1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
30
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_plane_helper.h>
34
35 #include "display/intel_atomic.h"
36 #include "display/intel_atomic_plane.h"
37 #include "display/intel_bw.h"
38 #include "display/intel_de.h"
39 #include "display/intel_display_types.h"
40 #include "display/intel_fbc.h"
41 #include "display/intel_sprite.h"
42 #include "display/skl_universal_plane.h"
43
44 #include "gt/intel_llc.h"
45
46 #include "i915_drv.h"
47 #include "i915_fixed.h"
48 #include "i915_irq.h"
49 #include "i915_trace.h"
50 #include "intel_pm.h"
51 #include "intel_sideband.h"
52 #include "../../../platform/x86/intel_ips.h"
53
54 /* Stores plane specific WM parameters */
55 struct skl_wm_params {
56 bool x_tiled, y_tiled;
57 bool rc_surface;
58 bool is_planar;
59 u32 width;
60 u8 cpp;
61 u32 plane_pixel_rate;
62 u32 y_min_scanlines;
63 u32 plane_bytes_per_line;
64 uint_fixed_16_16_t plane_blocks_per_line;
65 uint_fixed_16_16_t y_tile_minimum;
66 u32 linetime_us;
67 u32 dbuf_block_size;
68 };
69
70 /* used in computing the new watermarks state */
71 struct intel_wm_config {
72 unsigned int num_pipes_active;
73 bool sprites_enabled;
74 bool sprites_scaled;
75 };
76
gen9_init_clock_gating(struct drm_i915_private * dev_priv)77 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
78 {
79 enum pipe pipe;
80
81 if (HAS_LLC(dev_priv)) {
82 /*
83 * WaCompressedResourceDisplayNewHashMode:skl,kbl
84 * Display WA #0390: skl,kbl
85 *
86 * Must match Sampler, Pixel Back End, and Media. See
87 * WaCompressedResourceSamplerPbeMediaNewHashMode.
88 */
89 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
90 intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
91 SKL_DE_COMPRESSED_HASH_MODE);
92 }
93
94 for_each_pipe(dev_priv, pipe) {
95 /*
96 * "Plane N strech max must be programmed to 11b (x1)
97 * when Async flips are enabled on that plane."
98 */
99 if (!IS_GEMINILAKE(dev_priv) && intel_vtd_active())
100 intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
101 SKL_PLANE1_STRETCH_MAX_MASK, SKL_PLANE1_STRETCH_MAX_X1);
102 }
103
104 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
105 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
106 intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
107
108 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
109 intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
110 intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
111
112 /*
113 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
114 * Display WA #0859: skl,bxt,kbl,glk,cfl
115 */
116 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
117 DISP_FBC_MEMORY_WAKE);
118 }
119
bxt_init_clock_gating(struct drm_i915_private * dev_priv)120 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
121 {
122 gen9_init_clock_gating(dev_priv);
123
124 /* WaDisableSDEUnitClockGating:bxt */
125 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
126 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
127
128 /*
129 * FIXME:
130 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
131 */
132 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
133 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
134
135 /*
136 * Wa: Backlight PWM may stop in the asserted state, causing backlight
137 * to stay fully on.
138 */
139 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
140 PWM1_GATING_DIS | PWM2_GATING_DIS);
141
142 /*
143 * Lower the display internal timeout.
144 * This is needed to avoid any hard hangs when DSI port PLL
145 * is off and a MMIO access is attempted by any privilege
146 * application, using batch buffers or any other means.
147 */
148 intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
149
150 /*
151 * WaFbcTurnOffFbcWatermark:bxt
152 * Display WA #0562: bxt
153 */
154 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
155 DISP_FBC_WM_DIS);
156
157 /*
158 * WaFbcHighMemBwCorruptionAvoidance:bxt
159 * Display WA #0883: bxt
160 */
161 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
162 ILK_DPFC_DISABLE_DUMMY0);
163 }
164
glk_init_clock_gating(struct drm_i915_private * dev_priv)165 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
166 {
167 gen9_init_clock_gating(dev_priv);
168
169 /*
170 * WaDisablePWMClockGating:glk
171 * Backlight PWM may stop in the asserted state, causing backlight
172 * to stay fully on.
173 */
174 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
175 PWM1_GATING_DIS | PWM2_GATING_DIS);
176 }
177
pnv_get_mem_freq(struct drm_i915_private * dev_priv)178 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
179 {
180 u32 tmp;
181
182 tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
183
184 switch (tmp & CLKCFG_FSB_MASK) {
185 case CLKCFG_FSB_533:
186 dev_priv->fsb_freq = 533; /* 133*4 */
187 break;
188 case CLKCFG_FSB_800:
189 dev_priv->fsb_freq = 800; /* 200*4 */
190 break;
191 case CLKCFG_FSB_667:
192 dev_priv->fsb_freq = 667; /* 167*4 */
193 break;
194 case CLKCFG_FSB_400:
195 dev_priv->fsb_freq = 400; /* 100*4 */
196 break;
197 }
198
199 switch (tmp & CLKCFG_MEM_MASK) {
200 case CLKCFG_MEM_533:
201 dev_priv->mem_freq = 533;
202 break;
203 case CLKCFG_MEM_667:
204 dev_priv->mem_freq = 667;
205 break;
206 case CLKCFG_MEM_800:
207 dev_priv->mem_freq = 800;
208 break;
209 }
210
211 /* detect pineview DDR3 setting */
212 tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
213 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
214 }
215
ilk_get_mem_freq(struct drm_i915_private * dev_priv)216 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
217 {
218 u16 ddrpll, csipll;
219
220 ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
221 csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
222
223 switch (ddrpll & 0xff) {
224 case 0xc:
225 dev_priv->mem_freq = 800;
226 break;
227 case 0x10:
228 dev_priv->mem_freq = 1066;
229 break;
230 case 0x14:
231 dev_priv->mem_freq = 1333;
232 break;
233 case 0x18:
234 dev_priv->mem_freq = 1600;
235 break;
236 default:
237 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
238 ddrpll & 0xff);
239 dev_priv->mem_freq = 0;
240 break;
241 }
242
243 switch (csipll & 0x3ff) {
244 case 0x00c:
245 dev_priv->fsb_freq = 3200;
246 break;
247 case 0x00e:
248 dev_priv->fsb_freq = 3733;
249 break;
250 case 0x010:
251 dev_priv->fsb_freq = 4266;
252 break;
253 case 0x012:
254 dev_priv->fsb_freq = 4800;
255 break;
256 case 0x014:
257 dev_priv->fsb_freq = 5333;
258 break;
259 case 0x016:
260 dev_priv->fsb_freq = 5866;
261 break;
262 case 0x018:
263 dev_priv->fsb_freq = 6400;
264 break;
265 default:
266 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
267 csipll & 0x3ff);
268 dev_priv->fsb_freq = 0;
269 break;
270 }
271 }
272
273 static const struct cxsr_latency cxsr_latency_table[] = {
274 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
275 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
276 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
277 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
278 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
279
280 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
281 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
282 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
283 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
284 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
285
286 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
287 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
288 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
289 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
290 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
291
292 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
293 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
294 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
295 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
296 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
297
298 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
299 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
300 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
301 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
302 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
303
304 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
305 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
306 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
307 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
308 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
309 };
310
intel_get_cxsr_latency(bool is_desktop,bool is_ddr3,int fsb,int mem)311 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
312 bool is_ddr3,
313 int fsb,
314 int mem)
315 {
316 const struct cxsr_latency *latency;
317 int i;
318
319 if (fsb == 0 || mem == 0)
320 return NULL;
321
322 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
323 latency = &cxsr_latency_table[i];
324 if (is_desktop == latency->is_desktop &&
325 is_ddr3 == latency->is_ddr3 &&
326 fsb == latency->fsb_freq && mem == latency->mem_freq)
327 return latency;
328 }
329
330 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
331
332 return NULL;
333 }
334
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)335 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
336 {
337 u32 val;
338
339 vlv_punit_get(dev_priv);
340
341 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
342 if (enable)
343 val &= ~FORCE_DDR_HIGH_FREQ;
344 else
345 val |= FORCE_DDR_HIGH_FREQ;
346 val &= ~FORCE_DDR_LOW_FREQ;
347 val |= FORCE_DDR_FREQ_REQ_ACK;
348 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
349
350 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
351 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
352 drm_err(&dev_priv->drm,
353 "timed out waiting for Punit DDR DVFS request\n");
354
355 vlv_punit_put(dev_priv);
356 }
357
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)358 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
359 {
360 u32 val;
361
362 vlv_punit_get(dev_priv);
363
364 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
365 if (enable)
366 val |= DSP_MAXFIFO_PM5_ENABLE;
367 else
368 val &= ~DSP_MAXFIFO_PM5_ENABLE;
369 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
370
371 vlv_punit_put(dev_priv);
372 }
373
374 #define FW_WM(value, plane) \
375 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
376
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)377 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
378 {
379 bool was_enabled;
380 u32 val;
381
382 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
383 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
384 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
385 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
386 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
387 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
388 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
389 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
390 } else if (IS_PINEVIEW(dev_priv)) {
391 val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
392 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
393 if (enable)
394 val |= PINEVIEW_SELF_REFRESH_EN;
395 else
396 val &= ~PINEVIEW_SELF_REFRESH_EN;
397 intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
398 intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
399 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
400 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
401 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
402 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
403 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
404 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
405 } else if (IS_I915GM(dev_priv)) {
406 /*
407 * FIXME can't find a bit like this for 915G, and
408 * and yet it does have the related watermark in
409 * FW_BLC_SELF. What's going on?
410 */
411 was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
412 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
413 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
414 intel_uncore_write(&dev_priv->uncore, INSTPM, val);
415 intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
416 } else {
417 return false;
418 }
419
420 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
421
422 drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
423 enableddisabled(enable),
424 enableddisabled(was_enabled));
425
426 return was_enabled;
427 }
428
429 /**
430 * intel_set_memory_cxsr - Configure CxSR state
431 * @dev_priv: i915 device
432 * @enable: Allow vs. disallow CxSR
433 *
434 * Allow or disallow the system to enter a special CxSR
435 * (C-state self refresh) state. What typically happens in CxSR mode
436 * is that several display FIFOs may get combined into a single larger
437 * FIFO for a particular plane (so called max FIFO mode) to allow the
438 * system to defer memory fetches longer, and the memory will enter
439 * self refresh.
440 *
441 * Note that enabling CxSR does not guarantee that the system enter
442 * this special mode, nor does it guarantee that the system stays
443 * in that mode once entered. So this just allows/disallows the system
444 * to autonomously utilize the CxSR mode. Other factors such as core
445 * C-states will affect when/if the system actually enters/exits the
446 * CxSR mode.
447 *
448 * Note that on VLV/CHV this actually only controls the max FIFO mode,
449 * and the system is free to enter/exit memory self refresh at any time
450 * even when the use of CxSR has been disallowed.
451 *
452 * While the system is actually in the CxSR/max FIFO mode, some plane
453 * control registers will not get latched on vblank. Thus in order to
454 * guarantee the system will respond to changes in the plane registers
455 * we must always disallow CxSR prior to making changes to those registers.
456 * Unfortunately the system will re-evaluate the CxSR conditions at
457 * frame start which happens after vblank start (which is when the plane
458 * registers would get latched), so we can't proceed with the plane update
459 * during the same frame where we disallowed CxSR.
460 *
461 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
462 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
463 * the hardware w.r.t. HPLL SR when writing to plane registers.
464 * Disallowing just CxSR is sufficient.
465 */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)466 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
467 {
468 bool ret;
469
470 mutex_lock(&dev_priv->wm.wm_mutex);
471 ret = _intel_set_memory_cxsr(dev_priv, enable);
472 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
473 dev_priv->wm.vlv.cxsr = enable;
474 else if (IS_G4X(dev_priv))
475 dev_priv->wm.g4x.cxsr = enable;
476 mutex_unlock(&dev_priv->wm.wm_mutex);
477
478 return ret;
479 }
480
481 /*
482 * Latency for FIFO fetches is dependent on several factors:
483 * - memory configuration (speed, channels)
484 * - chipset
485 * - current MCH state
486 * It can be fairly high in some situations, so here we assume a fairly
487 * pessimal value. It's a tradeoff between extra memory fetches (if we
488 * set this value too high, the FIFO will fetch frequently to stay full)
489 * and power consumption (set it too low to save power and we might see
490 * FIFO underruns and display "flicker").
491 *
492 * A value of 5us seems to be a good balance; safe for very low end
493 * platforms but not overly aggressive on lower latency configs.
494 */
495 static const int pessimal_latency_ns = 5000;
496
497 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
498 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
499
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)500 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
501 {
502 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
503 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
504 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
505 enum pipe pipe = crtc->pipe;
506 int sprite0_start, sprite1_start;
507 u32 dsparb, dsparb2, dsparb3;
508
509 switch (pipe) {
510 case PIPE_A:
511 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
512 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
513 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
514 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
515 break;
516 case PIPE_B:
517 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
518 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
519 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
520 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
521 break;
522 case PIPE_C:
523 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
524 dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
525 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
526 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
527 break;
528 default:
529 MISSING_CASE(pipe);
530 return;
531 }
532
533 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
534 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
535 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
536 fifo_state->plane[PLANE_CURSOR] = 63;
537 }
538
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)539 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
540 enum i9xx_plane_id i9xx_plane)
541 {
542 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
543 int size;
544
545 size = dsparb & 0x7f;
546 if (i9xx_plane == PLANE_B)
547 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
548
549 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
550 dsparb, plane_name(i9xx_plane), size);
551
552 return size;
553 }
554
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)555 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
556 enum i9xx_plane_id i9xx_plane)
557 {
558 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
559 int size;
560
561 size = dsparb & 0x1ff;
562 if (i9xx_plane == PLANE_B)
563 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
564 size >>= 1; /* Convert to cachelines */
565
566 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
567 dsparb, plane_name(i9xx_plane), size);
568
569 return size;
570 }
571
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)572 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
573 enum i9xx_plane_id i9xx_plane)
574 {
575 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
576 int size;
577
578 size = dsparb & 0x7f;
579 size >>= 2; /* Convert to cachelines */
580
581 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
582 dsparb, plane_name(i9xx_plane), size);
583
584 return size;
585 }
586
587 /* Pineview has different values for various configs */
588 static const struct intel_watermark_params pnv_display_wm = {
589 .fifo_size = PINEVIEW_DISPLAY_FIFO,
590 .max_wm = PINEVIEW_MAX_WM,
591 .default_wm = PINEVIEW_DFT_WM,
592 .guard_size = PINEVIEW_GUARD_WM,
593 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
594 };
595
596 static const struct intel_watermark_params pnv_display_hplloff_wm = {
597 .fifo_size = PINEVIEW_DISPLAY_FIFO,
598 .max_wm = PINEVIEW_MAX_WM,
599 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
600 .guard_size = PINEVIEW_GUARD_WM,
601 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
602 };
603
604 static const struct intel_watermark_params pnv_cursor_wm = {
605 .fifo_size = PINEVIEW_CURSOR_FIFO,
606 .max_wm = PINEVIEW_CURSOR_MAX_WM,
607 .default_wm = PINEVIEW_CURSOR_DFT_WM,
608 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
609 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
610 };
611
612 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
613 .fifo_size = PINEVIEW_CURSOR_FIFO,
614 .max_wm = PINEVIEW_CURSOR_MAX_WM,
615 .default_wm = PINEVIEW_CURSOR_DFT_WM,
616 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
617 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
618 };
619
620 static const struct intel_watermark_params i965_cursor_wm_info = {
621 .fifo_size = I965_CURSOR_FIFO,
622 .max_wm = I965_CURSOR_MAX_WM,
623 .default_wm = I965_CURSOR_DFT_WM,
624 .guard_size = 2,
625 .cacheline_size = I915_FIFO_LINE_SIZE,
626 };
627
628 static const struct intel_watermark_params i945_wm_info = {
629 .fifo_size = I945_FIFO_SIZE,
630 .max_wm = I915_MAX_WM,
631 .default_wm = 1,
632 .guard_size = 2,
633 .cacheline_size = I915_FIFO_LINE_SIZE,
634 };
635
636 static const struct intel_watermark_params i915_wm_info = {
637 .fifo_size = I915_FIFO_SIZE,
638 .max_wm = I915_MAX_WM,
639 .default_wm = 1,
640 .guard_size = 2,
641 .cacheline_size = I915_FIFO_LINE_SIZE,
642 };
643
644 static const struct intel_watermark_params i830_a_wm_info = {
645 .fifo_size = I855GM_FIFO_SIZE,
646 .max_wm = I915_MAX_WM,
647 .default_wm = 1,
648 .guard_size = 2,
649 .cacheline_size = I830_FIFO_LINE_SIZE,
650 };
651
652 static const struct intel_watermark_params i830_bc_wm_info = {
653 .fifo_size = I855GM_FIFO_SIZE,
654 .max_wm = I915_MAX_WM/2,
655 .default_wm = 1,
656 .guard_size = 2,
657 .cacheline_size = I830_FIFO_LINE_SIZE,
658 };
659
660 static const struct intel_watermark_params i845_wm_info = {
661 .fifo_size = I830_FIFO_SIZE,
662 .max_wm = I915_MAX_WM,
663 .default_wm = 1,
664 .guard_size = 2,
665 .cacheline_size = I830_FIFO_LINE_SIZE,
666 };
667
668 /**
669 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
670 * @pixel_rate: Pipe pixel rate in kHz
671 * @cpp: Plane bytes per pixel
672 * @latency: Memory wakeup latency in 0.1us units
673 *
674 * Compute the watermark using the method 1 or "small buffer"
675 * formula. The caller may additonally add extra cachelines
676 * to account for TLB misses and clock crossings.
677 *
678 * This method is concerned with the short term drain rate
679 * of the FIFO, ie. it does not account for blanking periods
680 * which would effectively reduce the average drain rate across
681 * a longer period. The name "small" refers to the fact the
682 * FIFO is relatively small compared to the amount of data
683 * fetched.
684 *
685 * The FIFO level vs. time graph might look something like:
686 *
687 * |\ |\
688 * | \ | \
689 * __---__---__ (- plane active, _ blanking)
690 * -> time
691 *
692 * or perhaps like this:
693 *
694 * |\|\ |\|\
695 * __----__----__ (- plane active, _ blanking)
696 * -> time
697 *
698 * Returns:
699 * The watermark in bytes
700 */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)701 static unsigned int intel_wm_method1(unsigned int pixel_rate,
702 unsigned int cpp,
703 unsigned int latency)
704 {
705 u64 ret;
706
707 ret = mul_u32_u32(pixel_rate, cpp * latency);
708 ret = DIV_ROUND_UP_ULL(ret, 10000);
709
710 return ret;
711 }
712
713 /**
714 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
715 * @pixel_rate: Pipe pixel rate in kHz
716 * @htotal: Pipe horizontal total
717 * @width: Plane width in pixels
718 * @cpp: Plane bytes per pixel
719 * @latency: Memory wakeup latency in 0.1us units
720 *
721 * Compute the watermark using the method 2 or "large buffer"
722 * formula. The caller may additonally add extra cachelines
723 * to account for TLB misses and clock crossings.
724 *
725 * This method is concerned with the long term drain rate
726 * of the FIFO, ie. it does account for blanking periods
727 * which effectively reduce the average drain rate across
728 * a longer period. The name "large" refers to the fact the
729 * FIFO is relatively large compared to the amount of data
730 * fetched.
731 *
732 * The FIFO level vs. time graph might look something like:
733 *
734 * |\___ |\___
735 * | \___ | \___
736 * | \ | \
737 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
738 * -> time
739 *
740 * Returns:
741 * The watermark in bytes
742 */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)743 static unsigned int intel_wm_method2(unsigned int pixel_rate,
744 unsigned int htotal,
745 unsigned int width,
746 unsigned int cpp,
747 unsigned int latency)
748 {
749 unsigned int ret;
750
751 /*
752 * FIXME remove once all users are computing
753 * watermarks in the correct place.
754 */
755 if (WARN_ON_ONCE(htotal == 0))
756 htotal = 1;
757
758 ret = (latency * pixel_rate) / (htotal * 10000);
759 ret = (ret + 1) * width * cpp;
760
761 return ret;
762 }
763
764 /**
765 * intel_calculate_wm - calculate watermark level
766 * @pixel_rate: pixel clock
767 * @wm: chip FIFO params
768 * @fifo_size: size of the FIFO buffer
769 * @cpp: bytes per pixel
770 * @latency_ns: memory latency for the platform
771 *
772 * Calculate the watermark level (the level at which the display plane will
773 * start fetching from memory again). Each chip has a different display
774 * FIFO size and allocation, so the caller needs to figure that out and pass
775 * in the correct intel_watermark_params structure.
776 *
777 * As the pixel clock runs, the FIFO will be drained at a rate that depends
778 * on the pixel size. When it reaches the watermark level, it'll start
779 * fetching FIFO line sized based chunks from memory until the FIFO fills
780 * past the watermark point. If the FIFO drains completely, a FIFO underrun
781 * will occur, and a display engine hang could result.
782 */
intel_calculate_wm(int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)783 static unsigned int intel_calculate_wm(int pixel_rate,
784 const struct intel_watermark_params *wm,
785 int fifo_size, int cpp,
786 unsigned int latency_ns)
787 {
788 int entries, wm_size;
789
790 /*
791 * Note: we need to make sure we don't overflow for various clock &
792 * latency values.
793 * clocks go from a few thousand to several hundred thousand.
794 * latency is usually a few thousand
795 */
796 entries = intel_wm_method1(pixel_rate, cpp,
797 latency_ns / 100);
798 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
799 wm->guard_size;
800 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
801
802 wm_size = fifo_size - entries;
803 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
804
805 /* Don't promote wm_size to unsigned... */
806 if (wm_size > wm->max_wm)
807 wm_size = wm->max_wm;
808 if (wm_size <= 0)
809 wm_size = wm->default_wm;
810
811 /*
812 * Bspec seems to indicate that the value shouldn't be lower than
813 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
814 * Lets go for 8 which is the burst size since certain platforms
815 * already use a hardcoded 8 (which is what the spec says should be
816 * done).
817 */
818 if (wm_size <= 8)
819 wm_size = 8;
820
821 return wm_size;
822 }
823
is_disabling(int old,int new,int threshold)824 static bool is_disabling(int old, int new, int threshold)
825 {
826 return old >= threshold && new < threshold;
827 }
828
is_enabling(int old,int new,int threshold)829 static bool is_enabling(int old, int new, int threshold)
830 {
831 return old < threshold && new >= threshold;
832 }
833
intel_wm_num_levels(struct drm_i915_private * dev_priv)834 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
835 {
836 return dev_priv->wm.max_level + 1;
837 }
838
intel_wm_plane_visible(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)839 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
840 const struct intel_plane_state *plane_state)
841 {
842 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
843
844 /* FIXME check the 'enable' instead */
845 if (!crtc_state->hw.active)
846 return false;
847
848 /*
849 * Treat cursor with fb as always visible since cursor updates
850 * can happen faster than the vrefresh rate, and the current
851 * watermark code doesn't handle that correctly. Cursor updates
852 * which set/clear the fb or change the cursor size are going
853 * to get throttled by intel_legacy_cursor_update() to work
854 * around this problem with the watermark code.
855 */
856 if (plane->id == PLANE_CURSOR)
857 return plane_state->hw.fb != NULL;
858 else
859 return plane_state->uapi.visible;
860 }
861
intel_crtc_active(struct intel_crtc * crtc)862 static bool intel_crtc_active(struct intel_crtc *crtc)
863 {
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
867 * We can ditch the adjusted_mode.crtc_clock check as soon
868 * as Haswell has gained clock readout/fastboot support.
869 *
870 * We can ditch the crtc->primary->state->fb check as soon as we can
871 * properly reconstruct framebuffers.
872 *
873 * FIXME: The intel_crtc->active here should be switched to
874 * crtc->state->active once we have proper CRTC states wired up
875 * for atomic.
876 */
877 return crtc->active && crtc->base.primary->state->fb &&
878 crtc->config->hw.adjusted_mode.crtc_clock;
879 }
880
single_enabled_crtc(struct drm_i915_private * dev_priv)881 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
882 {
883 struct intel_crtc *crtc, *enabled = NULL;
884
885 for_each_intel_crtc(&dev_priv->drm, crtc) {
886 if (intel_crtc_active(crtc)) {
887 if (enabled)
888 return NULL;
889 enabled = crtc;
890 }
891 }
892
893 return enabled;
894 }
895
pnv_update_wm(struct intel_crtc * unused_crtc)896 static void pnv_update_wm(struct intel_crtc *unused_crtc)
897 {
898 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
899 struct intel_crtc *crtc;
900 const struct cxsr_latency *latency;
901 u32 reg;
902 unsigned int wm;
903
904 latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
905 dev_priv->is_ddr3,
906 dev_priv->fsb_freq,
907 dev_priv->mem_freq);
908 if (!latency) {
909 drm_dbg_kms(&dev_priv->drm,
910 "Unknown FSB/MEM found, disable CxSR\n");
911 intel_set_memory_cxsr(dev_priv, false);
912 return;
913 }
914
915 crtc = single_enabled_crtc(dev_priv);
916 if (crtc) {
917 const struct drm_display_mode *pipe_mode =
918 &crtc->config->hw.pipe_mode;
919 const struct drm_framebuffer *fb =
920 crtc->base.primary->state->fb;
921 int cpp = fb->format->cpp[0];
922 int clock = pipe_mode->crtc_clock;
923
924 /* Display SR */
925 wm = intel_calculate_wm(clock, &pnv_display_wm,
926 pnv_display_wm.fifo_size,
927 cpp, latency->display_sr);
928 reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
929 reg &= ~DSPFW_SR_MASK;
930 reg |= FW_WM(wm, SR);
931 intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
932 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
933
934 /* cursor SR */
935 wm = intel_calculate_wm(clock, &pnv_cursor_wm,
936 pnv_display_wm.fifo_size,
937 4, latency->cursor_sr);
938 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
939 reg &= ~DSPFW_CURSOR_SR_MASK;
940 reg |= FW_WM(wm, CURSOR_SR);
941 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
942
943 /* Display HPLL off SR */
944 wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
945 pnv_display_hplloff_wm.fifo_size,
946 cpp, latency->display_hpll_disable);
947 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
948 reg &= ~DSPFW_HPLL_SR_MASK;
949 reg |= FW_WM(wm, HPLL_SR);
950 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
951
952 /* cursor HPLL off SR */
953 wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
954 pnv_display_hplloff_wm.fifo_size,
955 4, latency->cursor_hpll_disable);
956 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
957 reg &= ~DSPFW_HPLL_CURSOR_MASK;
958 reg |= FW_WM(wm, HPLL_CURSOR);
959 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
960 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
961
962 intel_set_memory_cxsr(dev_priv, true);
963 } else {
964 intel_set_memory_cxsr(dev_priv, false);
965 }
966 }
967
968 /*
969 * Documentation says:
970 * "If the line size is small, the TLB fetches can get in the way of the
971 * data fetches, causing some lag in the pixel data return which is not
972 * accounted for in the above formulas. The following adjustment only
973 * needs to be applied if eight whole lines fit in the buffer at once.
974 * The WM is adjusted upwards by the difference between the FIFO size
975 * and the size of 8 whole lines. This adjustment is always performed
976 * in the actual pixel depth regardless of whether FBC is enabled or not."
977 */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)978 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
979 {
980 int tlb_miss = fifo_size * 64 - width * cpp * 8;
981
982 return max(0, tlb_miss);
983 }
984
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)985 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
986 const struct g4x_wm_values *wm)
987 {
988 enum pipe pipe;
989
990 for_each_pipe(dev_priv, pipe)
991 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
992
993 intel_uncore_write(&dev_priv->uncore, DSPFW1,
994 FW_WM(wm->sr.plane, SR) |
995 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
996 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
997 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
998 intel_uncore_write(&dev_priv->uncore, DSPFW2,
999 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
1000 FW_WM(wm->sr.fbc, FBC_SR) |
1001 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
1002 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
1003 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1004 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1005 intel_uncore_write(&dev_priv->uncore, DSPFW3,
1006 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
1007 FW_WM(wm->sr.cursor, CURSOR_SR) |
1008 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
1009 FW_WM(wm->hpll.plane, HPLL_SR));
1010
1011 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1012 }
1013
1014 #define FW_WM_VLV(value, plane) \
1015 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
1016
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)1017 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1018 const struct vlv_wm_values *wm)
1019 {
1020 enum pipe pipe;
1021
1022 for_each_pipe(dev_priv, pipe) {
1023 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1024
1025 intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
1026 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1027 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1028 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1029 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1030 }
1031
1032 /*
1033 * Zero the (unused) WM1 watermarks, and also clear all the
1034 * high order bits so that there are no out of bounds values
1035 * present in the registers during the reprogramming.
