1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include "intel_color.h"
26 #include "intel_display_types.h"
27
28 #define CTM_COEFF_SIGN (1ULL << 63)
29
30 #define CTM_COEFF_1_0 (1ULL << 32)
31 #define CTM_COEFF_2_0 (CTM_COEFF_1_0 << 1)
32 #define CTM_COEFF_4_0 (CTM_COEFF_2_0 << 1)
33 #define CTM_COEFF_8_0 (CTM_COEFF_4_0 << 1)
34 #define CTM_COEFF_0_5 (CTM_COEFF_1_0 >> 1)
35 #define CTM_COEFF_0_25 (CTM_COEFF_0_5 >> 1)
36 #define CTM_COEFF_0_125 (CTM_COEFF_0_25 >> 1)
37
38 #define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255)
39
40 #define CTM_COEFF_NEGATIVE(coeff) (((coeff) & CTM_COEFF_SIGN) != 0)
41 #define CTM_COEFF_ABS(coeff) ((coeff) & (CTM_COEFF_SIGN - 1))
42
43 #define LEGACY_LUT_LENGTH 256
44
45 /*
46 * ILK+ csc matrix:
47 *
48 * |R/Cr| | c0 c1 c2 | ( |R/Cr| |preoff0| ) |postoff0|
49 * |G/Y | = | c3 c4 c5 | x ( |G/Y | + |preoff1| ) + |postoff1|
50 * |B/Cb| | c6 c7 c8 | ( |B/Cb| |preoff2| ) |postoff2|
51 *
52 * ILK/SNB don't have explicit post offsets, and instead
53 * CSC_MODE_YUV_TO_RGB and CSC_BLACK_SCREEN_OFFSET are used:
54 * CSC_MODE_YUV_TO_RGB=0 + CSC_BLACK_SCREEN_OFFSET=0 -> 1/2, 0, 1/2
55 * CSC_MODE_YUV_TO_RGB=0 + CSC_BLACK_SCREEN_OFFSET=1 -> 1/2, 1/16, 1/2
56 * CSC_MODE_YUV_TO_RGB=1 + CSC_BLACK_SCREEN_OFFSET=0 -> 0, 0, 0
57 * CSC_MODE_YUV_TO_RGB=1 + CSC_BLACK_SCREEN_OFFSET=1 -> 1/16, 1/16, 1/16
58 */
59
60 /*
61 * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
62 * format). This macro takes the coefficient we want transformed and the
63 * number of fractional bits.
64 *
65 * We only have a 9 bits precision window which slides depending on the value
66 * of the CTM coefficient and we write the value from bit 3. We also round the
67 * value.
68 */
69 #define ILK_CSC_COEFF_FP(coeff, fbits) \
70 (clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8)
71
72 #define ILK_CSC_COEFF_LIMITED_RANGE 0x0dc0
73 #define ILK_CSC_COEFF_1_0 0x7800
74
75 #define ILK_CSC_POSTOFF_LIMITED_RANGE (16 * (1 << 12) / 255)
76
77 /* Nop pre/post offsets */
78 static const u16 ilk_csc_off_zero[3] = {};
79
80 /* Identity matrix */
81 static const u16 ilk_csc_coeff_identity[9] = {
82 ILK_CSC_COEFF_1_0, 0, 0,
83 0, ILK_CSC_COEFF_1_0, 0,
84 0, 0, ILK_CSC_COEFF_1_0,
85 };
86
87 /* Limited range RGB post offsets */
88 static const u16 ilk_csc_postoff_limited_range[3] = {
89 ILK_CSC_POSTOFF_LIMITED_RANGE,
90 ILK_CSC_POSTOFF_LIMITED_RANGE,
91 ILK_CSC_POSTOFF_LIMITED_RANGE,
92 };
93
94 /* Full range RGB -> limited range RGB matrix */
95 static const u16 ilk_csc_coeff_limited_range[9] = {
96 ILK_CSC_COEFF_LIMITED_RANGE, 0, 0,
97 0, ILK_CSC_COEFF_LIMITED_RANGE, 0,
98 0, 0, ILK_CSC_COEFF_LIMITED_RANGE,
99 };
100
101 /* BT.709 full range RGB -> limited range YCbCr matrix */
102 static const u16 ilk_csc_coeff_rgb_to_ycbcr[9] = {
103 0x1e08, 0x9cc0, 0xb528,
104 0x2ba8, 0x09d8, 0x37e8,
105 0xbce8, 0x9ad8, 0x1e08,
106 };
107
108 /* Limited range YCbCr post offsets */
109 static const u16 ilk_csc_postoff_rgb_to_ycbcr[3] = {
110 0x0800, 0x0100, 0x0800,
111 };
112
lut_is_legacy(const struct drm_property_blob * lut)113 static bool lut_is_legacy(const struct drm_property_blob *lut)
114 {
115 return drm_color_lut_size(lut) == LEGACY_LUT_LENGTH;
116 }
117
crtc_state_is_legacy_gamma(const struct intel_crtc_state * crtc_state)118 static bool crtc_state_is_legacy_gamma(const struct intel_crtc_state *crtc_state)
119 {
120 return !crtc_state->hw.degamma_lut &&
121 !crtc_state->hw.ctm &&
122 crtc_state->hw.gamma_lut &&
123 lut_is_legacy(crtc_state->hw.gamma_lut);
124 }
125
126 /*
127 * When using limited range, multiply the matrix given by userspace by
128 * the matrix that we would use for the limited range.
129 */
ctm_mult_by_limited(u64 * result,const u64 * input)130 static u64 *ctm_mult_by_limited(u64 *result, const u64 *input)
131 {
132 int i;
133
134 for (i = 0; i < 9; i++) {
135 u64 user_coeff = input[i];
136 u32 limited_coeff = CTM_COEFF_LIMITED_RANGE;
137 u32 abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff), 0,
138 CTM_COEFF_4_0 - 1) >> 2;
139
140 /*
141 * By scaling every co-efficient with limited range (16-235)
142 * vs full range (0-255) the final o/p will be scaled down to
143 * fit in the limited range supported by the panel.
144 */
145 result[i] = mul_u32_u32(limited_coeff, abs_coeff) >> 30;
146 result[i] |= user_coeff & CTM_COEFF_SIGN;
147 }
148
149 return result;
150 }
151
ilk_update_pipe_csc(struct intel_crtc * crtc,const u16 preoff[3],const u16 coeff[9],const u16 postoff[3])152 static void ilk_update_pipe_csc(struct intel_crtc *crtc,
153 const u16 preoff[3],
154 const u16 coeff[9],
155 const u16 postoff[3])
156 {
157 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
158 enum pipe pipe = crtc->pipe;
159
160 intel_de_write(dev_priv, PIPE_CSC_PREOFF_HI(pipe), preoff[0]);
161 intel_de_write(dev_priv, PIPE_CSC_PREOFF_ME(pipe), preoff[1]);
162 intel_de_write(dev_priv, PIPE_CSC_PREOFF_LO(pipe), preoff[2]);
163
164 intel_de_write(dev_priv, PIPE_CSC_COEFF_RY_GY(pipe),
165 coeff[0] << 16 | coeff[1]);
166 intel_de_write(dev_priv, PIPE_CSC_COEFF_BY(pipe), coeff[2] << 16);
167
168 intel_de_write(dev_priv, PIPE_CSC_COEFF_RU_GU(pipe),
169 coeff[3] << 16 | coeff[4]);
170 intel_de_write(dev_priv, PIPE_CSC_COEFF_BU(pipe), coeff[5] << 16);
171
172 intel_de_write(dev_priv, PIPE_CSC_COEFF_RV_GV(pipe),
173 coeff[6] << 16 | coeff[7]);
174 intel_de_write(dev_priv, PIPE_CSC_COEFF_BV(pipe), coeff[8] << 16);
175
176 if (INTEL_GEN(dev_priv) >= 7) {
177 intel_de_write(dev_priv, PIPE_CSC_POSTOFF_HI(pipe),
178 postoff[0]);
179 intel_de_write(dev_priv, PIPE_CSC_POSTOFF_ME(pipe),
180 postoff[1]);
181 intel_de_write(dev_priv, PIPE_CSC_POSTOFF_LO(pipe),
182 postoff[2]);
183 }
184 }
185
icl_update_output_csc(struct intel_crtc * crtc,const u16 preoff[3],const u16 coeff[9],const u16 postoff[3])186 static void icl_update_output_csc(struct intel_crtc *crtc,
187 const u16 preoff[3],
188 const u16 coeff[9],
189 const u16 postoff[3])
190 {
191 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
192 enum pipe pipe = crtc->pipe;
193
194 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_HI(pipe), preoff[0]);
195 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_ME(pipe), preoff[1]);
196 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_LO(pipe), preoff[2]);
197
198 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RY_GY(pipe),
199 coeff[0] << 16 | coeff[1]);
200 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BY(pipe),
201 coeff[2] << 16);
202
203 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RU_GU(pipe),
204 coeff[3] << 16 | coeff[4]);
205 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BU(pipe),
206 coeff[5] << 16);
207
208 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RV_GV(pipe),
209 coeff[6] << 16 | coeff[7]);
210 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BV(pipe),
211 coeff[8] << 16);
212
213 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_HI(pipe), postoff[0]);
214 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_ME(pipe), postoff[1]);
215 intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_LO(pipe), postoff[2]);
216 }
217
ilk_csc_limited_range(const struct intel_crtc_state * crtc_state)218 static bool ilk_csc_limited_range(const struct intel_crtc_state *crtc_state)
219 {
220 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
221
222 /*
223 * FIXME if there's a gamma LUT after the CSC, we should
224 * do the range compression using the gamma LUT instead.
225 */
226 return crtc_state->limited_color_range &&
227 (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
228 IS_GEN_RANGE(dev_priv, 9, 10));
229 }
230
ilk_csc_convert_ctm(const struct intel_crtc_state * crtc_state,u16 coeffs[9])231 static void ilk_csc_convert_ctm(const struct intel_crtc_state *crtc_state,
232 u16 coeffs[9])
233 {
234 const struct drm_color_ctm *ctm = crtc_state->hw.ctm->data;
235 const u64 *input;
236 u64 temp[9];
237 int i;
238
239 if (ilk_csc_limited_range(crtc_state))
240 input = ctm_mult_by_limited(temp, ctm->matrix);
241 else
242 input = ctm->matrix;
243
244 /*
245 * Convert fixed point S31.32 input to format supported by the
246 * hardware.
