480 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5481 {
5482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5483 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5484 enum pipe pipe = intel_crtc->pipe;
5485 i915_reg_t reg;
5486 u32 temp;
5487
5488 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5489 reg = FDI_RX_CTL(pipe);
5490 temp = intel_de_read(dev_priv, reg);
5491 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5492 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5493 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5494 intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE);
5495
5496 intel_de_posting_read(dev_priv, reg);
5497 udelay(200);
5498
5499 /* Switch from Rawclk to PCDclk */
5500 temp = intel_de_read(dev_priv, reg);
5501 intel_de_write(dev_priv, reg, temp | FDI_PCDCLK);
5502
5503 intel_de_posting_read(dev_priv, reg);
5504 udelay(200);
5505
5506 /* Enable CPU FDI TX PLL, always on for Ironlake */
5507 reg = FDI_TX_CTL(pipe);
5508 temp = intel_de_read(dev_priv, reg);
5509 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5510 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE);
5511
5512 intel_de_posting_read(dev_priv, reg);
5513 udelay(100);
5514 }
5515 }
5516
ilk_fdi_pll_disable(struct intel_crtc * intel_crtc)5517 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc)
5518 {
5519 struct drm_device *dev = intel_crtc->base.dev;
5520 struct drm_i915_private *dev_priv = to_i915(dev);
5521 enum pipe pipe = intel_crtc->pipe;
5522 i915_reg_t reg;
5523 u32 temp;
5524
5525 /* Switch from PCDclk to Rawclk */
5526 reg = FDI_RX_CTL(pipe);
5527 temp = intel_de_read(dev_priv, reg);
5528 intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK);
5529
5530 /* Disable CPU FDI TX PLL */
5531 reg = FDI_TX_CTL(pipe);
5532 temp = intel_de_read(dev_priv, reg);
5533 intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE);
5534
5535 intel_de_posting_read(dev_priv, reg);
5536 udelay(100);
5537
5538 reg = FDI_RX_CTL(pipe);
5539 temp = intel_de_read(dev_priv, reg);
5540 intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE);
5541
5542 /* Wait for the clocks to turn off. */
5543 intel_de_posting_read(dev_priv, reg);
5544 udelay(100);
5545 }
5546
ilk_fdi_disable(struct intel_crtc * crtc)5547 static void ilk_fdi_disable(struct intel_crtc *crtc)
5548 {
5549 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5550 enum pipe pipe = crtc->pipe;
5551 i915_reg_t reg;
5552 u32 temp;
5553
5554 /* disable CPU FDI tx and PCH FDI rx */
5555 reg = FDI_TX_CTL(pipe);
5556 temp = intel_de_read(dev_priv, reg);
5557 intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE);
5558 intel_de_posting_read(dev_priv, reg);
5559
5560 reg = FDI_RX_CTL(pipe);
5561 temp = intel_de_read(dev_priv, reg);
5562 temp &= ~(0x7 << 16);
5563 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5564 intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE);
5565
5566 intel_de_posting_read(dev_priv, reg);
5567 udelay(100);
5568
5569 /* Ironlake workaround, disable clock pointer after downing FDI */
5570 if (HAS_PCH_IBX(dev_priv))
5571 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5572 FDI_RX_PHASE_SYNC_POINTER_OVR);
5573
5574 /* still set train pattern 1 */
5575 reg = FDI_TX_CTL(pipe);
5576 temp = intel_de_read(dev_priv, reg);
5577 temp &= ~FDI_LINK_TRAIN_NONE;
5578 temp |= FDI_LINK_TRAIN_PATTERN_1;
5579 intel_de_write(dev_priv, reg, temp);
5580
5581 reg = FDI_RX_CTL(pipe);
5582 temp = intel_de_read(dev_priv, reg);
5583 if (HAS_PCH_CPT(dev_priv)) {
5584 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5585 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5586 } else {
5587 temp &= ~FDI_LINK_TRAIN_NONE;
5588 temp |= FDI_LINK_TRAIN_PATTERN_1;
5589 }
5590 /* BPC in FDI rx is consistent with that in PIPECONF */
5591 temp &= ~(0x07 << 16);
5592 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5593 intel_de_write(dev_priv, reg, temp);
5594
5595 intel_de_posting_read(dev_priv, reg);
5596 udelay(100);
5597 }
5598
intel_has_pending_fb_unpin(struct drm_i915_private * dev_priv)5599 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5600 {
5601 struct drm_crtc *crtc;
5602 bool cleanup_done;
5603
5604 drm_for_each_crtc(crtc, &dev_priv->drm) {
5605 struct drm_crtc_commit *commit;
5606 spin_lock(&crtc->commit_lock);
5607 commit = list_first_entry_or_null(&crtc->commit_list,
5608 struct drm_crtc_commit, commit_entry);
5609 cleanup_done = commit ?
5610 try_wait_for_completion(&commit->cleanup_done) : true;
5611 spin_unlock(&crtc->commit_lock);
5612
5613 if (cleanup_done)
5614 continue;
5615
5616 drm_crtc_wait_one_vblank(crtc);
5617
5618 return true;
5619 }
5620
5621 return false;
5622 }
5623
lpt_disable_iclkip(struct drm_i915_private * dev_priv)5624 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5625 {
5626 u32 temp;
5627
5628 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE);
5629
5630 mutex_lock(&dev_priv->sb_lock);
5631
5632 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5633 temp |= SBI_SSCCTL_DISABLE;
5634 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5635
5636 mutex_unlock(&dev_priv->sb_lock);
5637 }
5638
5639 /* Program iCLKIP clock to the desired frequency */
lpt_program_iclkip(const struct intel_crtc_state * crtc_state)5640 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5641 {
5642 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5643 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5644 int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5645 u32 divsel, phaseinc, auxdiv, phasedir = 0;
5646 u32 temp;
5647
5648 lpt_disable_iclkip(dev_priv);
5649
5650 /* The iCLK virtual clock root frequency is in MHz,
5651 * but the adjusted_mode->crtc_clock in in KHz. To get the
5652 * divisors, it is necessary to divide one by another, so we
5653 * convert the virtual clock precision to KHz here for higher
5654 * precision.
5655 */
5656 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5657 u32 iclk_virtual_root_freq = 172800 * 1000;
5658 u32 iclk_pi_range = 64;
5659 u32 desired_divisor;
5660
5661 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5662 clock << auxdiv);
5663 divsel = (desired_divisor / iclk_pi_range) - 2;
5664 phaseinc = desired_divisor % iclk_pi_range;
5665
5666 /*
5667 * Near 20MHz is a corner case which is
5668 * out of range for the 7-bit divisor
5669 */
5670 if (divsel <= 0x7f)
5671 break;
5672 }
5673
5674 /* This should not happen with any sane values */
5675 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5676 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5677 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) &
5678 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5679
5680 drm_dbg_kms(&dev_priv->drm,
5681 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5682 clock, auxdiv, divsel, phasedir, phaseinc);
5683
5684 mutex_lock(&dev_priv->sb_lock);
5685
5686 /* Program SSCDIVINTPHASE6 */
5687 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5688 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5689 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5690 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5691 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5692 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5693 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5694 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5695
5696 /* Program SSCAUXDIV */
5697 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5698 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5699 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5700 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5701
5702 /* Enable modulator and associated divider */
5703 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5704 temp &= ~SBI_SSCCTL_DISABLE;
5705 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5706
5707 mutex_unlock(&dev_priv->sb_lock);
5708
5709 /* Wait for initialization time */
5710 udelay(24);
5711
5712 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5713 }
5714
lpt_get_iclkip(struct drm_i915_private * dev_priv)5715 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5716 {
5717 u32 divsel, phaseinc, auxdiv;
5718 u32 iclk_virtual_root_freq = 172800 * 1000;
5719 u32 iclk_pi_range = 64;
5720 u32 desired_divisor;
5721 u32 temp;
5722
5723 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5724 return 0;
5725
5726 mutex_lock(&dev_priv->sb_lock);
5727
5728 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5729 if (temp & SBI_SSCCTL_DISABLE) {
5730 mutex_unlock(&dev_priv->sb_lock);
5731 return 0;
5732 }
5733
5734 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5735 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5736 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5737 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5738 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5739
5740 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5741 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5742 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5743
5744 mutex_unlock(&dev_priv->sb_lock);
5745
5746 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5747
5748 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5749 desired_divisor << auxdiv);
5750 }
5751
ilk_pch_transcoder_set_timings(const struct intel_crtc_state * crtc_state,enum pipe pch_transcoder)5752 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5753 enum pipe pch_transcoder)
5754 {
5755 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5756 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5757 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5758
5759 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder),
5760 intel_de_read(dev_priv, HTOTAL(cpu_transcoder)));
5761 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder),
5762 intel_de_read(dev_priv, HBLANK(cpu_transcoder)));
5763 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder),
5764 intel_de_read(dev_priv, HSYNC(cpu_transcoder)));
5765
5766 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder),
5767 intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
5768 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder),
5769 intel_de_read(dev_priv, VBLANK(cpu_transcoder)));
5770 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder),
5771 intel_de_read(dev_priv, VSYNC(cpu_transcoder)));
5772 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5773 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder)));
5774 }
5775
cpt_set_fdi_bc_bifurcation(struct drm_i915_private * dev_priv,bool enable)5776 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5777 {
5778 u32 temp;
5779
5780 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1);
5781 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5782 return;
5783
5784 drm_WARN_ON(&dev_priv->drm,
5785 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) &
5786 FDI_RX_ENABLE);
5787 drm_WARN_ON(&dev_priv->drm,
5788 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) &
5789 FDI_RX_ENABLE);
5790
5791 temp &= ~FDI_BC_BIFURCATION_SELECT;
5792 if (enable)
5793 temp |= FDI_BC_BIFURCATION_SELECT;
5794
5795 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n",
5796 enable ? "en" : "dis");
5797 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp);
5798 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1);
5799 }
5800
ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state * crtc_state)5801 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5802 {
5803 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5804 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5805
5806 switch (crtc->pipe) {
5807 case PIPE_A:
5808 break;
5809 case PIPE_B:
5810 if (crtc_state->fdi_lanes > 2)
5811 cpt_set_fdi_bc_bifurcation(dev_priv, false);
5812 else
5813 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5814
5815 break;
5816 case PIPE_C:
5817 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5818
5819 break;
5820 default:
5821 BUG();
5822 }
5823 }
5824
5825 /*
5826 * Finds the encoder associated with the given CRTC. This can only be
5827 * used when we know that the CRTC isn't feeding multiple encoders!
5828 */
5829 static struct intel_encoder *
intel_get_crtc_new_encoder(const struct intel_atomic_state * state,const struct intel_crtc_state * crtc_state)5830 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5831 const struct intel_crtc_state *crtc_state)
5832 {
5833 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5834 const struct drm_connector_state *connector_state;
5835 const struct drm_connector *connector;
5836 struct intel_encoder *encoder = NULL;
5837 int num_encoders = 0;
5838 int i;
5839
5840 for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5841 if (connector_state->crtc != &crtc->base)
5842 continue;
5843
5844 encoder = to_intel_encoder(connector_state->best_encoder);
5845 num_encoders++;
5846 }
5847
5848 drm_WARN(encoder->base.dev, num_encoders != 1,
5849 "%d encoders for pipe %c\n",
5850 num_encoders, pipe_name(crtc->pipe));
5851
5852 return encoder;
5853 }
5854
5855 /*
5856 * Enable PCH resources required for PCH ports:
5857 * - PCH PLLs
5858 * - FDI training & RX/TX
5859 * - update transcoder timings
5860 * - DP transcoding bits
5861 * - transcoder
5862 */
ilk_pch_enable(const struct intel_atomic_state * state,const struct intel_crtc_state * crtc_state)5863 static void ilk_pch_enable(const struct intel_atomic_state *state,
5864 const struct intel_crtc_state *crtc_state)
5865 {
5866 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5867 struct drm_device *dev = crtc->base.dev;
5868 struct drm_i915_private *dev_priv = to_i915(dev);
5869 enum pipe pipe = crtc->pipe;
5870 u32 temp;
5871
5872 assert_pch_transcoder_disabled(dev_priv, pipe);
5873
5874 if (IS_IVYBRIDGE(dev_priv))
5875 ivb_update_fdi_bc_bifurcation(crtc_state);
5876
5877 /* Write the TU size bits before fdi link training, so that error
5878 * detection works. */
5879 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
5880 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5881
5882 /* For PCH output, training FDI link */
5883 dev_priv->display.fdi_link_train(crtc, crtc_state);
5884
5885 /* We need to program the right clock selection before writing the pixel
5886 * mutliplier into the DPLL. */
5887 if (HAS_PCH_CPT(dev_priv)) {
5888 u32 sel;
5889
5890 temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
5891 temp |= TRANS_DPLL_ENABLE(pipe);
5892 sel = TRANS_DPLLB_SEL(pipe);
5893 if (crtc_state->shared_dpll ==
5894 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5895 temp |= sel;
5896 else
5897 temp &= ~sel;
5898 intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
5899 }
5900
5901 /* XXX: pch pll's can be enabled any time before we enable the PCH
5902 * transcoder, and we actually should do this to not upset any PCH
5903 * transcoder that already use the clock when we share it.
5904 *
5905 * Note that enable_shared_dpll tries to do the right thing, but
5906 * get_shared_dpll unconditionally resets the pll - we need that to have
5907 * the right LVDS enable sequence. */
5908 intel_enable_shared_dpll(crtc_state);
5909
5910 /* set transcoder timing, panel must allow it */
5911 assert_panel_unlocked(dev_priv, pipe);
5912 ilk_pch_transcoder_set_timings(crtc_state, pipe);
5913
5914 intel_fdi_normal_train(crtc);
5915
5916 /* For PCH DP, enable TRANS_DP_CTL */
5917 if (HAS_PCH_CPT(dev_priv) &&
5918 intel_crtc_has_dp_encoder(crtc_state)) {
5919 const struct drm_display_mode *adjusted_mode =
5920 &crtc_state->hw.adjusted_mode;
5921 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5922 i915_reg_t reg = TRANS_DP_CTL(pipe);
5923 enum port port;
5924
5925 temp = intel_de_read(dev_priv, reg);
5926 temp &= ~(TRANS_DP_PORT_SEL_MASK |
5927 TRANS_DP_SYNC_MASK |
5928 TRANS_DP_BPC_MASK);
5929 temp |= TRANS_DP_OUTPUT_ENABLE;
5930 temp |= bpc << 9; /* same format but at 11:9 */
5931
5932 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5933 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5934 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5935 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5936
5937 port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5938 drm_WARN_ON(dev, port < PORT_B || port > PORT_D);
5939 temp |= TRANS_DP_PORT_SEL(port);
5940
5941 intel_de_write(dev_priv, reg, temp);
5942 }
5943
5944 ilk_enable_pch_transcoder(crtc_state);
5945 }
5946
lpt_pch_enable(const struct intel_crtc_state * crtc_state)5947 void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
5948 {
5949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5950 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5951 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5952
5953 assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5954
5955 lpt_program_iclkip(crtc_state);
5956
5957 /* Set transcoder timing. */
5958 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A);
5959
5960 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5961 }
5962
cpt_verify_modeset(struct drm_i915_private * dev_priv,enum pipe pipe)5963 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5964 enum pipe pipe)
5965 {
5966 i915_reg_t dslreg = PIPEDSL(pipe);
5967 u32 temp;
5968
5969 temp = intel_de_read(dev_priv, dslreg);
5970 udelay(500);
5971 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) {
5972 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5))
5973 drm_err(&dev_priv->drm,
5974 "mode set failed: pipe %c stuck\n",
5975 pipe_name(pipe));
5976 }
5977 }
5978
5979 /*
5980 * The hardware phase 0.0 refers to the center of the pixel.
5981 * We want to start from the top/left edge which is phase
5982 * -0.5. That matches how the hardware calculates the scaling
5983 * factors (from top-left of the first pixel to bottom-right
5984 * of the last pixel, as opposed to the pixel centers).
5985 *
5986 * For 4:2:0 subsampled chroma planes we obviously have to
5987 * adjust that so that the chroma sample position lands in
5988 * the right spot.
5989 *
5990 * Note that for packed YCbCr 4:2:2 formats there is no way to
5991 * control chroma siting. The hardware simply replicates the
5992 * chroma samples for both of the luma samples, and thus we don't
5993 * actually get the expected MPEG2 chroma siting convention :(
5994 * The same behaviour is observed on pre-SKL platforms as well.
5995 *
5996 * Theory behind the formula (note that we ignore sub-pixel
5997 * source coordinates):
5998 * s = source sample position
5999 * d = destination sample position
6000 *
6001 * Downscaling 4:1:
6002 * -0.5
6003 * | 0.0
6004 * | | 1.5 (initial phase)
6005 * | | |
6006 * v v v
6007 * | s | s | s | s |
6008 * | d |
6009 *
6010 * Upscaling 1:4:
6011 * -0.5
6012 * | -0.375 (initial phase)
6013 * | | 0.0
6014 * | | |
6015 * v v v
6016 * | s |
6017 * | d | d | d | d |
6018 */
skl_scaler_calc_phase(int sub,int scale,bool chroma_cosited)6019 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
6020 {
6021 int phase = -0x8000;
6022 u16 trip = 0;
6023
6024 if (chroma_cosited)
6025 phase += (sub - 1) * 0x8000 / sub;
6026
6027 phase += scale / (2 * sub);
6028
6029 /*
6030 * Hardware initial phase limited to [-0.5:1.5].
6031 * Since the max hardware scale factor is 3.0, we
6032 * should never actually excdeed 1.0 here.
6033 */
6034 WARN_ON(phase < -0x8000 || phase > 0x18000);
6035
6036 if (phase < 0)
6037 phase = 0x10000 + phase;
6038 else
6039 trip = PS_PHASE_TRIP;
6040
6041 return ((phase >> 2) & PS_PHASE_MASK) | trip;
6042 }
6043
6044 #define SKL_MIN_SRC_W 8
6045 #define SKL_MAX_SRC_W 4096
6046 #define SKL_MIN_SRC_H 8
6047 #define SKL_MAX_SRC_H 4096
6048 #define SKL_MIN_DST_W 8
6049 #define SKL_MAX_DST_W 4096
6050 #define SKL_MIN_DST_H 8
6051 #define SKL_MAX_DST_H 4096
6052 #define ICL_MAX_SRC_W 5120
6053 #define ICL_MAX_SRC_H 4096
6054 #define ICL_MAX_DST_W 5120
6055 #define ICL_MAX_DST_H 4096
6056 #define SKL_MIN_YUV_420_SRC_W 16
6057 #define SKL_MIN_YUV_420_SRC_H 16
6058
6059 static int
skl_update_scaler(struct intel_crtc_state * crtc_state,bool force_detach,unsigned int scaler_user,int * scaler_id,int src_w,int src_h,int dst_w,int dst_h,const struct drm_format_info * format,u64 modifier,bool need_scaler)6060 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
6061 unsigned int scaler_user, int *scaler_id,
6062 int src_w, int src_h, int dst_w, int dst_h,
6063 const struct drm_format_info *format,
6064 u64 modifier, bool need_scaler)
6065 {
6066 struct intel_crtc_scaler_state *scaler_state =
6067 &crtc_state->scaler_state;
6068 struct intel_crtc *intel_crtc =
6069 to_intel_crtc(crtc_state->uapi.crtc);
6070 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6071 const struct drm_display_mode *adjusted_mode =
6072 &crtc_state->hw.adjusted_mode;
6073
6074 /*
6075 * Src coordinates are already rotated by 270 degrees for
6076 * the 90/270 degree plane rotation cases (to match the
6077 * GTT mapping), hence no need to account for rotation here.
6078 */
6079 if (src_w != dst_w || src_h != dst_h)
6080 need_scaler = true;
6081
6082 /*
6083 * Scaling/fitting not supported in IF-ID mode in GEN9+
6084 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
6085 * Once NV12 is enabled, handle it here while allocating scaler
6086 * for NV12.
6087 */
6088 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
6089 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6090 drm_dbg_kms(&dev_priv->drm,
6091 "Pipe/Plane scaling not supported with IF-ID mode\n");
6092 return -EINVAL;
6093 }
6094
6095 /*
6096 * if plane is being disabled or scaler is no more required or force detach
6097 * - free scaler binded to this plane/crtc
6098 * - in order to do this, update crtc->scaler_usage
6099 *
6100 * Here scaler state in crtc_state is set free so that
6101 * scaler can be assigned to other user. Actual register
6102 * update to free the scaler is done in plane/panel-fit programming.
6103 * For this purpose crtc/plane_state->scaler_id isn't reset here.
6104 */
6105 if (force_detach || !need_scaler) {
6106 if (*scaler_id >= 0) {
6107 scaler_state->scaler_users &= ~(1 << scaler_user);
6108 scaler_state->scalers[*scaler_id].in_use = 0;
6109
6110 drm_dbg_kms(&dev_priv->drm,
6111 "scaler_user index %u.%u: "
6112 "Staged freeing scaler id %d scaler_users = 0x%x\n",
6113 intel_crtc->pipe, scaler_user, *scaler_id,
6114 scaler_state->scaler_users);
6115 *scaler_id = -1;
6116 }
6117 return 0;
6118 }
6119
6120 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
6121 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
6122 drm_dbg_kms(&dev_priv->drm,
6123 "Planar YUV: src dimensions not met\n");
6124 return -EINVAL;
6125 }
6126
6127 /* range checks */
6128 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
6129 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
6130 (INTEL_GEN(dev_priv) >= 11 &&
6131 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
6132 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
6133 (INTEL_GEN(dev_priv) < 11 &&
6134 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
6135 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) {
6136 drm_dbg_kms(&dev_priv->drm,
6137 "scaler_user index %u.%u: src %ux%u dst %ux%u "
6138 "size is out of scaler range\n",
6139 intel_crtc->pipe, scaler_user, src_w, src_h,
6140 dst_w, dst_h);
6141 return -EINVAL;
6142 }
6143
6144 /* mark this plane as a scaler user in crtc_state */
6145 scaler_state->scaler_users |= (1 << scaler_user);
6146 drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: "
6147 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
6148 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
6149 scaler_state->scaler_users);
6150
6151 return 0;
6152 }
6153
skl_update_scaler_crtc(struct intel_crtc_state * crtc_state)6154 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
6155 {
6156 const struct drm_display_mode *adjusted_mode =
6157 &crtc_state->hw.adjusted_mode;
6158 int width, height;
6159
6160 if (crtc_state->pch_pfit.enabled) {
6161 width = drm_rect_width(&crtc_state->pch_pfit.dst);
6162 height = drm_rect_height(&crtc_state->pch_pfit.dst);
6163 } else {
6164 width = adjusted_mode->crtc_hdisplay;
6165 height = adjusted_mode->crtc_vdisplay;
6166 }
6167
6168 return skl_update_scaler(crtc_state, !crtc_state->hw.active,
6169 SKL_CRTC_INDEX,
6170 &crtc_state->scaler_state.scaler_id,
6171 crtc_state->pipe_src_w, crtc_state->pipe_src_h,
6172 width, height, NULL, 0,
6173 crtc_state->pch_pfit.enabled);
6174 }
6175
6176 /**
6177 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
6178 * @crtc_state: crtc's scaler state
6179 * @plane_state: atomic plane state to update
6180 *
6181 * Return
6182 * 0 - scaler_usage updated successfully
6183 * error - requested scaling cannot be supported or other error condition
6184 */
skl_update_scaler_plane(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)6185 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
6186 struct intel_plane_state *plane_state)
6187 {
6188 struct intel_plane *intel_plane =
6189 to_intel_plane(plane_state->uapi.plane);
6190 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
6191 struct drm_framebuffer *fb = plane_state->hw.fb;
6192 int ret;
6193 bool force_detach = !fb || !plane_state->uapi.visible;
6194 bool need_scaler = false;
6195
6196 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */
6197 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
6198 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
6199 need_scaler = true;
6200
6201 ret = skl_update_scaler(crtc_state, force_detach,
6202 drm_plane_index(&intel_plane->base),
6203 &plane_state->scaler_id,
6204 drm_rect_width(&plane_state->uapi.src) >> 16,
6205 drm_rect_height(&plane_state->uapi.src) >> 16,
6206 drm_rect_width(&plane_state->uapi.dst),
6207 drm_rect_height(&plane_state->uapi.dst),
6208 fb ? fb->format : NULL,
6209 fb ? fb->modifier : 0,
6210 need_scaler);
6211
6212 if (ret || plane_state->scaler_id < 0)
6213 return ret;
6214
6215 /* check colorkey */
6216 if (plane_state->ckey.flags) {
6217 drm_dbg_kms(&dev_priv->drm,
6218 "[PLANE:%d:%s] scaling with color key not allowed",
6219 intel_plane->base.base.id,
6220 intel_plane->base.name);
6221 return -EINVAL;
6222 }
6223
6224 /* Check src format */
6225 switch (fb->format->format) {
6226 case DRM_FORMAT_RGB565:
6227 case DRM_FORMAT_XBGR8888:
6228 case DRM_FORMAT_XRGB8888:
6229 case DRM_FORMAT_ABGR8888:
6230 case DRM_FORMAT_ARGB8888:
6231 case DRM_FORMAT_XRGB2101010:
6232 case DRM_FORMAT_XBGR2101010:
6233 case DRM_FORMAT_ARGB2101010:
6234 case DRM_FORMAT_ABGR2101010:
6235 case DRM_FORMAT_YUYV:
6236 case DRM_FORMAT_YVYU:
6237 case DRM_FORMAT_UYVY:
6238 case DRM_FORMAT_VYUY:
6239 case DRM_FORMAT_NV12:
6240 case DRM_FORMAT_XYUV8888:
6241 case DRM_FORMAT_P010:
6242 case DRM_FORMAT_P012:
6243 case DRM_FORMAT_P016:
6244 case DRM_FORMAT_Y210:
6245 case DRM_FORMAT_Y212:
6246 case DRM_FORMAT_Y216:
6247 case DRM_FORMAT_XVYU2101010:
6248 case DRM_FORMAT_XVYU12_16161616:
6249 case DRM_FORMAT_XVYU16161616:
6250 break;
6251 case DRM_FORMAT_XBGR16161616F:
6252 case DRM_FORMAT_ABGR16161616F:
6253 case DRM_FORMAT_XRGB16161616F:
6254 case DRM_FORMAT_ARGB16161616F:
6255 if (INTEL_GEN(dev_priv) >= 11)
6256 break;
6257 fallthrough;
6258 default:
6259 drm_dbg_kms(&dev_priv->drm,
6260 "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
6261 intel_plane->base.base.id, intel_plane->base.name,
6262 fb->base.id, fb->format->format);
6263 return -EINVAL;
6264 }
6265
6266 return 0;
6267 }
6268
skl_scaler_disable(const struct intel_crtc_state * old_crtc_state)6269 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6270 {
6271 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6272 int i;
6273
6274 for (i = 0; i < crtc->num_scalers; i++)
6275 skl_detach_scaler(crtc, i);
6276 }
6277
skl_pfit_enable(const struct intel_crtc_state * crtc_state)6278 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
6279 {
6280 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6281 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6282 const struct intel_crtc_scaler_state *scaler_state =
6283 &crtc_state->scaler_state;
6284 struct drm_rect src = {
6285 .x2 = crtc_state->pipe_src_w << 16,
6286 .y2 = crtc_state->pipe_src_h << 16,
6287 };
6288 const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6289 u16 uv_rgb_hphase, uv_rgb_vphase;
6290 enum pipe pipe = crtc->pipe;
6291 int width = drm_rect_width(dst);
6292 int height = drm_rect_height(dst);
6293 int x = dst->x1;
6294 int y = dst->y1;
6295 int hscale, vscale;
6296 unsigned long irqflags;
6297 int id;
6298
6299 if (!crtc_state->pch_pfit.enabled)
6300 return;
6301
6302 if (drm_WARN_ON(&dev_priv->drm,
6303 crtc_state->scaler_state.scaler_id < 0))
6304 return;
6305
6306 hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
6307 vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);
6308
6309 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6310 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6311
6312 id = scaler_state->scaler_id;
6313
6314 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6315
6316 intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
6317 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
6318 intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id),
6319 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6320 intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id),
6321 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6322 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id),
6323 x << 16 | y);
6324 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id),
6325 width << 16 | height);
6326
6327 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6328 }
6329
ilk_pfit_enable(const struct intel_crtc_state * crtc_state)6330 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
6331 {
6332 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6333 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6334 const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6335 enum pipe pipe = crtc->pipe;
6336 int width = drm_rect_width(dst);
6337 int height = drm_rect_height(dst);
6338 int x = dst->x1;
6339 int y = dst->y1;
6340
6341 if (!crtc_state->pch_pfit.enabled)
6342 return;
6343
6344 /* Force use of hard-coded filter coefficients
6345 * as some pre-programmed values are broken,
6346 * e.g. x201.
6347 */
6348 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6349 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6350 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe));
6351 else
6352 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6353 PF_FILTER_MED_3x3);
6354 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y);
6355 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height);
6356 }
6357
hsw_enable_ips(const struct intel_crtc_state * crtc_state)6358 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6359 {
6360 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6361 struct drm_device *dev = crtc->base.dev;
6362 struct drm_i915_private *dev_priv = to_i915(dev);
6363
6364 if (!crtc_state->ips_enabled)
6365 return;
6366
6367 /*
6368 * We can only enable IPS after we enable a plane and wait for a vblank
6369 * This function is called from post_plane_update, which is run after
6370 * a vblank wait.
6371 */
6372 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6373
6374 if (IS_BROADWELL(dev_priv)) {
6375 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6376 IPS_ENABLE | IPS_PCODE_CONTROL));
6377 /* Quoting Art Runyan: "its not safe to expect any particular
6378 * value in IPS_CTL bit 31 after enabling IPS through the
6379 * mailbox." Moreover, the mailbox may return a bogus state,
6380 * so we need to just enable it and continue on.
6381 */
6382 } else {
6383 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE);
6384 /* The bit only becomes 1 in the next vblank, so this wait here
6385 * is essentially intel_wait_for_vblank. If we don't have this
6386 * and don't wait for vblanks until the end of crtc_enable, then
6387 * the HW state readout code will complain that the expected
6388 * IPS_CTL value is not the one we read. */
6389 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6390 drm_err(&dev_priv->drm,
6391 "Timed out waiting for IPS enable\n");
6392 }
6393 }
6394
hsw_disable_ips(const struct intel_crtc_state * crtc_state)6395 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6396 {
6397 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6398 struct drm_device *dev = crtc->base.dev;
6399 struct drm_i915_private *dev_priv = to_i915(dev);
6400
6401 if (!crtc_state->ips_enabled)
6402 return;
6403
6404 if (IS_BROADWELL(dev_priv)) {
6405 drm_WARN_ON(dev,
6406 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6407 /*
6408 * Wait for PCODE to finish disabling IPS. The BSpec specified
6409 * 42ms timeout value leads to occasional timeouts so use 100ms
6410 * instead.
6411 */
6412 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6413 drm_err(&dev_priv->drm,
6414 "Timed out waiting for IPS disable\n");
6415 } else {
6416 intel_de_write(dev_priv, IPS_CTL, 0);
6417 intel_de_posting_read(dev_priv, IPS_CTL);
6418 }
6419
6420 /* We need to wait for a vblank before we can disable the plane. */
6421 intel_wait_for_vblank(dev_priv, crtc->pipe);
6422 }
6423
intel_crtc_dpms_overlay_disable(struct intel_crtc * intel_crtc)6424 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6425 {
6426 if (intel_crtc->overlay)
6427 (void) intel_overlay_switch_off(intel_crtc->overlay);
6428
6429 /* Let userspace switch the overlay on again. In most cases userspace
6430 * has to recompute where to put it anyway.
6431 */
6432 }
6433
hsw_pre_update_disable_ips(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6434 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6435 const struct intel_crtc_state *new_crtc_state)
6436 {
6437 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6438 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6439
6440 if (!old_crtc_state->ips_enabled)
6441 return false;
6442
6443 if (needs_modeset(new_crtc_state))
6444 return true;
6445
6446 /*
6447 * Workaround : Do not read or write the pipe palette/gamma data while
6448 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6449 *
6450 * Disable IPS before we program the LUT.
6451 */
6452 if (IS_HASWELL(dev_priv) &&
6453 (new_crtc_state->uapi.color_mgmt_changed ||
6454 new_crtc_state->update_pipe) &&
6455 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6456 return true;
6457
6458 return !new_crtc_state->ips_enabled;
6459 }
6460
hsw_post_update_enable_ips(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6461 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6462 const struct intel_crtc_state *new_crtc_state)
6463 {
6464 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6465 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6466
6467 if (!new_crtc_state->ips_enabled)
6468 return false;
6469
6470 if (needs_modeset(new_crtc_state))
6471 return true;
6472
6473 /*
6474 * Workaround : Do not read or write the pipe palette/gamma data while
6475 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6476 *
6477 * Re-enable IPS after the LUT has been programmed.
6478 */
6479 if (IS_HASWELL(dev_priv) &&
6480 (new_crtc_state->uapi.color_mgmt_changed ||
6481 new_crtc_state->update_pipe) &&
6482 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6483 return true;
6484
6485 /*
6486 * We can't read out IPS on broadwell, assume the worst and
6487 * forcibly enable IPS on the first fastset.
6488 */
6489 if (new_crtc_state->update_pipe && old_crtc_state->inherited)
6490 return true;
6491
6492 return !old_crtc_state->ips_enabled;
6493 }
6494
needs_nv12_wa(const struct intel_crtc_state * crtc_state)6495 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6496 {
6497 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6498
6499 if (!crtc_state->nv12_planes)
6500 return false;
6501
6502 /* WA Display #0827: Gen9:all */
6503 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6504 return true;
6505
6506 return false;
6507 }
6508
needs_scalerclk_wa(const struct intel_crtc_state * crtc_state)6509 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6510 {
6511 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6512
6513 /* Wa_2006604312:icl,ehl */
6514 if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11))
6515 return true;
6516
6517 return false;
6518 }
6519
planes_enabling(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6520 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6521 const struct intel_crtc_state *new_crtc_state)
6522 {
6523 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6524 new_crtc_state->active_planes;
6525 }
6526
planes_disabling(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6527 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6528 const struct intel_crtc_state *new_crtc_state)
6529 {
6530 return old_crtc_state->active_planes &&
6531 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6532 }
6533
intel_post_plane_update(struct intel_atomic_state * state,struct intel_crtc * crtc)6534 static void intel_post_plane_update(struct intel_atomic_state *state,
6535 struct intel_crtc *crtc)
6536 {
6537 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6538 const struct intel_crtc_state *old_crtc_state =
6539 intel_atomic_get_old_crtc_state(state, crtc);
6540 const struct intel_crtc_state *new_crtc_state =
6541 intel_atomic_get_new_crtc_state(state, crtc);
6542 enum pipe pipe = crtc->pipe;
6543
6544 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6545
6546 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6547 intel_update_watermarks(crtc);
6548
6549 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6550 hsw_enable_ips(new_crtc_state);
6551
6552 intel_fbc_post_update(state, crtc);
6553
6554 if (needs_nv12_wa(old_crtc_state) &&
6555 !needs_nv12_wa(new_crtc_state))
6556 skl_wa_827(dev_priv, pipe, false);
6557
6558 if (needs_scalerclk_wa(old_crtc_state) &&
6559 !needs_scalerclk_wa(new_crtc_state))
6560 icl_wa_scalerclkgating(dev_priv, pipe, false);
6561 }
6562
intel_pre_plane_update(struct intel_atomic_state * state,struct intel_crtc * crtc)6563 static void intel_pre_plane_update(struct intel_atomic_state *state,
6564 struct intel_crtc *crtc)
6565 {
6566 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6567 const struct intel_crtc_state *old_crtc_state =
6568 intel_atomic_get_old_crtc_state(state, crtc);
6569 const struct intel_crtc_state *new_crtc_state =
6570 intel_atomic_get_new_crtc_state(state, crtc);
6571 enum pipe pipe = crtc->pipe;
6572
6573 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6574 hsw_disable_ips(old_crtc_state);
6575
6576 if (intel_fbc_pre_update(state, crtc))
6577 intel_wait_for_vblank(dev_priv, pipe);
6578
6579 /* Display WA 827 */
6580 if (!needs_nv12_wa(old_crtc_state) &&
6581 needs_nv12_wa(new_crtc_state))
6582 skl_wa_827(dev_priv, pipe, true);
6583
6584 /* Wa_2006604312:icl,ehl */
6585 if (!needs_scalerclk_wa(old_crtc_state) &&
6586 needs_scalerclk_wa(new_crtc_state))
6587 icl_wa_scalerclkgating(dev_priv, pipe, true);
6588
6589 /*
6590 * Vblank time updates from the shadow to live plane control register
6591 * are blocked if the memory self-refresh mode is active at that
6592 * moment. So to make sure the plane gets truly disabled, disable
6593 * first the self-refresh mode. The self-refresh enable bit in turn
6594 * will be checked/applied by the HW only at the next frame start
6595 * event which is after the vblank start event, so we need to have a
6596 * wait-for-vblank between disabling the plane and the pipe.
6597 */
6598 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6599 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6600 intel_wait_for_vblank(dev_priv, pipe);
6601
6602 /*
6603 * IVB workaround: must disable low power watermarks for at least
6604 * one frame before enabling scaling. LP watermarks can be re-enabled
6605 * when scaling is disabled.
6606 *
6607 * WaCxSRDisabledForSpriteScaling:ivb
6608 */
6609 if (old_crtc_state->hw.active &&
6610 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6611 intel_wait_for_vblank(dev_priv, pipe);
6612
6613 /*
6614 * If we're doing a modeset we don't need to do any
6615 * pre-vblank watermark programming here.
6616 */
6617 if (!needs_modeset(new_crtc_state)) {
6618 /*
6619 * For platforms that support atomic watermarks, program the
6620 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
6621 * will be the intermediate values that are safe for both pre- and
6622 * post- vblank; when vblank happens, the 'active' values will be set
6623 * to the final 'target' values and we'll do this again to get the
6624 * optimal watermarks. For gen9+ platforms, the values we program here
6625 * will be the final target values which will get automatically latched
6626 * at vblank time; no further programming will be necessary.
6627 *
6628 * If a platform hasn't been transitioned to atomic watermarks yet,
6629 * we'll continue to update watermarks the old way, if flags tell
6630 * us to.
6631 */
6632 if (dev_priv->display.initial_watermarks)
6633 dev_priv->display.initial_watermarks(state, crtc);
6634 else if (new_crtc_state->update_wm_pre)
6635 intel_update_watermarks(crtc);
6636 }
6637
6638 /*
6639 * Gen2 reports pipe underruns whenever all planes are disabled.
6640 * So disable underrun reporting before all the planes get disabled.
6641 *
6642 * We do this after .initial_watermarks() so that we have a
6643 * chance of catching underruns with the intermediate watermarks
6644 * vs. the old plane configuration.
6645 */
6646 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6647 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6648 }
6649
intel_crtc_disable_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)6650 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6651 struct intel_crtc *crtc)
6652 {
6653 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6654 const struct intel_crtc_state *new_crtc_state =
6655 intel_atomic_get_new_crtc_state(state, crtc);
6656 unsigned int update_mask = new_crtc_state->update_planes;
6657 const struct intel_plane_state *old_plane_state;
6658 struct intel_plane *plane;
6659 unsigned fb_bits = 0;
6660 int i;
6661
6662 intel_crtc_dpms_overlay_disable(crtc);
6663
6664 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6665 if (crtc->pipe != plane->pipe ||
6666 !(update_mask & BIT(plane->id)))
6667 continue;
6668
6669 intel_disable_plane(plane, new_crtc_state);
6670
6671 if (old_plane_state->uapi.visible)
6672 fb_bits |= plane->frontbuffer_bit;
6673 }
6674
6675 intel_frontbuffer_flip(dev_priv, fb_bits);
6676 }
6677
6678 /*
6679 * intel_connector_primary_encoder - get the primary encoder for a connector
6680 * @connector: connector for which to return the encoder
6681 *
6682 * Returns the primary encoder for a connector. There is a 1:1 mapping from
6683 * all connectors to their encoder, except for DP-MST connectors which have
6684 * both a virtual and a primary encoder. These DP-MST primary encoders can be
6685 * pointed to by as many DP-MST connectors as there are pipes.
6686 */
6687 static struct intel_encoder *
intel_connector_primary_encoder(struct intel_connector * connector)6688 intel_connector_primary_encoder(struct intel_connector *connector)
6689 {
6690 struct intel_encoder *encoder;
6691
6692 if (connector->mst_port)
6693 return &dp_to_dig_port(connector->mst_port)->base;
6694
6695 encoder = intel_attached_encoder(connector);
6696 drm_WARN_ON(connector->base.dev, !encoder);
6697
6698 return encoder;
6699 }
6700
intel_encoders_update_prepare(struct intel_atomic_state * state)6701 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6702 {
6703 struct drm_connector_state *new_conn_state;
6704 struct drm_connector *connector;
6705 int i;
6706
6707 for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6708 i) {
6709 struct intel_connector *intel_connector;
6710 struct intel_encoder *encoder;
6711 struct intel_crtc *crtc;
6712
6713 if (!intel_connector_needs_modeset(state, connector))
6714 continue;
6715
6716 intel_connector = to_intel_connector(connector);
6717 encoder = intel_connector_primary_encoder(intel_connector);
6718 if (!encoder->update_prepare)
6719 continue;
6720
6721 crtc = new_conn_state->crtc ?
6722 to_intel_crtc(new_conn_state->crtc) : NULL;
6723 encoder->update_prepare(state, encoder, crtc);
6724 }
6725 }
6726
intel_encoders_update_complete(struct intel_atomic_state * state)6727 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6728 {
6729 struct drm_connector_state *new_conn_state;
6730 struct drm_connector *connector;
6731 int i;
6732
6733 for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6734 i) {
6735 struct intel_connector *intel_connector;
6736 struct intel_encoder *encoder;
6737 struct intel_crtc *crtc;
6738
6739 if (!intel_connector_needs_modeset(state, connector))
6740 continue;
6741
6742 intel_connector = to_intel_connector(connector);
6743 encoder = intel_connector_primary_encoder(intel_connector);
6744 if (!encoder->update_complete)
6745 continue;
6746
6747 crtc = new_conn_state->crtc ?
6748 to_intel_crtc(new_conn_state->crtc) : NULL;
6749 encoder->update_complete(state, encoder, crtc);
6750 }
6751 }
6752
intel_encoders_pre_pll_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6753 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6754 struct intel_crtc *crtc)
6755 {
6756 const struct intel_crtc_state *crtc_state =
6757 intel_atomic_get_new_crtc_state(state, crtc);
6758 const struct drm_connector_state *conn_state;
6759 struct drm_connector *conn;
6760 int i;
6761
6762 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6763 struct intel_encoder *encoder =
6764 to_intel_encoder(conn_state->best_encoder);
6765
6766 if (conn_state->crtc != &crtc->base)
6767 continue;
6768
6769 if (encoder->pre_pll_enable)
6770 encoder->pre_pll_enable(state, encoder,
6771 crtc_state, conn_state);
6772 }
6773 }
6774
intel_encoders_pre_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6775 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6776 struct intel_crtc *crtc)
6777 {
6778 const struct intel_crtc_state *crtc_state =
6779 intel_atomic_get_new_crtc_state(state, crtc);
6780 const struct drm_connector_state *conn_state;
6781 struct drm_connector *conn;
6782 int i;
6783
6784 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6785 struct intel_encoder *encoder =
6786 to_intel_encoder(conn_state->best_encoder);
6787
6788 if (conn_state->crtc != &crtc->base)
6789 continue;
6790
6791 if (encoder->pre_enable)
6792 encoder->pre_enable(state, encoder,
6793 crtc_state, conn_state);
6794 }
6795 }
6796
intel_encoders_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6797 static void intel_encoders_enable(struct intel_atomic_state *state,
6798 struct intel_crtc *crtc)
6799 {
6800 const struct intel_crtc_state *crtc_state =
6801 intel_atomic_get_new_crtc_state(state, crtc);
6802 const struct drm_connector_state *conn_state;
6803 struct drm_connector *conn;
6804 int i;
6805
6806 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6807 struct intel_encoder *encoder =
6808 to_intel_encoder(conn_state->best_encoder);
6809
6810 if (conn_state->crtc != &crtc->base)
6811 continue;
6812
6813 if (encoder->enable)
6814 encoder->enable(state, encoder,
6815 crtc_state, conn_state);
6816 intel_opregion_notify_encoder(encoder, true);
6817 }
6818 }
6819
intel_encoders_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)6820 static void intel_encoders_disable(struct intel_atomic_state *state,
6821 struct intel_crtc *crtc)
6822 {
6823 const struct intel_crtc_state *old_crtc_state =
6824 intel_atomic_get_old_crtc_state(state, crtc);
6825 const struct drm_connector_state *old_conn_state;
6826 struct drm_connector *conn;
6827 int i;
6828
6829 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6830 struct intel_encoder *encoder =
6831 to_intel_encoder(old_conn_state->best_encoder);
6832
6833 if (old_conn_state->crtc != &crtc->base)
6834 continue;
6835
6836 intel_opregion_notify_encoder(encoder, false);
6837 if (encoder->disable)
6838 encoder->disable(state, encoder,
6839 old_crtc_state, old_conn_state);
6840 }
6841 }
6842
intel_encoders_post_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)6843 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6844 struct intel_crtc *crtc)
6845 {
6846 const struct intel_crtc_state *old_crtc_state =
6847 intel_atomic_get_old_crtc_state(state, crtc);
6848 const struct drm_connector_state *old_conn_state;
6849 struct drm_connector *conn;
6850 int i;
6851
6852 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6853 struct intel_encoder *encoder =
6854 to_intel_encoder(old_conn_state->best_encoder);
6855
6856 if (old_conn_state->crtc != &crtc->base)
6857 continue;
6858
6859 if (encoder->post_disable)
6860 encoder->post_disable(state, encoder,
6861 old_crtc_state, old_conn_state);
6862 }
6863 }
6864
intel_encoders_post_pll_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)6865 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6866 struct intel_crtc *crtc)
6867 {
6868 const struct intel_crtc_state *old_crtc_state =
6869 intel_atomic_get_old_crtc_state(state, crtc);
6870 const struct drm_connector_state *old_conn_state;
6871 struct drm_connector *conn;
6872 int i;
6873
6874 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6875 struct intel_encoder *encoder =
6876 to_intel_encoder(old_conn_state->best_encoder);
6877
6878 if (old_conn_state->crtc != &crtc->base)
6879 continue;
6880
6881 if (encoder->post_pll_disable)
6882 encoder->post_pll_disable(state, encoder,
6883 old_crtc_state, old_conn_state);
6884 }
6885 }
6886
intel_encoders_update_pipe(struct intel_atomic_state * state,struct intel_crtc * crtc)6887 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6888 struct intel_crtc *crtc)
6889 {
6890 const struct intel_crtc_state *crtc_state =
6891 intel_atomic_get_new_crtc_state(state, crtc);
6892 const struct drm_connector_state *conn_state;
6893 struct drm_connector *conn;
6894 int i;
6895
6896 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6897 struct intel_encoder *encoder =
6898 to_intel_encoder(conn_state->best_encoder);
6899
6900 if (conn_state->crtc != &crtc->base)
6901 continue;
6902
6903 if (encoder->update_pipe)
6904 encoder->update_pipe(state, encoder,
6905 crtc_state, conn_state);
6906 }
6907 }
6908
intel_disable_primary_plane(const struct intel_crtc_state * crtc_state)6909 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6910 {
6911 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6912 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6913
6914 plane->disable_plane(plane, crtc_state);
6915 }
6916
ilk_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6917 static void ilk_crtc_enable(struct intel_atomic_state *state,
6918 struct intel_crtc *crtc)
6919 {
6920 const struct intel_crtc_state *new_crtc_state =
6921 intel_atomic_get_new_crtc_state(state, crtc);
6922 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6923 enum pipe pipe = crtc->pipe;
6924
6925 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
6926 return;
6927
6928 /*
6929 * Sometimes spurious CPU pipe underruns happen during FDI
6930 * training, at least with VGA+HDMI cloning. Suppress them.
6931 *
6932 * On ILK we get an occasional spurious CPU pipe underruns
6933 * between eDP port A enable and vdd enable. Also PCH port
6934 * enable seems to result in the occasional CPU pipe underrun.
6935 *
6936 * Spurious PCH underruns also occur during PCH enabling.
6937 */
6938 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6939 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6940
6941 if (new_crtc_state->has_pch_encoder)
6942 intel_prepare_shared_dpll(new_crtc_state);
6943
6944 if (intel_crtc_has_dp_encoder(new_crtc_state))
6945 intel_dp_set_m_n(new_crtc_state, M1_N1);
6946
6947 intel_set_pipe_timings(new_crtc_state);
6948 intel_set_pipe_src_size(new_crtc_state);
6949
6950 if (new_crtc_state->has_pch_encoder)
6951 intel_cpu_transcoder_set_m_n(new_crtc_state,
6952 &new_crtc_state->fdi_m_n, NULL);
6953
6954 ilk_set_pipeconf(new_crtc_state);
6955
6956 crtc->active = true;
6957
6958 intel_encoders_pre_enable(state, crtc);
6959
6960 if (new_crtc_state->has_pch_encoder) {
6961 /* Note: FDI PLL enabling _must_ be done before we enable the
6962 * cpu pipes, hence this is separate from all the other fdi/pch
6963 * enabling. */
6964 ilk_fdi_pll_enable(new_crtc_state);
6965 } else {
6966 assert_fdi_tx_disabled(dev_priv, pipe);
6967 assert_fdi_rx_disabled(dev_priv, pipe);
6968 }
6969
6970 ilk_pfit_enable(new_crtc_state);
6971
6972 /*
6973 * On ILK+ LUT must be loaded before the pipe is running but with
6974 * clocks enabled
6975 */
6976 intel_color_load_luts(new_crtc_state);
6977 intel_color_commit(new_crtc_state);
6978 /* update DSPCNTR to configure gamma for pipe bottom color */
6979 intel_disable_primary_plane(new_crtc_state);
6980
6981 if (dev_priv->display.initial_watermarks)
6982 dev_priv->display.initial_watermarks(state, crtc);
6983 intel_enable_pipe(new_crtc_state);
6984
6985 if (new_crtc_state->has_pch_encoder)
6986 ilk_pch_enable(state, new_crtc_state);
6987
6988 intel_crtc_vblank_on(new_crtc_state);
6989
6990 intel_encoders_enable(state, crtc);
6991
6992 if (HAS_PCH_CPT(dev_priv))
6993 cpt_verify_modeset(dev_priv, pipe);
6994
6995 /*
6996 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6997 * And a second vblank wait is needed at least on ILK with
6998 * some interlaced HDMI modes. Let's do the double wait always
6999 * in case there are more corner cases we don't know about.
7000 */
7001 if (new_crtc_state->has_pch_encoder) {
7002 intel_wait_for_vblank(dev_priv, pipe);
7003 intel_wait_for_vblank(dev_priv, pipe);
7004 }
7005 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7006 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7007 }
7008
7009 /* IPS only exists on ULT machines and is tied to pipe A. */
hsw_crtc_supports_ips(struct intel_crtc * crtc)7010 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
7011 {
7012 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
7013 }
7014
glk_pipe_scaler_clock_gating_wa(struct drm_i915_private * dev_priv,enum pipe pipe,bool apply)7015 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
7016 enum pipe pipe, bool apply)
7017 {
7018 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe));
7019 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
7020
7021 if (apply)
7022 val |= mask;
7023 else
7024 val &= ~mask;
7025
7026 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val);
7027 }
7028
icl_pipe_mbus_enable(struct intel_crtc * crtc)7029 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
7030 {
7031 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7032 enum pipe pipe = crtc->pipe;
7033 u32 val;
7034
7035 val = MBUS_DBOX_A_CREDIT(2);
7036
7037 if (INTEL_GEN(dev_priv) >= 12) {
7038 val |= MBUS_DBOX_BW_CREDIT(2);
7039 val |= MBUS_DBOX_B_CREDIT(12);
7040 } else {
7041 val |= MBUS_DBOX_BW_CREDIT(1);
7042 val |= MBUS_DBOX_B_CREDIT(8);
7043 }
7044
7045 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val);
7046 }
7047
hsw_set_linetime_wm(const struct intel_crtc_state * crtc_state)7048 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
7049 {
7050 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7051 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7052
7053 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe),
7054 HSW_LINETIME(crtc_state->linetime) |
7055 HSW_IPS_LINETIME(crtc_state->ips_linetime));
7056 }
7057
hsw_set_frame_start_delay(const struct intel_crtc_state * crtc_state)7058 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
7059 {
7060 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7061 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7062 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
7063 u32 val;
7064
7065 val = intel_de_read(dev_priv, reg);
7066 val &= ~HSW_FRAME_START_DELAY_MASK;
7067 val |= HSW_FRAME_START_DELAY(0);
7068 intel_de_write(dev_priv, reg, val);
7069 }
7070
hsw_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)7071 static void hsw_crtc_enable(struct intel_atomic_state *state,
7072 struct intel_crtc *crtc)
7073 {
7074 const struct intel_crtc_state *new_crtc_state =
7075 intel_atomic_get_new_crtc_state(state, crtc);
7076 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7077 enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
7078 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
7079 bool psl_clkgate_wa;
7080
7081 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7082 return;
7083
7084 intel_encoders_pre_pll_enable(state, crtc);
7085
7086 if (new_crtc_state->shared_dpll)
7087 intel_enable_shared_dpll(new_crtc_state);
7088
7089 intel_encoders_pre_enable(state, crtc);
7090
7091 if (!transcoder_is_dsi(cpu_transcoder))
7092 intel_set_pipe_timings(new_crtc_state);
7093
7094 intel_set_pipe_src_size(new_crtc_state);
7095
7096 if (cpu_transcoder != TRANSCODER_EDP &&
7097 !transcoder_is_dsi(cpu_transcoder))
7098 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder),
7099 new_crtc_state->pixel_multiplier - 1);
7100
7101 if (new_crtc_state->has_pch_encoder)
7102 intel_cpu_transcoder_set_m_n(new_crtc_state,
7103 &new_crtc_state->fdi_m_n, NULL);
7104
7105 if (!transcoder_is_dsi(cpu_transcoder)) {
7106 hsw_set_frame_start_delay(new_crtc_state);
7107 hsw_set_pipeconf(new_crtc_state);
7108 }
7109
7110 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
7111 bdw_set_pipemisc(new_crtc_state);
7112
7113 crtc->active = true;
7114
7115 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
7116 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
7117 new_crtc_state->pch_pfit.enabled;
7118 if (psl_clkgate_wa)
7119 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
7120
7121 if (INTEL_GEN(dev_priv) >= 9)
7122 skl_pfit_enable(new_crtc_state);
7123 else
7124 ilk_pfit_enable(new_crtc_state);
7125
7126 /*
7127 * On ILK+ LUT must be loaded before the pipe is running but with
7128 * clocks enabled
7129 */
7130 intel_color_load_luts(new_crtc_state);
7131 intel_color_commit(new_crtc_state);
7132 /* update DSPCNTR to configure gamma/csc for pipe bottom color */
7133 if (INTEL_GEN(dev_priv) < 9)
7134 intel_disable_primary_plane(new_crtc_state);
7135
7136 hsw_set_linetime_wm(new_crtc_state);
7137
7138 if (INTEL_GEN(dev_priv) >= 11)
7139 icl_set_pipe_chicken(crtc);
7140
7141 if (dev_priv->display.initial_watermarks)
7142 dev_priv->display.initial_watermarks(state, crtc);
7143
7144 if (INTEL_GEN(dev_priv) >= 11)
7145 icl_pipe_mbus_enable(crtc);
7146
7147 intel_encoders_enable(state, crtc);
7148
7149 if (psl_clkgate_wa) {
7150 intel_wait_for_vblank(dev_priv, pipe);
7151 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
7152 }
7153
7154 /* If we change the relative order between pipe/planes enabling, we need
7155 * to change the workaround. */
7156 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
7157 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
7158 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7159 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7160 }
7161 }
7162
ilk_pfit_disable(const struct intel_crtc_state * old_crtc_state)7163 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7164 {
7165 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7166 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7167 enum pipe pipe = crtc->pipe;
7168
7169 /* To avoid upsetting the power well on haswell only disable the pfit if
7170 * it's in use. The hw state code will make sure we get this right. */
7171 if (!old_crtc_state->pch_pfit.enabled)
7172 return;
7173
7174 intel_de_write(dev_priv, PF_CTL(pipe), 0);
7175 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0);
7176 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0);
7177 }
7178
ilk_crtc_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)7179 static void ilk_crtc_disable(struct intel_atomic_state *state,
7180 struct intel_crtc *crtc)
7181 {
7182 const struct intel_crtc_state *old_crtc_state =
7183 intel_atomic_get_old_crtc_state(state, crtc);
7184 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7185 enum pipe pipe = crtc->pipe;
7186
7187 /*
7188 * Sometimes spurious CPU pipe underruns happen when the
7189 * pipe is already disabled, but FDI RX/TX is still enabled.