1036 */
1037 intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
1038 intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
1039 intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
1040 intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
1041 intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
1042
1043 intel_uncore_write(&dev_priv->uncore, DSPFW1,
1044 FW_WM(wm->sr.plane, SR) |
1045 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1046 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1047 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1048 intel_uncore_write(&dev_priv->uncore, DSPFW2,
1049 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1050 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1051 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1052 intel_uncore_write(&dev_priv->uncore, DSPFW3,
1053 FW_WM(wm->sr.cursor, CURSOR_SR));
1054
1055 if (IS_CHERRYVIEW(dev_priv)) {
1056 intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
1057 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1058 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1059 intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
1060 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1061 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1062 intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
1063 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1064 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1065 intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1066 FW_WM(wm->sr.plane >> 9, SR_HI) |
1067 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1068 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1069 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1070 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1071 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1072 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1073 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1074 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1075 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1076 } else {
1077 intel_uncore_write(&dev_priv->uncore, DSPFW7,
1078 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1079 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1080 intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1081 FW_WM(wm->sr.plane >> 9, SR_HI) |
1082 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1083 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1084 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1085 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1086 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1087 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1088 }
1089
1090 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1091 }
1092
1093 #undef FW_WM_VLV
1094
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)1095 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1096 {
1097 /* all latencies in usec */
1098 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1099 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1100 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1101
1102 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1103 }
1104
g4x_plane_fifo_size(enum plane_id plane_id,int level)1105 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1106 {
1107 /*
1108 * DSPCNTR[13] supposedly controls whether the
1109 * primary plane can use the FIFO space otherwise
1110 * reserved for the sprite plane. It's not 100% clear
1111 * what the actual FIFO size is, but it looks like we
1112 * can happily set both primary and sprite watermarks
1113 * up to 127 cachelines. So that would seem to mean
1114 * that either DSPCNTR[13] doesn't do anything, or that
1115 * the total FIFO is >= 256 cachelines in size. Either
1116 * way, we don't seem to have to worry about this
1117 * repartitioning as the maximum watermark value the
1118 * register can hold for each plane is lower than the
1119 * minimum FIFO size.
1120 */
1121 switch (plane_id) {
1122 case PLANE_CURSOR:
1123 return 63;
1124 case PLANE_PRIMARY:
1125 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1126 case PLANE_SPRITE0:
1127 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1128 default:
1129 MISSING_CASE(plane_id);
1130 return 0;
1131 }
1132 }
1133
g4x_fbc_fifo_size(int level)1134 static int g4x_fbc_fifo_size(int level)
1135 {
1136 switch (level) {
1137 case G4X_WM_LEVEL_SR:
1138 return 7;
1139 case G4X_WM_LEVEL_HPLL:
1140 return 15;
1141 default:
1142 MISSING_CASE(level);
1143 return 0;
1144 }
1145 }
1146
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1147 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1148 const struct intel_plane_state *plane_state,
1149 int level)
1150 {
1151 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1152 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1153 const struct drm_display_mode *pipe_mode =
1154 &crtc_state->hw.pipe_mode;
1155 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1156 unsigned int clock, htotal, cpp, width, wm;
1157
1158 if (latency == 0)
1159 return USHRT_MAX;
1160
1161 if (!intel_wm_plane_visible(crtc_state, plane_state))
1162 return 0;
1163
1164 cpp = plane_state->hw.fb->format->cpp[0];
1165
1166 /*
1167 * Not 100% sure which way ELK should go here as the
1168 * spec only says CL/CTG should assume 32bpp and BW
1169 * doesn't need to. But as these things followed the
1170 * mobile vs. desktop lines on gen3 as well, let's
1171 * assume ELK doesn't need this.
1172 *
1173 * The spec also fails to list such a restriction for
1174 * the HPLL watermark, which seems a little strange.
1175 * Let's use 32bpp for the HPLL watermark as well.
1176 */
1177 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1178 level != G4X_WM_LEVEL_NORMAL)
1179 cpp = max(cpp, 4u);
1180
1181 clock = pipe_mode->crtc_clock;
1182 htotal = pipe_mode->crtc_htotal;
1183
1184 width = drm_rect_width(&plane_state->uapi.dst);
1185
1186 if (plane->id == PLANE_CURSOR) {
1187 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1188 } else if (plane->id == PLANE_PRIMARY &&
1189 level == G4X_WM_LEVEL_NORMAL) {
1190 wm = intel_wm_method1(clock, cpp, latency);
1191 } else {
1192 unsigned int small, large;
1193
1194 small = intel_wm_method1(clock, cpp, latency);
1195 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1196
1197 wm = min(small, large);
1198 }
1199
1200 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1201 width, cpp);
1202
1203 wm = DIV_ROUND_UP(wm, 64) + 2;
1204
1205 return min_t(unsigned int, wm, USHRT_MAX);
1206 }
1207
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1208 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1209 int level, enum plane_id plane_id, u16 value)
1210 {
1211 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1212 bool dirty = false;
1213
1214 for (; level < intel_wm_num_levels(dev_priv); level++) {
1215 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1216
1217 dirty |= raw->plane[plane_id] != value;
1218 raw->plane[plane_id] = value;
1219 }
1220
1221 return dirty;
1222 }
1223
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1224 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1225 int level, u16 value)
1226 {
1227 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1228 bool dirty = false;
1229
1230 /* NORMAL level doesn't have an FBC watermark */
1231 level = max(level, G4X_WM_LEVEL_SR);
1232
1233 for (; level < intel_wm_num_levels(dev_priv); level++) {
1234 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1235
1236 dirty |= raw->fbc != value;
1237 raw->fbc = value;
1238 }
1239
1240 return dirty;
1241 }
1242
1243 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1244 const struct intel_plane_state *plane_state,
1245 u32 pri_val);
1246
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1247 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1248 const struct intel_plane_state *plane_state)
1249 {
1250 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1251 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1252 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1253 enum plane_id plane_id = plane->id;
1254 bool dirty = false;
1255 int level;
1256
1257 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1258 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1259 if (plane_id == PLANE_PRIMARY)
1260 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1261 goto out;
1262 }
1263
1264 for (level = 0; level < num_levels; level++) {
1265 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1266 int wm, max_wm;
1267
1268 wm = g4x_compute_wm(crtc_state, plane_state, level);
1269 max_wm = g4x_plane_fifo_size(plane_id, level);
1270
1271 if (wm > max_wm)
1272 break;
1273
1274 dirty |= raw->plane[plane_id] != wm;
1275 raw->plane[plane_id] = wm;
1276
1277 if (plane_id != PLANE_PRIMARY ||
1278 level == G4X_WM_LEVEL_NORMAL)
1279 continue;
1280
1281 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1282 raw->plane[plane_id]);
1283 max_wm = g4x_fbc_fifo_size(level);
1284
1285 /*
1286 * FBC wm is not mandatory as we
1287 * can always just disable its use.
1288 */
1289 if (wm > max_wm)
1290 wm = USHRT_MAX;
1291
1292 dirty |= raw->fbc != wm;
1293 raw->fbc = wm;
1294 }
1295
1296 /* mark watermarks as invalid */
1297 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1298
1299 if (plane_id == PLANE_PRIMARY)
1300 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1301
1302 out:
1303 if (dirty) {
1304 drm_dbg_kms(&dev_priv->drm,
1305 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1306 plane->base.name,
1307 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1308 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1309 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1310
1311 if (plane_id == PLANE_PRIMARY)
1312 drm_dbg_kms(&dev_priv->drm,
1313 "FBC watermarks: SR=%d, HPLL=%d\n",
1314 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1315 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1316 }
1317
1318 return dirty;
1319 }
1320
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1321 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1322 enum plane_id plane_id, int level)
1323 {
1324 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1325
1326 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1327 }
1328
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1329 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1330 int level)
1331 {
1332 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1333
1334 if (level > dev_priv->wm.max_level)
1335 return false;
1336
1337 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1338 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1339 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1340 }
1341
1342 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1343 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1344 struct g4x_wm_state *wm_state, int level)
1345 {
1346 if (level <= G4X_WM_LEVEL_NORMAL) {
1347 enum plane_id plane_id;
1348
1349 for_each_plane_id_on_crtc(crtc, plane_id)
1350 wm_state->wm.plane[plane_id] = USHRT_MAX;
1351 }
1352
1353 if (level <= G4X_WM_LEVEL_SR) {
1354 wm_state->cxsr = false;
1355 wm_state->sr.cursor = USHRT_MAX;
1356 wm_state->sr.plane = USHRT_MAX;
1357 wm_state->sr.fbc = USHRT_MAX;
1358 }
1359
1360 if (level <= G4X_WM_LEVEL_HPLL) {
1361 wm_state->hpll_en = false;
1362 wm_state->hpll.cursor = USHRT_MAX;
1363 wm_state->hpll.plane = USHRT_MAX;
1364 wm_state->hpll.fbc = USHRT_MAX;
1365 }
1366 }
1367
g4x_compute_fbc_en(const struct g4x_wm_state * wm_state,int level)1368 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1369 int level)
1370 {
1371 if (level < G4X_WM_LEVEL_SR)
1372 return false;
1373
1374 if (level >= G4X_WM_LEVEL_SR &&
1375 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1376 return false;
1377
1378 if (level >= G4X_WM_LEVEL_HPLL &&
1379 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1380 return false;
1381
1382 return true;
1383 }
1384
g4x_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1385 static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1386 struct intel_crtc *crtc)
1387 {
1388 struct intel_crtc_state *crtc_state =
1389 intel_atomic_get_new_crtc_state(state, crtc);
1390 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1391 int num_active_planes = hweight8(crtc_state->active_planes &
1392 ~BIT(PLANE_CURSOR));
1393 const struct g4x_pipe_wm *raw;
1394 const struct intel_plane_state *old_plane_state;
1395 const struct intel_plane_state *new_plane_state;
1396 struct intel_plane *plane;
1397 enum plane_id plane_id;
1398 int i, level;
1399 unsigned int dirty = 0;
1400
1401 for_each_oldnew_intel_plane_in_state(state, plane,
1402 old_plane_state,
1403 new_plane_state, i) {
1404 if (new_plane_state->hw.crtc != &crtc->base &&
1405 old_plane_state->hw.crtc != &crtc->base)
1406 continue;
1407
1408 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1409 dirty |= BIT(plane->id);
1410 }
1411
1412 if (!dirty)
1413 return 0;
1414
1415 level = G4X_WM_LEVEL_NORMAL;
1416 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1417 goto out;
1418
1419 raw = &crtc_state->wm.g4x.raw[level];
1420 for_each_plane_id_on_crtc(crtc, plane_id)
1421 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1422
1423 level = G4X_WM_LEVEL_SR;
1424 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1425 goto out;
1426
1427 raw = &crtc_state->wm.g4x.raw[level];
1428 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1429 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1430 wm_state->sr.fbc = raw->fbc;
1431
1432 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1433
1434 level = G4X_WM_LEVEL_HPLL;
1435 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1436 goto out;
1437
1438 raw = &crtc_state->wm.g4x.raw[level];
1439 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1440 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1441 wm_state->hpll.fbc = raw->fbc;
1442
1443 wm_state->hpll_en = wm_state->cxsr;
1444
1445 level++;
1446
1447 out:
1448 if (level == G4X_WM_LEVEL_NORMAL)
1449 return -EINVAL;
1450
1451 /* invalidate the higher levels */
1452 g4x_invalidate_wms(crtc, wm_state, level);
1453
1454 /*
1455 * Determine if the FBC watermark(s) can be used. IF
1456 * this isn't the case we prefer to disable the FBC
1457 * watermark(s) rather than disable the SR/HPLL
1458 * level(s) entirely. 'level-1' is the highest valid
1459 * level here.
1460 */
1461 wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1462
1463 return 0;
1464 }
1465
g4x_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1466 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1467 struct intel_crtc *crtc)
1468 {
1469 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1470 struct intel_crtc_state *new_crtc_state =
1471 intel_atomic_get_new_crtc_state(state, crtc);
1472 const struct intel_crtc_state *old_crtc_state =
1473 intel_atomic_get_old_crtc_state(state, crtc);
1474 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1475 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1476 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1477 enum plane_id plane_id;
1478
1479 if (!new_crtc_state->hw.active ||
1480 drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1481 *intermediate = *optimal;
1482
1483 intermediate->cxsr = false;
1484 intermediate->hpll_en = false;
1485 goto out;
1486 }
1487
1488 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1489 !new_crtc_state->disable_cxsr;
1490 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1491 !new_crtc_state->disable_cxsr;
1492 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1493
1494 for_each_plane_id_on_crtc(crtc, plane_id) {
1495 intermediate->wm.plane[plane_id] =
1496 max(optimal->wm.plane[plane_id],
1497 active->wm.plane[plane_id]);
1498
1499 drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1500 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1501 }
1502
1503 intermediate->sr.plane = max(optimal->sr.plane,
1504 active->sr.plane);
1505 intermediate->sr.cursor = max(optimal->sr.cursor,
1506 active->sr.cursor);
1507 intermediate->sr.fbc = max(optimal->sr.fbc,
1508 active->sr.fbc);
1509
1510 intermediate->hpll.plane = max(optimal->hpll.plane,
1511 active->hpll.plane);
1512 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1513 active->hpll.cursor);
1514 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1515 active->hpll.fbc);
1516
1517 drm_WARN_ON(&dev_priv->drm,
1518 (intermediate->sr.plane >
1519 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1520 intermediate->sr.cursor >
1521 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1522 intermediate->cxsr);
1523 drm_WARN_ON(&dev_priv->drm,
1524 (intermediate->sr.plane >
1525 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1526 intermediate->sr.cursor >
1527 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1528 intermediate->hpll_en);
1529
1530 drm_WARN_ON(&dev_priv->drm,
1531 intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1532 intermediate->fbc_en && intermediate->cxsr);
1533 drm_WARN_ON(&dev_priv->drm,
1534 intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1535 intermediate->fbc_en && intermediate->hpll_en);
1536
1537 out:
1538 /*
1539 * If our intermediate WM are identical to the final WM, then we can
1540 * omit the post-vblank programming; only update if it's different.
1541 */
1542 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1543 new_crtc_state->wm.need_postvbl_update = true;
1544
1545 return 0;
1546 }
1547
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1548 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1549 struct g4x_wm_values *wm)
1550 {
1551 struct intel_crtc *crtc;
1552 int num_active_pipes = 0;
1553
1554 wm->cxsr = true;
1555 wm->hpll_en = true;
1556 wm->fbc_en = true;
1557
1558 for_each_intel_crtc(&dev_priv->drm, crtc) {
1559 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1560
1561 if (!crtc->active)
1562 continue;
1563
1564 if (!wm_state->cxsr)
1565 wm->cxsr = false;
1566 if (!wm_state->hpll_en)
1567 wm->hpll_en = false;
1568 if (!wm_state->fbc_en)
1569 wm->fbc_en = false;
1570
1571 num_active_pipes++;
1572 }
1573
1574 if (num_active_pipes != 1) {
1575 wm->cxsr = false;
1576 wm->hpll_en = false;
1577 wm->fbc_en = false;
1578 }
1579
1580 for_each_intel_crtc(&dev_priv->drm, crtc) {
1581 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1582 enum pipe pipe = crtc->pipe;
1583
1584 wm->pipe[pipe] = wm_state->wm;
1585 if (crtc->active && wm->cxsr)
1586 wm->sr = wm_state->sr;
1587 if (crtc->active && wm->hpll_en)
1588 wm->hpll = wm_state->hpll;
1589 }
1590 }
1591
g4x_program_watermarks(struct drm_i915_private * dev_priv)1592 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1593 {
1594 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1595 struct g4x_wm_values new_wm = {};
1596
1597 g4x_merge_wm(dev_priv, &new_wm);
1598
1599 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1600 return;
1601
1602 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1603 _intel_set_memory_cxsr(dev_priv, false);
1604
1605 g4x_write_wm_values(dev_priv, &new_wm);
1606
1607 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1608 _intel_set_memory_cxsr(dev_priv, true);
1609
1610 *old_wm = new_wm;
1611 }
1612
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1613 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1614 struct intel_crtc *crtc)
1615 {
1616 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1617 const struct intel_crtc_state *crtc_state =
1618 intel_atomic_get_new_crtc_state(state, crtc);
1619
1620 mutex_lock(&dev_priv->wm.wm_mutex);
1621 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1622 g4x_program_watermarks(dev_priv);
1623 mutex_unlock(&dev_priv->wm.wm_mutex);
1624 }
1625
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1626 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1627 struct intel_crtc *crtc)
1628 {
1629 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1630 const struct intel_crtc_state *crtc_state =
1631 intel_atomic_get_new_crtc_state(state, crtc);
1632
1633 if (!crtc_state->wm.need_postvbl_update)
1634 return;
1635
1636 mutex_lock(&dev_priv->wm.wm_mutex);
1637 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1638 g4x_program_watermarks(dev_priv);
1639 mutex_unlock(&dev_priv->wm.wm_mutex);
1640 }
1641
1642 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1643 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1644 unsigned int htotal,
1645 unsigned int width,
1646 unsigned int cpp,
1647 unsigned int latency)
1648 {
1649 unsigned int ret;
1650
1651 ret = intel_wm_method2(pixel_rate, htotal,
1652 width, cpp, latency);
1653 ret = DIV_ROUND_UP(ret, 64);
1654
1655 return ret;
1656 }
1657
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1658 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1659 {
1660 /* all latencies in usec */
1661 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1662
1663 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1664
1665 if (IS_CHERRYVIEW(dev_priv)) {
1666 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1667 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1668
1669 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1670 }
1671 }
1672
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1673 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1674 const struct intel_plane_state *plane_state,
1675 int level)
1676 {
1677 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1678 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1679 const struct drm_display_mode *pipe_mode =
1680 &crtc_state->hw.pipe_mode;
1681 unsigned int clock, htotal, cpp, width, wm;
1682
1683 if (dev_priv->wm.pri_latency[level] == 0)
1684 return USHRT_MAX;
1685
1686 if (!intel_wm_plane_visible(crtc_state, plane_state))
1687 return 0;
1688
1689 cpp = plane_state->hw.fb->format->cpp[0];
1690 clock = pipe_mode->crtc_clock;
1691 htotal = pipe_mode->crtc_htotal;
1692 width = crtc_state->pipe_src_w;
1693
1694 if (plane->id == PLANE_CURSOR) {
1695 /*
1696 * FIXME the formula gives values that are
1697 * too big for the cursor FIFO, and hence we
1698 * would never be able to use cursors. For
1699 * now just hardcode the watermark.
1700 */
1701 wm = 63;
1702 } else {
1703 wm = vlv_wm_method2(clock, htotal, width, cpp,
1704 dev_priv->wm.pri_latency[level] * 10);
1705 }
1706
1707 return min_t(unsigned int, wm, USHRT_MAX);
1708 }
1709
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1710 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1711 {
1712 return (active_planes & (BIT(PLANE_SPRITE0) |
1713 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1714 }
1715
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1716 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1717 {
1718 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1719 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1720 const struct g4x_pipe_wm *raw =
1721 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1722 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1723 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1724 int num_active_planes = hweight8(active_planes);
1725 const int fifo_size = 511;
1726 int fifo_extra, fifo_left = fifo_size;
1727 int sprite0_fifo_extra = 0;
1728 unsigned int total_rate;
1729 enum plane_id plane_id;
1730
1731 /*
1732 * When enabling sprite0 after sprite1 has already been enabled
1733 * we tend to get an underrun unless sprite0 already has some
1734 * FIFO space allcoated. Hence we always allocate at least one
1735 * cacheline for sprite0 whenever sprite1 is enabled.
1736 *
1737 * All other plane enable sequences appear immune to this problem.
1738 */
1739 if (vlv_need_sprite0_fifo_workaround(active_planes))
1740 sprite0_fifo_extra = 1;
1741
1742 total_rate = raw->plane[PLANE_PRIMARY] +
1743 raw->plane[PLANE_SPRITE0] +
1744 raw->plane[PLANE_SPRITE1] +
1745 sprite0_fifo_extra;
1746
1747 if (total_rate > fifo_size)
1748 return -EINVAL;
1749
1750 if (total_rate == 0)
1751 total_rate = 1;
1752
1753 for_each_plane_id_on_crtc(crtc, plane_id) {
1754 unsigned int rate;
1755
1756 if ((active_planes & BIT(plane_id)) == 0) {
1757 fifo_state->plane[plane_id] = 0;
1758 continue;
1759 }
1760
1761 rate = raw->plane[plane_id];
1762 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1763 fifo_left -= fifo_state->plane[plane_id];
1764 }
1765
1766 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1767 fifo_left -= sprite0_fifo_extra;
1768
1769 fifo_state->plane[PLANE_CURSOR] = 63;
1770
1771 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1772
1773 /* spread the remainder evenly */
1774 for_each_plane_id_on_crtc(crtc, plane_id) {
1775 int plane_extra;
1776
1777 if (fifo_left == 0)
1778 break;
1779
1780 if ((active_planes & BIT(plane_id)) == 0)
1781 continue;
1782
1783 plane_extra = min(fifo_extra, fifo_left);
1784 fifo_state->plane[plane_id] += plane_extra;
1785 fifo_left -= plane_extra;
1786 }
1787
1788 drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1789
1790 /* give it all to the first plane if none are active */
1791 if (active_planes == 0) {
1792 drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1793 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1794 }
1795
1796 return 0;
1797 }
1798
1799 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1800 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1801 struct vlv_wm_state *wm_state, int level)
1802 {
1803 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1804
1805 for (; level < intel_wm_num_levels(dev_priv); level++) {
1806 enum plane_id plane_id;
1807
1808 for_each_plane_id_on_crtc(crtc, plane_id)
1809 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1810
1811 wm_state->sr[level].cursor = USHRT_MAX;
1812 wm_state->sr[level].plane = USHRT_MAX;
1813 }
1814 }
1815
vlv_invert_wm_value(u16 wm,u16 fifo_size)1816 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1817 {
1818 if (wm > fifo_size)
1819 return USHRT_MAX;
1820 else
1821 return fifo_size - wm;
1822 }
1823
1824 /*
1825 * Starting from 'level' set all higher
1826 * levels to 'value' in the "raw" watermarks.
1827 */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1828 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1829 int level, enum plane_id plane_id, u16 value)
1830 {
1831 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1832 int num_levels = intel_wm_num_levels(dev_priv);
1833 bool dirty = false;
1834
1835 for (; level < num_levels; level++) {
1836 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1837
1838 dirty |= raw->plane[plane_id] != value;
1839 raw->plane[plane_id] = value;
1840 }
1841
1842 return dirty;
1843 }
1844
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1845 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1846 const struct intel_plane_state *plane_state)
1847 {
1848 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1849 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1850 enum plane_id plane_id = plane->id;
1851 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1852 int level;
1853 bool dirty = false;
1854
1855 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1856 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1857 goto out;
1858 }
1859
1860 for (level = 0; level < num_levels; level++) {
1861 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1862 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1863 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1864
1865 if (wm > max_wm)
1866 break;
1867
1868 dirty |= raw->plane[plane_id] != wm;
1869 raw->plane[plane_id] = wm;
1870 }
1871
1872 /* mark all higher levels as invalid */
1873 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1874
1875 out:
1876 if (dirty)
1877 drm_dbg_kms(&dev_priv->drm,
1878 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1879 plane->base.name,
1880 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1881 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1882 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1883
1884 return dirty;
1885 }
1886
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1887 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1888 enum plane_id plane_id, int level)
1889 {
1890 const struct g4x_pipe_wm *raw =
1891 &crtc_state->wm.vlv.raw[level];
1892 const struct vlv_fifo_state *fifo_state =
1893 &crtc_state->wm.vlv.fifo_state;
1894
1895 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1896 }
1897
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1898 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1899 {
1900 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1901 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1902 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1903 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1904 }
1905
vlv_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1906 static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1907 struct intel_crtc *crtc)
1908 {
1909 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1910 struct intel_crtc_state *crtc_state =
1911 intel_atomic_get_new_crtc_state(state, crtc);
1912 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1913 const struct vlv_fifo_state *fifo_state =
1914 &crtc_state->wm.vlv.fifo_state;
1915 int num_active_planes = hweight8(crtc_state->active_planes &
1916 ~BIT(PLANE_CURSOR));
1917 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1918 const struct intel_plane_state *old_plane_state;
1919 const struct intel_plane_state *new_plane_state;
1920 struct intel_plane *plane;
1921 enum plane_id plane_id;
1922 int level, ret, i;
1923 unsigned int dirty = 0;
1924
1925 for_each_oldnew_intel_plane_in_state(state, plane,
1926 old_plane_state,
1927 new_plane_state, i) {
1928 if (new_plane_state->hw.crtc != &crtc->base &&
1929 old_plane_state->hw.crtc != &crtc->base)
1930 continue;
1931
1932 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1933 dirty |= BIT(plane->id);
1934 }
1935
1936 /*
1937 * DSPARB registers may have been reset due to the
1938 * power well being turned off. Make sure we restore
1939 * them to a consistent state even if no primary/sprite
1940 * planes are initially active.
1941 */
1942 if (needs_modeset)
1943 crtc_state->fifo_changed = true;
1944
1945 if (!dirty)
1946 return 0;
1947
1948 /* cursor changes don't warrant a FIFO recompute */
1949 if (dirty & ~BIT(PLANE_CURSOR)) {
1950 const struct intel_crtc_state *old_crtc_state =
1951 intel_atomic_get_old_crtc_state(state, crtc);
1952 const struct vlv_fifo_state *old_fifo_state =
1953 &old_crtc_state->wm.vlv.fifo_state;
1954
1955 ret = vlv_compute_fifo(crtc_state);
1956 if (ret)
1957 return ret;
1958
1959 if (needs_modeset ||
1960 memcmp(old_fifo_state, fifo_state,
1961 sizeof(*fifo_state)) != 0)
1962 crtc_state->fifo_changed = true;
1963 }
1964
1965 /* initially allow all levels */
1966 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1967 /*
1968 * Note that enabling cxsr with no primary/sprite planes
1969 * enabled can wedge the pipe. Hence we only allow cxsr
1970 * with exactly one enabled primary/sprite plane.
1971 */
1972 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1973
1974 for (level = 0; level < wm_state->num_levels; level++) {
1975 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1976 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1977
1978 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1979 break;
1980
1981 for_each_plane_id_on_crtc(crtc, plane_id) {
1982 wm_state->wm[level].plane[plane_id] =
1983 vlv_invert_wm_value(raw->plane[plane_id],
1984 fifo_state->plane[plane_id]);
1985 }
1986
1987 wm_state->sr[level].plane =
1988 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1989 raw->plane[PLANE_SPRITE0],
1990 raw->plane[PLANE_SPRITE1]),
1991 sr_fifo_size);
1992
1993 wm_state->sr[level].cursor =
1994 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1995 63);
1996 }
1997
1998 if (level == 0)
1999 return -EINVAL;
2000
2001 /* limit to only levels we can actually handle */
2002 wm_state->num_levels = level;
2003
2004 /* invalidate the higher levels */
2005 vlv_invalidate_wms(crtc, wm_state, level);
2006
2007 return 0;
2008 }
2009
2010 #define VLV_FIFO(plane, value) \
2011 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
2012
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc * crtc)2013 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
2014 struct intel_crtc *crtc)
2015 {
2016 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2017 struct intel_uncore *uncore = &dev_priv->uncore;
2018 const struct intel_crtc_state *crtc_state =
2019 intel_atomic_get_new_crtc_state(state, crtc);
2020 const struct vlv_fifo_state *fifo_state =
2021 &crtc_state->wm.vlv.fifo_state;
2022 int sprite0_start, sprite1_start, fifo_size;
2023 u32 dsparb, dsparb2, dsparb3;
2024
2025 if (!crtc_state->fifo_changed)
2026 return;
2027
2028 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
2029 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
2030 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2031
2032 drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
2033 drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2034
2035 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2036
2037 /*
2038 * uncore.lock serves a double purpose here. It allows us to
2039 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2040 * it protects the DSPARB registers from getting clobbered by
2041 * parallel updates from multiple pipes.
2042 *
2043 * intel_pipe_update_start() has already disabled interrupts
2044 * for us, so a plain spin_lock() is sufficient here.
2045 */
2046 spin_lock(&uncore->lock);
2047
2048 switch (crtc->pipe) {
2049 case PIPE_A:
2050 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2051 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2052
2053 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2054 VLV_FIFO(SPRITEB, 0xff));
2055 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2056 VLV_FIFO(SPRITEB, sprite1_start));
2057
2058 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2059 VLV_FIFO(SPRITEB_HI, 0x1));
2060 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2061 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2062
2063 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2064 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2065 break;
2066 case PIPE_B:
2067 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2068 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2069
2070 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2071 VLV_FIFO(SPRITED, 0xff));
2072 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2073 VLV_FIFO(SPRITED, sprite1_start));
2074
2075 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2076 VLV_FIFO(SPRITED_HI, 0xff));
2077 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2078 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2079
2080 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2081 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2082 break;
2083 case PIPE_C:
2084 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2085 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2086
2087 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2088 VLV_FIFO(SPRITEF, 0xff));
2089 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2090 VLV_FIFO(SPRITEF, sprite1_start));
2091
2092 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2093 VLV_FIFO(SPRITEF_HI, 0xff));
2094 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2095 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2096
2097 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2098 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2099 break;
2100 default:
2101 break;
2102 }
2103
2104 intel_uncore_posting_read_fw(uncore, DSPARB);
2105
2106 spin_unlock(&uncore->lock);
2107 }
2108
2109 #undef VLV_FIFO
2110
vlv_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2111 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
2112 struct intel_crtc *crtc)
2113 {
2114 struct intel_crtc_state *new_crtc_state =
2115 intel_atomic_get_new_crtc_state(state, crtc);
2116 const struct intel_crtc_state *old_crtc_state =
2117 intel_atomic_get_old_crtc_state(state, crtc);
2118 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2119 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2120 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2121 int level;
2122
2123 if (!new_crtc_state->hw.active ||
2124 drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2125 *intermediate = *optimal;
2126
2127 intermediate->cxsr = false;
2128 goto out;
2129 }
2130
2131 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2132 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2133 !new_crtc_state->disable_cxsr;
2134
2135 for (level = 0; level < intermediate->num_levels; level++) {
2136 enum plane_id plane_id;
2137
2138 for_each_plane_id_on_crtc(crtc, plane_id) {
2139 intermediate->wm[level].plane[plane_id] =
2140 min(optimal->wm[level].plane[plane_id],
2141 active->wm[level].plane[plane_id]);
2142 }
2143
2144 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2145 active->sr[level].plane);
2146 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2147 active->sr[level].cursor);
2148 }
2149
2150 vlv_invalidate_wms(crtc, intermediate, level);
2151
2152 out:
2153 /*
2154 * If our intermediate WM are identical to the final WM, then we can
2155 * omit the post-vblank programming; only update if it's different.