247 */
248 for (i = 0; i < 9; i++) {
249 u64 abs_coeff = ((1ULL << 63) - 1) & input[i];
250
251 /*
252 * Clamp input value to min/max supported by
253 * hardware.
254 */
255 abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1);
256
257 coeffs[i] = 0;
258
259 /* sign bit */
260 if (CTM_COEFF_NEGATIVE(input[i]))
261 coeffs[i] |= 1 << 15;
262
263 if (abs_coeff < CTM_COEFF_0_125)
264 coeffs[i] |= (3 << 12) |
265 ILK_CSC_COEFF_FP(abs_coeff, 12);
266 else if (abs_coeff < CTM_COEFF_0_25)
267 coeffs[i] |= (2 << 12) |
268 ILK_CSC_COEFF_FP(abs_coeff, 11);
269 else if (abs_coeff < CTM_COEFF_0_5)
270 coeffs[i] |= (1 << 12) |
271 ILK_CSC_COEFF_FP(abs_coeff, 10);
272 else if (abs_coeff < CTM_COEFF_1_0)
273 coeffs[i] |= ILK_CSC_COEFF_FP(abs_coeff, 9);
274 else if (abs_coeff < CTM_COEFF_2_0)
275 coeffs[i] |= (7 << 12) |
276 ILK_CSC_COEFF_FP(abs_coeff, 8);
277 else
278 coeffs[i] |= (6 << 12) |
279 ILK_CSC_COEFF_FP(abs_coeff, 7);
280 }
281 }
282
ilk_load_csc_matrix(const struct intel_crtc_state * crtc_state)283 static void ilk_load_csc_matrix(const struct intel_crtc_state *crtc_state)
284 {
285 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
286 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
287 bool limited_color_range = ilk_csc_limited_range(crtc_state);
288
289 if (crtc_state->hw.ctm) {
290 u16 coeff[9];
291
292 ilk_csc_convert_ctm(crtc_state, coeff);
293 ilk_update_pipe_csc(crtc, ilk_csc_off_zero, coeff,
294 limited_color_range ?
295 ilk_csc_postoff_limited_range :
296 ilk_csc_off_zero);
297 } else if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) {
298 ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
299 ilk_csc_coeff_rgb_to_ycbcr,
300 ilk_csc_postoff_rgb_to_ycbcr);
301 } else if (limited_color_range) {
302 ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
303 ilk_csc_coeff_limited_range,
304 ilk_csc_postoff_limited_range);
305 } else if (crtc_state->csc_enable) {
306 /*
307 * On GLK+ both pipe CSC and degamma LUT are controlled
308 * by csc_enable. Hence for the cases where the degama
309 * LUT is needed but CSC is not we need to load an
310 * identity matrix.
311 */
312 drm_WARN_ON(&dev_priv->drm, !IS_CANNONLAKE(dev_priv) &&
313 !IS_GEMINILAKE(dev_priv));
314
315 ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
316 ilk_csc_coeff_identity,
317 ilk_csc_off_zero);
318 }
319
320 intel_de_write(dev_priv, PIPE_CSC_MODE(crtc->pipe),
321 crtc_state->csc_mode);
322 }
323
icl_load_csc_matrix(const struct intel_crtc_state * crtc_state)324 static void icl_load_csc_matrix(const struct intel_crtc_state *crtc_state)
325 {
326 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
327 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
328
329 if (crtc_state->hw.ctm) {
330 u16 coeff[9];
331
332 ilk_csc_convert_ctm(crtc_state, coeff);
333 ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
334 coeff, ilk_csc_off_zero);
335 }
336
337 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) {
338 icl_update_output_csc(crtc, ilk_csc_off_zero,
339 ilk_csc_coeff_rgb_to_ycbcr,
340 ilk_csc_postoff_rgb_to_ycbcr);
341 } else if (crtc_state->limited_color_range) {
342 icl_update_output_csc(crtc, ilk_csc_off_zero,
343 ilk_csc_coeff_limited_range,
344 ilk_csc_postoff_limited_range);
345 }
346
347 intel_de_write(dev_priv, PIPE_CSC_MODE(crtc->pipe),
348 crtc_state->csc_mode);
349 }
350
chv_load_cgm_csc(struct intel_crtc * crtc,const struct drm_property_blob * blob)351 static void chv_load_cgm_csc(struct intel_crtc *crtc,
352 const struct drm_property_blob *blob)
353 {
354 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
355 const struct drm_color_ctm *ctm = blob->data;
356 enum pipe pipe = crtc->pipe;
357 u16 coeffs[9];
358 int i;
359
360 for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
361 u64 abs_coeff = ((1ULL << 63) - 1) & ctm->matrix[i];
362
363 /* Round coefficient. */
364 abs_coeff += 1 << (32 - 13);
365 /* Clamp to hardware limits. */
366 abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1);
367
368 coeffs[i] = 0;
369
370 /* Write coefficients in S3.12 format. */
371 if (ctm->matrix[i] & (1ULL << 63))
372 coeffs[i] |= 1 << 15;
373
374 coeffs[i] |= ((abs_coeff >> 32) & 7) << 12;
375 coeffs[i] |= (abs_coeff >> 20) & 0xfff;
376 }
377
378 intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF01(pipe),
379 coeffs[1] << 16 | coeffs[0]);
380 intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF23(pipe),
381 coeffs[3] << 16 | coeffs[2]);
382 intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF45(pipe),
383 coeffs[5] << 16 | coeffs[4]);
384 intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF67(pipe),
385 coeffs[7] << 16 | coeffs[6]);
386 intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF8(pipe),
387 coeffs[8]);
388 }
389
390 /* convert hw value with given bit_precision to lut property val */
intel_color_lut_pack(u32 val,int bit_precision)391 static u32 intel_color_lut_pack(u32 val, int bit_precision)
392 {
393 u32 max = 0xffff >> (16 - bit_precision);
394
395 val = clamp_val(val, 0, max);
396
397 if (bit_precision < 16)
398 val <<= 16 - bit_precision;
399
400 return val;
401 }
402
i9xx_lut_8(const struct drm_color_lut * color)403 static u32 i9xx_lut_8(const struct drm_color_lut *color)
404 {
405 return drm_color_lut_extract(color->red, 8) << 16 |
406 drm_color_lut_extract(color->green, 8) << 8 |
407 drm_color_lut_extract(color->blue, 8);
408 }
409
i9xx_lut_8_pack(struct drm_color_lut * entry,u32 val)410 static void i9xx_lut_8_pack(struct drm_color_lut *entry, u32 val)
411 {
412 entry->red = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_RED_MASK, val), 8);
413 entry->green = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_GREEN_MASK, val), 8);
414 entry->blue = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_BLUE_MASK, val), 8);
415 }
416
417 /* i965+ "10.6" bit interpolated format "even DW" (low 8 bits) */
i965_lut_10p6_ldw(const struct drm_color_lut * color)418 static u32 i965_lut_10p6_ldw(const struct drm_color_lut *color)
419 {
420 return (color->red & 0xff) << 16 |
421 (color->green & 0xff) << 8 |
422 (color->blue & 0xff);
423 }
424
425 /* i965+ "10.6" interpolated format "odd DW" (high 8 bits) */
i965_lut_10p6_udw(const struct drm_color_lut * color)426 static u32 i965_lut_10p6_udw(const struct drm_color_lut *color)
427 {
428 return (color->red >> 8) << 16 |
429 (color->green >> 8) << 8 |
430 (color->blue >> 8);
431 }
432
i965_lut_10p6_pack(struct drm_color_lut * entry,u32 ldw,u32 udw)433 static void i965_lut_10p6_pack(struct drm_color_lut *entry, u32 ldw, u32 udw)
434 {
435 entry->red = REG_FIELD_GET(PALETTE_RED_MASK, udw) << 8 |
436 REG_FIELD_GET(PALETTE_RED_MASK, ldw);
437 entry->green = REG_FIELD_GET(PALETTE_GREEN_MASK, udw) << 8 |
438 REG_FIELD_GET(PALETTE_GREEN_MASK, ldw);
439 entry->blue = REG_FIELD_GET(PALETTE_BLUE_MASK, udw) << 8 |
440 REG_FIELD_GET(PALETTE_BLUE_MASK, ldw);
441 }
442
i965_lut_11p6_max_pack(u32 val)443 static u16 i965_lut_11p6_max_pack(u32 val)
444 {
445 /* PIPEGCMAX is 11.6, clamp to 10.6 */
446 return clamp_val(val, 0, 0xffff);
447 }
448
ilk_lut_10(const struct drm_color_lut * color)449 static u32 ilk_lut_10(const struct drm_color_lut *color)
450 {
451 return drm_color_lut_extract(color->red, 10) << 20 |
452 drm_color_lut_extract(color->green, 10) << 10 |
453 drm_color_lut_extract(color->blue, 10);
454 }
455
ilk_lut_10_pack(struct drm_color_lut * entry,u32 val)456 static void ilk_lut_10_pack(struct drm_color_lut *entry, u32 val)
457 {
458 entry->red = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_RED_MASK, val), 10);
459 entry->green = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_GREEN_MASK, val), 10);
460 entry->blue = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_BLUE_MASK, val), 10);
461 }
462
icl_lut_multi_seg_pack(struct drm_color_lut * entry,u32 ldw,u32 udw)463 static void icl_lut_multi_seg_pack(struct drm_color_lut *entry, u32 ldw, u32 udw)
464 {
465 entry->red = REG_FIELD_GET(PAL_PREC_MULTI_SEG_RED_UDW_MASK, udw) << 6 |
466 REG_FIELD_GET(PAL_PREC_MULTI_SEG_RED_LDW_MASK, ldw);
467 entry->green = REG_FIELD_GET(PAL_PREC_MULTI_SEG_GREEN_UDW_MASK, udw) << 6 |
468 REG_FIELD_GET(PAL_PREC_MULTI_SEG_GREEN_LDW_MASK, ldw);
469 entry->blue = REG_FIELD_GET(PAL_PREC_MULTI_SEG_BLUE_UDW_MASK, udw) << 6 |
470 REG_FIELD_GET(PAL_PREC_MULTI_SEG_BLUE_LDW_MASK, ldw);
471 }
472
i9xx_color_commit(const struct intel_crtc_state * crtc_state)473 static void i9xx_color_commit(const struct intel_crtc_state *crtc_state)
474 {
475 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
476 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
477 enum pipe pipe = crtc->pipe;
478 u32 val;
479
480 val = intel_de_read(dev_priv, PIPECONF(pipe));
481 val &= ~PIPECONF_GAMMA_MODE_MASK_I9XX;
482 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
483 intel_de_write(dev_priv, PIPECONF(pipe), val);
484 }
485
ilk_color_commit(const struct intel_crtc_state * crtc_state)486 static void ilk_color_commit(const struct intel_crtc_state *crtc_state)
487 {
488 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
489 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
490 enum pipe pipe = crtc->pipe;
491 u32 val;
492
493 val = intel_de_read(dev_priv, PIPECONF(pipe));
494 val &= ~PIPECONF_GAMMA_MODE_MASK_ILK;
495 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
496 intel_de_write(dev_priv, PIPECONF(pipe), val);
497
498 ilk_load_csc_matrix(crtc_state);
499 }
500
hsw_color_commit(const struct intel_crtc_state * crtc_state)501 static void hsw_color_commit(const struct intel_crtc_state *crtc_state)
502 {
503 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
504 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
505
506 intel_de_write(dev_priv, GAMMA_MODE(crtc->pipe),
507 crtc_state->gamma_mode);
508
509 ilk_load_csc_matrix(crtc_state);
510 }
511
skl_color_commit(const struct intel_crtc_state * crtc_state)512 static void skl_color_commit(const struct intel_crtc_state *crtc_state)
513 {
514 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
515 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
516 enum pipe pipe = crtc->pipe;
517 u32 val = 0;
518
519 /*
520 * We don't (yet) allow userspace to control the pipe background color,
521 * so force it to black, but apply pipe gamma and CSC appropriately
522 * so that its handling will match how we program our planes.
