1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include "intel_drv.h"
26 
27 #define CTM_COEFF_SIGN	(1ULL << 63)
28 
29 #define CTM_COEFF_1_0	(1ULL << 32)
30 #define CTM_COEFF_2_0	(CTM_COEFF_1_0 << 1)
31 #define CTM_COEFF_4_0	(CTM_COEFF_2_0 << 1)
32 #define CTM_COEFF_8_0	(CTM_COEFF_4_0 << 1)
33 #define CTM_COEFF_0_5	(CTM_COEFF_1_0 >> 1)
34 #define CTM_COEFF_0_25	(CTM_COEFF_0_5 >> 1)
35 #define CTM_COEFF_0_125	(CTM_COEFF_0_25 >> 1)
36 
37 #define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255)
38 
39 #define CTM_COEFF_NEGATIVE(coeff)	(((coeff) & CTM_COEFF_SIGN) != 0)
40 #define CTM_COEFF_ABS(coeff)		((coeff) & (CTM_COEFF_SIGN - 1))
41 
42 #define LEGACY_LUT_LENGTH		256
43 
44 /* Post offset values for RGB->YCBCR conversion */
45 #define POSTOFF_RGB_TO_YUV_HI 0x800
46 #define POSTOFF_RGB_TO_YUV_ME 0x100
47 #define POSTOFF_RGB_TO_YUV_LO 0x800
48 
49 /*
50  * These values are direct register values specified in the Bspec,
51  * for RGB->YUV conversion matrix (colorspace BT709)
52  */
53 #define CSC_RGB_TO_YUV_RU_GU 0x2ba809d8
54 #define CSC_RGB_TO_YUV_BU 0x37e80000
55 #define CSC_RGB_TO_YUV_RY_GY 0x1e089cc0
56 #define CSC_RGB_TO_YUV_BY 0xb5280000
57 #define CSC_RGB_TO_YUV_RV_GV 0xbce89ad8
58 #define CSC_RGB_TO_YUV_BV 0x1e080000
59 
60 /*
61  * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
62  * format). This macro takes the coefficient we want transformed and the
63  * number of fractional bits.
64  *
65  * We only have a 9 bits precision window which slides depending on the value
66  * of the CTM coefficient and we write the value from bit 3. We also round the
67  * value.
68  */
69 #define ILK_CSC_COEFF_FP(coeff, fbits)	\
70 	(clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8)
71 
72 #define ILK_CSC_COEFF_LIMITED_RANGE	\
73 	ILK_CSC_COEFF_FP(CTM_COEFF_LIMITED_RANGE, 9)
74 #define ILK_CSC_COEFF_1_0		\
75 	((7 << 12) | ILK_CSC_COEFF_FP(CTM_COEFF_1_0, 8))
76 
crtc_state_is_legacy_gamma(struct drm_crtc_state * state)77 static bool crtc_state_is_legacy_gamma(struct drm_crtc_state *state)
78 {
79 	return !state->degamma_lut &&
80 		!state->ctm &&
81 		state->gamma_lut &&
82 		drm_color_lut_size(state->gamma_lut) == LEGACY_LUT_LENGTH;
83 }
84 
85 /*
86  * When using limited range, multiply the matrix given by userspace by
87  * the matrix that we would use for the limited range.
88  */
ctm_mult_by_limited(u64 * result,const u64 * input)89 static u64 *ctm_mult_by_limited(u64 *result, const u64 *input)
90 {
91 	int i;
92 
93 	for (i = 0; i < 9; i++) {
94 		u64 user_coeff = input[i];
95 		u32 limited_coeff = CTM_COEFF_LIMITED_RANGE;
96 		u32 abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff), 0,
97 					  CTM_COEFF_4_0 - 1) >> 2;
98 
99 		/*
100 		 * By scaling every co-efficient with limited range (16-235)
101 		 * vs full range (0-255) the final o/p will be scaled down to
102 		 * fit in the limited range supported by the panel.