7190 * Happens at least with VGA+HDMI cloning. Suppress them.
7191 */
7192 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7193 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7194
7195 intel_encoders_disable(state, crtc);
7196
7197 intel_crtc_vblank_off(old_crtc_state);
7198
7199 intel_disable_pipe(old_crtc_state);
7200
7201 ilk_pfit_disable(old_crtc_state);
7202
7203 if (old_crtc_state->has_pch_encoder)
7204 ilk_fdi_disable(crtc);
7205
7206 intel_encoders_post_disable(state, crtc);
7207
7208 if (old_crtc_state->has_pch_encoder) {
7209 ilk_disable_pch_transcoder(dev_priv, pipe);
7210
7211 if (HAS_PCH_CPT(dev_priv)) {
7212 i915_reg_t reg;
7213 u32 temp;
7214
7215 /* disable TRANS_DP_CTL */
7216 reg = TRANS_DP_CTL(pipe);
7217 temp = intel_de_read(dev_priv, reg);
7218 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
7219 TRANS_DP_PORT_SEL_MASK);
7220 temp |= TRANS_DP_PORT_SEL_NONE;
7221 intel_de_write(dev_priv, reg, temp);
7222
7223 /* disable DPLL_SEL */
7224 temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
7225 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
7226 intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
7227 }
7228
7229 ilk_fdi_pll_disable(crtc);
7230 }
7231
7232 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7233 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7234 }
7235
hsw_crtc_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)7236 static void hsw_crtc_disable(struct intel_atomic_state *state,
7237 struct intel_crtc *crtc)
7238 {
7239 /*
7240 * FIXME collapse everything to one hook.
7241 * Need care with mst->ddi interactions.
7242 */
7243 intel_encoders_disable(state, crtc);
7244 intel_encoders_post_disable(state, crtc);
7245 }
7246
i9xx_pfit_enable(const struct intel_crtc_state * crtc_state)7247 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
7248 {
7249 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7250 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7251
7252 if (!crtc_state->gmch_pfit.control)
7253 return;
7254
7255 /*
7256 * The panel fitter should only be adjusted whilst the pipe is disabled,
7257 * according to register description and PRM.
7258 */
7259 drm_WARN_ON(&dev_priv->drm,
7260 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE);
7261 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
7262
7263 intel_de_write(dev_priv, PFIT_PGM_RATIOS,
7264 crtc_state->gmch_pfit.pgm_ratios);
7265 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control);
7266
7267 /* Border color in case we don't scale up to the full screen. Black by
7268 * default, change to something else for debugging. */
7269 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0);
7270 }
7271
intel_phy_is_combo(struct drm_i915_private * dev_priv,enum phy phy)7272 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7273 {
7274 if (phy == PHY_NONE)
7275 return false;
7276 else if (IS_ROCKETLAKE(dev_priv))
7277 return phy <= PHY_D;
7278 else if (IS_ELKHARTLAKE(dev_priv))
7279 return phy <= PHY_C;
7280 else if (INTEL_GEN(dev_priv) >= 11)
7281 return phy <= PHY_B;
7282 else
7283 return false;
7284 }
7285
intel_phy_is_tc(struct drm_i915_private * dev_priv,enum phy phy)7286 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7287 {
7288 if (IS_ROCKETLAKE(dev_priv))
7289 return false;
7290 else if (INTEL_GEN(dev_priv) >= 12)
7291 return phy >= PHY_D && phy <= PHY_I;
7292 else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
7293 return phy >= PHY_C && phy <= PHY_F;
7294 else
7295 return false;
7296 }
7297
intel_port_to_phy(struct drm_i915_private * i915,enum port port)7298 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7299 {
7300 if (IS_ROCKETLAKE(i915) && port >= PORT_D)
7301 return (enum phy)port - 1;
7302 else if (IS_ELKHARTLAKE(i915) && port == PORT_D)
7303 return PHY_A;
7304
7305 return (enum phy)port;
7306 }
7307
intel_port_to_tc(struct drm_i915_private * dev_priv,enum port port)7308 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7309 {
7310 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7311 return PORT_TC_NONE;
7312
7313 if (INTEL_GEN(dev_priv) >= 12)
7314 return port - PORT_D;
7315
7316 return port - PORT_C;
7317 }
7318
intel_port_to_power_domain(enum port port)7319 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7320 {
7321 switch (port) {
7322 case PORT_A:
7323 return POWER_DOMAIN_PORT_DDI_A_LANES;
7324 case PORT_B:
7325 return POWER_DOMAIN_PORT_DDI_B_LANES;
7326 case PORT_C:
7327 return POWER_DOMAIN_PORT_DDI_C_LANES;
7328 case PORT_D:
7329 return POWER_DOMAIN_PORT_DDI_D_LANES;
7330 case PORT_E:
7331 return POWER_DOMAIN_PORT_DDI_E_LANES;
7332 case PORT_F:
7333 return POWER_DOMAIN_PORT_DDI_F_LANES;
7334 case PORT_G:
7335 return POWER_DOMAIN_PORT_DDI_G_LANES;
7336 case PORT_H:
7337 return POWER_DOMAIN_PORT_DDI_H_LANES;
7338 case PORT_I:
7339 return POWER_DOMAIN_PORT_DDI_I_LANES;
7340 default:
7341 MISSING_CASE(port);
7342 return POWER_DOMAIN_PORT_OTHER;
7343 }
7344 }
7345
7346 enum intel_display_power_domain
intel_aux_power_domain(struct intel_digital_port * dig_port)7347 intel_aux_power_domain(struct intel_digital_port *dig_port)
7348 {
7349 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7350 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7351
7352 if (intel_phy_is_tc(dev_priv, phy) &&
7353 dig_port->tc_mode == TC_PORT_TBT_ALT) {
7354 switch (dig_port->aux_ch) {
7355 case AUX_CH_C:
7356 return POWER_DOMAIN_AUX_C_TBT;
7357 case AUX_CH_D:
7358 return POWER_DOMAIN_AUX_D_TBT;
7359 case AUX_CH_E:
7360 return POWER_DOMAIN_AUX_E_TBT;
7361 case AUX_CH_F:
7362 return POWER_DOMAIN_AUX_F_TBT;
7363 case AUX_CH_G:
7364 return POWER_DOMAIN_AUX_G_TBT;
7365 case AUX_CH_H:
7366 return POWER_DOMAIN_AUX_H_TBT;
7367 case AUX_CH_I:
7368 return POWER_DOMAIN_AUX_I_TBT;
7369 default:
7370 MISSING_CASE(dig_port->aux_ch);
7371 return POWER_DOMAIN_AUX_C_TBT;
7372 }
7373 }
7374
7375 return intel_legacy_aux_to_power_domain(dig_port->aux_ch);
7376 }
7377
7378 /*
7379 * Converts aux_ch to power_domain without caring about TBT ports for that use
7380 * intel_aux_power_domain()
7381 */
7382 enum intel_display_power_domain
intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)7383 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)
7384 {
7385 switch (aux_ch) {
7386 case AUX_CH_A:
7387 return POWER_DOMAIN_AUX_A;
7388 case AUX_CH_B:
7389 return POWER_DOMAIN_AUX_B;
7390 case AUX_CH_C:
7391 return POWER_DOMAIN_AUX_C;
7392 case AUX_CH_D:
7393 return POWER_DOMAIN_AUX_D;
7394 case AUX_CH_E:
7395 return POWER_DOMAIN_AUX_E;
7396 case AUX_CH_F:
7397 return POWER_DOMAIN_AUX_F;
7398 case AUX_CH_G:
7399 return POWER_DOMAIN_AUX_G;
7400 case AUX_CH_H:
7401 return POWER_DOMAIN_AUX_H;
7402 case AUX_CH_I:
7403 return POWER_DOMAIN_AUX_I;
7404 default:
7405 MISSING_CASE(aux_ch);
7406 return POWER_DOMAIN_AUX_A;
7407 }
7408 }
7409
get_crtc_power_domains(struct intel_crtc_state * crtc_state)7410 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7411 {
7412 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7413 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7414 struct drm_encoder *encoder;
7415 enum pipe pipe = crtc->pipe;
7416 u64 mask;
7417 enum transcoder transcoder = crtc_state->cpu_transcoder;
7418
7419 if (!crtc_state->hw.active)
7420 return 0;
7421
7422 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7423 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7424 if (crtc_state->pch_pfit.enabled ||
7425 crtc_state->pch_pfit.force_thru)
7426 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7427
7428 drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7429 crtc_state->uapi.encoder_mask) {
7430 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7431
7432 mask |= BIT_ULL(intel_encoder->power_domain);
7433 }
7434
7435 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7436 mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7437
7438 if (crtc_state->shared_dpll)
7439 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7440
7441 return mask;
7442 }
7443
7444 static u64
modeset_get_crtc_power_domains(struct intel_crtc_state * crtc_state)7445 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7446 {
7447 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7448 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7449 enum intel_display_power_domain domain;
7450 u64 domains, new_domains, old_domains;
7451
7452 old_domains = crtc->enabled_power_domains;
7453 crtc->enabled_power_domains = new_domains =
7454 get_crtc_power_domains(crtc_state);
7455
7456 domains = new_domains & ~old_domains;
7457
7458 for_each_power_domain(domain, domains)
7459 intel_display_power_get(dev_priv, domain);
7460
7461 return old_domains & ~new_domains;
7462 }
7463
modeset_put_power_domains(struct drm_i915_private * dev_priv,u64 domains)7464 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7465 u64 domains)
7466 {
7467 enum intel_display_power_domain domain;
7468
7469 for_each_power_domain(domain, domains)
7470 intel_display_power_put_unchecked(dev_priv, domain);
7471 }
7472
valleyview_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)7473 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7474 struct intel_crtc *crtc)
7475 {
7476 const struct intel_crtc_state *new_crtc_state =
7477 intel_atomic_get_new_crtc_state(state, crtc);
7478 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7479 enum pipe pipe = crtc->pipe;
7480
7481 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7482 return;
7483
7484 if (intel_crtc_has_dp_encoder(new_crtc_state))
7485 intel_dp_set_m_n(new_crtc_state, M1_N1);
7486
7487 intel_set_pipe_timings(new_crtc_state);
7488 intel_set_pipe_src_size(new_crtc_state);
7489
7490 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7491 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7492 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0);
7493 }
7494
7495 i9xx_set_pipeconf(new_crtc_state);
7496
7497 crtc->active = true;
7498
7499 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7500
7501 intel_encoders_pre_pll_enable(state, crtc);
7502
7503 if (IS_CHERRYVIEW(dev_priv)) {
7504 chv_prepare_pll(crtc, new_crtc_state);
7505 chv_enable_pll(crtc, new_crtc_state);
7506 } else {
7507 vlv_prepare_pll(crtc, new_crtc_state);
7508 vlv_enable_pll(crtc, new_crtc_state);
7509 }
7510
7511 intel_encoders_pre_enable(state, crtc);
7512
7513 i9xx_pfit_enable(new_crtc_state);
7514
7515 intel_color_load_luts(new_crtc_state);
7516 intel_color_commit(new_crtc_state);
7517 /* update DSPCNTR to configure gamma for pipe bottom color */
7518 intel_disable_primary_plane(new_crtc_state);
7519
7520 dev_priv->display.initial_watermarks(state, crtc);
7521 intel_enable_pipe(new_crtc_state);
7522
7523 intel_crtc_vblank_on(new_crtc_state);
7524
7525 intel_encoders_enable(state, crtc);
7526 }
7527
i9xx_set_pll_dividers(const struct intel_crtc_state * crtc_state)7528 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7529 {
7530 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7531 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7532
7533 intel_de_write(dev_priv, FP0(crtc->pipe),
7534 crtc_state->dpll_hw_state.fp0);
7535 intel_de_write(dev_priv, FP1(crtc->pipe),
7536 crtc_state->dpll_hw_state.fp1);
7537 }
7538
i9xx_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)7539 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7540 struct intel_crtc *crtc)
7541 {
7542 const struct intel_crtc_state *new_crtc_state =
7543 intel_atomic_get_new_crtc_state(state, crtc);
7544 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7545 enum pipe pipe = crtc->pipe;
7546
7547 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7548 return;
7549
7550 i9xx_set_pll_dividers(new_crtc_state);
7551
7552 if (intel_crtc_has_dp_encoder(new_crtc_state))
7553 intel_dp_set_m_n(new_crtc_state, M1_N1);
7554
7555 intel_set_pipe_timings(new_crtc_state);
7556 intel_set_pipe_src_size(new_crtc_state);
7557
7558 i9xx_set_pipeconf(new_crtc_state);
7559
7560 crtc->active = true;
7561
7562 if (!IS_GEN(dev_priv, 2))
7563 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7564
7565 intel_encoders_pre_enable(state, crtc);
7566
7567 i9xx_enable_pll(crtc, new_crtc_state);
7568
7569 i9xx_pfit_enable(new_crtc_state);
7570
7571 intel_color_load_luts(new_crtc_state);
7572 intel_color_commit(new_crtc_state);
7573 /* update DSPCNTR to configure gamma for pipe bottom color */
7574 intel_disable_primary_plane(new_crtc_state);
7575
7576 if (dev_priv->display.initial_watermarks)
7577 dev_priv->display.initial_watermarks(state, crtc);
7578 else
7579 intel_update_watermarks(crtc);
7580 intel_enable_pipe(new_crtc_state);
7581
7582 intel_crtc_vblank_on(new_crtc_state);
7583
7584 intel_encoders_enable(state, crtc);
7585
7586 /* prevents spurious underruns */
7587 if (IS_GEN(dev_priv, 2))
7588 intel_wait_for_vblank(dev_priv, pipe);
7589 }
7590
i9xx_pfit_disable(const struct intel_crtc_state * old_crtc_state)7591 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7592 {
7593 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7594 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7595
7596 if (!old_crtc_state->gmch_pfit.control)
7597 return;
7598
7599 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7600
7601 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n",
7602 intel_de_read(dev_priv, PFIT_CONTROL));
7603 intel_de_write(dev_priv, PFIT_CONTROL, 0);
7604 }
7605
i9xx_crtc_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)7606 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7607 struct intel_crtc *crtc)
7608 {
7609 struct intel_crtc_state *old_crtc_state =
7610 intel_atomic_get_old_crtc_state(state, crtc);
7611 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7612 enum pipe pipe = crtc->pipe;
7613
7614 /*
7615 * On gen2 planes are double buffered but the pipe isn't, so we must
7616 * wait for planes to fully turn off before disabling the pipe.
7617 */
7618 if (IS_GEN(dev_priv, 2))
7619 intel_wait_for_vblank(dev_priv, pipe);
7620
7621 intel_encoders_disable(state, crtc);
7622
7623 intel_crtc_vblank_off(old_crtc_state);
7624
7625 intel_disable_pipe(old_crtc_state);
7626
7627 i9xx_pfit_disable(old_crtc_state);
7628
7629 intel_encoders_post_disable(state, crtc);
7630
7631 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7632 if (IS_CHERRYVIEW(dev_priv))
7633 chv_disable_pll(dev_priv, pipe);
7634 else if (IS_VALLEYVIEW(dev_priv))
7635 vlv_disable_pll(dev_priv, pipe);
7636 else
7637 i9xx_disable_pll(old_crtc_state);
7638 }
7639
7640 intel_encoders_post_pll_disable(state, crtc);
7641
7642 if (!IS_GEN(dev_priv, 2))
7643 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7644
7645 if (!dev_priv->display.initial_watermarks)
7646 intel_update_watermarks(crtc);
7647
7648 /* clock the pipe down to 640x480@60 to potentially save power */
7649 if (IS_I830(dev_priv))
7650 i830_enable_pipe(dev_priv, pipe);
7651 }
7652
intel_crtc_disable_noatomic(struct intel_crtc * crtc,struct drm_modeset_acquire_ctx * ctx)7653 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7654 struct drm_modeset_acquire_ctx *ctx)
7655 {
7656 struct intel_encoder *encoder;
7657 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7658 struct intel_bw_state *bw_state =
7659 to_intel_bw_state(dev_priv->bw_obj.state);
7660 struct intel_cdclk_state *cdclk_state =
7661 to_intel_cdclk_state(dev_priv->cdclk.obj.state);
7662 struct intel_dbuf_state *dbuf_state =
7663 to_intel_dbuf_state(dev_priv->dbuf.obj.state);
7664 struct intel_crtc_state *crtc_state =
7665 to_intel_crtc_state(crtc->base.state);
7666 enum intel_display_power_domain domain;
7667 struct intel_plane *plane;
7668 struct drm_atomic_state *state;
7669 struct intel_crtc_state *temp_crtc_state;
7670 enum pipe pipe = crtc->pipe;
7671 u64 domains;
7672 int ret;
7673
7674 if (!crtc_state->hw.active)
7675 return;
7676
7677 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7678 const struct intel_plane_state *plane_state =
7679 to_intel_plane_state(plane->base.state);
7680
7681 if (plane_state->uapi.visible)
7682 intel_plane_disable_noatomic(crtc, plane);
7683 }
7684
7685 state = drm_atomic_state_alloc(&dev_priv->drm);
7686 if (!state) {
7687 drm_dbg_kms(&dev_priv->drm,
7688 "failed to disable [CRTC:%d:%s], out of memory",
7689 crtc->base.base.id, crtc->base.name);
7690 return;
7691 }
7692
7693 state->acquire_ctx = ctx;
7694
7695 /* Everything's already locked, -EDEADLK can't happen. */
7696 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7697 ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7698
7699 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret);
7700
7701 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7702
7703 drm_atomic_state_put(state);
7704
7705 drm_dbg_kms(&dev_priv->drm,
7706 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7707 crtc->base.base.id, crtc->base.name);
7708
7709 crtc->active = false;
7710 crtc->base.enabled = false;
7711
7712 drm_WARN_ON(&dev_priv->drm,
7713 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7714 crtc_state->uapi.active = false;
7715 crtc_state->uapi.connector_mask = 0;
7716 crtc_state->uapi.encoder_mask = 0;
7717 intel_crtc_free_hw_state(crtc_state);
7718 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7719
7720 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7721 encoder->base.crtc = NULL;
7722
7723 intel_fbc_disable(crtc);
7724 intel_update_watermarks(crtc);
7725 intel_disable_shared_dpll(crtc_state);
7726
7727 domains = crtc->enabled_power_domains;
7728 for_each_power_domain(domain, domains)
7729 intel_display_power_put_unchecked(dev_priv, domain);
7730 crtc->enabled_power_domains = 0;
7731
7732 dev_priv->active_pipes &= ~BIT(pipe);
7733 cdclk_state->min_cdclk[pipe] = 0;
7734 cdclk_state->min_voltage_level[pipe] = 0;
7735 cdclk_state->active_pipes &= ~BIT(pipe);
7736
7737 dbuf_state->active_pipes &= ~BIT(pipe);
7738
7739 bw_state->data_rate[pipe] = 0;
7740 bw_state->num_active_planes[pipe] = 0;
7741 }
7742
7743 /*
7744 * turn all crtc's off, but do not adjust state
7745 * This has to be paired with a call to intel_modeset_setup_hw_state.
7746 */
intel_display_suspend(struct drm_device * dev)7747 int intel_display_suspend(struct drm_device *dev)
7748 {
7749 struct drm_i915_private *dev_priv = to_i915(dev);
7750 struct drm_atomic_state *state;
7751 int ret;
7752
7753 state = drm_atomic_helper_suspend(dev);
7754 ret = PTR_ERR_OR_ZERO(state);
7755 if (ret)
7756 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
7757 ret);
7758 else
7759 dev_priv->modeset_restore_state = state;
7760 return ret;
7761 }
7762
intel_encoder_destroy(struct drm_encoder * encoder)7763 void intel_encoder_destroy(struct drm_encoder *encoder)
7764 {
7765 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7766
7767 drm_encoder_cleanup(encoder);
7768 kfree(intel_encoder);
7769 }
7770
7771 /* Cross check the actual hw state with our own modeset state tracking (and it's
7772 * internal consistency). */
intel_connector_verify_state(struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)7773 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7774 struct drm_connector_state *conn_state)
7775 {
7776 struct intel_connector *connector = to_intel_connector(conn_state->connector);
7777 struct drm_i915_private *i915 = to_i915(connector->base.dev);
7778
7779 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
7780 connector->base.base.id, connector->base.name);
7781
7782 if (connector->get_hw_state(connector)) {
7783 struct intel_encoder *encoder = intel_attached_encoder(connector);
7784
7785 I915_STATE_WARN(!crtc_state,
7786 "connector enabled without attached crtc\n");
7787
7788 if (!crtc_state)
7789 return;
7790
7791 I915_STATE_WARN(!crtc_state->hw.active,
7792 "connector is active, but attached crtc isn't\n");
7793
7794 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7795 return;
7796
7797 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7798 "atomic encoder doesn't match attached encoder\n");
7799
7800 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7801 "attached encoder crtc differs from connector crtc\n");
7802 } else {
7803 I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7804 "attached crtc is active, but connector isn't\n");
7805 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7806 "best encoder set without crtc!\n");
7807 }
7808 }
7809
pipe_required_fdi_lanes(struct intel_crtc_state * crtc_state)7810 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7811 {
7812 if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7813 return crtc_state->fdi_lanes;
7814
7815 return 0;
7816 }
7817
ilk_check_fdi_lanes(struct drm_device * dev,enum pipe pipe,struct intel_crtc_state * pipe_config)7818 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7819 struct intel_crtc_state *pipe_config)
7820 {
7821 struct drm_i915_private *dev_priv = to_i915(dev);
7822 struct drm_atomic_state *state = pipe_config->uapi.state;
7823 struct intel_crtc *other_crtc;
7824 struct intel_crtc_state *other_crtc_state;
7825
7826 drm_dbg_kms(&dev_priv->drm,
7827 "checking fdi config on pipe %c, lanes %i\n",
7828 pipe_name(pipe), pipe_config->fdi_lanes);
7829 if (pipe_config->fdi_lanes > 4) {
7830 drm_dbg_kms(&dev_priv->drm,
7831 "invalid fdi lane config on pipe %c: %i lanes\n",
7832 pipe_name(pipe), pipe_config->fdi_lanes);
7833 return -EINVAL;
7834 }
7835
7836 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7837 if (pipe_config->fdi_lanes > 2) {
7838 drm_dbg_kms(&dev_priv->drm,
7839 "only 2 lanes on haswell, required: %i lanes\n",
7840 pipe_config->fdi_lanes);
7841 return -EINVAL;
7842 } else {
7843 return 0;
7844 }
7845 }
7846
7847 if (INTEL_NUM_PIPES(dev_priv) == 2)
7848 return 0;
7849
7850 /* Ivybridge 3 pipe is really complicated */
7851 switch (pipe) {
7852 case PIPE_A:
7853 return 0;
7854 case PIPE_B:
7855 if (pipe_config->fdi_lanes <= 2)
7856 return 0;
7857
7858 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7859 other_crtc_state =
7860 intel_atomic_get_crtc_state(state, other_crtc);
7861 if (IS_ERR(other_crtc_state))
7862 return PTR_ERR(other_crtc_state);
7863
7864 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7865 drm_dbg_kms(&dev_priv->drm,
7866 "invalid shared fdi lane config on pipe %c: %i lanes\n",
7867 pipe_name(pipe), pipe_config->fdi_lanes);
7868 return -EINVAL;
7869 }
7870 return 0;
7871 case PIPE_C:
7872 if (pipe_config->fdi_lanes > 2) {
7873 drm_dbg_kms(&dev_priv->drm,
7874 "only 2 lanes on pipe %c: required %i lanes\n",
7875 pipe_name(pipe), pipe_config->fdi_lanes);
7876 return -EINVAL;
7877 }
7878
7879 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7880 other_crtc_state =
7881 intel_atomic_get_crtc_state(state, other_crtc);
7882 if (IS_ERR(other_crtc_state))
7883 return PTR_ERR(other_crtc_state);
7884
7885 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7886 drm_dbg_kms(&dev_priv->drm,
7887 "fdi link B uses too many lanes to enable link C\n");
7888 return -EINVAL;
7889 }
7890 return 0;
7891 default:
7892 BUG();
7893 }
7894 }
7895
7896 #define RETRY 1
ilk_fdi_compute_config(struct intel_crtc * intel_crtc,struct intel_crtc_state * pipe_config)7897 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc,
7898 struct intel_crtc_state *pipe_config)
7899 {
7900 struct drm_device *dev = intel_crtc->base.dev;
7901 struct drm_i915_private *i915 = to_i915(dev);
7902 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7903 int lane, link_bw, fdi_dotclock, ret;
7904 bool needs_recompute = false;
7905
7906 retry:
7907 /* FDI is a binary signal running at ~2.7GHz, encoding
7908 * each output octet as 10 bits. The actual frequency
7909 * is stored as a divider into a 100MHz clock, and the
7910 * mode pixel clock is stored in units of 1KHz.
7911 * Hence the bw of each lane in terms of the mode signal
7912 * is:
7913 */
7914 link_bw = intel_fdi_link_freq(i915, pipe_config);
7915
7916 fdi_dotclock = adjusted_mode->crtc_clock;
7917
7918 lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
7919 pipe_config->pipe_bpp);
7920
7921 pipe_config->fdi_lanes = lane;
7922
7923 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7924 link_bw, &pipe_config->fdi_m_n, false, false);
7925
7926 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7927 if (ret == -EDEADLK)
7928 return ret;
7929
7930 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7931 pipe_config->pipe_bpp -= 2*3;
7932 drm_dbg_kms(&i915->drm,
7933 "fdi link bw constraint, reducing pipe bpp to %i\n",
7934 pipe_config->pipe_bpp);
7935 needs_recompute = true;
7936 pipe_config->bw_constrained = true;
7937
7938 goto retry;
7939 }
7940
7941 if (needs_recompute)
7942 return RETRY;
7943
7944 return ret;
7945 }
7946
hsw_crtc_state_ips_capable(const struct intel_crtc_state * crtc_state)7947 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7948 {
7949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7950 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7951
7952 /* IPS only exists on ULT machines and is tied to pipe A. */
7953 if (!hsw_crtc_supports_ips(crtc))
7954 return false;
7955
7956 if (!dev_priv->params.enable_ips)
7957 return false;
7958
7959 if (crtc_state->pipe_bpp > 24)
7960 return false;
7961
7962 /*
7963 * We compare against max which means we must take
7964 * the increased cdclk requirement into account when
7965 * calculating the new cdclk.
7966 *
7967 * Should measure whether using a lower cdclk w/o IPS
7968 */
7969 if (IS_BROADWELL(dev_priv) &&
7970 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7971 return false;
7972
7973 return true;
7974 }
7975
hsw_compute_ips_config(struct intel_crtc_state * crtc_state)7976 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7977 {
7978 struct drm_i915_private *dev_priv =
7979 to_i915(crtc_state->uapi.crtc->dev);
7980 struct intel_atomic_state *state =
7981 to_intel_atomic_state(crtc_state->uapi.state);
7982
7983 crtc_state->ips_enabled = false;
7984
7985 if (!hsw_crtc_state_ips_capable(crtc_state))
7986 return 0;
7987
7988 /*
7989 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7990 * enabled and disabled dynamically based on package C states,
7991 * user space can't make reliable use of the CRCs, so let's just
7992 * completely disable it.
7993 */
7994 if (crtc_state->crc_enabled)
7995 return 0;
7996
7997 /* IPS should be fine as long as at least one plane is enabled. */
7998 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7999 return 0;
8000
8001 if (IS_BROADWELL(dev_priv)) {
8002 const struct intel_cdclk_state *cdclk_state;
8003
8004 cdclk_state = intel_atomic_get_cdclk_state(state);
8005 if (IS_ERR(cdclk_state))
8006 return PTR_ERR(cdclk_state);
8007
8008 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
8009 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100)
8010 return 0;
8011 }
8012
8013 crtc_state->ips_enabled = true;
8014
8015 return 0;
8016 }
8017
intel_crtc_supports_double_wide(const struct intel_crtc * crtc)8018 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
8019 {
8020 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8021
8022 /* GDG double wide on either pipe, otherwise pipe A only */
8023 return INTEL_GEN(dev_priv) < 4 &&
8024 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
8025 }
8026
ilk_pipe_pixel_rate(const struct intel_crtc_state * crtc_state)8027 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
8028 {
8029 u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock;
8030 unsigned int pipe_w, pipe_h, pfit_w, pfit_h;
8031
8032 /*
8033 * We only use IF-ID interlacing. If we ever use
8034 * PF-ID we'll need to adjust the pixel_rate here.
8035 */
8036
8037 if (!crtc_state->pch_pfit.enabled)
8038 return pixel_rate;
8039
8040 pipe_w = crtc_state->pipe_src_w;
8041 pipe_h = crtc_state->pipe_src_h;
8042
8043 pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst);
8044 pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst);
8045
8046 if (pipe_w < pfit_w)
8047 pipe_w = pfit_w;
8048 if (pipe_h < pfit_h)
8049 pipe_h = pfit_h;
8050
8051 if (drm_WARN_ON(crtc_state->uapi.crtc->dev,
8052 !pfit_w || !pfit_h))
8053 return pixel_rate;
8054
8055 return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
8056 pfit_w * pfit_h);
8057 }
8058
intel_crtc_compute_pixel_rate(struct intel_crtc_state * crtc_state)8059 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
8060 {
8061 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8062
8063 if (HAS_GMCH(dev_priv))
8064 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
8065 crtc_state->pixel_rate =
8066 crtc_state->hw.adjusted_mode.crtc_clock;
8067 else
8068 crtc_state->pixel_rate =
8069 ilk_pipe_pixel_rate(crtc_state);
8070 }
8071
intel_crtc_compute_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8072 static int intel_crtc_compute_config(struct intel_crtc *crtc,
8073 struct intel_crtc_state *pipe_config)
8074 {
8075 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8076 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
8077 int clock_limit = dev_priv->max_dotclk_freq;
8078
8079 if (INTEL_GEN(dev_priv) < 4) {
8080 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
8081
8082 /*
8083 * Enable double wide mode when the dot clock
8084 * is > 90% of the (display) core speed.
8085 */
8086 if (intel_crtc_supports_double_wide(crtc) &&
8087 adjusted_mode->crtc_clock > clock_limit) {
8088 clock_limit = dev_priv->max_dotclk_freq;
8089 pipe_config->double_wide = true;
8090 }
8091 }
8092
8093 if (adjusted_mode->crtc_clock > clock_limit) {
8094 drm_dbg_kms(&dev_priv->drm,
8095 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
8096 adjusted_mode->crtc_clock, clock_limit,
8097 yesno(pipe_config->double_wide));
8098 return -EINVAL;
8099 }
8100
8101 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
8102 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
8103 pipe_config->hw.ctm) {
8104 /*
8105 * There is only one pipe CSC unit per pipe, and we need that
8106 * for output conversion from RGB->YCBCR. So if CTM is already
8107 * applied we can't support YCBCR420 output.
8108 */
8109 drm_dbg_kms(&dev_priv->drm,
8110 "YCBCR420 and CTM together are not possible\n");
8111 return -EINVAL;
8112 }
8113
8114 /*
8115 * Pipe horizontal size must be even in:
8116 * - DVO ganged mode
8117 * - LVDS dual channel mode
8118 * - Double wide pipe
8119 */
8120 if (pipe_config->pipe_src_w & 1) {
8121 if (pipe_config->double_wide) {
8122 drm_dbg_kms(&dev_priv->drm,
8123 "Odd pipe source width not supported with double wide pipe\n");
8124 return -EINVAL;
8125 }
8126
8127 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
8128 intel_is_dual_link_lvds(dev_priv)) {
8129 drm_dbg_kms(&dev_priv->drm,
8130 "Odd pipe source width not supported with dual link LVDS\n");
8131 return -EINVAL;
8132 }
8133 }
8134
8135 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
8136 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
8137 */
8138 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
8139 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
8140 return -EINVAL;
8141
8142 intel_crtc_compute_pixel_rate(pipe_config);
8143
8144 if (pipe_config->has_pch_encoder)
8145 return ilk_fdi_compute_config(crtc, pipe_config);
8146
8147 return 0;
8148 }
8149
8150 static void
intel_reduce_m_n_ratio(u32 * num,u32 * den)8151 intel_reduce_m_n_ratio(u32 *num, u32 *den)
8152 {
8153 while (*num > DATA_LINK_M_N_MASK ||
8154 *den > DATA_LINK_M_N_MASK) {
8155 *num >>= 1;
8156 *den >>= 1;
8157 }
8158 }
8159
compute_m_n(unsigned int m,unsigned int n,u32 * ret_m,u32 * ret_n,bool constant_n)8160 static void compute_m_n(unsigned int m, unsigned int n,
8161 u32 *ret_m, u32 *ret_n,
8162 bool constant_n)
8163 {
8164 /*
8165 * Several DP dongles in particular seem to be fussy about
8166 * too large link M/N values. Give N value as 0x8000 that
8167 * should be acceptable by specific devices. 0x8000 is the
8168 * specified fixed N value for asynchronous clock mode,
8169 * which the devices expect also in synchronous clock mode.
8170 */
8171 if (constant_n)
8172 *ret_n = DP_LINK_CONSTANT_N_VALUE;
8173 else
8174 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
8175
8176 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
8177 intel_reduce_m_n_ratio(ret_m, ret_n);
8178 }
8179
8180 void
intel_link_compute_m_n(u16 bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct intel_link_m_n * m_n,bool constant_n,bool fec_enable)8181 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
8182 int pixel_clock, int link_clock,
8183 struct intel_link_m_n *m_n,
8184 bool constant_n, bool fec_enable)
8185 {
8186 u32 data_clock = bits_per_pixel * pixel_clock;
8187
8188 if (fec_enable)
8189 data_clock = intel_dp_mode_to_fec_clock(data_clock);
8190
8191 m_n->tu = 64;
8192 compute_m_n(data_clock,
8193 link_clock * nlanes * 8,
8194 &m_n->gmch_m, &m_n->gmch_n,
8195 constant_n);
8196
8197 compute_m_n(pixel_clock, link_clock,
8198 &m_n->link_m, &m_n->link_n,
8199 constant_n);
8200 }
8201
intel_panel_sanitize_ssc(struct drm_i915_private * dev_priv)8202 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
8203 {
8204 /*
8205 * There may be no VBT; and if the BIOS enabled SSC we can
8206 * just keep using it to avoid unnecessary flicker. Whereas if the
8207 * BIOS isn't using it, don't assume it will work even if the VBT
8208 * indicates as much.
8209 */
8210 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
8211 bool bios_lvds_use_ssc = intel_de_read(dev_priv,
8212 PCH_DREF_CONTROL) &
8213 DREF_SSC1_ENABLE;
8214
8215 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
8216 drm_dbg_kms(&dev_priv->drm,
8217 "SSC %s by BIOS, overriding VBT which says %s\n",
8218 enableddisabled(bios_lvds_use_ssc),
8219 enableddisabled(dev_priv->vbt.lvds_use_ssc));
8220 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
8221 }
8222 }
8223 }
8224
intel_panel_use_ssc(struct drm_i915_private * dev_priv)8225 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
8226 {
8227 if (dev_priv->params.panel_use_ssc >= 0)
8228 return dev_priv->params.panel_use_ssc != 0;
8229 return dev_priv->vbt.lvds_use_ssc
8230 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
8231 }
8232
pnv_dpll_compute_fp(struct dpll * dpll)8233 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
8234 {
8235 return (1 << dpll->n) << 16 | dpll->m2;
8236 }
8237
i9xx_dpll_compute_fp(struct dpll * dpll)8238 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
8239 {
8240 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
8241 }
8242
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8243 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
8244 struct intel_crtc_state *crtc_state,
8245 struct dpll *reduced_clock)
8246 {
8247 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8248 u32 fp, fp2 = 0;
8249
8250 if (IS_PINEVIEW(dev_priv)) {
8251 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
8252 if (reduced_clock)
8253 fp2 = pnv_dpll_compute_fp(reduced_clock);
8254 } else {
8255 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8256 if (reduced_clock)
8257 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8258 }
8259
8260 crtc_state->dpll_hw_state.fp0 = fp;
8261
8262 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8263 reduced_clock) {
8264 crtc_state->dpll_hw_state.fp1 = fp2;
8265 } else {
8266 crtc_state->dpll_hw_state.fp1 = fp;
8267 }
8268 }
8269
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)8270 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
8271 pipe)
8272 {
8273 u32 reg_val;
8274
8275 /*
8276 * PLLB opamp always calibrates to max value of 0x3f, force enable it
8277 * and set it to a reasonable value instead.
8278 */
8279 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8280 reg_val &= 0xffffff00;
8281 reg_val |= 0x00000030;
8282 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8283
8284 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8285 reg_val &= 0x00ffffff;
8286 reg_val |= 0x8c000000;
8287 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8288
8289 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8290 reg_val &= 0xffffff00;
8291 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8292
8293 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8294 reg_val &= 0x00ffffff;
8295 reg_val |= 0xb0000000;
8296 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8297 }
8298
intel_pch_transcoder_set_m_n(const struct intel_crtc_state * crtc_state,const struct intel_link_m_n * m_n)8299 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8300 const struct intel_link_m_n *m_n)
8301 {
8302 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8303 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8304 enum pipe pipe = crtc->pipe;
8305
8306 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe),
8307 TU_SIZE(m_n->tu) | m_n->gmch_m);
8308 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
8309 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m);
8310 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n);
8311 }
8312
transcoder_has_m2_n2(struct drm_i915_private * dev_priv,enum transcoder transcoder)8313 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
8314 enum transcoder transcoder)
8315 {
8316 if (IS_HASWELL(dev_priv))
8317 return transcoder == TRANSCODER_EDP;
8318
8319 /*
8320 * Strictly speaking some registers are available before
8321 * gen7, but we only support DRRS on gen7+
8322 */
8323 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
8324 }
8325
intel_cpu_transcoder_set_m_n(const struct intel_crtc_state * crtc_state,const struct intel_link_m_n * m_n,const struct intel_link_m_n * m2_n2)8326 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8327 const struct intel_link_m_n *m_n,
8328 const struct intel_link_m_n *m2_n2)
8329 {
8330 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8331 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8332 enum pipe pipe = crtc->pipe;
8333 enum transcoder transcoder = crtc_state->cpu_transcoder;
8334
8335 if (INTEL_GEN(dev_priv) >= 5) {
8336 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder),
8337 TU_SIZE(m_n->tu) | m_n->gmch_m);
8338 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder),
8339 m_n->gmch_n);
8340 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder),
8341 m_n->link_m);
8342 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder),
8343 m_n->link_n);
8344 /*
8345 * M2_N2 registers are set only if DRRS is supported
8346 * (to make sure the registers are not unnecessarily accessed).
8347 */
8348 if (m2_n2 && crtc_state->has_drrs &&
8349 transcoder_has_m2_n2(dev_priv, transcoder)) {
8350 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder),
8351 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8352 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder),
8353 m2_n2->gmch_n);
8354 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder),
8355 m2_n2->link_m);
8356 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder),
8357 m2_n2->link_n);
8358 }
8359 } else {
8360 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe),
8361 TU_SIZE(m_n->tu) | m_n->gmch_m);
8362 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8363 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m);
8364 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n);
8365 }
8366 }
8367
intel_dp_set_m_n(const struct intel_crtc_state * crtc_state,enum link_m_n_set m_n)8368 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8369 {
8370 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8371 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
8372
8373 if (m_n == M1_N1) {
8374 dp_m_n = &crtc_state->dp_m_n;
8375 dp_m2_n2 = &crtc_state->dp_m2_n2;
8376 } else if (m_n == M2_N2) {
8377
8378 /*
8379 * M2_N2 registers are not supported. Hence m2_n2 divider value
8380 * needs to be programmed into M1_N1.
8381 */
8382 dp_m_n = &crtc_state->dp_m2_n2;
8383 } else {
8384 drm_err(&i915->drm, "Unsupported divider value\n");
8385 return;
8386 }
8387
8388 if (crtc_state->has_pch_encoder)
8389 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8390 else
8391 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8392 }
8393
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8394 static void vlv_compute_dpll(struct intel_crtc *crtc,
8395 struct intel_crtc_state *pipe_config)
8396 {
8397 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8398 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8399 if (crtc->pipe != PIPE_A)
8400 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8401
8402 /* DPLL not used with DSI, but still need the rest set up */
8403 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8404 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8405 DPLL_EXT_BUFFER_ENABLE_VLV;
8406
8407 pipe_config->dpll_hw_state.dpll_md =
8408 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8409 }
8410
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8411 static void chv_compute_dpll(struct intel_crtc *crtc,
8412 struct intel_crtc_state *pipe_config)
8413 {
8414 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8415 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8416 if (crtc->pipe != PIPE_A)
8417 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8418
8419 /* DPLL not used with DSI, but still need the rest set up */
8420 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8421 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8422
8423 pipe_config->dpll_hw_state.dpll_md =
8424 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8425 }
8426
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)8427 static void vlv_prepare_pll(struct intel_crtc *crtc,
8428 const struct intel_crtc_state *pipe_config)
8429 {
8430 struct drm_device *dev = crtc->base.dev;
8431 struct drm_i915_private *dev_priv = to_i915(dev);
8432 enum pipe pipe = crtc->pipe;
8433 u32 mdiv;
8434 u32 bestn, bestm1, bestm2, bestp1, bestp2;
8435 u32 coreclk, reg_val;
8436
8437 /* Enable Refclk */
8438 intel_de_write(dev_priv, DPLL(pipe),
8439 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8440
8441 /* No need to actually set up the DPLL with DSI */
8442 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8443 return;
8444
8445 vlv_dpio_get(dev_priv);
8446
8447 bestn = pipe_config->dpll.n;
8448 bestm1 = pipe_config->dpll.m1;
8449 bestm2 = pipe_config->dpll.m2;
8450 bestp1 = pipe_config->dpll.p1;
8451 bestp2 = pipe_config->dpll.p2;
8452
8453 /* See eDP HDMI DPIO driver vbios notes doc */
8454
8455 /* PLL B needs special handling */
8456 if (pipe == PIPE_B)
8457 vlv_pllb_recal_opamp(dev_priv, pipe);
8458
8459 /* Set up Tx target for periodic Rcomp update */
8460 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8461
8462 /* Disable target IRef on PLL */
8463 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8464 reg_val &= 0x00ffffff;
8465 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8466
8467 /* Disable fast lock */
8468 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8469
8470 /* Set idtafcrecal before PLL is enabled */
8471 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8472 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8473 mdiv |= ((bestn << DPIO_N_SHIFT));
8474 mdiv |= (1 << DPIO_K_SHIFT);
8475
8476 /*
8477 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8478 * but we don't support that).
8479 * Note: don't use the DAC post divider as it seems unstable.
8480 */
8481 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8482 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8483
8484 mdiv |= DPIO_ENABLE_CALIBRATION;
8485 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8486
8487 /* Set HBR and RBR LPF coefficients */
8488 if (pipe_config->port_clock == 162000 ||
8489 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8490 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8491 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8492 0x009f0003);
8493 else
8494 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8495 0x00d0000f);
8496
8497 if (intel_crtc_has_dp_encoder(pipe_config)) {
8498 /* Use SSC source */
8499 if (pipe == PIPE_A)
8500 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8501 0x0df40000);
8502 else
8503 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8504 0x0df70000);
8505 } else { /* HDMI or VGA */
8506 /* Use bend source */
8507 if (pipe == PIPE_A)
8508 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8509 0x0df70000);
8510 else
8511 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8512 0x0df40000);
8513 }
8514
8515 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8516 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8517 if (intel_crtc_has_dp_encoder(pipe_config))
8518 coreclk |= 0x01000000;
8519 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8520
8521 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8522
8523 vlv_dpio_put(dev_priv);
8524 }
8525
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)8526 static void chv_prepare_pll(struct intel_crtc *crtc,
8527 const struct intel_crtc_state *pipe_config)
8528 {
8529 struct drm_device *dev = crtc->base.dev;
8530 struct drm_i915_private *dev_priv = to_i915(dev);
8531 enum pipe pipe = crtc->pipe;
8532 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8533 u32 loopfilter, tribuf_calcntr;
8534 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8535 u32 dpio_val;
8536 int vco;
8537
8538 /* Enable Refclk and SSC */
8539 intel_de_write(dev_priv, DPLL(pipe),
8540 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8541
8542 /* No need to actually set up the DPLL with DSI */
8543 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8544 return;
8545
8546 bestn = pipe_config->dpll.n;
8547 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8548 bestm1 = pipe_config->dpll.m1;
8549 bestm2 = pipe_config->dpll.m2 >> 22;
8550 bestp1 = pipe_config->dpll.p1;
8551 bestp2 = pipe_config->dpll.p2;
8552 vco = pipe_config->dpll.vco;
8553 dpio_val = 0;
8554 loopfilter = 0;
8555
8556 vlv_dpio_get(dev_priv);
8557
8558 /* p1 and p2 divider */
8559 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8560 5 << DPIO_CHV_S1_DIV_SHIFT |
8561 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8562 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8563 1 << DPIO_CHV_K_DIV_SHIFT);
8564
8565 /* Feedback post-divider - m2 */
8566 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8567
8568 /* Feedback refclk divider - n and m1 */
8569 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8570 DPIO_CHV_M1_DIV_BY_2 |
8571 1 << DPIO_CHV_N_DIV_SHIFT);
8572
8573 /* M2 fraction division */
8574 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8575
8576 /* M2 fraction division enable */
8577 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8578 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8579 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8580 if (bestm2_frac)
8581 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8582 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8583
8584 /* Program digital lock detect threshold */
8585 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8586 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8587 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8588 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8589 if (!bestm2_frac)
8590 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8591 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8592
8593 /* Loop filter */
8594 if (vco == 5400000) {
8595 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8596 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8597 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8598 tribuf_calcntr = 0x9;
8599 } else if (vco <= 6200000) {
8600 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8601 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8602 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8603 tribuf_calcntr = 0x9;
8604 } else if (vco <= 6480000) {
8605 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8606 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8607 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8608 tribuf_calcntr = 0x8;
8609 } else {
8610 /* Not supported. Apply the same limits as in the max case */
8611 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8612 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8613 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8614 tribuf_calcntr = 0;
8615 }
8616 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8617
8618 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8619 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8620 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8621 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8622
8623 /* AFC Recal */
8624 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8625 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8626 DPIO_AFC_RECAL);
8627
8628 vlv_dpio_put(dev_priv);
8629 }
8630
8631 /**
8632 * vlv_force_pll_on - forcibly enable just the PLL
8633 * @dev_priv: i915 private structure
8634 * @pipe: pipe PLL to enable
8635 * @dpll: PLL configuration
8636 *
8637 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8638 * in cases where we need the PLL enabled even when @pipe is not going to
8639 * be enabled.
8640 */
vlv_force_pll_on(struct drm_i915_private * dev_priv,enum pipe pipe,const struct dpll * dpll)8641 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8642 const struct dpll *dpll)
8643 {
8644 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8645 struct intel_crtc_state *pipe_config;
8646
8647 pipe_config = intel_crtc_state_alloc(crtc);
8648 if (!pipe_config)
8649 return -ENOMEM;
8650
8651 pipe_config->cpu_transcoder = (enum transcoder)pipe;
8652 pipe_config->pixel_multiplier = 1;
8653 pipe_config->dpll = *dpll;
8654
8655 if (IS_CHERRYVIEW(dev_priv)) {
8656 chv_compute_dpll(crtc, pipe_config);
8657 chv_prepare_pll(crtc, pipe_config);
8658 chv_enable_pll(crtc, pipe_config);
8659 } else {
8660 vlv_compute_dpll(crtc, pipe_config);
8661 vlv_prepare_pll(crtc, pipe_config);
8662 vlv_enable_pll(crtc, pipe_config);
8663 }
8664
8665 kfree(pipe_config);
8666
8667 return 0;
8668 }
8669
8670 /**
8671 * vlv_force_pll_off - forcibly disable just the PLL
8672 * @dev_priv: i915 private structure
8673 * @pipe: pipe PLL to disable
8674 *
8675 * Disable the PLL for @pipe. To be used in cases where we need
8676 * the PLL enabled even when @pipe is not going to be enabled.
8677 */
vlv_force_pll_off(struct drm_i915_private * dev_priv,enum pipe pipe)8678 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8679 {
8680 if (IS_CHERRYVIEW(dev_priv))
8681 chv_disable_pll(dev_priv, pipe);
8682 else
8683 vlv_disable_pll(dev_priv, pipe);
8684 }
8685
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8686 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8687 struct intel_crtc_state *crtc_state,
8688 struct dpll *reduced_clock)
8689 {
8690 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8691 u32 dpll;
8692 struct dpll *clock = &crtc_state->dpll;
8693
8694 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8695
8696 dpll = DPLL_VGA_MODE_DIS;
8697
8698 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8699 dpll |= DPLLB_MODE_LVDS;
8700 else
8701 dpll |= DPLLB_MODE_DAC_SERIAL;
8702
8703 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8704 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8705 dpll |= (crtc_state->pixel_multiplier - 1)
8706 << SDVO_MULTIPLIER_SHIFT_HIRES;
8707 }
8708
8709 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8710 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8711 dpll |= DPLL_SDVO_HIGH_SPEED;
8712
8713 if (intel_crtc_has_dp_encoder(crtc_state))
8714 dpll |= DPLL_SDVO_HIGH_SPEED;
8715
8716 /* compute bitmask from p1 value */
8717 if (IS_PINEVIEW(dev_priv))
8718 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8719 else {
8720 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8721 if (IS_G4X(dev_priv) && reduced_clock)
8722 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8723 }
8724 switch (clock->p2) {
8725 case 5:
8726 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8727 break;
8728 case 7:
8729 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8730 break;
8731 case 10:
8732 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8733 break;
8734 case 14:
8735 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8736 break;
8737 }
8738 if (INTEL_GEN(dev_priv) >= 4)
8739 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8740
8741 if (crtc_state->sdvo_tv_clock)
8742 dpll |= PLL_REF_INPUT_TVCLKINBC;
8743 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8744 intel_panel_use_ssc(dev_priv))
8745 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8746 else
8747 dpll |= PLL_REF_INPUT_DREFCLK;
8748
8749 dpll |= DPLL_VCO_ENABLE;
8750 crtc_state->dpll_hw_state.dpll = dpll;
8751
8752 if (INTEL_GEN(dev_priv) >= 4) {
8753 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8754 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8755 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8756 }
8757 }
8758
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8759 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8760 struct intel_crtc_state *crtc_state,
8761 struct dpll *reduced_clock)
8762 {
8763 struct drm_device *dev = crtc->base.dev;
8764 struct drm_i915_private *dev_priv = to_i915(dev);
8765 u32 dpll;
8766 struct dpll *clock = &crtc_state->dpll;
8767
8768 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8769
8770 dpll = DPLL_VGA_MODE_DIS;
8771
8772 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8773 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8774 } else {
8775 if (clock->p1 == 2)
8776 dpll |= PLL_P1_DIVIDE_BY_TWO;
8777 else
8778 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8779 if (clock->p2 == 4)
8780 dpll |= PLL_P2_DIVIDE_BY_4;
8781 }
8782
8783 /*
8784 * Bspec:
8785 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8786 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8787 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8788 * Enable) must be set to “1” in both the DPLL A Control Register
8789 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8790 *
8791 * For simplicity We simply keep both bits always enabled in
8792 * both DPLLS. The spec says we should disable the DVO 2X clock
8793 * when not needed, but this seems to work fine in practice.
8794 */
8795 if (IS_I830(dev_priv) ||
8796 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8797 dpll |= DPLL_DVO_2X_MODE;
8798
8799 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8800 intel_panel_use_ssc(dev_priv))
8801 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8802 else
8803 dpll |= PLL_REF_INPUT_DREFCLK;
8804
8805 dpll |= DPLL_VCO_ENABLE;
8806 crtc_state->dpll_hw_state.dpll = dpll;
8807 }
8808
intel_set_pipe_timings(const struct intel_crtc_state * crtc_state)8809 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8810 {
8811 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8812 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8813 enum pipe pipe = crtc->pipe;
8814 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8815 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8816 u32 crtc_vtotal, crtc_vblank_end;
8817 int vsyncshift = 0;
8818
8819 /* We need to be careful not to changed the adjusted mode, for otherwise
8820 * the hw state checker will get angry at the mismatch. */
8821 crtc_vtotal = adjusted_mode->crtc_vtotal;
8822 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8823
8824 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8825 /* the chip adds 2 halflines automatically */
8826 crtc_vtotal -= 1;
8827 crtc_vblank_end -= 1;
8828
8829 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8830 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8831 else
8832 vsyncshift = adjusted_mode->crtc_hsync_start -
8833 adjusted_mode->crtc_htotal / 2;
8834 if (vsyncshift < 0)
8835 vsyncshift += adjusted_mode->crtc_htotal;
8836 }
8837
8838 if (INTEL_GEN(dev_priv) > 3)
8839 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder),
8840 vsyncshift);
8841
8842 intel_de_write(dev_priv, HTOTAL(cpu_transcoder),
8843 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16));
8844 intel_de_write(dev_priv, HBLANK(cpu_transcoder),
8845 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16));
8846 intel_de_write(dev_priv, HSYNC(cpu_transcoder),
8847 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16));
8848
8849 intel_de_write(dev_priv, VTOTAL(cpu_transcoder),
8850 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16));
8851 intel_de_write(dev_priv, VBLANK(cpu_transcoder),
8852 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16));
8853 intel_de_write(dev_priv, VSYNC(cpu_transcoder),
8854 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16));
8855
8856 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8857 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8858 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8859 * bits. */
8860 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8861 (pipe == PIPE_B || pipe == PIPE_C))
8862 intel_de_write(dev_priv, VTOTAL(pipe),
8863 intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
8864
8865 }
8866
intel_set_pipe_src_size(const struct intel_crtc_state * crtc_state)8867 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8868 {
8869 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8870 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8871 enum pipe pipe = crtc->pipe;
8872
8873 /* pipesrc controls the size that is scaled from, which should
8874 * always be the user's requested size.