523 */
524 if (crtc_state->gamma_enable)
525 val |= SKL_BOTTOM_COLOR_GAMMA_ENABLE;
526 if (crtc_state->csc_enable)
527 val |= SKL_BOTTOM_COLOR_CSC_ENABLE;
528 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(pipe), val);
529
530 intel_de_write(dev_priv, GAMMA_MODE(crtc->pipe),
531 crtc_state->gamma_mode);
532
533 if (INTEL_GEN(dev_priv) >= 11)
534 icl_load_csc_matrix(crtc_state);
535 else
536 ilk_load_csc_matrix(crtc_state);
537 }
538
i9xx_load_lut_8(struct intel_crtc * crtc,const struct drm_property_blob * blob)539 static void i9xx_load_lut_8(struct intel_crtc *crtc,
540 const struct drm_property_blob *blob)
541 {
542 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
543 const struct drm_color_lut *lut;
544 enum pipe pipe = crtc->pipe;
545 int i;
546
547 if (!blob)
548 return;
549
550 lut = blob->data;
551
552 for (i = 0; i < 256; i++)
553 intel_de_write(dev_priv, PALETTE(pipe, i),
554 i9xx_lut_8(&lut[i]));
555 }
556
i9xx_load_luts(const struct intel_crtc_state * crtc_state)557 static void i9xx_load_luts(const struct intel_crtc_state *crtc_state)
558 {
559 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
561 const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
562
563 assert_pll_enabled(dev_priv, crtc->pipe);
564
565 i9xx_load_lut_8(crtc, gamma_lut);
566 }
567
i965_load_lut_10p6(struct intel_crtc * crtc,const struct drm_property_blob * blob)568 static void i965_load_lut_10p6(struct intel_crtc *crtc,
569 const struct drm_property_blob *blob)
570 {
571 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
572 const struct drm_color_lut *lut = blob->data;
573 int i, lut_size = drm_color_lut_size(blob);
574 enum pipe pipe = crtc->pipe;
575
576 for (i = 0; i < lut_size - 1; i++) {
577 intel_de_write(dev_priv, PALETTE(pipe, 2 * i + 0),
578 i965_lut_10p6_ldw(&lut[i]));
579 intel_de_write(dev_priv, PALETTE(pipe, 2 * i + 1),
580 i965_lut_10p6_udw(&lut[i]));
581 }
582
583 intel_de_write(dev_priv, PIPEGCMAX(pipe, 0), lut[i].red);
584 intel_de_write(dev_priv, PIPEGCMAX(pipe, 1), lut[i].green);
585 intel_de_write(dev_priv, PIPEGCMAX(pipe, 2), lut[i].blue);
586 }
587
i965_load_luts(const struct intel_crtc_state * crtc_state)588 static void i965_load_luts(const struct intel_crtc_state *crtc_state)
589 {
590 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
591 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
592 const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
593
594 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
595 assert_dsi_pll_enabled(dev_priv);
596 else
597 assert_pll_enabled(dev_priv, crtc->pipe);
598
599 if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
600 i9xx_load_lut_8(crtc, gamma_lut);
601 else
602 i965_load_lut_10p6(crtc, gamma_lut);
603 }
604
ilk_load_lut_8(struct intel_crtc * crtc,const struct drm_property_blob * blob)605 static void ilk_load_lut_8(struct intel_crtc *crtc,
606 const struct drm_property_blob *blob)
607 {
608 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
609 const struct drm_color_lut *lut;
610 enum pipe pipe = crtc->pipe;
611 int i;
612
613 if (!blob)
614 return;
615
616 lut = blob->data;
617
618 for (i = 0; i < 256; i++)
619 intel_de_write(dev_priv, LGC_PALETTE(pipe, i),
620 i9xx_lut_8(&lut[i]));
621 }
622
ilk_load_lut_10(struct intel_crtc * crtc,const struct drm_property_blob * blob)623 static void ilk_load_lut_10(struct intel_crtc *crtc,
624 const struct drm_property_blob *blob)
625 {
626 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
627 const struct drm_color_lut *lut = blob->data;
628 int i, lut_size = drm_color_lut_size(blob);
629 enum pipe pipe = crtc->pipe;
630
631 for (i = 0; i < lut_size; i++)
632 intel_de_write(dev_priv, PREC_PALETTE(pipe, i),
633 ilk_lut_10(&lut[i]));
634 }
635
ilk_load_luts(const struct intel_crtc_state * crtc_state)636 static void ilk_load_luts(const struct intel_crtc_state *crtc_state)
637 {
638 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
639 const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
640
641 if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
642 ilk_load_lut_8(crtc, gamma_lut);
643 else
644 ilk_load_lut_10(crtc, gamma_lut);
645 }
646
ivb_lut_10_size(u32 prec_index)647 static int ivb_lut_10_size(u32 prec_index)
648 {
649 if (prec_index & PAL_PREC_SPLIT_MODE)
650 return 512;
651 else
652 return 1024;
653 }
654
655 /*
656 * IVB/HSW Bspec / PAL_PREC_INDEX:
657 * "Restriction : Index auto increment mode is not
658 * supported and must not be enabled."
659 */
ivb_load_lut_10(struct intel_crtc * crtc,const struct drm_property_blob * blob,u32 prec_index)660 static void ivb_load_lut_10(struct intel_crtc *crtc,
661 const struct drm_property_blob *blob,
662 u32 prec_index)
663 {
664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
665 int hw_lut_size = ivb_lut_10_size(prec_index);
666 const struct drm_color_lut *lut = blob->data;
667 int i, lut_size = drm_color_lut_size(blob);
668 enum pipe pipe = crtc->pipe;
669
670 for (i = 0; i < hw_lut_size; i++) {
671 /* We discard half the user entries in split gamma mode */
672 const struct drm_color_lut *entry =
673 &lut[i * (lut_size - 1) / (hw_lut_size - 1)];
674
675 intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), prec_index++);
676 intel_de_write(dev_priv, PREC_PAL_DATA(pipe),
677 ilk_lut_10(entry));
678 }
679
680 /*
681 * Reset the index, otherwise it prevents the legacy palette to be
682 * written properly.
683 */
684 intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0);
685 }
686
687 /* On BDW+ the index auto increment mode actually works */
bdw_load_lut_10(struct intel_crtc * crtc,const struct drm_property_blob * blob,u32 prec_index)688 static void bdw_load_lut_10(struct intel_crtc *crtc,
689 const struct drm_property_blob *blob,
690 u32 prec_index)
691 {
692 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
693 int hw_lut_size = ivb_lut_10_size(prec_index);
694 const struct drm_color_lut *lut = blob->data;
695 int i, lut_size = drm_color_lut_size(blob);
696 enum pipe pipe = crtc->pipe;
697
698 intel_de_write(dev_priv, PREC_PAL_INDEX(pipe),
699 prec_index | PAL_PREC_AUTO_INCREMENT);
700
701 for (i = 0; i < hw_lut_size; i++) {
702 /* We discard half the user entries in split gamma mode */
703 const struct drm_color_lut *entry =
704 &lut[i * (lut_size - 1) / (hw_lut_size - 1)];
705
706 intel_de_write(dev_priv, PREC_PAL_DATA(pipe),
707 ilk_lut_10(entry));
708 }
709
710 /*
711 * Reset the index, otherwise it prevents the legacy palette to be
712 * written properly.
713 */
714 intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0);
715 }
716
ivb_load_lut_ext_max(const struct intel_crtc_state * crtc_state)717 static void ivb_load_lut_ext_max(const struct intel_crtc_state *crtc_state)
718 {
719 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
720 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
721 enum pipe pipe = crtc->pipe;
722
723 /* Program the max register to clamp values > 1.0. */
724 intel_dsb_reg_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 0), 1 << 16);
725 intel_dsb_reg_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 1), 1 << 16);
726 intel_dsb_reg_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 2), 1 << 16);
727
728 /*
729 * Program the gc max 2 register to clamp values > 1.0.