2156 */
2157 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2158 new_crtc_state->wm.need_postvbl_update = true;
2159
2160 return 0;
2161 }
2162
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2163 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2164 struct vlv_wm_values *wm)
2165 {
2166 struct intel_crtc *crtc;
2167 int num_active_pipes = 0;
2168
2169 wm->level = dev_priv->wm.max_level;
2170 wm->cxsr = true;
2171
2172 for_each_intel_crtc(&dev_priv->drm, crtc) {
2173 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2174
2175 if (!crtc->active)
2176 continue;
2177
2178 if (!wm_state->cxsr)
2179 wm->cxsr = false;
2180
2181 num_active_pipes++;
2182 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2183 }
2184
2185 if (num_active_pipes != 1)
2186 wm->cxsr = false;
2187
2188 if (num_active_pipes > 1)
2189 wm->level = VLV_WM_LEVEL_PM2;
2190
2191 for_each_intel_crtc(&dev_priv->drm, crtc) {
2192 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2193 enum pipe pipe = crtc->pipe;
2194
2195 wm->pipe[pipe] = wm_state->wm[wm->level];
2196 if (crtc->active && wm->cxsr)
2197 wm->sr = wm_state->sr[wm->level];
2198
2199 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2200 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2201 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2202 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2203 }
2204 }
2205
vlv_program_watermarks(struct drm_i915_private * dev_priv)2206 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2207 {
2208 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2209 struct vlv_wm_values new_wm = {};
2210
2211 vlv_merge_wm(dev_priv, &new_wm);
2212
2213 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2214 return;
2215
2216 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2217 chv_set_memory_dvfs(dev_priv, false);
2218
2219 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2220 chv_set_memory_pm5(dev_priv, false);
2221
2222 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2223 _intel_set_memory_cxsr(dev_priv, false);
2224
2225 vlv_write_wm_values(dev_priv, &new_wm);
2226
2227 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2228 _intel_set_memory_cxsr(dev_priv, true);
2229
2230 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2231 chv_set_memory_pm5(dev_priv, true);
2232
2233 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2234 chv_set_memory_dvfs(dev_priv, true);
2235
2236 *old_wm = new_wm;
2237 }
2238
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2239 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2240 struct intel_crtc *crtc)
2241 {
2242 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2243 const struct intel_crtc_state *crtc_state =
2244 intel_atomic_get_new_crtc_state(state, crtc);
2245
2246 mutex_lock(&dev_priv->wm.wm_mutex);
2247 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2248 vlv_program_watermarks(dev_priv);
2249 mutex_unlock(&dev_priv->wm.wm_mutex);
2250 }
2251
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2252 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2253 struct intel_crtc *crtc)
2254 {
2255 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2256 const struct intel_crtc_state *crtc_state =
2257 intel_atomic_get_new_crtc_state(state, crtc);
2258
2259 if (!crtc_state->wm.need_postvbl_update)
2260 return;
2261
2262 mutex_lock(&dev_priv->wm.wm_mutex);
2263 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2264 vlv_program_watermarks(dev_priv);
2265 mutex_unlock(&dev_priv->wm.wm_mutex);
2266 }
2267
i965_update_wm(struct intel_crtc * unused_crtc)2268 static void i965_update_wm(struct intel_crtc *unused_crtc)
2269 {
2270 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2271 struct intel_crtc *crtc;
2272 int srwm = 1;
2273 int cursor_sr = 16;
2274 bool cxsr_enabled;
2275
2276 /* Calc sr entries for one plane configs */
2277 crtc = single_enabled_crtc(dev_priv);
2278 if (crtc) {
2279 /* self-refresh has much higher latency */
2280 static const int sr_latency_ns = 12000;
2281 const struct drm_display_mode *pipe_mode =
2282 &crtc->config->hw.pipe_mode;
2283 const struct drm_framebuffer *fb =
2284 crtc->base.primary->state->fb;
2285 int clock = pipe_mode->crtc_clock;
2286 int htotal = pipe_mode->crtc_htotal;
2287 int hdisplay = crtc->config->pipe_src_w;
2288 int cpp = fb->format->cpp[0];
2289 int entries;
2290
2291 entries = intel_wm_method2(clock, htotal,
2292 hdisplay, cpp, sr_latency_ns / 100);
2293 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2294 srwm = I965_FIFO_SIZE - entries;
2295 if (srwm < 0)
2296 srwm = 1;
2297 srwm &= 0x1ff;
2298 drm_dbg_kms(&dev_priv->drm,
2299 "self-refresh entries: %d, wm: %d\n",
2300 entries, srwm);
2301
2302 entries = intel_wm_method2(clock, htotal,
2303 crtc->base.cursor->state->crtc_w, 4,
2304 sr_latency_ns / 100);
2305 entries = DIV_ROUND_UP(entries,
2306 i965_cursor_wm_info.cacheline_size) +
2307 i965_cursor_wm_info.guard_size;
2308
2309 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2310 if (cursor_sr > i965_cursor_wm_info.max_wm)
2311 cursor_sr = i965_cursor_wm_info.max_wm;
2312
2313 drm_dbg_kms(&dev_priv->drm,
2314 "self-refresh watermark: display plane %d "
2315 "cursor %d\n", srwm, cursor_sr);
2316
2317 cxsr_enabled = true;
2318 } else {
2319 cxsr_enabled = false;
2320 /* Turn off self refresh if both pipes are enabled */
2321 intel_set_memory_cxsr(dev_priv, false);
2322 }
2323
2324 drm_dbg_kms(&dev_priv->drm,
2325 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2326 srwm);
2327
2328 /* 965 has limitations... */
2329 intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2330 FW_WM(8, CURSORB) |
2331 FW_WM(8, PLANEB) |
2332 FW_WM(8, PLANEA));
2333 intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2334 FW_WM(8, PLANEC_OLD));
2335 /* update cursor SR watermark */
2336 intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2337
2338 if (cxsr_enabled)
2339 intel_set_memory_cxsr(dev_priv, true);
2340 }
2341
2342 #undef FW_WM
2343
i9xx_update_wm(struct intel_crtc * unused_crtc)2344 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2345 {
2346 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2347 const struct intel_watermark_params *wm_info;
2348 u32 fwater_lo;
2349 u32 fwater_hi;
2350 int cwm, srwm = 1;
2351 int fifo_size;
2352 int planea_wm, planeb_wm;
2353 struct intel_crtc *crtc, *enabled = NULL;
2354
2355 if (IS_I945GM(dev_priv))
2356 wm_info = &i945_wm_info;
2357 else if (DISPLAY_VER(dev_priv) != 2)
2358 wm_info = &i915_wm_info;
2359 else
2360 wm_info = &i830_a_wm_info;
2361
2362 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2363 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2364 if (intel_crtc_active(crtc)) {
2365 const struct drm_display_mode *pipe_mode =
2366 &crtc->config->hw.pipe_mode;
2367 const struct drm_framebuffer *fb =
2368 crtc->base.primary->state->fb;
2369 int cpp;
2370
2371 if (DISPLAY_VER(dev_priv) == 2)
2372 cpp = 4;
2373 else
2374 cpp = fb->format->cpp[0];
2375
2376 planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2377 wm_info, fifo_size, cpp,
2378 pessimal_latency_ns);
2379 enabled = crtc;
2380 } else {
2381 planea_wm = fifo_size - wm_info->guard_size;
2382 if (planea_wm > (long)wm_info->max_wm)
2383 planea_wm = wm_info->max_wm;
2384 }
2385
2386 if (DISPLAY_VER(dev_priv) == 2)
2387 wm_info = &i830_bc_wm_info;
2388
2389 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2390 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2391 if (intel_crtc_active(crtc)) {
2392 const struct drm_display_mode *pipe_mode =
2393 &crtc->config->hw.pipe_mode;
2394 const struct drm_framebuffer *fb =
2395 crtc->base.primary->state->fb;
2396 int cpp;
2397
2398 if (DISPLAY_VER(dev_priv) == 2)
2399 cpp = 4;
2400 else
2401 cpp = fb->format->cpp[0];
2402
2403 planeb_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2404 wm_info, fifo_size, cpp,
2405 pessimal_latency_ns);
2406 if (enabled == NULL)
2407 enabled = crtc;
2408 else
2409 enabled = NULL;
2410 } else {
2411 planeb_wm = fifo_size - wm_info->guard_size;
2412 if (planeb_wm > (long)wm_info->max_wm)
2413 planeb_wm = wm_info->max_wm;
2414 }
2415
2416 drm_dbg_kms(&dev_priv->drm,
2417 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2418
2419 if (IS_I915GM(dev_priv) && enabled) {
2420 struct drm_i915_gem_object *obj;
2421
2422 obj = intel_fb_obj(enabled->base.primary->state->fb);
2423
2424 /* self-refresh seems busted with untiled */
2425 if (!i915_gem_object_is_tiled(obj))
2426 enabled = NULL;
2427 }
2428
2429 /*
2430 * Overlay gets an aggressive default since video jitter is bad.
2431 */
2432 cwm = 2;
2433
2434 /* Play safe and disable self-refresh before adjusting watermarks. */
2435 intel_set_memory_cxsr(dev_priv, false);
2436
2437 /* Calc sr entries for one plane configs */
2438 if (HAS_FW_BLC(dev_priv) && enabled) {
2439 /* self-refresh has much higher latency */
2440 static const int sr_latency_ns = 6000;
2441 const struct drm_display_mode *pipe_mode =
2442 &enabled->config->hw.pipe_mode;
2443 const struct drm_framebuffer *fb =
2444 enabled->base.primary->state->fb;
2445 int clock = pipe_mode->crtc_clock;
2446 int htotal = pipe_mode->crtc_htotal;
2447 int hdisplay = enabled->config->pipe_src_w;
2448 int cpp;
2449 int entries;
2450
2451 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2452 cpp = 4;
2453 else
2454 cpp = fb->format->cpp[0];
2455
2456 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2457 sr_latency_ns / 100);
2458 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2459 drm_dbg_kms(&dev_priv->drm,
2460 "self-refresh entries: %d\n", entries);
2461 srwm = wm_info->fifo_size - entries;
2462 if (srwm < 0)
2463 srwm = 1;
2464
2465 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2466 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2467 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2468 else
2469 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2470 }
2471
2472 drm_dbg_kms(&dev_priv->drm,
2473 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2474 planea_wm, planeb_wm, cwm, srwm);
2475
2476 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2477 fwater_hi = (cwm & 0x1f);
2478
2479 /* Set request length to 8 cachelines per fetch */
2480 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2481 fwater_hi = fwater_hi | (1 << 8);
2482
2483 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2484 intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2485
2486 if (enabled)
2487 intel_set_memory_cxsr(dev_priv, true);
2488 }
2489
i845_update_wm(struct intel_crtc * unused_crtc)2490 static void i845_update_wm(struct intel_crtc *unused_crtc)
2491 {
2492 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2493 struct intel_crtc *crtc;
2494 const struct drm_display_mode *pipe_mode;
2495 u32 fwater_lo;
2496 int planea_wm;
2497
2498 crtc = single_enabled_crtc(dev_priv);
2499 if (crtc == NULL)
2500 return;
2501
2502 pipe_mode = &crtc->config->hw.pipe_mode;
2503 planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2504 &i845_wm_info,
2505 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2506 4, pessimal_latency_ns);
2507 fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2508 fwater_lo |= (3<<8) | planea_wm;
2509
2510 drm_dbg_kms(&dev_priv->drm,
2511 "Setting FIFO watermarks - A: %d\n", planea_wm);
2512
2513 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2514 }
2515
2516 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2517 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2518 unsigned int cpp,
2519 unsigned int latency)
2520 {
2521 unsigned int ret;
2522
2523 ret = intel_wm_method1(pixel_rate, cpp, latency);
2524 ret = DIV_ROUND_UP(ret, 64) + 2;
2525
2526 return ret;
2527 }
2528
2529 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2530 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2531 unsigned int htotal,
2532 unsigned int width,
2533 unsigned int cpp,
2534 unsigned int latency)
2535 {
2536 unsigned int ret;
2537
2538 ret = intel_wm_method2(pixel_rate, htotal,
2539 width, cpp, latency);
2540 ret = DIV_ROUND_UP(ret, 64) + 2;
2541
2542 return ret;
2543 }
2544
ilk_wm_fbc(u32 pri_val,u32 horiz_pixels,u8 cpp)2545 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2546 {
2547 /*
2548 * Neither of these should be possible since this function shouldn't be
2549 * called if the CRTC is off or the plane is invisible. But let's be
2550 * extra paranoid to avoid a potential divide-by-zero if we screw up
2551 * elsewhere in the driver.
2552 */
2553 if (WARN_ON(!cpp))
2554 return 0;
2555 if (WARN_ON(!horiz_pixels))
2556 return 0;
2557
2558 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2559 }
2560
2561 struct ilk_wm_maximums {
2562 u16 pri;
2563 u16 spr;
2564 u16 cur;
2565 u16 fbc;
2566 };
2567
2568 /*
2569 * For both WM_PIPE and WM_LP.
2570 * mem_value must be in 0.1us units.
2571 */
ilk_compute_pri_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value,bool is_lp)2572 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2573 const struct intel_plane_state *plane_state,
2574 u32 mem_value, bool is_lp)
2575 {
2576 u32 method1, method2;
2577 int cpp;
2578
2579 if (mem_value == 0)
2580 return U32_MAX;
2581
2582 if (!intel_wm_plane_visible(crtc_state, plane_state))
2583 return 0;
2584
2585 cpp = plane_state->hw.fb->format->cpp[0];
2586
2587 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2588
2589 if (!is_lp)
2590 return method1;
2591
2592 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2593 crtc_state->hw.pipe_mode.crtc_htotal,
2594 drm_rect_width(&plane_state->uapi.dst),
2595 cpp, mem_value);
2596
2597 return min(method1, method2);
2598 }
2599
2600 /*
2601 * For both WM_PIPE and WM_LP.
2602 * mem_value must be in 0.1us units.
2603 */
ilk_compute_spr_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2604 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2605 const struct intel_plane_state *plane_state,
2606 u32 mem_value)
2607 {
2608 u32 method1, method2;
2609 int cpp;
2610
2611 if (mem_value == 0)
2612 return U32_MAX;
2613
2614 if (!intel_wm_plane_visible(crtc_state, plane_state))
2615 return 0;
2616
2617 cpp = plane_state->hw.fb->format->cpp[0];
2618
2619 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2620 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2621 crtc_state->hw.pipe_mode.crtc_htotal,
2622 drm_rect_width(&plane_state->uapi.dst),
2623 cpp, mem_value);
2624 return min(method1, method2);
2625 }
2626
2627 /*
2628 * For both WM_PIPE and WM_LP.
2629 * mem_value must be in 0.1us units.
2630 */
ilk_compute_cur_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2631 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2632 const struct intel_plane_state *plane_state,
2633 u32 mem_value)
2634 {
2635 int cpp;
2636
2637 if (mem_value == 0)
2638 return U32_MAX;
2639
2640 if (!intel_wm_plane_visible(crtc_state, plane_state))
2641 return 0;
2642
2643 cpp = plane_state->hw.fb->format->cpp[0];
2644
2645 return ilk_wm_method2(crtc_state->pixel_rate,
2646 crtc_state->hw.pipe_mode.crtc_htotal,
2647 drm_rect_width(&plane_state->uapi.dst),
2648 cpp, mem_value);
2649 }
2650
2651 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 pri_val)2652 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2653 const struct intel_plane_state *plane_state,
2654 u32 pri_val)
2655 {
2656 int cpp;
2657
2658 if (!intel_wm_plane_visible(crtc_state, plane_state))
2659 return 0;
2660
2661 cpp = plane_state->hw.fb->format->cpp[0];
2662
2663 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2664 cpp);
2665 }
2666
2667 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2668 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2669 {
2670 if (DISPLAY_VER(dev_priv) >= 8)
2671 return 3072;
2672 else if (DISPLAY_VER(dev_priv) >= 7)
2673 return 768;
2674 else
2675 return 512;
2676 }
2677
2678 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2679 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2680 int level, bool is_sprite)
2681 {
2682 if (DISPLAY_VER(dev_priv) >= 8)
2683 /* BDW primary/sprite plane watermarks */
2684 return level == 0 ? 255 : 2047;
2685 else if (DISPLAY_VER(dev_priv) >= 7)
2686 /* IVB/HSW primary/sprite plane watermarks */
2687 return level == 0 ? 127 : 1023;
2688 else if (!is_sprite)
2689 /* ILK/SNB primary plane watermarks */
2690 return level == 0 ? 127 : 511;
2691 else
2692 /* ILK/SNB sprite plane watermarks */
2693 return level == 0 ? 63 : 255;
2694 }
2695
2696 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2697 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2698 {
2699 if (DISPLAY_VER(dev_priv) >= 7)
2700 return level == 0 ? 63 : 255;
2701 else
2702 return level == 0 ? 31 : 63;
2703 }
2704
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2705 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2706 {
2707 if (DISPLAY_VER(dev_priv) >= 8)
2708 return 31;
2709 else
2710 return 15;
2711 }
2712
2713 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2714 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2715 int level,
2716 const struct intel_wm_config *config,
2717 enum intel_ddb_partitioning ddb_partitioning,
2718 bool is_sprite)
2719 {
2720 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2721
2722 /* if sprites aren't enabled, sprites get nothing */
2723 if (is_sprite && !config->sprites_enabled)
2724 return 0;
2725
2726 /* HSW allows LP1+ watermarks even with multiple pipes */
2727 if (level == 0 || config->num_pipes_active > 1) {
2728 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2729
2730 /*
2731 * For some reason the non self refresh
2732 * FIFO size is only half of the self
2733 * refresh FIFO size on ILK/SNB.
2734 */
2735 if (DISPLAY_VER(dev_priv) <= 6)
2736 fifo_size /= 2;
2737 }
2738
2739 if (config->sprites_enabled) {
2740 /* level 0 is always calculated with 1:1 split */
2741 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2742 if (is_sprite)
2743 fifo_size *= 5;
2744 fifo_size /= 6;
2745 } else {
2746 fifo_size /= 2;
2747 }
2748 }
2749
2750 /* clamp to max that the registers can hold */
2751 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2752 }
2753
2754 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config)2755 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2756 int level,
2757 const struct intel_wm_config *config)
2758 {
2759 /* HSW LP1+ watermarks w/ multiple pipes */
2760 if (level > 0 && config->num_pipes_active > 1)
2761 return 64;
2762
2763 /* otherwise just report max that registers can hold */
2764 return ilk_cursor_wm_reg_max(dev_priv, level);
2765 }
2766
ilk_compute_wm_maximums(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2767 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2768 int level,
2769 const struct intel_wm_config *config,
2770 enum intel_ddb_partitioning ddb_partitioning,
2771 struct ilk_wm_maximums *max)
2772 {
2773 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2774 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2775 max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2776 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2777 }
2778
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2779 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2780 int level,
2781 struct ilk_wm_maximums *max)
2782 {
2783 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2784 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2785 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2786 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2787 }
2788
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2789 static bool ilk_validate_wm_level(int level,
2790 const struct ilk_wm_maximums *max,
2791 struct intel_wm_level *result)
2792 {
2793 bool ret;
2794
2795 /* already determined to be invalid? */
2796 if (!result->enable)
2797 return false;
2798
2799 result->enable = result->pri_val <= max->pri &&
2800 result->spr_val <= max->spr &&
2801 result->cur_val <= max->cur;
2802
2803 ret = result->enable;
2804
2805 /*
2806 * HACK until we can pre-compute everything,
2807 * and thus fail gracefully if LP0 watermarks
2808 * are exceeded...
2809 */
2810 if (level == 0 && !result->enable) {
2811 if (result->pri_val > max->pri)
2812 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2813 level, result->pri_val, max->pri);
2814 if (result->spr_val > max->spr)
2815 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2816 level, result->spr_val, max->spr);
2817 if (result->cur_val > max->cur)
2818 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2819 level, result->cur_val, max->cur);
2820
2821 result->pri_val = min_t(u32, result->pri_val, max->pri);
2822 result->spr_val = min_t(u32, result->spr_val, max->spr);
2823 result->cur_val = min_t(u32, result->cur_val, max->cur);
2824 result->enable = true;
2825 }
2826
2827 return ret;
2828 }
2829
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * crtc,int level,struct intel_crtc_state * crtc_state,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2830 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2831 const struct intel_crtc *crtc,
2832 int level,
2833 struct intel_crtc_state *crtc_state,
2834 const struct intel_plane_state *pristate,
2835 const struct intel_plane_state *sprstate,
2836 const struct intel_plane_state *curstate,
2837 struct intel_wm_level *result)
2838 {
2839 u16 pri_latency = dev_priv->wm.pri_latency[level];
2840 u16 spr_latency = dev_priv->wm.spr_latency[level];
2841 u16 cur_latency = dev_priv->wm.cur_latency[level];
2842
2843 /* WM1+ latency values stored in 0.5us units */
2844 if (level > 0) {
2845 pri_latency *= 5;
2846 spr_latency *= 5;
2847 cur_latency *= 5;
2848 }
2849
2850 if (pristate) {
2851 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2852 pri_latency, level);
2853 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2854 }
2855
2856 if (sprstate)
2857 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2858
2859 if (curstate)
2860 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2861
2862 result->enable = true;
2863 }
2864
intel_read_wm_latency(struct drm_i915_private * dev_priv,u16 wm[8])2865 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2866 u16 wm[8])
2867 {
2868 struct intel_uncore *uncore = &dev_priv->uncore;
2869
2870 if (DISPLAY_VER(dev_priv) >= 9) {
2871 u32 val;
2872 int ret, i;
2873 int level, max_level = ilk_wm_max_level(dev_priv);
2874
2875 /* read the first set of memory latencies[0:3] */
2876 val = 0; /* data0 to be programmed to 0 for first set */
2877 ret = sandybridge_pcode_read(dev_priv,
2878 GEN9_PCODE_READ_MEM_LATENCY,
2879 &val, NULL);
2880
2881 if (ret) {
2882 drm_err(&dev_priv->drm,
2883 "SKL Mailbox read error = %d\n", ret);
2884 return;
2885 }
2886
2887 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2888 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2889 GEN9_MEM_LATENCY_LEVEL_MASK;
2890 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2891 GEN9_MEM_LATENCY_LEVEL_MASK;
2892 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2893 GEN9_MEM_LATENCY_LEVEL_MASK;
2894
2895 /* read the second set of memory latencies[4:7] */
2896 val = 1; /* data0 to be programmed to 1 for second set */
2897 ret = sandybridge_pcode_read(dev_priv,
2898 GEN9_PCODE_READ_MEM_LATENCY,
2899 &val, NULL);
2900 if (ret) {
2901 drm_err(&dev_priv->drm,
2902 "SKL Mailbox read error = %d\n", ret);
2903 return;
2904 }
2905
2906 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2907 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2908 GEN9_MEM_LATENCY_LEVEL_MASK;
2909 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2910 GEN9_MEM_LATENCY_LEVEL_MASK;
2911 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2912 GEN9_MEM_LATENCY_LEVEL_MASK;
2913
2914 /*
2915 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2916 * need to be disabled. We make sure to sanitize the values out
2917 * of the punit to satisfy this requirement.
2918 */
2919 for (level = 1; level <= max_level; level++) {
2920 if (wm[level] == 0) {
2921 for (i = level + 1; i <= max_level; i++)
2922 wm[i] = 0;
2923
2924 max_level = level - 1;
2925
2926 break;
2927 }
2928 }
2929
2930 /*
2931 * WaWmMemoryReadLatency
2932 *
2933 * punit doesn't take into account the read latency so we need
2934 * to add proper adjustement to each valid level we retrieve
2935 * from the punit when level 0 response data is 0us.
2936 */
2937 if (wm[0] == 0) {
2938 u8 adjust = DISPLAY_VER(dev_priv) >= 12 ? 3 : 2;
2939
2940 for (level = 0; level <= max_level; level++)
2941 wm[level] += adjust;
2942 }
2943
2944 /*
2945 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2946 * If we could not get dimm info enable this WA to prevent from
2947 * any underrun. If not able to get Dimm info assume 16GB dimm
2948 * to avoid any underrun.
2949 */
2950 if (dev_priv->dram_info.wm_lv_0_adjust_needed)
2951 wm[0] += 1;
2952 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2953 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2954
2955 wm[0] = (sskpd >> 56) & 0xFF;
2956 if (wm[0] == 0)
2957 wm[0] = sskpd & 0xF;
2958 wm[1] = (sskpd >> 4) & 0xFF;
2959 wm[2] = (sskpd >> 12) & 0xFF;
2960 wm[3] = (sskpd >> 20) & 0x1FF;
2961 wm[4] = (sskpd >> 32) & 0x1FF;
2962 } else if (DISPLAY_VER(dev_priv) >= 6) {
2963 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2964
2965 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2966 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2967 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2968 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2969 } else if (DISPLAY_VER(dev_priv) >= 5) {
2970 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2971
2972 /* ILK primary LP0 latency is 700 ns */
2973 wm[0] = 7;
2974 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2975 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2976 } else {
2977 MISSING_CASE(INTEL_DEVID(dev_priv));
2978 }
2979 }
2980
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2981 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2982 u16 wm[5])
2983 {
2984 /* ILK sprite LP0 latency is 1300 ns */
2985 if (DISPLAY_VER(dev_priv) == 5)
2986 wm[0] = 13;
2987 }
2988
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2989 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2990 u16 wm[5])
2991 {
2992 /* ILK cursor LP0 latency is 1300 ns */
2993 if (DISPLAY_VER(dev_priv) == 5)
2994 wm[0] = 13;
2995 }
2996
ilk_wm_max_level(const struct drm_i915_private * dev_priv)2997 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2998 {
2999 /* how many WM levels are we expecting */
3000 if (HAS_HW_SAGV_WM(dev_priv))
3001 return 5;
3002 else if (DISPLAY_VER(dev_priv) >= 9)
3003 return 7;
3004 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3005 return 4;
3006 else if (DISPLAY_VER(dev_priv) >= 6)
3007 return 3;
3008 else
3009 return 2;
3010 }
3011
intel_print_wm_latency(struct drm_i915_private * dev_priv,const char * name,const u16 wm[])3012 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
3013 const char *name,
3014 const u16 wm[])
3015 {
3016 int level, max_level = ilk_wm_max_level(dev_priv);
3017
3018 for (level = 0; level <= max_level; level++) {
3019 unsigned int latency = wm[level];
3020
3021 if (latency == 0) {
3022 drm_dbg_kms(&dev_priv->drm,
3023 "%s WM%d latency not provided\n",
3024 name, level);
3025 continue;
3026 }
3027
3028 /*
3029 * - latencies are in us on gen9.
3030 * - before then, WM1+ latency values are in 0.5us units
3031 */
3032 if (DISPLAY_VER(dev_priv) >= 9)
3033 latency *= 10;
3034 else if (level > 0)
3035 latency *= 5;
3036
3037 drm_dbg_kms(&dev_priv->drm,
3038 "%s WM%d latency %u (%u.%u usec)\n", name, level,
3039 wm[level], latency / 10, latency % 10);
3040 }
3041 }
3042
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5],u16 min)3043 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3044 u16 wm[5], u16 min)
3045 {
3046 int level, max_level = ilk_wm_max_level(dev_priv);
3047
3048 if (wm[0] >= min)
3049 return false;
3050
3051 wm[0] = max(wm[0], min);
3052 for (level = 1; level <= max_level; level++)
3053 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3054
3055 return true;
3056 }
3057
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)3058 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3059 {
3060 bool changed;
3061
3062 /*
3063 * The BIOS provided WM memory latency values are often
3064 * inadequate for high resolution displays. Adjust them.