8875 */
8876 intel_de_write(dev_priv, PIPESRC(pipe),
8877 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1));
8878 }
8879
intel_pipe_is_interlaced(const struct intel_crtc_state * crtc_state)8880 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8881 {
8882 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8883 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8884
8885 if (IS_GEN(dev_priv, 2))
8886 return false;
8887
8888 if (INTEL_GEN(dev_priv) >= 9 ||
8889 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8890 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8891 else
8892 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8893 }
8894
intel_get_pipe_timings(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8895 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8896 struct intel_crtc_state *pipe_config)
8897 {
8898 struct drm_device *dev = crtc->base.dev;
8899 struct drm_i915_private *dev_priv = to_i915(dev);
8900 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8901 u32 tmp;
8902
8903 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder));
8904 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8905 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8906
8907 if (!transcoder_is_dsi(cpu_transcoder)) {
8908 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder));
8909 pipe_config->hw.adjusted_mode.crtc_hblank_start =
8910 (tmp & 0xffff) + 1;
8911 pipe_config->hw.adjusted_mode.crtc_hblank_end =
8912 ((tmp >> 16) & 0xffff) + 1;
8913 }
8914 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder));
8915 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8916 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8917
8918 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder));
8919 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8920 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8921
8922 if (!transcoder_is_dsi(cpu_transcoder)) {
8923 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder));
8924 pipe_config->hw.adjusted_mode.crtc_vblank_start =
8925 (tmp & 0xffff) + 1;
8926 pipe_config->hw.adjusted_mode.crtc_vblank_end =
8927 ((tmp >> 16) & 0xffff) + 1;
8928 }
8929 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder));
8930 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8931 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8932
8933 if (intel_pipe_is_interlaced(pipe_config)) {
8934 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8935 pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
8936 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
8937 }
8938 }
8939
intel_get_pipe_src_size(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8940 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8941 struct intel_crtc_state *pipe_config)
8942 {
8943 struct drm_device *dev = crtc->base.dev;
8944 struct drm_i915_private *dev_priv = to_i915(dev);
8945 u32 tmp;
8946
8947 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe));
8948 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8949 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8950
8951 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h;
8952 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w;
8953 }
8954
intel_mode_from_pipe_config(struct drm_display_mode * mode,struct intel_crtc_state * pipe_config)8955 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8956 struct intel_crtc_state *pipe_config)
8957 {
8958 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay;
8959 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal;
8960 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start;
8961 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end;
8962
8963 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay;
8964 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal;
8965 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start;
8966 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end;
8967
8968 mode->flags = pipe_config->hw.adjusted_mode.flags;
8969 mode->type = DRM_MODE_TYPE_DRIVER;
8970
8971 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock;
8972
8973 drm_mode_set_name(mode);
8974 }
8975
i9xx_set_pipeconf(const struct intel_crtc_state * crtc_state)8976 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8977 {
8978 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8979 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8980 u32 pipeconf;
8981
8982 pipeconf = 0;
8983
8984 /* we keep both pipes enabled on 830 */
8985 if (IS_I830(dev_priv))
8986 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8987
8988 if (crtc_state->double_wide)
8989 pipeconf |= PIPECONF_DOUBLE_WIDE;
8990
8991 /* only g4x and later have fancy bpc/dither controls */
8992 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8993 IS_CHERRYVIEW(dev_priv)) {
8994 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8995 if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8996 pipeconf |= PIPECONF_DITHER_EN |
8997 PIPECONF_DITHER_TYPE_SP;
8998
8999 switch (crtc_state->pipe_bpp) {
9000 case 18:
9001 pipeconf |= PIPECONF_6BPC;
9002 break;
9003 case 24:
9004 pipeconf |= PIPECONF_8BPC;
9005 break;
9006 case 30:
9007 pipeconf |= PIPECONF_10BPC;
9008 break;
9009 default:
9010 /* Case prevented by intel_choose_pipe_bpp_dither. */
9011 BUG();
9012 }
9013 }
9014
9015 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
9016 if (INTEL_GEN(dev_priv) < 4 ||
9017 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
9018 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
9019 else
9020 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
9021 } else {
9022 pipeconf |= PIPECONF_PROGRESSIVE;
9023 }
9024
9025 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9026 crtc_state->limited_color_range)
9027 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9028
9029 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9030
9031 pipeconf |= PIPECONF_FRAME_START_DELAY(0);
9032
9033 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf);
9034 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe));
9035 }
9036
i8xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9037 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
9038 struct intel_crtc_state *crtc_state)
9039 {
9040 struct drm_device *dev = crtc->base.dev;
9041 struct drm_i915_private *dev_priv = to_i915(dev);
9042 const struct intel_limit *limit;
9043 int refclk = 48000;
9044
9045 memset(&crtc_state->dpll_hw_state, 0,
9046 sizeof(crtc_state->dpll_hw_state));
9047
9048 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9049 if (intel_panel_use_ssc(dev_priv)) {
9050 refclk = dev_priv->vbt.lvds_ssc_freq;
9051 drm_dbg_kms(&dev_priv->drm,
9052 "using SSC reference clock of %d kHz\n",
9053 refclk);
9054 }
9055
9056 limit = &intel_limits_i8xx_lvds;
9057 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
9058 limit = &intel_limits_i8xx_dvo;
9059 } else {
9060 limit = &intel_limits_i8xx_dac;
9061 }
9062
9063 if (!crtc_state->clock_set &&
9064 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9065 refclk, NULL, &crtc_state->dpll)) {
9066 drm_err(&dev_priv->drm,
9067 "Couldn't find PLL settings for mode!\n");
9068 return -EINVAL;
9069 }
9070
9071 i8xx_compute_dpll(crtc, crtc_state, NULL);
9072
9073 return 0;
9074 }
9075
g4x_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9076 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
9077 struct intel_crtc_state *crtc_state)
9078 {
9079 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9080 const struct intel_limit *limit;
9081 int refclk = 96000;
9082
9083 memset(&crtc_state->dpll_hw_state, 0,
9084 sizeof(crtc_state->dpll_hw_state));
9085
9086 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9087 if (intel_panel_use_ssc(dev_priv)) {
9088 refclk = dev_priv->vbt.lvds_ssc_freq;
9089 drm_dbg_kms(&dev_priv->drm,
9090 "using SSC reference clock of %d kHz\n",
9091 refclk);
9092 }
9093
9094 if (intel_is_dual_link_lvds(dev_priv))
9095 limit = &intel_limits_g4x_dual_channel_lvds;
9096 else
9097 limit = &intel_limits_g4x_single_channel_lvds;
9098 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
9099 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
9100 limit = &intel_limits_g4x_hdmi;
9101 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
9102 limit = &intel_limits_g4x_sdvo;
9103 } else {
9104 /* The option is for other outputs */
9105 limit = &intel_limits_i9xx_sdvo;
9106 }
9107
9108 if (!crtc_state->clock_set &&
9109 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9110 refclk, NULL, &crtc_state->dpll)) {
9111 drm_err(&dev_priv->drm,
9112 "Couldn't find PLL settings for mode!\n");
9113 return -EINVAL;
9114 }
9115
9116 i9xx_compute_dpll(crtc, crtc_state, NULL);
9117
9118 return 0;
9119 }
9120
pnv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9121 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
9122 struct intel_crtc_state *crtc_state)
9123 {
9124 struct drm_device *dev = crtc->base.dev;
9125 struct drm_i915_private *dev_priv = to_i915(dev);
9126 const struct intel_limit *limit;
9127 int refclk = 96000;
9128
9129 memset(&crtc_state->dpll_hw_state, 0,
9130 sizeof(crtc_state->dpll_hw_state));
9131
9132 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9133 if (intel_panel_use_ssc(dev_priv)) {
9134 refclk = dev_priv->vbt.lvds_ssc_freq;
9135 drm_dbg_kms(&dev_priv->drm,
9136 "using SSC reference clock of %d kHz\n",
9137 refclk);
9138 }
9139
9140 limit = &pnv_limits_lvds;
9141 } else {
9142 limit = &pnv_limits_sdvo;
9143 }
9144
9145 if (!crtc_state->clock_set &&
9146 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9147 refclk, NULL, &crtc_state->dpll)) {
9148 drm_err(&dev_priv->drm,
9149 "Couldn't find PLL settings for mode!\n");
9150 return -EINVAL;
9151 }
9152
9153 i9xx_compute_dpll(crtc, crtc_state, NULL);
9154
9155 return 0;
9156 }
9157
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9158 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
9159 struct intel_crtc_state *crtc_state)
9160 {
9161 struct drm_device *dev = crtc->base.dev;
9162 struct drm_i915_private *dev_priv = to_i915(dev);
9163 const struct intel_limit *limit;
9164 int refclk = 96000;
9165
9166 memset(&crtc_state->dpll_hw_state, 0,
9167 sizeof(crtc_state->dpll_hw_state));
9168
9169 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9170 if (intel_panel_use_ssc(dev_priv)) {
9171 refclk = dev_priv->vbt.lvds_ssc_freq;
9172 drm_dbg_kms(&dev_priv->drm,
9173 "using SSC reference clock of %d kHz\n",
9174 refclk);
9175 }
9176
9177 limit = &intel_limits_i9xx_lvds;
9178 } else {
9179 limit = &intel_limits_i9xx_sdvo;
9180 }
9181
9182 if (!crtc_state->clock_set &&
9183 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9184 refclk, NULL, &crtc_state->dpll)) {
9185 drm_err(&dev_priv->drm,
9186 "Couldn't find PLL settings for mode!\n");
9187 return -EINVAL;
9188 }
9189
9190 i9xx_compute_dpll(crtc, crtc_state, NULL);
9191
9192 return 0;
9193 }
9194
chv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9195 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
9196 struct intel_crtc_state *crtc_state)
9197 {
9198 int refclk = 100000;
9199 const struct intel_limit *limit = &intel_limits_chv;
9200 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9201
9202 memset(&crtc_state->dpll_hw_state, 0,
9203 sizeof(crtc_state->dpll_hw_state));
9204
9205 if (!crtc_state->clock_set &&
9206 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9207 refclk, NULL, &crtc_state->dpll)) {
9208 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9209 return -EINVAL;
9210 }
9211
9212 chv_compute_dpll(crtc, crtc_state);
9213
9214 return 0;
9215 }
9216
vlv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9217 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
9218 struct intel_crtc_state *crtc_state)
9219 {
9220 int refclk = 100000;
9221 const struct intel_limit *limit = &intel_limits_vlv;
9222 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9223
9224 memset(&crtc_state->dpll_hw_state, 0,
9225 sizeof(crtc_state->dpll_hw_state));
9226
9227 if (!crtc_state->clock_set &&
9228 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9229 refclk, NULL, &crtc_state->dpll)) {
9230 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9231 return -EINVAL;
9232 }
9233
9234 vlv_compute_dpll(crtc, crtc_state);
9235
9236 return 0;
9237 }
9238
i9xx_has_pfit(struct drm_i915_private * dev_priv)9239 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
9240 {
9241 if (IS_I830(dev_priv))
9242 return false;
9243
9244 return INTEL_GEN(dev_priv) >= 4 ||
9245 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
9246 }
9247
i9xx_get_pfit_config(struct intel_crtc_state * crtc_state)9248 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state)
9249 {
9250 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9251 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9252 u32 tmp;
9253
9254 if (!i9xx_has_pfit(dev_priv))
9255 return;
9256
9257 tmp = intel_de_read(dev_priv, PFIT_CONTROL);
9258 if (!(tmp & PFIT_ENABLE))
9259 return;
9260
9261 /* Check whether the pfit is attached to our pipe. */
9262 if (INTEL_GEN(dev_priv) < 4) {
9263 if (crtc->pipe != PIPE_B)
9264 return;
9265 } else {
9266 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
9267 return;
9268 }
9269
9270 crtc_state->gmch_pfit.control = tmp;
9271 crtc_state->gmch_pfit.pgm_ratios =
9272 intel_de_read(dev_priv, PFIT_PGM_RATIOS);
9273 }
9274
vlv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9275 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
9276 struct intel_crtc_state *pipe_config)
9277 {
9278 struct drm_device *dev = crtc->base.dev;
9279 struct drm_i915_private *dev_priv = to_i915(dev);
9280 enum pipe pipe = crtc->pipe;
9281 struct dpll clock;
9282 u32 mdiv;
9283 int refclk = 100000;
9284
9285 /* In case of DSI, DPLL will not be used */
9286 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9287 return;
9288
9289 vlv_dpio_get(dev_priv);
9290 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
9291 vlv_dpio_put(dev_priv);
9292
9293 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
9294 clock.m2 = mdiv & DPIO_M2DIV_MASK;
9295 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
9296 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
9297 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
9298
9299 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
9300 }
9301
9302 static void
i9xx_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9303 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
9304 struct intel_initial_plane_config *plane_config)
9305 {
9306 struct drm_device *dev = crtc->base.dev;
9307 struct drm_i915_private *dev_priv = to_i915(dev);
9308 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9309 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9310 enum pipe pipe;
9311 u32 val, base, offset;
9312 int fourcc, pixel_format;
9313 unsigned int aligned_height;
9314 struct drm_framebuffer *fb;
9315 struct intel_framebuffer *intel_fb;
9316
9317 if (!plane->get_hw_state(plane, &pipe))
9318 return;
9319
9320 drm_WARN_ON(dev, pipe != crtc->pipe);
9321
9322 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9323 if (!intel_fb) {
9324 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
9325 return;
9326 }
9327
9328 fb = &intel_fb->base;
9329
9330 fb->dev = dev;
9331
9332 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9333
9334 if (INTEL_GEN(dev_priv) >= 4) {
9335 if (val & DISPPLANE_TILED) {
9336 plane_config->tiling = I915_TILING_X;
9337 fb->modifier = I915_FORMAT_MOD_X_TILED;
9338 }
9339
9340 if (val & DISPPLANE_ROTATE_180)
9341 plane_config->rotation = DRM_MODE_ROTATE_180;
9342 }
9343
9344 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
9345 val & DISPPLANE_MIRROR)
9346 plane_config->rotation |= DRM_MODE_REFLECT_X;
9347
9348 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9349 fourcc = i9xx_format_to_fourcc(pixel_format);
9350 fb->format = drm_format_info(fourcc);
9351
9352 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9353 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane));
9354 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9355 } else if (INTEL_GEN(dev_priv) >= 4) {
9356 if (plane_config->tiling)
9357 offset = intel_de_read(dev_priv,
9358 DSPTILEOFF(i9xx_plane));
9359 else
9360 offset = intel_de_read(dev_priv,
9361 DSPLINOFF(i9xx_plane));
9362 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9363 } else {
9364 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane));
9365 }
9366 plane_config->base = base;
9367
9368 val = intel_de_read(dev_priv, PIPESRC(pipe));
9369 fb->width = ((val >> 16) & 0xfff) + 1;
9370 fb->height = ((val >> 0) & 0xfff) + 1;
9371
9372 val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane));
9373 fb->pitches[0] = val & 0xffffffc0;
9374
9375 aligned_height = intel_fb_align_height(fb, 0, fb->height);
9376
9377 plane_config->size = fb->pitches[0] * aligned_height;
9378
9379 drm_dbg_kms(&dev_priv->drm,
9380 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9381 crtc->base.name, plane->base.name, fb->width, fb->height,
9382 fb->format->cpp[0] * 8, base, fb->pitches[0],
9383 plane_config->size);
9384
9385 plane_config->fb = intel_fb;
9386 }
9387
chv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9388 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9389 struct intel_crtc_state *pipe_config)
9390 {
9391 struct drm_device *dev = crtc->base.dev;
9392 struct drm_i915_private *dev_priv = to_i915(dev);
9393 enum pipe pipe = crtc->pipe;
9394 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9395 struct dpll clock;
9396 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9397 int refclk = 100000;
9398
9399 /* In case of DSI, DPLL will not be used */
9400 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9401 return;
9402
9403 vlv_dpio_get(dev_priv);
9404 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9405 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9406 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9407 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9408 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9409 vlv_dpio_put(dev_priv);
9410
9411 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9412 clock.m2 = (pll_dw0 & 0xff) << 22;
9413 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9414 clock.m2 |= pll_dw2 & 0x3fffff;
9415 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9416 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9417 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9418
9419 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9420 }
9421
9422 static enum intel_output_format
bdw_get_pipemisc_output_format(struct intel_crtc * crtc)9423 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9424 {
9425 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9426 u32 tmp;
9427
9428 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
9429
9430 if (tmp & PIPEMISC_YUV420_ENABLE) {
9431 /* We support 4:2:0 in full blend mode only */
9432 drm_WARN_ON(&dev_priv->drm,
9433 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9434
9435 return INTEL_OUTPUT_FORMAT_YCBCR420;
9436 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9437 return INTEL_OUTPUT_FORMAT_YCBCR444;
9438 } else {
9439 return INTEL_OUTPUT_FORMAT_RGB;
9440 }
9441 }
9442
i9xx_get_pipe_color_config(struct intel_crtc_state * crtc_state)9443 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9444 {
9445 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9446 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9447 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9448 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9449 u32 tmp;
9450
9451 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9452
9453 if (tmp & DISPPLANE_GAMMA_ENABLE)
9454 crtc_state->gamma_enable = true;
9455
9456 if (!HAS_GMCH(dev_priv) &&
9457 tmp & DISPPLANE_PIPE_CSC_ENABLE)
9458 crtc_state->csc_enable = true;
9459 }
9460
i9xx_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9461 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9462 struct intel_crtc_state *pipe_config)
9463 {
9464 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9465 enum intel_display_power_domain power_domain;
9466 intel_wakeref_t wakeref;
9467 u32 tmp;
9468 bool ret;
9469
9470 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9471 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9472 if (!wakeref)
9473 return false;
9474
9475 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9476 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9477 pipe_config->shared_dpll = NULL;
9478
9479 ret = false;
9480
9481 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
9482 if (!(tmp & PIPECONF_ENABLE))
9483 goto out;
9484
9485 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9486 IS_CHERRYVIEW(dev_priv)) {
9487 switch (tmp & PIPECONF_BPC_MASK) {
9488 case PIPECONF_6BPC:
9489 pipe_config->pipe_bpp = 18;
9490 break;
9491 case PIPECONF_8BPC:
9492 pipe_config->pipe_bpp = 24;
9493 break;
9494 case PIPECONF_10BPC:
9495 pipe_config->pipe_bpp = 30;
9496 break;
9497 default:
9498 break;
9499 }
9500 }
9501
9502 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9503 (tmp & PIPECONF_COLOR_RANGE_SELECT))
9504 pipe_config->limited_color_range = true;
9505
9506 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9507 PIPECONF_GAMMA_MODE_SHIFT;
9508
9509 if (IS_CHERRYVIEW(dev_priv))
9510 pipe_config->cgm_mode = intel_de_read(dev_priv,
9511 CGM_PIPE_MODE(crtc->pipe));
9512
9513 i9xx_get_pipe_color_config(pipe_config);
9514 intel_color_get_config(pipe_config);
9515
9516 if (INTEL_GEN(dev_priv) < 4)
9517 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9518
9519 intel_get_pipe_timings(crtc, pipe_config);
9520 intel_get_pipe_src_size(crtc, pipe_config);
9521
9522 i9xx_get_pfit_config(pipe_config);
9523
9524 if (INTEL_GEN(dev_priv) >= 4) {
9525 /* No way to read it out on pipes B and C */
9526 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9527 tmp = dev_priv->chv_dpll_md[crtc->pipe];
9528 else
9529 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
9530 pipe_config->pixel_multiplier =
9531 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9532 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9533 pipe_config->dpll_hw_state.dpll_md = tmp;
9534 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9535 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9536 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe));
9537 pipe_config->pixel_multiplier =
9538 ((tmp & SDVO_MULTIPLIER_MASK)
9539 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9540 } else {
9541 /* Note that on i915G/GM the pixel multiplier is in the sdvo
9542 * port and will be fixed up in the encoder->get_config
9543 * function. */
9544 pipe_config->pixel_multiplier = 1;
9545 }
9546 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv,
9547 DPLL(crtc->pipe));
9548 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9549 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv,
9550 FP0(crtc->pipe));
9551 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv,
9552 FP1(crtc->pipe));
9553 } else {
9554 /* Mask out read-only status bits. */
9555 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9556 DPLL_PORTC_READY_MASK |
9557 DPLL_PORTB_READY_MASK);
9558 }
9559
9560 if (IS_CHERRYVIEW(dev_priv))
9561 chv_crtc_clock_get(crtc, pipe_config);
9562 else if (IS_VALLEYVIEW(dev_priv))
9563 vlv_crtc_clock_get(crtc, pipe_config);
9564 else
9565 i9xx_crtc_clock_get(crtc, pipe_config);
9566
9567 /*
9568 * Normally the dotclock is filled in by the encoder .get_config()
9569 * but in case the pipe is enabled w/o any ports we need a sane
9570 * default.
9571 */
9572 pipe_config->hw.adjusted_mode.crtc_clock =
9573 pipe_config->port_clock / pipe_config->pixel_multiplier;
9574
9575 ret = true;
9576
9577 out:
9578 intel_display_power_put(dev_priv, power_domain, wakeref);
9579
9580 return ret;
9581 }
9582
ilk_init_pch_refclk(struct drm_i915_private * dev_priv)9583 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv)
9584 {
9585 struct intel_encoder *encoder;
9586 int i;
9587 u32 val, final;
9588 bool has_lvds = false;
9589 bool has_cpu_edp = false;
9590 bool has_panel = false;
9591 bool has_ck505 = false;
9592 bool can_ssc = false;
9593 bool using_ssc_source = false;
9594
9595 /* We need to take the global config into account */
9596 for_each_intel_encoder(&dev_priv->drm, encoder) {
9597 switch (encoder->type) {
9598 case INTEL_OUTPUT_LVDS:
9599 has_panel = true;
9600 has_lvds = true;
9601 break;
9602 case INTEL_OUTPUT_EDP:
9603 has_panel = true;
9604 if (encoder->port == PORT_A)
9605 has_cpu_edp = true;
9606 break;
9607 default:
9608 break;
9609 }
9610 }
9611
9612 if (HAS_PCH_IBX(dev_priv)) {
9613 has_ck505 = dev_priv->vbt.display_clock_mode;
9614 can_ssc = has_ck505;
9615 } else {
9616 has_ck505 = false;
9617 can_ssc = true;
9618 }
9619
9620 /* Check if any DPLLs are using the SSC source */
9621 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) {
9622 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i));
9623
9624 if (!(temp & DPLL_VCO_ENABLE))
9625 continue;
9626
9627 if ((temp & PLL_REF_INPUT_MASK) ==
9628 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9629 using_ssc_source = true;
9630 break;
9631 }
9632 }
9633
9634 drm_dbg_kms(&dev_priv->drm,
9635 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9636 has_panel, has_lvds, has_ck505, using_ssc_source);
9637
9638 /* Ironlake: try to setup display ref clock before DPLL
9639 * enabling. This is only under driver's control after
9640 * PCH B stepping, previous chipset stepping should be
9641 * ignoring this setting.
9642 */
9643 val = intel_de_read(dev_priv, PCH_DREF_CONTROL);
9644
9645 /* As we must carefully and slowly disable/enable each source in turn,
9646 * compute the final state we want first and check if we need to
9647 * make any changes at all.
9648 */
9649 final = val;
9650 final &= ~DREF_NONSPREAD_SOURCE_MASK;
9651 if (has_ck505)
9652 final |= DREF_NONSPREAD_CK505_ENABLE;
9653 else
9654 final |= DREF_NONSPREAD_SOURCE_ENABLE;
9655
9656 final &= ~DREF_SSC_SOURCE_MASK;
9657 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9658 final &= ~DREF_SSC1_ENABLE;
9659
9660 if (has_panel) {
9661 final |= DREF_SSC_SOURCE_ENABLE;
9662
9663 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9664 final |= DREF_SSC1_ENABLE;
9665
9666 if (has_cpu_edp) {
9667 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9668 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9669 else
9670 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9671 } else
9672 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9673 } else if (using_ssc_source) {
9674 final |= DREF_SSC_SOURCE_ENABLE;
9675 final |= DREF_SSC1_ENABLE;
9676 }
9677
9678 if (final == val)
9679 return;
9680
9681 /* Always enable nonspread source */
9682 val &= ~DREF_NONSPREAD_SOURCE_MASK;
9683
9684 if (has_ck505)
9685 val |= DREF_NONSPREAD_CK505_ENABLE;
9686 else
9687 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9688
9689 if (has_panel) {
9690 val &= ~DREF_SSC_SOURCE_MASK;
9691 val |= DREF_SSC_SOURCE_ENABLE;
9692
9693 /* SSC must be turned on before enabling the CPU output */
9694 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9695 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n");
9696 val |= DREF_SSC1_ENABLE;
9697 } else
9698 val &= ~DREF_SSC1_ENABLE;
9699
9700 /* Get SSC going before enabling the outputs */
9701 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9702 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9703 udelay(200);
9704
9705 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9706
9707 /* Enable CPU source on CPU attached eDP */
9708 if (has_cpu_edp) {
9709 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9710 drm_dbg_kms(&dev_priv->drm,
9711 "Using SSC on eDP\n");
9712 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9713 } else
9714 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9715 } else
9716 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9717
9718 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9719 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9720 udelay(200);
9721 } else {
9722 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n");
9723
9724 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9725
9726 /* Turn off CPU output */
9727 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9728
9729 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9730 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9731 udelay(200);
9732
9733 if (!using_ssc_source) {
9734 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n");
9735
9736 /* Turn off the SSC source */
9737 val &= ~DREF_SSC_SOURCE_MASK;
9738 val |= DREF_SSC_SOURCE_DISABLE;
9739
9740 /* Turn off SSC1 */
9741 val &= ~DREF_SSC1_ENABLE;
9742
9743 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9744 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9745 udelay(200);
9746 }
9747 }
9748
9749 BUG_ON(val != final);
9750 }
9751
lpt_reset_fdi_mphy(struct drm_i915_private * dev_priv)9752 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9753 {
9754 u32 tmp;
9755
9756 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9757 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9758 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9759
9760 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9761 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9762 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n");
9763
9764 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9765 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9766 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9767
9768 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9769 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9770 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n");
9771 }
9772
9773 /* WaMPhyProgramming:hsw */
lpt_program_fdi_mphy(struct drm_i915_private * dev_priv)9774 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9775 {
9776 u32 tmp;
9777
9778 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9779 tmp &= ~(0xFF << 24);
9780 tmp |= (0x12 << 24);
9781 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9782
9783 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9784 tmp |= (1 << 11);
9785 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9786
9787 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9788 tmp |= (1 << 11);
9789 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9790
9791 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9792 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9793 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9794
9795 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9796 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9797 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9798
9799 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9800 tmp &= ~(7 << 13);
9801 tmp |= (5 << 13);
9802 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9803
9804 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9805 tmp &= ~(7 << 13);
9806 tmp |= (5 << 13);
9807 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9808
9809 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9810 tmp &= ~0xFF;
9811 tmp |= 0x1C;
9812 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9813
9814 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9815 tmp &= ~0xFF;
9816 tmp |= 0x1C;
9817 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9818
9819 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9820 tmp &= ~(0xFF << 16);
9821 tmp |= (0x1C << 16);
9822 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9823
9824 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9825 tmp &= ~(0xFF << 16);
9826 tmp |= (0x1C << 16);
9827 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9828
9829 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9830 tmp |= (1 << 27);
9831 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9832
9833 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9834 tmp |= (1 << 27);
9835 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9836
9837 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9838 tmp &= ~(0xF << 28);
9839 tmp |= (4 << 28);
9840 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9841
9842 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9843 tmp &= ~(0xF << 28);
9844 tmp |= (4 << 28);
9845 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9846 }
9847
9848 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9849 * Programming" based on the parameters passed:
9850 * - Sequence to enable CLKOUT_DP
9851 * - Sequence to enable CLKOUT_DP without spread
9852 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9853 */
lpt_enable_clkout_dp(struct drm_i915_private * dev_priv,bool with_spread,bool with_fdi)9854 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9855 bool with_spread, bool with_fdi)
9856 {
9857 u32 reg, tmp;
9858
9859 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread,
9860 "FDI requires downspread\n"))
9861 with_spread = true;
9862 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) &&
9863 with_fdi, "LP PCH doesn't have FDI\n"))
9864 with_fdi = false;
9865
9866 mutex_lock(&dev_priv->sb_lock);
9867
9868 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9869 tmp &= ~SBI_SSCCTL_DISABLE;
9870 tmp |= SBI_SSCCTL_PATHALT;
9871 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9872
9873 udelay(24);
9874
9875 if (with_spread) {
9876 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9877 tmp &= ~SBI_SSCCTL_PATHALT;
9878 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9879
9880 if (with_fdi) {
9881 lpt_reset_fdi_mphy(dev_priv);
9882 lpt_program_fdi_mphy(dev_priv);
9883 }
9884 }
9885
9886 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9887 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9888 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9889 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9890
9891 mutex_unlock(&dev_priv->sb_lock);
9892 }
9893
9894 /* Sequence to disable CLKOUT_DP */
lpt_disable_clkout_dp(struct drm_i915_private * dev_priv)9895 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9896 {
9897 u32 reg, tmp;
9898
9899 mutex_lock(&dev_priv->sb_lock);
9900
9901 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9902 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9903 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9904 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9905
9906 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9907 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9908 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9909 tmp |= SBI_SSCCTL_PATHALT;
9910 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9911 udelay(32);
9912 }
9913 tmp |= SBI_SSCCTL_DISABLE;
9914 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9915 }
9916
9917 mutex_unlock(&dev_priv->sb_lock);
9918 }
9919
9920 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9921
9922 static const u16 sscdivintphase[] = {
9923 [BEND_IDX( 50)] = 0x3B23,
9924 [BEND_IDX( 45)] = 0x3B23,
9925 [BEND_IDX( 40)] = 0x3C23,
9926 [BEND_IDX( 35)] = 0x3C23,
9927 [BEND_IDX( 30)] = 0x3D23,
9928 [BEND_IDX( 25)] = 0x3D23,
9929 [BEND_IDX( 20)] = 0x3E23,
9930 [BEND_IDX( 15)] = 0x3E23,
9931 [BEND_IDX( 10)] = 0x3F23,
9932 [BEND_IDX( 5)] = 0x3F23,
9933 [BEND_IDX( 0)] = 0x0025,
9934 [BEND_IDX( -5)] = 0x0025,
9935 [BEND_IDX(-10)] = 0x0125,
9936 [BEND_IDX(-15)] = 0x0125,
9937 [BEND_IDX(-20)] = 0x0225,
9938 [BEND_IDX(-25)] = 0x0225,
9939 [BEND_IDX(-30)] = 0x0325,
9940 [BEND_IDX(-35)] = 0x0325,
9941 [BEND_IDX(-40)] = 0x0425,
9942 [BEND_IDX(-45)] = 0x0425,
9943 [BEND_IDX(-50)] = 0x0525,
9944 };
9945
9946 /*
9947 * Bend CLKOUT_DP
9948 * steps -50 to 50 inclusive, in steps of 5
9949 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9950 * change in clock period = -(steps / 10) * 5.787 ps
9951 */
lpt_bend_clkout_dp(struct drm_i915_private * dev_priv,int steps)9952 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9953 {
9954 u32 tmp;
9955 int idx = BEND_IDX(steps);
9956
9957 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0))
9958 return;
9959
9960 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase)))
9961 return;
9962
9963 mutex_lock(&dev_priv->sb_lock);
9964
9965 if (steps % 10 != 0)
9966 tmp = 0xAAAAAAAB;
9967 else
9968 tmp = 0x00000000;
9969 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9970
9971 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9972 tmp &= 0xffff0000;
9973 tmp |= sscdivintphase[idx];
9974 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9975
9976 mutex_unlock(&dev_priv->sb_lock);
9977 }
9978
9979 #undef BEND_IDX
9980
spll_uses_pch_ssc(struct drm_i915_private * dev_priv)9981 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9982 {
9983 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
9984 u32 ctl = intel_de_read(dev_priv, SPLL_CTL);
9985
9986 if ((ctl & SPLL_PLL_ENABLE) == 0)
9987 return false;
9988
9989 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9990 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9991 return true;
9992
9993 if (IS_BROADWELL(dev_priv) &&
9994 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9995 return true;
9996
9997 return false;
9998 }
9999
wrpll_uses_pch_ssc(struct drm_i915_private * dev_priv,enum intel_dpll_id id)10000 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
10001 enum intel_dpll_id id)
10002 {
10003 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
10004 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id));
10005
10006 if ((ctl & WRPLL_PLL_ENABLE) == 0)
10007 return false;
10008
10009 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
10010 return true;
10011
10012 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
10013 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
10014 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
10015 return true;
10016
10017 return false;
10018 }
10019
lpt_init_pch_refclk(struct drm_i915_private * dev_priv)10020 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
10021 {
10022 struct intel_encoder *encoder;
10023 bool has_fdi = false;
10024
10025 for_each_intel_encoder(&dev_priv->drm, encoder) {
10026 switch (encoder->type) {
10027 case INTEL_OUTPUT_ANALOG:
10028 has_fdi = true;
10029 break;
10030 default:
10031 break;
10032 }
10033 }
10034
10035 /*
10036 * The BIOS may have decided to use the PCH SSC
10037 * reference so we must not disable it until the
10038 * relevant PLLs have stopped relying on it. We'll
10039 * just leave the PCH SSC reference enabled in case
10040 * any active PLL is using it. It will get disabled
10041 * after runtime suspend if we don't have FDI.
10042 *
10043 * TODO: Move the whole reference clock handling
10044 * to the modeset sequence proper so that we can
10045 * actually enable/disable/reconfigure these things
10046 * safely. To do that we need to introduce a real
10047 * clock hierarchy. That would also allow us to do
10048 * clock bending finally.
10049 */
10050 dev_priv->pch_ssc_use = 0;
10051
10052 if (spll_uses_pch_ssc(dev_priv)) {
10053 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n");
10054 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
10055 }
10056
10057 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
10058 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n");
10059 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
10060 }
10061
10062 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
10063 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n");
10064 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
10065 }
10066
10067 if (dev_priv->pch_ssc_use)
10068 return;
10069
10070 if (has_fdi) {
10071 lpt_bend_clkout_dp(dev_priv, 0);
10072 lpt_enable_clkout_dp(dev_priv, true, true);
10073 } else {
10074 lpt_disable_clkout_dp(dev_priv);
10075 }
10076 }
10077
10078 /*
10079 * Initialize reference clocks when the driver loads
10080 */
intel_init_pch_refclk(struct drm_i915_private * dev_priv)10081 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
10082 {
10083 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
10084 ilk_init_pch_refclk(dev_priv);
10085 else if (HAS_PCH_LPT(dev_priv))
10086 lpt_init_pch_refclk(dev_priv);
10087 }
10088
ilk_set_pipeconf(const struct intel_crtc_state * crtc_state)10089 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
10090 {
10091 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10092 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10093 enum pipe pipe = crtc->pipe;
10094 u32 val;
10095
10096 val = 0;
10097
10098 switch (crtc_state->pipe_bpp) {
10099 case 18:
10100 val |= PIPECONF_6BPC;
10101 break;
10102 case 24:
10103 val |= PIPECONF_8BPC;
10104 break;
10105 case 30:
10106 val |= PIPECONF_10BPC;
10107 break;
10108 case 36:
10109 val |= PIPECONF_12BPC;
10110 break;
10111 default:
10112 /* Case prevented by intel_choose_pipe_bpp_dither. */
10113 BUG();
10114 }
10115
10116 if (crtc_state->dither)
10117 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10118
10119 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10120 val |= PIPECONF_INTERLACED_ILK;
10121 else
10122 val |= PIPECONF_PROGRESSIVE;
10123
10124 /*
10125 * This would end up with an odd purple hue over
10126 * the entire display. Make sure we don't do it.
10127 */
10128 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
10129 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
10130
10131 if (crtc_state->limited_color_range &&
10132 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
10133 val |= PIPECONF_COLOR_RANGE_SELECT;
10134
10135 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10136 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
10137
10138 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
10139
10140 val |= PIPECONF_FRAME_START_DELAY(0);
10141
10142 intel_de_write(dev_priv, PIPECONF(pipe), val);
10143 intel_de_posting_read(dev_priv, PIPECONF(pipe));
10144 }
10145
hsw_set_pipeconf(const struct intel_crtc_state * crtc_state)10146 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state)
10147 {
10148 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10149 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10150 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
10151 u32 val = 0;
10152
10153 if (IS_HASWELL(dev_priv) && crtc_state->dither)
10154 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10155
10156 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10157 val |= PIPECONF_INTERLACED_ILK;
10158 else
10159 val |= PIPECONF_PROGRESSIVE;
10160
10161 if (IS_HASWELL(dev_priv) &&
10162 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10163 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
10164
10165 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val);
10166 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder));
10167 }
10168
bdw_set_pipemisc(const struct intel_crtc_state * crtc_state)10169 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
10170 {
10171 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10172 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10173 u32 val = 0;
10174
10175 switch (crtc_state->pipe_bpp) {
10176 case 18:
10177 val |= PIPEMISC_DITHER_6_BPC;
10178 break;
10179 case 24:
10180 val |= PIPEMISC_DITHER_8_BPC;
10181 break;
10182 case 30:
10183 val |= PIPEMISC_DITHER_10_BPC;
10184 break;
10185 case 36:
10186 val |= PIPEMISC_DITHER_12_BPC;
10187 break;
10188 default:
10189 MISSING_CASE(crtc_state->pipe_bpp);
10190 break;
10191 }
10192
10193 if (crtc_state->dither)
10194 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
10195
10196 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
10197 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
10198 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
10199
10200 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
10201 val |= PIPEMISC_YUV420_ENABLE |
10202 PIPEMISC_YUV420_MODE_FULL_BLEND;
10203
10204 if (INTEL_GEN(dev_priv) >= 11 &&
10205 (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
10206 BIT(PLANE_CURSOR))) == 0)
10207 val |= PIPEMISC_HDR_MODE_PRECISION;
10208
10209 if (INTEL_GEN(dev_priv) >= 12)
10210 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC;
10211
10212 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val);
10213 }
10214
bdw_get_pipemisc_bpp(struct intel_crtc * crtc)10215 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
10216 {
10217 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10218 u32 tmp;
10219
10220 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
10221
10222 switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
10223 case PIPEMISC_DITHER_6_BPC:
10224 return 18;
10225 case PIPEMISC_DITHER_8_BPC:
10226 return 24;
10227 case PIPEMISC_DITHER_10_BPC:
10228 return 30;
10229 case PIPEMISC_DITHER_12_BPC:
10230 return 36;
10231 default:
10232 MISSING_CASE(tmp);
10233 return 0;
10234 }
10235 }
10236
ilk_get_lanes_required(int target_clock,int link_bw,int bpp)10237 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
10238 {
10239 /*
10240 * Account for spread spectrum to avoid
10241 * oversubscribing the link. Max center spread
10242 * is 2.5%; use 5% for safety's sake.
10243 */
10244 u32 bps = target_clock * bpp * 21 / 20;
10245 return DIV_ROUND_UP(bps, link_bw * 8);
10246 }
10247
ilk_needs_fb_cb_tune(struct dpll * dpll,int factor)10248 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
10249 {
10250 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
10251 }
10252
ilk_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)10253 static void ilk_compute_dpll(struct intel_crtc *crtc,
10254 struct intel_crtc_state *crtc_state,
10255 struct dpll *reduced_clock)
10256 {
10257 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10258 u32 dpll, fp, fp2;
10259 int factor;
10260
10261 /* Enable autotuning of the PLL clock (if permissible) */
10262 factor = 21;
10263 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10264 if ((intel_panel_use_ssc(dev_priv) &&
10265 dev_priv->vbt.lvds_ssc_freq == 100000) ||
10266 (HAS_PCH_IBX(dev_priv) &&
10267 intel_is_dual_link_lvds(dev_priv)))
10268 factor = 25;
10269 } else if (crtc_state->sdvo_tv_clock) {
10270 factor = 20;
10271 }
10272
10273 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
10274
10275 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
10276 fp |= FP_CB_TUNE;
10277
10278 if (reduced_clock) {
10279 fp2 = i9xx_dpll_compute_fp(reduced_clock);
10280
10281 if (reduced_clock->m < factor * reduced_clock->n)
10282 fp2 |= FP_CB_TUNE;
10283 } else {
10284 fp2 = fp;
10285 }
10286
10287 dpll = 0;
10288
10289 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
10290 dpll |= DPLLB_MODE_LVDS;
10291 else
10292 dpll |= DPLLB_MODE_DAC_SERIAL;
10293
10294 dpll |= (crtc_state->pixel_multiplier - 1)
10295 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
10296
10297 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
10298 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
10299 dpll |= DPLL_SDVO_HIGH_SPEED;
10300
10301 if (intel_crtc_has_dp_encoder(crtc_state))
10302 dpll |= DPLL_SDVO_HIGH_SPEED;
10303
10304 /*
10305 * The high speed IO clock is only really required for
10306 * SDVO/HDMI/DP, but we also enable it for CRT to make it
10307 * possible to share the DPLL between CRT and HDMI. Enabling
10308 * the clock needlessly does no real harm, except use up a
10309 * bit of power potentially.
10310 *
10311 * We'll limit this to IVB with 3 pipes, since it has only two
10312 * DPLLs and so DPLL sharing is the only way to get three pipes
10313 * driving PCH ports at the same time. On SNB we could do this,
10314 * and potentially avoid enabling the second DPLL, but it's not
10315 * clear if it''s a win or loss power wise. No point in doing
10316 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
10317 */
10318 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
10319 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
10320 dpll |= DPLL_SDVO_HIGH_SPEED;
10321
10322 /* compute bitmask from p1 value */
10323 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
10324 /* also FPA1 */
10325 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
10326
10327 switch (crtc_state->dpll.p2) {
10328 case 5:
10329 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
10330 break;
10331 case 7:
10332 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
10333 break;
10334 case 10:
10335 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
10336 break;
10337 case 14:
10338 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
10339 break;
10340 }
10341
10342 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
10343 intel_panel_use_ssc(dev_priv))
10344 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
10345 else
10346 dpll |= PLL_REF_INPUT_DREFCLK;
10347
10348 dpll |= DPLL_VCO_ENABLE;
10349
10350 crtc_state->dpll_hw_state.dpll = dpll;
10351 crtc_state->dpll_hw_state.fp0 = fp;
10352 crtc_state->dpll_hw_state.fp1 = fp2;
10353 }
10354
ilk_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)10355 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
10356 struct intel_crtc_state *crtc_state)
10357 {
10358 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10359 struct intel_atomic_state *state =
10360 to_intel_atomic_state(crtc_state->uapi.state);
10361 const struct intel_limit *limit;
10362 int refclk = 120000;
10363
10364 memset(&crtc_state->dpll_hw_state, 0,
10365 sizeof(crtc_state->dpll_hw_state));
10366
10367 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10368 if (!crtc_state->has_pch_encoder)
10369 return 0;
10370
10371 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10372 if (intel_panel_use_ssc(dev_priv)) {
10373 drm_dbg_kms(&dev_priv->drm,
10374 "using SSC reference clock of %d kHz\n",
10375 dev_priv->vbt.lvds_ssc_freq);
10376 refclk = dev_priv->vbt.lvds_ssc_freq;
10377 }
10378
10379 if (intel_is_dual_link_lvds(dev_priv)) {
10380 if (refclk == 100000)
10381 limit = &ilk_limits_dual_lvds_100m;
10382 else
10383 limit = &ilk_limits_dual_lvds;
10384 } else {
10385 if (refclk == 100000)
10386 limit = &ilk_limits_single_lvds_100m;
10387 else
10388 limit = &ilk_limits_single_lvds;
10389 }
10390 } else {
10391 limit = &ilk_limits_dac;
10392 }
10393
10394 if (!crtc_state->clock_set &&
10395 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10396 refclk, NULL, &crtc_state->dpll)) {
10397 drm_err(&dev_priv->drm,
10398 "Couldn't find PLL settings for mode!\n");
10399 return -EINVAL;
10400 }
10401
10402 ilk_compute_dpll(crtc, crtc_state, NULL);
10403
10404 if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10405 drm_dbg_kms(&dev_priv->drm,
10406 "failed to find PLL for pipe %c\n",
10407 pipe_name(crtc->pipe));
10408 return -EINVAL;
10409 }
10410
10411 return 0;
10412 }
10413
intel_pch_transcoder_get_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)10414 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10415 struct intel_link_m_n *m_n)
10416 {
10417 struct drm_device *dev = crtc->base.dev;
10418 struct drm_i915_private *dev_priv = to_i915(dev);
10419 enum pipe pipe = crtc->pipe;
10420
10421 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe));
10422 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe));
10423 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10424 & ~TU_SIZE_MASK;
10425 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe));
10426 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10427 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10428 }
10429
intel_cpu_transcoder_get_m_n(struct intel_crtc * crtc,enum transcoder transcoder,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)10430 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10431 enum transcoder transcoder,
10432 struct intel_link_m_n *m_n,
10433 struct intel_link_m_n *m2_n2)
10434 {
10435 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10436 enum pipe pipe = crtc->pipe;
10437
10438 if (INTEL_GEN(dev_priv) >= 5) {
10439 m_n->link_m = intel_de_read(dev_priv,
10440 PIPE_LINK_M1(transcoder));
10441 m_n->link_n = intel_de_read(dev_priv,
10442 PIPE_LINK_N1(transcoder));
10443 m_n->gmch_m = intel_de_read(dev_priv,
10444 PIPE_DATA_M1(transcoder))
10445 & ~TU_SIZE_MASK;
10446 m_n->gmch_n = intel_de_read(dev_priv,
10447 PIPE_DATA_N1(transcoder));
10448 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder))
10449 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10450
10451 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10452 m2_n2->link_m = intel_de_read(dev_priv,
10453 PIPE_LINK_M2(transcoder));
10454 m2_n2->link_n = intel_de_read(dev_priv,
10455 PIPE_LINK_N2(transcoder));
10456 m2_n2->gmch_m = intel_de_read(dev_priv,
10457 PIPE_DATA_M2(transcoder))
10458 & ~TU_SIZE_MASK;
10459 m2_n2->gmch_n = intel_de_read(dev_priv,
10460 PIPE_DATA_N2(transcoder));
10461 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder))
10462 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10463 }
10464 } else {
10465 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe));
10466 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe));
10467 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10468 & ~TU_SIZE_MASK;
10469 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe));
10470 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10471 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10472 }
10473 }
10474
intel_dp_get_m_n(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10475 void intel_dp_get_m_n(struct intel_crtc *crtc,
10476 struct intel_crtc_state *pipe_config)
10477 {
10478 if (pipe_config->has_pch_encoder)
10479 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10480 else
10481 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10482 &pipe_config->dp_m_n,
10483 &pipe_config->dp_m2_n2);
10484 }
10485
ilk_get_fdi_m_n_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10486 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc,
10487 struct intel_crtc_state *pipe_config)
10488 {
10489 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10490 &pipe_config->fdi_m_n, NULL);
10491 }
10492
ilk_get_pfit_pos_size(struct intel_crtc_state * crtc_state,u32 pos,u32 size)10493 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state,
10494 u32 pos, u32 size)
10495 {
10496 drm_rect_init(&crtc_state->pch_pfit.dst,
10497 pos >> 16, pos & 0xffff,
10498 size >> 16, size & 0xffff);
10499 }
10500
skl_get_pfit_config(struct intel_crtc_state * crtc_state)10501 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state)
10502 {
10503 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10504 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10505 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
10506 int id = -1;
10507 int i;
10508
10509 /* find scaler attached to this pipe */
10510 for (i = 0; i < crtc->num_scalers; i++) {
10511 u32 ctl, pos, size;
10512
10513 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i));
10514 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN)
10515 continue;
10516
10517 id = i;
10518 crtc_state->pch_pfit.enabled = true;
10519
10520 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i));
10521 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i));
10522
10523 ilk_get_pfit_pos_size(crtc_state, pos, size);
10524
10525 scaler_state->scalers[i].in_use = true;
10526 break;
10527 }
10528
10529 scaler_state->scaler_id = id;
10530 if (id >= 0)
10531 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10532 else
10533 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10534 }
10535
10536 static void
skl_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)10537 skl_get_initial_plane_config(struct intel_crtc *crtc,
10538 struct intel_initial_plane_config *plane_config)
10539 {
10540 struct drm_device *dev = crtc->base.dev;
10541 struct drm_i915_private *dev_priv = to_i915(dev);
10542 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10543 enum plane_id plane_id = plane->id;
10544 enum pipe pipe;
10545 u32 val, base, offset, stride_mult, tiling, alpha;
10546 int fourcc, pixel_format;
10547 unsigned int aligned_height;
10548 struct drm_framebuffer *fb;
10549 struct intel_framebuffer *intel_fb;
10550
10551 if (!plane->get_hw_state(plane, &pipe))
10552 return;
10553
10554 drm_WARN_ON(dev, pipe != crtc->pipe);
10555
10556 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10557 if (!intel_fb) {
10558 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
10559 return;
10560 }
10561
10562 fb = &intel_fb->base;
10563
10564 fb->dev = dev;
10565
10566 val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id));
10567
10568 if (INTEL_GEN(dev_priv) >= 11)
10569 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10570 else
10571 pixel_format = val & PLANE_CTL_FORMAT_MASK;
10572
10573 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10574 alpha = intel_de_read(dev_priv,
10575 PLANE_COLOR_CTL(pipe, plane_id));
10576 alpha &= PLANE_COLOR_ALPHA_MASK;
10577 } else {
10578 alpha = val & PLANE_CTL_ALPHA_MASK;
10579 }
10580
10581 fourcc = skl_format_to_fourcc(pixel_format,
10582 val & PLANE_CTL_ORDER_RGBX, alpha);
10583 fb->format = drm_format_info(fourcc);
10584
10585 tiling = val & PLANE_CTL_TILED_MASK;
10586 switch (tiling) {
10587 case PLANE_CTL_TILED_LINEAR:
10588 fb->modifier = DRM_FORMAT_MOD_LINEAR;
10589 break;
10590 case PLANE_CTL_TILED_X:
10591 plane_config->tiling = I915_TILING_X;
10592 fb->modifier = I915_FORMAT_MOD_X_TILED;
10593 break;
10594 case PLANE_CTL_TILED_Y:
10595 plane_config->tiling = I915_TILING_Y;
10596 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10597 fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10598 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10599 I915_FORMAT_MOD_Y_TILED_CCS;
10600 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE)
10601 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
10602 else
10603 fb->modifier = I915_FORMAT_MOD_Y_TILED;
10604 break;
10605 case PLANE_CTL_TILED_YF:
10606 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10607 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10608 else
10609 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10610 break;
10611 default:
10612 MISSING_CASE(tiling);
10613 goto error;
10614 }
10615
10616 /*
10617 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10618 * while i915 HW rotation is clockwise, thats why this swapping.
10619 */
10620 switch (val & PLANE_CTL_ROTATE_MASK) {
10621 case PLANE_CTL_ROTATE_0:
10622 plane_config->rotation = DRM_MODE_ROTATE_0;
10623 break;
10624 case PLANE_CTL_ROTATE_90:
10625 plane_config->rotation = DRM_MODE_ROTATE_270;
10626 break;
10627 case PLANE_CTL_ROTATE_180:
10628 plane_config->rotation = DRM_MODE_ROTATE_180;
10629 break;
10630 case PLANE_CTL_ROTATE_270:
10631 plane_config->rotation = DRM_MODE_ROTATE_90;
10632 break;
10633 }
10634
10635 if (INTEL_GEN(dev_priv) >= 10 &&
10636 val & PLANE_CTL_FLIP_HORIZONTAL)
10637 plane_config->rotation |= DRM_MODE_REFLECT_X;
10638
10639 /* 90/270 degree rotation would require extra work */
10640 if (drm_rotation_90_or_270(plane_config->rotation))
10641 goto error;
10642
10643 base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10644 plane_config->base = base;
10645
10646 offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id));
10647
10648 val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id));
10649 fb->height = ((val >> 16) & 0xffff) + 1;
10650 fb->width = ((val >> 0) & 0xffff) + 1;
10651
10652 val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id));
10653 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10654 fb->pitches[0] = (val & 0x3ff) * stride_mult;
10655
10656 aligned_height = intel_fb_align_height(fb, 0, fb->height);
10657
10658 plane_config->size = fb->pitches[0] * aligned_height;
10659
10660 drm_dbg_kms(&dev_priv->drm,
10661 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10662 crtc->base.name, plane->base.name, fb->width, fb->height,
10663 fb->format->cpp[0] * 8, base, fb->pitches[0],
10664 plane_config->size);
10665
10666 plane_config->fb = intel_fb;
10667 return;
10668
10669 error:
10670 kfree(intel_fb);
10671 }
10672
ilk_get_pfit_config(struct intel_crtc_state * crtc_state)10673 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state)
10674 {
10675 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10676 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10677 u32 ctl, pos, size;
10678
10679 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe));
10680 if ((ctl & PF_ENABLE) == 0)
10681 return;
10682
10683 crtc_state->pch_pfit.enabled = true;
10684
10685 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe));
10686 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe));
10687
10688 ilk_get_pfit_pos_size(crtc_state, pos, size);
10689
10690 /*
10691 * We currently do not free assignements of panel fitters on
10692 * ivb/hsw (since we don't use the higher upscaling modes which
10693 * differentiates them) so just WARN about this case for now.
10694 */
10695 drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) &&
10696 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe));
10697 }
10698
ilk_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10699 static bool ilk_get_pipe_config(struct intel_crtc *crtc,
10700 struct intel_crtc_state *pipe_config)
10701 {
10702 struct drm_device *dev = crtc->base.dev;
10703 struct drm_i915_private *dev_priv = to_i915(dev);
10704 enum intel_display_power_domain power_domain;
10705 intel_wakeref_t wakeref;
10706 u32 tmp;
10707 bool ret;
10708
10709 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10710 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10711 if (!wakeref)
10712 return false;
10713
10714 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10715 pipe_config->shared_dpll = NULL;
10716
10717 ret = false;
10718 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
10719 if (!(tmp & PIPECONF_ENABLE))
10720 goto out;
10721
10722 switch (tmp & PIPECONF_BPC_MASK) {
10723 case PIPECONF_6BPC:
10724 pipe_config->pipe_bpp = 18;
10725 break;
10726 case PIPECONF_8BPC:
10727 pipe_config->pipe_bpp = 24;
10728 break;
10729 case PIPECONF_10BPC:
10730 pipe_config->pipe_bpp = 30;
10731 break;
10732 case PIPECONF_12BPC:
10733 pipe_config->pipe_bpp = 36;
10734 break;
10735 default:
10736 break;
10737 }
10738
10739 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10740 pipe_config->limited_color_range = true;
10741
10742 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10743 case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10744 case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10745 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10746 break;
10747 default:
10748 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10749 break;
10750 }
10751
10752 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10753 PIPECONF_GAMMA_MODE_SHIFT;
10754
10755 pipe_config->csc_mode = intel_de_read(dev_priv,
10756 PIPE_CSC_MODE(crtc->pipe));
10757
10758 i9xx_get_pipe_color_config(pipe_config);
10759 intel_color_get_config(pipe_config);
10760
10761 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10762 struct intel_shared_dpll *pll;
10763 enum intel_dpll_id pll_id;
10764
10765 pipe_config->has_pch_encoder = true;
10766
10767 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe));
10768 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10769 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10770
10771 ilk_get_fdi_m_n_config(crtc, pipe_config);
10772
10773 if (HAS_PCH_IBX(dev_priv)) {
10774 /*
10775 * The pipe->pch transcoder and pch transcoder->pll
10776 * mapping is fixed.