730 * ToDo: Extend the ABI to be able to program values
731 * from 3.0 to 7.0
732 */
733 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
734 intel_dsb_reg_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 0),
735 1 << 16);
736 intel_dsb_reg_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 1),
737 1 << 16);
738 intel_dsb_reg_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 2),
739 1 << 16);
740 }
741 }
742
ivb_load_luts(const struct intel_crtc_state * crtc_state)743 static void ivb_load_luts(const struct intel_crtc_state *crtc_state)
744 {
745 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
746 const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
747 const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
748
749 if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) {
750 ilk_load_lut_8(crtc, gamma_lut);
751 } else if (crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) {
752 ivb_load_lut_10(crtc, degamma_lut, PAL_PREC_SPLIT_MODE |
753 PAL_PREC_INDEX_VALUE(0));
754 ivb_load_lut_ext_max(crtc_state);
755 ivb_load_lut_10(crtc, gamma_lut, PAL_PREC_SPLIT_MODE |
756 PAL_PREC_INDEX_VALUE(512));
757 } else {
758 const struct drm_property_blob *blob = gamma_lut ?: degamma_lut;
759
760 ivb_load_lut_10(crtc, blob,
761 PAL_PREC_INDEX_VALUE(0));
762 ivb_load_lut_ext_max(crtc_state);
763 }
764 }
765
bdw_load_luts(const struct intel_crtc_state * crtc_state)766 static void bdw_load_luts(const struct intel_crtc_state *crtc_state)
767 {
768 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
769 const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
770 const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
771
772 if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) {
773 ilk_load_lut_8(crtc, gamma_lut);
774 } else if (crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) {
775 bdw_load_lut_10(crtc, degamma_lut, PAL_PREC_SPLIT_MODE |
776 PAL_PREC_INDEX_VALUE(0));
777 ivb_load_lut_ext_max(crtc_state);
778 bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_SPLIT_MODE |
779 PAL_PREC_INDEX_VALUE(512));
780 } else {
781 const struct drm_property_blob *blob = gamma_lut ?: degamma_lut;
782
783 bdw_load_lut_10(crtc, blob,
784 PAL_PREC_INDEX_VALUE(0));
785 ivb_load_lut_ext_max(crtc_state);
786 }
787 }
788
glk_load_degamma_lut(const struct intel_crtc_state * crtc_state)789 static void glk_load_degamma_lut(const struct intel_crtc_state *crtc_state)
790 {
791 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
792 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
793 enum pipe pipe = crtc->pipe;
794 int i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
795 const struct drm_color_lut *lut = crtc_state->hw.degamma_lut->data;
796
797 /*
798 * When setting the auto-increment bit, the hardware seems to
799 * ignore the index bits, so we need to reset it to index 0
800 * separately.
801 */
802 intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), 0);
803 intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe),
804 PRE_CSC_GAMC_AUTO_INCREMENT);
805
806 for (i = 0; i < lut_size; i++) {
807 /*
808 * First 33 entries represent range from 0 to 1.0
809 * 34th and 35th entry will represent extended range
810 * inputs 3.0 and 7.0 respectively, currently clamped
811 * at 1.0. Since the precision is 16bit, the user
812 * value can be directly filled to register.
813 * The pipe degamma table in GLK+ onwards doesn't
814 * support different values per channel, so this just
815 * programs green value which will be equal to Red and
816 * Blue into the lut registers.
817 * ToDo: Extend to max 7.0. Enable 32 bit input value
818 * as compared to just 16 to achieve this.
819 */
820 intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe),
821 lut[i].green);
822 }
823
824 /* Clamp values > 1.0. */
825 while (i++ < 35)
826 intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), 1 << 16);
827 }
828
glk_load_degamma_lut_linear(const struct intel_crtc_state * crtc_state)829 static void glk_load_degamma_lut_linear(const struct intel_crtc_state *crtc_state)
830 {
831 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
832 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
833 enum pipe pipe = crtc->pipe;
834 int i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
835
836 /*
837 * When setting the auto-increment bit, the hardware seems to
838 * ignore the index bits, so we need to reset it to index 0
839 * separately.
840 */
841 intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), 0);
842 intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe),
843 PRE_CSC_GAMC_AUTO_INCREMENT);
844
845 for (i = 0; i < lut_size; i++) {
846 u32 v = (i << 16) / (lut_size - 1);
847
848 intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), v);
849 }
850
851 /* Clamp values > 1.0. */
852 while (i++ < 35)
853 intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), 1 << 16);
854 }
855
glk_load_luts(const struct intel_crtc_state * crtc_state)856 static void glk_load_luts(const struct intel_crtc_state *crtc_state)
857 {
858 const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
859 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
860
861 /*
862 * On GLK+ both pipe CSC and degamma LUT are controlled
863 * by csc_enable. Hence for the cases where the CSC is
864 * needed but degamma LUT is not we need to load a
865 * linear degamma LUT. In fact we'll just always load
866 * the degama LUT so that we don't have to reload
867 * it every time the pipe CSC is being enabled.
868 */
869 if (crtc_state->hw.degamma_lut)
870 glk_load_degamma_lut(crtc_state);
871 else
872 glk_load_degamma_lut_linear(crtc_state);
873
874 if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) {
875 ilk_load_lut_8(crtc, gamma_lut);
876 } else {
877 bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0));
878 ivb_load_lut_ext_max(crtc_state);
879 }
880 }
881
882 /* ilk+ "12.4" interpolated format (high 10 bits) */
ilk_lut_12p4_udw(const struct drm_color_lut * color)883 static u32 ilk_lut_12p4_udw(const struct drm_color_lut *color)
884 {
885 return (color->red >> 6) << 20 | (color->green >> 6) << 10 |
886 (color->blue >> 6);
887 }
888
889 /* ilk+ "12.4" interpolated format (low 6 bits) */
ilk_lut_12p4_ldw(const struct drm_color_lut * color)890 static u32 ilk_lut_12p4_ldw(const struct drm_color_lut *color)
891 {
892 return (color->red & 0x3f) << 24 | (color->green & 0x3f) << 14 |
893 (color->blue & 0x3f) << 4;
894 }
895
896 static void
icl_load_gcmax(const struct intel_crtc_state * crtc_state,const struct drm_color_lut * color)897 icl_load_gcmax(const struct intel_crtc_state *crtc_state,
898 const struct drm_color_lut *color)
899 {
900 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
901 enum pipe pipe = crtc->pipe;
902
903 /* FIXME LUT entries are 16 bit only, so we can prog 0xFFFF max */
904 intel_dsb_reg_write(crtc_state, PREC_PAL_GC_MAX(pipe, 0), color->red);
905 intel_dsb_reg_write(crtc_state, PREC_PAL_GC_MAX(pipe, 1), color->green);
906 intel_dsb_reg_write(crtc_state, PREC_PAL_GC_MAX(pipe, 2), color->blue);
907 }
908
909 static void
icl_program_gamma_superfine_segment(const struct intel_crtc_state * crtc_state)910 icl_program_gamma_superfine_segment(const struct intel_crtc_state *crtc_state)
911 {
912 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
913 const struct drm_property_blob *blob = crtc_state->hw.gamma_lut;
914 const struct drm_color_lut *lut = blob->data;
915 enum pipe pipe = crtc->pipe;
916 int i;
917
918 /*
919 * Program Super Fine segment (let's call it seg1)...
920 *
921 * Super Fine segment's step is 1/(8 * 128 * 256) and it has
922 * 9 entries, corresponding to values 0, 1/(8 * 128 * 256),
923 * 2/(8 * 128 * 256) ... 8/(8 * 128 * 256).
924 */
925 intel_dsb_reg_write(crtc_state, PREC_PAL_MULTI_SEG_INDEX(pipe),
926 PAL_PREC_AUTO_INCREMENT);
927
928 for (i = 0; i < 9; i++) {
929 const struct drm_color_lut *entry = &lut[i];
930
931 intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_MULTI_SEG_DATA(pipe),
932 ilk_lut_12p4_ldw(entry));
933 intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_MULTI_SEG_DATA(pipe),
934 ilk_lut_12p4_udw(entry));
935 }
936 }
937
938 static void
icl_program_gamma_multi_segment(const struct intel_crtc_state * crtc_state)939 icl_program_gamma_multi_segment(const struct intel_crtc_state *crtc_state)
940 {
941 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
942 const struct drm_property_blob *blob = crtc_state->hw.gamma_lut;
943 const struct drm_color_lut *lut = blob->data;
944 const struct drm_color_lut *entry;
945 enum pipe pipe = crtc->pipe;
946 int i;
947
948 /*
949 * Program Fine segment (let's call it seg2)...
950 *
951 * Fine segment's step is 1/(128 * 256) i.e. 1/(128 * 256), 2/(128 * 256)
952 * ... 256/(128 * 256). So in order to program fine segment of LUT we
953 * need to pick every 8th entry in the LUT, and program 256 indexes.
954 *
955 * PAL_PREC_INDEX[0] and PAL_PREC_INDEX[1] map to seg2[1],
956 * seg2[0] being unused by the hardware.
957 */
958 intel_dsb_reg_write(crtc_state, PREC_PAL_INDEX(pipe),
959 PAL_PREC_AUTO_INCREMENT);
960 for (i = 1; i < 257; i++) {
961 entry = &lut[i * 8];
962 intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe),
963 ilk_lut_12p4_ldw(entry));
964 intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe),
965 ilk_lut_12p4_udw(entry));
966 }
967
968 /*
969 * Program Coarse segment (let's call it seg3)...
970 *
971 * Coarse segment starts from index 0 and it's step is 1/256 ie 0,
972 * 1/256, 2/256 ... 256/256. As per the description of each entry in LUT
973 * above, we need to pick every (8 * 128)th entry in LUT, and
974 * program 256 of those.
975 *
976 * Spec is not very clear about if entries seg3[0] and seg3[1] are
977 * being used or not, but we still need to program these to advance
978 * the index.