3065 */
3066 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3067 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3068 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3069
3070 if (!changed)
3071 return;
3072
3073 drm_dbg_kms(&dev_priv->drm,
3074 "WM latency values increased to avoid potential underruns\n");
3075 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3076 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3077 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3078 }
3079
snb_wm_lp3_irq_quirk(struct drm_i915_private * dev_priv)3080 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3081 {
3082 /*
3083 * On some SNB machines (Thinkpad X220 Tablet at least)
3084 * LP3 usage can cause vblank interrupts to be lost.
3085 * The DEIIR bit will go high but it looks like the CPU
3086 * never gets interrupted.
3087 *
3088 * It's not clear whether other interrupt source could
3089 * be affected or if this is somehow limited to vblank
3090 * interrupts only. To play it safe we disable LP3
3091 * watermarks entirely.
3092 */
3093 if (dev_priv->wm.pri_latency[3] == 0 &&
3094 dev_priv->wm.spr_latency[3] == 0 &&
3095 dev_priv->wm.cur_latency[3] == 0)
3096 return;
3097
3098 dev_priv->wm.pri_latency[3] = 0;
3099 dev_priv->wm.spr_latency[3] = 0;
3100 dev_priv->wm.cur_latency[3] = 0;
3101
3102 drm_dbg_kms(&dev_priv->drm,
3103 "LP3 watermarks disabled due to potential for lost interrupts\n");
3104 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3105 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3106 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3107 }
3108
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)3109 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3110 {
3111 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3112
3113 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3114 sizeof(dev_priv->wm.pri_latency));
3115 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3116 sizeof(dev_priv->wm.pri_latency));
3117
3118 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3119 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3120
3121 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3122 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3123 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3124
3125 if (DISPLAY_VER(dev_priv) == 6) {
3126 snb_wm_latency_quirk(dev_priv);
3127 snb_wm_lp3_irq_quirk(dev_priv);
3128 }
3129 }
3130
skl_setup_wm_latency(struct drm_i915_private * dev_priv)3131 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3132 {
3133 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3134 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3135 }
3136
ilk_validate_pipe_wm(const struct drm_i915_private * dev_priv,struct intel_pipe_wm * pipe_wm)3137 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3138 struct intel_pipe_wm *pipe_wm)
3139 {
3140 /* LP0 watermark maximums depend on this pipe alone */
3141 const struct intel_wm_config config = {
3142 .num_pipes_active = 1,
3143 .sprites_enabled = pipe_wm->sprites_enabled,
3144 .sprites_scaled = pipe_wm->sprites_scaled,
3145 };
3146 struct ilk_wm_maximums max;
3147
3148 /* LP0 watermarks always use 1/2 DDB partitioning */
3149 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3150
3151 /* At least LP0 must be valid */
3152 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3153 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3154 return false;
3155 }
3156
3157 return true;
3158 }
3159
3160 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)3161 static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
3162 struct intel_crtc *crtc)
3163 {
3164 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3165 struct intel_crtc_state *crtc_state =
3166 intel_atomic_get_new_crtc_state(state, crtc);
3167 struct intel_pipe_wm *pipe_wm;
3168 struct intel_plane *plane;
3169 const struct intel_plane_state *plane_state;
3170 const struct intel_plane_state *pristate = NULL;
3171 const struct intel_plane_state *sprstate = NULL;
3172 const struct intel_plane_state *curstate = NULL;
3173 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3174 struct ilk_wm_maximums max;
3175
3176 pipe_wm = &crtc_state->wm.ilk.optimal;
3177
3178 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3179 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3180 pristate = plane_state;
3181 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3182 sprstate = plane_state;
3183 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3184 curstate = plane_state;
3185 }
3186
3187 pipe_wm->pipe_enabled = crtc_state->hw.active;
3188 if (sprstate) {
3189 pipe_wm->sprites_enabled = sprstate->uapi.visible;
3190 pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3191 (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3192 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3193 }
3194
3195 usable_level = max_level;
3196
3197 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3198 if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3199 usable_level = 1;
3200
3201 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3202 if (pipe_wm->sprites_scaled)
3203 usable_level = 0;
3204
3205 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3206 ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3207 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3208
3209 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3210 return -EINVAL;
3211
3212 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3213
3214 for (level = 1; level <= usable_level; level++) {
3215 struct intel_wm_level *wm = &pipe_wm->wm[level];
3216
3217 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3218 pristate, sprstate, curstate, wm);
3219
3220 /*
3221 * Disable any watermark level that exceeds the
3222 * register maximums since such watermarks are
3223 * always invalid.
3224 */
3225 if (!ilk_validate_wm_level(level, &max, wm)) {
3226 memset(wm, 0, sizeof(*wm));
3227 break;
3228 }
3229 }
3230
3231 return 0;
3232 }
3233
3234 /*
3235 * Build a set of 'intermediate' watermark values that satisfy both the old
3236 * state and the new state. These can be programmed to the hardware
3237 * immediately.
3238 */
ilk_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)3239 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
3240 struct intel_crtc *crtc)
3241 {
3242 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3243 struct intel_crtc_state *new_crtc_state =
3244 intel_atomic_get_new_crtc_state(state, crtc);
3245 const struct intel_crtc_state *old_crtc_state =
3246 intel_atomic_get_old_crtc_state(state, crtc);
3247 struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate;
3248 const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal;
3249 int level, max_level = ilk_wm_max_level(dev_priv);
3250
3251 /*
3252 * Start with the final, target watermarks, then combine with the
3253 * currently active watermarks to get values that are safe both before
3254 * and after the vblank.
3255 */
3256 *a = new_crtc_state->wm.ilk.optimal;
3257 if (!new_crtc_state->hw.active ||
3258 drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) ||
3259 state->skip_intermediate_wm)
3260 return 0;
3261
3262 a->pipe_enabled |= b->pipe_enabled;
3263 a->sprites_enabled |= b->sprites_enabled;
3264 a->sprites_scaled |= b->sprites_scaled;
3265
3266 for (level = 0; level <= max_level; level++) {
3267 struct intel_wm_level *a_wm = &a->wm[level];
3268 const struct intel_wm_level *b_wm = &b->wm[level];
3269
3270 a_wm->enable &= b_wm->enable;
3271 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3272 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3273 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3274 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3275 }
3276
3277 /*
3278 * We need to make sure that these merged watermark values are
3279 * actually a valid configuration themselves. If they're not,
3280 * there's no safe way to transition from the old state to
3281 * the new state, so we need to fail the atomic transaction.
3282 */
3283 if (!ilk_validate_pipe_wm(dev_priv, a))
3284 return -EINVAL;
3285
3286 /*
3287 * If our intermediate WM are identical to the final WM, then we can
3288 * omit the post-vblank programming; only update if it's different.
3289 */
3290 if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0)
3291 new_crtc_state->wm.need_postvbl_update = true;
3292
3293 return 0;
3294 }
3295
3296 /*
3297 * Merge the watermarks from all active pipes for a specific level.
3298 */
ilk_merge_wm_level(struct drm_i915_private * dev_priv,int level,struct intel_wm_level * ret_wm)3299 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3300 int level,
3301 struct intel_wm_level *ret_wm)
3302 {
3303 const struct intel_crtc *crtc;
3304
3305 ret_wm->enable = true;
3306
3307 for_each_intel_crtc(&dev_priv->drm, crtc) {
3308 const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
3309 const struct intel_wm_level *wm = &active->wm[level];
3310
3311 if (!active->pipe_enabled)
3312 continue;
3313
3314 /*
3315 * The watermark values may have been used in the past,
3316 * so we must maintain them in the registers for some
3317 * time even if the level is now disabled.
3318 */
3319 if (!wm->enable)
3320 ret_wm->enable = false;
3321
3322 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3323 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3324 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3325 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3326 }
3327 }
3328
3329 /*
3330 * Merge all low power watermarks for all active pipes.
3331 */
ilk_wm_merge(struct drm_i915_private * dev_priv,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3332 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3333 const struct intel_wm_config *config,
3334 const struct ilk_wm_maximums *max,
3335 struct intel_pipe_wm *merged)
3336 {
3337 int level, max_level = ilk_wm_max_level(dev_priv);
3338 int last_enabled_level = max_level;
3339
3340 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3341 if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3342 config->num_pipes_active > 1)
3343 last_enabled_level = 0;
3344
3345 /* ILK: FBC WM must be disabled always */
3346 merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
3347
3348 /* merge each WM1+ level */
3349 for (level = 1; level <= max_level; level++) {
3350 struct intel_wm_level *wm = &merged->wm[level];
3351
3352 ilk_merge_wm_level(dev_priv, level, wm);
3353
3354 if (level > last_enabled_level)
3355 wm->enable = false;
3356 else if (!ilk_validate_wm_level(level, max, wm))
3357 /* make sure all following levels get disabled */
3358 last_enabled_level = level - 1;
3359
3360 /*
3361 * The spec says it is preferred to disable
3362 * FBC WMs instead of disabling a WM level.
3363 */
3364 if (wm->fbc_val > max->fbc) {
3365 if (wm->enable)
3366 merged->fbc_wm_enabled = false;
3367 wm->fbc_val = 0;
3368 }
3369 }
3370
3371 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3372 /*
3373 * FIXME this is racy. FBC might get enabled later.
3374 * What we should check here is whether FBC can be
3375 * enabled sometime later.
3376 */
3377 if (DISPLAY_VER(dev_priv) == 5 && !merged->fbc_wm_enabled &&
3378 intel_fbc_is_active(dev_priv)) {
3379 for (level = 2; level <= max_level; level++) {
3380 struct intel_wm_level *wm = &merged->wm[level];
3381
3382 wm->enable = false;
3383 }
3384 }
3385 }
3386
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3387 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3388 {
3389 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3390 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3391 }
3392
3393 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_i915_private * dev_priv,int level)3394 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3395 int level)
3396 {
3397 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3398 return 2 * level;
3399 else
3400 return dev_priv->wm.pri_latency[level];
3401 }
3402
ilk_compute_wm_results(struct drm_i915_private * dev_priv,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3403 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3404 const struct intel_pipe_wm *merged,
3405 enum intel_ddb_partitioning partitioning,
3406 struct ilk_wm_values *results)
3407 {
3408 struct intel_crtc *crtc;
3409 int level, wm_lp;
3410
3411 results->enable_fbc_wm = merged->fbc_wm_enabled;
3412 results->partitioning = partitioning;
3413
3414 /* LP1+ register values */
3415 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3416 const struct intel_wm_level *r;
3417
3418 level = ilk_wm_lp_to_level(wm_lp, merged);
3419
3420 r = &merged->wm[level];
3421
3422 /*
3423 * Maintain the watermark values even if the level is
3424 * disabled. Doing otherwise could cause underruns.
3425 */
3426 results->wm_lp[wm_lp - 1] =
3427 (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3428 (r->pri_val << WM1_LP_SR_SHIFT) |
3429 r->cur_val;
3430
3431 if (r->enable)
3432 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3433
3434 if (DISPLAY_VER(dev_priv) >= 8)
3435 results->wm_lp[wm_lp - 1] |=
3436 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3437 else
3438 results->wm_lp[wm_lp - 1] |=
3439 r->fbc_val << WM1_LP_FBC_SHIFT;
3440
3441 /*
3442 * Always set WM1S_LP_EN when spr_val != 0, even if the
3443 * level is disabled. Doing otherwise could cause underruns.
3444 */
3445 if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) {
3446 drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3447 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3448 } else
3449 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3450 }
3451
3452 /* LP0 register values */
3453 for_each_intel_crtc(&dev_priv->drm, crtc) {
3454 enum pipe pipe = crtc->pipe;
3455 const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3456 const struct intel_wm_level *r = &pipe_wm->wm[0];
3457
3458 if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3459 continue;
3460
3461 results->wm_pipe[pipe] =
3462 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3463 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3464 r->cur_val;
3465 }
3466 }
3467
3468 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3469 * case both are at the same level. Prefer r1 in case they're the same. */
3470 static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private * dev_priv,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3471 ilk_find_best_result(struct drm_i915_private *dev_priv,
3472 struct intel_pipe_wm *r1,
3473 struct intel_pipe_wm *r2)
3474 {
3475 int level, max_level = ilk_wm_max_level(dev_priv);
3476 int level1 = 0, level2 = 0;
3477
3478 for (level = 1; level <= max_level; level++) {
3479 if (r1->wm[level].enable)
3480 level1 = level;
3481 if (r2->wm[level].enable)
3482 level2 = level;
3483 }
3484
3485 if (level1 == level2) {
3486 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3487 return r2;
3488 else
3489 return r1;
3490 } else if (level1 > level2) {
3491 return r1;
3492 } else {
3493 return r2;
3494 }
3495 }
3496
3497 /* dirty bits used to track which watermarks need changes */
3498 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3499 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3500 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3501 #define WM_DIRTY_FBC (1 << 24)
3502 #define WM_DIRTY_DDB (1 << 25)
3503
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3504 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3505 const struct ilk_wm_values *old,
3506 const struct ilk_wm_values *new)
3507 {
3508 unsigned int dirty = 0;
3509 enum pipe pipe;
3510 int wm_lp;
3511
3512 for_each_pipe(dev_priv, pipe) {
3513 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3514 dirty |= WM_DIRTY_PIPE(pipe);
3515 /* Must disable LP1+ watermarks too */
3516 dirty |= WM_DIRTY_LP_ALL;
3517 }
3518 }
3519
3520 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3521 dirty |= WM_DIRTY_FBC;
3522 /* Must disable LP1+ watermarks too */
3523 dirty |= WM_DIRTY_LP_ALL;
3524 }
3525
3526 if (old->partitioning != new->partitioning) {
3527 dirty |= WM_DIRTY_DDB;
3528 /* Must disable LP1+ watermarks too */
3529 dirty |= WM_DIRTY_LP_ALL;
3530 }
3531
3532 /* LP1+ watermarks already deemed dirty, no need to continue */
3533 if (dirty & WM_DIRTY_LP_ALL)
3534 return dirty;
3535
3536 /* Find the lowest numbered LP1+ watermark in need of an update... */
3537 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3538 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3539 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3540 break;
3541 }
3542
3543 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3544 for (; wm_lp <= 3; wm_lp++)
3545 dirty |= WM_DIRTY_LP(wm_lp);
3546
3547 return dirty;
3548 }
3549
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3550 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3551 unsigned int dirty)
3552 {
3553 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3554 bool changed = false;
3555
3556 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3557 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3558 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3559 changed = true;
3560 }
3561 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3562 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3563 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3564 changed = true;
3565 }
3566 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3567 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3568 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3569 changed = true;
3570 }
3571
3572 /*
3573 * Don't touch WM1S_LP_EN here.
3574 * Doing so could cause underruns.
3575 */
3576
3577 return changed;
3578 }
3579
3580 /*
3581 * The spec says we shouldn't write when we don't need, because every write
3582 * causes WMs to be re-evaluated, expending some power.
3583 */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3584 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3585 struct ilk_wm_values *results)
3586 {
3587 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3588 unsigned int dirty;
3589 u32 val;
3590
3591 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3592 if (!dirty)
3593 return;
3594
3595 _ilk_disable_lp_wm(dev_priv, dirty);
3596
3597 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3598 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3599 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3600 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3601 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3602 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3603
3604 if (dirty & WM_DIRTY_DDB) {
3605 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3606 val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
3607 if (results->partitioning == INTEL_DDB_PART_1_2)
3608 val &= ~WM_MISC_DATA_PARTITION_5_6;
3609 else
3610 val |= WM_MISC_DATA_PARTITION_5_6;
3611 intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
3612 } else {
3613 val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
3614 if (results->partitioning == INTEL_DDB_PART_1_2)
3615 val &= ~DISP_DATA_PARTITION_5_6;
3616 else
3617 val |= DISP_DATA_PARTITION_5_6;
3618 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
3619 }
3620 }
3621
3622 if (dirty & WM_DIRTY_FBC) {
3623 val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
3624 if (results->enable_fbc_wm)
3625 val &= ~DISP_FBC_WM_DIS;
3626 else
3627 val |= DISP_FBC_WM_DIS;
3628 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
3629 }
3630
3631 if (dirty & WM_DIRTY_LP(1) &&
3632 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3633 intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3634
3635 if (DISPLAY_VER(dev_priv) >= 7) {
3636 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3637 intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3638 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3639 intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3640 }
3641
3642 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3643 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3644 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3645 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3646 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3647 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3648
3649 dev_priv->wm.hw = *results;
3650 }
3651
ilk_disable_lp_wm(struct drm_i915_private * dev_priv)3652 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3653 {
3654 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3655 }
3656
intel_enabled_dbuf_slices_mask(struct drm_i915_private * dev_priv)3657 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3658 {
3659 u8 enabled_slices = 0;
3660 enum dbuf_slice slice;
3661
3662 for_each_dbuf_slice(dev_priv, slice) {
3663 if (intel_uncore_read(&dev_priv->uncore,
3664 DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
3665 enabled_slices |= BIT(slice);
3666 }
3667
3668 return enabled_slices;
3669 }
3670
3671 /*
3672 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3673 * so assume we'll always need it in order to avoid underruns.
3674 */
skl_needs_memory_bw_wa(struct drm_i915_private * dev_priv)3675 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3676 {
3677 return DISPLAY_VER(dev_priv) == 9;
3678 }
3679
3680 static bool
intel_has_sagv(struct drm_i915_private * dev_priv)3681 intel_has_sagv(struct drm_i915_private *dev_priv)
3682 {
3683 return DISPLAY_VER(dev_priv) >= 9 && !IS_LP(dev_priv) &&
3684 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3685 }
3686
3687 static void
skl_setup_sagv_block_time(struct drm_i915_private * dev_priv)3688 skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3689 {
3690 if (DISPLAY_VER(dev_priv) >= 12) {
3691 u32 val = 0;
3692 int ret;
3693
3694 ret = sandybridge_pcode_read(dev_priv,
3695 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3696 &val, NULL);
3697 if (!ret) {
3698 dev_priv->sagv_block_time_us = val;
3699 return;
3700 }
3701
3702 drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3703 } else if (DISPLAY_VER(dev_priv) == 11) {
3704 dev_priv->sagv_block_time_us = 10;
3705 return;
3706 } else if (DISPLAY_VER(dev_priv) == 10) {
3707 dev_priv->sagv_block_time_us = 20;
3708 return;
3709 } else if (DISPLAY_VER(dev_priv) == 9) {
3710 dev_priv->sagv_block_time_us = 30;
3711 return;
3712 } else {
3713 MISSING_CASE(DISPLAY_VER(dev_priv));
3714 }
3715
3716 /* Default to an unusable block time */
3717 dev_priv->sagv_block_time_us = -1;
3718 }
3719
3720 /*
3721 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3722 * depending on power and performance requirements. The display engine access
3723 * to system memory is blocked during the adjustment time. Because of the
3724 * blocking time, having this enabled can cause full system hangs and/or pipe
3725 * underruns if we don't meet all of the following requirements:
3726 *
3727 * - <= 1 pipe enabled
3728 * - All planes can enable watermarks for latencies >= SAGV engine block time
3729 * - We're not using an interlaced display configuration
3730 */
3731 static int
intel_enable_sagv(struct drm_i915_private * dev_priv)3732 intel_enable_sagv(struct drm_i915_private *dev_priv)
3733 {
3734 int ret;
3735
3736 if (!intel_has_sagv(dev_priv))
3737 return 0;
3738
3739 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3740 return 0;
3741
3742 drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3743 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3744 GEN9_SAGV_ENABLE);
3745
3746 /* We don't need to wait for SAGV when enabling */
3747
3748 /*
3749 * Some skl systems, pre-release machines in particular,
3750 * don't actually have SAGV.
3751 */
3752 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3753 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3754 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3755 return 0;
3756 } else if (ret < 0) {
3757 drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3758 return ret;
3759 }
3760
3761 dev_priv->sagv_status = I915_SAGV_ENABLED;
3762 return 0;
3763 }
3764
3765 static int
intel_disable_sagv(struct drm_i915_private * dev_priv)3766 intel_disable_sagv(struct drm_i915_private *dev_priv)
3767 {
3768 int ret;
3769
3770 if (!intel_has_sagv(dev_priv))
3771 return 0;
3772
3773 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3774 return 0;
3775
3776 drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3777 /* bspec says to keep retrying for at least 1 ms */
3778 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3779 GEN9_SAGV_DISABLE,
3780 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3781 1);
3782 /*
3783 * Some skl systems, pre-release machines in particular,
3784 * don't actually have SAGV.
3785 */
3786 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3787 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3788 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3789 return 0;
3790 } else if (ret < 0) {
3791 drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3792 return ret;
3793 }
3794
3795 dev_priv->sagv_status = I915_SAGV_DISABLED;
3796 return 0;
3797 }
3798
intel_sagv_pre_plane_update(struct intel_atomic_state * state)3799 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3800 {
3801 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3802 const struct intel_bw_state *new_bw_state;
3803 const struct intel_bw_state *old_bw_state;
3804 u32 new_mask = 0;
3805
3806 /*
3807 * Just return if we can't control SAGV or don't have it.
3808 * This is different from situation when we have SAGV but just can't
3809 * afford it due to DBuf limitation - in case if SAGV is completely
3810 * disabled in a BIOS, we are not even allowed to send a PCode request,
3811 * as it will throw an error. So have to check it here.
3812 */
3813 if (!intel_has_sagv(dev_priv))
3814 return;
3815
3816 new_bw_state = intel_atomic_get_new_bw_state(state);
3817 if (!new_bw_state)
3818 return;
3819
3820 if (DISPLAY_VER(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3821 intel_disable_sagv(dev_priv);
3822 return;
3823 }
3824
3825 old_bw_state = intel_atomic_get_old_bw_state(state);
3826 /*
3827 * Nothing to mask
3828 */
3829 if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3830 return;
3831
3832 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3833
3834 /*
3835 * If new mask is zero - means there is nothing to mask,
3836 * we can only unmask, which should be done in unmask.
3837 */
3838 if (!new_mask)
3839 return;
3840
3841 /*
3842 * Restrict required qgv points before updating the configuration.
3843 * According to BSpec we can't mask and unmask qgv points at the same
3844 * time. Also masking should be done before updating the configuration
3845 * and unmasking afterwards.
3846 */
3847 icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3848 }
3849
intel_sagv_post_plane_update(struct intel_atomic_state * state)3850 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3851 {
3852 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3853 const struct intel_bw_state *new_bw_state;
3854 const struct intel_bw_state *old_bw_state;
3855 u32 new_mask = 0;
3856
3857 /*
3858 * Just return if we can't control SAGV or don't have it.
3859 * This is different from situation when we have SAGV but just can't
3860 * afford it due to DBuf limitation - in case if SAGV is completely
3861 * disabled in a BIOS, we are not even allowed to send a PCode request,
3862 * as it will throw an error. So have to check it here.
3863 */
3864 if (!intel_has_sagv(dev_priv))
3865 return;
3866
3867 new_bw_state = intel_atomic_get_new_bw_state(state);
3868 if (!new_bw_state)
3869 return;
3870
3871 if (DISPLAY_VER(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3872 intel_enable_sagv(dev_priv);
3873 return;
3874 }
3875
3876 old_bw_state = intel_atomic_get_old_bw_state(state);
3877 /*
3878 * Nothing to unmask
3879 */
3880 if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3881 return;
3882
3883 new_mask = new_bw_state->qgv_points_mask;
3884
3885 /*
3886 * Allow required qgv points after updating the configuration.
3887 * According to BSpec we can't mask and unmask qgv points at the same
3888 * time. Also masking should be done before updating the configuration
3889 * and unmasking afterwards.
3890 */
3891 icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3892 }
3893
skl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3894 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3895 {
3896 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3897 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3898 enum plane_id plane_id;
3899 int max_level = INT_MAX;
3900
3901 if (!intel_has_sagv(dev_priv))
3902 return false;
3903
3904 if (!crtc_state->hw.active)
3905 return true;
3906
3907 if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
3908 return false;
3909
3910 for_each_plane_id_on_crtc(crtc, plane_id) {
3911 const struct skl_plane_wm *wm =
3912 &crtc_state->wm.skl.optimal.planes[plane_id];
3913 int level;
3914
3915 /* Skip this plane if it's not enabled */
3916 if (!wm->wm[0].enable)
3917 continue;
3918
3919 /* Find the highest enabled wm level for this plane */
3920 for (level = ilk_wm_max_level(dev_priv);
3921 !wm->wm[level].enable; --level)
3922 { }
3923
3924 /* Highest common enabled wm level for all planes */
3925 max_level = min(level, max_level);
3926 }
3927
3928 /* No enabled planes? */
3929 if (max_level == INT_MAX)
3930 return true;
3931
3932 for_each_plane_id_on_crtc(crtc, plane_id) {
3933 const struct skl_plane_wm *wm =
3934 &crtc_state->wm.skl.optimal.planes[plane_id];
3935
3936 /*
3937 * All enabled planes must have enabled a common wm level that
3938 * can tolerate memory latencies higher than sagv_block_time_us
3939 */
3940 if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
3941 return false;
3942 }
3943
3944 return true;
3945 }
3946
tgl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3947 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3948 {
3949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3950 enum plane_id plane_id;
3951
3952 if (!crtc_state->hw.active)
3953 return true;
3954
3955 for_each_plane_id_on_crtc(crtc, plane_id) {
3956 const struct skl_plane_wm *wm =
3957 &crtc_state->wm.skl.optimal.planes[plane_id];
3958
3959 if (wm->wm[0].enable && !wm->sagv.wm0.enable)
3960 return false;
3961 }
3962
3963 return true;
3964 }
3965
intel_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3966 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3967 {
3968 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3969 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3970
3971 if (DISPLAY_VER(dev_priv) >= 12)
3972 return tgl_crtc_can_enable_sagv(crtc_state);
3973 else
3974 return skl_crtc_can_enable_sagv(crtc_state);
3975 }
3976
intel_can_enable_sagv(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)3977 bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
3978 const struct intel_bw_state *bw_state)
3979 {
3980 if (DISPLAY_VER(dev_priv) < 11 &&
3981 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3982 return false;
3983
3984 return bw_state->pipe_sagv_reject == 0;
3985 }
3986
intel_compute_sagv_mask(struct intel_atomic_state * state)3987 static int intel_compute_sagv_mask(struct intel_atomic_state *state)
3988 {
3989 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3990 int ret;
3991 struct intel_crtc *crtc;
3992 struct intel_crtc_state *new_crtc_state;
3993 struct intel_bw_state *new_bw_state = NULL;
3994 const struct intel_bw_state *old_bw_state = NULL;
3995 int i;
3996
3997 for_each_new_intel_crtc_in_state(state, crtc,
3998 new_crtc_state, i) {
3999 new_bw_state = intel_atomic_get_bw_state(state);
4000 if (IS_ERR(new_bw_state))
4001 return PTR_ERR(new_bw_state);
4002
4003 old_bw_state = intel_atomic_get_old_bw_state(state);
4004
4005 if (intel_crtc_can_enable_sagv(new_crtc_state))
4006 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
4007 else
4008 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
4009 }
4010
4011 if (!new_bw_state)
4012 return 0;
4013
4014 new_bw_state->active_pipes =
4015 intel_calc_active_pipes(state, old_bw_state->active_pipes);
4016
4017 if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
4018 ret = intel_atomic_lock_global_state(&new_bw_state->base);
4019 if (ret)
4020 return ret;
4021 }
4022
4023 for_each_new_intel_crtc_in_state(state, crtc,
4024 new_crtc_state, i) {
4025 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
4026
4027 /*
4028 * We store use_sagv_wm in the crtc state rather than relying on
4029 * that bw state since we have no convenient way to get at the
4030 * latter from the plane commit hooks (especially in the legacy
4031 * cursor case)
4032 */
4033 pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(dev_priv) &&
4034 DISPLAY_VER(dev_priv) >= 12 &&
4035 intel_can_enable_sagv(dev_priv, new_bw_state);
4036 }
4037
4038 if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
4039 intel_can_enable_sagv(dev_priv, old_bw_state)) {
4040 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
4041 if (ret)
4042 return ret;
4043 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
4044 ret = intel_atomic_lock_global_state(&new_bw_state->base);
4045 if (ret)
4046 return ret;
4047 }
4048
4049 return 0;
4050 }
4051
intel_dbuf_slice_size(struct drm_i915_private * dev_priv)4052 static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv)
4053 {
4054 return INTEL_INFO(dev_priv)->dbuf.size /
4055 hweight8(INTEL_INFO(dev_priv)->dbuf.slice_mask);
4056 }
4057
4058 static void
skl_ddb_entry_for_slices(struct drm_i915_private * dev_priv,u8 slice_mask,struct skl_ddb_entry * ddb)4059 skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask,
4060 struct skl_ddb_entry *ddb)
4061 {
4062 int slice_size = intel_dbuf_slice_size(dev_priv);
4063
4064 if (!slice_mask) {
4065 ddb->start = 0;
4066 ddb->end = 0;
4067 return;
4068 }
4069
4070 ddb->start = (ffs(slice_mask) - 1) * slice_size;
4071 ddb->end = fls(slice_mask) * slice_size;
4072
4073 WARN_ON(ddb->start >= ddb->end);
4074 WARN_ON(ddb->end > INTEL_INFO(dev_priv)->dbuf.size);
4075 }
4076
mbus_ddb_offset(struct drm_i915_private * i915,u8 slice_mask)4077 static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
4078 {
4079 struct skl_ddb_entry ddb;
4080
4081 if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
4082 slice_mask = BIT(DBUF_S1);
4083 else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
4084 slice_mask = BIT(DBUF_S3);
4085
4086 skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
4087
4088 return ddb.start;
4089 }
4090
skl_ddb_dbuf_slice_mask(struct drm_i915_private * dev_priv,const struct skl_ddb_entry * entry)4091 u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
4092 const struct skl_ddb_entry *entry)
4093 {
4094 int slice_size = intel_dbuf_slice_size(dev_priv);
4095 enum dbuf_slice start_slice, end_slice;
4096 u8 slice_mask = 0;
4097
4098 if (!skl_ddb_entry_size(entry))
4099 return 0;
4100
4101 start_slice = entry->start / slice_size;
4102 end_slice = (entry->end - 1) / slice_size;
4103
4104 /*
4105 * Per plane DDB entry can in a really worst case be on multiple slices
4106 * but single entry is anyway contigious.