10777 */
10778 pll_id = (enum intel_dpll_id) crtc->pipe;
10779 } else {
10780 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL);
10781 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10782 pll_id = DPLL_ID_PCH_PLL_B;
10783 else
10784 pll_id= DPLL_ID_PCH_PLL_A;
10785 }
10786
10787 pipe_config->shared_dpll =
10788 intel_get_shared_dpll_by_id(dev_priv, pll_id);
10789 pll = pipe_config->shared_dpll;
10790
10791 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll,
10792 &pipe_config->dpll_hw_state));
10793
10794 tmp = pipe_config->dpll_hw_state.dpll;
10795 pipe_config->pixel_multiplier =
10796 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10797 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10798
10799 ilk_pch_clock_get(crtc, pipe_config);
10800 } else {
10801 pipe_config->pixel_multiplier = 1;
10802 }
10803
10804 intel_get_pipe_timings(crtc, pipe_config);
10805 intel_get_pipe_src_size(crtc, pipe_config);
10806
10807 ilk_get_pfit_config(pipe_config);
10808
10809 ret = true;
10810
10811 out:
10812 intel_display_power_put(dev_priv, power_domain, wakeref);
10813
10814 return ret;
10815 }
10816
hsw_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)10817 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
10818 struct intel_crtc_state *crtc_state)
10819 {
10820 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10821 struct intel_atomic_state *state =
10822 to_intel_atomic_state(crtc_state->uapi.state);
10823
10824 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10825 INTEL_GEN(dev_priv) >= 11) {
10826 struct intel_encoder *encoder =
10827 intel_get_crtc_new_encoder(state, crtc_state);
10828
10829 if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10830 drm_dbg_kms(&dev_priv->drm,
10831 "failed to find PLL for pipe %c\n",
10832 pipe_name(crtc->pipe));
10833 return -EINVAL;
10834 }
10835 }
10836
10837 return 0;
10838 }
10839
cnl_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10840 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10841 struct intel_crtc_state *pipe_config)
10842 {
10843 enum intel_dpll_id id;
10844 u32 temp;
10845
10846 temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10847 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10848
10849 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2))
10850 return;
10851
10852 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10853 }
10854
icl_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10855 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10856 struct intel_crtc_state *pipe_config)
10857 {
10858 enum phy phy = intel_port_to_phy(dev_priv, port);
10859 enum icl_port_dpll_id port_dpll_id;
10860 enum intel_dpll_id id;
10861 u32 temp;
10862
10863 if (intel_phy_is_combo(dev_priv, phy)) {
10864 u32 mask, shift;
10865
10866 if (IS_ROCKETLAKE(dev_priv)) {
10867 mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10868 shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10869 } else {
10870 mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10871 shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10872 }
10873
10874 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask;
10875 id = temp >> shift;
10876 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10877 } else if (intel_phy_is_tc(dev_priv, phy)) {
10878 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10879
10880 if (clk_sel == DDI_CLK_SEL_MG) {
10881 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10882 port));
10883 port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10884 } else {
10885 drm_WARN_ON(&dev_priv->drm,
10886 clk_sel < DDI_CLK_SEL_TBT_162);
10887 id = DPLL_ID_ICL_TBTPLL;
10888 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10889 }
10890 } else {
10891 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port);
10892 return;
10893 }
10894
10895 pipe_config->icl_port_dplls[port_dpll_id].pll =
10896 intel_get_shared_dpll_by_id(dev_priv, id);
10897
10898 icl_set_active_port_dpll(pipe_config, port_dpll_id);
10899 }
10900
bxt_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10901 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10902 enum port port,
10903 struct intel_crtc_state *pipe_config)
10904 {
10905 enum intel_dpll_id id;
10906
10907 switch (port) {
10908 case PORT_A:
10909 id = DPLL_ID_SKL_DPLL0;
10910 break;
10911 case PORT_B:
10912 id = DPLL_ID_SKL_DPLL1;
10913 break;
10914 case PORT_C:
10915 id = DPLL_ID_SKL_DPLL2;
10916 break;
10917 default:
10918 drm_err(&dev_priv->drm, "Incorrect port type\n");
10919 return;
10920 }
10921
10922 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10923 }
10924
skl_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10925 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10926 struct intel_crtc_state *pipe_config)
10927 {
10928 enum intel_dpll_id id;
10929 u32 temp;
10930
10931 temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10932 id = temp >> (port * 3 + 1);
10933
10934 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3))
10935 return;
10936
10937 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10938 }
10939
hsw_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10940 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10941 struct intel_crtc_state *pipe_config)
10942 {
10943 enum intel_dpll_id id;
10944 u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port));
10945
10946 switch (ddi_pll_sel) {
10947 case PORT_CLK_SEL_WRPLL1:
10948 id = DPLL_ID_WRPLL1;
10949 break;
10950 case PORT_CLK_SEL_WRPLL2:
10951 id = DPLL_ID_WRPLL2;
10952 break;
10953 case PORT_CLK_SEL_SPLL:
10954 id = DPLL_ID_SPLL;
10955 break;
10956 case PORT_CLK_SEL_LCPLL_810:
10957 id = DPLL_ID_LCPLL_810;
10958 break;
10959 case PORT_CLK_SEL_LCPLL_1350:
10960 id = DPLL_ID_LCPLL_1350;
10961 break;
10962 case PORT_CLK_SEL_LCPLL_2700:
10963 id = DPLL_ID_LCPLL_2700;
10964 break;
10965 default:
10966 MISSING_CASE(ddi_pll_sel);
10967 fallthrough;
10968 case PORT_CLK_SEL_NONE:
10969 return;
10970 }
10971
10972 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10973 }
10974
hsw_get_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,u64 * power_domain_mask,intel_wakeref_t * wakerefs)10975 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10976 struct intel_crtc_state *pipe_config,
10977 u64 *power_domain_mask,
10978 intel_wakeref_t *wakerefs)
10979 {
10980 struct drm_device *dev = crtc->base.dev;
10981 struct drm_i915_private *dev_priv = to_i915(dev);
10982 enum intel_display_power_domain power_domain;
10983 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP);
10984 unsigned long enabled_panel_transcoders = 0;
10985 enum transcoder panel_transcoder;
10986 intel_wakeref_t wf;
10987 u32 tmp;
10988
10989 if (INTEL_GEN(dev_priv) >= 11)
10990 panel_transcoder_mask |=
10991 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10992
10993 /*
10994 * The pipe->transcoder mapping is fixed with the exception of the eDP
10995 * and DSI transcoders handled below.
10996 */
10997 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10998
10999 /*
11000 * XXX: Do intel_display_power_get_if_enabled before reading this (for
11001 * consistency and less surprising code; it's in always on power).
11002 */
11003 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder,
11004 panel_transcoder_mask) {
11005 bool force_thru = false;
11006 enum pipe trans_pipe;
11007
11008 tmp = intel_de_read(dev_priv,
11009 TRANS_DDI_FUNC_CTL(panel_transcoder));
11010 if (!(tmp & TRANS_DDI_FUNC_ENABLE))
11011 continue;
11012
11013 /*
11014 * Log all enabled ones, only use the first one.
11015 *
11016 * FIXME: This won't work for two separate DSI displays.
11017 */
11018 enabled_panel_transcoders |= BIT(panel_transcoder);
11019 if (enabled_panel_transcoders != BIT(panel_transcoder))
11020 continue;
11021
11022 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
11023 default:
11024 drm_WARN(dev, 1,
11025 "unknown pipe linked to transcoder %s\n",
11026 transcoder_name(panel_transcoder));
11027 fallthrough;
11028 case TRANS_DDI_EDP_INPUT_A_ONOFF:
11029 force_thru = true;
11030 fallthrough;
11031 case TRANS_DDI_EDP_INPUT_A_ON:
11032 trans_pipe = PIPE_A;
11033 break;
11034 case TRANS_DDI_EDP_INPUT_B_ONOFF:
11035 trans_pipe = PIPE_B;
11036 break;
11037 case TRANS_DDI_EDP_INPUT_C_ONOFF:
11038 trans_pipe = PIPE_C;
11039 break;
11040 case TRANS_DDI_EDP_INPUT_D_ONOFF:
11041 trans_pipe = PIPE_D;
11042 break;
11043 }
11044
11045 if (trans_pipe == crtc->pipe) {
11046 pipe_config->cpu_transcoder = panel_transcoder;
11047 pipe_config->pch_pfit.force_thru = force_thru;
11048 }
11049 }
11050
11051 /*
11052 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
11053 */
11054 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
11055 enabled_panel_transcoders != BIT(TRANSCODER_EDP));
11056
11057 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
11058 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11059
11060 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11061 if (!wf)
11062 return false;
11063
11064 wakerefs[power_domain] = wf;
11065 *power_domain_mask |= BIT_ULL(power_domain);
11066
11067 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder));
11068
11069 return tmp & PIPECONF_ENABLE;
11070 }
11071
bxt_get_dsi_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,u64 * power_domain_mask,intel_wakeref_t * wakerefs)11072 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
11073 struct intel_crtc_state *pipe_config,
11074 u64 *power_domain_mask,
11075 intel_wakeref_t *wakerefs)
11076 {
11077 struct drm_device *dev = crtc->base.dev;
11078 struct drm_i915_private *dev_priv = to_i915(dev);
11079 enum intel_display_power_domain power_domain;
11080 enum transcoder cpu_transcoder;
11081 intel_wakeref_t wf;
11082 enum port port;
11083 u32 tmp;
11084
11085 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
11086 if (port == PORT_A)
11087 cpu_transcoder = TRANSCODER_DSI_A;
11088 else
11089 cpu_transcoder = TRANSCODER_DSI_C;
11090
11091 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
11092 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11093
11094 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11095 if (!wf)
11096 continue;
11097
11098 wakerefs[power_domain] = wf;
11099 *power_domain_mask |= BIT_ULL(power_domain);
11100
11101 /*
11102 * The PLL needs to be enabled with a valid divider
11103 * configuration, otherwise accessing DSI registers will hang
11104 * the machine. See BSpec North Display Engine
11105 * registers/MIPI[BXT]. We can break out here early, since we
11106 * need the same DSI PLL to be enabled for both DSI ports.
11107 */
11108 if (!bxt_dsi_pll_is_enabled(dev_priv))
11109 break;
11110
11111 /* XXX: this works for video mode only */
11112 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port));
11113 if (!(tmp & DPI_ENABLE))
11114 continue;
11115
11116 tmp = intel_de_read(dev_priv, MIPI_CTRL(port));
11117 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
11118 continue;
11119
11120 pipe_config->cpu_transcoder = cpu_transcoder;
11121 break;
11122 }
11123
11124 return transcoder_is_dsi(pipe_config->cpu_transcoder);
11125 }
11126
hsw_get_ddi_port_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11127 static void hsw_get_ddi_port_state(struct intel_crtc *crtc,
11128 struct intel_crtc_state *pipe_config)
11129 {
11130 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11131 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
11132 struct intel_shared_dpll *pll;
11133 enum port port;
11134 u32 tmp;
11135
11136 if (transcoder_is_dsi(cpu_transcoder)) {
11137 port = (cpu_transcoder == TRANSCODER_DSI_A) ?
11138 PORT_A : PORT_B;
11139 } else {
11140 tmp = intel_de_read(dev_priv,
11141 TRANS_DDI_FUNC_CTL(cpu_transcoder));
11142 if (INTEL_GEN(dev_priv) >= 12)
11143 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11144 else
11145 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11146 }
11147
11148 if (INTEL_GEN(dev_priv) >= 11)
11149 icl_get_ddi_pll(dev_priv, port, pipe_config);
11150 else if (IS_CANNONLAKE(dev_priv))
11151 cnl_get_ddi_pll(dev_priv, port, pipe_config);
11152 else if (IS_GEN9_BC(dev_priv))
11153 skl_get_ddi_pll(dev_priv, port, pipe_config);
11154 else if (IS_GEN9_LP(dev_priv))
11155 bxt_get_ddi_pll(dev_priv, port, pipe_config);
11156 else
11157 hsw_get_ddi_pll(dev_priv, port, pipe_config);
11158
11159 pll = pipe_config->shared_dpll;
11160 if (pll) {
11161 drm_WARN_ON(&dev_priv->drm,
11162 !pll->info->funcs->get_hw_state(dev_priv, pll,
11163 &pipe_config->dpll_hw_state));
11164 }
11165
11166 /*
11167 * Haswell has only FDI/PCH transcoder A. It is which is connected to
11168 * DDI E. So just check whether this pipe is wired to DDI E and whether
11169 * the PCH transcoder is on.
11170 */
11171 if (INTEL_GEN(dev_priv) < 9 &&
11172 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) {
11173 pipe_config->has_pch_encoder = true;
11174
11175 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
11176 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
11177 FDI_DP_PORT_WIDTH_SHIFT) + 1;
11178
11179 ilk_get_fdi_m_n_config(crtc, pipe_config);
11180 }
11181 }
11182
hsw_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11183 static bool hsw_get_pipe_config(struct intel_crtc *crtc,
11184 struct intel_crtc_state *pipe_config)
11185 {
11186 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11187 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
11188 enum intel_display_power_domain power_domain;
11189 u64 power_domain_mask;
11190 bool active;
11191 u32 tmp;
11192
11193 pipe_config->master_transcoder = INVALID_TRANSCODER;
11194
11195 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
11196 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11197 if (!wf)
11198 return false;
11199
11200 wakerefs[power_domain] = wf;
11201 power_domain_mask = BIT_ULL(power_domain);
11202
11203 pipe_config->shared_dpll = NULL;
11204
11205 active = hsw_get_transcoder_state(crtc, pipe_config,
11206 &power_domain_mask, wakerefs);
11207
11208 if (IS_GEN9_LP(dev_priv) &&
11209 bxt_get_dsi_transcoder_state(crtc, pipe_config,
11210 &power_domain_mask, wakerefs)) {
11211 drm_WARN_ON(&dev_priv->drm, active);
11212 active = true;
11213 }
11214
11215 if (!active)
11216 goto out;
11217
11218 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
11219 INTEL_GEN(dev_priv) >= 11) {
11220 hsw_get_ddi_port_state(crtc, pipe_config);
11221 intel_get_pipe_timings(crtc, pipe_config);
11222 }
11223
11224 intel_get_pipe_src_size(crtc, pipe_config);
11225
11226 if (IS_HASWELL(dev_priv)) {
11227 u32 tmp = intel_de_read(dev_priv,
11228 PIPECONF(pipe_config->cpu_transcoder));
11229
11230 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
11231 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
11232 else
11233 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
11234 } else {
11235 pipe_config->output_format =
11236 bdw_get_pipemisc_output_format(crtc);
11237
11238 /*
11239 * Currently there is no interface defined to
11240 * check user preference between RGB/YCBCR444
11241 * or YCBCR420. So the only possible case for
11242 * YCBCR444 usage is driving YCBCR420 output
11243 * with LSPCON, when pipe is configured for
11244 * YCBCR444 output and LSPCON takes care of
11245 * downsampling it.
11246 */
11247 pipe_config->lspcon_downsampling =
11248 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
11249 }
11250
11251 pipe_config->gamma_mode = intel_de_read(dev_priv,
11252 GAMMA_MODE(crtc->pipe));
11253
11254 pipe_config->csc_mode = intel_de_read(dev_priv,
11255 PIPE_CSC_MODE(crtc->pipe));
11256
11257 if (INTEL_GEN(dev_priv) >= 9) {
11258 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe));
11259
11260 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
11261 pipe_config->gamma_enable = true;
11262
11263 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
11264 pipe_config->csc_enable = true;
11265 } else {
11266 i9xx_get_pipe_color_config(pipe_config);
11267 }
11268
11269 intel_color_get_config(pipe_config);
11270
11271 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe));
11272 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
11273 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
11274 pipe_config->ips_linetime =
11275 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
11276
11277 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
11278 drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain));
11279
11280 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11281 if (wf) {
11282 wakerefs[power_domain] = wf;
11283 power_domain_mask |= BIT_ULL(power_domain);
11284
11285 if (INTEL_GEN(dev_priv) >= 9)
11286 skl_get_pfit_config(pipe_config);
11287 else
11288 ilk_get_pfit_config(pipe_config);
11289 }
11290
11291 if (hsw_crtc_supports_ips(crtc)) {
11292 if (IS_HASWELL(dev_priv))
11293 pipe_config->ips_enabled = intel_de_read(dev_priv,
11294 IPS_CTL) & IPS_ENABLE;
11295 else {
11296 /*
11297 * We cannot readout IPS state on broadwell, set to
11298 * true so we can set it to a defined state on first
11299 * commit.
11300 */
11301 pipe_config->ips_enabled = true;
11302 }
11303 }
11304
11305 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
11306 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
11307 pipe_config->pixel_multiplier =
11308 intel_de_read(dev_priv,
11309 PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
11310 } else {
11311 pipe_config->pixel_multiplier = 1;
11312 }
11313
11314 out:
11315 for_each_power_domain(power_domain, power_domain_mask)
11316 intel_display_power_put(dev_priv,
11317 power_domain, wakerefs[power_domain]);
11318
11319 return active;
11320 }
11321
intel_cursor_base(const struct intel_plane_state * plane_state)11322 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
11323 {
11324 struct drm_i915_private *dev_priv =
11325 to_i915(plane_state->uapi.plane->dev);
11326 const struct drm_framebuffer *fb = plane_state->hw.fb;
11327 const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11328 u32 base;
11329
11330 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
11331 base = sg_dma_address(obj->mm.pages->sgl);
11332 else
11333 base = intel_plane_ggtt_offset(plane_state);
11334
11335 return base + plane_state->color_plane[0].offset;
11336 }
11337
intel_cursor_position(const struct intel_plane_state * plane_state)11338 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
11339 {
11340 int x = plane_state->uapi.dst.x1;
11341 int y = plane_state->uapi.dst.y1;
11342 u32 pos = 0;
11343
11344 if (x < 0) {
11345 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
11346 x = -x;
11347 }
11348 pos |= x << CURSOR_X_SHIFT;
11349
11350 if (y < 0) {
11351 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
11352 y = -y;
11353 }
11354 pos |= y << CURSOR_Y_SHIFT;
11355
11356 return pos;
11357 }
11358
intel_cursor_size_ok(const struct intel_plane_state * plane_state)11359 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11360 {
11361 const struct drm_mode_config *config =
11362 &plane_state->uapi.plane->dev->mode_config;
11363 int width = drm_rect_width(&plane_state->uapi.dst);
11364 int height = drm_rect_height(&plane_state->uapi.dst);
11365
11366 return width > 0 && width <= config->cursor_width &&
11367 height > 0 && height <= config->cursor_height;
11368 }
11369
intel_cursor_check_surface(struct intel_plane_state * plane_state)11370 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11371 {
11372 struct drm_i915_private *dev_priv =
11373 to_i915(plane_state->uapi.plane->dev);
11374 unsigned int rotation = plane_state->hw.rotation;
11375 int src_x, src_y;
11376 u32 offset;
11377 int ret;
11378
11379 ret = intel_plane_compute_gtt(plane_state);
11380 if (ret)
11381 return ret;
11382
11383 if (!plane_state->uapi.visible)
11384 return 0;
11385
11386 src_x = plane_state->uapi.src.x1 >> 16;
11387 src_y = plane_state->uapi.src.y1 >> 16;
11388
11389 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11390 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11391 plane_state, 0);
11392
11393 if (src_x != 0 || src_y != 0) {
11394 drm_dbg_kms(&dev_priv->drm,
11395 "Arbitrary cursor panning not supported\n");
11396 return -EINVAL;
11397 }
11398
11399 /*
11400 * Put the final coordinates back so that the src
11401 * coordinate checks will see the right values.
11402 */
11403 drm_rect_translate_to(&plane_state->uapi.src,
11404 src_x << 16, src_y << 16);
11405
11406 /* ILK+ do this automagically in hardware */
11407 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11408 const struct drm_framebuffer *fb = plane_state->hw.fb;
11409 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11410 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11411
11412 offset += (src_h * src_w - 1) * fb->format->cpp[0];
11413 }
11414
11415 plane_state->color_plane[0].offset = offset;
11416 plane_state->color_plane[0].x = src_x;
11417 plane_state->color_plane[0].y = src_y;
11418
11419 return 0;
11420 }
11421
intel_check_cursor(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)11422 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11423 struct intel_plane_state *plane_state)
11424 {
11425 const struct drm_framebuffer *fb = plane_state->hw.fb;
11426 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11427 int ret;
11428
11429 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11430 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n");
11431 return -EINVAL;
11432 }
11433
11434 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
11435 &crtc_state->uapi,
11436 DRM_PLANE_HELPER_NO_SCALING,
11437 DRM_PLANE_HELPER_NO_SCALING,
11438 true, true);
11439 if (ret)
11440 return ret;
11441
11442 /* Use the unclipped src/dst rectangles, which we program to hw */
11443 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi);
11444 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi);
11445
11446 ret = intel_cursor_check_surface(plane_state);
11447 if (ret)
11448 return ret;
11449
11450 if (!plane_state->uapi.visible)
11451 return 0;
11452
11453 ret = intel_plane_check_src_coordinates(plane_state);
11454 if (ret)
11455 return ret;
11456
11457 return 0;
11458 }
11459
11460 static unsigned int
i845_cursor_max_stride(struct intel_plane * plane,u32 pixel_format,u64 modifier,unsigned int rotation)11461 i845_cursor_max_stride(struct intel_plane *plane,
11462 u32 pixel_format, u64 modifier,
11463 unsigned int rotation)
11464 {
11465 return 2048;
11466 }
11467
i845_cursor_ctl_crtc(const struct intel_crtc_state * crtc_state)11468 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11469 {
11470 u32 cntl = 0;
11471
11472 if (crtc_state->gamma_enable)
11473 cntl |= CURSOR_GAMMA_ENABLE;
11474
11475 return cntl;
11476 }
11477
i845_cursor_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11478 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11479 const struct intel_plane_state *plane_state)
11480 {
11481 return CURSOR_ENABLE |
11482 CURSOR_FORMAT_ARGB |
11483 CURSOR_STRIDE(plane_state->color_plane[0].stride);
11484 }
11485
i845_cursor_size_ok(const struct intel_plane_state * plane_state)11486 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11487 {
11488 int width = drm_rect_width(&plane_state->uapi.dst);
11489
11490 /*
11491 * 845g/865g are only limited by the width of their cursors,
11492 * the height is arbitrary up to the precision of the register.
11493 */
11494 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11495 }
11496
i845_check_cursor(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)11497 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11498 struct intel_plane_state *plane_state)
11499 {
11500 const struct drm_framebuffer *fb = plane_state->hw.fb;
11501 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11502 int ret;
11503
11504 ret = intel_check_cursor(crtc_state, plane_state);
11505 if (ret)
11506 return ret;
11507
11508 /* if we want to turn off the cursor ignore width and height */
11509 if (!fb)
11510 return 0;
11511
11512 /* Check for which cursor types we support */
11513 if (!i845_cursor_size_ok(plane_state)) {
11514 drm_dbg_kms(&i915->drm,
11515 "Cursor dimension %dx%d not supported\n",
11516 drm_rect_width(&plane_state->uapi.dst),
11517 drm_rect_height(&plane_state->uapi.dst));
11518 return -EINVAL;
11519 }
11520
11521 drm_WARN_ON(&i915->drm, plane_state->uapi.visible &&
11522 plane_state->color_plane[0].stride != fb->pitches[0]);
11523
11524 switch (fb->pitches[0]) {
11525 case 256:
11526 case 512:
11527 case 1024:
11528 case 2048:
11529 break;
11530 default:
11531 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n",
11532 fb->pitches[0]);
11533 return -EINVAL;
11534 }
11535
11536 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11537
11538 return 0;
11539 }
11540
i845_update_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11541 static void i845_update_cursor(struct intel_plane *plane,
11542 const struct intel_crtc_state *crtc_state,
11543 const struct intel_plane_state *plane_state)
11544 {
11545 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11546 u32 cntl = 0, base = 0, pos = 0, size = 0;
11547 unsigned long irqflags;
11548
11549 if (plane_state && plane_state->uapi.visible) {
11550 unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11551 unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11552
11553 cntl = plane_state->ctl |
11554 i845_cursor_ctl_crtc(crtc_state);
11555
11556 size = (height << 12) | width;
11557
11558 base = intel_cursor_base(plane_state);
11559 pos = intel_cursor_position(plane_state);
11560 }
11561
11562 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11563
11564 /* On these chipsets we can only modify the base/size/stride
11565 * whilst the cursor is disabled.
11566 */
11567 if (plane->cursor.base != base ||
11568 plane->cursor.size != size ||
11569 plane->cursor.cntl != cntl) {
11570 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0);
11571 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base);
11572 intel_de_write_fw(dev_priv, CURSIZE, size);
11573 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11574 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl);
11575
11576 plane->cursor.base = base;
11577 plane->cursor.size = size;
11578 plane->cursor.cntl = cntl;
11579 } else {
11580 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11581 }
11582
11583 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11584 }
11585
i845_disable_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)11586 static void i845_disable_cursor(struct intel_plane *plane,
11587 const struct intel_crtc_state *crtc_state)
11588 {
11589 i845_update_cursor(plane, crtc_state, NULL);
11590 }
11591
i845_cursor_get_hw_state(struct intel_plane * plane,enum pipe * pipe)11592 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11593 enum pipe *pipe)
11594 {
11595 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11596 enum intel_display_power_domain power_domain;
11597 intel_wakeref_t wakeref;
11598 bool ret;
11599
11600 power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11601 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11602 if (!wakeref)
11603 return false;
11604
11605 ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11606
11607 *pipe = PIPE_A;
11608
11609 intel_display_power_put(dev_priv, power_domain, wakeref);
11610
11611 return ret;
11612 }
11613
11614 static unsigned int
i9xx_cursor_max_stride(struct intel_plane * plane,u32 pixel_format,u64 modifier,unsigned int rotation)11615 i9xx_cursor_max_stride(struct intel_plane *plane,
11616 u32 pixel_format, u64 modifier,
11617 unsigned int rotation)
11618 {
11619 return plane->base.dev->mode_config.cursor_width * 4;
11620 }
11621
i9xx_cursor_ctl_crtc(const struct intel_crtc_state * crtc_state)11622 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11623 {
11624 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11625 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11626 u32 cntl = 0;
11627
11628 if (INTEL_GEN(dev_priv) >= 11)
11629 return cntl;
11630
11631 if (crtc_state->gamma_enable)
11632 cntl = MCURSOR_GAMMA_ENABLE;
11633
11634 if (crtc_state->csc_enable)
11635 cntl |= MCURSOR_PIPE_CSC_ENABLE;
11636
11637 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11638 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11639
11640 return cntl;
11641 }
11642
i9xx_cursor_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11643 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11644 const struct intel_plane_state *plane_state)
11645 {
11646 struct drm_i915_private *dev_priv =
11647 to_i915(plane_state->uapi.plane->dev);
11648 u32 cntl = 0;
11649
11650 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11651 cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11652
11653 switch (drm_rect_width(&plane_state->uapi.dst)) {
11654 case 64:
11655 cntl |= MCURSOR_MODE_64_ARGB_AX;
11656 break;
11657 case 128:
11658 cntl |= MCURSOR_MODE_128_ARGB_AX;
11659 break;
11660 case 256:
11661 cntl |= MCURSOR_MODE_256_ARGB_AX;
11662 break;
11663 default:
11664 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11665 return 0;
11666 }
11667
11668 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11669 cntl |= MCURSOR_ROTATE_180;
11670
11671 return cntl;
11672 }
11673
i9xx_cursor_size_ok(const struct intel_plane_state * plane_state)11674 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11675 {
11676 struct drm_i915_private *dev_priv =
11677 to_i915(plane_state->uapi.plane->dev);
11678 int width = drm_rect_width(&plane_state->uapi.dst);
11679 int height = drm_rect_height(&plane_state->uapi.dst);
11680
11681 if (!intel_cursor_size_ok(plane_state))
11682 return false;
11683
11684 /* Cursor width is limited to a few power-of-two sizes */
11685 switch (width) {
11686 case 256:
11687 case 128:
11688 case 64:
11689 break;
11690 default:
11691 return false;
11692 }
11693
11694 /*
11695 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11696 * height from 8 lines up to the cursor width, when the
11697 * cursor is not rotated. Everything else requires square
11698 * cursors.
11699 */
11700 if (HAS_CUR_FBC(dev_priv) &&
11701 plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11702 if (height < 8 || height > width)
11703 return false;
11704 } else {
11705 if (height != width)
11706 return false;
11707 }
11708
11709 return true;
11710 }
11711
i9xx_check_cursor(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)11712 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11713 struct intel_plane_state *plane_state)
11714 {
11715 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11716 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11717 const struct drm_framebuffer *fb = plane_state->hw.fb;
11718 enum pipe pipe = plane->pipe;
11719 int ret;
11720
11721 ret = intel_check_cursor(crtc_state, plane_state);
11722 if (ret)
11723 return ret;
11724
11725 /* if we want to turn off the cursor ignore width and height */
11726 if (!fb)
11727 return 0;
11728
11729 /* Check for which cursor types we support */
11730 if (!i9xx_cursor_size_ok(plane_state)) {
11731 drm_dbg(&dev_priv->drm,
11732 "Cursor dimension %dx%d not supported\n",
11733 drm_rect_width(&plane_state->uapi.dst),
11734 drm_rect_height(&plane_state->uapi.dst));
11735 return -EINVAL;
11736 }
11737
11738 drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible &&
11739 plane_state->color_plane[0].stride != fb->pitches[0]);
11740
11741 if (fb->pitches[0] !=
11742 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
11743 drm_dbg_kms(&dev_priv->drm,
11744 "Invalid cursor stride (%u) (cursor width %d)\n",
11745 fb->pitches[0],
11746 drm_rect_width(&plane_state->uapi.dst));
11747 return -EINVAL;
11748 }
11749
11750 /*
11751 * There's something wrong with the cursor on CHV pipe C.
11752 * If it straddles the left edge of the screen then
11753 * moving it away from the edge or disabling it often
11754 * results in a pipe underrun, and often that can lead to
11755 * dead pipe (constant underrun reported, and it scans
11756 * out just a solid color). To recover from that, the
11757 * display power well must be turned off and on again.
11758 * Refuse the put the cursor into that compromised position.
11759 */
11760 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11761 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
11762 drm_dbg_kms(&dev_priv->drm,
11763 "CHV cursor C not allowed to straddle the left screen edge\n");
11764 return -EINVAL;
11765 }
11766
11767 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11768
11769 return 0;
11770 }
11771
i9xx_update_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11772 static void i9xx_update_cursor(struct intel_plane *plane,
11773 const struct intel_crtc_state *crtc_state,
11774 const struct intel_plane_state *plane_state)
11775 {
11776 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11777 enum pipe pipe = plane->pipe;
11778 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11779 unsigned long irqflags;
11780
11781 if (plane_state && plane_state->uapi.visible) {
11782 unsigned width = drm_rect_width(&plane_state->uapi.dst);
11783 unsigned height = drm_rect_height(&plane_state->uapi.dst);
11784
11785 cntl = plane_state->ctl |
11786 i9xx_cursor_ctl_crtc(crtc_state);
11787
11788 if (width != height)
11789 fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11790
11791 base = intel_cursor_base(plane_state);
11792 pos = intel_cursor_position(plane_state);
11793 }
11794
11795 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11796
11797 /*
11798 * On some platforms writing CURCNTR first will also
11799 * cause CURPOS to be armed by the CURBASE write.
11800 * Without the CURCNTR write the CURPOS write would
11801 * arm itself. Thus we always update CURCNTR before
11802 * CURPOS.
11803 *
11804 * On other platforms CURPOS always requires the
11805 * CURBASE write to arm the update. Additonally
11806 * a write to any of the cursor register will cancel
11807 * an already armed cursor update. Thus leaving out
11808 * the CURBASE write after CURPOS could lead to a
11809 * cursor that doesn't appear to move, or even change
11810 * shape. Thus we always write CURBASE.
11811 *
11812 * The other registers are armed by by the CURBASE write
11813 * except when the plane is getting enabled at which time
11814 * the CURCNTR write arms the update.
11815 */
11816
11817 if (INTEL_GEN(dev_priv) >= 9)
11818 skl_write_cursor_wm(plane, crtc_state);
11819
11820 if (plane->cursor.base != base ||
11821 plane->cursor.size != fbc_ctl ||
11822 plane->cursor.cntl != cntl) {
11823 if (HAS_CUR_FBC(dev_priv))
11824 intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe),
11825 fbc_ctl);
11826 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl);
11827 intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11828 intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11829
11830 plane->cursor.base = base;
11831 plane->cursor.size = fbc_ctl;
11832 plane->cursor.cntl = cntl;
11833 } else {
11834 intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11835 intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11836 }
11837
11838 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11839 }
11840
i9xx_disable_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)11841 static void i9xx_disable_cursor(struct intel_plane *plane,
11842 const struct intel_crtc_state *crtc_state)
11843 {
11844 i9xx_update_cursor(plane, crtc_state, NULL);
11845 }
11846
i9xx_cursor_get_hw_state(struct intel_plane * plane,enum pipe * pipe)11847 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11848 enum pipe *pipe)
11849 {
11850 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11851 enum intel_display_power_domain power_domain;
11852 intel_wakeref_t wakeref;
11853 bool ret;
11854 u32 val;
11855
11856 /*
11857 * Not 100% correct for planes that can move between pipes,
11858 * but that's only the case for gen2-3 which don't have any
11859 * display power wells.
11860 */
11861 power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11862 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11863 if (!wakeref)
11864 return false;
11865
11866 val = intel_de_read(dev_priv, CURCNTR(plane->pipe));
11867
11868 ret = val & MCURSOR_MODE;
11869
11870 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11871 *pipe = plane->pipe;
11872 else
11873 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11874 MCURSOR_PIPE_SELECT_SHIFT;
11875
11876 intel_display_power_put(dev_priv, power_domain, wakeref);
11877
11878 return ret;
11879 }
11880
11881 /* VESA 640x480x72Hz mode to set on the pipe */
11882 static const struct drm_display_mode load_detect_mode = {
11883 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11884 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11885 };
11886
11887 struct drm_framebuffer *
intel_framebuffer_create(struct drm_i915_gem_object * obj,struct drm_mode_fb_cmd2 * mode_cmd)11888 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11889 struct drm_mode_fb_cmd2 *mode_cmd)
11890 {
11891 struct intel_framebuffer *intel_fb;
11892 int ret;
11893
11894 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11895 if (!intel_fb)
11896 return ERR_PTR(-ENOMEM);
11897
11898 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11899 if (ret)
11900 goto err;
11901
11902 return &intel_fb->base;
11903
11904 err:
11905 kfree(intel_fb);
11906 return ERR_PTR(ret);
11907 }
11908
intel_modeset_disable_planes(struct drm_atomic_state * state,struct drm_crtc * crtc)11909 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11910 struct drm_crtc *crtc)
11911 {
11912 struct drm_plane *plane;
11913 struct drm_plane_state *plane_state;
11914 int ret, i;
11915
11916 ret = drm_atomic_add_affected_planes(state, crtc);
11917 if (ret)
11918 return ret;
11919
11920 for_each_new_plane_in_state(state, plane, plane_state, i) {
11921 if (plane_state->crtc != crtc)
11922 continue;
11923
11924 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11925 if (ret)
11926 return ret;
11927
11928 drm_atomic_set_fb_for_plane(plane_state, NULL);
11929 }
11930
11931 return 0;
11932 }
11933
intel_get_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)11934 int intel_get_load_detect_pipe(struct drm_connector *connector,
11935 struct intel_load_detect_pipe *old,
11936 struct drm_modeset_acquire_ctx *ctx)
11937 {
11938 struct intel_crtc *intel_crtc;
11939 struct intel_encoder *intel_encoder =
11940 intel_attached_encoder(to_intel_connector(connector));
11941 struct drm_crtc *possible_crtc;
11942 struct drm_encoder *encoder = &intel_encoder->base;
11943 struct drm_crtc *crtc = NULL;
11944 struct drm_device *dev = encoder->dev;
11945 struct drm_i915_private *dev_priv = to_i915(dev);
11946 struct drm_mode_config *config = &dev->mode_config;
11947 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11948 struct drm_connector_state *connector_state;
11949 struct intel_crtc_state *crtc_state;
11950 int ret, i = -1;
11951
11952 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11953 connector->base.id, connector->name,
11954 encoder->base.id, encoder->name);
11955
11956 old->restore_state = NULL;
11957
11958 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex));
11959
11960 /*
11961 * Algorithm gets a little messy:
11962 *
11963 * - if the connector already has an assigned crtc, use it (but make
11964 * sure it's on first)
11965 *
11966 * - try to find the first unused crtc that can drive this connector,
11967 * and use that if we find one
11968 */
11969
11970 /* See if we already have a CRTC for this connector */
11971 if (connector->state->crtc) {
11972 crtc = connector->state->crtc;
11973
11974 ret = drm_modeset_lock(&crtc->mutex, ctx);
11975 if (ret)
11976 goto fail;
11977
11978 /* Make sure the crtc and connector are running */
11979 goto found;
11980 }
11981
11982 /* Find an unused one (if possible) */
11983 for_each_crtc(dev, possible_crtc) {
11984 i++;
11985 if (!(encoder->possible_crtcs & (1 << i)))
11986 continue;
11987
11988 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11989 if (ret)
11990 goto fail;
11991
11992 if (possible_crtc->state->enable) {
11993 drm_modeset_unlock(&possible_crtc->mutex);
11994 continue;
11995 }
11996
11997 crtc = possible_crtc;
11998 break;
11999 }
12000
12001 /*
12002 * If we didn't find an unused CRTC, don't use any.
12003 */
12004 if (!crtc) {
12005 drm_dbg_kms(&dev_priv->drm,
12006 "no pipe available for load-detect\n");
12007 ret = -ENODEV;
12008 goto fail;
12009 }
12010
12011 found:
12012 intel_crtc = to_intel_crtc(crtc);
12013
12014 state = drm_atomic_state_alloc(dev);
12015 restore_state = drm_atomic_state_alloc(dev);
12016 if (!state || !restore_state) {
12017 ret = -ENOMEM;
12018 goto fail;
12019 }
12020
12021 state->acquire_ctx = ctx;
12022 restore_state->acquire_ctx = ctx;
12023
12024 connector_state = drm_atomic_get_connector_state(state, connector);
12025 if (IS_ERR(connector_state)) {
12026 ret = PTR_ERR(connector_state);
12027 goto fail;
12028 }
12029
12030 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
12031 if (ret)
12032 goto fail;
12033
12034 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12035 if (IS_ERR(crtc_state)) {
12036 ret = PTR_ERR(crtc_state);
12037 goto fail;
12038 }
12039
12040 crtc_state->uapi.active = true;
12041
12042 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
12043 &load_detect_mode);
12044 if (ret)
12045 goto fail;
12046
12047 ret = intel_modeset_disable_planes(state, crtc);
12048 if (ret)
12049 goto fail;
12050
12051 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
12052 if (!ret)
12053 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
12054 if (!ret)
12055 ret = drm_atomic_add_affected_planes(restore_state, crtc);
12056 if (ret) {
12057 drm_dbg_kms(&dev_priv->drm,
12058 "Failed to create a copy of old state to restore: %i\n",
12059 ret);
12060 goto fail;
12061 }
12062
12063 ret = drm_atomic_commit(state);
12064 if (ret) {
12065 drm_dbg_kms(&dev_priv->drm,
12066 "failed to set mode on load-detect pipe\n");
12067 goto fail;
12068 }
12069
12070 old->restore_state = restore_state;
12071 drm_atomic_state_put(state);
12072
12073 /* let the connector get through one full cycle before testing */
12074 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
12075 return true;
12076
12077 fail:
12078 if (state) {
12079 drm_atomic_state_put(state);
12080 state = NULL;
12081 }
12082 if (restore_state) {
12083 drm_atomic_state_put(restore_state);
12084 restore_state = NULL;
12085 }
12086
12087 if (ret == -EDEADLK)
12088 return ret;
12089
12090 return false;
12091 }
12092
intel_release_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)12093 void intel_release_load_detect_pipe(struct drm_connector *connector,
12094 struct intel_load_detect_pipe *old,
12095 struct drm_modeset_acquire_ctx *ctx)
12096 {
12097 struct intel_encoder *intel_encoder =
12098 intel_attached_encoder(to_intel_connector(connector));
12099 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev);
12100 struct drm_encoder *encoder = &intel_encoder->base;
12101 struct drm_atomic_state *state = old->restore_state;
12102 int ret;
12103
12104 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
12105 connector->base.id, connector->name,
12106 encoder->base.id, encoder->name);
12107
12108 if (!state)
12109 return;
12110
12111 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
12112 if (ret)
12113 drm_dbg_kms(&i915->drm,
12114 "Couldn't release load detect pipe: %i\n", ret);
12115 drm_atomic_state_put(state);
12116 }
12117
i9xx_pll_refclk(struct drm_device * dev,const struct intel_crtc_state * pipe_config)12118 static int i9xx_pll_refclk(struct drm_device *dev,
12119 const struct intel_crtc_state *pipe_config)
12120 {
12121 struct drm_i915_private *dev_priv = to_i915(dev);
12122 u32 dpll = pipe_config->dpll_hw_state.dpll;
12123
12124 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
12125 return dev_priv->vbt.lvds_ssc_freq;
12126 else if (HAS_PCH_SPLIT(dev_priv))
12127 return 120000;
12128 else if (!IS_GEN(dev_priv, 2))
12129 return 96000;
12130 else
12131 return 48000;
12132 }
12133
12134 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12135 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
12136 struct intel_crtc_state *pipe_config)
12137 {
12138 struct drm_device *dev = crtc->base.dev;
12139 struct drm_i915_private *dev_priv = to_i915(dev);
12140 enum pipe pipe = crtc->pipe;
12141 u32 dpll = pipe_config->dpll_hw_state.dpll;
12142 u32 fp;
12143 struct dpll clock;
12144 int port_clock;
12145 int refclk = i9xx_pll_refclk(dev, pipe_config);
12146
12147 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
12148 fp = pipe_config->dpll_hw_state.fp0;
12149 else
12150 fp = pipe_config->dpll_hw_state.fp1;
12151
12152 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
12153 if (IS_PINEVIEW(dev_priv)) {
12154 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
12155 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
12156 } else {
12157 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
12158 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
12159 }
12160
12161 if (!IS_GEN(dev_priv, 2)) {
12162 if (IS_PINEVIEW(dev_priv))
12163 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
12164 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
12165 else
12166 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
12167 DPLL_FPA01_P1_POST_DIV_SHIFT);
12168
12169 switch (dpll & DPLL_MODE_MASK) {
12170 case DPLLB_MODE_DAC_SERIAL:
12171 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
12172 5 : 10;
12173 break;
12174 case DPLLB_MODE_LVDS:
12175 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
12176 7 : 14;
12177 break;
12178 default:
12179 drm_dbg_kms(&dev_priv->drm,
12180 "Unknown DPLL mode %08x in programmed "
12181 "mode\n", (int)(dpll & DPLL_MODE_MASK));
12182 return;
12183 }
12184
12185 if (IS_PINEVIEW(dev_priv))
12186 port_clock = pnv_calc_dpll_params(refclk, &clock);
12187 else
12188 port_clock = i9xx_calc_dpll_params(refclk, &clock);
12189 } else {
12190 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv,
12191 LVDS);
12192 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
12193
12194 if (is_lvds) {
12195 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
12196 DPLL_FPA01_P1_POST_DIV_SHIFT);
12197
12198 if (lvds & LVDS_CLKB_POWER_UP)
12199 clock.p2 = 7;
12200 else
12201 clock.p2 = 14;
12202 } else {
12203 if (dpll & PLL_P1_DIVIDE_BY_TWO)
12204 clock.p1 = 2;
12205 else {
12206 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
12207 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
12208 }
12209 if (dpll & PLL_P2_DIVIDE_BY_4)
12210 clock.p2 = 4;
12211 else
12212 clock.p2 = 2;
12213 }
12214
12215 port_clock = i9xx_calc_dpll_params(refclk, &clock);
12216 }
12217
12218 /*
12219 * This value includes pixel_multiplier. We will use
12220 * port_clock to compute adjusted_mode.crtc_clock in the
12221 * encoder's get_config() function.
12222 */
12223 pipe_config->port_clock = port_clock;
12224 }
12225
intel_dotclock_calculate(int link_freq,const struct intel_link_m_n * m_n)12226 int intel_dotclock_calculate(int link_freq,
12227 const struct intel_link_m_n *m_n)
12228 {
12229 /*
12230 * The calculation for the data clock is:
12231 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
12232 * But we want to avoid losing precison if possible, so:
12233 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
12234 *
12235 * and the link clock is simpler:
12236 * link_clock = (m * link_clock) / n
12237 */
12238
12239 if (!m_n->link_n)
12240 return 0;
12241
12242 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
12243 }
12244
ilk_pch_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12245 static void ilk_pch_clock_get(struct intel_crtc *crtc,
12246 struct intel_crtc_state *pipe_config)
12247 {
12248 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12249
12250 /* read out port_clock from the DPLL */
12251 i9xx_crtc_clock_get(crtc, pipe_config);
12252
12253 /*
12254 * In case there is an active pipe without active ports,
12255 * we may need some idea for the dotclock anyway.
12256 * Calculate one based on the FDI configuration.
12257 */
12258 pipe_config->hw.adjusted_mode.crtc_clock =
12259 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12260 &pipe_config->fdi_m_n);
12261 }
12262
intel_crtc_state_reset(struct intel_crtc_state * crtc_state,struct intel_crtc * crtc)12263 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
12264 struct intel_crtc *crtc)
12265 {
12266 memset(crtc_state, 0, sizeof(*crtc_state));
12267
12268 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
12269
12270 crtc_state->cpu_transcoder = INVALID_TRANSCODER;
12271 crtc_state->master_transcoder = INVALID_TRANSCODER;
12272 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
12273 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
12274 crtc_state->scaler_state.scaler_id = -1;
12275 crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
12276 }
12277
intel_crtc_state_alloc(struct intel_crtc * crtc)12278 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
12279 {
12280 struct intel_crtc_state *crtc_state;
12281
12282 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
12283
12284 if (crtc_state)
12285 intel_crtc_state_reset(crtc_state, crtc);
12286
12287 return crtc_state;
12288 }
12289
12290 /* Returns the currently programmed mode of the given encoder. */
12291 struct drm_display_mode *
intel_encoder_current_mode(struct intel_encoder * encoder)12292 intel_encoder_current_mode(struct intel_encoder *encoder)
12293 {
12294 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
12295 struct intel_crtc_state *crtc_state;
12296 struct drm_display_mode *mode;
12297 struct intel_crtc *crtc;
12298 enum pipe pipe;
12299
12300 if (!encoder->get_hw_state(encoder, &pipe))
12301 return NULL;
12302
12303 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12304
12305 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
12306 if (!mode)
12307 return NULL;
12308
12309 crtc_state = intel_crtc_state_alloc(crtc);
12310 if (!crtc_state) {
12311 kfree(mode);
12312 return NULL;
12313 }
12314
12315 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
12316 kfree(crtc_state);
12317 kfree(mode);
12318 return NULL;
12319 }
12320
12321 encoder->get_config(encoder, crtc_state);
12322
12323 intel_mode_from_pipe_config(mode, crtc_state);
12324
12325 kfree(crtc_state);
12326
12327 return mode;
12328 }
12329
intel_crtc_destroy(struct drm_crtc * crtc)12330 static void intel_crtc_destroy(struct drm_crtc *crtc)
12331 {
12332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12333
12334 drm_crtc_cleanup(crtc);
12335 kfree(intel_crtc);
12336 }
12337
12338 /**
12339 * intel_wm_need_update - Check whether watermarks need updating
12340 * @cur: current plane state
12341 * @new: new plane state
12342 *
12343 * Check current plane state versus the new one to determine whether
12344 * watermarks need to be recalculated.
12345 *
12346 * Returns true or false.
12347 */
intel_wm_need_update(const struct intel_plane_state * cur,struct intel_plane_state * new)12348 static bool intel_wm_need_update(const struct intel_plane_state *cur,
12349 struct intel_plane_state *new)
12350 {
12351 /* Update watermarks on tiling or size changes. */
12352 if (new->uapi.visible != cur->uapi.visible)
12353 return true;
12354
12355 if (!cur->hw.fb || !new->hw.fb)
12356 return false;
12357
12358 if (cur->hw.fb->modifier != new->hw.fb->modifier ||
12359 cur->hw.rotation != new->hw.rotation ||
12360 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
12361 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
12362 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
12363 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
12364 return true;
12365
12366 return false;
12367 }
12368
needs_scaling(const struct intel_plane_state * state)12369 static bool needs_scaling(const struct intel_plane_state *state)
12370 {
12371 int src_w = drm_rect_width(&state->uapi.src) >> 16;
12372 int src_h = drm_rect_height(&state->uapi.src) >> 16;
12373 int dst_w = drm_rect_width(&state->uapi.dst);
12374 int dst_h = drm_rect_height(&state->uapi.dst);
12375
12376 return (src_w != dst_w || src_h != dst_h);
12377 }
12378
intel_plane_atomic_calc_changes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * crtc_state,const struct intel_plane_state * old_plane_state,struct intel_plane_state * plane_state)12379 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12380 struct intel_crtc_state *crtc_state,
12381 const struct intel_plane_state *old_plane_state,
12382 struct intel_plane_state *plane_state)
12383 {
12384 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12385 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12386 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12387 bool mode_changed = needs_modeset(crtc_state);
12388 bool was_crtc_enabled = old_crtc_state->hw.active;
12389 bool is_crtc_enabled = crtc_state->hw.active;
12390 bool turn_off, turn_on, visible, was_visible;
12391 int ret;
12392
12393 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12394 ret = skl_update_scaler_plane(crtc_state, plane_state);
12395 if (ret)
12396 return ret;
12397 }
12398
12399 was_visible = old_plane_state->uapi.visible;
12400 visible = plane_state->uapi.visible;
12401
12402 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible))
12403 was_visible = false;
12404
12405 /*
12406 * Visibility is calculated as if the crtc was on, but
12407 * after scaler setup everything depends on it being off
12408 * when the crtc isn't active.
12409 *
12410 * FIXME this is wrong for watermarks. Watermarks should also
12411 * be computed as if the pipe would be active. Perhaps move
12412 * per-plane wm computation to the .check_plane() hook, and
12413 * only combine the results from all planes in the current place?
12414 */
12415 if (!is_crtc_enabled) {
12416 intel_plane_set_invisible(crtc_state, plane_state);
12417 visible = false;
12418 }
12419
12420 if (!was_visible && !visible)
12421 return 0;
12422
12423 turn_off = was_visible && (!visible || mode_changed);
12424 turn_on = visible && (!was_visible || mode_changed);
12425
12426 drm_dbg_atomic(&dev_priv->drm,
12427 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12428 crtc->base.base.id, crtc->base.name,
12429 plane->base.base.id, plane->base.name,
12430 was_visible, visible,
12431 turn_off, turn_on, mode_changed);
12432
12433 if (turn_on) {
12434 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12435 crtc_state->update_wm_pre = true;
12436
12437 /* must disable cxsr around plane enable/disable */
12438 if (plane->id != PLANE_CURSOR)
12439 crtc_state->disable_cxsr = true;
12440 } else if (turn_off) {
12441 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12442 crtc_state->update_wm_post = true;
12443
12444 /* must disable cxsr around plane enable/disable */
12445 if (plane->id != PLANE_CURSOR)
12446 crtc_state->disable_cxsr = true;
12447 } else if (intel_wm_need_update(old_plane_state, plane_state)) {
12448 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12449 /* FIXME bollocks */
12450 crtc_state->update_wm_pre = true;
12451 crtc_state->update_wm_post = true;
12452 }
12453 }
12454
12455 if (visible || was_visible)
12456 crtc_state->fb_bits |= plane->frontbuffer_bit;
12457
12458 /*
12459 * ILK/SNB DVSACNTR/Sprite Enable
12460 * IVB SPR_CTL/Sprite Enable
12461 * "When in Self Refresh Big FIFO mode, a write to enable the
12462 * plane will be internally buffered and delayed while Big FIFO
12463 * mode is exiting."
12464 *
12465 * Which means that enabling the sprite can take an extra frame
12466 * when we start in big FIFO mode (LP1+). Thus we need to drop
12467 * down to LP0 and wait for vblank in order to make sure the
12468 * sprite gets enabled on the next vblank after the register write.
12469 * Doing otherwise would risk enabling the sprite one frame after
12470 * we've already signalled flip completion. We can resume LP1+
12471 * once the sprite has been enabled.
12472 *
12473 *
12474 * WaCxSRDisabledForSpriteScaling:ivb
12475 * IVB SPR_SCALE/Scaling Enable
12476 * "Low Power watermarks must be disabled for at least one
12477 * frame before enabling sprite scaling, and kept disabled
12478 * until sprite scaling is disabled."
12479 *
12480 * ILK/SNB DVSASCALE/Scaling Enable
12481 * "When in Self Refresh Big FIFO mode, scaling enable will be
12482 * masked off while Big FIFO mode is exiting."
12483 *
12484 * Despite the w/a only being listed for IVB we assume that
12485 * the ILK/SNB note has similar ramifications, hence we apply
12486 * the w/a on all three platforms.
12487 *
12488 * With experimental results seems this is needed also for primary
12489 * plane, not only sprite plane.
12490 */
12491 if (plane->id != PLANE_CURSOR &&
12492 (IS_GEN_RANGE(dev_priv, 5, 6) ||
12493 IS_IVYBRIDGE(dev_priv)) &&
12494 (turn_on || (!needs_scaling(old_plane_state) &&
12495 needs_scaling(plane_state))))
12496 crtc_state->disable_lp_wm = true;
12497
12498 return 0;
12499 }
12500
encoders_cloneable(const struct intel_encoder * a,const struct intel_encoder * b)12501 static bool encoders_cloneable(const struct intel_encoder *a,
12502 const struct intel_encoder *b)
12503 {
12504 /* masks could be asymmetric, so check both ways */
12505 return a == b || (a->cloneable & (1 << b->type) &&
12506 b->cloneable & (1 << a->type));
12507 }
12508
check_single_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder)12509 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12510 struct intel_crtc *crtc,
12511 struct intel_encoder *encoder)
12512 {
12513 struct intel_encoder *source_encoder;
12514 struct drm_connector *connector;
12515 struct drm_connector_state *connector_state;
12516 int i;
12517
12518 for_each_new_connector_in_state(state, connector, connector_state, i) {
12519 if (connector_state->crtc != &crtc->base)
12520 continue;
12521
12522 source_encoder =
12523 to_intel_encoder(connector_state->best_encoder);
12524 if (!encoders_cloneable(encoder, source_encoder))
12525 return false;
12526 }
12527
12528 return true;
12529 }
12530
icl_add_linked_planes(struct intel_atomic_state * state)12531 static int icl_add_linked_planes(struct intel_atomic_state *state)
12532 {
12533 struct intel_plane *plane, *linked;
12534 struct intel_plane_state *plane_state, *linked_plane_state;
12535 int i;
12536
12537 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12538 linked = plane_state->planar_linked_plane;
12539
12540 if (!linked)
12541 continue;
12542
12543 linked_plane_state = intel_atomic_get_plane_state(state, linked);
12544 if (IS_ERR(linked_plane_state))
12545 return PTR_ERR(linked_plane_state);
12546
12547 drm_WARN_ON(state->base.dev,
12548 linked_plane_state->planar_linked_plane != plane);
12549 drm_WARN_ON(state->base.dev,
12550 linked_plane_state->planar_slave == plane_state->planar_slave);
12551 }
12552
12553 return 0;
12554 }
12555
icl_check_nv12_planes(struct intel_crtc_state * crtc_state)12556 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12557 {
12558 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12559 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12560 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12561 struct intel_plane *plane, *linked;
12562 struct intel_plane_state *plane_state;
12563 int i;
12564
12565 if (INTEL_GEN(dev_priv) < 11)
12566 return 0;
12567
12568 /*
12569 * Destroy all old plane links and make the slave plane invisible
12570 * in the crtc_state->active_planes mask.