979 */
980 for (i = 0; i < 256; i++) {
981 entry = &lut[i * 8 * 128];
982 intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe),
983 ilk_lut_12p4_ldw(entry));
984 intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe),
985 ilk_lut_12p4_udw(entry));
986 }
987
988 /* The last entry in the LUT is to be programmed in GCMAX */
989 entry = &lut[256 * 8 * 128];
990 icl_load_gcmax(crtc_state, entry);
991 ivb_load_lut_ext_max(crtc_state);
992 }
993
icl_load_luts(const struct intel_crtc_state * crtc_state)994 static void icl_load_luts(const struct intel_crtc_state *crtc_state)
995 {
996 const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
997 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
998
999 if (crtc_state->hw.degamma_lut)
1000 glk_load_degamma_lut(crtc_state);
1001
1002 switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
1003 case GAMMA_MODE_MODE_8BIT:
1004 ilk_load_lut_8(crtc, gamma_lut);
1005 break;
1006 case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
1007 icl_program_gamma_superfine_segment(crtc_state);
1008 icl_program_gamma_multi_segment(crtc_state);
1009 break;
1010 default:
1011 bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0));
1012 ivb_load_lut_ext_max(crtc_state);
1013 }
1014
1015 intel_dsb_commit(crtc_state);
1016 }
1017
chv_cgm_degamma_ldw(const struct drm_color_lut * color)1018 static u32 chv_cgm_degamma_ldw(const struct drm_color_lut *color)
1019 {
1020 return drm_color_lut_extract(color->green, 14) << 16 |
1021 drm_color_lut_extract(color->blue, 14);
1022 }
1023
chv_cgm_degamma_udw(const struct drm_color_lut * color)1024 static u32 chv_cgm_degamma_udw(const struct drm_color_lut *color)
1025 {
1026 return drm_color_lut_extract(color->red, 14);
1027 }
1028
chv_cgm_gamma_pack(struct drm_color_lut * entry,u32 ldw,u32 udw)1029 static void chv_cgm_gamma_pack(struct drm_color_lut *entry, u32 ldw, u32 udw)
1030 {
1031 entry->green = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_GREEN_MASK, ldw), 10);
1032 entry->blue = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_BLUE_MASK, ldw), 10);
1033 entry->red = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_RED_MASK, udw), 10);
1034 }
1035
chv_load_cgm_degamma(struct intel_crtc * crtc,const struct drm_property_blob * blob)1036 static void chv_load_cgm_degamma(struct intel_crtc *crtc,
1037 const struct drm_property_blob *blob)
1038 {
1039 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1040 const struct drm_color_lut *lut = blob->data;
1041 int i, lut_size = drm_color_lut_size(blob);
1042 enum pipe pipe = crtc->pipe;
1043
1044 for (i = 0; i < lut_size; i++) {
1045 intel_de_write(dev_priv, CGM_PIPE_DEGAMMA(pipe, i, 0),
1046 chv_cgm_degamma_ldw(&lut[i]));
1047 intel_de_write(dev_priv, CGM_PIPE_DEGAMMA(pipe, i, 1),
1048 chv_cgm_degamma_udw(&lut[i]));
1049 }
1050 }
1051
chv_cgm_gamma_ldw(const struct drm_color_lut * color)1052 static u32 chv_cgm_gamma_ldw(const struct drm_color_lut *color)
1053 {
1054 return drm_color_lut_extract(color->green, 10) << 16 |
1055 drm_color_lut_extract(color->blue, 10);
1056 }
1057
chv_cgm_gamma_udw(const struct drm_color_lut * color)1058 static u32 chv_cgm_gamma_udw(const struct drm_color_lut *color)
1059 {
1060 return drm_color_lut_extract(color->red, 10);
1061 }
1062
chv_load_cgm_gamma(struct intel_crtc * crtc,const struct drm_property_blob * blob)1063 static void chv_load_cgm_gamma(struct intel_crtc *crtc,
1064 const struct drm_property_blob *blob)
1065 {
1066 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1067 const struct drm_color_lut *lut = blob->data;
1068 int i, lut_size = drm_color_lut_size(blob);
1069 enum pipe pipe = crtc->pipe;
1070
1071 for (i = 0; i < lut_size; i++) {
1072 intel_de_write(dev_priv, CGM_PIPE_GAMMA(pipe, i, 0),
1073 chv_cgm_gamma_ldw(&lut[i]));
1074 intel_de_write(dev_priv, CGM_PIPE_GAMMA(pipe, i, 1),
1075 chv_cgm_gamma_udw(&lut[i]));
1076 }
1077 }
1078
chv_load_luts(const struct intel_crtc_state * crtc_state)1079 static void chv_load_luts(const struct intel_crtc_state *crtc_state)
1080 {
1081 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1082 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1083 const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
1084 const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
1085 const struct drm_property_blob *ctm = crtc_state->hw.ctm;
1086
1087 if (crtc_state->cgm_mode & CGM_PIPE_MODE_CSC)
1088 chv_load_cgm_csc(crtc, ctm);
1089
1090 if (crtc_state->cgm_mode & CGM_PIPE_MODE_DEGAMMA)
1091 chv_load_cgm_degamma(crtc, degamma_lut);
1092
1093 if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA)
1094 chv_load_cgm_gamma(crtc, gamma_lut);
1095 else
1096 i965_load_luts(crtc_state);
1097
1098 intel_de_write(dev_priv, CGM_PIPE_MODE(crtc->pipe),
1099 crtc_state->cgm_mode);
1100 }
1101
intel_color_load_luts(const struct intel_crtc_state * crtc_state)1102 void intel_color_load_luts(const struct intel_crtc_state *crtc_state)
1103 {
1104 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1105
1106 dev_priv->display.load_luts(crtc_state);
1107 }
1108
intel_color_commit(const struct intel_crtc_state * crtc_state)1109 void intel_color_commit(const struct intel_crtc_state *crtc_state)
1110 {
1111 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1112
1113 dev_priv->display.color_commit(crtc_state);
1114 }
1115
intel_can_preload_luts(const struct intel_crtc_state * new_crtc_state)1116 static bool intel_can_preload_luts(const struct intel_crtc_state *new_crtc_state)
1117 {
1118 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1119 struct intel_atomic_state *state =
1120 to_intel_atomic_state(new_crtc_state->uapi.state);
1121 const struct intel_crtc_state *old_crtc_state =
1122 intel_atomic_get_old_crtc_state(state, crtc);
1123
1124 return !old_crtc_state->hw.gamma_lut &&
1125 !old_crtc_state->hw.degamma_lut;
1126 }
1127
chv_can_preload_luts(const struct intel_crtc_state * new_crtc_state)1128 static bool chv_can_preload_luts(const struct intel_crtc_state *new_crtc_state)
1129 {
1130 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1131 struct intel_atomic_state *state =
1132 to_intel_atomic_state(new_crtc_state->uapi.state);
1133 const struct intel_crtc_state *old_crtc_state =
1134 intel_atomic_get_old_crtc_state(state, crtc);
1135
1136 /*
1137 * CGM_PIPE_MODE is itself single buffered. We'd have to
1138 * somehow split it out from chv_load_luts() if we wanted
1139 * the ability to preload the CGM LUTs/CSC without tearing.
1140 */
1141 if (old_crtc_state->cgm_mode || new_crtc_state->cgm_mode)
1142 return false;
1143
1144 return !old_crtc_state->hw.gamma_lut;
1145 }
1146
glk_can_preload_luts(const struct intel_crtc_state * new_crtc_state)1147 static bool glk_can_preload_luts(const struct intel_crtc_state *new_crtc_state)
1148 {
1149 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1150 struct intel_atomic_state *state =
1151 to_intel_atomic_state(new_crtc_state->uapi.state);
1152 const struct intel_crtc_state *old_crtc_state =
1153 intel_atomic_get_old_crtc_state(state, crtc);
1154
1155 /*
1156 * The hardware degamma is active whenever the pipe
1157 * CSC is active. Thus even if the old state has no
1158 * software degamma we need to avoid clobbering the
1159 * linear hardware degamma mid scanout.
1160 */
1161 return !old_crtc_state->csc_enable &&
1162 !old_crtc_state->hw.gamma_lut;
1163 }
1164
intel_color_check(struct intel_crtc_state * crtc_state)1165 int intel_color_check(struct intel_crtc_state *crtc_state)
1166 {
1167 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1168
1169 return dev_priv->display.color_check(crtc_state);
1170 }
1171
intel_color_get_config(struct intel_crtc_state * crtc_state)1172 void intel_color_get_config(struct intel_crtc_state *crtc_state)
1173 {
1174 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1175
1176 if (dev_priv->display.read_luts)
1177 dev_priv->display.read_luts(crtc_state);
1178 }
1179
need_plane_update(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)1180 static bool need_plane_update(struct intel_plane *plane,
1181 const struct intel_crtc_state *crtc_state)
1182 {
1183 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1184
1185 /*
1186 * On pre-SKL the pipe gamma enable and pipe csc enable for
1187 * the pipe bottom color are configured via the primary plane.
1188 * We have to reconfigure that even if the plane is inactive.