103 		 */
104 		result[i] = mul_u32_u32(limited_coeff, abs_coeff) >> 30;
105 		result[i] |= user_coeff & CTM_COEFF_SIGN;
106 	}
107 
108 	return result;
109 }
110 
ilk_load_ycbcr_conversion_matrix(struct intel_crtc * intel_crtc)111 static void ilk_load_ycbcr_conversion_matrix(struct intel_crtc *intel_crtc)
112 {
113 	int pipe = intel_crtc->pipe;
114 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
115 
116 	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
117 	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
118 	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
119 
120 	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), CSC_RGB_TO_YUV_RU_GU);
121 	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), CSC_RGB_TO_YUV_BU);
122 
123 	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), CSC_RGB_TO_YUV_RY_GY);
124 	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), CSC_RGB_TO_YUV_BY);
125 
126 	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), CSC_RGB_TO_YUV_RV_GV);
127 	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), CSC_RGB_TO_YUV_BV);
128 
129 	I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), POSTOFF_RGB_TO_YUV_HI);
130 	I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), POSTOFF_RGB_TO_YUV_ME);
131 	I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), POSTOFF_RGB_TO_YUV_LO);
132 	I915_WRITE(PIPE_CSC_MODE(pipe), 0);
133 }
134 
ilk_load_csc_matrix(struct drm_crtc_state * crtc_state)135 static void ilk_load_csc_matrix(struct drm_crtc_state *crtc_state)
136 {
137 	struct drm_crtc *crtc = crtc_state->crtc;
138 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
139 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
140 	int i, pipe = intel_crtc->pipe;
141 	uint16_t coeffs[9] = { 0, };
142 	struct intel_crtc_state *intel_crtc_state = to_intel_crtc_state(crtc_state);
143 	bool limited_color_range = false;
144 
145 	/*
146 	 * FIXME if there's a gamma LUT after the CSC, we should
147 	 * do the range compression using the gamma LUT instead.
148 	 */
149 	if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv))
150 		limited_color_range = intel_crtc_state->limited_color_range;
151 
152 	if (intel_crtc_state->ycbcr420) {
153 		ilk_load_ycbcr_conversion_matrix(intel_crtc);
154 		return;
155 	} else if (crtc_state->ctm) {
156 		struct drm_color_ctm *ctm = crtc_state->ctm->data;
157 		const u64 *input;
158 		u64 temp[9];
159 
160 		if (limited_color_range)
161 			input = ctm_mult_by_limited(temp, ctm->matrix);
162 		else
163 			input = ctm->matrix;
164 
165 		/*
166 		 * Convert fixed point S31.32 input to format supported by the
167 		 * hardware.
168 		 */
169 		for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
170 			uint64_t abs_coeff = ((1ULL << 63) - 1) & input[i];
171 
172 			/*
173 			 * Clamp input value to min/max supported by
174 			 * hardware.
175 			 */
176 			abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1);
177 
178 			/* sign bit */
179 			if (CTM_COEFF_NEGATIVE(input[i]))
180 				coeffs[i] |= 1 << 15;
181 
182 			if (abs_coeff < CTM_COEFF_0_125)
183 				coeffs[i] |= (3 << 12) |
184 					ILK_CSC_COEFF_FP(abs_coeff, 12);
185 			else if (abs_coeff < CTM_COEFF_0_25)
186 				coeffs[i] |= (2 << 12) |
187 					ILK_CSC_COEFF_FP(abs_coeff, 11);
188 			else if (abs_coeff < CTM_COEFF_0_5)
189 				coeffs[i] |= (1 << 12) |
190 					ILK_CSC_COEFF_FP(abs_coeff, 10);
191 			else if (abs_coeff < CTM_COEFF_1_0)
192 				coeffs[i] |= ILK_CSC_COEFF_FP(abs_coeff, 9);
193 			else if (abs_coeff < CTM_COEFF_2_0)
194 				coeffs[i] |= (7 << 12) |
195 					ILK_CSC_COEFF_FP(abs_coeff, 8);
196 			else
197 				coeffs[i] |= (6 << 12) |
198 					ILK_CSC_COEFF_FP(abs_coeff, 7);
199 		}
200 	} else {
201 		/*
202 		 * Load an identity matrix if no coefficients are provided.