12571 */
12572 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12573 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12574 continue;
12575
12576 plane_state->planar_linked_plane = NULL;
12577 if (plane_state->planar_slave && !plane_state->uapi.visible) {
12578 crtc_state->active_planes &= ~BIT(plane->id);
12579 crtc_state->update_planes |= BIT(plane->id);
12580 }
12581
12582 plane_state->planar_slave = false;
12583 }
12584
12585 if (!crtc_state->nv12_planes)
12586 return 0;
12587
12588 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12589 struct intel_plane_state *linked_state = NULL;
12590
12591 if (plane->pipe != crtc->pipe ||
12592 !(crtc_state->nv12_planes & BIT(plane->id)))
12593 continue;
12594
12595 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12596 if (!icl_is_nv12_y_plane(dev_priv, linked->id))
12597 continue;
12598
12599 if (crtc_state->active_planes & BIT(linked->id))
12600 continue;
12601
12602 linked_state = intel_atomic_get_plane_state(state, linked);
12603 if (IS_ERR(linked_state))
12604 return PTR_ERR(linked_state);
12605
12606 break;
12607 }
12608
12609 if (!linked_state) {
12610 drm_dbg_kms(&dev_priv->drm,
12611 "Need %d free Y planes for planar YUV\n",
12612 hweight8(crtc_state->nv12_planes));
12613
12614 return -EINVAL;
12615 }
12616
12617 plane_state->planar_linked_plane = linked;
12618
12619 linked_state->planar_slave = true;
12620 linked_state->planar_linked_plane = plane;
12621 crtc_state->active_planes |= BIT(linked->id);
12622 crtc_state->update_planes |= BIT(linked->id);
12623 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n",
12624 linked->base.name, plane->base.name);
12625
12626 /* Copy parameters to slave plane */
12627 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12628 linked_state->color_ctl = plane_state->color_ctl;
12629 linked_state->view = plane_state->view;
12630 memcpy(linked_state->color_plane, plane_state->color_plane,
12631 sizeof(linked_state->color_plane));
12632
12633 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state);
12634 linked_state->uapi.src = plane_state->uapi.src;
12635 linked_state->uapi.dst = plane_state->uapi.dst;
12636
12637 if (icl_is_hdr_plane(dev_priv, plane->id)) {
12638 if (linked->id == PLANE_SPRITE5)
12639 plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12640 else if (linked->id == PLANE_SPRITE4)
12641 plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12642 else if (linked->id == PLANE_SPRITE3)
12643 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL;
12644 else if (linked->id == PLANE_SPRITE2)
12645 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL;
12646 else
12647 MISSING_CASE(linked->id);
12648 }
12649 }
12650
12651 return 0;
12652 }
12653
c8_planes_changed(const struct intel_crtc_state * new_crtc_state)12654 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12655 {
12656 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12657 struct intel_atomic_state *state =
12658 to_intel_atomic_state(new_crtc_state->uapi.state);
12659 const struct intel_crtc_state *old_crtc_state =
12660 intel_atomic_get_old_crtc_state(state, crtc);
12661
12662 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12663 }
12664
hsw_linetime_wm(const struct intel_crtc_state * crtc_state)12665 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
12666 {
12667 const struct drm_display_mode *adjusted_mode =
12668 &crtc_state->hw.adjusted_mode;
12669 int linetime_wm;
12670
12671 if (!crtc_state->hw.enable)
12672 return 0;
12673
12674 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12675 adjusted_mode->crtc_clock);
12676
12677 return min(linetime_wm, 0x1ff);
12678 }
12679
hsw_ips_linetime_wm(const struct intel_crtc_state * crtc_state,const struct intel_cdclk_state * cdclk_state)12680 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
12681 const struct intel_cdclk_state *cdclk_state)
12682 {
12683 const struct drm_display_mode *adjusted_mode =
12684 &crtc_state->hw.adjusted_mode;
12685 int linetime_wm;
12686
12687 if (!crtc_state->hw.enable)
12688 return 0;
12689
12690 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12691 cdclk_state->logical.cdclk);
12692
12693 return min(linetime_wm, 0x1ff);
12694 }
12695
skl_linetime_wm(const struct intel_crtc_state * crtc_state)12696 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
12697 {
12698 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12699 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12700 const struct drm_display_mode *adjusted_mode =
12701 &crtc_state->hw.adjusted_mode;
12702 int linetime_wm;
12703
12704 if (!crtc_state->hw.enable)
12705 return 0;
12706
12707 linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8,
12708 crtc_state->pixel_rate);
12709
12710 /* Display WA #1135: BXT:ALL GLK:ALL */
12711 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
12712 linetime_wm /= 2;
12713
12714 return min(linetime_wm, 0x1ff);
12715 }
12716
hsw_compute_linetime_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)12717 static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
12718 struct intel_crtc *crtc)
12719 {
12720 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12721 struct intel_crtc_state *crtc_state =
12722 intel_atomic_get_new_crtc_state(state, crtc);
12723 const struct intel_cdclk_state *cdclk_state;
12724
12725 if (INTEL_GEN(dev_priv) >= 9)
12726 crtc_state->linetime = skl_linetime_wm(crtc_state);
12727 else
12728 crtc_state->linetime = hsw_linetime_wm(crtc_state);
12729
12730 if (!hsw_crtc_supports_ips(crtc))
12731 return 0;
12732
12733 cdclk_state = intel_atomic_get_cdclk_state(state);
12734 if (IS_ERR(cdclk_state))
12735 return PTR_ERR(cdclk_state);
12736
12737 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
12738 cdclk_state);
12739
12740 return 0;
12741 }
12742
intel_crtc_atomic_check(struct intel_atomic_state * state,struct intel_crtc * crtc)12743 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12744 struct intel_crtc *crtc)
12745 {
12746 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12747 struct intel_crtc_state *crtc_state =
12748 intel_atomic_get_new_crtc_state(state, crtc);
12749 bool mode_changed = needs_modeset(crtc_state);
12750 int ret;
12751
12752 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12753 mode_changed && !crtc_state->hw.active)
12754 crtc_state->update_wm_post = true;
12755
12756 if (mode_changed && crtc_state->hw.enable &&
12757 dev_priv->display.crtc_compute_clock &&
12758 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) {
12759 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12760 if (ret)
12761 return ret;
12762 }
12763
12764 /*
12765 * May need to update pipe gamma enable bits
12766 * when C8 planes are getting enabled/disabled.
12767 */
12768 if (c8_planes_changed(crtc_state))
12769 crtc_state->uapi.color_mgmt_changed = true;
12770
12771 if (mode_changed || crtc_state->update_pipe ||
12772 crtc_state->uapi.color_mgmt_changed) {
12773 ret = intel_color_check(crtc_state);
12774 if (ret)
12775 return ret;
12776 }
12777
12778 if (dev_priv->display.compute_pipe_wm) {
12779 ret = dev_priv->display.compute_pipe_wm(crtc_state);
12780 if (ret) {
12781 drm_dbg_kms(&dev_priv->drm,
12782 "Target pipe watermarks are invalid\n");
12783 return ret;
12784 }
12785 }
12786
12787 if (dev_priv->display.compute_intermediate_wm) {
12788 if (drm_WARN_ON(&dev_priv->drm,
12789 !dev_priv->display.compute_pipe_wm))
12790 return 0;
12791
12792 /*
12793 * Calculate 'intermediate' watermarks that satisfy both the
12794 * old state and the new state. We can program these
12795 * immediately.
12796 */
12797 ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12798 if (ret) {
12799 drm_dbg_kms(&dev_priv->drm,
12800 "No valid intermediate pipe watermarks are possible\n");
12801 return ret;
12802 }
12803 }
12804
12805 if (INTEL_GEN(dev_priv) >= 9) {
12806 if (mode_changed || crtc_state->update_pipe) {
12807 ret = skl_update_scaler_crtc(crtc_state);
12808 if (ret)
12809 return ret;
12810 }
12811
12812 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state);
12813 if (ret)
12814 return ret;
12815 }
12816
12817 if (HAS_IPS(dev_priv)) {
12818 ret = hsw_compute_ips_config(crtc_state);
12819 if (ret)
12820 return ret;
12821 }
12822
12823 if (INTEL_GEN(dev_priv) >= 9 ||
12824 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
12825 ret = hsw_compute_linetime_wm(state, crtc);
12826 if (ret)
12827 return ret;
12828
12829 }
12830
12831 if (!mode_changed)
12832 intel_psr2_sel_fetch_update(state, crtc);
12833
12834 return 0;
12835 }
12836
intel_modeset_update_connector_atomic_state(struct drm_device * dev)12837 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12838 {
12839 struct intel_connector *connector;
12840 struct drm_connector_list_iter conn_iter;
12841
12842 drm_connector_list_iter_begin(dev, &conn_iter);
12843 for_each_intel_connector_iter(connector, &conn_iter) {
12844 if (connector->base.state->crtc)
12845 drm_connector_put(&connector->base);
12846
12847 if (connector->base.encoder) {
12848 connector->base.state->best_encoder =
12849 connector->base.encoder;
12850 connector->base.state->crtc =
12851 connector->base.encoder->crtc;
12852
12853 drm_connector_get(&connector->base);
12854 } else {
12855 connector->base.state->best_encoder = NULL;
12856 connector->base.state->crtc = NULL;
12857 }
12858 }
12859 drm_connector_list_iter_end(&conn_iter);
12860 }
12861
12862 static int
compute_sink_pipe_bpp(const struct drm_connector_state * conn_state,struct intel_crtc_state * pipe_config)12863 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12864 struct intel_crtc_state *pipe_config)
12865 {
12866 struct drm_connector *connector = conn_state->connector;
12867 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12868 const struct drm_display_info *info = &connector->display_info;
12869 int bpp;
12870
12871 switch (conn_state->max_bpc) {
12872 case 6 ... 7:
12873 bpp = 6 * 3;
12874 break;
12875 case 8 ... 9:
12876 bpp = 8 * 3;
12877 break;
12878 case 10 ... 11:
12879 bpp = 10 * 3;
12880 break;
12881 case 12 ... 16:
12882 bpp = 12 * 3;
12883 break;
12884 default:
12885 MISSING_CASE(conn_state->max_bpc);
12886 return -EINVAL;
12887 }
12888
12889 if (bpp < pipe_config->pipe_bpp) {
12890 drm_dbg_kms(&i915->drm,
12891 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12892 "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12893 connector->base.id, connector->name,
12894 bpp, 3 * info->bpc,
12895 3 * conn_state->max_requested_bpc,
12896 pipe_config->pipe_bpp);
12897
12898 pipe_config->pipe_bpp = bpp;
12899 }
12900
12901 return 0;
12902 }
12903
12904 static int
compute_baseline_pipe_bpp(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12905 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12906 struct intel_crtc_state *pipe_config)
12907 {
12908 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12909 struct drm_atomic_state *state = pipe_config->uapi.state;
12910 struct drm_connector *connector;
12911 struct drm_connector_state *connector_state;
12912 int bpp, i;
12913
12914 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12915 IS_CHERRYVIEW(dev_priv)))
12916 bpp = 10*3;
12917 else if (INTEL_GEN(dev_priv) >= 5)
12918 bpp = 12*3;
12919 else
12920 bpp = 8*3;
12921
12922 pipe_config->pipe_bpp = bpp;
12923
12924 /* Clamp display bpp to connector max bpp */
12925 for_each_new_connector_in_state(state, connector, connector_state, i) {
12926 int ret;
12927
12928 if (connector_state->crtc != &crtc->base)
12929 continue;
12930
12931 ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12932 if (ret)
12933 return ret;
12934 }
12935
12936 return 0;
12937 }
12938
intel_dump_crtc_timings(struct drm_i915_private * i915,const struct drm_display_mode * mode)12939 static void intel_dump_crtc_timings(struct drm_i915_private *i915,
12940 const struct drm_display_mode *mode)
12941 {
12942 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, "
12943 "type: 0x%x flags: 0x%x\n",
12944 mode->crtc_clock,
12945 mode->crtc_hdisplay, mode->crtc_hsync_start,
12946 mode->crtc_hsync_end, mode->crtc_htotal,
12947 mode->crtc_vdisplay, mode->crtc_vsync_start,
12948 mode->crtc_vsync_end, mode->crtc_vtotal,
12949 mode->type, mode->flags);
12950 }
12951
12952 static void
intel_dump_m_n_config(const struct intel_crtc_state * pipe_config,const char * id,unsigned int lane_count,const struct intel_link_m_n * m_n)12953 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12954 const char *id, unsigned int lane_count,
12955 const struct intel_link_m_n *m_n)
12956 {
12957 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12958
12959 drm_dbg_kms(&i915->drm,
12960 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12961 id, lane_count,
12962 m_n->gmch_m, m_n->gmch_n,
12963 m_n->link_m, m_n->link_n, m_n->tu);
12964 }
12965
12966 static void
intel_dump_infoframe(struct drm_i915_private * dev_priv,const union hdmi_infoframe * frame)12967 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12968 const union hdmi_infoframe *frame)
12969 {
12970 if (!drm_debug_enabled(DRM_UT_KMS))
12971 return;
12972
12973 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12974 }
12975
12976 static void
intel_dump_dp_vsc_sdp(struct drm_i915_private * dev_priv,const struct drm_dp_vsc_sdp * vsc)12977 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv,
12978 const struct drm_dp_vsc_sdp *vsc)
12979 {
12980 if (!drm_debug_enabled(DRM_UT_KMS))
12981 return;
12982
12983 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc);
12984 }
12985
12986 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12987
12988 static const char * const output_type_str[] = {
12989 OUTPUT_TYPE(UNUSED),
12990 OUTPUT_TYPE(ANALOG),
12991 OUTPUT_TYPE(DVO),
12992 OUTPUT_TYPE(SDVO),
12993 OUTPUT_TYPE(LVDS),
12994 OUTPUT_TYPE(TVOUT),
12995 OUTPUT_TYPE(HDMI),
12996 OUTPUT_TYPE(DP),
12997 OUTPUT_TYPE(EDP),
12998 OUTPUT_TYPE(DSI),
12999 OUTPUT_TYPE(DDI),
13000 OUTPUT_TYPE(DP_MST),
13001 };
13002
13003 #undef OUTPUT_TYPE
13004
snprintf_output_types(char * buf,size_t len,unsigned int output_types)13005 static void snprintf_output_types(char *buf, size_t len,
13006 unsigned int output_types)
13007 {
13008 char *str = buf;
13009 int i;
13010
13011 str[0] = '\0';
13012
13013 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
13014 int r;
13015
13016 if ((output_types & BIT(i)) == 0)
13017 continue;
13018
13019 r = snprintf(str, len, "%s%s",
13020 str != buf ? "," : "", output_type_str[i]);
13021 if (r >= len)
13022 break;
13023 str += r;
13024 len -= r;
13025
13026 output_types &= ~BIT(i);
13027 }
13028
13029 WARN_ON_ONCE(output_types != 0);
13030 }
13031
13032 static const char * const output_format_str[] = {
13033 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
13034 [INTEL_OUTPUT_FORMAT_RGB] = "RGB",
13035 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
13036 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
13037 };
13038
output_formats(enum intel_output_format format)13039 static const char *output_formats(enum intel_output_format format)
13040 {
13041 if (format >= ARRAY_SIZE(output_format_str))
13042 format = INTEL_OUTPUT_FORMAT_INVALID;
13043 return output_format_str[format];
13044 }
13045
intel_dump_plane_state(const struct intel_plane_state * plane_state)13046 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
13047 {
13048 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
13049 struct drm_i915_private *i915 = to_i915(plane->base.dev);
13050 const struct drm_framebuffer *fb = plane_state->hw.fb;
13051 struct drm_format_name_buf format_name;
13052
13053 if (!fb) {
13054 drm_dbg_kms(&i915->drm,
13055 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
13056 plane->base.base.id, plane->base.name,
13057 yesno(plane_state->uapi.visible));
13058 return;
13059 }
13060
13061 drm_dbg_kms(&i915->drm,
13062 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
13063 plane->base.base.id, plane->base.name,
13064 fb->base.id, fb->width, fb->height,
13065 drm_get_format_name(fb->format->format, &format_name),
13066 yesno(plane_state->uapi.visible));
13067 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n",
13068 plane_state->hw.rotation, plane_state->scaler_id);
13069 if (plane_state->uapi.visible)
13070 drm_dbg_kms(&i915->drm,
13071 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
13072 DRM_RECT_FP_ARG(&plane_state->uapi.src),
13073 DRM_RECT_ARG(&plane_state->uapi.dst));
13074 }
13075
intel_dump_pipe_config(const struct intel_crtc_state * pipe_config,struct intel_atomic_state * state,const char * context)13076 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
13077 struct intel_atomic_state *state,
13078 const char *context)
13079 {
13080 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13081 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13082 const struct intel_plane_state *plane_state;
13083 struct intel_plane *plane;
13084 char buf[64];
13085 int i;
13086
13087 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n",
13088 crtc->base.base.id, crtc->base.name,
13089 yesno(pipe_config->hw.enable), context);
13090
13091 if (!pipe_config->hw.enable)
13092 goto dump_planes;
13093
13094 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
13095 drm_dbg_kms(&dev_priv->drm,
13096 "active: %s, output_types: %s (0x%x), output format: %s\n",
13097 yesno(pipe_config->hw.active),
13098 buf, pipe_config->output_types,
13099 output_formats(pipe_config->output_format));
13100
13101 drm_dbg_kms(&dev_priv->drm,
13102 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
13103 transcoder_name(pipe_config->cpu_transcoder),
13104 pipe_config->pipe_bpp, pipe_config->dither);
13105
13106 drm_dbg_kms(&dev_priv->drm,
13107 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n",
13108 transcoder_name(pipe_config->master_transcoder),
13109 pipe_config->sync_mode_slaves_mask);
13110
13111 if (pipe_config->has_pch_encoder)
13112 intel_dump_m_n_config(pipe_config, "fdi",
13113 pipe_config->fdi_lanes,
13114 &pipe_config->fdi_m_n);
13115
13116 if (intel_crtc_has_dp_encoder(pipe_config)) {
13117 intel_dump_m_n_config(pipe_config, "dp m_n",
13118 pipe_config->lane_count, &pipe_config->dp_m_n);
13119 if (pipe_config->has_drrs)
13120 intel_dump_m_n_config(pipe_config, "dp m2_n2",
13121 pipe_config->lane_count,
13122 &pipe_config->dp_m2_n2);
13123 }
13124
13125 drm_dbg_kms(&dev_priv->drm,
13126 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
13127 pipe_config->has_audio, pipe_config->has_infoframe,
13128 pipe_config->infoframes.enable);
13129
13130 if (pipe_config->infoframes.enable &
13131 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
13132 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n",
13133 pipe_config->infoframes.gcp);
13134 if (pipe_config->infoframes.enable &
13135 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
13136 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
13137 if (pipe_config->infoframes.enable &
13138 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
13139 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
13140 if (pipe_config->infoframes.enable &
13141 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
13142 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
13143 if (pipe_config->infoframes.enable &
13144 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM))
13145 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13146 if (pipe_config->infoframes.enable &
13147 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA))
13148 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13149 if (pipe_config->infoframes.enable &
13150 intel_hdmi_infoframe_enable(DP_SDP_VSC))
13151 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc);
13152
13153 drm_dbg_kms(&dev_priv->drm, "requested mode:\n");
13154 drm_mode_debug_printmodeline(&pipe_config->hw.mode);
13155 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n");
13156 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
13157 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode);
13158 drm_dbg_kms(&dev_priv->drm,
13159 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
13160 pipe_config->port_clock,
13161 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
13162 pipe_config->pixel_rate);
13163
13164 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n",
13165 pipe_config->linetime, pipe_config->ips_linetime);
13166
13167 if (INTEL_GEN(dev_priv) >= 9)
13168 drm_dbg_kms(&dev_priv->drm,
13169 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
13170 crtc->num_scalers,
13171 pipe_config->scaler_state.scaler_users,
13172 pipe_config->scaler_state.scaler_id);
13173
13174 if (HAS_GMCH(dev_priv))
13175 drm_dbg_kms(&dev_priv->drm,
13176 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
13177 pipe_config->gmch_pfit.control,
13178 pipe_config->gmch_pfit.pgm_ratios,
13179 pipe_config->gmch_pfit.lvds_border_bits);
13180 else
13181 drm_dbg_kms(&dev_priv->drm,
13182 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n",
13183 DRM_RECT_ARG(&pipe_config->pch_pfit.dst),
13184 enableddisabled(pipe_config->pch_pfit.enabled),
13185 yesno(pipe_config->pch_pfit.force_thru));
13186
13187 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n",
13188 pipe_config->ips_enabled, pipe_config->double_wide);
13189
13190 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
13191
13192 if (IS_CHERRYVIEW(dev_priv))
13193 drm_dbg_kms(&dev_priv->drm,
13194 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13195 pipe_config->cgm_mode, pipe_config->gamma_mode,
13196 pipe_config->gamma_enable, pipe_config->csc_enable);
13197 else
13198 drm_dbg_kms(&dev_priv->drm,
13199 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13200 pipe_config->csc_mode, pipe_config->gamma_mode,
13201 pipe_config->gamma_enable, pipe_config->csc_enable);
13202
13203 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n",
13204 transcoder_name(pipe_config->mst_master_transcoder));
13205
13206 dump_planes:
13207 if (!state)
13208 return;
13209
13210 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
13211 if (plane->pipe == crtc->pipe)
13212 intel_dump_plane_state(plane_state);
13213 }
13214 }
13215
check_digital_port_conflicts(struct intel_atomic_state * state)13216 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
13217 {
13218 struct drm_device *dev = state->base.dev;
13219 struct drm_connector *connector;
13220 struct drm_connector_list_iter conn_iter;
13221 unsigned int used_ports = 0;
13222 unsigned int used_mst_ports = 0;
13223 bool ret = true;
13224
13225 /*
13226 * We're going to peek into connector->state,
13227 * hence connection_mutex must be held.
13228 */
13229 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
13230
13231 /*
13232 * Walk the connector list instead of the encoder
13233 * list to detect the problem on ddi platforms
13234 * where there's just one encoder per digital port.
13235 */
13236 drm_connector_list_iter_begin(dev, &conn_iter);
13237 drm_for_each_connector_iter(connector, &conn_iter) {
13238 struct drm_connector_state *connector_state;
13239 struct intel_encoder *encoder;
13240
13241 connector_state =
13242 drm_atomic_get_new_connector_state(&state->base,
13243 connector);
13244 if (!connector_state)
13245 connector_state = connector->state;
13246
13247 if (!connector_state->best_encoder)
13248 continue;
13249
13250 encoder = to_intel_encoder(connector_state->best_encoder);
13251
13252 drm_WARN_ON(dev, !connector_state->crtc);
13253
13254 switch (encoder->type) {
13255 case INTEL_OUTPUT_DDI:
13256 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev))))
13257 break;
13258 fallthrough;
13259 case INTEL_OUTPUT_DP:
13260 case INTEL_OUTPUT_HDMI:
13261 case INTEL_OUTPUT_EDP:
13262 /* the same port mustn't appear more than once */
13263 if (used_ports & BIT(encoder->port))
13264 ret = false;
13265
13266 used_ports |= BIT(encoder->port);
13267 break;
13268 case INTEL_OUTPUT_DP_MST:
13269 used_mst_ports |=
13270 1 << encoder->port;
13271 break;
13272 default:
13273 break;
13274 }
13275 }
13276 drm_connector_list_iter_end(&conn_iter);
13277
13278 /* can't mix MST and SST/HDMI on the same port */
13279 if (used_ports & used_mst_ports)
13280 return false;
13281
13282 return ret;
13283 }
13284
13285 static void
intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state * crtc_state)13286 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state)
13287 {
13288 intel_crtc_copy_color_blobs(crtc_state);
13289 }
13290
13291 static void
intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state * crtc_state)13292 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state)
13293 {
13294 crtc_state->hw.enable = crtc_state->uapi.enable;
13295 crtc_state->hw.active = crtc_state->uapi.active;
13296 crtc_state->hw.mode = crtc_state->uapi.mode;
13297 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
13298 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state);
13299 }
13300
intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state * crtc_state)13301 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
13302 {
13303 crtc_state->uapi.enable = crtc_state->hw.enable;
13304 crtc_state->uapi.active = crtc_state->hw.active;
13305 drm_WARN_ON(crtc_state->uapi.crtc->dev,
13306 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
13307
13308 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
13309
13310 /* copy color blobs to uapi */
13311 drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
13312 crtc_state->hw.degamma_lut);
13313 drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
13314 crtc_state->hw.gamma_lut);
13315 drm_property_replace_blob(&crtc_state->uapi.ctm,
13316 crtc_state->hw.ctm);
13317 }
13318
13319 static int
intel_crtc_prepare_cleared_state(struct intel_crtc_state * crtc_state)13320 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state)
13321 {
13322 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13323 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13324 struct intel_crtc_state *saved_state;
13325
13326 saved_state = intel_crtc_state_alloc(crtc);
13327 if (!saved_state)
13328 return -ENOMEM;
13329
13330 /* free the old crtc_state->hw members */
13331 intel_crtc_free_hw_state(crtc_state);
13332
13333 /* FIXME: before the switch to atomic started, a new pipe_config was
13334 * kzalloc'd. Code that depends on any field being zero should be
13335 * fixed, so that the crtc_state can be safely duplicated. For now,
13336 * only fields that are know to not cause problems are preserved. */
13337
13338 saved_state->uapi = crtc_state->uapi;
13339 saved_state->scaler_state = crtc_state->scaler_state;
13340 saved_state->shared_dpll = crtc_state->shared_dpll;
13341 saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13342 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
13343 sizeof(saved_state->icl_port_dplls));
13344 saved_state->crc_enabled = crtc_state->crc_enabled;
13345 if (IS_G4X(dev_priv) ||
13346 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13347 saved_state->wm = crtc_state->wm;
13348
13349 memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13350 kfree(saved_state);
13351
13352 intel_crtc_copy_uapi_to_hw_state(crtc_state);
13353
13354 return 0;
13355 }
13356
13357 static int
intel_modeset_pipe_config(struct intel_crtc_state * pipe_config)13358 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
13359 {
13360 struct drm_crtc *crtc = pipe_config->uapi.crtc;
13361 struct drm_atomic_state *state = pipe_config->uapi.state;
13362 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
13363 struct drm_connector *connector;
13364 struct drm_connector_state *connector_state;
13365 int base_bpp, ret, i;
13366 bool retry = true;
13367
13368 pipe_config->cpu_transcoder =
13369 (enum transcoder) to_intel_crtc(crtc)->pipe;
13370
13371 /*
13372 * Sanitize sync polarity flags based on requested ones. If neither
13373 * positive or negative polarity is requested, treat this as meaning
13374 * negative polarity.
13375 */
13376 if (!(pipe_config->hw.adjusted_mode.flags &
13377 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13378 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13379
13380 if (!(pipe_config->hw.adjusted_mode.flags &
13381 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13382 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13383
13384 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13385 pipe_config);
13386 if (ret)
13387 return ret;
13388
13389 base_bpp = pipe_config->pipe_bpp;
13390
13391 /*
13392 * Determine the real pipe dimensions. Note that stereo modes can
13393 * increase the actual pipe size due to the frame doubling and
13394 * insertion of additional space for blanks between the frame. This
13395 * is stored in the crtc timings. We use the requested mode to do this
13396 * computation to clearly distinguish it from the adjusted mode, which
13397 * can be changed by the connectors in the below retry loop.
13398 */
13399 drm_mode_get_hv_timing(&pipe_config->hw.mode,
13400 &pipe_config->pipe_src_w,
13401 &pipe_config->pipe_src_h);
13402
13403 for_each_new_connector_in_state(state, connector, connector_state, i) {
13404 struct intel_encoder *encoder =
13405 to_intel_encoder(connector_state->best_encoder);
13406
13407 if (connector_state->crtc != crtc)
13408 continue;
13409
13410 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13411 drm_dbg_kms(&i915->drm,
13412 "rejecting invalid cloning configuration\n");
13413 return -EINVAL;
13414 }
13415
13416 /*
13417 * Determine output_types before calling the .compute_config()
13418 * hooks so that the hooks can use this information safely.
13419 */
13420 if (encoder->compute_output_type)
13421 pipe_config->output_types |=
13422 BIT(encoder->compute_output_type(encoder, pipe_config,
13423 connector_state));
13424 else
13425 pipe_config->output_types |= BIT(encoder->type);
13426 }
13427
13428 encoder_retry:
13429 /* Ensure the port clock defaults are reset when retrying. */
13430 pipe_config->port_clock = 0;
13431 pipe_config->pixel_multiplier = 1;
13432
13433 /* Fill in default crtc timings, allow encoders to overwrite them. */
13434 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
13435 CRTC_STEREO_DOUBLE);
13436
13437 /* Pass our mode to the connectors and the CRTC to give them a chance to
13438 * adjust it according to limitations or connector properties, and also
13439 * a chance to reject the mode entirely.
13440 */
13441 for_each_new_connector_in_state(state, connector, connector_state, i) {
13442 struct intel_encoder *encoder =
13443 to_intel_encoder(connector_state->best_encoder);
13444
13445 if (connector_state->crtc != crtc)
13446 continue;
13447
13448 ret = encoder->compute_config(encoder, pipe_config,
13449 connector_state);
13450 if (ret < 0) {
13451 if (ret != -EDEADLK)
13452 drm_dbg_kms(&i915->drm,
13453 "Encoder config failure: %d\n",
13454 ret);
13455 return ret;
13456 }
13457 }
13458
13459 /* Set default port clock if not overwritten by the encoder. Needs to be
13460 * done afterwards in case the encoder adjusts the mode. */
13461 if (!pipe_config->port_clock)
13462 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13463 * pipe_config->pixel_multiplier;
13464
13465 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13466 if (ret == -EDEADLK)
13467 return ret;
13468 if (ret < 0) {
13469 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n");
13470 return ret;
13471 }
13472
13473 if (ret == RETRY) {
13474 if (drm_WARN(&i915->drm, !retry,
13475 "loop in pipe configuration computation\n"))
13476 return -EINVAL;
13477
13478 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n");
13479 retry = false;
13480 goto encoder_retry;
13481 }
13482
13483 /* Dithering seems to not pass-through bits correctly when it should, so
13484 * only enable it on 6bpc panels and when its not a compliance
13485 * test requesting 6bpc video pattern.
13486 */
13487 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13488 !pipe_config->dither_force_disable;
13489 drm_dbg_kms(&i915->drm,
13490 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13491 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13492
13493 return 0;
13494 }
13495
13496 static int
intel_modeset_pipe_config_late(struct intel_crtc_state * crtc_state)13497 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state)
13498 {
13499 struct intel_atomic_state *state =
13500 to_intel_atomic_state(crtc_state->uapi.state);
13501 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13502 struct drm_connector_state *conn_state;
13503 struct drm_connector *connector;
13504 int i;
13505
13506 for_each_new_connector_in_state(&state->base, connector,
13507 conn_state, i) {
13508 struct intel_encoder *encoder =
13509 to_intel_encoder(conn_state->best_encoder);
13510 int ret;
13511
13512 if (conn_state->crtc != &crtc->base ||
13513 !encoder->compute_config_late)
13514 continue;
13515
13516 ret = encoder->compute_config_late(encoder, crtc_state,
13517 conn_state);
13518 if (ret)
13519 return ret;
13520 }
13521
13522 return 0;
13523 }
13524
intel_fuzzy_clock_check(int clock1,int clock2)13525 bool intel_fuzzy_clock_check(int clock1, int clock2)
13526 {
13527 int diff;
13528
13529 if (clock1 == clock2)
13530 return true;
13531
13532 if (!clock1 || !clock2)
13533 return false;
13534
13535 diff = abs(clock1 - clock2);
13536
13537 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13538 return true;
13539
13540 return false;
13541 }
13542
13543 static bool
intel_compare_m_n(unsigned int m,unsigned int n,unsigned int m2,unsigned int n2,bool exact)13544 intel_compare_m_n(unsigned int m, unsigned int n,
13545 unsigned int m2, unsigned int n2,
13546 bool exact)
13547 {
13548 if (m == m2 && n == n2)
13549 return true;
13550
13551 if (exact || !m || !n || !m2 || !n2)
13552 return false;
13553
13554 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13555
13556 if (n > n2) {
13557 while (n > n2) {
13558 m2 <<= 1;
13559 n2 <<= 1;
13560 }
13561 } else if (n < n2) {
13562 while (n < n2) {
13563 m <<= 1;
13564 n <<= 1;
13565 }
13566 }
13567
13568 if (n != n2)
13569 return false;
13570
13571 return intel_fuzzy_clock_check(m, m2);
13572 }
13573
13574 static bool
intel_compare_link_m_n(const struct intel_link_m_n * m_n,const struct intel_link_m_n * m2_n2,bool exact)13575 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13576 const struct intel_link_m_n *m2_n2,
13577 bool exact)
13578 {
13579 return m_n->tu == m2_n2->tu &&
13580 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13581 m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13582 intel_compare_m_n(m_n->link_m, m_n->link_n,
13583 m2_n2->link_m, m2_n2->link_n, exact);
13584 }
13585
13586 static bool
intel_compare_infoframe(const union hdmi_infoframe * a,const union hdmi_infoframe * b)13587 intel_compare_infoframe(const union hdmi_infoframe *a,
13588 const union hdmi_infoframe *b)
13589 {
13590 return memcmp(a, b, sizeof(*a)) == 0;
13591 }
13592
13593 static bool
intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp * a,const struct drm_dp_vsc_sdp * b)13594 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
13595 const struct drm_dp_vsc_sdp *b)
13596 {
13597 return memcmp(a, b, sizeof(*a)) == 0;
13598 }
13599
13600 static void
pipe_config_infoframe_mismatch(struct drm_i915_private * dev_priv,bool fastset,const char * name,const union hdmi_infoframe * a,const union hdmi_infoframe * b)13601 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13602 bool fastset, const char *name,
13603 const union hdmi_infoframe *a,
13604 const union hdmi_infoframe *b)
13605 {
13606 if (fastset) {
13607 if (!drm_debug_enabled(DRM_UT_KMS))
13608 return;
13609
13610 drm_dbg_kms(&dev_priv->drm,
13611 "fastset mismatch in %s infoframe\n", name);
13612 drm_dbg_kms(&dev_priv->drm, "expected:\n");
13613 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13614 drm_dbg_kms(&dev_priv->drm, "found:\n");
13615 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13616 } else {
13617 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name);
13618 drm_err(&dev_priv->drm, "expected:\n");
13619 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13620 drm_err(&dev_priv->drm, "found:\n");
13621 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13622 }
13623 }
13624
13625 static void
pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private * dev_priv,bool fastset,const char * name,const struct drm_dp_vsc_sdp * a,const struct drm_dp_vsc_sdp * b)13626 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv,
13627 bool fastset, const char *name,
13628 const struct drm_dp_vsc_sdp *a,
13629 const struct drm_dp_vsc_sdp *b)
13630 {
13631 if (fastset) {
13632 if (!drm_debug_enabled(DRM_UT_KMS))
13633 return;
13634
13635 drm_dbg_kms(&dev_priv->drm,
13636 "fastset mismatch in %s dp sdp\n", name);
13637 drm_dbg_kms(&dev_priv->drm, "expected:\n");
13638 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a);
13639 drm_dbg_kms(&dev_priv->drm, "found:\n");
13640 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b);
13641 } else {
13642 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name);
13643 drm_err(&dev_priv->drm, "expected:\n");
13644 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a);
13645 drm_err(&dev_priv->drm, "found:\n");
13646 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b);
13647 }
13648 }
13649
13650 static void __printf(4, 5)
pipe_config_mismatch(bool fastset,const struct intel_crtc * crtc,const char * name,const char * format,...)13651 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13652 const char *name, const char *format, ...)
13653 {
13654 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
13655 struct va_format vaf;
13656 va_list args;
13657
13658 va_start(args, format);
13659 vaf.fmt = format;
13660 vaf.va = &args;
13661
13662 if (fastset)
13663 drm_dbg_kms(&i915->drm,
13664 "[CRTC:%d:%s] fastset mismatch in %s %pV\n",
13665 crtc->base.base.id, crtc->base.name, name, &vaf);
13666 else
13667 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n",
13668 crtc->base.base.id, crtc->base.name, name, &vaf);
13669
13670 va_end(args);
13671 }
13672
fastboot_enabled(struct drm_i915_private * dev_priv)13673 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
13674 {
13675 if (dev_priv->params.fastboot != -1)
13676 return dev_priv->params.fastboot;
13677
13678 /* Enable fastboot by default on Skylake and newer */
13679 if (INTEL_GEN(dev_priv) >= 9)
13680 return true;
13681
13682 /* Enable fastboot by default on VLV and CHV */
13683 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13684 return true;
13685
13686 /* Disabled by default on all others */
13687 return false;
13688 }
13689
13690 static bool
intel_pipe_config_compare(const struct intel_crtc_state * current_config,const struct intel_crtc_state * pipe_config,bool fastset)13691 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
13692 const struct intel_crtc_state *pipe_config,
13693 bool fastset)
13694 {
13695 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
13696 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13697 bool ret = true;
13698 u32 bp_gamma = 0;
13699 bool fixup_inherited = fastset &&
13700 current_config->inherited && !pipe_config->inherited;
13701
13702 if (fixup_inherited && !fastboot_enabled(dev_priv)) {
13703 drm_dbg_kms(&dev_priv->drm,
13704 "initial modeset and fastboot not set\n");
13705 ret = false;
13706 }
13707
13708 #define PIPE_CONF_CHECK_X(name) do { \
13709 if (current_config->name != pipe_config->name) { \
13710 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13711 "(expected 0x%08x, found 0x%08x)", \
13712 current_config->name, \
13713 pipe_config->name); \
13714 ret = false; \
13715 } \
13716 } while (0)
13717
13718 #define PIPE_CONF_CHECK_I(name) do { \
13719 if (current_config->name != pipe_config->name) { \
13720 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13721 "(expected %i, found %i)", \
13722 current_config->name, \
13723 pipe_config->name); \
13724 ret = false; \
13725 } \
13726 } while (0)
13727
13728 #define PIPE_CONF_CHECK_BOOL(name) do { \
13729 if (current_config->name != pipe_config->name) { \
13730 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13731 "(expected %s, found %s)", \
13732 yesno(current_config->name), \
13733 yesno(pipe_config->name)); \
13734 ret = false; \
13735 } \
13736 } while (0)
13737
13738 /*
13739 * Checks state where we only read out the enabling, but not the entire
13740 * state itself (like full infoframes or ELD for audio). These states
13741 * require a full modeset on bootup to fix up.
13742 */
13743 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
13744 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
13745 PIPE_CONF_CHECK_BOOL(name); \
13746 } else { \
13747 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13748 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
13749 yesno(current_config->name), \
13750 yesno(pipe_config->name)); \
13751 ret = false; \
13752 } \
13753 } while (0)
13754
13755 #define PIPE_CONF_CHECK_P(name) do { \
13756 if (current_config->name != pipe_config->name) { \
13757 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13758 "(expected %p, found %p)", \
13759 current_config->name, \
13760 pipe_config->name); \
13761 ret = false; \
13762 } \
13763 } while (0)
13764
13765 #define PIPE_CONF_CHECK_M_N(name) do { \
13766 if (!intel_compare_link_m_n(¤t_config->name, \
13767 &pipe_config->name,\
13768 !fastset)) { \
13769 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13770 "(expected tu %i gmch %i/%i link %i/%i, " \
13771 "found tu %i, gmch %i/%i link %i/%i)", \
13772 current_config->name.tu, \
13773 current_config->name.gmch_m, \
13774 current_config->name.gmch_n, \
13775 current_config->name.link_m, \
13776 current_config->name.link_n, \
13777 pipe_config->name.tu, \
13778 pipe_config->name.gmch_m, \
13779 pipe_config->name.gmch_n, \
13780 pipe_config->name.link_m, \
13781 pipe_config->name.link_n); \
13782 ret = false; \
13783 } \
13784 } while (0)
13785
13786 /* This is required for BDW+ where there is only one set of registers for
13787 * switching between high and low RR.
13788 * This macro can be used whenever a comparison has to be made between one
13789 * hw state and multiple sw state variables.
13790 */
13791 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
13792 if (!intel_compare_link_m_n(¤t_config->name, \
13793 &pipe_config->name, !fastset) && \
13794 !intel_compare_link_m_n(¤t_config->alt_name, \
13795 &pipe_config->name, !fastset)) { \
13796 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13797 "(expected tu %i gmch %i/%i link %i/%i, " \
13798 "or tu %i gmch %i/%i link %i/%i, " \
13799 "found tu %i, gmch %i/%i link %i/%i)", \
13800 current_config->name.tu, \
13801 current_config->name.gmch_m, \
13802 current_config->name.gmch_n, \
13803 current_config->name.link_m, \
13804 current_config->name.link_n, \
13805 current_config->alt_name.tu, \
13806 current_config->alt_name.gmch_m, \
13807 current_config->alt_name.gmch_n, \
13808 current_config->alt_name.link_m, \
13809 current_config->alt_name.link_n, \
13810 pipe_config->name.tu, \
13811 pipe_config->name.gmch_m, \
13812 pipe_config->name.gmch_n, \
13813 pipe_config->name.link_m, \
13814 pipe_config->name.link_n); \
13815 ret = false; \
13816 } \
13817 } while (0)
13818
13819 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13820 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13821 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13822 "(%x) (expected %i, found %i)", \
13823 (mask), \
13824 current_config->name & (mask), \
13825 pipe_config->name & (mask)); \
13826 ret = false; \
13827 } \
13828 } while (0)
13829
13830 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13831 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13832 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13833 "(expected %i, found %i)", \
13834 current_config->name, \
13835 pipe_config->name); \
13836 ret = false; \
13837 } \
13838 } while (0)
13839
13840 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13841 if (!intel_compare_infoframe(¤t_config->infoframes.name, \
13842 &pipe_config->infoframes.name)) { \
13843 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13844 ¤t_config->infoframes.name, \
13845 &pipe_config->infoframes.name); \
13846 ret = false; \
13847 } \
13848 } while (0)
13849
13850 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
13851 if (!current_config->has_psr && !pipe_config->has_psr && \
13852 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \
13853 &pipe_config->infoframes.name)) { \
13854 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \
13855 ¤t_config->infoframes.name, \
13856 &pipe_config->infoframes.name); \
13857 ret = false; \
13858 } \
13859 } while (0)
13860
13861 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13862 if (current_config->name1 != pipe_config->name1) { \
13863 pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13864 "(expected %i, found %i, won't compare lut values)", \
13865 current_config->name1, \
13866 pipe_config->name1); \
13867 ret = false;\
13868 } else { \
13869 if (!intel_color_lut_equal(current_config->name2, \
13870 pipe_config->name2, pipe_config->name1, \
13871 bit_precision)) { \
13872 pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13873 "hw_state doesn't match sw_state"); \
13874 ret = false; \
13875 } \
13876 } \
13877 } while (0)
13878
13879 #define PIPE_CONF_QUIRK(quirk) \
13880 ((current_config->quirks | pipe_config->quirks) & (quirk))
13881
13882 PIPE_CONF_CHECK_I(cpu_transcoder);
13883
13884 PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13885 PIPE_CONF_CHECK_I(fdi_lanes);
13886 PIPE_CONF_CHECK_M_N(fdi_m_n);
13887
13888 PIPE_CONF_CHECK_I(lane_count);
13889 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13890
13891 if (INTEL_GEN(dev_priv) < 8) {
13892 PIPE_CONF_CHECK_M_N(dp_m_n);
13893
13894 if (current_config->has_drrs)
13895 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13896 } else
13897 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13898
13899 PIPE_CONF_CHECK_X(output_types);
13900
13901 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
13902 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
13903 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
13904 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
13905 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
13906 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
13907
13908 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
13909 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
13910 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
13911 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
13912 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
13913 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
13914
13915 PIPE_CONF_CHECK_I(pixel_multiplier);
13916 PIPE_CONF_CHECK_I(output_format);
13917 PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13918 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13919 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13920 PIPE_CONF_CHECK_BOOL(limited_color_range);
13921
13922 PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13923 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13924 PIPE_CONF_CHECK_BOOL(has_infoframe);
13925 PIPE_CONF_CHECK_BOOL(fec_enable);
13926
13927 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13928
13929 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13930 DRM_MODE_FLAG_INTERLACE);
13931
13932 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13933 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13934 DRM_MODE_FLAG_PHSYNC);
13935 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13936 DRM_MODE_FLAG_NHSYNC);
13937 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13938 DRM_MODE_FLAG_PVSYNC);
13939 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13940 DRM_MODE_FLAG_NVSYNC);
13941 }
13942
13943 PIPE_CONF_CHECK_X(gmch_pfit.control);
13944 /* pfit ratios are autocomputed by the hw on gen4+ */
13945 if (INTEL_GEN(dev_priv) < 4)
13946 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13947 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13948
13949 /*
13950 * Changing the EDP transcoder input mux
13951 * (A_ONOFF vs. A_ON) requires a full modeset.
13952 */
13953 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13954
13955 if (!fastset) {
13956 PIPE_CONF_CHECK_I(pipe_src_w);
13957 PIPE_CONF_CHECK_I(pipe_src_h);
13958
13959 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13960 if (current_config->pch_pfit.enabled) {
13961 PIPE_CONF_CHECK_I(pch_pfit.dst.x1);
13962 PIPE_CONF_CHECK_I(pch_pfit.dst.y1);
13963 PIPE_CONF_CHECK_I(pch_pfit.dst.x2);
13964 PIPE_CONF_CHECK_I(pch_pfit.dst.y2);
13965 }
13966
13967 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13968 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13969
13970 PIPE_CONF_CHECK_X(gamma_mode);
13971 if (IS_CHERRYVIEW(dev_priv))
13972 PIPE_CONF_CHECK_X(cgm_mode);
13973 else
13974 PIPE_CONF_CHECK_X(csc_mode);
13975 PIPE_CONF_CHECK_BOOL(gamma_enable);
13976 PIPE_CONF_CHECK_BOOL(csc_enable);
13977
13978 PIPE_CONF_CHECK_I(linetime);
13979 PIPE_CONF_CHECK_I(ips_linetime);
13980
13981 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13982 if (bp_gamma)
13983 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
13984 }
13985
13986 PIPE_CONF_CHECK_BOOL(double_wide);
13987
13988 PIPE_CONF_CHECK_P(shared_dpll);
13989 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13990 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13991 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13992 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13993 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13994 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13995 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13996 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13997 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13998 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13999 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
14000 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
14001 PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
14002 PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
14003 PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
14004 PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
14005 PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
14006 PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
14007 PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
14008 PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
14009 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
14010 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
14011 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
14012 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
14013 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
14014 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
14015 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
14016 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
14017 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
14018 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
14019 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
14020
14021 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
14022 PIPE_CONF_CHECK_X(dsi_pll.div);
14023
14024 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
14025 PIPE_CONF_CHECK_I(pipe_bpp);
14026
14027 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
14028 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
14029
14030 PIPE_CONF_CHECK_I(min_voltage_level);
14031
14032 PIPE_CONF_CHECK_X(infoframes.enable);
14033 PIPE_CONF_CHECK_X(infoframes.gcp);
14034 PIPE_CONF_CHECK_INFOFRAME(avi);
14035 PIPE_CONF_CHECK_INFOFRAME(spd);
14036 PIPE_CONF_CHECK_INFOFRAME(hdmi);
14037 PIPE_CONF_CHECK_INFOFRAME(drm);
14038 PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
14039
14040 PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
14041 PIPE_CONF_CHECK_I(master_transcoder);
14042
14043 PIPE_CONF_CHECK_I(dsc.compression_enable);
14044 PIPE_CONF_CHECK_I(dsc.dsc_split);
14045 PIPE_CONF_CHECK_I(dsc.compressed_bpp);
14046
14047 PIPE_CONF_CHECK_I(mst_master_transcoder);
14048
14049 #undef PIPE_CONF_CHECK_X
14050 #undef PIPE_CONF_CHECK_I
14051 #undef PIPE_CONF_CHECK_BOOL
14052 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
14053 #undef PIPE_CONF_CHECK_P
14054 #undef PIPE_CONF_CHECK_FLAGS
14055 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
14056 #undef PIPE_CONF_CHECK_COLOR_LUT
14057 #undef PIPE_CONF_QUIRK
14058
14059 return ret;
14060 }
14061
intel_pipe_config_sanity_check(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)14062 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
14063 const struct intel_crtc_state *pipe_config)
14064 {
14065 if (pipe_config->has_pch_encoder) {
14066 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
14067 &pipe_config->fdi_m_n);
14068 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
14069
14070 /*
14071 * FDI already provided one idea for the dotclock.
14072 * Yell if the encoder disagrees.