1189 */
1190 return crtc_state->active_planes & BIT(plane->id) ||
1191 (INTEL_GEN(dev_priv) < 9 &&
1192 plane->id == PLANE_PRIMARY);
1193 }
1194
1195 static int
intel_color_add_affected_planes(struct intel_crtc_state * new_crtc_state)1196 intel_color_add_affected_planes(struct intel_crtc_state *new_crtc_state)
1197 {
1198 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1199 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1200 struct intel_atomic_state *state =
1201 to_intel_atomic_state(new_crtc_state->uapi.state);
1202 const struct intel_crtc_state *old_crtc_state =
1203 intel_atomic_get_old_crtc_state(state, crtc);
1204 struct intel_plane *plane;
1205
1206 if (!new_crtc_state->hw.active ||
1207 drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi))
1208 return 0;
1209
1210 if (new_crtc_state->gamma_enable == old_crtc_state->gamma_enable &&
1211 new_crtc_state->csc_enable == old_crtc_state->csc_enable)
1212 return 0;
1213
1214 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1215 struct intel_plane_state *plane_state;
1216
1217 if (!need_plane_update(plane, new_crtc_state))
1218 continue;
1219
1220 plane_state = intel_atomic_get_plane_state(state, plane);
1221 if (IS_ERR(plane_state))
1222 return PTR_ERR(plane_state);
1223
1224 new_crtc_state->update_planes |= BIT(plane->id);
1225 }
1226
1227 return 0;
1228 }
1229
check_lut_size(const struct drm_property_blob * lut,int expected)1230 static int check_lut_size(const struct drm_property_blob *lut, int expected)
1231 {
1232 int len;
1233
1234 if (!lut)
1235 return 0;
1236
1237 len = drm_color_lut_size(lut);
1238 if (len != expected) {
1239 DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1240 len, expected);
1241 return -EINVAL;
1242 }
1243
1244 return 0;
1245 }
1246
check_luts(const struct intel_crtc_state * crtc_state)1247 static int check_luts(const struct intel_crtc_state *crtc_state)
1248 {
1249 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1250 const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
1251 const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
1252 int gamma_length, degamma_length;
1253 u32 gamma_tests, degamma_tests;
1254
1255 /* Always allow legacy gamma LUT with no further checking. */
1256 if (crtc_state_is_legacy_gamma(crtc_state))
1257 return 0;
1258
1259 /* C8 relies on its palette being stored in the legacy LUT */
1260 if (crtc_state->c8_planes) {
1261 drm_dbg_kms(&dev_priv->drm,
1262 "C8 pixelformat requires the legacy LUT\n");
1263 return -EINVAL;
1264 }
1265
1266 degamma_length = INTEL_INFO(dev_priv)->color.degamma_lut_size;
1267 gamma_length = INTEL_INFO(dev_priv)->color.gamma_lut_size;
1268 degamma_tests = INTEL_INFO(dev_priv)->color.degamma_lut_tests;
1269 gamma_tests = INTEL_INFO(dev_priv)->color.gamma_lut_tests;
1270
1271 if (check_lut_size(degamma_lut, degamma_length) ||
1272 check_lut_size(gamma_lut, gamma_length))
1273 return -EINVAL;
1274
1275 if (drm_color_lut_check(degamma_lut, degamma_tests) ||
1276 drm_color_lut_check(gamma_lut, gamma_tests))
1277 return -EINVAL;
1278
1279 return 0;
1280 }
1281
i9xx_gamma_mode(struct intel_crtc_state * crtc_state)1282 static u32 i9xx_gamma_mode(struct intel_crtc_state *crtc_state)
1283 {
1284 if (!crtc_state->gamma_enable ||
1285 crtc_state_is_legacy_gamma(crtc_state))
1286 return GAMMA_MODE_MODE_8BIT;
1287 else
1288 return GAMMA_MODE_MODE_10BIT; /* i965+ only */
1289 }
1290
i9xx_color_check(struct intel_crtc_state * crtc_state)1291 static int i9xx_color_check(struct intel_crtc_state *crtc_state)
1292 {
1293 int ret;
1294
1295 ret = check_luts(crtc_state);
1296 if (ret)
1297 return ret;
1298
1299 crtc_state->gamma_enable =
1300 crtc_state->hw.gamma_lut &&
1301 !crtc_state->c8_planes;
1302
1303 crtc_state->gamma_mode = i9xx_gamma_mode(crtc_state);
1304
1305 ret = intel_color_add_affected_planes(crtc_state);
1306 if (ret)
1307 return ret;
1308
1309 crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
1310
1311 return 0;
1312 }
1313
chv_cgm_mode(const struct intel_crtc_state * crtc_state)1314 static u32 chv_cgm_mode(const struct intel_crtc_state *crtc_state)
1315 {
1316 u32 cgm_mode = 0;
1317
1318 if (crtc_state_is_legacy_gamma(crtc_state))
1319 return 0;
1320
1321 if (crtc_state->hw.degamma_lut)
1322 cgm_mode |= CGM_PIPE_MODE_DEGAMMA;
1323 if (crtc_state->hw.ctm)
1324 cgm_mode |= CGM_PIPE_MODE_CSC;
1325 if (crtc_state->hw.gamma_lut)
1326 cgm_mode |= CGM_PIPE_MODE_GAMMA;
1327
1328 return cgm_mode;
1329 }
1330
1331 /*
1332 * CHV color pipeline:
1333 * u0.10 -> CGM degamma -> u0.14 -> CGM csc -> u0.14 -> CGM gamma ->
1334 * u0.10 -> WGC csc -> u0.10 -> pipe gamma -> u0.10
1335 *
1336 * We always bypass the WGC csc and use the CGM csc
1337 * instead since it has degamma and better precision.
1338 */
chv_color_check(struct intel_crtc_state * crtc_state)1339 static int chv_color_check(struct intel_crtc_state *crtc_state)
1340 {
1341 int ret;
1342
1343 ret = check_luts(crtc_state);
1344 if (ret)
1345 return ret;
1346
1347 /*
1348 * Pipe gamma will be used only for the legacy LUT.
1349 * Otherwise we bypass it and use the CGM gamma instead.
1350 */
1351 crtc_state->gamma_enable =
1352 crtc_state_is_legacy_gamma(crtc_state) &&
1353 !crtc_state->c8_planes;
1354
1355 crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT;
1356
1357 crtc_state->cgm_mode = chv_cgm_mode(crtc_state);
1358
1359 ret = intel_color_add_affected_planes(crtc_state);
1360 if (ret)
1361 return ret;
1362
1363 crtc_state->preload_luts = chv_can_preload_luts(crtc_state);
1364
1365 return 0;
1366 }
1367
ilk_gamma_mode(const struct intel_crtc_state * crtc_state)1368 static u32 ilk_gamma_mode(const struct intel_crtc_state *crtc_state)
1369 {
1370 if (!crtc_state->gamma_enable ||
1371 crtc_state_is_legacy_gamma(crtc_state))
1372 return GAMMA_MODE_MODE_8BIT;
1373 else
1374 return GAMMA_MODE_MODE_10BIT;
1375 }
1376
ilk_csc_mode(const struct intel_crtc_state * crtc_state)1377 static u32 ilk_csc_mode(const struct intel_crtc_state *crtc_state)
1378 {
1379 /*
1380 * CSC comes after the LUT in RGB->YCbCr mode.
1381 * RGB->YCbCr needs the limited range offsets added to
1382 * the output. RGB limited range output is handled by
1383 * the hw automagically elsewhere.
1384 */
1385 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
1386 return CSC_BLACK_SCREEN_OFFSET;
1387
1388 return CSC_MODE_YUV_TO_RGB |
1389 CSC_POSITION_BEFORE_GAMMA;
1390 }
1391
ilk_color_check(struct intel_crtc_state * crtc_state)1392 static int ilk_color_check(struct intel_crtc_state *crtc_state)
1393 {
1394 int ret;
1395
1396 ret = check_luts(crtc_state);
1397 if (ret)
1398 return ret;
1399
1400 crtc_state->gamma_enable =
1401 crtc_state->hw.gamma_lut &&
1402 !crtc_state->c8_planes;
1403
1404 /*
1405 * We don't expose the ctm on ilk/snb currently, also RGB
1406 * limited range output is handled by the hw automagically.
1407 */
1408 crtc_state->csc_enable =
1409 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB;
1410
1411 crtc_state->gamma_mode = ilk_gamma_mode(crtc_state);
1412
1413 crtc_state->csc_mode = ilk_csc_mode(crtc_state);
1414
1415 ret = intel_color_add_affected_planes(crtc_state);
1416 if (ret)
1417 return ret;
1418
1419 crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
1420
1421 return 0;
1422 }
1423
ivb_gamma_mode(const struct intel_crtc_state * crtc_state)1424 static u32 ivb_gamma_mode(const struct intel_crtc_state *crtc_state)
1425 {
1426 if (!crtc_state->gamma_enable ||
1427 crtc_state_is_legacy_gamma(crtc_state))
1428 return GAMMA_MODE_MODE_8BIT;
1429 else if (crtc_state->hw.gamma_lut &&
1430 crtc_state->hw.degamma_lut)
1431 return GAMMA_MODE_MODE_SPLIT;
1432 else
1433 return GAMMA_MODE_MODE_10BIT;
1434 }
1435
ivb_csc_mode(const struct intel_crtc_state * crtc_state)1436 static u32 ivb_csc_mode(const struct intel_crtc_state *crtc_state)
1437 {
1438 bool limited_color_range = ilk_csc_limited_range(crtc_state);
1439
1440 /*
1441 * CSC comes after the LUT in degamma, RGB->YCbCr,
1442 * and RGB full->limited range mode.
1443 */
1444 if (crtc_state->hw.degamma_lut ||
1445 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
1446 limited_color_range)
1447 return 0;
1448
1449 return CSC_POSITION_BEFORE_GAMMA;
1450 }
1451
ivb_color_check(struct intel_crtc_state * crtc_state)1452 static int ivb_color_check(struct intel_crtc_state *crtc_state)
1453 {
1454 bool limited_color_range = ilk_csc_limited_range(crtc_state);
1455 int ret;
1456
1457 ret = check_luts(crtc_state);
1458 if (ret)
1459 return ret;
1460
1461 crtc_state->gamma_enable =
1462 (crtc_state->hw.gamma_lut ||
1463 crtc_state->hw.degamma_lut) &&
1464 !crtc_state->c8_planes;
1465
1466 crtc_state->csc_enable =
1467 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
1468 crtc_state->hw.ctm || limited_color_range;
1469
1470 crtc_state->gamma_mode = ivb_gamma_mode(crtc_state);
1471
1472 crtc_state->csc_mode = ivb_csc_mode(crtc_state);
1473
1474 ret = intel_color_add_affected_planes(crtc_state);
1475 if (ret)
1476 return ret;
1477
1478 crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
1479
1480 return 0;
1481 }
1482
glk_gamma_mode(const struct intel_crtc_state * crtc_state)1483 static u32 glk_gamma_mode(const struct intel_crtc_state *crtc_state)
1484 {
1485 if (!crtc_state->gamma_enable ||
1486 crtc_state_is_legacy_gamma(crtc_state))
1487 return GAMMA_MODE_MODE_8BIT;
1488 else
1489 return GAMMA_MODE_MODE_10BIT;
1490 }
1491