203 		 *
204 		 * TODO: Check what kind of values actually come out of the
205 		 * pipe with these coeff/postoff values and adjust to get the
206 		 * best accuracy. Perhaps we even need to take the bpc value
207 		 * into consideration.
208 		 */
209 		for (i = 0; i < 3; i++) {
210 			if (limited_color_range)
211 				coeffs[i * 3 + i] =
212 					ILK_CSC_COEFF_LIMITED_RANGE;
213 			else
214 				coeffs[i * 3 + i] = ILK_CSC_COEFF_1_0;
215 		}
216 	}
217 
218 	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeffs[0] << 16 | coeffs[1]);
219 	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), coeffs[2] << 16);
220 
221 	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeffs[3] << 16 | coeffs[4]);
222 	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), coeffs[5] << 16);
223 
224 	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), coeffs[6] << 16 | coeffs[7]);
225 	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeffs[8] << 16);
226 
227 	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
228 	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
229 	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
230 
231 	if (INTEL_GEN(dev_priv) > 6) {
232 		uint16_t postoff = 0;
233 
234 		if (limited_color_range)
235 			postoff = (16 * (1 << 12) / 255) & 0x1fff;
236 
237 		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
238 		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
239 		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
240 
241 		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
242 	} else {
243 		uint32_t mode = CSC_MODE_YUV_TO_RGB;
244 
245 		if (limited_color_range)
246 			mode |= CSC_BLACK_SCREEN_OFFSET;
247 
248 		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
249 	}
250 }
251 
252 /*
253  * Set up the pipe CSC unit on CherryView.
254  */
cherryview_load_csc_matrix(struct drm_crtc_state * state)255 static void cherryview_load_csc_matrix(struct drm_crtc_state *state)
256 {
257 	struct drm_crtc *crtc = state->crtc;
258 	struct drm_device *dev = crtc->dev;
259 	struct drm_i915_private *dev_priv = to_i915(dev);
260 	int pipe = to_intel_crtc(crtc)->pipe;
261 	uint32_t mode;
262 
263 	if (state->ctm) {
264 		struct drm_color_ctm *ctm = state->ctm->data;
265 		uint16_t coeffs[9] = { 0, };
266 		int i;
267 
268 		for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
269 			uint64_t abs_coeff =
270 				((1ULL << 63) - 1) & ctm->matrix[i];
271 
272 			/* Round coefficient. */
273 			abs_coeff += 1 << (32 - 13);
274 			/* Clamp to hardware limits. */
275 			abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1);
276 
277 			/* Write coefficients in S3.12 format. */
278 			if (ctm->matrix[i] & (1ULL << 63))
279 				coeffs[i] = 1 << 15;
280 			coeffs[i] |= ((abs_coeff >> 32) & 7) << 12;
281 			coeffs[i] |= (abs_coeff >> 20) & 0xfff;
282 		}
283 
284 		I915_WRITE(CGM_PIPE_CSC_COEFF01(pipe),
285 			   coeffs[1] << 16 | coeffs[0]);
286 		I915_WRITE(CGM_PIPE_CSC_COEFF23(pipe),
287 			   coeffs[3] << 16 | coeffs[2]);
288 		I915_WRITE(CGM_PIPE_CSC_COEFF45(pipe),
289 			   coeffs[5] << 16 | coeffs[4]);
290 		I915_WRITE(CGM_PIPE_CSC_COEFF67(pipe),
291 			   coeffs[7] << 16 | coeffs[6]);
292 		I915_WRITE(CGM_PIPE_CSC_COEFF8(pipe), coeffs[8]);
293 	}
294 
295 	mode = (state->ctm ? CGM_PIPE_MODE_CSC : 0);
296 	if (!crtc_state_is_legacy_gamma(state)) {
297 		mode |= (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
298 			(state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0);