14073 */
14074 drm_WARN(&dev_priv->drm,
14075 !intel_fuzzy_clock_check(fdi_dotclock, dotclock),
14076 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
14077 fdi_dotclock, dotclock);
14078 }
14079 }
14080
verify_wm_state(struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)14081 static void verify_wm_state(struct intel_crtc *crtc,
14082 struct intel_crtc_state *new_crtc_state)
14083 {
14084 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14085 struct skl_hw_state {
14086 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
14087 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
14088 struct skl_pipe_wm wm;
14089 } *hw;
14090 struct skl_pipe_wm *sw_wm;
14091 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
14092 u8 hw_enabled_slices;
14093 const enum pipe pipe = crtc->pipe;
14094 int plane, level, max_level = ilk_wm_max_level(dev_priv);
14095
14096 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
14097 return;
14098
14099 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
14100 if (!hw)
14101 return;
14102
14103 skl_pipe_wm_get_hw_state(crtc, &hw->wm);
14104 sw_wm = &new_crtc_state->wm.skl.optimal;
14105
14106 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
14107
14108 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv);
14109
14110 if (INTEL_GEN(dev_priv) >= 11 &&
14111 hw_enabled_slices != dev_priv->dbuf.enabled_slices)
14112 drm_err(&dev_priv->drm,
14113 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
14114 dev_priv->dbuf.enabled_slices,
14115 hw_enabled_slices);
14116
14117 /* planes */
14118 for_each_universal_plane(dev_priv, pipe, plane) {
14119 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14120
14121 hw_plane_wm = &hw->wm.planes[plane];
14122 sw_plane_wm = &sw_wm->planes[plane];
14123
14124 /* Watermarks */
14125 for (level = 0; level <= max_level; level++) {
14126 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14127 &sw_plane_wm->wm[level]) ||
14128 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14129 &sw_plane_wm->sagv_wm0)))
14130 continue;
14131
14132 drm_err(&dev_priv->drm,
14133 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14134 pipe_name(pipe), plane + 1, level,
14135 sw_plane_wm->wm[level].plane_en,
14136 sw_plane_wm->wm[level].plane_res_b,
14137 sw_plane_wm->wm[level].plane_res_l,
14138 hw_plane_wm->wm[level].plane_en,
14139 hw_plane_wm->wm[level].plane_res_b,
14140 hw_plane_wm->wm[level].plane_res_l);
14141 }
14142
14143 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14144 &sw_plane_wm->trans_wm)) {
14145 drm_err(&dev_priv->drm,
14146 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14147 pipe_name(pipe), plane + 1,
14148 sw_plane_wm->trans_wm.plane_en,
14149 sw_plane_wm->trans_wm.plane_res_b,
14150 sw_plane_wm->trans_wm.plane_res_l,
14151 hw_plane_wm->trans_wm.plane_en,
14152 hw_plane_wm->trans_wm.plane_res_b,
14153 hw_plane_wm->trans_wm.plane_res_l);
14154 }
14155
14156 /* DDB */
14157 hw_ddb_entry = &hw->ddb_y[plane];
14158 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
14159
14160 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14161 drm_err(&dev_priv->drm,
14162 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
14163 pipe_name(pipe), plane + 1,
14164 sw_ddb_entry->start, sw_ddb_entry->end,
14165 hw_ddb_entry->start, hw_ddb_entry->end);
14166 }
14167 }
14168
14169 /*
14170 * cursor
14171 * If the cursor plane isn't active, we may not have updated it's ddb
14172 * allocation. In that case since the ddb allocation will be updated
14173 * once the plane becomes visible, we can skip this check
14174 */
14175 if (1) {
14176 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14177
14178 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
14179 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
14180
14181 /* Watermarks */
14182 for (level = 0; level <= max_level; level++) {
14183 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14184 &sw_plane_wm->wm[level]) ||
14185 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14186 &sw_plane_wm->sagv_wm0)))
14187 continue;
14188
14189 drm_err(&dev_priv->drm,
14190 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14191 pipe_name(pipe), level,
14192 sw_plane_wm->wm[level].plane_en,
14193 sw_plane_wm->wm[level].plane_res_b,
14194 sw_plane_wm->wm[level].plane_res_l,
14195 hw_plane_wm->wm[level].plane_en,
14196 hw_plane_wm->wm[level].plane_res_b,
14197 hw_plane_wm->wm[level].plane_res_l);
14198 }
14199
14200 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14201 &sw_plane_wm->trans_wm)) {
14202 drm_err(&dev_priv->drm,
14203 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14204 pipe_name(pipe),
14205 sw_plane_wm->trans_wm.plane_en,
14206 sw_plane_wm->trans_wm.plane_res_b,
14207 sw_plane_wm->trans_wm.plane_res_l,
14208 hw_plane_wm->trans_wm.plane_en,
14209 hw_plane_wm->trans_wm.plane_res_b,
14210 hw_plane_wm->trans_wm.plane_res_l);
14211 }
14212
14213 /* DDB */
14214 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
14215 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
14216
14217 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14218 drm_err(&dev_priv->drm,
14219 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
14220 pipe_name(pipe),
14221 sw_ddb_entry->start, sw_ddb_entry->end,
14222 hw_ddb_entry->start, hw_ddb_entry->end);
14223 }
14224 }
14225
14226 kfree(hw);
14227 }
14228
14229 static void
verify_connector_state(struct intel_atomic_state * state,struct intel_crtc * crtc)14230 verify_connector_state(struct intel_atomic_state *state,
14231 struct intel_crtc *crtc)
14232 {
14233 struct drm_connector *connector;
14234 struct drm_connector_state *new_conn_state;
14235 int i;
14236
14237 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
14238 struct drm_encoder *encoder = connector->encoder;
14239 struct intel_crtc_state *crtc_state = NULL;
14240
14241 if (new_conn_state->crtc != &crtc->base)
14242 continue;
14243
14244 if (crtc)
14245 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
14246
14247 intel_connector_verify_state(crtc_state, new_conn_state);
14248
14249 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
14250 "connector's atomic encoder doesn't match legacy encoder\n");
14251 }
14252 }
14253
14254 static void
verify_encoder_state(struct drm_i915_private * dev_priv,struct intel_atomic_state * state)14255 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
14256 {
14257 struct intel_encoder *encoder;
14258 struct drm_connector *connector;
14259 struct drm_connector_state *old_conn_state, *new_conn_state;
14260 int i;
14261
14262 for_each_intel_encoder(&dev_priv->drm, encoder) {
14263 bool enabled = false, found = false;
14264 enum pipe pipe;
14265
14266 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n",
14267 encoder->base.base.id,
14268 encoder->base.name);
14269
14270 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
14271 new_conn_state, i) {
14272 if (old_conn_state->best_encoder == &encoder->base)
14273 found = true;
14274
14275 if (new_conn_state->best_encoder != &encoder->base)
14276 continue;
14277 found = enabled = true;
14278
14279 I915_STATE_WARN(new_conn_state->crtc !=
14280 encoder->base.crtc,
14281 "connector's crtc doesn't match encoder crtc\n");
14282 }
14283
14284 if (!found)
14285 continue;
14286
14287 I915_STATE_WARN(!!encoder->base.crtc != enabled,
14288 "encoder's enabled state mismatch "
14289 "(expected %i, found %i)\n",
14290 !!encoder->base.crtc, enabled);
14291
14292 if (!encoder->base.crtc) {
14293 bool active;
14294
14295 active = encoder->get_hw_state(encoder, &pipe);
14296 I915_STATE_WARN(active,
14297 "encoder detached but still enabled on pipe %c.\n",
14298 pipe_name(pipe));
14299 }
14300 }
14301 }
14302
14303 static void
verify_crtc_state(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14304 verify_crtc_state(struct intel_crtc *crtc,
14305 struct intel_crtc_state *old_crtc_state,
14306 struct intel_crtc_state *new_crtc_state)
14307 {
14308 struct drm_device *dev = crtc->base.dev;
14309 struct drm_i915_private *dev_priv = to_i915(dev);
14310 struct intel_encoder *encoder;
14311 struct intel_crtc_state *pipe_config = old_crtc_state;
14312 struct drm_atomic_state *state = old_crtc_state->uapi.state;
14313
14314 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
14315 intel_crtc_free_hw_state(old_crtc_state);
14316 intel_crtc_state_reset(old_crtc_state, crtc);
14317 old_crtc_state->uapi.state = state;
14318
14319 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id,
14320 crtc->base.name);
14321
14322 pipe_config->hw.enable = new_crtc_state->hw.enable;
14323
14324 pipe_config->hw.active =
14325 dev_priv->display.get_pipe_config(crtc, pipe_config);
14326
14327 /* we keep both pipes enabled on 830 */
14328 if (IS_I830(dev_priv) && pipe_config->hw.active)
14329 pipe_config->hw.active = new_crtc_state->hw.active;
14330
14331 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active,
14332 "crtc active state doesn't match with hw state "
14333 "(expected %i, found %i)\n",
14334 new_crtc_state->hw.active, pipe_config->hw.active);
14335
14336 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
14337 "transitional active state does not match atomic hw state "
14338 "(expected %i, found %i)\n",
14339 new_crtc_state->hw.active, crtc->active);
14340
14341 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14342 enum pipe pipe;
14343 bool active;
14344
14345 active = encoder->get_hw_state(encoder, &pipe);
14346 I915_STATE_WARN(active != new_crtc_state->hw.active,
14347 "[ENCODER:%i] active %i with crtc active %i\n",
14348 encoder->base.base.id, active,
14349 new_crtc_state->hw.active);
14350
14351 I915_STATE_WARN(active && crtc->pipe != pipe,
14352 "Encoder connected to wrong pipe %c\n",
14353 pipe_name(pipe));
14354
14355 if (active)
14356 encoder->get_config(encoder, pipe_config);
14357 }
14358
14359 intel_crtc_compute_pixel_rate(pipe_config);
14360
14361 if (!new_crtc_state->hw.active)
14362 return;
14363
14364 intel_pipe_config_sanity_check(dev_priv, pipe_config);
14365
14366 if (!intel_pipe_config_compare(new_crtc_state,
14367 pipe_config, false)) {
14368 I915_STATE_WARN(1, "pipe state doesn't match!\n");
14369 intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
14370 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
14371 }
14372 }
14373
14374 static void
intel_verify_planes(struct intel_atomic_state * state)14375 intel_verify_planes(struct intel_atomic_state *state)
14376 {
14377 struct intel_plane *plane;
14378 const struct intel_plane_state *plane_state;
14379 int i;
14380
14381 for_each_new_intel_plane_in_state(state, plane,
14382 plane_state, i)
14383 assert_plane(plane, plane_state->planar_slave ||
14384 plane_state->uapi.visible);
14385 }
14386
14387 static void
verify_single_dpll_state(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)14388 verify_single_dpll_state(struct drm_i915_private *dev_priv,
14389 struct intel_shared_dpll *pll,
14390 struct intel_crtc *crtc,
14391 struct intel_crtc_state *new_crtc_state)
14392 {
14393 struct intel_dpll_hw_state dpll_hw_state;
14394 unsigned int crtc_mask;
14395 bool active;
14396
14397 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
14398
14399 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name);
14400
14401 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
14402
14403 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
14404 I915_STATE_WARN(!pll->on && pll->active_mask,
14405 "pll in active use but not on in sw tracking\n");
14406 I915_STATE_WARN(pll->on && !pll->active_mask,
14407 "pll is on but not used by any active crtc\n");
14408 I915_STATE_WARN(pll->on != active,
14409 "pll on state mismatch (expected %i, found %i)\n",
14410 pll->on, active);
14411 }
14412
14413 if (!crtc) {
14414 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
14415 "more active pll users than references: %x vs %x\n",
14416 pll->active_mask, pll->state.crtc_mask);
14417
14418 return;
14419 }
14420
14421 crtc_mask = drm_crtc_mask(&crtc->base);
14422
14423 if (new_crtc_state->hw.active)
14424 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
14425 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
14426 pipe_name(crtc->pipe), pll->active_mask);
14427 else
14428 I915_STATE_WARN(pll->active_mask & crtc_mask,
14429 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
14430 pipe_name(crtc->pipe), pll->active_mask);
14431
14432 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
14433 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
14434 crtc_mask, pll->state.crtc_mask);
14435
14436 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
14437 &dpll_hw_state,
14438 sizeof(dpll_hw_state)),
14439 "pll hw state mismatch\n");
14440 }
14441
14442 static void
verify_shared_dpll_state(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14443 verify_shared_dpll_state(struct intel_crtc *crtc,
14444 struct intel_crtc_state *old_crtc_state,
14445 struct intel_crtc_state *new_crtc_state)
14446 {
14447 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14448
14449 if (new_crtc_state->shared_dpll)
14450 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
14451
14452 if (old_crtc_state->shared_dpll &&
14453 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
14454 unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
14455 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
14456
14457 I915_STATE_WARN(pll->active_mask & crtc_mask,
14458 "pll active mismatch (didn't expect pipe %c in active mask)\n",
14459 pipe_name(crtc->pipe));
14460 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
14461 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
14462 pipe_name(crtc->pipe));
14463 }
14464 }
14465
14466 static void
intel_modeset_verify_crtc(struct intel_crtc * crtc,struct intel_atomic_state * state,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14467 intel_modeset_verify_crtc(struct intel_crtc *crtc,
14468 struct intel_atomic_state *state,
14469 struct intel_crtc_state *old_crtc_state,
14470 struct intel_crtc_state *new_crtc_state)
14471 {
14472 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
14473 return;
14474
14475 verify_wm_state(crtc, new_crtc_state);
14476 verify_connector_state(state, crtc);
14477 verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
14478 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
14479 }
14480
14481 static void
verify_disabled_dpll_state(struct drm_i915_private * dev_priv)14482 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
14483 {
14484 int i;
14485
14486 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++)
14487 verify_single_dpll_state(dev_priv,
14488 &dev_priv->dpll.shared_dplls[i],
14489 NULL, NULL);
14490 }
14491
14492 static void
intel_modeset_verify_disabled(struct drm_i915_private * dev_priv,struct intel_atomic_state * state)14493 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
14494 struct intel_atomic_state *state)
14495 {
14496 verify_encoder_state(dev_priv, state);
14497 verify_connector_state(state, NULL);
14498 verify_disabled_dpll_state(dev_priv);
14499 }
14500
14501 static void
intel_crtc_update_active_timings(const struct intel_crtc_state * crtc_state)14502 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
14503 {
14504 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
14505 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14506 const struct drm_display_mode *adjusted_mode =
14507 &crtc_state->hw.adjusted_mode;
14508
14509 drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
14510
14511 crtc->mode_flags = crtc_state->mode_flags;
14512
14513 /*
14514 * The scanline counter increments at the leading edge of hsync.
14515 *
14516 * On most platforms it starts counting from vtotal-1 on the
14517 * first active line. That means the scanline counter value is
14518 * always one less than what we would expect. Ie. just after
14519 * start of vblank, which also occurs at start of hsync (on the
14520 * last active line), the scanline counter will read vblank_start-1.
14521 *
14522 * On gen2 the scanline counter starts counting from 1 instead
14523 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
14524 * to keep the value positive), instead of adding one.
14525 *
14526 * On HSW+ the behaviour of the scanline counter depends on the output
14527 * type. For DP ports it behaves like most other platforms, but on HDMI
14528 * there's an extra 1 line difference. So we need to add two instead of
14529 * one to the value.
14530 *
14531 * On VLV/CHV DSI the scanline counter would appear to increment
14532 * approx. 1/3 of a scanline before start of vblank. Unfortunately
14533 * that means we can't tell whether we're in vblank or not while
14534 * we're on that particular line. We must still set scanline_offset
14535 * to 1 so that the vblank timestamps come out correct when we query
14536 * the scanline counter from within the vblank interrupt handler.
14537 * However if queried just before the start of vblank we'll get an
14538 * answer that's slightly in the future.
14539 */
14540 if (IS_GEN(dev_priv, 2)) {
14541 int vtotal;
14542
14543 vtotal = adjusted_mode->crtc_vtotal;
14544 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14545 vtotal /= 2;
14546
14547 crtc->scanline_offset = vtotal - 1;
14548 } else if (HAS_DDI(dev_priv) &&
14549 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14550 crtc->scanline_offset = 2;
14551 } else {
14552 crtc->scanline_offset = 1;
14553 }
14554 }
14555
intel_modeset_clear_plls(struct intel_atomic_state * state)14556 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14557 {
14558 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14559 struct intel_crtc_state *new_crtc_state;
14560 struct intel_crtc *crtc;
14561 int i;
14562
14563 if (!dev_priv->display.crtc_compute_clock)
14564 return;
14565
14566 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14567 if (!needs_modeset(new_crtc_state))
14568 continue;
14569
14570 intel_release_shared_dplls(state, crtc);
14571 }
14572 }
14573
14574 /*
14575 * This implements the workaround described in the "notes" section of the mode
14576 * set sequence documentation. When going from no pipes or single pipe to
14577 * multiple pipes, and planes are enabled after the pipe, we need to wait at
14578 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14579 */
hsw_mode_set_planes_workaround(struct intel_atomic_state * state)14580 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
14581 {
14582 struct intel_crtc_state *crtc_state;
14583 struct intel_crtc *crtc;
14584 struct intel_crtc_state *first_crtc_state = NULL;
14585 struct intel_crtc_state *other_crtc_state = NULL;
14586 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14587 int i;
14588
14589 /* look at all crtc's that are going to be enabled in during modeset */
14590 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14591 if (!crtc_state->hw.active ||
14592 !needs_modeset(crtc_state))
14593 continue;
14594
14595 if (first_crtc_state) {
14596 other_crtc_state = crtc_state;
14597 break;
14598 } else {
14599 first_crtc_state = crtc_state;
14600 first_pipe = crtc->pipe;
14601 }
14602 }
14603
14604 /* No workaround needed? */
14605 if (!first_crtc_state)
14606 return 0;
14607
14608 /* w/a possibly needed, check how many crtc's are already enabled. */
14609 for_each_intel_crtc(state->base.dev, crtc) {
14610 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14611 if (IS_ERR(crtc_state))
14612 return PTR_ERR(crtc_state);
14613
14614 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14615
14616 if (!crtc_state->hw.active ||
14617 needs_modeset(crtc_state))
14618 continue;
14619
14620 /* 2 or more enabled crtcs means no need for w/a */
14621 if (enabled_pipe != INVALID_PIPE)
14622 return 0;
14623
14624 enabled_pipe = crtc->pipe;
14625 }
14626
14627 if (enabled_pipe != INVALID_PIPE)
14628 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
14629 else if (other_crtc_state)
14630 other_crtc_state->hsw_workaround_pipe = first_pipe;
14631
14632 return 0;
14633 }
14634
intel_calc_active_pipes(struct intel_atomic_state * state,u8 active_pipes)14635 u8 intel_calc_active_pipes(struct intel_atomic_state *state,
14636 u8 active_pipes)
14637 {
14638 const struct intel_crtc_state *crtc_state;
14639 struct intel_crtc *crtc;
14640 int i;
14641
14642 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14643 if (crtc_state->hw.active)
14644 active_pipes |= BIT(crtc->pipe);
14645 else
14646 active_pipes &= ~BIT(crtc->pipe);
14647 }
14648
14649 return active_pipes;
14650 }
14651
intel_modeset_checks(struct intel_atomic_state * state)14652 static int intel_modeset_checks(struct intel_atomic_state *state)
14653 {
14654 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14655
14656 state->modeset = true;
14657
14658 if (IS_HASWELL(dev_priv))
14659 return hsw_mode_set_planes_workaround(state);
14660
14661 return 0;
14662 }
14663
14664 /*
14665 * Handle calculation of various watermark data at the end of the atomic check
14666 * phase. The code here should be run after the per-crtc and per-plane 'check'
14667 * handlers to ensure that all derived state has been updated.
14668 */
calc_watermark_data(struct intel_atomic_state * state)14669 static int calc_watermark_data(struct intel_atomic_state *state)
14670 {
14671 struct drm_device *dev = state->base.dev;
14672 struct drm_i915_private *dev_priv = to_i915(dev);
14673
14674 /* Is there platform-specific watermark information to calculate? */
14675 if (dev_priv->display.compute_global_watermarks)
14676 return dev_priv->display.compute_global_watermarks(state);
14677
14678 return 0;
14679 }
14680
intel_crtc_check_fastset(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14681 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
14682 struct intel_crtc_state *new_crtc_state)
14683 {
14684 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
14685 return;
14686
14687 new_crtc_state->uapi.mode_changed = false;
14688 new_crtc_state->update_pipe = true;
14689 }
14690
intel_crtc_copy_fastset(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14691 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state,
14692 struct intel_crtc_state *new_crtc_state)
14693 {
14694 /*
14695 * If we're not doing the full modeset we want to
14696 * keep the current M/N values as they may be
14697 * sufficiently different to the computed values
14698 * to cause problems.
14699 *
14700 * FIXME: should really copy more fuzzy state here
14701 */
14702 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
14703 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
14704 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
14705 new_crtc_state->has_drrs = old_crtc_state->has_drrs;
14706 }
14707
intel_crtc_add_planes_to_state(struct intel_atomic_state * state,struct intel_crtc * crtc,u8 plane_ids_mask)14708 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
14709 struct intel_crtc *crtc,
14710 u8 plane_ids_mask)
14711 {
14712 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14713 struct intel_plane *plane;
14714
14715 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14716 struct intel_plane_state *plane_state;
14717
14718 if ((plane_ids_mask & BIT(plane->id)) == 0)
14719 continue;
14720
14721 plane_state = intel_atomic_get_plane_state(state, plane);
14722 if (IS_ERR(plane_state))
14723 return PTR_ERR(plane_state);
14724 }
14725
14726 return 0;
14727 }
14728
active_planes_affects_min_cdclk(struct drm_i915_private * dev_priv)14729 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
14730 {
14731 /* See {hsw,vlv,ivb}_plane_ratio() */
14732 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
14733 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
14734 IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11);
14735 }
14736
intel_atomic_check_planes(struct intel_atomic_state * state)14737 static int intel_atomic_check_planes(struct intel_atomic_state *state)
14738 {
14739 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14740 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14741 struct intel_plane_state *plane_state;
14742 struct intel_plane *plane;
14743 struct intel_crtc *crtc;
14744 int i, ret;
14745
14746 ret = icl_add_linked_planes(state);
14747 if (ret)
14748 return ret;
14749
14750 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14751 ret = intel_plane_atomic_check(state, plane);
14752 if (ret) {
14753 drm_dbg_atomic(&dev_priv->drm,
14754 "[PLANE:%d:%s] atomic driver check failed\n",
14755 plane->base.base.id, plane->base.name);
14756 return ret;
14757 }
14758 }
14759
14760 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14761 new_crtc_state, i) {
14762 u8 old_active_planes, new_active_planes;
14763
14764 ret = icl_check_nv12_planes(new_crtc_state);
14765 if (ret)
14766 return ret;
14767
14768 /*
14769 * On some platforms the number of active planes affects
14770 * the planes' minimum cdclk calculation. Add such planes
14771 * to the state before we compute the minimum cdclk.
14772 */
14773 if (!active_planes_affects_min_cdclk(dev_priv))
14774 continue;
14775
14776 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14777 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14778
14779 /*
14780 * Not only the number of planes, but if the plane configuration had
14781 * changed might already mean we need to recompute min CDCLK,
14782 * because different planes might consume different amount of Dbuf bandwidth
14783 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor
14784 */
14785 if (old_active_planes == new_active_planes)
14786 continue;
14787
14788 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
14789 if (ret)
14790 return ret;
14791 }
14792
14793 return 0;
14794 }
14795
intel_atomic_check_cdclk(struct intel_atomic_state * state,bool * need_cdclk_calc)14796 static int intel_atomic_check_cdclk(struct intel_atomic_state *state,
14797 bool *need_cdclk_calc)
14798 {
14799 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14800 const struct intel_cdclk_state *old_cdclk_state;
14801 const struct intel_cdclk_state *new_cdclk_state;
14802 struct intel_plane_state *plane_state;
14803 struct intel_bw_state *new_bw_state;
14804 struct intel_plane *plane;
14805 int min_cdclk = 0;
14806 enum pipe pipe;
14807 int ret;
14808 int i;
14809 /*
14810 * active_planes bitmask has been updated, and potentially
14811 * affected planes are part of the state. We can now
14812 * compute the minimum cdclk for each plane.
14813 */
14814 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14815 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
14816 if (ret)
14817 return ret;
14818 }
14819
14820 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
14821 new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
14822
14823 if (new_cdclk_state &&
14824 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
14825 *need_cdclk_calc = true;
14826
14827 ret = dev_priv->display.bw_calc_min_cdclk(state);
14828 if (ret)
14829 return ret;
14830
14831 new_bw_state = intel_atomic_get_new_bw_state(state);
14832
14833 if (!new_cdclk_state || !new_bw_state)
14834 return 0;
14835
14836 for_each_pipe(dev_priv, pipe) {
14837 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk);
14838
14839 /*
14840 * Currently do this change only if we need to increase
14841 */
14842 if (new_bw_state->min_cdclk > min_cdclk)
14843 *need_cdclk_calc = true;
14844 }
14845
14846 return 0;
14847 }
14848
intel_atomic_check_crtcs(struct intel_atomic_state * state)14849 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
14850 {
14851 struct intel_crtc_state *crtc_state;
14852 struct intel_crtc *crtc;
14853 int i;
14854
14855 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14856 int ret = intel_crtc_atomic_check(state, crtc);
14857 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
14858 if (ret) {
14859 drm_dbg_atomic(&i915->drm,
14860 "[CRTC:%d:%s] atomic driver check failed\n",
14861 crtc->base.base.id, crtc->base.name);
14862 return ret;
14863 }
14864 }
14865
14866 return 0;
14867 }
14868
intel_cpu_transcoders_need_modeset(struct intel_atomic_state * state,u8 transcoders)14869 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
14870 u8 transcoders)
14871 {
14872 const struct intel_crtc_state *new_crtc_state;
14873 struct intel_crtc *crtc;
14874 int i;
14875
14876 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14877 if (new_crtc_state->hw.enable &&
14878 transcoders & BIT(new_crtc_state->cpu_transcoder) &&
14879 needs_modeset(new_crtc_state))
14880 return true;
14881 }
14882
14883 return false;
14884 }
14885
14886 /**
14887 * intel_atomic_check - validate state object
14888 * @dev: drm device
14889 * @_state: state to validate
14890 */
intel_atomic_check(struct drm_device * dev,struct drm_atomic_state * _state)14891 static int intel_atomic_check(struct drm_device *dev,
14892 struct drm_atomic_state *_state)
14893 {
14894 struct drm_i915_private *dev_priv = to_i915(dev);
14895 struct intel_atomic_state *state = to_intel_atomic_state(_state);
14896 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14897 struct intel_crtc *crtc;
14898 int ret, i;
14899 bool any_ms = false;
14900
14901 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14902 new_crtc_state, i) {
14903 if (new_crtc_state->inherited != old_crtc_state->inherited)
14904 new_crtc_state->uapi.mode_changed = true;
14905 }
14906
14907 ret = drm_atomic_helper_check_modeset(dev, &state->base);
14908 if (ret)
14909 goto fail;
14910
14911 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14912 new_crtc_state, i) {
14913 if (!needs_modeset(new_crtc_state)) {
14914 /* Light copy */
14915 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state);
14916
14917 continue;
14918 }
14919
14920 ret = intel_crtc_prepare_cleared_state(new_crtc_state);
14921 if (ret)
14922 goto fail;
14923
14924 if (!new_crtc_state->hw.enable)
14925 continue;
14926
14927 ret = intel_modeset_pipe_config(new_crtc_state);
14928 if (ret)
14929 goto fail;
14930 }
14931
14932 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14933 new_crtc_state, i) {
14934 if (!needs_modeset(new_crtc_state))
14935 continue;
14936
14937 ret = intel_modeset_pipe_config_late(new_crtc_state);
14938 if (ret)
14939 goto fail;
14940
14941 intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14942 }
14943
14944 /**
14945 * Check if fastset is allowed by external dependencies like other
14946 * pipes and transcoders.
14947 *
14948 * Right now it only forces a fullmodeset when the MST master
14949 * transcoder did not changed but the pipe of the master transcoder
14950 * needs a fullmodeset so all slaves also needs to do a fullmodeset or
14951 * in case of port synced crtcs, if one of the synced crtcs
14952 * needs a full modeset, all other synced crtcs should be
14953 * forced a full modeset.
14954 */
14955 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14956 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state))
14957 continue;
14958
14959 if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
14960 enum transcoder master = new_crtc_state->mst_master_transcoder;
14961
14962 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
14963 new_crtc_state->uapi.mode_changed = true;
14964 new_crtc_state->update_pipe = false;
14965 }
14966 }
14967
14968 if (is_trans_port_sync_mode(new_crtc_state)) {
14969 u8 trans = new_crtc_state->sync_mode_slaves_mask;
14970
14971 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
14972 trans |= BIT(new_crtc_state->master_transcoder);
14973
14974 if (intel_cpu_transcoders_need_modeset(state, trans)) {
14975 new_crtc_state->uapi.mode_changed = true;
14976 new_crtc_state->update_pipe = false;
14977 }
14978 }
14979 }
14980
14981 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14982 new_crtc_state, i) {
14983 if (needs_modeset(new_crtc_state)) {
14984 any_ms = true;
14985 continue;
14986 }
14987
14988 if (!new_crtc_state->update_pipe)
14989 continue;
14990
14991 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state);
14992 }
14993
14994 if (any_ms && !check_digital_port_conflicts(state)) {
14995 drm_dbg_kms(&dev_priv->drm,
14996 "rejecting conflicting digital port configuration\n");
14997 ret = -EINVAL;
14998 goto fail;
14999 }
15000
15001 ret = drm_dp_mst_atomic_check(&state->base);
15002 if (ret)
15003 goto fail;
15004
15005 ret = intel_atomic_check_planes(state);
15006 if (ret)
15007 goto fail;
15008
15009 /*
15010 * distrust_bios_wm will force a full dbuf recomputation
15011 * but the hardware state will only get updated accordingly
15012 * if state->modeset==true. Hence distrust_bios_wm==true &&
15013 * state->modeset==false is an invalid combination which
15014 * would cause the hardware and software dbuf state to get
15015 * out of sync. We must prevent that.
15016 *
15017 * FIXME clean up this mess and introduce better
15018 * state tracking for dbuf.
15019 */
15020 if (dev_priv->wm.distrust_bios_wm)
15021 any_ms = true;
15022
15023 intel_fbc_choose_crtc(dev_priv, state);
15024 ret = calc_watermark_data(state);
15025 if (ret)
15026 goto fail;
15027
15028 ret = intel_bw_atomic_check(state);
15029 if (ret)
15030 goto fail;
15031
15032 ret = intel_atomic_check_cdclk(state, &any_ms);
15033 if (ret)
15034 goto fail;
15035
15036 if (any_ms) {
15037 ret = intel_modeset_checks(state);
15038 if (ret)
15039 goto fail;
15040
15041 ret = intel_modeset_calc_cdclk(state);
15042 if (ret)
15043 return ret;
15044
15045 intel_modeset_clear_plls(state);
15046 }
15047
15048 ret = intel_atomic_check_crtcs(state);
15049 if (ret)
15050 goto fail;
15051
15052 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15053 new_crtc_state, i) {
15054 if (!needs_modeset(new_crtc_state) &&
15055 !new_crtc_state->update_pipe)
15056 continue;
15057
15058 intel_dump_pipe_config(new_crtc_state, state,
15059 needs_modeset(new_crtc_state) ?
15060 "[modeset]" : "[fastset]");
15061 }
15062
15063 return 0;
15064
15065 fail:
15066 if (ret == -EDEADLK)
15067 return ret;
15068
15069 /*
15070 * FIXME would probably be nice to know which crtc specifically
15071 * caused the failure, in cases where we can pinpoint it.
15072 */
15073 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15074 new_crtc_state, i)
15075 intel_dump_pipe_config(new_crtc_state, state, "[failed]");
15076
15077 return ret;
15078 }
15079
intel_atomic_prepare_commit(struct intel_atomic_state * state)15080 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
15081 {
15082 struct intel_crtc_state *crtc_state;
15083 struct intel_crtc *crtc;
15084 int i, ret;
15085
15086 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
15087 if (ret < 0)
15088 return ret;
15089
15090 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15091 bool mode_changed = needs_modeset(crtc_state);
15092
15093 if (mode_changed || crtc_state->update_pipe ||
15094 crtc_state->uapi.color_mgmt_changed) {
15095 intel_dsb_prepare(crtc_state);
15096 }
15097 }
15098
15099 return 0;
15100 }
15101
intel_crtc_get_vblank_counter(struct intel_crtc * crtc)15102 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
15103 {
15104 struct drm_device *dev = crtc->base.dev;
15105 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
15106
15107 if (!vblank->max_vblank_count)
15108 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
15109
15110 return crtc->base.funcs->get_vblank_counter(&crtc->base);
15111 }
15112
intel_crtc_arm_fifo_underrun(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)15113 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
15114 struct intel_crtc_state *crtc_state)
15115 {
15116 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15117
15118 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
15119 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15120
15121 if (crtc_state->has_pch_encoder) {
15122 enum pipe pch_transcoder =
15123 intel_crtc_pch_transcoder(crtc);
15124
15125 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
15126 }
15127 }
15128
intel_pipe_fastset(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)15129 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
15130 const struct intel_crtc_state *new_crtc_state)
15131 {
15132 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
15133 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15134
15135 /*
15136 * Update pipe size and adjust fitter if needed: the reason for this is
15137 * that in compute_mode_changes we check the native mode (not the pfit
15138 * mode) to see if we can flip rather than do a full mode set. In the
15139 * fastboot case, we'll flip, but if we don't update the pipesrc and
15140 * pfit state, we'll end up with a big fb scanned out into the wrong
15141 * sized surface.
15142 */
15143 intel_set_pipe_src_size(new_crtc_state);
15144
15145 /* on skylake this is done by detaching scalers */
15146 if (INTEL_GEN(dev_priv) >= 9) {
15147 skl_detach_scalers(new_crtc_state);
15148
15149 if (new_crtc_state->pch_pfit.enabled)
15150 skl_pfit_enable(new_crtc_state);
15151 } else if (HAS_PCH_SPLIT(dev_priv)) {
15152 if (new_crtc_state->pch_pfit.enabled)
15153 ilk_pfit_enable(new_crtc_state);
15154 else if (old_crtc_state->pch_pfit.enabled)
15155 ilk_pfit_disable(old_crtc_state);
15156 }
15157
15158 /*
15159 * The register is supposedly single buffered so perhaps
15160 * not 100% correct to do this here. But SKL+ calculate
15161 * this based on the adjust pixel rate so pfit changes do
15162 * affect it and so it must be updated for fastsets.
15163 * HSW/BDW only really need this here for fastboot, after
15164 * that the value should not change without a full modeset.
15165 */
15166 if (INTEL_GEN(dev_priv) >= 9 ||
15167 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15168 hsw_set_linetime_wm(new_crtc_state);
15169
15170 if (INTEL_GEN(dev_priv) >= 11)
15171 icl_set_pipe_chicken(crtc);
15172 }
15173
commit_pipe_config(struct intel_atomic_state * state,struct intel_crtc * crtc)15174 static void commit_pipe_config(struct intel_atomic_state *state,
15175 struct intel_crtc *crtc)
15176 {
15177 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15178 const struct intel_crtc_state *old_crtc_state =
15179 intel_atomic_get_old_crtc_state(state, crtc);
15180 const struct intel_crtc_state *new_crtc_state =
15181 intel_atomic_get_new_crtc_state(state, crtc);
15182 bool modeset = needs_modeset(new_crtc_state);
15183
15184 /*
15185 * During modesets pipe configuration was programmed as the
15186 * CRTC was enabled.
15187 */
15188 if (!modeset) {
15189 if (new_crtc_state->uapi.color_mgmt_changed ||
15190 new_crtc_state->update_pipe)
15191 intel_color_commit(new_crtc_state);
15192
15193 if (INTEL_GEN(dev_priv) >= 9)
15194 skl_detach_scalers(new_crtc_state);
15195
15196 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15197 bdw_set_pipemisc(new_crtc_state);
15198
15199 if (new_crtc_state->update_pipe)
15200 intel_pipe_fastset(old_crtc_state, new_crtc_state);
15201
15202 intel_psr2_program_trans_man_trk_ctl(new_crtc_state);
15203 }
15204
15205 if (dev_priv->display.atomic_update_watermarks)
15206 dev_priv->display.atomic_update_watermarks(state, crtc);
15207 }
15208
intel_enable_crtc(struct intel_atomic_state * state,struct intel_crtc * crtc)15209 static void intel_enable_crtc(struct intel_atomic_state *state,
15210 struct intel_crtc *crtc)
15211 {
15212 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15213 const struct intel_crtc_state *new_crtc_state =
15214 intel_atomic_get_new_crtc_state(state, crtc);
15215
15216 if (!needs_modeset(new_crtc_state))
15217 return;
15218
15219 intel_crtc_update_active_timings(new_crtc_state);
15220
15221 dev_priv->display.crtc_enable(state, crtc);
15222
15223 /* vblanks work again, re-enable pipe CRC. */
15224 intel_crtc_enable_pipe_crc(crtc);
15225 }
15226
intel_update_crtc(struct intel_atomic_state * state,struct intel_crtc * crtc)15227 static void intel_update_crtc(struct intel_atomic_state *state,
15228 struct intel_crtc *crtc)
15229 {
15230 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15231 const struct intel_crtc_state *old_crtc_state =
15232 intel_atomic_get_old_crtc_state(state, crtc);
15233 struct intel_crtc_state *new_crtc_state =
15234 intel_atomic_get_new_crtc_state(state, crtc);
15235 bool modeset = needs_modeset(new_crtc_state);
15236
15237 if (!modeset) {
15238 if (new_crtc_state->preload_luts &&
15239 (new_crtc_state->uapi.color_mgmt_changed ||
15240 new_crtc_state->update_pipe))
15241 intel_color_load_luts(new_crtc_state);
15242
15243 intel_pre_plane_update(state, crtc);
15244
15245 if (new_crtc_state->update_pipe)
15246 intel_encoders_update_pipe(state, crtc);
15247 }
15248
15249 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
15250 intel_fbc_disable(crtc);
15251 else
15252 intel_fbc_enable(state, crtc);
15253
15254 /* Perform vblank evasion around commit operation */
15255 intel_pipe_update_start(new_crtc_state);
15256
15257 commit_pipe_config(state, crtc);
15258
15259 if (INTEL_GEN(dev_priv) >= 9)
15260 skl_update_planes_on_crtc(state, crtc);
15261 else
15262 i9xx_update_planes_on_crtc(state, crtc);
15263
15264 intel_pipe_update_end(new_crtc_state);
15265
15266 /*
15267 * We usually enable FIFO underrun interrupts as part of the
15268 * CRTC enable sequence during modesets. But when we inherit a
15269 * valid pipe configuration from the BIOS we need to take care
15270 * of enabling them on the CRTC's first fastset.
15271 */
15272 if (new_crtc_state->update_pipe && !modeset &&
15273 old_crtc_state->inherited)
15274 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
15275 }
15276
15277
intel_old_crtc_state_disables(struct intel_atomic_state * state,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state,struct intel_crtc * crtc)15278 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
15279 struct intel_crtc_state *old_crtc_state,
15280 struct intel_crtc_state *new_crtc_state,
15281 struct intel_crtc *crtc)
15282 {
15283 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15284
15285 intel_crtc_disable_planes(state, crtc);
15286
15287 /*
15288 * We need to disable pipe CRC before disabling the pipe,
15289 * or we race against vblank off.
15290 */
15291 intel_crtc_disable_pipe_crc(crtc);
15292
15293 dev_priv->display.crtc_disable(state, crtc);
15294 crtc->active = false;
15295 intel_fbc_disable(crtc);
15296 intel_disable_shared_dpll(old_crtc_state);
15297
15298 /* FIXME unify this for all platforms */
15299 if (!new_crtc_state->hw.active &&
15300 !HAS_GMCH(dev_priv) &&
15301 dev_priv->display.initial_watermarks)
15302 dev_priv->display.initial_watermarks(state, crtc);
15303 }
15304
intel_commit_modeset_disables(struct intel_atomic_state * state)15305 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
15306 {
15307 struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15308 struct intel_crtc *crtc;
15309 u32 handled = 0;
15310 int i;
15311
15312 /* Only disable port sync and MST slaves */
15313 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15314 new_crtc_state, i) {
15315 if (!needs_modeset(new_crtc_state))
15316 continue;
15317
15318 if (!old_crtc_state->hw.active)
15319 continue;
15320
15321 /* In case of Transcoder port Sync master slave CRTCs can be
15322 * assigned in any order and we need to make sure that
15323 * slave CRTCs are disabled first and then master CRTC since
15324 * Slave vblanks are masked till Master Vblanks.
15325 */
15326 if (!is_trans_port_sync_slave(old_crtc_state) &&
15327 !intel_dp_mst_is_slave_trans(old_crtc_state))
15328 continue;
15329
15330 intel_pre_plane_update(state, crtc);
15331 intel_old_crtc_state_disables(state, old_crtc_state,
15332 new_crtc_state, crtc);
15333 handled |= BIT(crtc->pipe);
15334 }
15335
15336 /* Disable everything else left on */
15337 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15338 new_crtc_state, i) {
15339 if (!needs_modeset(new_crtc_state) ||
15340 (handled & BIT(crtc->pipe)))
15341 continue;
15342
15343 intel_pre_plane_update(state, crtc);
15344 if (old_crtc_state->hw.active)
15345 intel_old_crtc_state_disables(state, old_crtc_state,
15346 new_crtc_state, crtc);
15347 }
15348 }
15349
intel_commit_modeset_enables(struct intel_atomic_state * state)15350 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
15351 {
15352 struct intel_crtc_state *new_crtc_state;
15353 struct intel_crtc *crtc;
15354 int i;
15355
15356 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15357 if (!new_crtc_state->hw.active)
15358 continue;
15359
15360 intel_enable_crtc(state, crtc);
15361 intel_update_crtc(state, crtc);
15362 }
15363 }
15364
skl_commit_modeset_enables(struct intel_atomic_state * state)15365 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
15366 {
15367 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15368 struct intel_crtc *crtc;
15369 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15370 struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
15371 u8 update_pipes = 0, modeset_pipes = 0;
15372 int i;
15373
15374 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15375 enum pipe pipe = crtc->pipe;
15376
15377 if (!new_crtc_state->hw.active)
15378 continue;
15379
15380 /* ignore allocations for crtc's that have been turned off. */
15381 if (!needs_modeset(new_crtc_state)) {
15382 entries[pipe] = old_crtc_state->wm.skl.ddb;
15383 update_pipes |= BIT(pipe);
15384 } else {
15385 modeset_pipes |= BIT(pipe);
15386 }
15387 }
15388
15389 /*
15390 * Whenever the number of active pipes changes, we need to make sure we
15391 * update the pipes in the right order so that their ddb allocations
15392 * never overlap with each other between CRTC updates. Otherwise we'll
15393 * cause pipe underruns and other bad stuff.
15394 *
15395 * So first lets enable all pipes that do not need a fullmodeset as
15396 * those don't have any external dependency.
15397 */
15398 while (update_pipes) {
15399 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15400 new_crtc_state, i) {
15401 enum pipe pipe = crtc->pipe;
15402
15403 if ((update_pipes & BIT(pipe)) == 0)
15404 continue;
15405
15406 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15407 entries, I915_MAX_PIPES, pipe))
15408 continue;
15409
15410 entries[pipe] = new_crtc_state->wm.skl.ddb;
15411 update_pipes &= ~BIT(pipe);
15412
15413 intel_update_crtc(state, crtc);
15414
15415 /*
15416 * If this is an already active pipe, it's DDB changed,
15417 * and this isn't the last pipe that needs updating
15418 * then we need to wait for a vblank to pass for the
15419 * new ddb allocation to take effect.
15420 */
15421 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
15422 &old_crtc_state->wm.skl.ddb) &&
15423 (update_pipes | modeset_pipes))
15424 intel_wait_for_vblank(dev_priv, pipe);
15425 }
15426 }
15427
15428 update_pipes = modeset_pipes;
15429
15430 /*
15431 * Enable all pipes that needs a modeset and do not depends on other
15432 * pipes
15433 */
15434 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15435 enum pipe pipe = crtc->pipe;
15436
15437 if ((modeset_pipes & BIT(pipe)) == 0)
15438 continue;
15439
15440 if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
15441 is_trans_port_sync_master(new_crtc_state))
15442 continue;
15443
15444 modeset_pipes &= ~BIT(pipe);
15445
15446 intel_enable_crtc(state, crtc);
15447 }
15448
15449 /*
15450 * Then we enable all remaining pipes that depend on other
15451 * pipes: MST slaves and port sync masters.
15452 */
15453 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15454 enum pipe pipe = crtc->pipe;
15455
15456 if ((modeset_pipes & BIT(pipe)) == 0)
15457 continue;
15458
15459 modeset_pipes &= ~BIT(pipe);
15460
15461 intel_enable_crtc(state, crtc);
15462 }
15463
15464 /*
15465 * Finally we do the plane updates/etc. for all pipes that got enabled.
15466 */
15467 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15468 enum pipe pipe = crtc->pipe;
15469
15470 if ((update_pipes & BIT(pipe)) == 0)
15471 continue;
15472
15473 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15474 entries, I915_MAX_PIPES, pipe));
15475
15476 entries[pipe] = new_crtc_state->wm.skl.ddb;
15477 update_pipes &= ~BIT(pipe);
15478
15479 intel_update_crtc(state, crtc);
15480 }
15481
15482 drm_WARN_ON(&dev_priv->drm, modeset_pipes);
15483 drm_WARN_ON(&dev_priv->drm, update_pipes);
15484 }
15485
intel_atomic_helper_free_state(struct drm_i915_private * dev_priv)15486 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
15487 {
15488 struct intel_atomic_state *state, *next;
15489 struct llist_node *freed;
15490
15491 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
15492 llist_for_each_entry_safe(state, next, freed, freed)
15493 drm_atomic_state_put(&state->base);
15494 }
15495
intel_atomic_helper_free_state_worker(struct work_struct * work)15496 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
15497 {
15498 struct drm_i915_private *dev_priv =
15499 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
15500
15501 intel_atomic_helper_free_state(dev_priv);
15502 }
15503
intel_atomic_commit_fence_wait(struct intel_atomic_state * intel_state)15504 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
15505 {
15506 struct wait_queue_entry wait_fence, wait_reset;
15507 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
15508
15509 init_wait_entry(&wait_fence, 0);
15510 init_wait_entry(&wait_reset, 0);
15511 for (;;) {
15512 prepare_to_wait(&intel_state->commit_ready.wait,
15513 &wait_fence, TASK_UNINTERRUPTIBLE);
15514 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15515 I915_RESET_MODESET),
15516 &wait_reset, TASK_UNINTERRUPTIBLE);
15517
15518
15519 if (i915_sw_fence_done(&intel_state->commit_ready) ||
15520 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
15521 break;
15522
15523 schedule();
15524 }
15525 finish_wait(&intel_state->commit_ready.wait, &wait_fence);
15526 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15527 I915_RESET_MODESET),
15528 &wait_reset);
15529 }
15530
intel_cleanup_dsbs(struct intel_atomic_state * state)15531 static void intel_cleanup_dsbs(struct intel_atomic_state *state)
15532 {
15533 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15534 struct intel_crtc *crtc;
15535 int i;
15536
15537 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15538 new_crtc_state, i)
15539 intel_dsb_cleanup(old_crtc_state);
15540 }
15541
intel_atomic_cleanup_work(struct work_struct * work)15542 static void intel_atomic_cleanup_work(struct work_struct *work)
15543 {
15544 struct intel_atomic_state *state =
15545 container_of(work, struct intel_atomic_state, base.commit_work);
15546 struct drm_i915_private *i915 = to_i915(state->base.dev);
15547
15548 intel_cleanup_dsbs(state);
15549 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base);
15550 drm_atomic_helper_commit_cleanup_done(&state->base);
15551 drm_atomic_state_put(&state->base);
15552
15553 intel_atomic_helper_free_state(i915);
15554 }
15555
intel_atomic_commit_tail(struct intel_atomic_state * state)15556 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
15557 {
15558 struct drm_device *dev = state->base.dev;
15559 struct drm_i915_private *dev_priv = to_i915(dev);
15560 struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15561 struct intel_crtc *crtc;
15562 u64 put_domains[I915_MAX_PIPES] = {};
15563 intel_wakeref_t wakeref = 0;
15564 int i;
15565
15566 intel_atomic_commit_fence_wait(state);
15567
15568 drm_atomic_helper_wait_for_dependencies(&state->base);
15569
15570 if (state->modeset)
15571 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
15572
15573 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15574 new_crtc_state, i) {
15575 if (needs_modeset(new_crtc_state) ||
15576 new_crtc_state->update_pipe) {
15577
15578 put_domains[crtc->pipe] =
15579 modeset_get_crtc_power_domains(new_crtc_state);
15580 }
15581 }
15582
15583 intel_commit_modeset_disables(state);
15584
15585 /* FIXME: Eventually get rid of our crtc->config pointer */
15586 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15587 crtc->config = new_crtc_state;
15588
15589 if (state->modeset) {
15590 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
15591
15592 intel_set_cdclk_pre_plane_update(state);
15593
15594 intel_modeset_verify_disabled(dev_priv, state);
15595 }
15596
15597 intel_sagv_pre_plane_update(state);
15598
15599 /* Complete the events for pipes that have now been disabled */
15600 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15601 bool modeset = needs_modeset(new_crtc_state);
15602
15603 /* Complete events for now disable pipes here. */
15604 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
15605 spin_lock_irq(&dev->event_lock);
15606 drm_crtc_send_vblank_event(&crtc->base,
15607 new_crtc_state->uapi.event);
15608 spin_unlock_irq(&dev->event_lock);
15609
15610 new_crtc_state->uapi.event = NULL;
15611 }
15612 }
15613
15614 if (state->modeset)
15615 intel_encoders_update_prepare(state);
15616
15617 intel_dbuf_pre_plane_update(state);
15618
15619 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
15620 dev_priv->display.commit_modeset_enables(state);
15621
15622 if (state->modeset) {
15623 intel_encoders_update_complete(state);
15624
15625 intel_set_cdclk_post_plane_update(state);
15626 }
15627
15628 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
15629 * already, but still need the state for the delayed optimization. To
15630 * fix this:
15631 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
15632 * - schedule that vblank worker _before_ calling hw_done
15633 * - at the start of commit_tail, cancel it _synchrously
15634 * - switch over to the vblank wait helper in the core after that since
15635 * we don't need out special handling any more.
15636 */
15637 drm_atomic_helper_wait_for_flip_done(dev, &state->base);
15638
15639 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15640 if (new_crtc_state->hw.active &&
15641 !needs_modeset(new_crtc_state) &&
15642 !new_crtc_state->preload_luts &&
15643 (new_crtc_state->uapi.color_mgmt_changed ||
15644 new_crtc_state->update_pipe))
15645 intel_color_load_luts(new_crtc_state);
15646 }
15647
15648 /*
15649 * Now that the vblank has passed, we can go ahead and program the
15650 * optimal watermarks on platforms that need two-step watermark
15651 * programming.
15652 *
15653 * TODO: Move this (and other cleanup) to an async worker eventually.
15654 */
15655 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15656 new_crtc_state, i) {
15657 /*
15658 * Gen2 reports pipe underruns whenever all planes are disabled.
15659 * So re-enable underrun reporting after some planes get enabled.
15660 *
15661 * We do this before .optimize_watermarks() so that we have a
15662 * chance of catching underruns with the intermediate watermarks
15663 * vs. the new plane configuration.
15664 */
15665 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
15666 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15667
15668 if (dev_priv->display.optimize_watermarks)
15669 dev_priv->display.optimize_watermarks(state, crtc);
15670 }
15671
15672 intel_dbuf_post_plane_update(state);
15673
15674 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15675 intel_post_plane_update(state, crtc);
15676
15677 if (put_domains[i])
15678 modeset_put_power_domains(dev_priv, put_domains[i]);
15679
15680 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
15681
15682 /*
15683 * DSB cleanup is done in cleanup_work aligning with framebuffer
15684 * cleanup. So copy and reset the dsb structure to sync with
15685 * commit_done and later do dsb cleanup in cleanup_work.
15686 */
15687 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb);
15688 }
15689
15690 /* Underruns don't always raise interrupts, so check manually */
15691 intel_check_cpu_fifo_underruns(dev_priv);
15692 intel_check_pch_fifo_underruns(dev_priv);
15693
15694 if (state->modeset)
15695 intel_verify_planes(state);
15696
15697 intel_sagv_post_plane_update(state);
15698
15699 drm_atomic_helper_commit_hw_done(&state->base);
15700
15701 if (state->modeset) {
15702 /* As one of the primary mmio accessors, KMS has a high
15703 * likelihood of triggering bugs in unclaimed access. After we
15704 * finish modesetting, see if an error has been flagged, and if
15705 * so enable debugging for the next modeset - and hope we catch
15706 * the culprit.
15707 */
15708 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
15709 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
15710 }
15711 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15712
15713 /*
15714 * Defer the cleanup of the old state to a separate worker to not
15715 * impede the current task (userspace for blocking modesets) that
15716 * are executed inline. For out-of-line asynchronous modesets/flips,
15717 * deferring to a new worker seems overkill, but we would place a
15718 * schedule point (cond_resched()) here anyway to keep latencies
15719 * down.
15720 */
15721 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
15722 queue_work(system_highpri_wq, &state->base.commit_work);
15723 }
15724
intel_atomic_commit_work(struct work_struct * work)15725 static void intel_atomic_commit_work(struct work_struct *work)
15726 {
15727 struct intel_atomic_state *state =
15728 container_of(work, struct intel_atomic_state, base.commit_work);
15729
15730 intel_atomic_commit_tail(state);
15731 }
15732
15733 static int __i915_sw_fence_call
intel_atomic_commit_ready(struct i915_sw_fence * fence,enum i915_sw_fence_notify notify)15734 intel_atomic_commit_ready(struct i915_sw_fence *fence,
15735 enum i915_sw_fence_notify notify)
15736 {
15737 struct intel_atomic_state *state =
15738 container_of(fence, struct intel_atomic_state, commit_ready);
15739
15740 switch (notify) {
15741 case FENCE_COMPLETE:
15742 /* we do blocking waits in the worker, nothing to do here */
15743 break;
15744 case FENCE_FREE:
15745 {
15746 struct intel_atomic_helper *helper =
15747 &to_i915(state->base.dev)->atomic_helper;
15748
15749 if (llist_add(&state->freed, &helper->free_list))
15750 schedule_work(&helper->free_work);
15751 break;
15752 }
15753 }
15754
15755 return NOTIFY_DONE;
15756 }
15757
intel_atomic_track_fbs(struct intel_atomic_state * state)15758 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
15759 {
15760 struct intel_plane_state *old_plane_state, *new_plane_state;
15761 struct intel_plane *plane;
15762 int i;
15763
15764 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15765 new_plane_state, i)
15766 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15767 to_intel_frontbuffer(new_plane_state->hw.fb),
15768 plane->frontbuffer_bit);
15769 }
15770
intel_atomic_commit(struct drm_device * dev,struct drm_atomic_state * _state,bool nonblock)15771 static int intel_atomic_commit(struct drm_device *dev,
15772 struct drm_atomic_state *_state,
15773 bool nonblock)
15774 {
15775 struct intel_atomic_state *state = to_intel_atomic_state(_state);
15776 struct drm_i915_private *dev_priv = to_i915(dev);
15777 int ret = 0;
15778
15779 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
15780
15781 drm_atomic_state_get(&state->base);
15782 i915_sw_fence_init(&state->commit_ready,
15783 intel_atomic_commit_ready);
15784
15785 /*
15786 * The intel_legacy_cursor_update() fast path takes care
15787 * of avoiding the vblank waits for simple cursor
15788 * movement and flips. For cursor on/off and size changes,
15789 * we want to perform the vblank waits so that watermark
15790 * updates happen during the correct frames. Gen9+ have
15791 * double buffered watermarks and so shouldn't need this.
15792 *
15793 * Unset state->legacy_cursor_update before the call to
15794 * drm_atomic_helper_setup_commit() because otherwise
15795 * drm_atomic_helper_wait_for_flip_done() is a noop and
15796 * we get FIFO underruns because we didn't wait
15797 * for vblank.
15798 *
15799 * FIXME doing watermarks and fb cleanup from a vblank worker
15800 * (assuming we had any) would solve these problems.
15801 */
15802 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
15803 struct intel_crtc_state *new_crtc_state;
15804 struct intel_crtc *crtc;
15805 int i;
15806
15807 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15808 if (new_crtc_state->wm.need_postvbl_update ||
15809 new_crtc_state->update_wm_post)
15810 state->base.legacy_cursor_update = false;
15811 }
15812
15813 ret = intel_atomic_prepare_commit(state);
15814 if (ret) {
15815 drm_dbg_atomic(&dev_priv->drm,
15816 "Preparing state failed with %i\n", ret);
15817 i915_sw_fence_commit(&state->commit_ready);
15818 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15819 return ret;
15820 }
15821
15822 ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
15823 if (!ret)
15824 ret = drm_atomic_helper_swap_state(&state->base, true);
15825 if (!ret)
15826 intel_atomic_swap_global_state(state);
15827
15828 if (ret) {
15829 struct intel_crtc_state *new_crtc_state;
15830 struct intel_crtc *crtc;
15831 int i;
15832
15833 i915_sw_fence_commit(&state->commit_ready);
15834
15835 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15836 intel_dsb_cleanup(new_crtc_state);
15837
15838 drm_atomic_helper_cleanup_planes(dev, &state->base);
15839 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15840 return ret;
15841 }
15842 dev_priv->wm.distrust_bios_wm = false;
15843 intel_shared_dpll_swap_state(state);
15844 intel_atomic_track_fbs(state);
15845
15846 drm_atomic_state_get(&state->base);
15847 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
15848
15849 i915_sw_fence_commit(&state->commit_ready);
15850 if (nonblock && state->modeset) {
15851 queue_work(dev_priv->modeset_wq, &state->base.commit_work);
15852 } else if (nonblock) {
15853 queue_work(dev_priv->flip_wq, &state->base.commit_work);
15854 } else {
15855 if (state->modeset)
15856 flush_workqueue(dev_priv->modeset_wq);
15857 intel_atomic_commit_tail(state);
15858 }
15859
15860 return 0;
15861 }
15862
15863 struct wait_rps_boost {
15864 struct wait_queue_entry wait;
15865
15866 struct drm_crtc *crtc;
15867 struct i915_request *request;
15868 };
15869
do_rps_boost(struct wait_queue_entry * _wait,unsigned mode,int sync,void * key)15870 static int do_rps_boost(struct wait_queue_entry *_wait,
15871 unsigned mode, int sync, void *key)
15872 {
15873 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
15874 struct i915_request *rq = wait->request;
15875
15876 /*
15877 * If we missed the vblank, but the request is already running it
15878 * is reasonable to assume that it will complete before the next
15879 * vblank without our intervention, so leave RPS alone.
15880 */
15881 if (!i915_request_started(rq))
15882 intel_rps_boost(rq);
15883 i915_request_put(rq);
15884
15885 drm_crtc_vblank_put(wait->crtc);
15886
15887 list_del(&wait->wait.entry);
15888 kfree(wait);
15889 return 1;
15890 }
15891
add_rps_boost_after_vblank(struct drm_crtc * crtc,struct dma_fence * fence)15892 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
15893 struct dma_fence *fence)
15894 {
15895 struct wait_rps_boost *wait;
15896
15897 if (!dma_fence_is_i915(fence))
15898 return;
15899
15900 if (INTEL_GEN(to_i915(crtc->dev)) < 6)
15901 return;
15902
15903 if (drm_crtc_vblank_get(crtc))
15904 return;
15905
15906 wait = kmalloc(sizeof(*wait), GFP_KERNEL);
15907 if (!wait) {
15908 drm_crtc_vblank_put(crtc);
15909 return;
15910 }
15911
15912 wait->request = to_request(dma_fence_get(fence));
15913 wait->crtc = crtc;
15914
15915 wait->wait.func = do_rps_boost;
15916 wait->wait.flags = 0;
15917
15918 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
15919 }
15920
intel_plane_pin_fb(struct intel_plane_state * plane_state)15921 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
15922 {
15923 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
15924 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15925 struct drm_framebuffer *fb = plane_state->hw.fb;
15926 struct i915_vma *vma;
15927
15928 if (plane->id == PLANE_CURSOR &&
15929 INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15930 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15931 const int align = intel_cursor_alignment(dev_priv);
15932 int err;
15933
15934 err = i915_gem_object_attach_phys(obj, align);
15935 if (err)
15936 return err;
15937 }
15938
15939 vma = intel_pin_and_fence_fb_obj(fb,
15940 &plane_state->view,
15941 intel_plane_uses_fence(plane_state),
15942 &plane_state->flags);
15943 if (IS_ERR(vma))
15944 return PTR_ERR(vma);
15945
15946 plane_state->vma = vma;
15947
15948 return 0;
15949 }
15950
intel_plane_unpin_fb(struct intel_plane_state * old_plane_state)15951 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15952 {
15953 struct i915_vma *vma;
15954
15955 vma = fetch_and_zero(&old_plane_state->vma);
15956 if (vma)
15957 intel_unpin_fb_vma(vma, old_plane_state->flags);
15958 }
15959
fb_obj_bump_render_priority(struct drm_i915_gem_object * obj)15960 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15961 {
15962 struct i915_sched_attr attr = {
15963 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15964 };
15965
15966 i915_gem_object_wait_priority(obj, 0, &attr);
15967 }
15968
15969 /**
15970 * intel_prepare_plane_fb - Prepare fb for usage on plane
15971 * @_plane: drm plane to prepare for
15972 * @_new_plane_state: the plane state being prepared
15973 *
15974 * Prepares a framebuffer for usage on a display plane. Generally this
15975 * involves pinning the underlying object and updating the frontbuffer tracking
15976 * bits. Some older platforms need special physical address handling for
15977 * cursor planes.