glk_color_check(struct intel_crtc_state * crtc_state)1492 static int glk_color_check(struct intel_crtc_state *crtc_state)
1493 {
1494 int ret;
1495
1496 ret = check_luts(crtc_state);
1497 if (ret)
1498 return ret;
1499
1500 crtc_state->gamma_enable =
1501 crtc_state->hw.gamma_lut &&
1502 !crtc_state->c8_planes;
1503
1504 /* On GLK+ degamma LUT is controlled by csc_enable */
1505 crtc_state->csc_enable =
1506 crtc_state->hw.degamma_lut ||
1507 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
1508 crtc_state->hw.ctm || crtc_state->limited_color_range;
1509
1510 crtc_state->gamma_mode = glk_gamma_mode(crtc_state);
1511
1512 crtc_state->csc_mode = 0;
1513
1514 ret = intel_color_add_affected_planes(crtc_state);
1515 if (ret)
1516 return ret;
1517
1518 crtc_state->preload_luts = glk_can_preload_luts(crtc_state);
1519
1520 return 0;
1521 }
1522
icl_gamma_mode(const struct intel_crtc_state * crtc_state)1523 static u32 icl_gamma_mode(const struct intel_crtc_state *crtc_state)
1524 {
1525 u32 gamma_mode = 0;
1526
1527 if (crtc_state->hw.degamma_lut)
1528 gamma_mode |= PRE_CSC_GAMMA_ENABLE;
1529
1530 if (crtc_state->hw.gamma_lut &&
1531 !crtc_state->c8_planes)
1532 gamma_mode |= POST_CSC_GAMMA_ENABLE;
1533
1534 if (!crtc_state->hw.gamma_lut ||
1535 crtc_state_is_legacy_gamma(crtc_state))
1536 gamma_mode |= GAMMA_MODE_MODE_8BIT;
1537 else
1538 gamma_mode |= GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED;
1539
1540 return gamma_mode;
1541 }
1542
icl_csc_mode(const struct intel_crtc_state * crtc_state)1543 static u32 icl_csc_mode(const struct intel_crtc_state *crtc_state)
1544 {
1545 u32 csc_mode = 0;
1546
1547 if (crtc_state->hw.ctm)
1548 csc_mode |= ICL_CSC_ENABLE;
1549
1550 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
1551 crtc_state->limited_color_range)
1552 csc_mode |= ICL_OUTPUT_CSC_ENABLE;
1553
1554 return csc_mode;
1555 }
1556
icl_color_check(struct intel_crtc_state * crtc_state)1557 static int icl_color_check(struct intel_crtc_state *crtc_state)
1558 {
1559 int ret;
1560
1561 ret = check_luts(crtc_state);
1562 if (ret)
1563 return ret;
1564
1565 crtc_state->gamma_mode = icl_gamma_mode(crtc_state);
1566
1567 crtc_state->csc_mode = icl_csc_mode(crtc_state);
1568
1569 crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
1570
1571 return 0;
1572 }
1573
i9xx_gamma_precision(const struct intel_crtc_state * crtc_state)1574 static int i9xx_gamma_precision(const struct intel_crtc_state *crtc_state)
1575 {
1576 if (!crtc_state->gamma_enable)
1577 return 0;
1578
1579 switch (crtc_state->gamma_mode) {
1580 case GAMMA_MODE_MODE_8BIT:
1581 return 8;
1582 case GAMMA_MODE_MODE_10BIT:
1583 return 16;
1584 default:
1585 MISSING_CASE(crtc_state->gamma_mode);
1586 return 0;
1587 }
1588 }
1589
ilk_gamma_precision(const struct intel_crtc_state * crtc_state)1590 static int ilk_gamma_precision(const struct intel_crtc_state *crtc_state)
1591 {
1592 if (!crtc_state->gamma_enable)
1593 return 0;
1594
1595 if ((crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) == 0)
1596 return 0;
1597
1598 switch (crtc_state->gamma_mode) {
1599 case GAMMA_MODE_MODE_8BIT:
1600 return 8;
1601 case GAMMA_MODE_MODE_10BIT:
1602 return 10;
1603 default:
1604 MISSING_CASE(crtc_state->gamma_mode);
1605 return 0;
1606 }
1607 }
1608
chv_gamma_precision(const struct intel_crtc_state * crtc_state)1609 static int chv_gamma_precision(const struct intel_crtc_state *crtc_state)
1610 {
1611 if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA)
1612 return 10;
1613 else
1614 return i9xx_gamma_precision(crtc_state);
1615 }
1616
glk_gamma_precision(const struct intel_crtc_state * crtc_state)1617 static int glk_gamma_precision(const struct intel_crtc_state *crtc_state)
1618 {
1619 if (!crtc_state->gamma_enable)
1620 return 0;
1621
1622 switch (crtc_state->gamma_mode) {
1623 case GAMMA_MODE_MODE_8BIT:
1624 return 8;
1625 case GAMMA_MODE_MODE_10BIT:
1626 return 10;
1627 default:
1628 MISSING_CASE(crtc_state->gamma_mode);
1629 return 0;
1630 }
1631 }
1632
icl_gamma_precision(const struct intel_crtc_state * crtc_state)1633 static int icl_gamma_precision(const struct intel_crtc_state *crtc_state)
1634 {
1635 if ((crtc_state->gamma_mode & POST_CSC_GAMMA_ENABLE) == 0)
1636 return 0;
1637
1638 switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
1639 case GAMMA_MODE_MODE_8BIT:
1640 return 8;
1641 case GAMMA_MODE_MODE_10BIT:
1642 return 10;
1643 case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
1644 return 16;
1645 default:
1646 MISSING_CASE(crtc_state->gamma_mode);
1647 return 0;
1648 }
1649 }
1650
intel_color_get_gamma_bit_precision(const struct intel_crtc_state * crtc_state)1651 int intel_color_get_gamma_bit_precision(const struct intel_crtc_state *crtc_state)
1652 {
1653 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1654 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1655
1656 if (HAS_GMCH(dev_priv)) {
1657 if (IS_CHERRYVIEW(dev_priv))
1658 return chv_gamma_precision(crtc_state);
1659 else
1660 return i9xx_gamma_precision(crtc_state);
1661 } else {
1662 if (INTEL_GEN(dev_priv) >= 11)
1663 return icl_gamma_precision(crtc_state);
1664 else if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
1665 return glk_gamma_precision(crtc_state);
1666 else if (IS_IRONLAKE(dev_priv))
1667 return ilk_gamma_precision(crtc_state);
1668 }
1669
1670 return 0;
1671 }
1672
err_check(struct drm_color_lut * lut1,struct drm_color_lut * lut2,u32 err)1673 static bool err_check(struct drm_color_lut *lut1,
1674 struct drm_color_lut *lut2, u32 err)
1675 {
1676 return ((abs((long)lut2->red - lut1->red)) <= err) &&
1677 ((abs((long)lut2->blue - lut1->blue)) <= err) &&
1678 ((abs((long)lut2->green - lut1->green)) <= err);
1679 }
1680
intel_color_lut_entries_equal(struct drm_color_lut * lut1,struct drm_color_lut * lut2,int lut_size,u32 err)1681 static bool intel_color_lut_entries_equal(struct drm_color_lut *lut1,
1682 struct drm_color_lut *lut2,
1683 int lut_size, u32 err)
1684 {
1685 int i;
1686
1687 for (i = 0; i < lut_size; i++) {
1688 if (!err_check(&lut1[i], &lut2[i], err))
1689 return false;
1690 }
1691
1692 return true;
1693 }
1694
intel_color_lut_equal(struct drm_property_blob * blob1,struct drm_property_blob * blob2,u32 gamma_mode,u32 bit_precision)1695 bool intel_color_lut_equal(struct drm_property_blob *blob1,
1696 struct drm_property_blob *blob2,
1697 u32 gamma_mode, u32 bit_precision)
1698 {
1699 struct drm_color_lut *lut1, *lut2;
1700 int lut_size1, lut_size2;
1701 u32 err;
1702
1703 if (!blob1 != !blob2)
1704 return false;
1705
1706 if (!blob1)
1707 return true;
1708
1709 lut_size1 = drm_color_lut_size(blob1);
1710 lut_size2 = drm_color_lut_size(blob2);
1711
1712 /* check sw and hw lut size */
1713 if (lut_size1 != lut_size2)
1714 return false;
1715
1716 lut1 = blob1->data;
1717 lut2 = blob2->data;
1718
1719 err = 0xffff >> bit_precision;
1720
1721 /* check sw and hw lut entry to be equal */
1722 switch (gamma_mode & GAMMA_MODE_MODE_MASK) {
1723 case GAMMA_MODE_MODE_8BIT:
1724 case GAMMA_MODE_MODE_10BIT:
1725 if (!intel_color_lut_entries_equal(lut1, lut2,
1726 lut_size2, err))
1727 return false;
1728 break;
1729 case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
1730 if (!intel_color_lut_entries_equal(lut1, lut2,
1731 9, err))
1732 return false;
1733 break;
1734 default:
1735 MISSING_CASE(gamma_mode);
1736 return false;
1737 }
1738
1739 return true;
1740 }
1741
i9xx_read_lut_8(struct intel_crtc * crtc)1742 static struct drm_property_blob *i9xx_read_lut_8(struct intel_crtc *crtc)
1743 {
1744 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1745 enum pipe pipe = crtc->pipe;
1746 struct drm_property_blob *blob;
1747 struct drm_color_lut *lut;
1748 int i;
1749
1750 blob = drm_property_create_blob(&dev_priv->drm,
1751 sizeof(struct drm_color_lut) * LEGACY_LUT_LENGTH,
1752 NULL);
1753 if (IS_ERR(blob))
1754 return NULL;
1755
1756 lut = blob->data;
1757
1758 for (i = 0; i < LEGACY_LUT_LENGTH; i++) {
1759 u32 val = intel_de_read(dev_priv, PALETTE(pipe, i));
1760
1761 i9xx_lut_8_pack(&lut[i], val);
1762 }
1763
1764 return blob;
1765 }
1766
i9xx_read_luts(struct intel_crtc_state * crtc_state)1767 static void i9xx_read_luts(struct intel_crtc_state *crtc_state)
1768 {
1769 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1770
1771 if (!crtc_state->gamma_enable)
1772 return;
1773
1774 crtc_state->hw.gamma_lut = i9xx_read_lut_8(crtc);
1775 }
1776
i965_read_lut_10p6(struct intel_crtc * crtc)1777 static struct drm_property_blob *i965_read_lut_10p6(struct intel_crtc *crtc)
1778 {
1779 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1780 int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
1781 enum pipe pipe = crtc->pipe;
1782 struct drm_property_blob *blob;
1783 struct drm_color_lut *lut;
1784
1785 blob = drm_property_create_blob(&dev_priv->drm,
1786 sizeof(struct drm_color_lut) * lut_size,
1787 NULL);
1788 if (IS_ERR(blob))
1789 return NULL;
1790
1791 lut = blob->data;
1792
1793 for (i = 0; i < lut_size - 1; i++) {
1794 u32 ldw = intel_de_read(dev_priv, PALETTE(pipe, 2 * i + 0));
1795 u32 udw = intel_de_read(dev_priv, PALETTE(pipe, 2 * i + 1));
1796
1797 i965_lut_10p6_pack(&lut[i], ldw, udw);
1798 }
1799
1800 lut[i].red = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 0)));
1801 lut[i].green = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 1)));
1802 lut[i].blue = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 2)));
1803
1804 return blob;
1805 }
1806