299 	}
300 	I915_WRITE(CGM_PIPE_MODE(pipe), mode);
301 }
302 
intel_color_set_csc(struct drm_crtc_state * crtc_state)303 void intel_color_set_csc(struct drm_crtc_state *crtc_state)
304 {
305 	struct drm_device *dev = crtc_state->crtc->dev;
306 	struct drm_i915_private *dev_priv = to_i915(dev);
307 
308 	if (dev_priv->display.load_csc_matrix)
309 		dev_priv->display.load_csc_matrix(crtc_state);
310 }
311 
312 /* Loads the legacy palette/gamma unit for the CRTC. */
i9xx_load_luts_internal(struct drm_crtc * crtc,struct drm_property_blob * blob,struct intel_crtc_state * crtc_state)313 static void i9xx_load_luts_internal(struct drm_crtc *crtc,
314 				    struct drm_property_blob *blob,
315 				    struct intel_crtc_state *crtc_state)
316 {
317 	struct drm_device *dev = crtc->dev;
318 	struct drm_i915_private *dev_priv = to_i915(dev);
319 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
320 	enum pipe pipe = intel_crtc->pipe;
321 	int i;
322 
323 	if (HAS_GMCH_DISPLAY(dev_priv)) {
324 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
325 			assert_dsi_pll_enabled(dev_priv);
326 		else
327 			assert_pll_enabled(dev_priv, pipe);
328 	}
329 
330 	if (blob) {
331 		struct drm_color_lut *lut = blob->data;
332 		for (i = 0; i < 256; i++) {
333 			uint32_t word =
334 				(drm_color_lut_extract(lut[i].red, 8) << 16) |
335 				(drm_color_lut_extract(lut[i].green, 8) << 8) |
336 				drm_color_lut_extract(lut[i].blue, 8);
337 
338 			if (HAS_GMCH_DISPLAY(dev_priv))
339 				I915_WRITE(PALETTE(pipe, i), word);
340 			else
341 				I915_WRITE(LGC_PALETTE(pipe, i), word);
342 		}
343 	} else {
344 		for (i = 0; i < 256; i++) {
345 			uint32_t word = (i << 16) | (i << 8) | i;
346 
347 			if (HAS_GMCH_DISPLAY(dev_priv))
348 				I915_WRITE(PALETTE(pipe, i), word);
349 			else
350 				I915_WRITE(LGC_PALETTE(pipe, i), word);
351 		}
352 	}
353 }
354 
i9xx_load_luts(struct drm_crtc_state * crtc_state)355 static void i9xx_load_luts(struct drm_crtc_state *crtc_state)
356 {
357 	i9xx_load_luts_internal(crtc_state->crtc, crtc_state->gamma_lut,
358 				to_intel_crtc_state(crtc_state));
359 }
360 
361 /* Loads the legacy palette/gamma unit for the CRTC on Haswell. */
haswell_load_luts(struct drm_crtc_state * crtc_state)362 static void haswell_load_luts(struct drm_crtc_state *crtc_state)
363 {
364 	struct drm_crtc *crtc = crtc_state->crtc;
365 	struct drm_device *dev = crtc->dev;
366 	struct drm_i915_private *dev_priv = to_i915(dev);
367 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
368 	struct intel_crtc_state *intel_crtc_state =
369 		to_intel_crtc_state(crtc_state);
370 	bool reenable_ips = false;
371 
372 	/*
373 	 * Workaround : Do not read or write the pipe palette/gamma data while
374 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
375 	 */
376 	if (IS_HASWELL(dev_priv) && intel_crtc_state->ips_enabled &&
377 	    (intel_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)) {
378 		hsw_disable_ips(intel_crtc_state);
379 		reenable_ips = true;
380 	}
381 
382 	intel_crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT;
383 	I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
384 
385 	i9xx_load_luts(crtc_state);
386 
387 	if (reenable_ips)
388 		hsw_enable_ips(intel_crtc_state);
389 }
390 
bdw_load_degamma_lut(struct drm_crtc_state * state)391 static void bdw_load_degamma_lut(struct drm_crtc_state *state)
392 {
393 	struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