15978 *
15979 * Returns 0 on success, negative error code on failure.
15980 */
15981 int
intel_prepare_plane_fb(struct drm_plane * _plane,struct drm_plane_state * _new_plane_state)15982 intel_prepare_plane_fb(struct drm_plane *_plane,
15983 struct drm_plane_state *_new_plane_state)
15984 {
15985 struct intel_plane *plane = to_intel_plane(_plane);
15986 struct intel_plane_state *new_plane_state =
15987 to_intel_plane_state(_new_plane_state);
15988 struct intel_atomic_state *state =
15989 to_intel_atomic_state(new_plane_state->uapi.state);
15990 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15991 const struct intel_plane_state *old_plane_state =
15992 intel_atomic_get_old_plane_state(state, plane);
15993 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb);
15994 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb);
15995 int ret;
15996
15997 if (old_obj) {
15998 const struct intel_crtc_state *crtc_state =
15999 intel_atomic_get_new_crtc_state(state,
16000 to_intel_crtc(old_plane_state->hw.crtc));
16001
16002 /* Big Hammer, we also need to ensure that any pending
16003 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
16004 * current scanout is retired before unpinning the old
16005 * framebuffer. Note that we rely on userspace rendering
16006 * into the buffer attached to the pipe they are waiting
16007 * on. If not, userspace generates a GPU hang with IPEHR
16008 * point to the MI_WAIT_FOR_EVENT.
16009 *
16010 * This should only fail upon a hung GPU, in which case we
16011 * can safely continue.
16012 */
16013 if (needs_modeset(crtc_state)) {
16014 ret = i915_sw_fence_await_reservation(&state->commit_ready,
16015 old_obj->base.resv, NULL,
16016 false, 0,
16017 GFP_KERNEL);
16018 if (ret < 0)
16019 return ret;
16020 }
16021 }
16022
16023 if (new_plane_state->uapi.fence) { /* explicit fencing */
16024 ret = i915_sw_fence_await_dma_fence(&state->commit_ready,
16025 new_plane_state->uapi.fence,
16026 i915_fence_timeout(dev_priv),
16027 GFP_KERNEL);
16028 if (ret < 0)
16029 return ret;
16030 }
16031
16032 if (!obj)
16033 return 0;
16034
16035 ret = i915_gem_object_pin_pages(obj);
16036 if (ret)
16037 return ret;
16038
16039 ret = intel_plane_pin_fb(new_plane_state);
16040
16041 i915_gem_object_unpin_pages(obj);
16042 if (ret)
16043 return ret;
16044
16045 fb_obj_bump_render_priority(obj);
16046 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
16047
16048 if (!new_plane_state->uapi.fence) { /* implicit fencing */
16049 struct dma_fence *fence;
16050
16051 ret = i915_sw_fence_await_reservation(&state->commit_ready,
16052 obj->base.resv, NULL,
16053 false,
16054 i915_fence_timeout(dev_priv),
16055 GFP_KERNEL);
16056 if (ret < 0)
16057 goto unpin_fb;
16058
16059 fence = dma_resv_get_excl_rcu(obj->base.resv);
16060 if (fence) {
16061 add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16062 fence);
16063 dma_fence_put(fence);
16064 }
16065 } else {
16066 add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16067 new_plane_state->uapi.fence);
16068 }
16069
16070 /*
16071 * We declare pageflips to be interactive and so merit a small bias
16072 * towards upclocking to deliver the frame on time. By only changing
16073 * the RPS thresholds to sample more regularly and aim for higher
16074 * clocks we can hopefully deliver low power workloads (like kodi)
16075 * that are not quite steady state without resorting to forcing
16076 * maximum clocks following a vblank miss (see do_rps_boost()).
16077 */
16078 if (!state->rps_interactive) {
16079 intel_rps_mark_interactive(&dev_priv->gt.rps, true);
16080 state->rps_interactive = true;
16081 }
16082
16083 return 0;
16084
16085 unpin_fb:
16086 intel_plane_unpin_fb(new_plane_state);
16087
16088 return ret;
16089 }
16090
16091 /**
16092 * intel_cleanup_plane_fb - Cleans up an fb after plane use
16093 * @plane: drm plane to clean up for
16094 * @_old_plane_state: the state from the previous modeset
16095 *
16096 * Cleans up a framebuffer that has just been removed from a plane.
16097 */
16098 void
intel_cleanup_plane_fb(struct drm_plane * plane,struct drm_plane_state * _old_plane_state)16099 intel_cleanup_plane_fb(struct drm_plane *plane,
16100 struct drm_plane_state *_old_plane_state)
16101 {
16102 struct intel_plane_state *old_plane_state =
16103 to_intel_plane_state(_old_plane_state);
16104 struct intel_atomic_state *state =
16105 to_intel_atomic_state(old_plane_state->uapi.state);
16106 struct drm_i915_private *dev_priv = to_i915(plane->dev);
16107 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb);
16108
16109 if (!obj)
16110 return;
16111
16112 if (state->rps_interactive) {
16113 intel_rps_mark_interactive(&dev_priv->gt.rps, false);
16114 state->rps_interactive = false;
16115 }
16116
16117 /* Should only be called after a successful intel_prepare_plane_fb()! */
16118 intel_plane_unpin_fb(old_plane_state);
16119 }
16120
16121 /**
16122 * intel_plane_destroy - destroy a plane
16123 * @plane: plane to destroy
16124 *
16125 * Common destruction function for all types of planes (primary, cursor,
16126 * sprite).
16127 */
intel_plane_destroy(struct drm_plane * plane)16128 void intel_plane_destroy(struct drm_plane *plane)
16129 {
16130 drm_plane_cleanup(plane);
16131 kfree(to_intel_plane(plane));
16132 }
16133
i8xx_plane_format_mod_supported(struct drm_plane * _plane,u32 format,u64 modifier)16134 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
16135 u32 format, u64 modifier)
16136 {
16137 switch (modifier) {
16138 case DRM_FORMAT_MOD_LINEAR:
16139 case I915_FORMAT_MOD_X_TILED:
16140 break;
16141 default:
16142 return false;
16143 }
16144
16145 switch (format) {
16146 case DRM_FORMAT_C8:
16147 case DRM_FORMAT_RGB565:
16148 case DRM_FORMAT_XRGB1555:
16149 case DRM_FORMAT_XRGB8888:
16150 return modifier == DRM_FORMAT_MOD_LINEAR ||
16151 modifier == I915_FORMAT_MOD_X_TILED;
16152 default:
16153 return false;
16154 }
16155 }
16156
i965_plane_format_mod_supported(struct drm_plane * _plane,u32 format,u64 modifier)16157 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
16158 u32 format, u64 modifier)
16159 {
16160 switch (modifier) {
16161 case DRM_FORMAT_MOD_LINEAR:
16162 case I915_FORMAT_MOD_X_TILED:
16163 break;
16164 default:
16165 return false;
16166 }
16167
16168 switch (format) {
16169 case DRM_FORMAT_C8:
16170 case DRM_FORMAT_RGB565:
16171 case DRM_FORMAT_XRGB8888:
16172 case DRM_FORMAT_XBGR8888:
16173 case DRM_FORMAT_ARGB8888:
16174 case DRM_FORMAT_ABGR8888:
16175 case DRM_FORMAT_XRGB2101010:
16176 case DRM_FORMAT_XBGR2101010:
16177 case DRM_FORMAT_ARGB2101010:
16178 case DRM_FORMAT_ABGR2101010:
16179 case DRM_FORMAT_XBGR16161616F:
16180 return modifier == DRM_FORMAT_MOD_LINEAR ||
16181 modifier == I915_FORMAT_MOD_X_TILED;
16182 default:
16183 return false;
16184 }
16185 }
16186
intel_cursor_format_mod_supported(struct drm_plane * _plane,u32 format,u64 modifier)16187 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
16188 u32 format, u64 modifier)
16189 {
16190 return modifier == DRM_FORMAT_MOD_LINEAR &&
16191 format == DRM_FORMAT_ARGB8888;
16192 }
16193
16194 static const struct drm_plane_funcs i965_plane_funcs = {
16195 .update_plane = drm_atomic_helper_update_plane,
16196 .disable_plane = drm_atomic_helper_disable_plane,
16197 .destroy = intel_plane_destroy,
16198 .atomic_duplicate_state = intel_plane_duplicate_state,
16199 .atomic_destroy_state = intel_plane_destroy_state,
16200 .format_mod_supported = i965_plane_format_mod_supported,
16201 };
16202
16203 static const struct drm_plane_funcs i8xx_plane_funcs = {
16204 .update_plane = drm_atomic_helper_update_plane,
16205 .disable_plane = drm_atomic_helper_disable_plane,
16206 .destroy = intel_plane_destroy,
16207 .atomic_duplicate_state = intel_plane_duplicate_state,
16208 .atomic_destroy_state = intel_plane_destroy_state,
16209 .format_mod_supported = i8xx_plane_format_mod_supported,
16210 };
16211
16212 static int
intel_legacy_cursor_update(struct drm_plane * _plane,struct drm_crtc * _crtc,struct drm_framebuffer * fb,int crtc_x,int crtc_y,unsigned int crtc_w,unsigned int crtc_h,u32 src_x,u32 src_y,u32 src_w,u32 src_h,struct drm_modeset_acquire_ctx * ctx)16213 intel_legacy_cursor_update(struct drm_plane *_plane,
16214 struct drm_crtc *_crtc,
16215 struct drm_framebuffer *fb,
16216 int crtc_x, int crtc_y,
16217 unsigned int crtc_w, unsigned int crtc_h,
16218 u32 src_x, u32 src_y,
16219 u32 src_w, u32 src_h,
16220 struct drm_modeset_acquire_ctx *ctx)
16221 {
16222 struct intel_plane *plane = to_intel_plane(_plane);
16223 struct intel_crtc *crtc = to_intel_crtc(_crtc);
16224 struct intel_plane_state *old_plane_state =
16225 to_intel_plane_state(plane->base.state);
16226 struct intel_plane_state *new_plane_state;
16227 struct intel_crtc_state *crtc_state =
16228 to_intel_crtc_state(crtc->base.state);
16229 struct intel_crtc_state *new_crtc_state;
16230 int ret;
16231
16232 /*
16233 * When crtc is inactive or there is a modeset pending,
16234 * wait for it to complete in the slowpath
16235 */
16236 if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
16237 crtc_state->update_pipe)
16238 goto slow;
16239
16240 /*
16241 * Don't do an async update if there is an outstanding commit modifying
16242 * the plane. This prevents our async update's changes from getting
16243 * overridden by a previous synchronous update's state.
16244 */
16245 if (old_plane_state->uapi.commit &&
16246 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
16247 goto slow;
16248
16249 /*
16250 * If any parameters change that may affect watermarks,
16251 * take the slowpath. Only changing fb or position should be
16252 * in the fastpath.
16253 */
16254 if (old_plane_state->uapi.crtc != &crtc->base ||
16255 old_plane_state->uapi.src_w != src_w ||
16256 old_plane_state->uapi.src_h != src_h ||
16257 old_plane_state->uapi.crtc_w != crtc_w ||
16258 old_plane_state->uapi.crtc_h != crtc_h ||
16259 !old_plane_state->uapi.fb != !fb)
16260 goto slow;
16261
16262 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
16263 if (!new_plane_state)
16264 return -ENOMEM;
16265
16266 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
16267 if (!new_crtc_state) {
16268 ret = -ENOMEM;
16269 goto out_free;
16270 }
16271
16272 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
16273
16274 new_plane_state->uapi.src_x = src_x;
16275 new_plane_state->uapi.src_y = src_y;
16276 new_plane_state->uapi.src_w = src_w;
16277 new_plane_state->uapi.src_h = src_h;
16278 new_plane_state->uapi.crtc_x = crtc_x;
16279 new_plane_state->uapi.crtc_y = crtc_y;
16280 new_plane_state->uapi.crtc_w = crtc_w;
16281 new_plane_state->uapi.crtc_h = crtc_h;
16282
16283 intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state);
16284
16285 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
16286 old_plane_state, new_plane_state);
16287 if (ret)
16288 goto out_free;
16289
16290 ret = intel_plane_pin_fb(new_plane_state);
16291 if (ret)
16292 goto out_free;
16293
16294 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
16295 ORIGIN_FLIP);
16296 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
16297 to_intel_frontbuffer(new_plane_state->hw.fb),
16298 plane->frontbuffer_bit);
16299
16300 /* Swap plane state */
16301 plane->base.state = &new_plane_state->uapi;
16302
16303 /*
16304 * We cannot swap crtc_state as it may be in use by an atomic commit or
16305 * page flip that's running simultaneously. If we swap crtc_state and
16306 * destroy the old state, we will cause a use-after-free there.
16307 *
16308 * Only update active_planes, which is needed for our internal
16309 * bookkeeping. Either value will do the right thing when updating
16310 * planes atomically. If the cursor was part of the atomic update then
16311 * we would have taken the slowpath.
16312 */
16313 crtc_state->active_planes = new_crtc_state->active_planes;
16314
16315 if (new_plane_state->uapi.visible)
16316 intel_update_plane(plane, crtc_state, new_plane_state);
16317 else
16318 intel_disable_plane(plane, crtc_state);
16319
16320 intel_plane_unpin_fb(old_plane_state);
16321
16322 out_free:
16323 if (new_crtc_state)
16324 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
16325 if (ret)
16326 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
16327 else
16328 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
16329 return ret;
16330
16331 slow:
16332 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
16333 crtc_x, crtc_y, crtc_w, crtc_h,
16334 src_x, src_y, src_w, src_h, ctx);
16335 }
16336
16337 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
16338 .update_plane = intel_legacy_cursor_update,
16339 .disable_plane = drm_atomic_helper_disable_plane,
16340 .destroy = intel_plane_destroy,
16341 .atomic_duplicate_state = intel_plane_duplicate_state,
16342 .atomic_destroy_state = intel_plane_destroy_state,
16343 .format_mod_supported = intel_cursor_format_mod_supported,
16344 };
16345
i9xx_plane_has_fbc(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)16346 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
16347 enum i9xx_plane_id i9xx_plane)
16348 {
16349 if (!HAS_FBC(dev_priv))
16350 return false;
16351
16352 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16353 return i9xx_plane == PLANE_A; /* tied to pipe A */
16354 else if (IS_IVYBRIDGE(dev_priv))
16355 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
16356 i9xx_plane == PLANE_C;
16357 else if (INTEL_GEN(dev_priv) >= 4)
16358 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
16359 else
16360 return i9xx_plane == PLANE_A;
16361 }
16362
16363 static struct intel_plane *
intel_primary_plane_create(struct drm_i915_private * dev_priv,enum pipe pipe)16364 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
16365 {
16366 struct intel_plane *plane;
16367 const struct drm_plane_funcs *plane_funcs;
16368 unsigned int supported_rotations;
16369 const u32 *formats;
16370 int num_formats;
16371 int ret, zpos;
16372
16373 if (INTEL_GEN(dev_priv) >= 9)
16374 return skl_universal_plane_create(dev_priv, pipe,
16375 PLANE_PRIMARY);
16376
16377 plane = intel_plane_alloc();
16378 if (IS_ERR(plane))
16379 return plane;
16380
16381 plane->pipe = pipe;
16382 /*
16383 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
16384 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
16385 */
16386 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 &&
16387 INTEL_NUM_PIPES(dev_priv) == 2)
16388 plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
16389 else
16390 plane->i9xx_plane = (enum i9xx_plane_id) pipe;
16391 plane->id = PLANE_PRIMARY;
16392 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
16393
16394 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
16395 if (plane->has_fbc) {
16396 struct intel_fbc *fbc = &dev_priv->fbc;
16397
16398 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
16399 }
16400
16401 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16402 formats = vlv_primary_formats;
16403 num_formats = ARRAY_SIZE(vlv_primary_formats);
16404 } else if (INTEL_GEN(dev_priv) >= 4) {
16405 /*
16406 * WaFP16GammaEnabling:ivb
16407 * "Workaround : When using the 64-bit format, the plane
16408 * output on each color channel has one quarter amplitude.
16409 * It can be brought up to full amplitude by using pipe
16410 * gamma correction or pipe color space conversion to
16411 * multiply the plane output by four."
16412 *
16413 * There is no dedicated plane gamma for the primary plane,
16414 * and using the pipe gamma/csc could conflict with other
16415 * planes, so we choose not to expose fp16 on IVB primary
16416 * planes. HSW primary planes no longer have this problem.
16417 */
16418 if (IS_IVYBRIDGE(dev_priv)) {
16419 formats = ivb_primary_formats;
16420 num_formats = ARRAY_SIZE(ivb_primary_formats);
16421 } else {
16422 formats = i965_primary_formats;
16423 num_formats = ARRAY_SIZE(i965_primary_formats);
16424 }
16425 } else {
16426 formats = i8xx_primary_formats;
16427 num_formats = ARRAY_SIZE(i8xx_primary_formats);
16428 }
16429
16430 if (INTEL_GEN(dev_priv) >= 4)
16431 plane_funcs = &i965_plane_funcs;
16432 else
16433 plane_funcs = &i8xx_plane_funcs;
16434
16435 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16436 plane->min_cdclk = vlv_plane_min_cdclk;
16437 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16438 plane->min_cdclk = hsw_plane_min_cdclk;
16439 else if (IS_IVYBRIDGE(dev_priv))
16440 plane->min_cdclk = ivb_plane_min_cdclk;
16441 else
16442 plane->min_cdclk = i9xx_plane_min_cdclk;
16443
16444 plane->max_stride = i9xx_plane_max_stride;
16445 plane->update_plane = i9xx_update_plane;
16446 plane->disable_plane = i9xx_disable_plane;
16447 plane->get_hw_state = i9xx_plane_get_hw_state;
16448 plane->check_plane = i9xx_plane_check;
16449
16450 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
16451 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16452 0, plane_funcs,
16453 formats, num_formats,
16454 i9xx_format_modifiers,
16455 DRM_PLANE_TYPE_PRIMARY,
16456 "primary %c", pipe_name(pipe));
16457 else
16458 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16459 0, plane_funcs,
16460 formats, num_formats,
16461 i9xx_format_modifiers,
16462 DRM_PLANE_TYPE_PRIMARY,
16463 "plane %c",
16464 plane_name(plane->i9xx_plane));
16465 if (ret)
16466 goto fail;
16467
16468 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
16469 supported_rotations =
16470 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
16471 DRM_MODE_REFLECT_X;
16472 } else if (INTEL_GEN(dev_priv) >= 4) {
16473 supported_rotations =
16474 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
16475 } else {
16476 supported_rotations = DRM_MODE_ROTATE_0;
16477 }
16478
16479 if (INTEL_GEN(dev_priv) >= 4)
16480 drm_plane_create_rotation_property(&plane->base,
16481 DRM_MODE_ROTATE_0,
16482 supported_rotations);
16483
16484 zpos = 0;
16485 drm_plane_create_zpos_immutable_property(&plane->base, zpos);
16486
16487 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
16488
16489 return plane;
16490
16491 fail:
16492 intel_plane_free(plane);
16493
16494 return ERR_PTR(ret);
16495 }
16496
16497 static struct intel_plane *
intel_cursor_plane_create(struct drm_i915_private * dev_priv,enum pipe pipe)16498 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
16499 enum pipe pipe)
16500 {
16501 struct intel_plane *cursor;
16502 int ret, zpos;
16503
16504 cursor = intel_plane_alloc();
16505 if (IS_ERR(cursor))
16506 return cursor;
16507
16508 cursor->pipe = pipe;
16509 cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
16510 cursor->id = PLANE_CURSOR;
16511 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
16512
16513 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16514 cursor->max_stride = i845_cursor_max_stride;
16515 cursor->update_plane = i845_update_cursor;
16516 cursor->disable_plane = i845_disable_cursor;
16517 cursor->get_hw_state = i845_cursor_get_hw_state;
16518 cursor->check_plane = i845_check_cursor;
16519 } else {
16520 cursor->max_stride = i9xx_cursor_max_stride;
16521 cursor->update_plane = i9xx_update_cursor;
16522 cursor->disable_plane = i9xx_disable_cursor;
16523 cursor->get_hw_state = i9xx_cursor_get_hw_state;
16524 cursor->check_plane = i9xx_check_cursor;
16525 }
16526
16527 cursor->cursor.base = ~0;
16528 cursor->cursor.cntl = ~0;
16529
16530 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
16531 cursor->cursor.size = ~0;
16532
16533 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
16534 0, &intel_cursor_plane_funcs,
16535 intel_cursor_formats,
16536 ARRAY_SIZE(intel_cursor_formats),
16537 cursor_format_modifiers,
16538 DRM_PLANE_TYPE_CURSOR,
16539 "cursor %c", pipe_name(pipe));
16540 if (ret)
16541 goto fail;
16542
16543 if (INTEL_GEN(dev_priv) >= 4)
16544 drm_plane_create_rotation_property(&cursor->base,
16545 DRM_MODE_ROTATE_0,
16546 DRM_MODE_ROTATE_0 |
16547 DRM_MODE_ROTATE_180);
16548
16549 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
16550 drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
16551
16552 if (INTEL_GEN(dev_priv) >= 12)
16553 drm_plane_enable_fb_damage_clips(&cursor->base);
16554
16555 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
16556
16557 return cursor;
16558
16559 fail:
16560 intel_plane_free(cursor);
16561
16562 return ERR_PTR(ret);
16563 }
16564
16565 #define INTEL_CRTC_FUNCS \
16566 .gamma_set = drm_atomic_helper_legacy_gamma_set, \
16567 .set_config = drm_atomic_helper_set_config, \
16568 .destroy = intel_crtc_destroy, \
16569 .page_flip = drm_atomic_helper_page_flip, \
16570 .atomic_duplicate_state = intel_crtc_duplicate_state, \
16571 .atomic_destroy_state = intel_crtc_destroy_state, \
16572 .set_crc_source = intel_crtc_set_crc_source, \
16573 .verify_crc_source = intel_crtc_verify_crc_source, \
16574 .get_crc_sources = intel_crtc_get_crc_sources
16575
16576 static const struct drm_crtc_funcs bdw_crtc_funcs = {
16577 INTEL_CRTC_FUNCS,
16578
16579 .get_vblank_counter = g4x_get_vblank_counter,
16580 .enable_vblank = bdw_enable_vblank,
16581 .disable_vblank = bdw_disable_vblank,
16582 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16583 };
16584
16585 static const struct drm_crtc_funcs ilk_crtc_funcs = {
16586 INTEL_CRTC_FUNCS,
16587
16588 .get_vblank_counter = g4x_get_vblank_counter,
16589 .enable_vblank = ilk_enable_vblank,
16590 .disable_vblank = ilk_disable_vblank,
16591 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16592 };
16593
16594 static const struct drm_crtc_funcs g4x_crtc_funcs = {
16595 INTEL_CRTC_FUNCS,
16596
16597 .get_vblank_counter = g4x_get_vblank_counter,
16598 .enable_vblank = i965_enable_vblank,
16599 .disable_vblank = i965_disable_vblank,
16600 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16601 };
16602
16603 static const struct drm_crtc_funcs i965_crtc_funcs = {
16604 INTEL_CRTC_FUNCS,
16605
16606 .get_vblank_counter = i915_get_vblank_counter,
16607 .enable_vblank = i965_enable_vblank,
16608 .disable_vblank = i965_disable_vblank,
16609 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16610 };
16611
16612 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
16613 INTEL_CRTC_FUNCS,
16614
16615 .get_vblank_counter = i915_get_vblank_counter,
16616 .enable_vblank = i915gm_enable_vblank,
16617 .disable_vblank = i915gm_disable_vblank,
16618 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16619 };
16620
16621 static const struct drm_crtc_funcs i915_crtc_funcs = {
16622 INTEL_CRTC_FUNCS,
16623
16624 .get_vblank_counter = i915_get_vblank_counter,
16625 .enable_vblank = i8xx_enable_vblank,
16626 .disable_vblank = i8xx_disable_vblank,
16627 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16628 };
16629
16630 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
16631 INTEL_CRTC_FUNCS,
16632
16633 /* no hw vblank counter */
16634 .enable_vblank = i8xx_enable_vblank,
16635 .disable_vblank = i8xx_disable_vblank,
16636 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16637 };
16638
intel_crtc_alloc(void)16639 static struct intel_crtc *intel_crtc_alloc(void)
16640 {
16641 struct intel_crtc_state *crtc_state;
16642 struct intel_crtc *crtc;
16643
16644 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
16645 if (!crtc)
16646 return ERR_PTR(-ENOMEM);
16647
16648 crtc_state = intel_crtc_state_alloc(crtc);
16649 if (!crtc_state) {
16650 kfree(crtc);
16651 return ERR_PTR(-ENOMEM);
16652 }
16653
16654 crtc->base.state = &crtc_state->uapi;
16655 crtc->config = crtc_state;
16656
16657 return crtc;
16658 }
16659
intel_crtc_free(struct intel_crtc * crtc)16660 static void intel_crtc_free(struct intel_crtc *crtc)
16661 {
16662 intel_crtc_destroy_state(&crtc->base, crtc->base.state);
16663 kfree(crtc);
16664 }
16665
intel_plane_possible_crtcs_init(struct drm_i915_private * dev_priv)16666 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv)
16667 {
16668 struct intel_plane *plane;
16669
16670 for_each_intel_plane(&dev_priv->drm, plane) {
16671 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
16672 plane->pipe);
16673
16674 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base);
16675 }
16676 }
16677
intel_crtc_init(struct drm_i915_private * dev_priv,enum pipe pipe)16678 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
16679 {
16680 struct intel_plane *primary, *cursor;
16681 const struct drm_crtc_funcs *funcs;
16682 struct intel_crtc *crtc;
16683 int sprite, ret;
16684
16685 crtc = intel_crtc_alloc();
16686 if (IS_ERR(crtc))
16687 return PTR_ERR(crtc);
16688
16689 crtc->pipe = pipe;
16690 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
16691
16692 primary = intel_primary_plane_create(dev_priv, pipe);
16693 if (IS_ERR(primary)) {
16694 ret = PTR_ERR(primary);
16695 goto fail;
16696 }
16697 crtc->plane_ids_mask |= BIT(primary->id);
16698
16699 for_each_sprite(dev_priv, pipe, sprite) {
16700 struct intel_plane *plane;
16701
16702 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
16703 if (IS_ERR(plane)) {
16704 ret = PTR_ERR(plane);
16705 goto fail;
16706 }
16707 crtc->plane_ids_mask |= BIT(plane->id);
16708 }
16709
16710 cursor = intel_cursor_plane_create(dev_priv, pipe);
16711 if (IS_ERR(cursor)) {
16712 ret = PTR_ERR(cursor);
16713 goto fail;
16714 }
16715 crtc->plane_ids_mask |= BIT(cursor->id);
16716
16717 if (HAS_GMCH(dev_priv)) {
16718 if (IS_CHERRYVIEW(dev_priv) ||
16719 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
16720 funcs = &g4x_crtc_funcs;
16721 else if (IS_GEN(dev_priv, 4))
16722 funcs = &i965_crtc_funcs;
16723 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
16724 funcs = &i915gm_crtc_funcs;
16725 else if (IS_GEN(dev_priv, 3))
16726 funcs = &i915_crtc_funcs;
16727 else
16728 funcs = &i8xx_crtc_funcs;
16729 } else {
16730 if (INTEL_GEN(dev_priv) >= 8)
16731 funcs = &bdw_crtc_funcs;
16732 else
16733 funcs = &ilk_crtc_funcs;
16734 }
16735
16736 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
16737 &primary->base, &cursor->base,
16738 funcs, "pipe %c", pipe_name(pipe));
16739 if (ret)
16740 goto fail;
16741
16742 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
16743 dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
16744 dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
16745
16746 if (INTEL_GEN(dev_priv) < 9) {
16747 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
16748
16749 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
16750 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
16751 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
16752 }
16753
16754 intel_color_init(crtc);
16755
16756 intel_crtc_crc_init(crtc);
16757
16758 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
16759
16760 return 0;
16761
16762 fail:
16763 intel_crtc_free(crtc);
16764
16765 return ret;
16766 }
16767
intel_get_pipe_from_crtc_id_ioctl(struct drm_device * dev,void * data,struct drm_file * file)16768 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
16769 struct drm_file *file)
16770 {
16771 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
16772 struct drm_crtc *drmmode_crtc;
16773 struct intel_crtc *crtc;
16774
16775 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
16776 if (!drmmode_crtc)
16777 return -ENOENT;
16778
16779 crtc = to_intel_crtc(drmmode_crtc);
16780 pipe_from_crtc_id->pipe = crtc->pipe;
16781
16782 return 0;
16783 }
16784
intel_encoder_possible_clones(struct intel_encoder * encoder)16785 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
16786 {
16787 struct drm_device *dev = encoder->base.dev;
16788 struct intel_encoder *source_encoder;
16789 u32 possible_clones = 0;
16790
16791 for_each_intel_encoder(dev, source_encoder) {
16792 if (encoders_cloneable(encoder, source_encoder))
16793 possible_clones |= drm_encoder_mask(&source_encoder->base);
16794 }
16795
16796 return possible_clones;
16797 }
16798
intel_encoder_possible_crtcs(struct intel_encoder * encoder)16799 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
16800 {
16801 struct drm_device *dev = encoder->base.dev;
16802 struct intel_crtc *crtc;
16803 u32 possible_crtcs = 0;
16804
16805 for_each_intel_crtc(dev, crtc) {
16806 if (encoder->pipe_mask & BIT(crtc->pipe))
16807 possible_crtcs |= drm_crtc_mask(&crtc->base);
16808 }
16809
16810 return possible_crtcs;
16811 }
16812
ilk_has_edp_a(struct drm_i915_private * dev_priv)16813 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
16814 {
16815 if (!IS_MOBILE(dev_priv))
16816 return false;
16817
16818 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0)
16819 return false;
16820
16821 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE))
16822 return false;
16823
16824 return true;
16825 }
16826
intel_ddi_crt_present(struct drm_i915_private * dev_priv)16827 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
16828 {
16829 if (INTEL_GEN(dev_priv) >= 9)
16830 return false;
16831
16832 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
16833 return false;
16834
16835 if (HAS_PCH_LPT_H(dev_priv) &&
16836 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
16837 return false;
16838
16839 /* DDI E can't be used if DDI A requires 4 lanes */
16840 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
16841 return false;
16842
16843 if (!dev_priv->vbt.int_crt_support)
16844 return false;
16845
16846 return true;
16847 }
16848
intel_pps_unlock_regs_wa(struct drm_i915_private * dev_priv)16849 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
16850 {
16851 int pps_num;
16852 int pps_idx;
16853
16854 if (HAS_DDI(dev_priv))
16855 return;
16856 /*
16857 * This w/a is needed at least on CPT/PPT, but to be sure apply it
16858 * everywhere where registers can be write protected.
16859 */
16860 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16861 pps_num = 2;
16862 else
16863 pps_num = 1;
16864
16865 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
16866 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx));
16867
16868 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
16869 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val);
16870 }
16871 }
16872
intel_pps_init(struct drm_i915_private * dev_priv)16873 static void intel_pps_init(struct drm_i915_private *dev_priv)
16874 {
16875 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
16876 dev_priv->pps_mmio_base = PCH_PPS_BASE;
16877 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16878 dev_priv->pps_mmio_base = VLV_PPS_BASE;
16879 else
16880 dev_priv->pps_mmio_base = PPS_BASE;
16881
16882 intel_pps_unlock_regs_wa(dev_priv);
16883 }
16884
intel_setup_outputs(struct drm_i915_private * dev_priv)16885 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
16886 {
16887 struct intel_encoder *encoder;
16888 bool dpd_is_edp = false;
16889
16890 intel_pps_init(dev_priv);
16891
16892 if (!HAS_DISPLAY(dev_priv))
16893 return;
16894
16895 if (IS_ROCKETLAKE(dev_priv)) {
16896 intel_ddi_init(dev_priv, PORT_A);
16897 intel_ddi_init(dev_priv, PORT_B);
16898 intel_ddi_init(dev_priv, PORT_D); /* DDI TC1 */
16899 intel_ddi_init(dev_priv, PORT_E); /* DDI TC2 */
16900 } else if (INTEL_GEN(dev_priv) >= 12) {
16901 intel_ddi_init(dev_priv, PORT_A);
16902 intel_ddi_init(dev_priv, PORT_B);
16903 intel_ddi_init(dev_priv, PORT_D);
16904 intel_ddi_init(dev_priv, PORT_E);
16905 intel_ddi_init(dev_priv, PORT_F);
16906 intel_ddi_init(dev_priv, PORT_G);
16907 intel_ddi_init(dev_priv, PORT_H);
16908 intel_ddi_init(dev_priv, PORT_I);
16909 icl_dsi_init(dev_priv);
16910 } else if (IS_ELKHARTLAKE(dev_priv)) {
16911 intel_ddi_init(dev_priv, PORT_A);
16912 intel_ddi_init(dev_priv, PORT_B);
16913 intel_ddi_init(dev_priv, PORT_C);
16914 intel_ddi_init(dev_priv, PORT_D);
16915 icl_dsi_init(dev_priv);
16916 } else if (IS_GEN(dev_priv, 11)) {
16917 intel_ddi_init(dev_priv, PORT_A);
16918 intel_ddi_init(dev_priv, PORT_B);
16919 intel_ddi_init(dev_priv, PORT_C);
16920 intel_ddi_init(dev_priv, PORT_D);
16921 intel_ddi_init(dev_priv, PORT_E);
16922 /*
16923 * On some ICL SKUs port F is not present. No strap bits for
16924 * this, so rely on VBT.
16925 * Work around broken VBTs on SKUs known to have no port F.
16926 */
16927 if (IS_ICL_WITH_PORT_F(dev_priv) &&
16928 intel_bios_is_port_present(dev_priv, PORT_F))
16929 intel_ddi_init(dev_priv, PORT_F);
16930
16931 icl_dsi_init(dev_priv);
16932 } else if (IS_GEN9_LP(dev_priv)) {
16933 /*
16934 * FIXME: Broxton doesn't support port detection via the
16935 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
16936 * detect the ports.
16937 */
16938 intel_ddi_init(dev_priv, PORT_A);
16939 intel_ddi_init(dev_priv, PORT_B);
16940 intel_ddi_init(dev_priv, PORT_C);
16941
16942 vlv_dsi_init(dev_priv);
16943 } else if (HAS_DDI(dev_priv)) {
16944 int found;
16945
16946 if (intel_ddi_crt_present(dev_priv))
16947 intel_crt_init(dev_priv);
16948
16949 /*
16950 * Haswell uses DDI functions to detect digital outputs.
16951 * On SKL pre-D0 the strap isn't connected, so we assume
16952 * it's there.
16953 */
16954 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
16955 /* WaIgnoreDDIAStrap: skl */
16956 if (found || IS_GEN9_BC(dev_priv))
16957 intel_ddi_init(dev_priv, PORT_A);
16958
16959 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16960 * register */
16961 found = intel_de_read(dev_priv, SFUSE_STRAP);
16962
16963 if (found & SFUSE_STRAP_DDIB_DETECTED)
16964 intel_ddi_init(dev_priv, PORT_B);
16965 if (found & SFUSE_STRAP_DDIC_DETECTED)
16966 intel_ddi_init(dev_priv, PORT_C);
16967 if (found & SFUSE_STRAP_DDID_DETECTED)
16968 intel_ddi_init(dev_priv, PORT_D);
16969 if (found & SFUSE_STRAP_DDIF_DETECTED)
16970 intel_ddi_init(dev_priv, PORT_F);
16971 /*
16972 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16973 */
16974 if (IS_GEN9_BC(dev_priv) &&
16975 intel_bios_is_port_present(dev_priv, PORT_E))
16976 intel_ddi_init(dev_priv, PORT_E);
16977
16978 } else if (HAS_PCH_SPLIT(dev_priv)) {
16979 int found;
16980
16981 /*
16982 * intel_edp_init_connector() depends on this completing first,
16983 * to prevent the registration of both eDP and LVDS and the
16984 * incorrect sharing of the PPS.
16985 */
16986 intel_lvds_init(dev_priv);
16987 intel_crt_init(dev_priv);
16988
16989 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16990
16991 if (ilk_has_edp_a(dev_priv))
16992 intel_dp_init(dev_priv, DP_A, PORT_A);
16993
16994 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) {
16995 /* PCH SDVOB multiplex with HDMIB */
16996 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16997 if (!found)
16998 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16999 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED))
17000 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
17001 }
17002
17003 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED)
17004 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
17005
17006 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED)
17007 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
17008
17009 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED)
17010 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
17011
17012 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED)
17013 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
17014 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17015 bool has_edp, has_port;
17016
17017 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
17018 intel_crt_init(dev_priv);
17019
17020 /*
17021 * The DP_DETECTED bit is the latched state of the DDC
17022 * SDA pin at boot. However since eDP doesn't require DDC
17023 * (no way to plug in a DP->HDMI dongle) the DDC pins for
17024 * eDP ports may have been muxed to an alternate function.
17025 * Thus we can't rely on the DP_DETECTED bit alone to detect
17026 * eDP ports. Consult the VBT as well as DP_DETECTED to
17027 * detect eDP ports.
17028 *
17029 * Sadly the straps seem to be missing sometimes even for HDMI
17030 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
17031 * and VBT for the presence of the port. Additionally we can't
17032 * trust the port type the VBT declares as we've seen at least
17033 * HDMI ports that the VBT claim are DP or eDP.
17034 */
17035 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
17036 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
17037 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port)
17038 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
17039 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
17040 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
17041
17042 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
17043 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
17044 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port)
17045 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
17046 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
17047 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
17048
17049 if (IS_CHERRYVIEW(dev_priv)) {
17050 /*
17051 * eDP not supported on port D,
17052 * so no need to worry about it
17053 */
17054 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
17055 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port)
17056 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
17057 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port)
17058 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
17059 }
17060
17061 vlv_dsi_init(dev_priv);
17062 } else if (IS_PINEVIEW(dev_priv)) {
17063 intel_lvds_init(dev_priv);
17064 intel_crt_init(dev_priv);
17065 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
17066 bool found = false;
17067
17068 if (IS_MOBILE(dev_priv))
17069 intel_lvds_init(dev_priv);
17070
17071 intel_crt_init(dev_priv);
17072
17073 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17074 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n");
17075 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
17076 if (!found && IS_G4X(dev_priv)) {
17077 drm_dbg_kms(&dev_priv->drm,
17078 "probing HDMI on SDVOB\n");
17079 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
17080 }
17081
17082 if (!found && IS_G4X(dev_priv))
17083 intel_dp_init(dev_priv, DP_B, PORT_B);
17084 }
17085
17086 /* Before G4X SDVOC doesn't have its own detect register */
17087
17088 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17089 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n");
17090 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
17091 }
17092
17093 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) {
17094
17095 if (IS_G4X(dev_priv)) {
17096 drm_dbg_kms(&dev_priv->drm,
17097 "probing HDMI on SDVOC\n");
17098 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
17099 }
17100 if (IS_G4X(dev_priv))
17101 intel_dp_init(dev_priv, DP_C, PORT_C);
17102 }
17103
17104 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED))
17105 intel_dp_init(dev_priv, DP_D, PORT_D);
17106
17107 if (SUPPORTS_TV(dev_priv))
17108 intel_tv_init(dev_priv);
17109 } else if (IS_GEN(dev_priv, 2)) {
17110 if (IS_I85X(dev_priv))
17111 intel_lvds_init(dev_priv);
17112
17113 intel_crt_init(dev_priv);
17114 intel_dvo_init(dev_priv);
17115 }
17116
17117 intel_psr_init(dev_priv);
17118
17119 for_each_intel_encoder(&dev_priv->drm, encoder) {
17120 encoder->base.possible_crtcs =
17121 intel_encoder_possible_crtcs(encoder);
17122 encoder->base.possible_clones =
17123 intel_encoder_possible_clones(encoder);
17124 }
17125
17126 intel_init_pch_refclk(dev_priv);
17127
17128 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
17129 }
17130
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)17131 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
17132 {
17133 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
17134
17135 drm_framebuffer_cleanup(fb);
17136 intel_frontbuffer_put(intel_fb->frontbuffer);
17137
17138 kfree(intel_fb);
17139 }
17140
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)17141 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
17142 struct drm_file *file,
17143 unsigned int *handle)
17144 {
17145 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17146 struct drm_i915_private *i915 = to_i915(obj->base.dev);
17147
17148 if (obj->userptr.mm) {
17149 drm_dbg(&i915->drm,
17150 "attempting to use a userptr for a framebuffer, denied\n");
17151 return -EINVAL;
17152 }
17153
17154 return drm_gem_handle_create(file, &obj->base, handle);
17155 }
17156
intel_user_framebuffer_dirty(struct drm_framebuffer * fb,struct drm_file * file,unsigned flags,unsigned color,struct drm_clip_rect * clips,unsigned num_clips)17157 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
17158 struct drm_file *file,
17159 unsigned flags, unsigned color,
17160 struct drm_clip_rect *clips,
17161 unsigned num_clips)
17162 {
17163 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17164
17165 i915_gem_object_flush_if_display(obj);
17166 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
17167
17168 return 0;
17169 }
17170
17171 static const struct drm_framebuffer_funcs intel_fb_funcs = {
17172 .destroy = intel_user_framebuffer_destroy,
17173 .create_handle = intel_user_framebuffer_create_handle,
17174 .dirty = intel_user_framebuffer_dirty,
17175 };
17176
intel_framebuffer_init(struct intel_framebuffer * intel_fb,struct drm_i915_gem_object * obj,struct drm_mode_fb_cmd2 * mode_cmd)17177 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
17178 struct drm_i915_gem_object *obj,
17179 struct drm_mode_fb_cmd2 *mode_cmd)
17180 {
17181 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
17182 struct drm_framebuffer *fb = &intel_fb->base;
17183 u32 max_stride;
17184 unsigned int tiling, stride;
17185 int ret = -EINVAL;
17186 int i;
17187
17188 intel_fb->frontbuffer = intel_frontbuffer_get(obj);
17189 if (!intel_fb->frontbuffer)
17190 return -ENOMEM;
17191
17192 i915_gem_object_lock(obj, NULL);
17193 tiling = i915_gem_object_get_tiling(obj);
17194 stride = i915_gem_object_get_stride(obj);
17195 i915_gem_object_unlock(obj);
17196
17197 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
17198 /*
17199 * If there's a fence, enforce that
17200 * the fb modifier and tiling mode match.
17201 */
17202 if (tiling != I915_TILING_NONE &&
17203 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17204 drm_dbg_kms(&dev_priv->drm,
17205 "tiling_mode doesn't match fb modifier\n");
17206 goto err;
17207 }
17208 } else {
17209 if (tiling == I915_TILING_X) {
17210 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
17211 } else if (tiling == I915_TILING_Y) {
17212 drm_dbg_kms(&dev_priv->drm,
17213 "No Y tiling for legacy addfb\n");
17214 goto err;
17215 }
17216 }
17217
17218 if (!drm_any_plane_has_format(&dev_priv->drm,
17219 mode_cmd->pixel_format,
17220 mode_cmd->modifier[0])) {
17221 struct drm_format_name_buf format_name;
17222
17223 drm_dbg_kms(&dev_priv->drm,
17224 "unsupported pixel format %s / modifier 0x%llx\n",
17225 drm_get_format_name(mode_cmd->pixel_format,
17226 &format_name),
17227 mode_cmd->modifier[0]);
17228 goto err;
17229 }
17230
17231 /*
17232 * gen2/3 display engine uses the fence if present,
17233 * so the tiling mode must match the fb modifier exactly.
17234 */
17235 if (INTEL_GEN(dev_priv) < 4 &&
17236 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17237 drm_dbg_kms(&dev_priv->drm,
17238 "tiling_mode must match fb modifier exactly on gen2/3\n");
17239 goto err;
17240 }
17241
17242 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
17243 mode_cmd->modifier[0]);
17244 if (mode_cmd->pitches[0] > max_stride) {
17245 drm_dbg_kms(&dev_priv->drm,
17246 "%s pitch (%u) must be at most %d\n",
17247 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
17248 "tiled" : "linear",
17249 mode_cmd->pitches[0], max_stride);
17250 goto err;
17251 }
17252
17253 /*
17254 * If there's a fence, enforce that
17255 * the fb pitch and fence stride match.
17256 */
17257 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
17258 drm_dbg_kms(&dev_priv->drm,
17259 "pitch (%d) must match tiling stride (%d)\n",
17260 mode_cmd->pitches[0], stride);
17261 goto err;
17262 }
17263
17264 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
17265 if (mode_cmd->offsets[0] != 0) {
17266 drm_dbg_kms(&dev_priv->drm,
17267 "plane 0 offset (0x%08x) must be 0\n",
17268 mode_cmd->offsets[0]);
17269 goto err;
17270 }
17271
17272 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
17273
17274 for (i = 0; i < fb->format->num_planes; i++) {
17275 u32 stride_alignment;
17276
17277 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
17278 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n",
17279 i);
17280 goto err;
17281 }
17282
17283 stride_alignment = intel_fb_stride_alignment(fb, i);
17284 if (fb->pitches[i] & (stride_alignment - 1)) {
17285 drm_dbg_kms(&dev_priv->drm,
17286 "plane %d pitch (%d) must be at least %u byte aligned\n",
17287 i, fb->pitches[i], stride_alignment);
17288 goto err;
17289 }
17290
17291 if (is_gen12_ccs_plane(fb, i)) {
17292 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
17293
17294 if (fb->pitches[i] != ccs_aux_stride) {
17295 drm_dbg_kms(&dev_priv->drm,
17296 "ccs aux plane %d pitch (%d) must be %d\n",
17297 i,
17298 fb->pitches[i], ccs_aux_stride);
17299 goto err;
17300 }
17301 }
17302
17303 fb->obj[i] = &obj->base;
17304 }
17305
17306 ret = intel_fill_fb_info(dev_priv, fb);
17307 if (ret)
17308 goto err;
17309
17310 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
17311 if (ret) {
17312 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret);
17313 goto err;
17314 }
17315
17316 return 0;
17317
17318 err:
17319 intel_frontbuffer_put(intel_fb->frontbuffer);
17320 return ret;
17321 }
17322
17323 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,const struct drm_mode_fb_cmd2 * user_mode_cmd)17324 intel_user_framebuffer_create(struct drm_device *dev,
17325 struct drm_file *filp,
17326 const struct drm_mode_fb_cmd2 *user_mode_cmd)
17327 {
17328 struct drm_framebuffer *fb;
17329 struct drm_i915_gem_object *obj;
17330 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
17331
17332 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
17333 if (!obj)
17334 return ERR_PTR(-ENOENT);
17335
17336 fb = intel_framebuffer_create(obj, &mode_cmd);
17337 i915_gem_object_put(obj);
17338
17339 return fb;
17340 }
17341
17342 static enum drm_mode_status
intel_mode_valid(struct drm_device * dev,const struct drm_display_mode * mode)17343 intel_mode_valid(struct drm_device *dev,
17344 const struct drm_display_mode *mode)
17345 {
17346 struct drm_i915_private *dev_priv = to_i915(dev);
17347 int hdisplay_max, htotal_max;
17348 int vdisplay_max, vtotal_max;
17349
17350 /*
17351 * Can't reject DBLSCAN here because Xorg ddxen can add piles
17352 * of DBLSCAN modes to the output's mode list when they detect
17353 * the scaling mode property on the connector. And they don't
17354 * ask the kernel to validate those modes in any way until
17355 * modeset time at which point the client gets a protocol error.
17356 * So in order to not upset those clients we silently ignore the
17357 * DBLSCAN flag on such connectors. For other connectors we will
17358 * reject modes with the DBLSCAN flag in encoder->compute_config().
17359 * And we always reject DBLSCAN modes in connector->mode_valid()
17360 * as we never want such modes on the connector's mode list.
17361 */
17362
17363 if (mode->vscan > 1)
17364 return MODE_NO_VSCAN;
17365
17366 if (mode->flags & DRM_MODE_FLAG_HSKEW)
17367 return MODE_H_ILLEGAL;
17368
17369 if (mode->flags & (DRM_MODE_FLAG_CSYNC |
17370 DRM_MODE_FLAG_NCSYNC |
17371 DRM_MODE_FLAG_PCSYNC))
17372 return MODE_HSYNC;
17373
17374 if (mode->flags & (DRM_MODE_FLAG_BCAST |
17375 DRM_MODE_FLAG_PIXMUX |
17376 DRM_MODE_FLAG_CLKDIV2))
17377 return MODE_BAD;
17378
17379 /* Transcoder timing limits */
17380 if (INTEL_GEN(dev_priv) >= 11) {
17381 hdisplay_max = 16384;
17382 vdisplay_max = 8192;
17383 htotal_max = 16384;
17384 vtotal_max = 8192;
17385 } else if (INTEL_GEN(dev_priv) >= 9 ||
17386 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17387 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
17388 vdisplay_max = 4096;
17389 htotal_max = 8192;
17390 vtotal_max = 8192;
17391 } else if (INTEL_GEN(dev_priv) >= 3) {
17392 hdisplay_max = 4096;
17393 vdisplay_max = 4096;
17394 htotal_max = 8192;
17395 vtotal_max = 8192;
17396 } else {
17397 hdisplay_max = 2048;
17398 vdisplay_max = 2048;
17399 htotal_max = 4096;
17400 vtotal_max = 4096;
17401 }
17402
17403 if (mode->hdisplay > hdisplay_max ||
17404 mode->hsync_start > htotal_max ||
17405 mode->hsync_end > htotal_max ||
17406 mode->htotal > htotal_max)
17407 return MODE_H_ILLEGAL;
17408
17409 if (mode->vdisplay > vdisplay_max ||
17410 mode->vsync_start > vtotal_max ||
17411 mode->vsync_end > vtotal_max ||
17412 mode->vtotal > vtotal_max)
17413 return MODE_V_ILLEGAL;
17414
17415 if (INTEL_GEN(dev_priv) >= 5) {
17416 if (mode->hdisplay < 64 ||
17417 mode->htotal - mode->hdisplay < 32)
17418 return MODE_H_ILLEGAL;
17419
17420 if (mode->vtotal - mode->vdisplay < 5)
17421 return MODE_V_ILLEGAL;
17422 } else {
17423 if (mode->htotal - mode->hdisplay < 32)
17424 return MODE_H_ILLEGAL;
17425
17426 if (mode->vtotal - mode->vdisplay < 3)
17427 return MODE_V_ILLEGAL;
17428 }
17429
17430 return MODE_OK;
17431 }
17432
17433 enum drm_mode_status
intel_mode_valid_max_plane_size(struct drm_i915_private * dev_priv,const struct drm_display_mode * mode)17434 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
17435 const struct drm_display_mode *mode)
17436 {
17437 int plane_width_max, plane_height_max;
17438
17439 /*
17440 * intel_mode_valid() should be
17441 * sufficient on older platforms.
17442 */
17443 if (INTEL_GEN(dev_priv) < 9)
17444 return MODE_OK;
17445
17446 /*
17447 * Most people will probably want a fullscreen
17448 * plane so let's not advertize modes that are
17449 * too big for that.
17450 */
17451 if (INTEL_GEN(dev_priv) >= 11) {
17452 plane_width_max = 5120;
17453 plane_height_max = 4320;
17454 } else {
17455 plane_width_max = 5120;
17456 plane_height_max = 4096;
17457 }
17458
17459 if (mode->hdisplay > plane_width_max)
17460 return MODE_H_ILLEGAL;
17461
17462 if (mode->vdisplay > plane_height_max)
17463 return MODE_V_ILLEGAL;
17464
17465 return MODE_OK;
17466 }
17467
17468 static const struct drm_mode_config_funcs intel_mode_funcs = {
17469 .fb_create = intel_user_framebuffer_create,
17470 .get_format_info = intel_get_format_info,
17471 .output_poll_changed = intel_fbdev_output_poll_changed,
17472 .mode_valid = intel_mode_valid,
17473 .atomic_check = intel_atomic_check,
17474 .atomic_commit = intel_atomic_commit,
17475 .atomic_state_alloc = intel_atomic_state_alloc,
17476 .atomic_state_clear = intel_atomic_state_clear,
17477 .atomic_state_free = intel_atomic_state_free,
17478 };
17479
17480 /**
17481 * intel_init_display_hooks - initialize the display modesetting hooks
17482 * @dev_priv: device private
17483 */
intel_init_display_hooks(struct drm_i915_private * dev_priv)17484 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
17485 {
17486 intel_init_cdclk_hooks(dev_priv);
17487
17488 if (INTEL_GEN(dev_priv) >= 9) {
17489 dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17490 dev_priv->display.get_initial_plane_config =
17491 skl_get_initial_plane_config;
17492 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
17493 dev_priv->display.crtc_enable = hsw_crtc_enable;
17494 dev_priv->display.crtc_disable = hsw_crtc_disable;
17495 } else if (HAS_DDI(dev_priv)) {
17496 dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17497 dev_priv->display.get_initial_plane_config =
17498 i9xx_get_initial_plane_config;
17499 dev_priv->display.crtc_compute_clock =
17500 hsw_crtc_compute_clock;
17501 dev_priv->display.crtc_enable = hsw_crtc_enable;
17502 dev_priv->display.crtc_disable = hsw_crtc_disable;
17503 } else if (HAS_PCH_SPLIT(dev_priv)) {
17504 dev_priv->display.get_pipe_config = ilk_get_pipe_config;
17505 dev_priv->display.get_initial_plane_config =
17506 i9xx_get_initial_plane_config;
17507 dev_priv->display.crtc_compute_clock =
17508 ilk_crtc_compute_clock;
17509 dev_priv->display.crtc_enable = ilk_crtc_enable;
17510 dev_priv->display.crtc_disable = ilk_crtc_disable;
17511 } else if (IS_CHERRYVIEW(dev_priv)) {
17512 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17513 dev_priv->display.get_initial_plane_config =
17514 i9xx_get_initial_plane_config;
17515 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
17516 dev_priv->display.crtc_enable = valleyview_crtc_enable;
17517 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17518 } else if (IS_VALLEYVIEW(dev_priv)) {
17519 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17520 dev_priv->display.get_initial_plane_config =
17521 i9xx_get_initial_plane_config;
17522 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
17523 dev_priv->display.crtc_enable = valleyview_crtc_enable;
17524 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17525 } else if (IS_G4X(dev_priv)) {
17526 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17527 dev_priv->display.get_initial_plane_config =
17528 i9xx_get_initial_plane_config;
17529 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
17530 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17531 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17532 } else if (IS_PINEVIEW(dev_priv)) {
17533 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17534 dev_priv->display.get_initial_plane_config =
17535 i9xx_get_initial_plane_config;
17536 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
17537 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17538 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17539 } else if (!IS_GEN(dev_priv, 2)) {
17540 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17541 dev_priv->display.get_initial_plane_config =
17542 i9xx_get_initial_plane_config;
17543 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
17544 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17545 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17546 } else {
17547 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17548 dev_priv->display.get_initial_plane_config =
17549 i9xx_get_initial_plane_config;
17550 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
17551 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17552 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17553 }
17554
17555 if (IS_GEN(dev_priv, 5)) {
17556 dev_priv->display.fdi_link_train = ilk_fdi_link_train;
17557 } else if (IS_GEN(dev_priv, 6)) {
17558 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
17559 } else if (IS_IVYBRIDGE(dev_priv)) {
17560 /* FIXME: detect B0+ stepping and use auto training */
17561 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
17562 }
17563
17564 if (INTEL_GEN(dev_priv) >= 9)
17565 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
17566 else
17567 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
17568
17569 }
17570
intel_modeset_init_hw(struct drm_i915_private * i915)17571 void intel_modeset_init_hw(struct drm_i915_private *i915)
17572 {
17573 struct intel_cdclk_state *cdclk_state =
17574 to_intel_cdclk_state(i915->cdclk.obj.state);
17575 struct intel_dbuf_state *dbuf_state =
17576 to_intel_dbuf_state(i915->dbuf.obj.state);
17577
17578 intel_update_cdclk(i915);
17579 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK");
17580 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw;
17581
17582 dbuf_state->enabled_slices = i915->dbuf.enabled_slices;
17583 }
17584
sanitize_watermarks_add_affected(struct drm_atomic_state * state)17585 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state)
17586 {
17587 struct drm_plane *plane;
17588 struct intel_crtc *crtc;
17589
17590 for_each_intel_crtc(state->dev, crtc) {
17591 struct intel_crtc_state *crtc_state;
17592
17593 crtc_state = intel_atomic_get_crtc_state(state, crtc);
17594 if (IS_ERR(crtc_state))
17595 return PTR_ERR(crtc_state);
17596
17597 if (crtc_state->hw.active) {
17598 /*
17599 * Preserve the inherited flag to avoid
17600 * taking the full modeset path.