4107 */
4108 while (start_slice <= end_slice) {
4109 slice_mask |= BIT(start_slice);
4110 start_slice++;
4111 }
4112
4113 return slice_mask;
4114 }
4115
intel_crtc_ddb_weight(const struct intel_crtc_state * crtc_state)4116 static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
4117 {
4118 const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
4119 int hdisplay, vdisplay;
4120
4121 if (!crtc_state->hw.active)
4122 return 0;
4123
4124 /*
4125 * Watermark/ddb requirement highly depends upon width of the
4126 * framebuffer, So instead of allocating DDB equally among pipes
4127 * distribute DDB based on resolution/width of the display.
4128 */
4129 drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
4130
4131 return hdisplay;
4132 }
4133
intel_crtc_dbuf_weights(const struct intel_dbuf_state * dbuf_state,enum pipe for_pipe,unsigned int * weight_start,unsigned int * weight_end,unsigned int * weight_total)4134 static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
4135 enum pipe for_pipe,
4136 unsigned int *weight_start,
4137 unsigned int *weight_end,
4138 unsigned int *weight_total)
4139 {
4140 struct drm_i915_private *dev_priv =
4141 to_i915(dbuf_state->base.state->base.dev);
4142 enum pipe pipe;
4143
4144 *weight_start = 0;
4145 *weight_end = 0;
4146 *weight_total = 0;
4147
4148 for_each_pipe(dev_priv, pipe) {
4149 int weight = dbuf_state->weight[pipe];
4150
4151 /*
4152 * Do not account pipes using other slice sets
4153 * luckily as of current BSpec slice sets do not partially
4154 * intersect(pipes share either same one slice or same slice set
4155 * i.e no partial intersection), so it is enough to check for
4156 * equality for now.
4157 */
4158 if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
4159 continue;
4160
4161 *weight_total += weight;
4162 if (pipe < for_pipe) {
4163 *weight_start += weight;
4164 *weight_end += weight;
4165 } else if (pipe == for_pipe) {
4166 *weight_end += weight;
4167 }
4168 }
4169 }
4170
4171 static int
skl_crtc_allocate_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)4172 skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
4173 {
4174 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4175 unsigned int weight_total, weight_start, weight_end;
4176 const struct intel_dbuf_state *old_dbuf_state =
4177 intel_atomic_get_old_dbuf_state(state);
4178 struct intel_dbuf_state *new_dbuf_state =
4179 intel_atomic_get_new_dbuf_state(state);
4180 struct intel_crtc_state *crtc_state;
4181 struct skl_ddb_entry ddb_slices;
4182 enum pipe pipe = crtc->pipe;
4183 unsigned int mbus_offset = 0;
4184 u32 ddb_range_size;
4185 u32 dbuf_slice_mask;
4186 u32 start, end;
4187 int ret;
4188
4189 if (new_dbuf_state->weight[pipe] == 0) {
4190 new_dbuf_state->ddb[pipe].start = 0;
4191 new_dbuf_state->ddb[pipe].end = 0;
4192 goto out;
4193 }
4194
4195 dbuf_slice_mask = new_dbuf_state->slices[pipe];
4196
4197 skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices);
4198 mbus_offset = mbus_ddb_offset(dev_priv, dbuf_slice_mask);
4199 ddb_range_size = skl_ddb_entry_size(&ddb_slices);
4200
4201 intel_crtc_dbuf_weights(new_dbuf_state, pipe,
4202 &weight_start, &weight_end, &weight_total);
4203
4204 start = ddb_range_size * weight_start / weight_total;
4205 end = ddb_range_size * weight_end / weight_total;
4206
4207 new_dbuf_state->ddb[pipe].start = ddb_slices.start - mbus_offset + start;
4208 new_dbuf_state->ddb[pipe].end = ddb_slices.start - mbus_offset + end;
4209 out:
4210 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
4211 skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
4212 &new_dbuf_state->ddb[pipe]))
4213 return 0;
4214
4215 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
4216 if (ret)
4217 return ret;
4218
4219 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
4220 if (IS_ERR(crtc_state))
4221 return PTR_ERR(crtc_state);
4222
4223 /*
4224 * Used for checking overlaps, so we need absolute
4225 * offsets instead of MBUS relative offsets.
4226 */
4227 crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
4228 crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
4229
4230 drm_dbg_kms(&dev_priv->drm,
4231 "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
4232 crtc->base.base.id, crtc->base.name,
4233 old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
4234 old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
4235 new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
4236 old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
4237
4238 return 0;
4239 }
4240
4241 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4242 int width, const struct drm_format_info *format,
4243 u64 modifier, unsigned int rotation,
4244 u32 plane_pixel_rate, struct skl_wm_params *wp,
4245 int color_plane);
4246 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4247 int level,
4248 unsigned int latency,
4249 const struct skl_wm_params *wp,
4250 const struct skl_wm_level *result_prev,
4251 struct skl_wm_level *result /* out */);
4252
4253 static unsigned int
skl_cursor_allocation(const struct intel_crtc_state * crtc_state,int num_active)4254 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4255 int num_active)
4256 {
4257 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4258 int level, max_level = ilk_wm_max_level(dev_priv);
4259 struct skl_wm_level wm = {};
4260 int ret, min_ddb_alloc = 0;
4261 struct skl_wm_params wp;
4262
4263 ret = skl_compute_wm_params(crtc_state, 256,
4264 drm_format_info(DRM_FORMAT_ARGB8888),
4265 DRM_FORMAT_MOD_LINEAR,
4266 DRM_MODE_ROTATE_0,
4267 crtc_state->pixel_rate, &wp, 0);
4268 drm_WARN_ON(&dev_priv->drm, ret);
4269
4270 for (level = 0; level <= max_level; level++) {
4271 unsigned int latency = dev_priv->wm.skl_latency[level];
4272
4273 skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4274 if (wm.min_ddb_alloc == U16_MAX)
4275 break;
4276
4277 min_ddb_alloc = wm.min_ddb_alloc;
4278 }
4279
4280 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4281 }
4282
skl_ddb_entry_init_from_hw(struct drm_i915_private * dev_priv,struct skl_ddb_entry * entry,u32 reg)4283 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4284 struct skl_ddb_entry *entry, u32 reg)
4285 {
4286 entry->start = reg & DDB_ENTRY_MASK;
4287 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4288
4289 if (entry->end)
4290 entry->end += 1;
4291 }
4292
4293 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * dev_priv,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_entry * ddb_y,struct skl_ddb_entry * ddb_uv)4294 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4295 const enum pipe pipe,
4296 const enum plane_id plane_id,
4297 struct skl_ddb_entry *ddb_y,
4298 struct skl_ddb_entry *ddb_uv)
4299 {
4300 u32 val, val2;
4301 u32 fourcc = 0;
4302
4303 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4304 if (plane_id == PLANE_CURSOR) {
4305 val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
4306 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4307 return;
4308 }
4309
4310 val = intel_uncore_read(&dev_priv->uncore, PLANE_CTL(pipe, plane_id));
4311
4312 /* No DDB allocated for disabled planes */
4313 if (val & PLANE_CTL_ENABLE)
4314 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4315 val & PLANE_CTL_ORDER_RGBX,
4316 val & PLANE_CTL_ALPHA_MASK);
4317
4318 if (DISPLAY_VER(dev_priv) >= 11) {
4319 val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4320 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4321 } else {
4322 val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4323 val2 = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
4324
4325 if (fourcc &&
4326 drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4327 swap(val, val2);
4328
4329 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4330 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4331 }
4332 }
4333
skl_pipe_ddb_get_hw_state(struct intel_crtc * crtc,struct skl_ddb_entry * ddb_y,struct skl_ddb_entry * ddb_uv)4334 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4335 struct skl_ddb_entry *ddb_y,
4336 struct skl_ddb_entry *ddb_uv)
4337 {
4338 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4339 enum intel_display_power_domain power_domain;
4340 enum pipe pipe = crtc->pipe;
4341 intel_wakeref_t wakeref;
4342 enum plane_id plane_id;
4343
4344 power_domain = POWER_DOMAIN_PIPE(pipe);
4345 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4346 if (!wakeref)
4347 return;
4348
4349 for_each_plane_id_on_crtc(crtc, plane_id)
4350 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4351 plane_id,
4352 &ddb_y[plane_id],
4353 &ddb_uv[plane_id]);
4354
4355 intel_display_power_put(dev_priv, power_domain, wakeref);
4356 }
4357
4358 /*
4359 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4360 * The bspec defines downscale amount as:
4361 *
4362 * """
4363 * Horizontal down scale amount = maximum[1, Horizontal source size /
4364 * Horizontal destination size]
4365 * Vertical down scale amount = maximum[1, Vertical source size /
4366 * Vertical destination size]
4367 * Total down scale amount = Horizontal down scale amount *
4368 * Vertical down scale amount
4369 * """
4370 *
4371 * Return value is provided in 16.16 fixed point form to retain fractional part.
4372 * Caller should take care of dividing & rounding off the value.
4373 */
4374 static uint_fixed_16_16_t
skl_plane_downscale_amount(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4375 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4376 const struct intel_plane_state *plane_state)
4377 {
4378 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4379 u32 src_w, src_h, dst_w, dst_h;
4380 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4381 uint_fixed_16_16_t downscale_h, downscale_w;
4382
4383 if (drm_WARN_ON(&dev_priv->drm,
4384 !intel_wm_plane_visible(crtc_state, plane_state)))
4385 return u32_to_fixed16(0);
4386
4387 /*
4388 * Src coordinates are already rotated by 270 degrees for
4389 * the 90/270 degree plane rotation cases (to match the
4390 * GTT mapping), hence no need to account for rotation here.
4391 *
4392 * n.b., src is 16.16 fixed point, dst is whole integer.
4393 */
4394 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4395 src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4396 dst_w = drm_rect_width(&plane_state->uapi.dst);
4397 dst_h = drm_rect_height(&plane_state->uapi.dst);
4398
4399 fp_w_ratio = div_fixed16(src_w, dst_w);
4400 fp_h_ratio = div_fixed16(src_h, dst_h);
4401 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4402 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4403
4404 return mul_fixed16(downscale_w, downscale_h);
4405 }
4406
4407 struct dbuf_slice_conf_entry {
4408 u8 active_pipes;
4409 u8 dbuf_mask[I915_MAX_PIPES];
4410 bool join_mbus;
4411 };
4412
4413 /*
4414 * Table taken from Bspec 12716
4415 * Pipes do have some preferred DBuf slice affinity,
4416 * plus there are some hardcoded requirements on how
4417 * those should be distributed for multipipe scenarios.
4418 * For more DBuf slices algorithm can get even more messy
4419 * and less readable, so decided to use a table almost
4420 * as is from BSpec itself - that way it is at least easier
4421 * to compare, change and check.
4422 */
4423 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4424 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4425 {
4426 {
4427 .active_pipes = BIT(PIPE_A),
4428 .dbuf_mask = {
4429 [PIPE_A] = BIT(DBUF_S1),
4430 },
4431 },
4432 {
4433 .active_pipes = BIT(PIPE_B),
4434 .dbuf_mask = {
4435 [PIPE_B] = BIT(DBUF_S1),
4436 },
4437 },
4438 {
4439 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4440 .dbuf_mask = {
4441 [PIPE_A] = BIT(DBUF_S1),
4442 [PIPE_B] = BIT(DBUF_S2),
4443 },
4444 },
4445 {
4446 .active_pipes = BIT(PIPE_C),
4447 .dbuf_mask = {
4448 [PIPE_C] = BIT(DBUF_S2),
4449 },
4450 },
4451 {
4452 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4453 .dbuf_mask = {
4454 [PIPE_A] = BIT(DBUF_S1),
4455 [PIPE_C] = BIT(DBUF_S2),
4456 },
4457 },
4458 {
4459 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4460 .dbuf_mask = {
4461 [PIPE_B] = BIT(DBUF_S1),
4462 [PIPE_C] = BIT(DBUF_S2),
4463 },
4464 },
4465 {
4466 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4467 .dbuf_mask = {
4468 [PIPE_A] = BIT(DBUF_S1),
4469 [PIPE_B] = BIT(DBUF_S1),
4470 [PIPE_C] = BIT(DBUF_S2),
4471 },
4472 },
4473 {}
4474 };
4475
4476 /*
4477 * Table taken from Bspec 49255
4478 * Pipes do have some preferred DBuf slice affinity,
4479 * plus there are some hardcoded requirements on how
4480 * those should be distributed for multipipe scenarios.
4481 * For more DBuf slices algorithm can get even more messy
4482 * and less readable, so decided to use a table almost
4483 * as is from BSpec itself - that way it is at least easier
4484 * to compare, change and check.
4485 */
4486 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4487 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4488 {
4489 {
4490 .active_pipes = BIT(PIPE_A),
4491 .dbuf_mask = {
4492 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4493 },
4494 },
4495 {
4496 .active_pipes = BIT(PIPE_B),
4497 .dbuf_mask = {
4498 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4499 },
4500 },
4501 {
4502 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4503 .dbuf_mask = {
4504 [PIPE_A] = BIT(DBUF_S2),
4505 [PIPE_B] = BIT(DBUF_S1),
4506 },
4507 },
4508 {
4509 .active_pipes = BIT(PIPE_C),
4510 .dbuf_mask = {
4511 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4512 },
4513 },
4514 {
4515 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4516 .dbuf_mask = {
4517 [PIPE_A] = BIT(DBUF_S1),
4518 [PIPE_C] = BIT(DBUF_S2),
4519 },
4520 },
4521 {
4522 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4523 .dbuf_mask = {
4524 [PIPE_B] = BIT(DBUF_S1),
4525 [PIPE_C] = BIT(DBUF_S2),
4526 },
4527 },
4528 {
4529 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4530 .dbuf_mask = {
4531 [PIPE_A] = BIT(DBUF_S1),
4532 [PIPE_B] = BIT(DBUF_S1),
4533 [PIPE_C] = BIT(DBUF_S2),
4534 },
4535 },
4536 {
4537 .active_pipes = BIT(PIPE_D),
4538 .dbuf_mask = {
4539 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4540 },
4541 },
4542 {
4543 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4544 .dbuf_mask = {
4545 [PIPE_A] = BIT(DBUF_S1),
4546 [PIPE_D] = BIT(DBUF_S2),
4547 },
4548 },
4549 {
4550 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4551 .dbuf_mask = {
4552 [PIPE_B] = BIT(DBUF_S1),
4553 [PIPE_D] = BIT(DBUF_S2),
4554 },
4555 },
4556 {
4557 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4558 .dbuf_mask = {
4559 [PIPE_A] = BIT(DBUF_S1),
4560 [PIPE_B] = BIT(DBUF_S1),
4561 [PIPE_D] = BIT(DBUF_S2),
4562 },
4563 },
4564 {
4565 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4566 .dbuf_mask = {
4567 [PIPE_C] = BIT(DBUF_S1),
4568 [PIPE_D] = BIT(DBUF_S2),
4569 },
4570 },
4571 {
4572 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4573 .dbuf_mask = {
4574 [PIPE_A] = BIT(DBUF_S1),
4575 [PIPE_C] = BIT(DBUF_S2),
4576 [PIPE_D] = BIT(DBUF_S2),
4577 },
4578 },
4579 {
4580 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4581 .dbuf_mask = {
4582 [PIPE_B] = BIT(DBUF_S1),
4583 [PIPE_C] = BIT(DBUF_S2),
4584 [PIPE_D] = BIT(DBUF_S2),
4585 },
4586 },
4587 {
4588 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4589 .dbuf_mask = {
4590 [PIPE_A] = BIT(DBUF_S1),
4591 [PIPE_B] = BIT(DBUF_S1),
4592 [PIPE_C] = BIT(DBUF_S2),
4593 [PIPE_D] = BIT(DBUF_S2),
4594 },
4595 },
4596 {}
4597 };
4598
4599 static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
4600 {
4601 .active_pipes = BIT(PIPE_A),
4602 .dbuf_mask = {
4603 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4604 },
4605 },
4606 {
4607 .active_pipes = BIT(PIPE_B),
4608 .dbuf_mask = {
4609 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4610 },
4611 },
4612 {
4613 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4614 .dbuf_mask = {
4615 [PIPE_A] = BIT(DBUF_S1),
4616 [PIPE_B] = BIT(DBUF_S2),
4617 },
4618 },
4619 {
4620 .active_pipes = BIT(PIPE_C),
4621 .dbuf_mask = {
4622 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4623 },
4624 },
4625 {
4626 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4627 .dbuf_mask = {
4628 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4629 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4630 },
4631 },
4632 {
4633 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4634 .dbuf_mask = {
4635 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4636 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4637 },
4638 },
4639 {
4640 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4641 .dbuf_mask = {
4642 [PIPE_A] = BIT(DBUF_S1),
4643 [PIPE_B] = BIT(DBUF_S2),
4644 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4645 },
4646 },
4647 {
4648 .active_pipes = BIT(PIPE_D),
4649 .dbuf_mask = {
4650 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4651 },
4652 },
4653 {
4654 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4655 .dbuf_mask = {
4656 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4657 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4658 },
4659 },
4660 {
4661 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4662 .dbuf_mask = {
4663 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4664 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4665 },
4666 },
4667 {
4668 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4669 .dbuf_mask = {
4670 [PIPE_A] = BIT(DBUF_S1),
4671 [PIPE_B] = BIT(DBUF_S2),
4672 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4673 },
4674 },
4675 {
4676 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4677 .dbuf_mask = {
4678 [PIPE_C] = BIT(DBUF_S3),
4679 [PIPE_D] = BIT(DBUF_S4),
4680 },
4681 },
4682 {
4683 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4684 .dbuf_mask = {
4685 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4686 [PIPE_C] = BIT(DBUF_S3),
4687 [PIPE_D] = BIT(DBUF_S4),
4688 },
4689 },
4690 {
4691 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4692 .dbuf_mask = {
4693 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4694 [PIPE_C] = BIT(DBUF_S3),
4695 [PIPE_D] = BIT(DBUF_S4),
4696 },
4697 },
4698 {
4699 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4700 .dbuf_mask = {
4701 [PIPE_A] = BIT(DBUF_S1),
4702 [PIPE_B] = BIT(DBUF_S2),
4703 [PIPE_C] = BIT(DBUF_S3),
4704 [PIPE_D] = BIT(DBUF_S4),
4705 },
4706 },
4707 {}
4708 };
4709
4710 static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
4711 {
4712 .active_pipes = BIT(PIPE_A),
4713 .dbuf_mask = {
4714 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4715 },
4716 .join_mbus = true,
4717 },
4718 {
4719 .active_pipes = BIT(PIPE_B),
4720 .dbuf_mask = {
4721 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4722 },
4723 .join_mbus = true,
4724 },
4725 {
4726 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4727 .dbuf_mask = {
4728 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4729 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4730 },
4731 },
4732 {
4733 .active_pipes = BIT(PIPE_C),
4734 .dbuf_mask = {
4735 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4736 },
4737 },
4738 {
4739 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4740 .dbuf_mask = {
4741 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4742 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4743 },
4744 },
4745 {
4746 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4747 .dbuf_mask = {
4748 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4749 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4750 },
4751 },
4752 {
4753 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4754 .dbuf_mask = {
4755 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4756 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4757 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4758 },
4759 },
4760 {
4761 .active_pipes = BIT(PIPE_D),
4762 .dbuf_mask = {
4763 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4764 },
4765 },
4766 {
4767 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4768 .dbuf_mask = {
4769 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4770 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4771 },
4772 },
4773 {
4774 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4775 .dbuf_mask = {
4776 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4777 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4778 },
4779 },
4780 {
4781 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4782 .dbuf_mask = {
4783 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4784 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4785 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4786 },
4787 },
4788 {
4789 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4790 .dbuf_mask = {
4791 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4792 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4793 },
4794 },
4795 {
4796 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4797 .dbuf_mask = {
4798 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4799 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4800 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4801 },
4802 },
4803 {
4804 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4805 .dbuf_mask = {
4806 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4807 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4808 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4809 },
4810 },
4811 {
4812 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4813 .dbuf_mask = {
4814 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4815 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4816 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4817 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4818 },
4819 },
4820 {}
4821
4822 };
4823
check_mbus_joined(u8 active_pipes,const struct dbuf_slice_conf_entry * dbuf_slices)4824 static bool check_mbus_joined(u8 active_pipes,
4825 const struct dbuf_slice_conf_entry *dbuf_slices)
4826 {
4827 int i;
4828
4829 for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4830 if (dbuf_slices[i].active_pipes == active_pipes)
4831 return dbuf_slices[i].join_mbus;
4832 }
4833 return false;
4834 }
4835
adlp_check_mbus_joined(u8 active_pipes)4836 static bool adlp_check_mbus_joined(u8 active_pipes)
4837 {
4838 return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
4839 }
4840
compute_dbuf_slices(enum pipe pipe,u8 active_pipes,const struct dbuf_slice_conf_entry * dbuf_slices)4841 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4842 const struct dbuf_slice_conf_entry *dbuf_slices)
4843 {
4844 int i;
4845
4846 for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4847 if (dbuf_slices[i].active_pipes == active_pipes)
4848 return dbuf_slices[i].dbuf_mask[pipe];
4849 }
4850 return 0;
4851 }
4852
4853 /*
4854 * This function finds an entry with same enabled pipe configuration and
4855 * returns correspondent DBuf slice mask as stated in BSpec for particular
4856 * platform.
4857 */
icl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes)4858 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4859 {
4860 /*
4861 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4862 * required calculating "pipe ratio" in order to determine
4863 * if one or two slices can be used for single pipe configurations
4864 * as additional constraint to the existing table.
4865 * However based on recent info, it should be not "pipe ratio"
4866 * but rather ratio between pixel_rate and cdclk with additional
4867 * constants, so for now we are using only table until this is
4868 * clarified. Also this is the reason why crtc_state param is
4869 * still here - we will need it once those additional constraints
4870 * pop up.
4871 */
4872 return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4873 }
4874
tgl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes)4875 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4876 {
4877 return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4878 }
4879
adlp_compute_dbuf_slices(enum pipe pipe,u32 active_pipes)4880 static u32 adlp_compute_dbuf_slices(enum pipe pipe, u32 active_pipes)
4881 {
4882 return compute_dbuf_slices(pipe, active_pipes, adlp_allowed_dbufs);
4883 }
4884
dg2_compute_dbuf_slices(enum pipe pipe,u32 active_pipes)4885 static u32 dg2_compute_dbuf_slices(enum pipe pipe, u32 active_pipes)
4886 {
4887 return compute_dbuf_slices(pipe, active_pipes, dg2_allowed_dbufs);
4888 }
4889
skl_compute_dbuf_slices(struct intel_crtc * crtc,u8 active_pipes)4890 static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes)
4891 {
4892 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4893 enum pipe pipe = crtc->pipe;
4894
4895 if (IS_DG2(dev_priv))
4896 return dg2_compute_dbuf_slices(pipe, active_pipes);
4897 else if (IS_ALDERLAKE_P(dev_priv))
4898 return adlp_compute_dbuf_slices(pipe, active_pipes);
4899 else if (DISPLAY_VER(dev_priv) == 12)
4900 return tgl_compute_dbuf_slices(pipe, active_pipes);
4901 else if (DISPLAY_VER(dev_priv) == 11)
4902 return icl_compute_dbuf_slices(pipe, active_pipes);
4903 /*
4904 * For anything else just return one slice yet.
4905 * Should be extended for other platforms.
4906 */
4907 return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4908 }
4909
4910 static u64
skl_plane_relative_data_rate(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int color_plane)4911 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4912 const struct intel_plane_state *plane_state,
4913 int color_plane)
4914 {
4915 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4916 const struct drm_framebuffer *fb = plane_state->hw.fb;
4917 u32 data_rate;
4918 u32 width = 0, height = 0;
4919 uint_fixed_16_16_t down_scale_amount;
4920 u64 rate;
4921
4922 if (!plane_state->uapi.visible)
4923 return 0;
4924
4925 if (plane->id == PLANE_CURSOR)
4926 return 0;
4927
4928 if (color_plane == 1 &&
4929 !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4930 return 0;
4931
4932 /*
4933 * Src coordinates are already rotated by 270 degrees for
4934 * the 90/270 degree plane rotation cases (to match the
4935 * GTT mapping), hence no need to account for rotation here.
4936 */
4937 width = drm_rect_width(&plane_state->uapi.src) >> 16;
4938 height = drm_rect_height(&plane_state->uapi.src) >> 16;
4939
4940 /* UV plane does 1/2 pixel sub-sampling */
4941 if (color_plane == 1) {
4942 width /= 2;
4943 height /= 2;
4944 }
4945
4946 data_rate = width * height;
4947
4948 down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4949
4950 rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4951
4952 rate *= fb->format->cpp[color_plane];
4953 return rate;
4954 }
4955
4956 static u64
skl_get_total_relative_data_rate(struct intel_atomic_state * state,struct intel_crtc * crtc)4957 skl_get_total_relative_data_rate(struct intel_atomic_state *state,
4958 struct intel_crtc *crtc)
4959 {
4960 struct intel_crtc_state *crtc_state =
4961 intel_atomic_get_new_crtc_state(state, crtc);
4962 const struct intel_plane_state *plane_state;
4963 struct intel_plane *plane;
4964 u64 total_data_rate = 0;
4965 enum plane_id plane_id;
4966 int i;
4967
4968 /* Calculate and cache data rate for each plane */
4969 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
4970 if (plane->pipe != crtc->pipe)
4971 continue;
4972
4973 plane_id = plane->id;
4974
4975 /* packed/y */
4976 crtc_state->plane_data_rate[plane_id] =
4977 skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4978
4979 /* uv-plane */
4980 crtc_state->uv_plane_data_rate[plane_id] =
4981 skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4982 }
4983
4984 for_each_plane_id_on_crtc(crtc, plane_id) {
4985 total_data_rate += crtc_state->plane_data_rate[plane_id];
4986 total_data_rate += crtc_state->uv_plane_data_rate[plane_id];
4987 }
4988
4989 return total_data_rate;
4990 }
4991
4992 static u64
icl_get_total_relative_data_rate(struct intel_atomic_state * state,struct intel_crtc * crtc)4993 icl_get_total_relative_data_rate(struct intel_atomic_state *state,
4994 struct intel_crtc *crtc)
4995 {
4996 struct intel_crtc_state *crtc_state =
4997 intel_atomic_get_new_crtc_state(state, crtc);
4998 const struct intel_plane_state *plane_state;
4999 struct intel_plane *plane;
5000 u64 total_data_rate = 0;
5001 enum plane_id plane_id;
5002 int i;
5003
5004 /* Calculate and cache data rate for each plane */
5005 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
5006 if (plane->pipe != crtc->pipe)
5007 continue;
5008
5009 plane_id = plane->id;
5010
5011 if (!plane_state->planar_linked_plane) {
5012 crtc_state->plane_data_rate[plane_id] =
5013 skl_plane_relative_data_rate(crtc_state, plane_state, 0);
5014 } else {
5015 enum plane_id y_plane_id;
5016
5017 /*
5018 * The slave plane might not iterate in
5019 * intel_atomic_crtc_state_for_each_plane_state(),
5020 * and needs the master plane state which may be
5021 * NULL if we try get_new_plane_state(), so we
5022 * always calculate from the master.
5023 */
5024 if (plane_state->planar_slave)
5025 continue;
5026
5027 /* Y plane rate is calculated on the slave */
5028 y_plane_id = plane_state->planar_linked_plane->id;
5029 crtc_state->plane_data_rate[y_plane_id] =
5030 skl_plane_relative_data_rate(crtc_state, plane_state, 0);
5031
5032 crtc_state->plane_data_rate[plane_id] =
5033 skl_plane_relative_data_rate(crtc_state, plane_state, 1);
5034 }
5035 }
5036
5037 for_each_plane_id_on_crtc(crtc, plane_id)
5038 total_data_rate += crtc_state->plane_data_rate[plane_id];
5039
5040 return total_data_rate;
5041 }
5042
5043 const struct skl_wm_level *
skl_plane_wm_level(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id,int level)5044 skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
5045 enum plane_id plane_id,
5046 int level)
5047 {
5048 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5049
5050 if (level == 0 && pipe_wm->use_sagv_wm)
5051 return &wm->sagv.wm0;
5052
5053 return &wm->wm[level];
5054 }
5055
5056 const struct skl_wm_level *
skl_plane_trans_wm(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id)5057 skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
5058 enum plane_id plane_id)
5059 {
5060 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5061
5062 if (pipe_wm->use_sagv_wm)
5063 return &wm->sagv.trans_wm;
5064
5065 return &wm->trans_wm;
5066 }
5067
5068 /*
5069 * We only disable the watermarks for each plane if
5070 * they exceed the ddb allocation of said plane. This
5071 * is done so that we don't end up touching cursor
5072 * watermarks needlessly when some other plane reduces
5073 * our max possible watermark level.