394 	enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
395 	uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
396 
397 	I915_WRITE(PREC_PAL_INDEX(pipe),
398 		   PAL_PREC_SPLIT_MODE | PAL_PREC_AUTO_INCREMENT);
399 
400 	if (state->degamma_lut) {
401 		struct drm_color_lut *lut = state->degamma_lut->data;
402 
403 		for (i = 0; i < lut_size; i++) {
404 			uint32_t word =
405 			drm_color_lut_extract(lut[i].red, 10) << 20 |
406 			drm_color_lut_extract(lut[i].green, 10) << 10 |
407 			drm_color_lut_extract(lut[i].blue, 10);
408 
409 			I915_WRITE(PREC_PAL_DATA(pipe), word);
410 		}
411 	} else {
412 		for (i = 0; i < lut_size; i++) {
413 			uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);
414 
415 			I915_WRITE(PREC_PAL_DATA(pipe),
416 				   (v << 20) | (v << 10) | v);
417 		}
418 	}
419 }
420 
bdw_load_gamma_lut(struct drm_crtc_state * state,u32 offset)421 static void bdw_load_gamma_lut(struct drm_crtc_state *state, u32 offset)
422 {
423 	struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
424 	enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
425 	uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
426 
427 	WARN_ON(offset & ~PAL_PREC_INDEX_VALUE_MASK);
428 
429 	I915_WRITE(PREC_PAL_INDEX(pipe),
430 		   (offset ? PAL_PREC_SPLIT_MODE : 0) |
431 		   PAL_PREC_AUTO_INCREMENT |
432 		   offset);
433 
434 	if (state->gamma_lut) {
435 		struct drm_color_lut *lut = state->gamma_lut->data;
436 
437 		for (i = 0; i < lut_size; i++) {
438 			uint32_t word =
439 			(drm_color_lut_extract(lut[i].red, 10) << 20) |
440 			(drm_color_lut_extract(lut[i].green, 10) << 10) |
441 			drm_color_lut_extract(lut[i].blue, 10);
442 
443 			I915_WRITE(PREC_PAL_DATA(pipe), word);
444 		}
445 
446 		/* Program the max register to clamp values > 1.0. */
447 		i = lut_size - 1;
448 		I915_WRITE(PREC_PAL_GC_MAX(pipe, 0),
449 			   drm_color_lut_extract(lut[i].red, 16));
450 		I915_WRITE(PREC_PAL_GC_MAX(pipe, 1),
451 			   drm_color_lut_extract(lut[i].green, 16));
452 		I915_WRITE(PREC_PAL_GC_MAX(pipe, 2),
453 			   drm_color_lut_extract(lut[i].blue, 16));
454 	} else {
455 		for (i = 0; i < lut_size; i++) {
456 			uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);
457 
458 			I915_WRITE(PREC_PAL_DATA(pipe),
459 				   (v << 20) | (v << 10) | v);
460 		}
461 
462 		I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), (1 << 16) - 1);
463 		I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), (1 << 16) - 1);
464 		I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), (1 << 16) - 1);
465 	}
466 }
467 
468 /* Loads the palette/gamma unit for the CRTC on Broadwell+. */
broadwell_load_luts(struct drm_crtc_state * state)469 static void broadwell_load_luts(struct drm_crtc_state *state)
470 {
471 	struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
472 	struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
473 	enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
474 
475 	if (crtc_state_is_legacy_gamma(state)) {
476 		haswell_load_luts(state);
477 		return;
478 	}
479 
480 	bdw_load_degamma_lut(state);
481 	bdw_load_gamma_lut(state,
482 			   INTEL_INFO(dev_priv)->color.degamma_lut_size);
483 
484 	intel_state->gamma_mode = GAMMA_MODE_MODE_SPLIT;
485 	I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_SPLIT);
486 	POSTING_READ(GAMMA_MODE(pipe));
487 
488 	/*
489 	 * Reset the index, otherwise it prevents the legacy palette to be
490 	 * written properly.