i965_read_luts(struct intel_crtc_state * crtc_state)1807 static void i965_read_luts(struct intel_crtc_state *crtc_state)
1808 {
1809 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1810
1811 if (!crtc_state->gamma_enable)
1812 return;
1813
1814 if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
1815 crtc_state->hw.gamma_lut = i9xx_read_lut_8(crtc);
1816 else
1817 crtc_state->hw.gamma_lut = i965_read_lut_10p6(crtc);
1818 }
1819
chv_read_cgm_gamma(struct intel_crtc * crtc)1820 static struct drm_property_blob *chv_read_cgm_gamma(struct intel_crtc *crtc)
1821 {
1822 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1823 int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
1824 enum pipe pipe = crtc->pipe;
1825 struct drm_property_blob *blob;
1826 struct drm_color_lut *lut;
1827
1828 blob = drm_property_create_blob(&dev_priv->drm,
1829 sizeof(struct drm_color_lut) * lut_size,
1830 NULL);
1831 if (IS_ERR(blob))
1832 return NULL;
1833
1834 lut = blob->data;
1835
1836 for (i = 0; i < lut_size; i++) {
1837 u32 ldw = intel_de_read(dev_priv, CGM_PIPE_GAMMA(pipe, i, 0));
1838 u32 udw = intel_de_read(dev_priv, CGM_PIPE_GAMMA(pipe, i, 1));
1839
1840 chv_cgm_gamma_pack(&lut[i], ldw, udw);
1841 }
1842
1843 return blob;
1844 }
1845
chv_read_luts(struct intel_crtc_state * crtc_state)1846 static void chv_read_luts(struct intel_crtc_state *crtc_state)
1847 {
1848 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1849
1850 if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA)
1851 crtc_state->hw.gamma_lut = chv_read_cgm_gamma(crtc);
1852 else
1853 i965_read_luts(crtc_state);
1854 }
1855
ilk_read_lut_8(struct intel_crtc * crtc)1856 static struct drm_property_blob *ilk_read_lut_8(struct intel_crtc *crtc)
1857 {
1858 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1859 enum pipe pipe = crtc->pipe;
1860 struct drm_property_blob *blob;
1861 struct drm_color_lut *lut;
1862 int i;
1863
1864 blob = drm_property_create_blob(&dev_priv->drm,
1865 sizeof(struct drm_color_lut) * LEGACY_LUT_LENGTH,
1866 NULL);
1867 if (IS_ERR(blob))
1868 return NULL;
1869
1870 lut = blob->data;
1871
1872 for (i = 0; i < LEGACY_LUT_LENGTH; i++) {
1873 u32 val = intel_de_read(dev_priv, LGC_PALETTE(pipe, i));
1874
1875 i9xx_lut_8_pack(&lut[i], val);
1876 }
1877
1878 return blob;
1879 }
1880
ilk_read_lut_10(struct intel_crtc * crtc)1881 static struct drm_property_blob *ilk_read_lut_10(struct intel_crtc *crtc)
1882 {
1883 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1884 int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
1885 enum pipe pipe = crtc->pipe;
1886 struct drm_property_blob *blob;
1887 struct drm_color_lut *lut;
1888
1889 blob = drm_property_create_blob(&dev_priv->drm,
1890 sizeof(struct drm_color_lut) * lut_size,
1891 NULL);
1892 if (IS_ERR(blob))
1893 return NULL;
1894
1895 lut = blob->data;
1896
1897 for (i = 0; i < lut_size; i++) {
1898 u32 val = intel_de_read(dev_priv, PREC_PALETTE(pipe, i));
1899
1900 ilk_lut_10_pack(&lut[i], val);
1901 }
1902
1903 return blob;
1904 }
1905
ilk_read_luts(struct intel_crtc_state * crtc_state)1906 static void ilk_read_luts(struct intel_crtc_state *crtc_state)
1907 {
1908 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1909
1910 if (!crtc_state->gamma_enable)
1911 return;
1912
1913 if ((crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) == 0)
1914 return;
1915
1916 if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
1917 crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc);
1918 else
1919 crtc_state->hw.gamma_lut = ilk_read_lut_10(crtc);
1920 }
1921
glk_read_lut_10(struct intel_crtc * crtc,u32 prec_index)1922 static struct drm_property_blob *glk_read_lut_10(struct intel_crtc *crtc,
1923 u32 prec_index)
1924 {
1925 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1926 int i, hw_lut_size = ivb_lut_10_size(prec_index);
1927 enum pipe pipe = crtc->pipe;
1928 struct drm_property_blob *blob;
1929 struct drm_color_lut *lut;
1930
1931 blob = drm_property_create_blob(&dev_priv->drm,
1932 sizeof(struct drm_color_lut) * hw_lut_size,
1933 NULL);
1934 if (IS_ERR(blob))
1935 return NULL;
1936
1937 lut = blob->data;
1938
1939 intel_de_write(dev_priv, PREC_PAL_INDEX(pipe),
1940 prec_index | PAL_PREC_AUTO_INCREMENT);
1941
1942 for (i = 0; i < hw_lut_size; i++) {
1943 u32 val = intel_de_read(dev_priv, PREC_PAL_DATA(pipe));
1944
1945 ilk_lut_10_pack(&lut[i], val);
1946 }
1947
1948 intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0);
1949
1950 return blob;
1951 }
1952
glk_read_luts(struct intel_crtc_state * crtc_state)1953 static void glk_read_luts(struct intel_crtc_state *crtc_state)
1954 {
1955 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1956
1957 if (!crtc_state->gamma_enable)
1958 return;
1959
1960 if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
1961 crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc);
1962 else
1963 crtc_state->hw.gamma_lut = glk_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0));
1964 }
1965
1966 static struct drm_property_blob *
icl_read_lut_multi_segment(struct intel_crtc * crtc)1967 icl_read_lut_multi_segment(struct intel_crtc *crtc)
1968 {
1969 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1970 int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
1971 enum pipe pipe = crtc->pipe;
1972 struct drm_property_blob *blob;
1973 struct drm_color_lut *lut;
1974
1975 blob = drm_property_create_blob(&dev_priv->drm,
1976 sizeof(struct drm_color_lut) * lut_size,
1977 NULL);
1978 if (IS_ERR(blob))
1979 return NULL;
1980
1981 lut = blob->data;
1982
1983 intel_de_write(dev_priv, PREC_PAL_MULTI_SEG_INDEX(pipe),
1984 PAL_PREC_AUTO_INCREMENT);
1985
1986 for (i = 0; i < 9; i++) {
1987 u32 ldw = intel_de_read(dev_priv, PREC_PAL_MULTI_SEG_DATA(pipe));
1988 u32 udw = intel_de_read(dev_priv, PREC_PAL_MULTI_SEG_DATA(pipe));
1989
1990 icl_lut_multi_seg_pack(&lut[i], ldw, udw);
1991 }
1992
1993 intel_de_write(dev_priv, PREC_PAL_MULTI_SEG_INDEX(pipe), 0);
1994
1995 /*
1996 * FIXME readouts from PAL_PREC_DATA register aren't giving
1997 * correct values in the case of fine and coarse segments.
1998 * Restricting readouts only for super fine segment as of now.
1999 */
2000
2001 return blob;
2002 }
2003
icl_read_luts(struct intel_crtc_state * crtc_state)2004 static void icl_read_luts(struct intel_crtc_state *crtc_state)
2005 {
2006 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2007
2008 if ((crtc_state->gamma_mode & POST_CSC_GAMMA_ENABLE) == 0)
2009 return;
2010
2011 switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
2012 case GAMMA_MODE_MODE_8BIT:
2013 crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc);
2014 break;
2015 case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
2016 crtc_state->hw.gamma_lut = icl_read_lut_multi_segment(crtc);
2017 break;
2018 default:
2019 crtc_state->hw.gamma_lut = glk_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0));
2020 }
2021 }
2022
intel_color_init(struct intel_crtc * crtc)2023 void intel_color_init(struct intel_crtc *crtc)
2024 {
2025 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2026 bool has_ctm = INTEL_INFO(dev_priv)->color.degamma_lut_size != 0;
2027
2028 drm_mode_crtc_set_gamma_size(&crtc->base, 256);
2029
2030 if (HAS_GMCH(dev_priv)) {
2031 if (IS_CHERRYVIEW(dev_priv)) {
2032 dev_priv->display.color_check = chv_color_check;
2033 dev_priv->display.color_commit = i9xx_color_commit;
2034 dev_priv->display.load_luts = chv_load_luts;
2035 dev_priv->display.read_luts = chv_read_luts;
2036 } else if (INTEL_GEN(dev_priv) >= 4) {
2037 dev_priv->display.color_check = i9xx_color_check;
2038 dev_priv->display.color_commit = i9xx_color_commit;
2039 dev_priv->display.load_luts = i965_load_luts;
2040 dev_priv->display.read_luts = i965_read_luts;
2041 } else {
2042 dev_priv->display.color_check = i9xx_color_check;
2043 dev_priv->display.color_commit = i9xx_color_commit;
2044 dev_priv->display.load_luts = i9xx_load_luts;
2045 dev_priv->display.read_luts = i9xx_read_luts;
2046 }
2047 } else {
2048 if (INTEL_GEN(dev_priv) >= 11)
2049 dev_priv->display.color_check = icl_color_check;
2050 else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
2051 dev_priv->display.color_check = glk_color_check;
2052 else if (INTEL_GEN(dev_priv) >= 7)
2053 dev_priv->display.color_check = ivb_color_check;
2054 else
2055 dev_priv->display.color_check = ilk_color_check;
2056
2057 if (INTEL_GEN(dev_priv) >= 9)
2058 dev_priv->display.color_commit = skl_color_commit;
2059 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2060 dev_priv->display.color_commit = hsw_color_commit;
2061 else
2062 dev_priv->display.color_commit = ilk_color_commit;
2063
2064 if (INTEL_GEN(dev_priv) >= 11) {
2065 dev_priv->display.load_luts = icl_load_luts;
2066 dev_priv->display.read_luts = icl_read_luts;
2067 } else if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) {
2068 dev_priv->display.load_luts = glk_load_luts;
2069 dev_priv->display.read_luts = glk_read_luts;
2070 } else if (INTEL_GEN(dev_priv) >= 8) {
2071 dev_priv->display.load_luts = bdw_load_luts;
2072 } else if (INTEL_GEN(dev_priv) >= 7) {
2073 dev_priv->display.load_luts = ivb_load_luts;
2074 } else {
2075 dev_priv->display.load_luts = ilk_load_luts;
2076 dev_priv->display.read_luts = ilk_read_luts;
2077 }
2078 }
2079
2080 drm_crtc_enable_color_mgmt(&crtc->base,
2081 INTEL_INFO(dev_priv)->color.degamma_lut_size,
2082 has_ctm,
2083 INTEL_INFO(dev_priv)->color.gamma_lut_size);
2084 }
2085