5074 *
5075 * Bspec has this to say about the PLANE_WM enable bit:
5076 * "All the watermarks at this level for all enabled
5077 * planes must be enabled before the level will be used."
5078 * So this is actually safe to do.
5079 */
5080 static void
skl_check_wm_level(struct skl_wm_level * wm,u64 total)5081 skl_check_wm_level(struct skl_wm_level *wm, u64 total)
5082 {
5083 if (wm->min_ddb_alloc > total)
5084 memset(wm, 0, sizeof(*wm));
5085 }
5086
5087 static void
skl_check_nv12_wm_level(struct skl_wm_level * wm,struct skl_wm_level * uv_wm,u64 total,u64 uv_total)5088 skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
5089 u64 total, u64 uv_total)
5090 {
5091 if (wm->min_ddb_alloc > total ||
5092 uv_wm->min_ddb_alloc > uv_total) {
5093 memset(wm, 0, sizeof(*wm));
5094 memset(uv_wm, 0, sizeof(*uv_wm));
5095 }
5096 }
5097
5098 static int
skl_allocate_plane_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)5099 skl_allocate_plane_ddb(struct intel_atomic_state *state,
5100 struct intel_crtc *crtc)
5101 {
5102 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5103 struct intel_crtc_state *crtc_state =
5104 intel_atomic_get_new_crtc_state(state, crtc);
5105 const struct intel_dbuf_state *dbuf_state =
5106 intel_atomic_get_new_dbuf_state(state);
5107 const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
5108 int num_active = hweight8(dbuf_state->active_pipes);
5109 u16 alloc_size, start = 0;
5110 u16 total[I915_MAX_PLANES] = {};
5111 u16 uv_total[I915_MAX_PLANES] = {};
5112 u64 total_data_rate;
5113 enum plane_id plane_id;
5114 u32 blocks;
5115 int level;
5116
5117 /* Clear the partitioning for disabled planes. */
5118 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
5119 memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
5120
5121 if (!crtc_state->hw.active)
5122 return 0;
5123
5124 if (DISPLAY_VER(dev_priv) >= 11)
5125 total_data_rate =
5126 icl_get_total_relative_data_rate(state, crtc);
5127 else
5128 total_data_rate =
5129 skl_get_total_relative_data_rate(state, crtc);
5130
5131 alloc_size = skl_ddb_entry_size(alloc);
5132 if (alloc_size == 0)
5133 return 0;
5134
5135 /* Allocate fixed number of blocks for cursor. */
5136 total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
5137 alloc_size -= total[PLANE_CURSOR];
5138 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
5139 alloc->end - total[PLANE_CURSOR];
5140 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
5141
5142 if (total_data_rate == 0)
5143 return 0;
5144
5145 /*
5146 * Find the highest watermark level for which we can satisfy the block
5147 * requirement of active planes.
5148 */
5149 for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
5150 blocks = 0;
5151 for_each_plane_id_on_crtc(crtc, plane_id) {
5152 const struct skl_plane_wm *wm =
5153 &crtc_state->wm.skl.optimal.planes[plane_id];
5154
5155 if (plane_id == PLANE_CURSOR) {
5156 if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
5157 drm_WARN_ON(&dev_priv->drm,
5158 wm->wm[level].min_ddb_alloc != U16_MAX);
5159 blocks = U32_MAX;
5160 break;
5161 }
5162 continue;
5163 }
5164
5165 blocks += wm->wm[level].min_ddb_alloc;
5166 blocks += wm->uv_wm[level].min_ddb_alloc;
5167 }
5168
5169 if (blocks <= alloc_size) {
5170 alloc_size -= blocks;
5171 break;
5172 }
5173 }
5174
5175 if (level < 0) {
5176 drm_dbg_kms(&dev_priv->drm,
5177 "Requested display configuration exceeds system DDB limitations");
5178 drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
5179 blocks, alloc_size);
5180 return -EINVAL;
5181 }
5182
5183 /*
5184 * Grant each plane the blocks it requires at the highest achievable
5185 * watermark level, plus an extra share of the leftover blocks
5186 * proportional to its relative data rate.
5187 */
5188 for_each_plane_id_on_crtc(crtc, plane_id) {
5189 const struct skl_plane_wm *wm =
5190 &crtc_state->wm.skl.optimal.planes[plane_id];
5191 u64 rate;
5192 u16 extra;
5193
5194 if (plane_id == PLANE_CURSOR)
5195 continue;
5196
5197 /*
5198 * We've accounted for all active planes; remaining planes are
5199 * all disabled.
5200 */
5201 if (total_data_rate == 0)
5202 break;
5203
5204 rate = crtc_state->plane_data_rate[plane_id];
5205 extra = min_t(u16, alloc_size,
5206 DIV64_U64_ROUND_UP(alloc_size * rate,
5207 total_data_rate));
5208 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
5209 alloc_size -= extra;
5210 total_data_rate -= rate;
5211
5212 if (total_data_rate == 0)
5213 break;
5214
5215 rate = crtc_state->uv_plane_data_rate[plane_id];
5216 extra = min_t(u16, alloc_size,
5217 DIV64_U64_ROUND_UP(alloc_size * rate,
5218 total_data_rate));
5219 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
5220 alloc_size -= extra;
5221 total_data_rate -= rate;
5222 }
5223 drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
5224
5225 /* Set the actual DDB start/end points for each plane */
5226 start = alloc->start;
5227 for_each_plane_id_on_crtc(crtc, plane_id) {
5228 struct skl_ddb_entry *plane_alloc =
5229 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5230 struct skl_ddb_entry *uv_plane_alloc =
5231 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5232
5233 if (plane_id == PLANE_CURSOR)
5234 continue;
5235
5236 /* Gen11+ uses a separate plane for UV watermarks */
5237 drm_WARN_ON(&dev_priv->drm,
5238 DISPLAY_VER(dev_priv) >= 11 && uv_total[plane_id]);
5239
5240 /* Leave disabled planes at (0,0) */
5241 if (total[plane_id]) {
5242 plane_alloc->start = start;
5243 start += total[plane_id];
5244 plane_alloc->end = start;
5245 }
5246
5247 if (uv_total[plane_id]) {
5248 uv_plane_alloc->start = start;
5249 start += uv_total[plane_id];
5250 uv_plane_alloc->end = start;
5251 }
5252 }
5253
5254 /*
5255 * When we calculated watermark values we didn't know how high
5256 * of a level we'd actually be able to hit, so we just marked
5257 * all levels as "enabled." Go back now and disable the ones
5258 * that aren't actually possible.
5259 */
5260 for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
5261 for_each_plane_id_on_crtc(crtc, plane_id) {
5262 struct skl_plane_wm *wm =
5263 &crtc_state->wm.skl.optimal.planes[plane_id];
5264
5265 skl_check_nv12_wm_level(&wm->wm[level], &wm->uv_wm[level],
5266 total[plane_id], uv_total[plane_id]);
5267
5268 /*
5269 * Wa_1408961008:icl, ehl
5270 * Underruns with WM1+ disabled
5271 */
5272 if (DISPLAY_VER(dev_priv) == 11 &&
5273 level == 1 && wm->wm[0].enable) {
5274 wm->wm[level].blocks = wm->wm[0].blocks;
5275 wm->wm[level].lines = wm->wm[0].lines;
5276 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5277 }
5278 }
5279 }
5280
5281 /*
5282 * Go back and disable the transition and SAGV watermarks
5283 * if it turns out we don't have enough DDB blocks for them.
5284 */
5285 for_each_plane_id_on_crtc(crtc, plane_id) {
5286 struct skl_plane_wm *wm =
5287 &crtc_state->wm.skl.optimal.planes[plane_id];
5288
5289 skl_check_wm_level(&wm->trans_wm, total[plane_id]);
5290 skl_check_wm_level(&wm->sagv.wm0, total[plane_id]);
5291 skl_check_wm_level(&wm->sagv.trans_wm, total[plane_id]);
5292 }
5293
5294 return 0;
5295 }
5296
5297 /*
5298 * The max latency should be 257 (max the punit can code is 255 and we add 2us
5299 * for the read latency) and cpp should always be <= 8, so that
5300 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
5301 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
5302 */
5303 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * dev_priv,u32 pixel_rate,u8 cpp,u32 latency,u32 dbuf_block_size)5304 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
5305 u8 cpp, u32 latency, u32 dbuf_block_size)
5306 {
5307 u32 wm_intermediate_val;
5308 uint_fixed_16_16_t ret;
5309
5310 if (latency == 0)
5311 return FP_16_16_MAX;
5312
5313 wm_intermediate_val = latency * pixel_rate * cpp;
5314 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5315
5316 if (DISPLAY_VER(dev_priv) >= 10)
5317 ret = add_fixed16_u32(ret, 1);
5318
5319 return ret;
5320 }
5321
5322 static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate,u32 pipe_htotal,u32 latency,uint_fixed_16_16_t plane_blocks_per_line)5323 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
5324 uint_fixed_16_16_t plane_blocks_per_line)
5325 {
5326 u32 wm_intermediate_val;
5327 uint_fixed_16_16_t ret;
5328
5329 if (latency == 0)
5330 return FP_16_16_MAX;
5331
5332 wm_intermediate_val = latency * pixel_rate;
5333 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
5334 pipe_htotal * 1000);
5335 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5336 return ret;
5337 }
5338
5339 static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state * crtc_state)5340 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5341 {
5342 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5343 u32 pixel_rate;
5344 u32 crtc_htotal;
5345 uint_fixed_16_16_t linetime_us;
5346
5347 if (!crtc_state->hw.active)
5348 return u32_to_fixed16(0);
5349
5350 pixel_rate = crtc_state->pixel_rate;
5351
5352 if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5353 return u32_to_fixed16(0);
5354
5355 crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
5356 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5357
5358 return linetime_us;
5359 }
5360
5361 static int
skl_compute_wm_params(const struct intel_crtc_state * crtc_state,int width,const struct drm_format_info * format,u64 modifier,unsigned int rotation,u32 plane_pixel_rate,struct skl_wm_params * wp,int color_plane)5362 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
5363 int width, const struct drm_format_info *format,
5364 u64 modifier, unsigned int rotation,
5365 u32 plane_pixel_rate, struct skl_wm_params *wp,
5366 int color_plane)
5367 {
5368 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5369 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5370 u32 interm_pbpl;
5371
5372 /* only planar format has two planes */
5373 if (color_plane == 1 &&
5374 !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5375 drm_dbg_kms(&dev_priv->drm,
5376 "Non planar format have single plane\n");
5377 return -EINVAL;
5378 }
5379
5380 wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
5381 modifier == I915_FORMAT_MOD_Yf_TILED ||
5382 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5383 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5384 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
5385 wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5386 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5387 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5388
5389 wp->width = width;
5390 if (color_plane == 1 && wp->is_planar)
5391 wp->width /= 2;
5392
5393 wp->cpp = format->cpp[color_plane];
5394 wp->plane_pixel_rate = plane_pixel_rate;
5395
5396 if (DISPLAY_VER(dev_priv) >= 11 &&
5397 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
5398 wp->dbuf_block_size = 256;
5399 else
5400 wp->dbuf_block_size = 512;
5401
5402 if (drm_rotation_90_or_270(rotation)) {
5403 switch (wp->cpp) {
5404 case 1:
5405 wp->y_min_scanlines = 16;
5406 break;
5407 case 2:
5408 wp->y_min_scanlines = 8;
5409 break;
5410 case 4:
5411 wp->y_min_scanlines = 4;
5412 break;
5413 default:
5414 MISSING_CASE(wp->cpp);
5415 return -EINVAL;
5416 }
5417 } else {
5418 wp->y_min_scanlines = 4;
5419 }
5420
5421 if (skl_needs_memory_bw_wa(dev_priv))
5422 wp->y_min_scanlines *= 2;
5423
5424 wp->plane_bytes_per_line = wp->width * wp->cpp;
5425 if (wp->y_tiled) {
5426 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5427 wp->y_min_scanlines,
5428 wp->dbuf_block_size);
5429
5430 if (DISPLAY_VER(dev_priv) >= 10)
5431 interm_pbpl++;
5432
5433 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5434 wp->y_min_scanlines);
5435 } else {
5436 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5437 wp->dbuf_block_size);
5438
5439 if (!wp->x_tiled || DISPLAY_VER(dev_priv) >= 10)
5440 interm_pbpl++;
5441
5442 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5443 }
5444
5445 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5446 wp->plane_blocks_per_line);
5447
5448 wp->linetime_us = fixed16_to_u32_round_up(
5449 intel_get_linetime_us(crtc_state));
5450
5451 return 0;
5452 }
5453
5454 static int
skl_compute_plane_wm_params(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct skl_wm_params * wp,int color_plane)5455 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5456 const struct intel_plane_state *plane_state,
5457 struct skl_wm_params *wp, int color_plane)
5458 {
5459 const struct drm_framebuffer *fb = plane_state->hw.fb;
5460 int width;
5461
5462 /*
5463 * Src coordinates are already rotated by 270 degrees for
5464 * the 90/270 degree plane rotation cases (to match the
5465 * GTT mapping), hence no need to account for rotation here.
5466 */
5467 width = drm_rect_width(&plane_state->uapi.src) >> 16;
5468
5469 return skl_compute_wm_params(crtc_state, width,
5470 fb->format, fb->modifier,
5471 plane_state->hw.rotation,
5472 intel_plane_pixel_rate(crtc_state, plane_state),
5473 wp, color_plane);
5474 }
5475
skl_wm_has_lines(struct drm_i915_private * dev_priv,int level)5476 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5477 {
5478 if (DISPLAY_VER(dev_priv) >= 10)
5479 return true;
5480
5481 /* The number of lines are ignored for the level 0 watermark. */
5482 return level > 0;
5483 }
5484
skl_wm_max_lines(struct drm_i915_private * dev_priv)5485 static int skl_wm_max_lines(struct drm_i915_private *dev_priv)
5486 {
5487 if (DISPLAY_VER(dev_priv) >= 13)
5488 return 255;
5489 else
5490 return 31;
5491 }
5492
skl_compute_plane_wm(const struct intel_crtc_state * crtc_state,int level,unsigned int latency,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)5493 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5494 int level,
5495 unsigned int latency,
5496 const struct skl_wm_params *wp,
5497 const struct skl_wm_level *result_prev,
5498 struct skl_wm_level *result /* out */)
5499 {
5500 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5501 uint_fixed_16_16_t method1, method2;
5502 uint_fixed_16_16_t selected_result;
5503 u32 blocks, lines, min_ddb_alloc = 0;
5504
5505 if (latency == 0) {
5506 /* reject it */
5507 result->min_ddb_alloc = U16_MAX;
5508 return;
5509 }
5510
5511 /*
5512 * WaIncreaseLatencyIPCEnabled: kbl,cfl
5513 * Display WA #1141: kbl,cfl
5514 */
5515 if ((IS_KABYLAKE(dev_priv) ||
5516 IS_COFFEELAKE(dev_priv) ||
5517 IS_COMETLAKE(dev_priv)) &&
5518 dev_priv->ipc_enabled)
5519 latency += 4;
5520
5521 if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5522 latency += 15;
5523
5524 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5525 wp->cpp, latency, wp->dbuf_block_size);
5526 method2 = skl_wm_method2(wp->plane_pixel_rate,
5527 crtc_state->hw.pipe_mode.crtc_htotal,
5528 latency,
5529 wp->plane_blocks_per_line);
5530
5531 if (wp->y_tiled) {
5532 selected_result = max_fixed16(method2, wp->y_tile_minimum);
5533 } else {
5534 if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
5535 wp->dbuf_block_size < 1) &&
5536 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5537 selected_result = method2;
5538 } else if (latency >= wp->linetime_us) {
5539 if (DISPLAY_VER(dev_priv) == 9)
5540 selected_result = min_fixed16(method1, method2);
5541 else
5542 selected_result = method2;
5543 } else {
5544 selected_result = method1;
5545 }
5546 }
5547
5548 blocks = fixed16_to_u32_round_up(selected_result) + 1;
5549 lines = div_round_up_fixed16(selected_result,
5550 wp->plane_blocks_per_line);
5551
5552 if (DISPLAY_VER(dev_priv) == 9) {
5553 /* Display WA #1125: skl,bxt,kbl */
5554 if (level == 0 && wp->rc_surface)
5555 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5556
5557 /* Display WA #1126: skl,bxt,kbl */
5558 if (level >= 1 && level <= 7) {
5559 if (wp->y_tiled) {
5560 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5561 lines += wp->y_min_scanlines;
5562 } else {
5563 blocks++;
5564 }
5565
5566 /*
5567 * Make sure result blocks for higher latency levels are
5568 * atleast as high as level below the current level.
5569 * Assumption in DDB algorithm optimization for special
5570 * cases. Also covers Display WA #1125 for RC.
5571 */
5572 if (result_prev->blocks > blocks)
5573 blocks = result_prev->blocks;
5574 }
5575 }
5576
5577 if (DISPLAY_VER(dev_priv) >= 11) {
5578 if (wp->y_tiled) {
5579 int extra_lines;
5580
5581 if (lines % wp->y_min_scanlines == 0)
5582 extra_lines = wp->y_min_scanlines;
5583 else
5584 extra_lines = wp->y_min_scanlines * 2 -
5585 lines % wp->y_min_scanlines;
5586
5587 min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
5588 wp->plane_blocks_per_line);
5589 } else {
5590 min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
5591 }
5592 }
5593
5594 if (!skl_wm_has_lines(dev_priv, level))
5595 lines = 0;
5596
5597 if (lines > skl_wm_max_lines(dev_priv)) {
5598 /* reject it */
5599 result->min_ddb_alloc = U16_MAX;
5600 return;
5601 }
5602
5603 /*
5604 * If lines is valid, assume we can use this watermark level
5605 * for now. We'll come back and disable it after we calculate the
5606 * DDB allocation if it turns out we don't actually have enough
5607 * blocks to satisfy it.
5608 */
5609 result->blocks = blocks;
5610 result->lines = lines;
5611 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5612 result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
5613 result->enable = true;
5614
5615 if (DISPLAY_VER(dev_priv) < 12)
5616 result->can_sagv = latency >= dev_priv->sagv_block_time_us;
5617 }
5618
5619 static void
skl_compute_wm_levels(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wm_params,struct skl_wm_level * levels)5620 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5621 const struct skl_wm_params *wm_params,
5622 struct skl_wm_level *levels)
5623 {
5624 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5625 int level, max_level = ilk_wm_max_level(dev_priv);
5626 struct skl_wm_level *result_prev = &levels[0];
5627
5628 for (level = 0; level <= max_level; level++) {
5629 struct skl_wm_level *result = &levels[level];
5630 unsigned int latency = dev_priv->wm.skl_latency[level];
5631
5632 skl_compute_plane_wm(crtc_state, level, latency,
5633 wm_params, result_prev, result);
5634
5635 result_prev = result;
5636 }
5637 }
5638
tgl_compute_sagv_wm(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wm_params,struct skl_plane_wm * plane_wm)5639 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
5640 const struct skl_wm_params *wm_params,
5641 struct skl_plane_wm *plane_wm)
5642 {
5643 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5644 struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
5645 struct skl_wm_level *levels = plane_wm->wm;
5646 unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;
5647
5648 skl_compute_plane_wm(crtc_state, 0, latency,
5649 wm_params, &levels[0],
5650 sagv_wm);
5651 }
5652
skl_compute_transition_wm(struct drm_i915_private * dev_priv,struct skl_wm_level * trans_wm,const struct skl_wm_level * wm0,const struct skl_wm_params * wp)5653 static void skl_compute_transition_wm(struct drm_i915_private *dev_priv,
5654 struct skl_wm_level *trans_wm,
5655 const struct skl_wm_level *wm0,
5656 const struct skl_wm_params *wp)
5657 {
5658 u16 trans_min, trans_amount, trans_y_tile_min;
5659 u16 wm0_blocks, trans_offset, blocks;
5660
5661 /* Transition WM don't make any sense if ipc is disabled */
5662 if (!dev_priv->ipc_enabled)
5663 return;
5664
5665 /*
5666 * WaDisableTWM:skl,kbl,cfl,bxt
5667 * Transition WM are not recommended by HW team for GEN9
5668 */
5669 if (DISPLAY_VER(dev_priv) == 9)
5670 return;
5671
5672 if (DISPLAY_VER(dev_priv) >= 11)
5673 trans_min = 4;
5674 else
5675 trans_min = 14;
5676
5677 /* Display WA #1140: glk,cnl */
5678 if (DISPLAY_VER(dev_priv) == 10)
5679 trans_amount = 0;
5680 else
5681 trans_amount = 10; /* This is configurable amount */
5682
5683 trans_offset = trans_min + trans_amount;
5684
5685 /*
5686 * The spec asks for Selected Result Blocks for wm0 (the real value),
5687 * not Result Blocks (the integer value). Pay attention to the capital
5688 * letters. The value wm_l0->blocks is actually Result Blocks, but
5689 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5690 * and since we later will have to get the ceiling of the sum in the
5691 * transition watermarks calculation, we can just pretend Selected
5692 * Result Blocks is Result Blocks minus 1 and it should work for the
5693 * current platforms.
5694 */
5695 wm0_blocks = wm0->blocks - 1;
5696
5697 if (wp->y_tiled) {
5698 trans_y_tile_min =
5699 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5700 blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
5701 } else {
5702 blocks = wm0_blocks + trans_offset;
5703 }
5704 blocks++;
5705
5706 /*
5707 * Just assume we can enable the transition watermark. After
5708 * computing the DDB we'll come back and disable it if that
5709 * assumption turns out to be false.
5710 */
5711 trans_wm->blocks = blocks;
5712 trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
5713 trans_wm->enable = true;
5714 }
5715
skl_build_plane_wm_single(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,enum plane_id plane_id,int color_plane)5716 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5717 const struct intel_plane_state *plane_state,
5718 enum plane_id plane_id, int color_plane)
5719 {
5720 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5721 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5722 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5723 struct skl_wm_params wm_params;
5724 int ret;
5725
5726 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5727 &wm_params, color_plane);
5728 if (ret)
5729 return ret;
5730
5731 skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5732
5733 skl_compute_transition_wm(dev_priv, &wm->trans_wm,
5734 &wm->wm[0], &wm_params);
5735
5736 if (DISPLAY_VER(dev_priv) >= 12) {
5737 tgl_compute_sagv_wm(crtc_state, &wm_params, wm);
5738
5739 skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm,
5740 &wm->sagv.wm0, &wm_params);
5741 }
5742
5743 return 0;
5744 }
5745
skl_build_plane_wm_uv(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,enum plane_id plane_id)5746 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5747 const struct intel_plane_state *plane_state,
5748 enum plane_id plane_id)
5749 {
5750 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5751 struct skl_wm_params wm_params;
5752 int ret;
5753
5754 wm->is_planar = true;
5755
5756 /* uv plane watermarks must also be validated for NV12/Planar */
5757 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5758 &wm_params, 1);
5759 if (ret)
5760 return ret;
5761
5762 skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5763
5764 return 0;
5765 }
5766
skl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5767 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5768 const struct intel_plane_state *plane_state)
5769 {
5770 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5771 enum plane_id plane_id = plane->id;
5772 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5773 const struct drm_framebuffer *fb = plane_state->hw.fb;
5774 int ret;
5775
5776 memset(wm, 0, sizeof(*wm));
5777
5778 if (!intel_wm_plane_visible(crtc_state, plane_state))
5779 return 0;
5780
5781 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5782 plane_id, 0);
5783 if (ret)
5784 return ret;
5785
5786 if (fb->format->is_yuv && fb->format->num_planes > 1) {
5787 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5788 plane_id);
5789 if (ret)
5790 return ret;
5791 }
5792
5793 return 0;
5794 }
5795
icl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5796 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5797 const struct intel_plane_state *plane_state)
5798 {
5799 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5800 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5801 enum plane_id plane_id = plane->id;
5802 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5803 int ret;
5804
5805 /* Watermarks calculated in master */
5806 if (plane_state->planar_slave)
5807 return 0;
5808
5809 memset(wm, 0, sizeof(*wm));
5810
5811 if (plane_state->planar_linked_plane) {
5812 const struct drm_framebuffer *fb = plane_state->hw.fb;
5813 enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5814
5815 drm_WARN_ON(&dev_priv->drm,
5816 !intel_wm_plane_visible(crtc_state, plane_state));
5817 drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
5818 fb->format->num_planes == 1);
5819
5820 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5821 y_plane_id, 0);
5822 if (ret)
5823 return ret;
5824
5825 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5826 plane_id, 1);
5827 if (ret)
5828 return ret;
5829 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5830 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5831 plane_id, 0);
5832 if (ret)
5833 return ret;
5834 }
5835
5836 return 0;
5837 }
5838
skl_build_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)5839 static int skl_build_pipe_wm(struct intel_atomic_state *state,
5840 struct intel_crtc *crtc)
5841 {
5842 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5843 struct intel_crtc_state *crtc_state =
5844 intel_atomic_get_new_crtc_state(state, crtc);
5845 const struct intel_plane_state *plane_state;
5846 struct intel_plane *plane;
5847 int ret, i;
5848
5849 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
5850 /*
5851 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
5852 * instead but we don't populate that correctly for NV12 Y
5853 * planes so for now hack this.
5854 */
5855 if (plane->pipe != crtc->pipe)
5856 continue;
5857
5858 if (DISPLAY_VER(dev_priv) >= 11)
5859 ret = icl_build_plane_wm(crtc_state, plane_state);
5860 else
5861 ret = skl_build_plane_wm(crtc_state, plane_state);
5862 if (ret)
5863 return ret;
5864 }
5865
5866 crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
5867
5868 return 0;
5869 }
5870
skl_ddb_entry_write(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_ddb_entry * entry)5871 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5872 i915_reg_t reg,
5873 const struct skl_ddb_entry *entry)
5874 {
5875 if (entry->end)
5876 intel_de_write_fw(dev_priv, reg,
5877 (entry->end - 1) << 16 | entry->start);
5878 else
5879 intel_de_write_fw(dev_priv, reg, 0);
5880 }
5881
skl_write_wm_level(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_wm_level * level)5882 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5883 i915_reg_t reg,
5884 const struct skl_wm_level *level)
5885 {
5886 u32 val = 0;
5887
5888 if (level->enable)
5889 val |= PLANE_WM_EN;
5890 if (level->ignore_lines)
5891 val |= PLANE_WM_IGNORE_LINES;
5892 val |= level->blocks;
5893 val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
5894
5895 intel_de_write_fw(dev_priv, reg, val);
5896 }
5897
skl_write_plane_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5898 void skl_write_plane_wm(struct intel_plane *plane,
5899 const struct intel_crtc_state *crtc_state)
5900 {
5901 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5902 int level, max_level = ilk_wm_max_level(dev_priv);
5903 enum plane_id plane_id = plane->id;
5904 enum pipe pipe = plane->pipe;
5905 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5906 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5907 const struct skl_ddb_entry *ddb_y =
5908 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5909 const struct skl_ddb_entry *ddb_uv =
5910 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5911
5912 for (level = 0; level <= max_level; level++)
5913 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5914 skl_plane_wm_level(pipe_wm, plane_id, level));
5915
5916 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5917 skl_plane_trans_wm(pipe_wm, plane_id));
5918
5919 if (HAS_HW_SAGV_WM(dev_priv)) {
5920 skl_write_wm_level(dev_priv, PLANE_WM_SAGV(pipe, plane_id),
5921 &wm->sagv.wm0);
5922 skl_write_wm_level(dev_priv, PLANE_WM_SAGV_TRANS(pipe, plane_id),
5923 &wm->sagv.trans_wm);
5924 }
5925
5926 if (DISPLAY_VER(dev_priv) >= 11) {
5927 skl_ddb_entry_write(dev_priv,
5928 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5929 return;
5930 }
5931
5932 if (wm->is_planar)
5933 swap(ddb_y, ddb_uv);
5934
5935 skl_ddb_entry_write(dev_priv,
5936 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5937 skl_ddb_entry_write(dev_priv,
5938 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5939 }
5940
skl_write_cursor_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5941 void skl_write_cursor_wm(struct intel_plane *plane,
5942 const struct intel_crtc_state *crtc_state)
5943 {
5944 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5945 int level, max_level = ilk_wm_max_level(dev_priv);
5946 enum plane_id plane_id = plane->id;
5947 enum pipe pipe = plane->pipe;
5948 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5949 const struct skl_ddb_entry *ddb =
5950 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5951
5952 for (level = 0; level <= max_level; level++)
5953 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5954 skl_plane_wm_level(pipe_wm, plane_id, level));
5955
5956 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe),
5957 skl_plane_trans_wm(pipe_wm, plane_id));
5958
5959 if (HAS_HW_SAGV_WM(dev_priv)) {
5960 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5961
5962 skl_write_wm_level(dev_priv, CUR_WM_SAGV(pipe),
5963 &wm->sagv.wm0);
5964 skl_write_wm_level(dev_priv, CUR_WM_SAGV_TRANS(pipe),
5965 &wm->sagv.trans_wm);
5966 }
5967
5968 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5969 }
5970
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)5971 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5972 const struct skl_wm_level *l2)
5973 {
5974 return l1->enable == l2->enable &&
5975 l1->ignore_lines == l2->ignore_lines &&
5976 l1->lines == l2->lines &&
5977 l1->blocks == l2->blocks;
5978 }
5979
skl_plane_wm_equals(struct drm_i915_private * dev_priv,const struct skl_plane_wm * wm1,const struct skl_plane_wm * wm2)5980 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5981 const struct skl_plane_wm *wm1,
5982 const struct skl_plane_wm *wm2)
5983 {
5984 int level, max_level = ilk_wm_max_level(dev_priv);
5985
5986 for (level = 0; level <= max_level; level++) {
5987 /*
5988 * We don't check uv_wm as the hardware doesn't actually
5989 * use it. It only gets used for calculating the required
5990 * ddb allocation.