491 	 */
492 	I915_WRITE(PREC_PAL_INDEX(pipe), 0);
493 }
494 
glk_load_degamma_lut(struct drm_crtc_state * state)495 static void glk_load_degamma_lut(struct drm_crtc_state *state)
496 {
497 	struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
498 	enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
499 	const uint32_t lut_size = 33;
500 	uint32_t i;
501 
502 	/*
503 	 * When setting the auto-increment bit, the hardware seems to
504 	 * ignore the index bits, so we need to reset it to index 0
505 	 * separately.
506 	 */
507 	I915_WRITE(PRE_CSC_GAMC_INDEX(pipe), 0);
508 	I915_WRITE(PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_AUTO_INCREMENT);
509 
510 	/*
511 	 *  FIXME: The pipe degamma table in geminilake doesn't support
512 	 *  different values per channel, so this just loads a linear table.
513 	 */
514 	for (i = 0; i < lut_size; i++) {
515 		uint32_t v = (i * (1 << 16)) / (lut_size - 1);
516 
517 		I915_WRITE(PRE_CSC_GAMC_DATA(pipe), v);
518 	}
519 
520 	/* Clamp values > 1.0. */
521 	while (i++ < 35)
522 		I915_WRITE(PRE_CSC_GAMC_DATA(pipe), (1 << 16));
523 }
524 
glk_load_luts(struct drm_crtc_state * state)525 static void glk_load_luts(struct drm_crtc_state *state)
526 {
527 	struct drm_crtc *crtc = state->crtc;
528 	struct drm_device *dev = crtc->dev;
529 	struct drm_i915_private *dev_priv = to_i915(dev);
530 	struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
531 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
532 
533 	glk_load_degamma_lut(state);
534 
535 	if (crtc_state_is_legacy_gamma(state)) {
536 		haswell_load_luts(state);
537 		return;
538 	}
539 
540 	bdw_load_gamma_lut(state, 0);
541 
542 	intel_state->gamma_mode = GAMMA_MODE_MODE_10BIT;
543 	I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_10BIT);
544 	POSTING_READ(GAMMA_MODE(pipe));
545 }
546 
547 /* Loads the palette/gamma unit for the CRTC on CherryView. */
cherryview_load_luts(struct drm_crtc_state * state)548 static void cherryview_load_luts(struct drm_crtc_state *state)
549 {
550 	struct drm_crtc *crtc = state->crtc;
551 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
552 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
553 	struct drm_color_lut *lut;
554 	uint32_t i, lut_size;
555 	uint32_t word0, word1;
556 
557 	if (crtc_state_is_legacy_gamma(state)) {
558 		/* Turn off degamma/gamma on CGM block. */
559 		I915_WRITE(CGM_PIPE_MODE(pipe),
560 			   (state->ctm ? CGM_PIPE_MODE_CSC : 0));
561 		i9xx_load_luts_internal(crtc, state->gamma_lut,
562 					to_intel_crtc_state(state));
563 		return;
564 	}
565 
566 	if (state->degamma_lut) {
567 		lut = state->degamma_lut->data;
568 		lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
569 		for (i = 0; i < lut_size; i++) {
570 			/* Write LUT in U0.14 format. */
571 			word0 =
572 			(drm_color_lut_extract(lut[i].green, 14) << 16) |
573 			drm_color_lut_extract(lut[i].blue, 14);
574 			word1 = drm_color_lut_extract(lut[i].red, 14);
575 
576 			I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 0), word0);
577 			I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 1), word1);
578 		}
579 	}
580 
581 	if (state->gamma_lut) {
582 		lut = state->gamma_lut->data;
583 		lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
584 		for (i = 0; i < lut_size; i++) {
585 			/* Write LUT in U0.10 format. */
586 			word0 =
587 			(drm_color_lut_extract(lut[i].green, 10) << 16) |
588 			drm_color_lut_extract(lut[i].blue, 10);
589 			word1 = drm_color_lut_extract(lut[i].red, 10);
590 
591 			I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 0), word0);
592 			I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 1), word1);
593 		}
594 	}
595 
596 	I915_WRITE(CGM_PIPE_MODE(pipe),
597 		   (state->ctm ? CGM_PIPE_MODE_CSC : 0) |
598 		   (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
599 		   (state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0));
600 
601 	/*
602 	 * Also program a linear LUT in the legacy block (behind the
603 	 * CGM block).