17601 */
17602 crtc_state->inherited = true;
17603 }
17604 }
17605
17606 drm_for_each_plane(plane, state->dev) {
17607 struct drm_plane_state *plane_state;
17608
17609 plane_state = drm_atomic_get_plane_state(state, plane);
17610 if (IS_ERR(plane_state))
17611 return PTR_ERR(plane_state);
17612 }
17613
17614 return 0;
17615 }
17616
17617 /*
17618 * Calculate what we think the watermarks should be for the state we've read
17619 * out of the hardware and then immediately program those watermarks so that
17620 * we ensure the hardware settings match our internal state.
17621 *
17622 * We can calculate what we think WM's should be by creating a duplicate of the
17623 * current state (which was constructed during hardware readout) and running it
17624 * through the atomic check code to calculate new watermark values in the
17625 * state object.
17626 */
sanitize_watermarks(struct drm_i915_private * dev_priv)17627 static void sanitize_watermarks(struct drm_i915_private *dev_priv)
17628 {
17629 struct drm_atomic_state *state;
17630 struct intel_atomic_state *intel_state;
17631 struct intel_crtc *crtc;
17632 struct intel_crtc_state *crtc_state;
17633 struct drm_modeset_acquire_ctx ctx;
17634 int ret;
17635 int i;
17636
17637 /* Only supported on platforms that use atomic watermark design */
17638 if (!dev_priv->display.optimize_watermarks)
17639 return;
17640
17641 state = drm_atomic_state_alloc(&dev_priv->drm);
17642 if (drm_WARN_ON(&dev_priv->drm, !state))
17643 return;
17644
17645 intel_state = to_intel_atomic_state(state);
17646
17647 drm_modeset_acquire_init(&ctx, 0);
17648
17649 retry:
17650 state->acquire_ctx = &ctx;
17651
17652 /*
17653 * Hardware readout is the only time we don't want to calculate
17654 * intermediate watermarks (since we don't trust the current
17655 * watermarks).
17656 */
17657 if (!HAS_GMCH(dev_priv))
17658 intel_state->skip_intermediate_wm = true;
17659
17660 ret = sanitize_watermarks_add_affected(state);
17661 if (ret)
17662 goto fail;
17663
17664 ret = intel_atomic_check(&dev_priv->drm, state);
17665 if (ret)
17666 goto fail;
17667
17668 /* Write calculated watermark values back */
17669 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
17670 crtc_state->wm.need_postvbl_update = true;
17671 dev_priv->display.optimize_watermarks(intel_state, crtc);
17672
17673 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
17674 }
17675
17676 fail:
17677 if (ret == -EDEADLK) {
17678 drm_atomic_state_clear(state);
17679 drm_modeset_backoff(&ctx);
17680 goto retry;
17681 }
17682
17683 /*
17684 * If we fail here, it means that the hardware appears to be
17685 * programmed in a way that shouldn't be possible, given our
17686 * understanding of watermark requirements. This might mean a
17687 * mistake in the hardware readout code or a mistake in the
17688 * watermark calculations for a given platform. Raise a WARN
17689 * so that this is noticeable.
17690 *
17691 * If this actually happens, we'll have to just leave the
17692 * BIOS-programmed watermarks untouched and hope for the best.
17693 */
17694 drm_WARN(&dev_priv->drm, ret,
17695 "Could not determine valid watermarks for inherited state\n");
17696
17697 drm_atomic_state_put(state);
17698
17699 drm_modeset_drop_locks(&ctx);
17700 drm_modeset_acquire_fini(&ctx);
17701 }
17702
intel_update_fdi_pll_freq(struct drm_i915_private * dev_priv)17703 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
17704 {
17705 if (IS_GEN(dev_priv, 5)) {
17706 u32 fdi_pll_clk =
17707 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
17708
17709 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
17710 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
17711 dev_priv->fdi_pll_freq = 270000;
17712 } else {
17713 return;
17714 }
17715
17716 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
17717 }
17718
intel_initial_commit(struct drm_device * dev)17719 static int intel_initial_commit(struct drm_device *dev)
17720 {
17721 struct drm_atomic_state *state = NULL;
17722 struct drm_modeset_acquire_ctx ctx;
17723 struct intel_crtc *crtc;
17724 int ret = 0;
17725
17726 state = drm_atomic_state_alloc(dev);
17727 if (!state)
17728 return -ENOMEM;
17729
17730 drm_modeset_acquire_init(&ctx, 0);
17731
17732 retry:
17733 state->acquire_ctx = &ctx;
17734
17735 for_each_intel_crtc(dev, crtc) {
17736 struct intel_crtc_state *crtc_state =
17737 intel_atomic_get_crtc_state(state, crtc);
17738
17739 if (IS_ERR(crtc_state)) {
17740 ret = PTR_ERR(crtc_state);
17741 goto out;
17742 }
17743
17744 if (crtc_state->hw.active) {
17745 /*
17746 * We've not yet detected sink capabilities
17747 * (audio,infoframes,etc.) and thus we don't want to
17748 * force a full state recomputation yet. We want that to
17749 * happen only for the first real commit from userspace.
17750 * So preserve the inherited flag for the time being.
17751 */
17752 crtc_state->inherited = true;
17753
17754 ret = drm_atomic_add_affected_planes(state, &crtc->base);
17755 if (ret)
17756 goto out;
17757
17758 /*
17759 * FIXME hack to force a LUT update to avoid the
17760 * plane update forcing the pipe gamma on without
17761 * having a proper LUT loaded. Remove once we
17762 * have readout for pipe gamma enable.
17763 */
17764 crtc_state->uapi.color_mgmt_changed = true;
17765
17766 /*
17767 * FIXME hack to force full modeset when DSC is being
17768 * used.
17769 *
17770 * As long as we do not have full state readout and
17771 * config comparison of crtc_state->dsc, we have no way
17772 * to ensure reliable fastset. Remove once we have
17773 * readout for DSC.
17774 */
17775 if (crtc_state->dsc.compression_enable) {
17776 ret = drm_atomic_add_affected_connectors(state,
17777 &crtc->base);
17778 if (ret)
17779 goto out;
17780 crtc_state->uapi.mode_changed = true;
17781 drm_dbg_kms(dev, "Force full modeset for DSC\n");
17782 }
17783 }
17784 }
17785
17786 ret = drm_atomic_commit(state);
17787
17788 out:
17789 if (ret == -EDEADLK) {
17790 drm_atomic_state_clear(state);
17791 drm_modeset_backoff(&ctx);
17792 goto retry;
17793 }
17794
17795 drm_atomic_state_put(state);
17796
17797 drm_modeset_drop_locks(&ctx);
17798 drm_modeset_acquire_fini(&ctx);
17799
17800 return ret;
17801 }
17802
intel_mode_config_init(struct drm_i915_private * i915)17803 static void intel_mode_config_init(struct drm_i915_private *i915)
17804 {
17805 struct drm_mode_config *mode_config = &i915->drm.mode_config;
17806
17807 drm_mode_config_init(&i915->drm);
17808 INIT_LIST_HEAD(&i915->global_obj_list);
17809
17810 mode_config->min_width = 0;
17811 mode_config->min_height = 0;
17812
17813 mode_config->preferred_depth = 24;
17814 mode_config->prefer_shadow = 1;
17815
17816 mode_config->allow_fb_modifiers = true;
17817
17818 mode_config->funcs = &intel_mode_funcs;
17819
17820 /*
17821 * Maximum framebuffer dimensions, chosen to match
17822 * the maximum render engine surface size on gen4+.
17823 */
17824 if (INTEL_GEN(i915) >= 7) {
17825 mode_config->max_width = 16384;
17826 mode_config->max_height = 16384;
17827 } else if (INTEL_GEN(i915) >= 4) {
17828 mode_config->max_width = 8192;
17829 mode_config->max_height = 8192;
17830 } else if (IS_GEN(i915, 3)) {
17831 mode_config->max_width = 4096;
17832 mode_config->max_height = 4096;
17833 } else {
17834 mode_config->max_width = 2048;
17835 mode_config->max_height = 2048;
17836 }
17837
17838 if (IS_I845G(i915) || IS_I865G(i915)) {
17839 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
17840 mode_config->cursor_height = 1023;
17841 } else if (IS_I830(i915) || IS_I85X(i915) ||
17842 IS_I915G(i915) || IS_I915GM(i915)) {
17843 mode_config->cursor_width = 64;
17844 mode_config->cursor_height = 64;
17845 } else {
17846 mode_config->cursor_width = 256;
17847 mode_config->cursor_height = 256;
17848 }
17849 }
17850
intel_mode_config_cleanup(struct drm_i915_private * i915)17851 static void intel_mode_config_cleanup(struct drm_i915_private *i915)
17852 {
17853 intel_atomic_global_obj_cleanup(i915);
17854 drm_mode_config_cleanup(&i915->drm);
17855 }
17856
plane_config_fini(struct intel_initial_plane_config * plane_config)17857 static void plane_config_fini(struct intel_initial_plane_config *plane_config)
17858 {
17859 if (plane_config->fb) {
17860 struct drm_framebuffer *fb = &plane_config->fb->base;
17861
17862 /* We may only have the stub and not a full framebuffer */
17863 if (drm_framebuffer_read_refcount(fb))
17864 drm_framebuffer_put(fb);
17865 else
17866 kfree(fb);
17867 }
17868
17869 if (plane_config->vma)
17870 i915_vma_put(plane_config->vma);
17871 }
17872
17873 /* part #1: call before irq install */
intel_modeset_init_noirq(struct drm_i915_private * i915)17874 int intel_modeset_init_noirq(struct drm_i915_private *i915)
17875 {
17876 int ret;
17877
17878 if (i915_inject_probe_failure(i915))
17879 return -ENODEV;
17880
17881 if (HAS_DISPLAY(i915)) {
17882 ret = drm_vblank_init(&i915->drm,
17883 INTEL_NUM_PIPES(i915));
17884 if (ret)
17885 return ret;
17886 }
17887
17888 intel_bios_init(i915);
17889
17890 ret = intel_vga_register(i915);
17891 if (ret)
17892 goto cleanup_bios;
17893
17894 /* FIXME: completely on the wrong abstraction layer */
17895 intel_power_domains_init_hw(i915, false);
17896
17897 intel_csr_ucode_init(i915);
17898
17899 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
17900 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
17901 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
17902
17903 intel_mode_config_init(i915);
17904
17905 ret = intel_cdclk_init(i915);
17906 if (ret)
17907 goto cleanup_vga_client_pw_domain_csr;
17908
17909 ret = intel_dbuf_init(i915);
17910 if (ret)
17911 goto cleanup_vga_client_pw_domain_csr;
17912
17913 ret = intel_bw_init(i915);
17914 if (ret)
17915 goto cleanup_vga_client_pw_domain_csr;
17916
17917 init_llist_head(&i915->atomic_helper.free_list);
17918 INIT_WORK(&i915->atomic_helper.free_work,
17919 intel_atomic_helper_free_state_worker);
17920
17921 intel_init_quirks(i915);
17922
17923 intel_fbc_init(i915);
17924
17925 return 0;
17926
17927 cleanup_vga_client_pw_domain_csr:
17928 intel_csr_ucode_fini(i915);
17929 intel_power_domains_driver_remove(i915);
17930 intel_vga_unregister(i915);
17931 cleanup_bios:
17932 intel_bios_driver_remove(i915);
17933
17934 return ret;
17935 }
17936
17937 /* part #2: call after irq install, but before gem init */
intel_modeset_init_nogem(struct drm_i915_private * i915)17938 int intel_modeset_init_nogem(struct drm_i915_private *i915)
17939 {
17940 struct drm_device *dev = &i915->drm;
17941 enum pipe pipe;
17942 struct intel_crtc *crtc;
17943 int ret;
17944
17945 intel_init_pm(i915);
17946
17947 intel_panel_sanitize_ssc(i915);
17948
17949 intel_gmbus_setup(i915);
17950
17951 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n",
17952 INTEL_NUM_PIPES(i915),
17953 INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
17954
17955 if (HAS_DISPLAY(i915)) {
17956 for_each_pipe(i915, pipe) {
17957 ret = intel_crtc_init(i915, pipe);
17958 if (ret) {
17959 intel_mode_config_cleanup(i915);
17960 return ret;
17961 }
17962 }
17963 }
17964
17965 intel_plane_possible_crtcs_init(i915);
17966 intel_shared_dpll_init(dev);
17967 intel_update_fdi_pll_freq(i915);
17968
17969 intel_update_czclk(i915);
17970 intel_modeset_init_hw(i915);
17971
17972 intel_hdcp_component_init(i915);
17973
17974 if (i915->max_cdclk_freq == 0)
17975 intel_update_max_cdclk(i915);
17976
17977 /*
17978 * If the platform has HTI, we need to find out whether it has reserved
17979 * any display resources before we create our display outputs.
17980 */
17981 if (INTEL_INFO(i915)->display.has_hti)
17982 i915->hti_state = intel_de_read(i915, HDPORT_STATE);
17983
17984 /* Just disable it once at startup */
17985 intel_vga_disable(i915);
17986 intel_setup_outputs(i915);
17987
17988 drm_modeset_lock_all(dev);
17989 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
17990 drm_modeset_unlock_all(dev);
17991
17992 for_each_intel_crtc(dev, crtc) {
17993 struct intel_initial_plane_config plane_config = {};
17994
17995 if (!crtc->active)
17996 continue;
17997
17998 /*
17999 * Note that reserving the BIOS fb up front prevents us
18000 * from stuffing other stolen allocations like the ring
18001 * on top. This prevents some ugliness at boot time, and
18002 * can even allow for smooth boot transitions if the BIOS
18003 * fb is large enough for the active pipe configuration.
18004 */
18005 i915->display.get_initial_plane_config(crtc, &plane_config);
18006
18007 /*
18008 * If the fb is shared between multiple heads, we'll
18009 * just get the first one.
18010 */
18011 intel_find_initial_plane_obj(crtc, &plane_config);
18012
18013 plane_config_fini(&plane_config);
18014 }
18015
18016 /*
18017 * Make sure hardware watermarks really match the state we read out.
18018 * Note that we need to do this after reconstructing the BIOS fb's
18019 * since the watermark calculation done here will use pstate->fb.
18020 */
18021 if (!HAS_GMCH(i915))
18022 sanitize_watermarks(i915);
18023
18024 return 0;
18025 }
18026
18027 /* part #3: call after gem init */
intel_modeset_init(struct drm_i915_private * i915)18028 int intel_modeset_init(struct drm_i915_private *i915)
18029 {
18030 int ret;
18031
18032 if (!HAS_DISPLAY(i915))
18033 return 0;
18034
18035 /*
18036 * Force all active planes to recompute their states. So that on
18037 * mode_setcrtc after probe, all the intel_plane_state variables
18038 * are already calculated and there is no assert_plane warnings
18039 * during bootup.
18040 */
18041 ret = intel_initial_commit(&i915->drm);
18042 if (ret)
18043 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret);
18044
18045 intel_overlay_setup(i915);
18046
18047 ret = intel_fbdev_init(&i915->drm);
18048 if (ret)
18049 return ret;
18050
18051 /* Only enable hotplug handling once the fbdev is fully set up. */
18052 intel_hpd_init(i915);
18053
18054 intel_init_ipc(i915);
18055
18056 intel_psr_set_force_mode_changed(i915->psr.dp);
18057
18058 return 0;
18059 }
18060
i830_enable_pipe(struct drm_i915_private * dev_priv,enum pipe pipe)18061 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18062 {
18063 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18064 /* 640x480@60Hz, ~25175 kHz */
18065 struct dpll clock = {
18066 .m1 = 18,
18067 .m2 = 7,
18068 .p1 = 13,
18069 .p2 = 4,
18070 .n = 2,
18071 };
18072 u32 dpll, fp;
18073 int i;
18074
18075 drm_WARN_ON(&dev_priv->drm,
18076 i9xx_calc_dpll_params(48000, &clock) != 25154);
18077
18078 drm_dbg_kms(&dev_priv->drm,
18079 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
18080 pipe_name(pipe), clock.vco, clock.dot);
18081
18082 fp = i9xx_dpll_compute_fp(&clock);
18083 dpll = DPLL_DVO_2X_MODE |
18084 DPLL_VGA_MODE_DIS |
18085 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
18086 PLL_P2_DIVIDE_BY_4 |
18087 PLL_REF_INPUT_DREFCLK |
18088 DPLL_VCO_ENABLE;
18089
18090 intel_de_write(dev_priv, FP0(pipe), fp);
18091 intel_de_write(dev_priv, FP1(pipe), fp);
18092
18093 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
18094 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
18095 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
18096 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
18097 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
18098 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
18099 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
18100
18101 /*
18102 * Apparently we need to have VGA mode enabled prior to changing
18103 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
18104 * dividers, even though the register value does change.
18105 */
18106 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
18107 intel_de_write(dev_priv, DPLL(pipe), dpll);
18108
18109 /* Wait for the clocks to stabilize. */
18110 intel_de_posting_read(dev_priv, DPLL(pipe));
18111 udelay(150);
18112
18113 /* The pixel multiplier can only be updated once the
18114 * DPLL is enabled and the clocks are stable.
18115 *
18116 * So write it again.
18117 */
18118 intel_de_write(dev_priv, DPLL(pipe), dpll);
18119
18120 /* We do this three times for luck */
18121 for (i = 0; i < 3 ; i++) {
18122 intel_de_write(dev_priv, DPLL(pipe), dpll);
18123 intel_de_posting_read(dev_priv, DPLL(pipe));
18124 udelay(150); /* wait for warmup */
18125 }
18126
18127 intel_de_write(dev_priv, PIPECONF(pipe),
18128 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
18129 intel_de_posting_read(dev_priv, PIPECONF(pipe));
18130
18131 intel_wait_for_pipe_scanline_moving(crtc);
18132 }
18133
i830_disable_pipe(struct drm_i915_private * dev_priv,enum pipe pipe)18134 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18135 {
18136 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18137
18138 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n",
18139 pipe_name(pipe));
18140
18141 drm_WARN_ON(&dev_priv->drm,
18142 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) &
18143 DISPLAY_PLANE_ENABLE);
18144 drm_WARN_ON(&dev_priv->drm,
18145 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) &
18146 DISPLAY_PLANE_ENABLE);
18147 drm_WARN_ON(&dev_priv->drm,
18148 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) &
18149 DISPLAY_PLANE_ENABLE);
18150 drm_WARN_ON(&dev_priv->drm,
18151 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE);
18152 drm_WARN_ON(&dev_priv->drm,
18153 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE);
18154
18155 intel_de_write(dev_priv, PIPECONF(pipe), 0);
18156 intel_de_posting_read(dev_priv, PIPECONF(pipe));
18157
18158 intel_wait_for_pipe_scanline_stopped(crtc);
18159
18160 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
18161 intel_de_posting_read(dev_priv, DPLL(pipe));
18162 }
18163
18164 static void
intel_sanitize_plane_mapping(struct drm_i915_private * dev_priv)18165 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
18166 {
18167 struct intel_crtc *crtc;
18168
18169 if (INTEL_GEN(dev_priv) >= 4)
18170 return;
18171
18172 for_each_intel_crtc(&dev_priv->drm, crtc) {
18173 struct intel_plane *plane =
18174 to_intel_plane(crtc->base.primary);
18175 struct intel_crtc *plane_crtc;
18176 enum pipe pipe;
18177
18178 if (!plane->get_hw_state(plane, &pipe))
18179 continue;
18180
18181 if (pipe == crtc->pipe)
18182 continue;
18183
18184 drm_dbg_kms(&dev_priv->drm,
18185 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
18186 plane->base.base.id, plane->base.name);
18187
18188 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18189 intel_plane_disable_noatomic(plane_crtc, plane);
18190 }
18191 }
18192
intel_crtc_has_encoders(struct intel_crtc * crtc)18193 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
18194 {
18195 struct drm_device *dev = crtc->base.dev;
18196 struct intel_encoder *encoder;
18197
18198 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
18199 return true;
18200
18201 return false;
18202 }
18203
intel_encoder_find_connector(struct intel_encoder * encoder)18204 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
18205 {
18206 struct drm_device *dev = encoder->base.dev;
18207 struct intel_connector *connector;
18208
18209 for_each_connector_on_encoder(dev, &encoder->base, connector)
18210 return connector;
18211
18212 return NULL;
18213 }
18214
has_pch_trancoder(struct drm_i915_private * dev_priv,enum pipe pch_transcoder)18215 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
18216 enum pipe pch_transcoder)
18217 {
18218 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
18219 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
18220 }
18221
intel_sanitize_frame_start_delay(const struct intel_crtc_state * crtc_state)18222 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
18223 {
18224 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
18225 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
18226 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
18227
18228 if (INTEL_GEN(dev_priv) >= 9 ||
18229 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
18230 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
18231 u32 val;
18232
18233 if (transcoder_is_dsi(cpu_transcoder))
18234 return;
18235
18236 val = intel_de_read(dev_priv, reg);
18237 val &= ~HSW_FRAME_START_DELAY_MASK;
18238 val |= HSW_FRAME_START_DELAY(0);
18239 intel_de_write(dev_priv, reg, val);
18240 } else {
18241 i915_reg_t reg = PIPECONF(cpu_transcoder);
18242 u32 val;
18243
18244 val = intel_de_read(dev_priv, reg);
18245 val &= ~PIPECONF_FRAME_START_DELAY_MASK;
18246 val |= PIPECONF_FRAME_START_DELAY(0);
18247 intel_de_write(dev_priv, reg, val);
18248 }
18249
18250 if (!crtc_state->has_pch_encoder)
18251 return;
18252
18253 if (HAS_PCH_IBX(dev_priv)) {
18254 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
18255 u32 val;
18256
18257 val = intel_de_read(dev_priv, reg);
18258 val &= ~TRANS_FRAME_START_DELAY_MASK;
18259 val |= TRANS_FRAME_START_DELAY(0);
18260 intel_de_write(dev_priv, reg, val);
18261 } else {
18262 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
18263 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
18264 u32 val;
18265
18266 val = intel_de_read(dev_priv, reg);
18267 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
18268 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
18269 intel_de_write(dev_priv, reg, val);
18270 }
18271 }
18272
intel_sanitize_crtc(struct intel_crtc * crtc,struct drm_modeset_acquire_ctx * ctx)18273 static void intel_sanitize_crtc(struct intel_crtc *crtc,
18274 struct drm_modeset_acquire_ctx *ctx)
18275 {
18276 struct drm_device *dev = crtc->base.dev;
18277 struct drm_i915_private *dev_priv = to_i915(dev);
18278 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
18279
18280 if (crtc_state->hw.active) {
18281 struct intel_plane *plane;
18282
18283 /* Clear any frame start delays used for debugging left by the BIOS */
18284 intel_sanitize_frame_start_delay(crtc_state);
18285
18286 /* Disable everything but the primary plane */
18287 for_each_intel_plane_on_crtc(dev, crtc, plane) {
18288 const struct intel_plane_state *plane_state =
18289 to_intel_plane_state(plane->base.state);
18290
18291 if (plane_state->uapi.visible &&
18292 plane->base.type != DRM_PLANE_TYPE_PRIMARY)
18293 intel_plane_disable_noatomic(crtc, plane);
18294 }
18295
18296 /*
18297 * Disable any background color set by the BIOS, but enable the
18298 * gamma and CSC to match how we program our planes.
18299 */
18300 if (INTEL_GEN(dev_priv) >= 9)
18301 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe),
18302 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE);
18303 }
18304
18305 /* Adjust the state of the output pipe according to whether we
18306 * have active connectors/encoders. */
18307 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc))
18308 intel_crtc_disable_noatomic(crtc, ctx);
18309
18310 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
18311 /*
18312 * We start out with underrun reporting disabled to avoid races.
18313 * For correct bookkeeping mark this on active crtcs.
18314 *
18315 * Also on gmch platforms we dont have any hardware bits to
18316 * disable the underrun reporting. Which means we need to start
18317 * out with underrun reporting disabled also on inactive pipes,
18318 * since otherwise we'll complain about the garbage we read when
18319 * e.g. coming up after runtime pm.
18320 *
18321 * No protection against concurrent access is required - at
18322 * worst a fifo underrun happens which also sets this to false.
18323 */
18324 crtc->cpu_fifo_underrun_disabled = true;
18325 /*
18326 * We track the PCH trancoder underrun reporting state
18327 * within the crtc. With crtc for pipe A housing the underrun
18328 * reporting state for PCH transcoder A, crtc for pipe B housing
18329 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
18330 * and marking underrun reporting as disabled for the non-existing
18331 * PCH transcoders B and C would prevent enabling the south
18332 * error interrupt (see cpt_can_enable_serr_int()).
18333 */
18334 if (has_pch_trancoder(dev_priv, crtc->pipe))
18335 crtc->pch_fifo_underrun_disabled = true;
18336 }
18337 }
18338
has_bogus_dpll_config(const struct intel_crtc_state * crtc_state)18339 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
18340 {
18341 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
18342
18343 /*
18344 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
18345 * the hardware when a high res displays plugged in. DPLL P
18346 * divider is zero, and the pipe timings are bonkers. We'll
18347 * try to disable everything in that case.
18348 *
18349 * FIXME would be nice to be able to sanitize this state
18350 * without several WARNs, but for now let's take the easy
18351 * road.
18352 */
18353 return IS_GEN(dev_priv, 6) &&
18354 crtc_state->hw.active &&
18355 crtc_state->shared_dpll &&
18356 crtc_state->port_clock == 0;
18357 }
18358
intel_sanitize_encoder(struct intel_encoder * encoder)18359 static void intel_sanitize_encoder(struct intel_encoder *encoder)
18360 {
18361 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
18362 struct intel_connector *connector;
18363 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
18364 struct intel_crtc_state *crtc_state = crtc ?
18365 to_intel_crtc_state(crtc->base.state) : NULL;
18366
18367 /* We need to check both for a crtc link (meaning that the
18368 * encoder is active and trying to read from a pipe) and the
18369 * pipe itself being active. */
18370 bool has_active_crtc = crtc_state &&
18371 crtc_state->hw.active;
18372
18373 if (crtc_state && has_bogus_dpll_config(crtc_state)) {
18374 drm_dbg_kms(&dev_priv->drm,
18375 "BIOS has misprogrammed the hardware. Disabling pipe %c\n",
18376 pipe_name(crtc->pipe));
18377 has_active_crtc = false;
18378 }
18379
18380 connector = intel_encoder_find_connector(encoder);
18381 if (connector && !has_active_crtc) {
18382 drm_dbg_kms(&dev_priv->drm,
18383 "[ENCODER:%d:%s] has active connectors but no active pipe!\n",
18384 encoder->base.base.id,
18385 encoder->base.name);
18386
18387 /* Connector is active, but has no active pipe. This is
18388 * fallout from our resume register restoring. Disable
18389 * the encoder manually again. */
18390 if (crtc_state) {
18391 struct drm_encoder *best_encoder;
18392
18393 drm_dbg_kms(&dev_priv->drm,
18394 "[ENCODER:%d:%s] manually disabled\n",
18395 encoder->base.base.id,
18396 encoder->base.name);
18397
18398 /* avoid oopsing in case the hooks consult best_encoder */
18399 best_encoder = connector->base.state->best_encoder;
18400 connector->base.state->best_encoder = &encoder->base;
18401
18402 /* FIXME NULL atomic state passed! */
18403 if (encoder->disable)
18404 encoder->disable(NULL, encoder, crtc_state,
18405 connector->base.state);
18406 if (encoder->post_disable)
18407 encoder->post_disable(NULL, encoder, crtc_state,
18408 connector->base.state);
18409
18410 connector->base.state->best_encoder = best_encoder;
18411 }
18412 encoder->base.crtc = NULL;
18413
18414 /* Inconsistent output/port/pipe state happens presumably due to
18415 * a bug in one of the get_hw_state functions. Or someplace else
18416 * in our code, like the register restore mess on resume. Clamp
18417 * things to off as a safer default. */
18418
18419 connector->base.dpms = DRM_MODE_DPMS_OFF;
18420 connector->base.encoder = NULL;
18421 }
18422
18423 /* notify opregion of the sanitized encoder state */
18424 intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
18425
18426 if (INTEL_GEN(dev_priv) >= 11)
18427 icl_sanitize_encoder_pll_mapping(encoder);
18428 }
18429
18430 /* FIXME read out full plane state for all planes */
readout_plane_state(struct drm_i915_private * dev_priv)18431 static void readout_plane_state(struct drm_i915_private *dev_priv)
18432 {
18433 struct intel_plane *plane;
18434 struct intel_crtc *crtc;
18435
18436 for_each_intel_plane(&dev_priv->drm, plane) {
18437 struct intel_plane_state *plane_state =
18438 to_intel_plane_state(plane->base.state);
18439 struct intel_crtc_state *crtc_state;
18440 enum pipe pipe = PIPE_A;
18441 bool visible;
18442
18443 visible = plane->get_hw_state(plane, &pipe);
18444
18445 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18446 crtc_state = to_intel_crtc_state(crtc->base.state);
18447
18448 intel_set_plane_visible(crtc_state, plane_state, visible);
18449
18450 drm_dbg_kms(&dev_priv->drm,
18451 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
18452 plane->base.base.id, plane->base.name,
18453 enableddisabled(visible), pipe_name(pipe));
18454 }
18455
18456 for_each_intel_crtc(&dev_priv->drm, crtc) {
18457 struct intel_crtc_state *crtc_state =
18458 to_intel_crtc_state(crtc->base.state);
18459
18460 fixup_active_planes(crtc_state);
18461 }
18462 }
18463
intel_modeset_readout_hw_state(struct drm_device * dev)18464 static void intel_modeset_readout_hw_state(struct drm_device *dev)
18465 {
18466 struct drm_i915_private *dev_priv = to_i915(dev);
18467 struct intel_cdclk_state *cdclk_state =
18468 to_intel_cdclk_state(dev_priv->cdclk.obj.state);
18469 struct intel_dbuf_state *dbuf_state =
18470 to_intel_dbuf_state(dev_priv->dbuf.obj.state);
18471 enum pipe pipe;
18472 struct intel_crtc *crtc;
18473 struct intel_encoder *encoder;
18474 struct intel_connector *connector;
18475 struct drm_connector_list_iter conn_iter;
18476 u8 active_pipes = 0;
18477
18478 for_each_intel_crtc(dev, crtc) {
18479 struct intel_crtc_state *crtc_state =
18480 to_intel_crtc_state(crtc->base.state);
18481
18482 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
18483 intel_crtc_free_hw_state(crtc_state);
18484 intel_crtc_state_reset(crtc_state, crtc);
18485
18486 crtc_state->hw.active = crtc_state->hw.enable =
18487 dev_priv->display.get_pipe_config(crtc, crtc_state);
18488
18489 crtc->base.enabled = crtc_state->hw.enable;
18490 crtc->active = crtc_state->hw.active;
18491
18492 if (crtc_state->hw.active)
18493 active_pipes |= BIT(crtc->pipe);
18494
18495 drm_dbg_kms(&dev_priv->drm,
18496 "[CRTC:%d:%s] hw state readout: %s\n",
18497 crtc->base.base.id, crtc->base.name,
18498 enableddisabled(crtc_state->hw.active));
18499 }
18500
18501 dev_priv->active_pipes = cdclk_state->active_pipes =
18502 dbuf_state->active_pipes = active_pipes;
18503
18504 readout_plane_state(dev_priv);
18505
18506 intel_dpll_readout_hw_state(dev_priv);
18507
18508 for_each_intel_encoder(dev, encoder) {
18509 pipe = 0;
18510
18511 if (encoder->get_hw_state(encoder, &pipe)) {
18512 struct intel_crtc_state *crtc_state;
18513
18514 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18515 crtc_state = to_intel_crtc_state(crtc->base.state);
18516
18517 encoder->base.crtc = &crtc->base;
18518 encoder->get_config(encoder, crtc_state);
18519 } else {
18520 encoder->base.crtc = NULL;
18521 }
18522
18523 drm_dbg_kms(&dev_priv->drm,
18524 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
18525 encoder->base.base.id, encoder->base.name,
18526 enableddisabled(encoder->base.crtc),
18527 pipe_name(pipe));
18528 }
18529
18530 drm_connector_list_iter_begin(dev, &conn_iter);
18531 for_each_intel_connector_iter(connector, &conn_iter) {
18532 if (connector->get_hw_state(connector)) {
18533 struct intel_crtc_state *crtc_state;
18534 struct intel_crtc *crtc;
18535
18536 connector->base.dpms = DRM_MODE_DPMS_ON;
18537
18538 encoder = intel_attached_encoder(connector);
18539 connector->base.encoder = &encoder->base;
18540
18541 crtc = to_intel_crtc(encoder->base.crtc);
18542 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
18543
18544 if (crtc_state && crtc_state->hw.active) {
18545 /*
18546 * This has to be done during hardware readout
18547 * because anything calling .crtc_disable may
18548 * rely on the connector_mask being accurate.
18549 */
18550 crtc_state->uapi.connector_mask |=
18551 drm_connector_mask(&connector->base);
18552 crtc_state->uapi.encoder_mask |=
18553 drm_encoder_mask(&encoder->base);
18554 }
18555 } else {
18556 connector->base.dpms = DRM_MODE_DPMS_OFF;
18557 connector->base.encoder = NULL;
18558 }
18559 drm_dbg_kms(&dev_priv->drm,
18560 "[CONNECTOR:%d:%s] hw state readout: %s\n",
18561 connector->base.base.id, connector->base.name,
18562 enableddisabled(connector->base.encoder));
18563 }
18564 drm_connector_list_iter_end(&conn_iter);
18565
18566 for_each_intel_crtc(dev, crtc) {
18567 struct intel_bw_state *bw_state =
18568 to_intel_bw_state(dev_priv->bw_obj.state);
18569 struct intel_crtc_state *crtc_state =
18570 to_intel_crtc_state(crtc->base.state);
18571 struct intel_plane *plane;
18572 int min_cdclk = 0;
18573
18574 if (crtc_state->hw.active) {
18575 struct drm_display_mode *mode = &crtc_state->hw.mode;
18576
18577 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode,
18578 crtc_state);
18579
18580 *mode = crtc_state->hw.adjusted_mode;
18581 mode->hdisplay = crtc_state->pipe_src_w;
18582 mode->vdisplay = crtc_state->pipe_src_h;
18583
18584 /*
18585 * The initial mode needs to be set in order to keep
18586 * the atomic core happy. It wants a valid mode if the
18587 * crtc's enabled, so we do the above call.
18588 *
18589 * But we don't set all the derived state fully, hence
18590 * set a flag to indicate that a full recalculation is
18591 * needed on the next commit.
18592 */
18593 crtc_state->inherited = true;
18594
18595 intel_crtc_compute_pixel_rate(crtc_state);
18596
18597 intel_crtc_update_active_timings(crtc_state);
18598
18599 intel_crtc_copy_hw_to_uapi_state(crtc_state);
18600 }
18601
18602 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
18603 const struct intel_plane_state *plane_state =
18604 to_intel_plane_state(plane->base.state);
18605
18606 /*
18607 * FIXME don't have the fb yet, so can't
18608 * use intel_plane_data_rate() :(
18609 */
18610 if (plane_state->uapi.visible)
18611 crtc_state->data_rate[plane->id] =
18612 4 * crtc_state->pixel_rate;
18613 /*
18614 * FIXME don't have the fb yet, so can't
18615 * use plane->min_cdclk() :(
18616 */
18617 if (plane_state->uapi.visible && plane->min_cdclk) {
18618 if (crtc_state->double_wide ||
18619 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
18620 crtc_state->min_cdclk[plane->id] =
18621 DIV_ROUND_UP(crtc_state->pixel_rate, 2);
18622 else
18623 crtc_state->min_cdclk[plane->id] =
18624 crtc_state->pixel_rate;
18625 }
18626 drm_dbg_kms(&dev_priv->drm,
18627 "[PLANE:%d:%s] min_cdclk %d kHz\n",
18628 plane->base.base.id, plane->base.name,
18629 crtc_state->min_cdclk[plane->id]);
18630 }
18631
18632 if (crtc_state->hw.active) {
18633 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
18634 if (drm_WARN_ON(dev, min_cdclk < 0))
18635 min_cdclk = 0;
18636 }
18637
18638 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
18639 cdclk_state->min_voltage_level[crtc->pipe] =
18640 crtc_state->min_voltage_level;
18641
18642 intel_bw_crtc_update(bw_state, crtc_state);
18643
18644 intel_pipe_config_sanity_check(dev_priv, crtc_state);
18645 }
18646 }
18647
18648 static void
get_encoder_power_domains(struct drm_i915_private * dev_priv)18649 get_encoder_power_domains(struct drm_i915_private *dev_priv)
18650 {
18651 struct intel_encoder *encoder;
18652
18653 for_each_intel_encoder(&dev_priv->drm, encoder) {
18654 struct intel_crtc_state *crtc_state;
18655
18656 if (!encoder->get_power_domains)
18657 continue;
18658
18659 /*
18660 * MST-primary and inactive encoders don't have a crtc state
18661 * and neither of these require any power domain references.
18662 */
18663 if (!encoder->base.crtc)
18664 continue;
18665
18666 crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
18667 encoder->get_power_domains(encoder, crtc_state);
18668 }
18669 }
18670
intel_early_display_was(struct drm_i915_private * dev_priv)18671 static void intel_early_display_was(struct drm_i915_private *dev_priv)
18672 {
18673 /*
18674 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl
18675 * Also known as Wa_14010480278.
18676 */
18677 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv))
18678 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0,
18679 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS);
18680
18681 if (IS_HASWELL(dev_priv)) {
18682 /*
18683 * WaRsPkgCStateDisplayPMReq:hsw
18684 * System hang if this isn't done before disabling all planes!
18685 */
18686 intel_de_write(dev_priv, CHICKEN_PAR1_1,
18687 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
18688 }
18689 }
18690
ibx_sanitize_pch_hdmi_port(struct drm_i915_private * dev_priv,enum port port,i915_reg_t hdmi_reg)18691 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
18692 enum port port, i915_reg_t hdmi_reg)
18693 {
18694 u32 val = intel_de_read(dev_priv, hdmi_reg);
18695
18696 if (val & SDVO_ENABLE ||
18697 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
18698 return;
18699
18700 drm_dbg_kms(&dev_priv->drm,
18701 "Sanitizing transcoder select for HDMI %c\n",
18702 port_name(port));
18703
18704 val &= ~SDVO_PIPE_SEL_MASK;
18705 val |= SDVO_PIPE_SEL(PIPE_A);
18706
18707 intel_de_write(dev_priv, hdmi_reg, val);
18708 }
18709
ibx_sanitize_pch_dp_port(struct drm_i915_private * dev_priv,enum port port,i915_reg_t dp_reg)18710 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
18711 enum port port, i915_reg_t dp_reg)
18712 {
18713 u32 val = intel_de_read(dev_priv, dp_reg);
18714
18715 if (val & DP_PORT_EN ||
18716 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
18717 return;
18718
18719 drm_dbg_kms(&dev_priv->drm,
18720 "Sanitizing transcoder select for DP %c\n",
18721 port_name(port));
18722
18723 val &= ~DP_PIPE_SEL_MASK;
18724 val |= DP_PIPE_SEL(PIPE_A);
18725
18726 intel_de_write(dev_priv, dp_reg, val);
18727 }
18728
ibx_sanitize_pch_ports(struct drm_i915_private * dev_priv)18729 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
18730 {
18731 /*
18732 * The BIOS may select transcoder B on some of the PCH
18733 * ports even it doesn't enable the port. This would trip
18734 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
18735 * Sanitize the transcoder select bits to prevent that. We
18736 * assume that the BIOS never actually enabled the port,
18737 * because if it did we'd actually have to toggle the port
18738 * on and back off to make the transcoder A select stick
18739 * (see. intel_dp_link_down(), intel_disable_hdmi(),
18740 * intel_disable_sdvo()).
18741 */
18742 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
18743 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
18744 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
18745
18746 /* PCH SDVOB multiplex with HDMIB */
18747 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
18748 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
18749 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
18750 }
18751
18752 /* Scan out the current hw modeset state,
18753 * and sanitizes it to the current state
18754 */
18755 static void
intel_modeset_setup_hw_state(struct drm_device * dev,struct drm_modeset_acquire_ctx * ctx)18756 intel_modeset_setup_hw_state(struct drm_device *dev,
18757 struct drm_modeset_acquire_ctx *ctx)
18758 {
18759 struct drm_i915_private *dev_priv = to_i915(dev);
18760 struct intel_encoder *encoder;
18761 struct intel_crtc *crtc;
18762 intel_wakeref_t wakeref;
18763
18764 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
18765
18766 intel_early_display_was(dev_priv);
18767 intel_modeset_readout_hw_state(dev);
18768
18769 /* HW state is read out, now we need to sanitize this mess. */
18770
18771 /* Sanitize the TypeC port mode upfront, encoders depend on this */
18772 for_each_intel_encoder(dev, encoder) {
18773 enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
18774
18775 /* We need to sanitize only the MST primary port. */
18776 if (encoder->type != INTEL_OUTPUT_DP_MST &&
18777 intel_phy_is_tc(dev_priv, phy))
18778 intel_tc_port_sanitize(enc_to_dig_port(encoder));
18779 }
18780
18781 get_encoder_power_domains(dev_priv);
18782
18783 if (HAS_PCH_IBX(dev_priv))
18784 ibx_sanitize_pch_ports(dev_priv);
18785
18786 /*
18787 * intel_sanitize_plane_mapping() may need to do vblank
18788 * waits, so we need vblank interrupts restored beforehand.
18789 */
18790 for_each_intel_crtc(&dev_priv->drm, crtc) {
18791 struct intel_crtc_state *crtc_state =
18792 to_intel_crtc_state(crtc->base.state);
18793
18794 drm_crtc_vblank_reset(&crtc->base);
18795
18796 if (crtc_state->hw.active)
18797 intel_crtc_vblank_on(crtc_state);
18798 }
18799
18800 intel_sanitize_plane_mapping(dev_priv);
18801
18802 for_each_intel_encoder(dev, encoder)
18803 intel_sanitize_encoder(encoder);
18804
18805 for_each_intel_crtc(&dev_priv->drm, crtc) {
18806 struct intel_crtc_state *crtc_state =
18807 to_intel_crtc_state(crtc->base.state);
18808
18809 intel_sanitize_crtc(crtc, ctx);
18810 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
18811 }
18812
18813 intel_modeset_update_connector_atomic_state(dev);
18814
18815 intel_dpll_sanitize_state(dev_priv);
18816
18817 if (IS_G4X(dev_priv)) {
18818 g4x_wm_get_hw_state(dev_priv);
18819 g4x_wm_sanitize(dev_priv);
18820 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
18821 vlv_wm_get_hw_state(dev_priv);
18822 vlv_wm_sanitize(dev_priv);
18823 } else if (INTEL_GEN(dev_priv) >= 9) {
18824 skl_wm_get_hw_state(dev_priv);
18825 } else if (HAS_PCH_SPLIT(dev_priv)) {
18826 ilk_wm_get_hw_state(dev_priv);
18827 }
18828
18829 for_each_intel_crtc(dev, crtc) {
18830 struct intel_crtc_state *crtc_state =
18831 to_intel_crtc_state(crtc->base.state);
18832 u64 put_domains;
18833
18834 put_domains = modeset_get_crtc_power_domains(crtc_state);
18835 if (drm_WARN_ON(dev, put_domains))
18836 modeset_put_power_domains(dev_priv, put_domains);
18837 }
18838
18839 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
18840 }
18841
intel_display_resume(struct drm_device * dev)18842 void intel_display_resume(struct drm_device *dev)
18843 {
18844 struct drm_i915_private *dev_priv = to_i915(dev);
18845 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
18846 struct drm_modeset_acquire_ctx ctx;
18847 int ret;
18848
18849 dev_priv->modeset_restore_state = NULL;
18850 if (state)
18851 state->acquire_ctx = &ctx;
18852
18853 drm_modeset_acquire_init(&ctx, 0);
18854
18855 while (1) {
18856 ret = drm_modeset_lock_all_ctx(dev, &ctx);
18857 if (ret != -EDEADLK)
18858 break;
18859
18860 drm_modeset_backoff(&ctx);
18861 }
18862
18863 if (!ret)
18864 ret = __intel_display_resume(dev, state, &ctx);
18865
18866 intel_enable_ipc(dev_priv);
18867 drm_modeset_drop_locks(&ctx);
18868 drm_modeset_acquire_fini(&ctx);
18869
18870 if (ret)
18871 drm_err(&dev_priv->drm,
18872 "Restoring old state failed with %i\n", ret);
18873 if (state)
18874 drm_atomic_state_put(state);
18875 }
18876
intel_hpd_poll_fini(struct drm_i915_private * i915)18877 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
18878 {
18879 struct intel_connector *connector;
18880 struct drm_connector_list_iter conn_iter;
18881
18882 /* Kill all the work that may have been queued by hpd. */
18883 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
18884 for_each_intel_connector_iter(connector, &conn_iter) {
18885 if (connector->modeset_retry_work.func)
18886 cancel_work_sync(&connector->modeset_retry_work);
18887 if (connector->hdcp.shim) {
18888 cancel_delayed_work_sync(&connector->hdcp.check_work);
18889 cancel_work_sync(&connector->hdcp.prop_work);
18890 }
18891 }
18892 drm_connector_list_iter_end(&conn_iter);
18893 }
18894
18895 /* part #1: call before irq uninstall */
intel_modeset_driver_remove(struct drm_i915_private * i915)18896 void intel_modeset_driver_remove(struct drm_i915_private *i915)
18897 {
18898 flush_workqueue(i915->flip_wq);
18899 flush_workqueue(i915->modeset_wq);
18900
18901 flush_work(&i915->atomic_helper.free_work);
18902 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list));
18903 }
18904
18905 /* part #2: call after irq uninstall */
intel_modeset_driver_remove_noirq(struct drm_i915_private * i915)18906 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915)
18907 {
18908 /*
18909 * Due to the hpd irq storm handling the hotplug work can re-arm the
18910 * poll handlers. Hence disable polling after hpd handling is shut down.
18911 */
18912 intel_hpd_poll_fini(i915);
18913
18914 /*
18915 * MST topology needs to be suspended so we don't have any calls to
18916 * fbdev after it's finalized. MST will be destroyed later as part of
18917 * drm_mode_config_cleanup()
18918 */
18919 intel_dp_mst_suspend(i915);
18920
18921 /* poll work can call into fbdev, hence clean that up afterwards */
18922 intel_fbdev_fini(i915);
18923
18924 intel_unregister_dsm_handler();
18925
18926 intel_fbc_global_disable(i915);
18927
18928 /* flush any delayed tasks or pending work */
18929 flush_scheduled_work();
18930
18931 intel_hdcp_component_fini(i915);
18932
18933 intel_mode_config_cleanup(i915);
18934
18935 intel_overlay_cleanup(i915);
18936
18937 intel_gmbus_teardown(i915);
18938
18939 destroy_workqueue(i915->flip_wq);
18940 destroy_workqueue(i915->modeset_wq);
18941
18942 intel_fbc_cleanup_cfb(i915);
18943 }
18944
18945 /* part #3: call after gem init */
intel_modeset_driver_remove_nogem(struct drm_i915_private * i915)18946 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915)
18947 {
18948 intel_csr_ucode_fini(i915);
18949
18950 intel_power_domains_driver_remove(i915);
18951
18952 intel_vga_unregister(i915);
18953
18954 intel_bios_driver_remove(i915);
18955 }
18956
18957 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
18958
18959 struct intel_display_error_state {
18960
18961 u32 power_well_driver;
18962
18963 struct intel_cursor_error_state {
18964 u32 control;
18965 u32 position;
18966 u32 base;
18967 u32 size;
18968 } cursor[I915_MAX_PIPES];
18969
18970 struct intel_pipe_error_state {
18971 bool power_domain_on;
18972 u32 source;
18973 u32 stat;
18974 } pipe[I915_MAX_PIPES];
18975
18976 struct intel_plane_error_state {
18977 u32 control;
18978 u32 stride;
18979 u32 size;
18980 u32 pos;
18981 u32 addr;
18982 u32 surface;
18983 u32 tile_offset;
18984 } plane[I915_MAX_PIPES];
18985
18986 struct intel_transcoder_error_state {
18987 bool available;
18988 bool power_domain_on;
18989 enum transcoder cpu_transcoder;
18990
18991 u32 conf;
18992
18993 u32 htotal;
18994 u32 hblank;
18995 u32 hsync;
18996 u32 vtotal;
18997 u32 vblank;
18998 u32 vsync;
18999 } transcoder[5];
19000 };
19001
19002 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_i915_private * dev_priv)19003 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
19004 {
19005 struct intel_display_error_state *error;
19006 int transcoders[] = {
19007 TRANSCODER_A,
19008 TRANSCODER_B,
19009 TRANSCODER_C,
19010 TRANSCODER_D,
19011 TRANSCODER_EDP,
19012 };
19013 int i;
19014
19015 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
19016
19017 if (!HAS_DISPLAY(dev_priv))
19018 return NULL;
19019
19020 error = kzalloc(sizeof(*error), GFP_ATOMIC);
19021 if (error == NULL)
19022 return NULL;
19023
19024 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19025 error->power_well_driver = intel_de_read(dev_priv,
19026 HSW_PWR_WELL_CTL2);
19027
19028 for_each_pipe(dev_priv, i) {
19029 error->pipe[i].power_domain_on =
19030 __intel_display_power_is_enabled(dev_priv,
19031 POWER_DOMAIN_PIPE(i));
19032 if (!error->pipe[i].power_domain_on)
19033 continue;
19034
19035 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i));
19036 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i));
19037 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i));
19038
19039 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i));
19040 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i));
19041 if (INTEL_GEN(dev_priv) <= 3) {
19042 error->plane[i].size = intel_de_read(dev_priv,
19043 DSPSIZE(i));
19044 error->plane[i].pos = intel_de_read(dev_priv,
19045 DSPPOS(i));
19046 }
19047 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19048 error->plane[i].addr = intel_de_read(dev_priv,
19049 DSPADDR(i));
19050 if (INTEL_GEN(dev_priv) >= 4) {
19051 error->plane[i].surface = intel_de_read(dev_priv,
19052 DSPSURF(i));
19053 error->plane[i].tile_offset = intel_de_read(dev_priv,
19054 DSPTILEOFF(i));
19055 }
19056
19057 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i));
19058
19059 if (HAS_GMCH(dev_priv))
19060 error->pipe[i].stat = intel_de_read(dev_priv,
19061 PIPESTAT(i));
19062 }
19063
19064 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19065 enum transcoder cpu_transcoder = transcoders[i];
19066
19067 if (!HAS_TRANSCODER(dev_priv, cpu_transcoder))
19068 continue;
19069
19070 error->transcoder[i].available = true;
19071 error->transcoder[i].power_domain_on =
19072 __intel_display_power_is_enabled(dev_priv,
19073 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
19074 if (!error->transcoder[i].power_domain_on)
19075 continue;
19076
19077 error->transcoder[i].cpu_transcoder = cpu_transcoder;
19078
19079 error->transcoder[i].conf = intel_de_read(dev_priv,
19080 PIPECONF(cpu_transcoder));
19081 error->transcoder[i].htotal = intel_de_read(dev_priv,
19082 HTOTAL(cpu_transcoder));
19083 error->transcoder[i].hblank = intel_de_read(dev_priv,
19084 HBLANK(cpu_transcoder));
19085 error->transcoder[i].hsync = intel_de_read(dev_priv,
19086 HSYNC(cpu_transcoder));
19087 error->transcoder[i].vtotal = intel_de_read(dev_priv,
19088 VTOTAL(cpu_transcoder));
19089 error->transcoder[i].vblank = intel_de_read(dev_priv,
19090 VBLANK(cpu_transcoder));
19091 error->transcoder[i].vsync = intel_de_read(dev_priv,
19092 VSYNC(cpu_transcoder));
19093 }
19094
19095 return error;
19096 }
19097
19098 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
19099
19100 void
intel_display_print_error_state(struct drm_i915_error_state_buf * m,struct intel_display_error_state * error)19101 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
19102 struct intel_display_error_state *error)
19103 {
19104 struct drm_i915_private *dev_priv = m->i915;
19105 int i;
19106
19107 if (!error)
19108 return;
19109
19110 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
19111 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19112 err_printf(m, "PWR_WELL_CTL2: %08x\n",
19113 error->power_well_driver);
19114 for_each_pipe(dev_priv, i) {
19115 err_printf(m, "Pipe [%d]:\n", i);
19116 err_printf(m, " Power: %s\n",
19117 onoff(error->pipe[i].power_domain_on));
19118 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
19119 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
19120
19121 err_printf(m, "Plane [%d]:\n", i);
19122 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
19123 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
19124 if (INTEL_GEN(dev_priv) <= 3) {
19125 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
19126 err_printf(m, " POS: %08x\n", error->plane[i].pos);
19127 }
19128 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19129 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
19130 if (INTEL_GEN(dev_priv) >= 4) {
19131 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
19132 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
19133 }
19134
19135 err_printf(m, "Cursor [%d]:\n", i);
19136 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
19137 err_printf(m, " POS: %08x\n", error->cursor[i].position);
19138 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
19139 }
19140
19141 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19142 if (!error->transcoder[i].available)
19143 continue;
19144
19145 err_printf(m, "CPU transcoder: %s\n",
19146 transcoder_name(error->transcoder[i].cpu_transcoder));
19147 err_printf(m, " Power: %s\n",
19148 onoff(error->transcoder[i].power_domain_on));
19149 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
19150 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
19151 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
19152 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
19153 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
19154 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
19155 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
19156 }
19157 }
19158
19159 #endif
19160