5991 */
5992 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5993 return false;
5994 }
5995
5996 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
5997 skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
5998 skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
5999 }
6000
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)6001 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
6002 const struct skl_ddb_entry *b)
6003 {
6004 return a->start < b->end && b->start < a->end;
6005 }
6006
skl_ddb_entry_union(struct skl_ddb_entry * a,const struct skl_ddb_entry * b)6007 static void skl_ddb_entry_union(struct skl_ddb_entry *a,
6008 const struct skl_ddb_entry *b)
6009 {
6010 if (a->end && b->end) {
6011 a->start = min(a->start, b->start);
6012 a->end = max(a->end, b->end);
6013 } else if (b->end) {
6014 a->start = b->start;
6015 a->end = b->end;
6016 }
6017 }
6018
skl_ddb_allocation_overlaps(const struct skl_ddb_entry * ddb,const struct skl_ddb_entry * entries,int num_entries,int ignore_idx)6019 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
6020 const struct skl_ddb_entry *entries,
6021 int num_entries, int ignore_idx)
6022 {
6023 int i;
6024
6025 for (i = 0; i < num_entries; i++) {
6026 if (i != ignore_idx &&
6027 skl_ddb_entries_overlap(ddb, &entries[i]))
6028 return true;
6029 }
6030
6031 return false;
6032 }
6033
6034 static int
skl_ddb_add_affected_planes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)6035 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
6036 struct intel_crtc_state *new_crtc_state)
6037 {
6038 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
6039 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6040 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6041 struct intel_plane *plane;
6042
6043 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6044 struct intel_plane_state *plane_state;
6045 enum plane_id plane_id = plane->id;
6046
6047 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
6048 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
6049 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
6050 &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
6051 continue;
6052
6053 plane_state = intel_atomic_get_plane_state(state, plane);
6054 if (IS_ERR(plane_state))
6055 return PTR_ERR(plane_state);
6056
6057 new_crtc_state->update_planes |= BIT(plane_id);
6058 }
6059
6060 return 0;
6061 }
6062
intel_dbuf_enabled_slices(const struct intel_dbuf_state * dbuf_state)6063 static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
6064 {
6065 struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev);
6066 u8 enabled_slices;
6067 enum pipe pipe;
6068
6069 /*
6070 * FIXME: For now we always enable slice S1 as per
6071 * the Bspec display initialization sequence.
6072 */
6073 enabled_slices = BIT(DBUF_S1);
6074
6075 for_each_pipe(dev_priv, pipe)
6076 enabled_slices |= dbuf_state->slices[pipe];
6077
6078 return enabled_slices;
6079 }
6080
6081 static int
skl_compute_ddb(struct intel_atomic_state * state)6082 skl_compute_ddb(struct intel_atomic_state *state)
6083 {
6084 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6085 const struct intel_dbuf_state *old_dbuf_state;
6086 struct intel_dbuf_state *new_dbuf_state = NULL;
6087 const struct intel_crtc_state *old_crtc_state;
6088 struct intel_crtc_state *new_crtc_state;
6089 struct intel_crtc *crtc;
6090 int ret, i;
6091
6092 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6093 new_dbuf_state = intel_atomic_get_dbuf_state(state);
6094 if (IS_ERR(new_dbuf_state))
6095 return PTR_ERR(new_dbuf_state);
6096
6097 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
6098 break;
6099 }
6100
6101 if (!new_dbuf_state)
6102 return 0;
6103
6104 new_dbuf_state->active_pipes =
6105 intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
6106
6107 if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
6108 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6109 if (ret)
6110 return ret;
6111 }
6112
6113 for_each_intel_crtc(&dev_priv->drm, crtc) {
6114 enum pipe pipe = crtc->pipe;
6115
6116 new_dbuf_state->slices[pipe] =
6117 skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes);
6118
6119 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
6120 continue;
6121
6122 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6123 if (ret)
6124 return ret;
6125 }
6126
6127 new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
6128
6129 if (IS_ALDERLAKE_P(dev_priv))
6130 new_dbuf_state->joined_mbus = adlp_check_mbus_joined(new_dbuf_state->active_pipes);
6131
6132 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
6133 old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6134 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
6135 if (ret)
6136 return ret;
6137
6138 if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6139 /* TODO: Implement vblank synchronized MBUS joining changes */
6140 ret = intel_modeset_all_pipes(state);
6141 if (ret)
6142 return ret;
6143 }
6144
6145 drm_dbg_kms(&dev_priv->drm,
6146 "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
6147 old_dbuf_state->enabled_slices,
6148 new_dbuf_state->enabled_slices,
6149 INTEL_INFO(dev_priv)->dbuf.slice_mask,
6150 yesno(old_dbuf_state->joined_mbus),
6151 yesno(new_dbuf_state->joined_mbus));
6152 }
6153
6154 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6155 enum pipe pipe = crtc->pipe;
6156
6157 new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
6158
6159 if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
6160 continue;
6161
6162 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6163 if (ret)
6164 return ret;
6165 }
6166
6167 for_each_intel_crtc(&dev_priv->drm, crtc) {
6168 ret = skl_crtc_allocate_ddb(state, crtc);
6169 if (ret)
6170 return ret;
6171 }
6172
6173 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6174 new_crtc_state, i) {
6175 ret = skl_allocate_plane_ddb(state, crtc);
6176 if (ret)
6177 return ret;
6178
6179 ret = skl_ddb_add_affected_planes(old_crtc_state,
6180 new_crtc_state);
6181 if (ret)
6182 return ret;
6183 }
6184
6185 return 0;
6186 }
6187
enast(bool enable)6188 static char enast(bool enable)
6189 {
6190 return enable ? '*' : ' ';
6191 }
6192
6193 static void
skl_print_wm_changes(struct intel_atomic_state * state)6194 skl_print_wm_changes(struct intel_atomic_state *state)
6195 {
6196 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6197 const struct intel_crtc_state *old_crtc_state;
6198 const struct intel_crtc_state *new_crtc_state;
6199 struct intel_plane *plane;
6200 struct intel_crtc *crtc;
6201 int i;
6202
6203 if (!drm_debug_enabled(DRM_UT_KMS))
6204 return;
6205
6206 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6207 new_crtc_state, i) {
6208 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
6209
6210 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
6211 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
6212
6213 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6214 enum plane_id plane_id = plane->id;
6215 const struct skl_ddb_entry *old, *new;
6216
6217 old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
6218 new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
6219
6220 if (skl_ddb_entry_equal(old, new))
6221 continue;
6222
6223 drm_dbg_kms(&dev_priv->drm,
6224 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
6225 plane->base.base.id, plane->base.name,
6226 old->start, old->end, new->start, new->end,
6227 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
6228 }
6229
6230 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6231 enum plane_id plane_id = plane->id;
6232 const struct skl_plane_wm *old_wm, *new_wm;
6233
6234 old_wm = &old_pipe_wm->planes[plane_id];
6235 new_wm = &new_pipe_wm->planes[plane_id];
6236
6237 if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
6238 continue;
6239
6240 drm_dbg_kms(&dev_priv->drm,
6241 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
6242 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
6243 plane->base.base.id, plane->base.name,
6244 enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
6245 enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
6246 enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
6247 enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
6248 enast(old_wm->trans_wm.enable),
6249 enast(old_wm->sagv.wm0.enable),
6250 enast(old_wm->sagv.trans_wm.enable),
6251 enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
6252 enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
6253 enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
6254 enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
6255 enast(new_wm->trans_wm.enable),
6256 enast(new_wm->sagv.wm0.enable),
6257 enast(new_wm->sagv.trans_wm.enable));
6258
6259 drm_dbg_kms(&dev_priv->drm,
6260 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
6261 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
6262 plane->base.base.id, plane->base.name,
6263 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
6264 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
6265 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
6266 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
6267 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
6268 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
6269 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
6270 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
6271 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
6272 enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
6273 enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
6274 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
6275 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
6276 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
6277 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
6278 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
6279 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
6280 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
6281 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
6282 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
6283 enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
6284 enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
6285
6286 drm_dbg_kms(&dev_priv->drm,
6287 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6288 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6289 plane->base.base.id, plane->base.name,
6290 old_wm->wm[0].blocks, old_wm->wm[1].blocks,
6291 old_wm->wm[2].blocks, old_wm->wm[3].blocks,
6292 old_wm->wm[4].blocks, old_wm->wm[5].blocks,
6293 old_wm->wm[6].blocks, old_wm->wm[7].blocks,
6294 old_wm->trans_wm.blocks,
6295 old_wm->sagv.wm0.blocks,
6296 old_wm->sagv.trans_wm.blocks,
6297 new_wm->wm[0].blocks, new_wm->wm[1].blocks,
6298 new_wm->wm[2].blocks, new_wm->wm[3].blocks,
6299 new_wm->wm[4].blocks, new_wm->wm[5].blocks,
6300 new_wm->wm[6].blocks, new_wm->wm[7].blocks,
6301 new_wm->trans_wm.blocks,
6302 new_wm->sagv.wm0.blocks,
6303 new_wm->sagv.trans_wm.blocks);
6304
6305 drm_dbg_kms(&dev_priv->drm,
6306 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6307 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6308 plane->base.base.id, plane->base.name,
6309 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
6310 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
6311 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
6312 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
6313 old_wm->trans_wm.min_ddb_alloc,
6314 old_wm->sagv.wm0.min_ddb_alloc,
6315 old_wm->sagv.trans_wm.min_ddb_alloc,
6316 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
6317 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
6318 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
6319 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
6320 new_wm->trans_wm.min_ddb_alloc,
6321 new_wm->sagv.wm0.min_ddb_alloc,
6322 new_wm->sagv.trans_wm.min_ddb_alloc);
6323 }
6324 }
6325 }
6326
skl_plane_selected_wm_equals(struct intel_plane * plane,const struct skl_pipe_wm * old_pipe_wm,const struct skl_pipe_wm * new_pipe_wm)6327 static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
6328 const struct skl_pipe_wm *old_pipe_wm,
6329 const struct skl_pipe_wm *new_pipe_wm)
6330 {
6331 struct drm_i915_private *i915 = to_i915(plane->base.dev);
6332 int level, max_level = ilk_wm_max_level(i915);
6333
6334 for (level = 0; level <= max_level; level++) {
6335 /*
6336 * We don't check uv_wm as the hardware doesn't actually
6337 * use it. It only gets used for calculating the required
6338 * ddb allocation.
6339 */
6340 if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
6341 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
6342 return false;
6343 }
6344
6345 if (HAS_HW_SAGV_WM(i915)) {
6346 const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
6347 const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
6348
6349 if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
6350 !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
6351 return false;
6352 }
6353
6354 return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
6355 skl_plane_trans_wm(new_pipe_wm, plane->id));
6356 }
6357
6358 /*
6359 * To make sure the cursor watermark registers are always consistent
6360 * with our computed state the following scenario needs special
6361 * treatment:
6362 *
6363 * 1. enable cursor
6364 * 2. move cursor entirely offscreen
6365 * 3. disable cursor
6366 *
6367 * Step 2. does call .disable_plane() but does not zero the watermarks
6368 * (since we consider an offscreen cursor still active for the purposes
6369 * of watermarks). Step 3. would not normally call .disable_plane()
6370 * because the actual plane visibility isn't changing, and we don't
6371 * deallocate the cursor ddb until the pipe gets disabled. So we must
6372 * force step 3. to call .disable_plane() to update the watermark
6373 * registers properly.
6374 *
6375 * Other planes do not suffer from this issues as their watermarks are
6376 * calculated based on the actual plane visibility. The only time this
6377 * can trigger for the other planes is during the initial readout as the
6378 * default value of the watermarks registers is not zero.
6379 */
skl_wm_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)6380 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
6381 struct intel_crtc *crtc)
6382 {
6383 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6384 const struct intel_crtc_state *old_crtc_state =
6385 intel_atomic_get_old_crtc_state(state, crtc);
6386 struct intel_crtc_state *new_crtc_state =
6387 intel_atomic_get_new_crtc_state(state, crtc);
6388 struct intel_plane *plane;
6389
6390 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6391 struct intel_plane_state *plane_state;
6392 enum plane_id plane_id = plane->id;
6393
6394 /*
6395 * Force a full wm update for every plane on modeset.
6396 * Required because the reset value of the wm registers
6397 * is non-zero, whereas we want all disabled planes to
6398 * have zero watermarks. So if we turn off the relevant
6399 * power well the hardware state will go out of sync
6400 * with the software state.
6401 */
6402 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6403 skl_plane_selected_wm_equals(plane,
6404 &old_crtc_state->wm.skl.optimal,
6405 &new_crtc_state->wm.skl.optimal))
6406 continue;
6407
6408 plane_state = intel_atomic_get_plane_state(state, plane);
6409 if (IS_ERR(plane_state))
6410 return PTR_ERR(plane_state);
6411
6412 new_crtc_state->update_planes |= BIT(plane_id);
6413 }
6414
6415 return 0;
6416 }
6417
6418 static int
skl_compute_wm(struct intel_atomic_state * state)6419 skl_compute_wm(struct intel_atomic_state *state)
6420 {
6421 struct intel_crtc *crtc;
6422 struct intel_crtc_state *new_crtc_state;
6423 int ret, i;
6424
6425 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6426 ret = skl_build_pipe_wm(state, crtc);
6427 if (ret)
6428 return ret;
6429 }
6430
6431 ret = skl_compute_ddb(state);
6432 if (ret)
6433 return ret;
6434
6435 ret = intel_compute_sagv_mask(state);
6436 if (ret)
6437 return ret;
6438
6439 /*
6440 * skl_compute_ddb() will have adjusted the final watermarks
6441 * based on how much ddb is available. Now we can actually
6442 * check if the final watermarks changed.
6443 */
6444 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6445 ret = skl_wm_add_affected_planes(state, crtc);
6446 if (ret)
6447 return ret;
6448 }
6449
6450 skl_print_wm_changes(state);
6451
6452 return 0;
6453 }
6454
ilk_compute_wm_config(struct drm_i915_private * dev_priv,struct intel_wm_config * config)6455 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6456 struct intel_wm_config *config)
6457 {
6458 struct intel_crtc *crtc;
6459
6460 /* Compute the currently _active_ config */
6461 for_each_intel_crtc(&dev_priv->drm, crtc) {
6462 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
6463
6464 if (!wm->pipe_enabled)
6465 continue;
6466
6467 config->sprites_enabled |= wm->sprites_enabled;
6468 config->sprites_scaled |= wm->sprites_scaled;
6469 config->num_pipes_active++;
6470 }
6471 }
6472
ilk_program_watermarks(struct drm_i915_private * dev_priv)6473 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6474 {
6475 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6476 struct ilk_wm_maximums max;
6477 struct intel_wm_config config = {};
6478 struct ilk_wm_values results = {};
6479 enum intel_ddb_partitioning partitioning;
6480
6481 ilk_compute_wm_config(dev_priv, &config);
6482
6483 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
6484 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6485
6486 /* 5/6 split only in single pipe config on IVB+ */
6487 if (DISPLAY_VER(dev_priv) >= 7 &&
6488 config.num_pipes_active == 1 && config.sprites_enabled) {
6489 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
6490 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6491
6492 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6493 } else {
6494 best_lp_wm = &lp_wm_1_2;
6495 }
6496
6497 partitioning = (best_lp_wm == &lp_wm_1_2) ?
6498 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6499
6500 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6501
6502 ilk_write_wm_values(dev_priv, &results);
6503 }
6504
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)6505 static void ilk_initial_watermarks(struct intel_atomic_state *state,
6506 struct intel_crtc *crtc)
6507 {
6508 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6509 const struct intel_crtc_state *crtc_state =
6510 intel_atomic_get_new_crtc_state(state, crtc);
6511
6512 mutex_lock(&dev_priv->wm.wm_mutex);
6513 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6514 ilk_program_watermarks(dev_priv);
6515 mutex_unlock(&dev_priv->wm.wm_mutex);
6516 }
6517
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)6518 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6519 struct intel_crtc *crtc)
6520 {
6521 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6522 const struct intel_crtc_state *crtc_state =
6523 intel_atomic_get_new_crtc_state(state, crtc);
6524
6525 if (!crtc_state->wm.need_postvbl_update)
6526 return;
6527
6528 mutex_lock(&dev_priv->wm.wm_mutex);
6529 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
6530 ilk_program_watermarks(dev_priv);
6531 mutex_unlock(&dev_priv->wm.wm_mutex);
6532 }
6533
skl_wm_level_from_reg_val(u32 val,struct skl_wm_level * level)6534 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6535 {
6536 level->enable = val & PLANE_WM_EN;
6537 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6538 level->blocks = val & PLANE_WM_BLOCKS_MASK;
6539 level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
6540 }
6541
skl_pipe_wm_get_hw_state(struct intel_crtc * crtc,struct skl_pipe_wm * out)6542 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6543 struct skl_pipe_wm *out)
6544 {
6545 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6546 enum pipe pipe = crtc->pipe;
6547 int level, max_level;
6548 enum plane_id plane_id;
6549 u32 val;
6550
6551 max_level = ilk_wm_max_level(dev_priv);
6552
6553 for_each_plane_id_on_crtc(crtc, plane_id) {
6554 struct skl_plane_wm *wm = &out->planes[plane_id];
6555
6556 for (level = 0; level <= max_level; level++) {
6557 if (plane_id != PLANE_CURSOR)
6558 val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
6559 else
6560 val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
6561
6562 skl_wm_level_from_reg_val(val, &wm->wm[level]);
6563 }
6564
6565 if (plane_id != PLANE_CURSOR)
6566 val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
6567 else
6568 val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
6569
6570 skl_wm_level_from_reg_val(val, &wm->trans_wm);
6571
6572 if (HAS_HW_SAGV_WM(dev_priv)) {
6573 if (plane_id != PLANE_CURSOR)
6574 val = intel_uncore_read(&dev_priv->uncore,
6575 PLANE_WM_SAGV(pipe, plane_id));
6576 else
6577 val = intel_uncore_read(&dev_priv->uncore,
6578 CUR_WM_SAGV(pipe));
6579
6580 skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
6581
6582 if (plane_id != PLANE_CURSOR)
6583 val = intel_uncore_read(&dev_priv->uncore,
6584 PLANE_WM_SAGV_TRANS(pipe, plane_id));
6585 else
6586 val = intel_uncore_read(&dev_priv->uncore,
6587 CUR_WM_SAGV_TRANS(pipe));
6588
6589 skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
6590 } else if (DISPLAY_VER(dev_priv) >= 12) {
6591 wm->sagv.wm0 = wm->wm[0];
6592 wm->sagv.trans_wm = wm->trans_wm;
6593 }
6594 }
6595 }
6596
skl_wm_get_hw_state(struct drm_i915_private * dev_priv)6597 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6598 {
6599 struct intel_dbuf_state *dbuf_state =
6600 to_intel_dbuf_state(dev_priv->dbuf.obj.state);
6601 struct intel_crtc *crtc;
6602
6603 if (IS_ALDERLAKE_P(dev_priv))
6604 dbuf_state->joined_mbus = intel_de_read(dev_priv, MBUS_CTL) & MBUS_JOIN;
6605
6606 for_each_intel_crtc(&dev_priv->drm, crtc) {
6607 struct intel_crtc_state *crtc_state =
6608 to_intel_crtc_state(crtc->base.state);
6609 enum pipe pipe = crtc->pipe;
6610 unsigned int mbus_offset;
6611 enum plane_id plane_id;
6612
6613 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6614 crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
6615
6616 memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
6617
6618 for_each_plane_id_on_crtc(crtc, plane_id) {
6619 struct skl_ddb_entry *ddb_y =
6620 &crtc_state->wm.skl.plane_ddb_y[plane_id];
6621 struct skl_ddb_entry *ddb_uv =
6622 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
6623
6624 skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe,
6625 plane_id, ddb_y, ddb_uv);
6626
6627 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
6628 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_uv);
6629 }
6630
6631 dbuf_state->slices[pipe] =
6632 skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes);
6633
6634 dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
6635
6636 /*
6637 * Used for checking overlaps, so we need absolute
6638 * offsets instead of MBUS relative offsets.
6639 */
6640 mbus_offset = mbus_ddb_offset(dev_priv, dbuf_state->slices[pipe]);
6641 crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
6642 crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
6643
6644 drm_dbg_kms(&dev_priv->drm,
6645 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
6646 crtc->base.base.id, crtc->base.name,
6647 dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
6648 dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
6649 yesno(dbuf_state->joined_mbus));
6650 }
6651
6652 dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices;
6653 }
6654
ilk_pipe_wm_get_hw_state(struct intel_crtc * crtc)6655 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6656 {
6657 struct drm_device *dev = crtc->base.dev;
6658 struct drm_i915_private *dev_priv = to_i915(dev);
6659 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6660 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6661 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6662 enum pipe pipe = crtc->pipe;
6663
6664 hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
6665
6666 memset(active, 0, sizeof(*active));
6667
6668 active->pipe_enabled = crtc->active;
6669
6670 if (active->pipe_enabled) {
6671 u32 tmp = hw->wm_pipe[pipe];
6672
6673 /*
6674 * For active pipes LP0 watermark is marked as
6675 * enabled, and LP1+ watermaks as disabled since
6676 * we can't really reverse compute them in case
6677 * multiple pipes are active.
6678 */
6679 active->wm[0].enable = true;
6680 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
6681 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
6682 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
6683 } else {
6684 int level, max_level = ilk_wm_max_level(dev_priv);
6685
6686 /*
6687 * For inactive pipes, all watermark levels
6688 * should be marked as enabled but zeroed,
6689 * which is what we'd compute them to.
6690 */
6691 for (level = 0; level <= max_level; level++)
6692 active->wm[level].enable = true;
6693 }
6694
6695 crtc->wm.active.ilk = *active;
6696 }
6697
6698 #define _FW_WM(value, plane) \
6699 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6700 #define _FW_WM_VLV(value, plane) \
6701 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6702
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)6703 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6704 struct g4x_wm_values *wm)
6705 {
6706 u32 tmp;
6707
6708 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6709 wm->sr.plane = _FW_WM(tmp, SR);
6710 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6711 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6712 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6713
6714 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6715 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6716 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6717 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6718 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6719 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6720 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6721
6722 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6723 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6724 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6725 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6726 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6727 }
6728
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)6729 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6730 struct vlv_wm_values *wm)
6731 {
6732 enum pipe pipe;
6733 u32 tmp;
6734
6735 for_each_pipe(dev_priv, pipe) {
6736 tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
6737
6738 wm->ddl[pipe].plane[PLANE_PRIMARY] =
6739 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6740 wm->ddl[pipe].plane[PLANE_CURSOR] =
6741 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6742 wm->ddl[pipe].plane[PLANE_SPRITE0] =
6743 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6744 wm->ddl[pipe].plane[PLANE_SPRITE1] =
6745 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6746 }
6747
6748 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6749 wm->sr.plane = _FW_WM(tmp, SR);
6750 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6751 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6752 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6753
6754 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6755 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6756 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6757 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6758
6759 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6760 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6761
6762 if (IS_CHERRYVIEW(dev_priv)) {
6763 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
6764 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6765 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6766
6767 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
6768 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6769 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6770
6771 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
6772 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6773 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6774
6775 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6776 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6777 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6778 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6779 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6780 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6781 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6782 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6783 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6784 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6785 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6786 } else {
6787 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
6788 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6789 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6790
6791 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6792 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6793 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6794 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6795 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6796 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6797 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6798 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6799 }
6800 }
6801
6802 #undef _FW_WM
6803 #undef _FW_WM_VLV
6804
g4x_wm_get_hw_state(struct drm_i915_private * dev_priv)6805 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6806 {
6807 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6808 struct intel_crtc *crtc;
6809
6810 g4x_read_wm_values(dev_priv, wm);
6811
6812 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
6813
6814 for_each_intel_crtc(&dev_priv->drm, crtc) {
6815 struct intel_crtc_state *crtc_state =
6816 to_intel_crtc_state(crtc->base.state);
6817 struct g4x_wm_state *active = &crtc->wm.active.g4x;
6818 struct g4x_pipe_wm *raw;
6819 enum pipe pipe = crtc->pipe;
6820 enum plane_id plane_id;
6821 int level, max_level;
6822
6823 active->cxsr = wm->cxsr;
6824 active->hpll_en = wm->hpll_en;
6825 active->fbc_en = wm->fbc_en;
6826
6827 active->sr = wm->sr;
6828 active->hpll = wm->hpll;
6829
6830 for_each_plane_id_on_crtc(crtc, plane_id) {
6831 active->wm.plane[plane_id] =
6832 wm->pipe[pipe].plane[plane_id];
6833 }
6834
6835 if (wm->cxsr && wm->hpll_en)
6836 max_level = G4X_WM_LEVEL_HPLL;
6837 else if (wm->cxsr)
6838 max_level = G4X_WM_LEVEL_SR;
6839 else
6840 max_level = G4X_WM_LEVEL_NORMAL;
6841
6842 level = G4X_WM_LEVEL_NORMAL;
6843 raw = &crtc_state->wm.g4x.raw[level];
6844 for_each_plane_id_on_crtc(crtc, plane_id)
6845 raw->plane[plane_id] = active->wm.plane[plane_id];
6846
6847 if (++level > max_level)
6848 goto out;
6849
6850 raw = &crtc_state->wm.g4x.raw[level];
6851 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6852 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6853 raw->plane[PLANE_SPRITE0] = 0;
6854 raw->fbc = active->sr.fbc;
6855
6856 if (++level > max_level)
6857 goto out;
6858
6859 raw = &crtc_state->wm.g4x.raw[level];
6860 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6861 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6862 raw->plane[PLANE_SPRITE0] = 0;
6863 raw->fbc = active->hpll.fbc;
6864
6865 out:
6866 for_each_plane_id_on_crtc(crtc, plane_id)
6867 g4x_raw_plane_wm_set(crtc_state, level,
6868 plane_id, USHRT_MAX);
6869 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6870
6871 crtc_state->wm.g4x.optimal = *active;
6872 crtc_state->wm.g4x.intermediate = *active;
6873
6874 drm_dbg_kms(&dev_priv->drm,
6875 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6876 pipe_name(pipe),
6877 wm->pipe[pipe].plane[PLANE_PRIMARY],
6878 wm->pipe[pipe].plane[PLANE_CURSOR],
6879 wm->pipe[pipe].plane[PLANE_SPRITE0]);
6880 }
6881
6882 drm_dbg_kms(&dev_priv->drm,
6883 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6884 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6885 drm_dbg_kms(&dev_priv->drm,
6886 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6887 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6888 drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6889 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6890 }
6891
g4x_wm_sanitize(struct drm_i915_private * dev_priv)6892 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6893 {
6894 struct intel_plane *plane;
6895 struct intel_crtc *crtc;
6896
6897 mutex_lock(&dev_priv->wm.wm_mutex);
6898
6899 for_each_intel_plane(&dev_priv->drm, plane) {
6900 struct intel_crtc *crtc =
6901 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6902 struct intel_crtc_state *crtc_state =
6903 to_intel_crtc_state(crtc->base.state);
6904 struct intel_plane_state *plane_state =
6905 to_intel_plane_state(plane->base.state);
6906 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6907 enum plane_id plane_id = plane->id;
6908 int level;
6909
6910 if (plane_state->uapi.visible)
6911 continue;
6912
6913 for (level = 0; level < 3; level++) {
6914 struct g4x_pipe_wm *raw =
6915 &crtc_state->wm.g4x.raw[level];
6916
6917 raw->plane[plane_id] = 0;
6918 wm_state->wm.plane[plane_id] = 0;
6919 }
6920
6921 if (plane_id == PLANE_PRIMARY) {
6922 for (level = 0; level < 3; level++) {
6923 struct g4x_pipe_wm *raw =
6924 &crtc_state->wm.g4x.raw[level];
6925 raw->fbc = 0;
6926 }
6927
6928 wm_state->sr.fbc = 0;
6929 wm_state->hpll.fbc = 0;
6930 wm_state->fbc_en = false;
6931 }
6932 }
6933
6934 for_each_intel_crtc(&dev_priv->drm, crtc) {
6935 struct intel_crtc_state *crtc_state =
6936 to_intel_crtc_state(crtc->base.state);
6937
6938 crtc_state->wm.g4x.intermediate =
6939 crtc_state->wm.g4x.optimal;
6940 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6941 }
6942
6943 g4x_program_watermarks(dev_priv);
6944
6945 mutex_unlock(&dev_priv->wm.wm_mutex);
6946 }
6947
vlv_wm_get_hw_state(struct drm_i915_private * dev_priv)6948 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6949 {
6950 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6951 struct intel_crtc *crtc;
6952 u32 val;
6953
6954 vlv_read_wm_values(dev_priv, wm);
6955
6956 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6957 wm->level = VLV_WM_LEVEL_PM2;
6958
6959 if (IS_CHERRYVIEW(dev_priv)) {
6960 vlv_punit_get(dev_priv);
6961
6962 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6963 if (val & DSP_MAXFIFO_PM5_ENABLE)
6964 wm->level = VLV_WM_LEVEL_PM5;
6965
6966 /*
6967 * If DDR DVFS is disabled in the BIOS, Punit
6968 * will never ack the request. So if that happens
6969 * assume we don't have to enable/disable DDR DVFS
6970 * dynamically. To test that just set the REQ_ACK
6971 * bit to poke the Punit, but don't change the
6972 * HIGH/LOW bits so that we don't actually change
6973 * the current state.