604 	 */
605 	i9xx_load_luts_internal(crtc, NULL, to_intel_crtc_state(state));
606 }
607 
intel_color_load_luts(struct drm_crtc_state * crtc_state)608 void intel_color_load_luts(struct drm_crtc_state *crtc_state)
609 {
610 	struct drm_device *dev = crtc_state->crtc->dev;
611 	struct drm_i915_private *dev_priv = to_i915(dev);
612 
613 	dev_priv->display.load_luts(crtc_state);
614 }
615 
intel_color_check(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)616 int intel_color_check(struct drm_crtc *crtc,
617 		      struct drm_crtc_state *crtc_state)
618 {
619 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
620 	size_t gamma_length, degamma_length;
621 
622 	degamma_length = INTEL_INFO(dev_priv)->color.degamma_lut_size;
623 	gamma_length = INTEL_INFO(dev_priv)->color.gamma_lut_size;
624 
625 	/*
626 	 * We allow both degamma & gamma luts at the right size or
627 	 * NULL.
628 	 */
629 	if ((!crtc_state->degamma_lut ||
630 	     drm_color_lut_size(crtc_state->degamma_lut) == degamma_length) &&
631 	    (!crtc_state->gamma_lut ||
632 	     drm_color_lut_size(crtc_state->gamma_lut) == gamma_length))
633 		return 0;
634 
635 	/*
636 	 * We also allow no degamma lut/ctm and a gamma lut at the legacy
637 	 * size (256 entries).
638 	 */
639 	if (crtc_state_is_legacy_gamma(crtc_state))
640 		return 0;
641 
642 	return -EINVAL;
643 }
644 
intel_color_init(struct drm_crtc * crtc)645 void intel_color_init(struct drm_crtc *crtc)
646 {
647 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
648 
649 	drm_mode_crtc_set_gamma_size(crtc, 256);
650 
651 	if (IS_CHERRYVIEW(dev_priv)) {
652 		dev_priv->display.load_csc_matrix = cherryview_load_csc_matrix;
653 		dev_priv->display.load_luts = cherryview_load_luts;
654 	} else if (IS_HASWELL(dev_priv)) {
655 		dev_priv->display.load_csc_matrix = ilk_load_csc_matrix;
656 		dev_priv->display.load_luts = haswell_load_luts;
657 	} else if (IS_BROADWELL(dev_priv) || IS_GEN9_BC(dev_priv) ||
658 		   IS_BROXTON(dev_priv)) {
659 		dev_priv->display.load_csc_matrix = ilk_load_csc_matrix;
660 		dev_priv->display.load_luts = broadwell_load_luts;
661 	} else if (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
662 		dev_priv->display.load_csc_matrix = ilk_load_csc_matrix;
663 		dev_priv->display.load_luts = glk_load_luts;
664 	} else {
665 		dev_priv->display.load_luts = i9xx_load_luts;
666 	}
667 
668 	/* Enable color management support when we have degamma & gamma LUTs. */
669 	if (INTEL_INFO(dev_priv)->color.degamma_lut_size != 0 &&
670 	    INTEL_INFO(dev_priv)->color.gamma_lut_size != 0)
671 		drm_crtc_enable_color_mgmt(crtc,
672 					   INTEL_INFO(dev_priv)->color.degamma_lut_size,
673 					   true,
674 					   INTEL_INFO(dev_priv)->color.gamma_lut_size);
675 }
676