6974 */
6975 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6976 val |= FORCE_DDR_FREQ_REQ_ACK;
6977 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6978
6979 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6980 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6981 drm_dbg_kms(&dev_priv->drm,
6982 "Punit not acking DDR DVFS request, "
6983 "assuming DDR DVFS is disabled\n");
6984 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6985 } else {
6986 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6987 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6988 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6989 }
6990
6991 vlv_punit_put(dev_priv);
6992 }
6993
6994 for_each_intel_crtc(&dev_priv->drm, crtc) {
6995 struct intel_crtc_state *crtc_state =
6996 to_intel_crtc_state(crtc->base.state);
6997 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6998 const struct vlv_fifo_state *fifo_state =
6999 &crtc_state->wm.vlv.fifo_state;
7000 enum pipe pipe = crtc->pipe;
7001 enum plane_id plane_id;
7002 int level;
7003
7004 vlv_get_fifo_size(crtc_state);
7005
7006 active->num_levels = wm->level + 1;
7007 active->cxsr = wm->cxsr;
7008
7009 for (level = 0; level < active->num_levels; level++) {
7010 struct g4x_pipe_wm *raw =
7011 &crtc_state->wm.vlv.raw[level];
7012
7013 active->sr[level].plane = wm->sr.plane;
7014 active->sr[level].cursor = wm->sr.cursor;
7015
7016 for_each_plane_id_on_crtc(crtc, plane_id) {
7017 active->wm[level].plane[plane_id] =
7018 wm->pipe[pipe].plane[plane_id];
7019
7020 raw->plane[plane_id] =
7021 vlv_invert_wm_value(active->wm[level].plane[plane_id],
7022 fifo_state->plane[plane_id]);
7023 }
7024 }
7025
7026 for_each_plane_id_on_crtc(crtc, plane_id)
7027 vlv_raw_plane_wm_set(crtc_state, level,
7028 plane_id, USHRT_MAX);
7029 vlv_invalidate_wms(crtc, active, level);
7030
7031 crtc_state->wm.vlv.optimal = *active;
7032 crtc_state->wm.vlv.intermediate = *active;
7033
7034 drm_dbg_kms(&dev_priv->drm,
7035 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
7036 pipe_name(pipe),
7037 wm->pipe[pipe].plane[PLANE_PRIMARY],
7038 wm->pipe[pipe].plane[PLANE_CURSOR],
7039 wm->pipe[pipe].plane[PLANE_SPRITE0],
7040 wm->pipe[pipe].plane[PLANE_SPRITE1]);
7041 }
7042
7043 drm_dbg_kms(&dev_priv->drm,
7044 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
7045 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
7046 }
7047
vlv_wm_sanitize(struct drm_i915_private * dev_priv)7048 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
7049 {
7050 struct intel_plane *plane;
7051 struct intel_crtc *crtc;
7052
7053 mutex_lock(&dev_priv->wm.wm_mutex);
7054
7055 for_each_intel_plane(&dev_priv->drm, plane) {
7056 struct intel_crtc *crtc =
7057 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
7058 struct intel_crtc_state *crtc_state =
7059 to_intel_crtc_state(crtc->base.state);
7060 struct intel_plane_state *plane_state =
7061 to_intel_plane_state(plane->base.state);
7062 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
7063 const struct vlv_fifo_state *fifo_state =
7064 &crtc_state->wm.vlv.fifo_state;
7065 enum plane_id plane_id = plane->id;
7066 int level;
7067
7068 if (plane_state->uapi.visible)
7069 continue;
7070
7071 for (level = 0; level < wm_state->num_levels; level++) {
7072 struct g4x_pipe_wm *raw =
7073 &crtc_state->wm.vlv.raw[level];
7074
7075 raw->plane[plane_id] = 0;
7076
7077 wm_state->wm[level].plane[plane_id] =
7078 vlv_invert_wm_value(raw->plane[plane_id],
7079 fifo_state->plane[plane_id]);
7080 }
7081 }
7082
7083 for_each_intel_crtc(&dev_priv->drm, crtc) {
7084 struct intel_crtc_state *crtc_state =
7085 to_intel_crtc_state(crtc->base.state);
7086
7087 crtc_state->wm.vlv.intermediate =
7088 crtc_state->wm.vlv.optimal;
7089 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
7090 }
7091
7092 vlv_program_watermarks(dev_priv);
7093
7094 mutex_unlock(&dev_priv->wm.wm_mutex);
7095 }
7096
7097 /*
7098 * FIXME should probably kill this and improve
7099 * the real watermark readout/sanitation instead
7100 */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)7101 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7102 {
7103 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM1_LP_SR_EN);
7104 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM1_LP_SR_EN);
7105 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM1_LP_SR_EN);
7106
7107 /*
7108 * Don't touch WM1S_LP_EN here.
7109 * Doing so could cause underruns.
7110 */
7111 }
7112
ilk_wm_get_hw_state(struct drm_i915_private * dev_priv)7113 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
7114 {
7115 struct ilk_wm_values *hw = &dev_priv->wm.hw;
7116 struct intel_crtc *crtc;
7117
7118 ilk_init_lp_watermarks(dev_priv);
7119
7120 for_each_intel_crtc(&dev_priv->drm, crtc)
7121 ilk_pipe_wm_get_hw_state(crtc);
7122
7123 hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
7124 hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
7125 hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
7126
7127 hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
7128 if (DISPLAY_VER(dev_priv) >= 7) {
7129 hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
7130 hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
7131 }
7132
7133 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7134 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
7135 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7136 else if (IS_IVYBRIDGE(dev_priv))
7137 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
7138 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7139
7140 hw->enable_fbc_wm =
7141 !(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
7142 }
7143
7144 /**
7145 * intel_update_watermarks - update FIFO watermark values based on current modes
7146 * @crtc: the #intel_crtc on which to compute the WM
7147 *
7148 * Calculate watermark values for the various WM regs based on current mode
7149 * and plane configuration.
7150 *
7151 * There are several cases to deal with here:
7152 * - normal (i.e. non-self-refresh)
7153 * - self-refresh (SR) mode
7154 * - lines are large relative to FIFO size (buffer can hold up to 2)
7155 * - lines are small relative to FIFO size (buffer can hold more than 2
7156 * lines), so need to account for TLB latency
7157 *
7158 * The normal calculation is:
7159 * watermark = dotclock * bytes per pixel * latency
7160 * where latency is platform & configuration dependent (we assume pessimal
7161 * values here).
7162 *
7163 * The SR calculation is:
7164 * watermark = (trunc(latency/line time)+1) * surface width *
7165 * bytes per pixel
7166 * where
7167 * line time = htotal / dotclock
7168 * surface width = hdisplay for normal plane and 64 for cursor
7169 * and latency is assumed to be high, as above.
7170 *
7171 * The final value programmed to the register should always be rounded up,
7172 * and include an extra 2 entries to account for clock crossings.
7173 *
7174 * We don't use the sprite, so we can ignore that. And on Crestline we have
7175 * to set the non-SR watermarks to 8.
7176 */
intel_update_watermarks(struct intel_crtc * crtc)7177 void intel_update_watermarks(struct intel_crtc *crtc)
7178 {
7179 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7180
7181 if (dev_priv->display.update_wm)
7182 dev_priv->display.update_wm(crtc);
7183 }
7184
intel_enable_ipc(struct drm_i915_private * dev_priv)7185 void intel_enable_ipc(struct drm_i915_private *dev_priv)
7186 {
7187 u32 val;
7188
7189 if (!HAS_IPC(dev_priv))
7190 return;
7191
7192 val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
7193
7194 if (dev_priv->ipc_enabled)
7195 val |= DISP_IPC_ENABLE;
7196 else
7197 val &= ~DISP_IPC_ENABLE;
7198
7199 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
7200 }
7201
intel_can_enable_ipc(struct drm_i915_private * dev_priv)7202 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
7203 {
7204 /* Display WA #0477 WaDisableIPC: skl */
7205 if (IS_SKYLAKE(dev_priv))
7206 return false;
7207
7208 /* Display WA #1141: SKL:all KBL:all CFL */
7209 if (IS_KABYLAKE(dev_priv) ||
7210 IS_COFFEELAKE(dev_priv) ||
7211 IS_COMETLAKE(dev_priv))
7212 return dev_priv->dram_info.symmetric_memory;
7213
7214 return true;
7215 }
7216
intel_init_ipc(struct drm_i915_private * dev_priv)7217 void intel_init_ipc(struct drm_i915_private *dev_priv)
7218 {
7219 if (!HAS_IPC(dev_priv))
7220 return;
7221
7222 dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
7223
7224 intel_enable_ipc(dev_priv);
7225 }
7226
ibx_init_clock_gating(struct drm_i915_private * dev_priv)7227 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7228 {
7229 /*
7230 * On Ibex Peak and Cougar Point, we need to disable clock
7231 * gating for the panel power sequencer or it will fail to
7232 * start up when no ports are active.
7233 */
7234 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7235 }
7236
g4x_disable_trickle_feed(struct drm_i915_private * dev_priv)7237 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7238 {
7239 enum pipe pipe;
7240
7241 for_each_pipe(dev_priv, pipe) {
7242 intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
7243 intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
7244 DISPPLANE_TRICKLE_FEED_DISABLE);
7245
7246 intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
7247 intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
7248 }
7249 }
7250
ilk_init_clock_gating(struct drm_i915_private * dev_priv)7251 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
7252 {
7253 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7254
7255 /*
7256 * Required for FBC
7257 * WaFbcDisableDpfcClockGating:ilk
7258 */
7259 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7260 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7261 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7262
7263 intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
7264 MARIUNIT_CLOCK_GATE_DISABLE |
7265 SVSMUNIT_CLOCK_GATE_DISABLE);
7266 intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
7267 VFMUNIT_CLOCK_GATE_DISABLE);
7268
7269 /*
7270 * According to the spec the following bits should be set in
7271 * order to enable memory self-refresh
7272 * The bit 22/21 of 0x42004
7273 * The bit 5 of 0x42020
7274 * The bit 15 of 0x45000
7275 */
7276 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7277 (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7278 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7279 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7280 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
7281 (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7282 DISP_FBC_WM_DIS));
7283
7284 /*
7285 * Based on the document from hardware guys the following bits
7286 * should be set unconditionally in order to enable FBC.
7287 * The bit 22 of 0x42000
7288 * The bit 22 of 0x42004
7289 * The bit 7,8,9 of 0x42020.
7290 */
7291 if (IS_IRONLAKE_M(dev_priv)) {
7292 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
7293 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7294 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7295 ILK_FBCQ_DIS);
7296 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7297 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7298 ILK_DPARB_GATE);
7299 }
7300
7301 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7302
7303 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7304 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7305 ILK_ELPIN_409_SELECT);
7306
7307 g4x_disable_trickle_feed(dev_priv);
7308
7309 ibx_init_clock_gating(dev_priv);
7310 }
7311
cpt_init_clock_gating(struct drm_i915_private * dev_priv)7312 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7313 {
7314 enum pipe pipe;
7315 u32 val;
7316
7317 /*
7318 * On Ibex Peak and Cougar Point, we need to disable clock
7319 * gating for the panel power sequencer or it will fail to
7320 * start up when no ports are active.
7321 */
7322 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7323 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7324 PCH_CPUNIT_CLOCK_GATE_DISABLE);
7325 intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
7326 DPLS_EDP_PPS_FIX_DIS);
7327 /* The below fixes the weird display corruption, a few pixels shifted
7328 * downward, on (only) LVDS of some HP laptops with IVY.
7329 */
7330 for_each_pipe(dev_priv, pipe) {
7331 val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
7332 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7333 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7334 if (dev_priv->vbt.fdi_rx_polarity_inverted)
7335 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7336 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7337 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7338 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
7339 }
7340 /* WADP0ClockGatingDisable */
7341 for_each_pipe(dev_priv, pipe) {
7342 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
7343 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7344 }
7345 }
7346
gen6_check_mch_setup(struct drm_i915_private * dev_priv)7347 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7348 {
7349 u32 tmp;
7350
7351 tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
7352 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7353 drm_dbg_kms(&dev_priv->drm,
7354 "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7355 tmp);
7356 }
7357
gen6_init_clock_gating(struct drm_i915_private * dev_priv)7358 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7359 {
7360 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7361
7362 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7363
7364 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7365 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7366 ILK_ELPIN_409_SELECT);
7367
7368 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7369 intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7370 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7371 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7372
7373 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7374 * gating disable must be set. Failure to set it results in
7375 * flickering pixels due to Z write ordering failures after
7376 * some amount of runtime in the Mesa "fire" demo, and Unigine
7377 * Sanctuary and Tropics, and apparently anything else with
7378 * alpha test or pixel discard.
7379 *
7380 * According to the spec, bit 11 (RCCUNIT) must also be set,
7381 * but we didn't debug actual testcases to find it out.
7382 *
7383 * WaDisableRCCUnitClockGating:snb
7384 * WaDisableRCPBUnitClockGating:snb
7385 */
7386 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7387 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7388 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7389
7390 /*
7391 * According to the spec the following bits should be
7392 * set in order to enable memory self-refresh and fbc:
7393 * The bit21 and bit22 of 0x42000
7394 * The bit21 and bit22 of 0x42004
7395 * The bit5 and bit7 of 0x42020
7396 * The bit14 of 0x70180
7397 * The bit14 of 0x71180
7398 *
7399 * WaFbcAsynchFlipDisableFbcQueue:snb
7400 */
7401 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7402 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7403 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7404 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7405 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7406 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7407 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
7408 intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
7409 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
7410 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7411
7412 g4x_disable_trickle_feed(dev_priv);
7413
7414 cpt_init_clock_gating(dev_priv);
7415
7416 gen6_check_mch_setup(dev_priv);
7417 }
7418
lpt_init_clock_gating(struct drm_i915_private * dev_priv)7419 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7420 {
7421 /*
7422 * TODO: this bit should only be enabled when really needed, then
7423 * disabled when not needed anymore in order to save power.
7424 */
7425 if (HAS_PCH_LPT_LP(dev_priv))
7426 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
7427 intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7428 PCH_LP_PARTITION_LEVEL_DISABLE);
7429
7430 /* WADPOClockGatingDisable:hsw */
7431 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
7432 intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
7433 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7434 }
7435
lpt_suspend_hw(struct drm_i915_private * dev_priv)7436 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7437 {
7438 if (HAS_PCH_LPT_LP(dev_priv)) {
7439 u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
7440
7441 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7442 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
7443 }
7444 }
7445
gen8_set_l3sqc_credits(struct drm_i915_private * dev_priv,int general_prio_credits,int high_prio_credits)7446 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7447 int general_prio_credits,
7448 int high_prio_credits)
7449 {
7450 u32 misccpctl;
7451 u32 val;
7452
7453 /* WaTempDisableDOPClkGating:bdw */
7454 misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
7455 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7456
7457 val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7458 val &= ~L3_PRIO_CREDITS_MASK;
7459 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
7460 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7461 intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
7462
7463 /*
7464 * Wait at least 100 clocks before re-enabling clock gating.
7465 * See the definition of L3SQCREG1 in BSpec.
7466 */
7467 intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7468 udelay(1);
7469 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
7470 }
7471
icl_init_clock_gating(struct drm_i915_private * dev_priv)7472 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
7473 {
7474 /* Wa_1409120013:icl,ehl */
7475 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7476 ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7477
7478 /*Wa_14010594013:icl, ehl */
7479 intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7480 0, ICL_DELAY_PMRSP);
7481 }
7482
gen12lp_init_clock_gating(struct drm_i915_private * dev_priv)7483 static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
7484 {
7485 /* Wa_1409120013:tgl,rkl,adl-s,dg1 */
7486 if (IS_TIGERLAKE(dev_priv) || IS_ROCKETLAKE(dev_priv) ||
7487 IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv))
7488 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7489 ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7490
7491 /* Wa_1409825376:tgl (pre-prod)*/
7492 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
7493 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7494 TGL_VRH_GATING_DIS);
7495
7496 /* Wa_14013723622:tgl,rkl,dg1,adl-s */
7497 if (DISPLAY_VER(dev_priv) == 12)
7498 intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY,
7499 CLKREQ_POLICY_MEM_UP_OVRD, 0);
7500 }
7501
adlp_init_clock_gating(struct drm_i915_private * dev_priv)7502 static void adlp_init_clock_gating(struct drm_i915_private *dev_priv)
7503 {
7504 gen12lp_init_clock_gating(dev_priv);
7505
7506 /* Wa_22011091694:adlp */
7507 intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS);
7508 }
7509
dg1_init_clock_gating(struct drm_i915_private * dev_priv)7510 static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
7511 {
7512 gen12lp_init_clock_gating(dev_priv);
7513
7514 /* Wa_1409836686:dg1[a0] */
7515 if (IS_DG1_GT_STEP(dev_priv, STEP_A0, STEP_B0))
7516 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7517 DPT_GATING_DIS);
7518 }
7519
cnp_init_clock_gating(struct drm_i915_private * dev_priv)7520 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
7521 {
7522 if (!HAS_PCH_CNP(dev_priv))
7523 return;
7524
7525 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7526 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7527 CNP_PWM_CGE_GATING_DISABLE);
7528 }
7529
cfl_init_clock_gating(struct drm_i915_private * dev_priv)7530 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7531 {
7532 cnp_init_clock_gating(dev_priv);
7533 gen9_init_clock_gating(dev_priv);
7534
7535 /* WAC6entrylatency:cfl */
7536 intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7537 FBC_LLC_FULLY_OPEN);
7538
7539 /*
7540 * WaFbcTurnOffFbcWatermark:cfl
7541 * Display WA #0562: cfl
7542 */
7543 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7544 DISP_FBC_WM_DIS);
7545
7546 /*
7547 * WaFbcNukeOnHostModify:cfl
7548 * Display WA #0873: cfl
7549 */
7550 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7551 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7552 }
7553
kbl_init_clock_gating(struct drm_i915_private * dev_priv)7554 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7555 {
7556 gen9_init_clock_gating(dev_priv);
7557
7558 /* WAC6entrylatency:kbl */
7559 intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7560 FBC_LLC_FULLY_OPEN);
7561
7562 /* WaDisableSDEUnitClockGating:kbl */
7563 if (IS_KBL_GT_STEP(dev_priv, 0, STEP_C0))
7564 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7565 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7566
7567 /* WaDisableGamClockGating:kbl */
7568 if (IS_KBL_GT_STEP(dev_priv, 0, STEP_C0))
7569 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7570 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7571
7572 /*
7573 * WaFbcTurnOffFbcWatermark:kbl
7574 * Display WA #0562: kbl
7575 */
7576 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7577 DISP_FBC_WM_DIS);
7578
7579 /*
7580 * WaFbcNukeOnHostModify:kbl
7581 * Display WA #0873: kbl
7582 */
7583 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7584 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7585 }
7586
skl_init_clock_gating(struct drm_i915_private * dev_priv)7587 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7588 {
7589 gen9_init_clock_gating(dev_priv);
7590
7591 /* WaDisableDopClockGating:skl */
7592 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
7593 ~GEN7_DOP_CLOCK_GATE_ENABLE);
7594
7595 /* WAC6entrylatency:skl */
7596 intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7597 FBC_LLC_FULLY_OPEN);
7598
7599 /*
7600 * WaFbcTurnOffFbcWatermark:skl
7601 * Display WA #0562: skl
7602 */
7603 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7604 DISP_FBC_WM_DIS);
7605
7606 /*
7607 * WaFbcNukeOnHostModify:skl
7608 * Display WA #0873: skl
7609 */
7610 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7611 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7612
7613 /*
7614 * WaFbcHighMemBwCorruptionAvoidance:skl
7615 * Display WA #0883: skl
7616 */
7617 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7618 ILK_DPFC_DISABLE_DUMMY0);
7619 }
7620
bdw_init_clock_gating(struct drm_i915_private * dev_priv)7621 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7622 {
7623 enum pipe pipe;
7624
7625 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7626 intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7627 intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7628 HSW_FBCQ_DIS);
7629
7630 /* WaSwitchSolVfFArbitrationPriority:bdw */
7631 intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7632
7633 /* WaPsrDPAMaskVBlankInSRD:bdw */
7634 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
7635 intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7636
7637 for_each_pipe(dev_priv, pipe) {
7638 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7639 intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7640 intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
7641 BDW_DPRS_MASK_VBLANK_SRD);
7642
7643 /* Undocumented but fixes async flip + VT-d corruption */
7644 if (intel_vtd_active())
7645 intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7646 HSW_PRI_STRETCH_MAX_MASK, HSW_PRI_STRETCH_MAX_X1);
7647 }
7648
7649 /* WaVSRefCountFullforceMissDisable:bdw */
7650 /* WaDSRefCountFullforceMissDisable:bdw */
7651 intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7652 intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7653 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7654
7655 intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7656 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7657
7658 /* WaDisableSDEUnitClockGating:bdw */
7659 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7660 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7661
7662 /* WaProgramL3SqcReg1Default:bdw */
7663 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7664
7665 /* WaKVMNotificationOnConfigChange:bdw */
7666 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
7667 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7668
7669 lpt_init_clock_gating(dev_priv);
7670
7671 /* WaDisableDopClockGating:bdw
7672 *
7673 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7674 * clock gating.
7675 */
7676 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7677 intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7678 }
7679
hsw_init_clock_gating(struct drm_i915_private * dev_priv)7680 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7681 {
7682 enum pipe pipe;
7683
7684 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7685 intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7686 intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7687 HSW_FBCQ_DIS);
7688
7689 for_each_pipe(dev_priv, pipe) {
7690 /* Undocumented but fixes async flip + VT-d corruption */
7691 if (intel_vtd_active())
7692 intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7693 HSW_PRI_STRETCH_MAX_MASK, HSW_PRI_STRETCH_MAX_X1);
7694 }
7695
7696 /* This is required by WaCatErrorRejectionIssue:hsw */
7697 intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7698 intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7699 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7700
7701 /* WaSwitchSolVfFArbitrationPriority:hsw */
7702 intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7703
7704 lpt_init_clock_gating(dev_priv);
7705 }
7706
ivb_init_clock_gating(struct drm_i915_private * dev_priv)7707 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7708 {
7709 u32 snpcr;
7710
7711 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7712
7713 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
7714 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7715 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7716 ILK_FBCQ_DIS);
7717
7718 /* WaDisableBackToBackFlipFix:ivb */
7719 intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7720 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7721 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7722
7723 if (IS_IVB_GT1(dev_priv))
7724 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7725 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7726 else {
7727 /* must write both registers */
7728 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7729 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7730 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
7731 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7732 }
7733
7734 /*
7735 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7736 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7737 */
7738 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7739 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7740
7741 /* This is required by WaCatErrorRejectionIssue:ivb */
7742 intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7743 intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7744 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7745
7746 g4x_disable_trickle_feed(dev_priv);
7747
7748 snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
7749 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7750 snpcr |= GEN6_MBC_SNPCR_MED;
7751 intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
7752
7753 if (!HAS_PCH_NOP(dev_priv))
7754 cpt_init_clock_gating(dev_priv);
7755
7756 gen6_check_mch_setup(dev_priv);
7757 }
7758
vlv_init_clock_gating(struct drm_i915_private * dev_priv)7759 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7760 {
7761 /* WaDisableBackToBackFlipFix:vlv */
7762 intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7763 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7764 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7765
7766 /* WaDisableDopClockGating:vlv */
7767 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7768 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7769
7770 /* This is required by WaCatErrorRejectionIssue:vlv */
7771 intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7772 intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7773 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7774
7775 /*
7776 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7777 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7778 */
7779 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7780 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7781
7782 /* WaDisableL3Bank2xClockGate:vlv
7783 * Disabling L3 clock gating- MMIO 940c[25] = 1
7784 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7785 intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
7786 intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7787
7788 /*
7789 * WaDisableVLVClockGating_VBIIssue:vlv
7790 * Disable clock gating on th GCFG unit to prevent a delay
7791 * in the reporting of vblank events.
7792 */
7793 intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7794 }
7795
chv_init_clock_gating(struct drm_i915_private * dev_priv)7796 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7797 {
7798 /* WaVSRefCountFullforceMissDisable:chv */
7799 /* WaDSRefCountFullforceMissDisable:chv */
7800 intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7801 intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7802 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7803
7804 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7805 intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7806 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7807
7808 /* WaDisableCSUnitClockGating:chv */
7809 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7810 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7811
7812 /* WaDisableSDEUnitClockGating:chv */
7813 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7814 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7815
7816 /*
7817 * WaProgramL3SqcReg1Default:chv
7818 * See gfxspecs/Related Documents/Performance Guide/
7819 * LSQC Setting Recommendations.
7820 */
7821 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7822 }
7823
g4x_init_clock_gating(struct drm_i915_private * dev_priv)7824 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7825 {
7826 u32 dspclk_gate;
7827
7828 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
7829 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7830 GS_UNIT_CLOCK_GATE_DISABLE |
7831 CL_UNIT_CLOCK_GATE_DISABLE);
7832 intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
7833 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7834 OVRUNIT_CLOCK_GATE_DISABLE |
7835 OVCUNIT_CLOCK_GATE_DISABLE;
7836 if (IS_GM45(dev_priv))
7837 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7838 intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
7839
7840 g4x_disable_trickle_feed(dev_priv);
7841 }
7842
i965gm_init_clock_gating(struct drm_i915_private * dev_priv)7843 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7844 {
7845 struct intel_uncore *uncore = &dev_priv->uncore;
7846
7847 intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7848 intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7849 intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7850 intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7851 intel_uncore_write16(uncore, DEUC, 0);
7852 intel_uncore_write(uncore,
7853 MI_ARB_STATE,
7854 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7855 }
7856
i965g_init_clock_gating(struct drm_i915_private * dev_priv)7857 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7858 {
7859 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7860 I965_RCC_CLOCK_GATE_DISABLE |
7861 I965_RCPB_CLOCK_GATE_DISABLE |
7862 I965_ISC_CLOCK_GATE_DISABLE |
7863 I965_FBC_CLOCK_GATE_DISABLE);
7864 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
7865 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7866 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7867 }
7868
gen3_init_clock_gating(struct drm_i915_private * dev_priv)7869 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7870 {
7871 u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
7872
7873 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7874 DSTATE_DOT_CLOCK_GATING;
7875 intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
7876
7877 if (IS_PINEVIEW(dev_priv))
7878 intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7879
7880 /* IIR "flip pending" means done if this bit is set */
7881 intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7882
7883 /* interrupts should cause a wake up from C3 */
7884 intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7885
7886 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7887 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7888
7889 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7890 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7891 }
7892
i85x_init_clock_gating(struct drm_i915_private * dev_priv)7893 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7894 {
7895 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7896
7897 /* interrupts should cause a wake up from C3 */
7898 intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7899 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7900
7901 intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7902 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7903
7904 /*
7905 * Have FBC ignore 3D activity since we use software
7906 * render tracking, and otherwise a pure 3D workload
7907 * (even if it just renders a single frame and then does
7908 * abosultely nothing) would not allow FBC to recompress
7909 * until a 2D blit occurs.
7910 */
7911 intel_uncore_write(&dev_priv->uncore, SCPD0,
7912 _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7913 }
7914
i830_init_clock_gating(struct drm_i915_private * dev_priv)7915 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7916 {
7917 intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7918 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7919 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7920 }
7921
intel_init_clock_gating(struct drm_i915_private * dev_priv)7922 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7923 {
7924 dev_priv->display.init_clock_gating(dev_priv);
7925 }
7926
intel_suspend_hw(struct drm_i915_private * dev_priv)7927 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7928 {
7929 if (HAS_PCH_LPT(dev_priv))
7930 lpt_suspend_hw(dev_priv);
7931 }
7932
nop_init_clock_gating(struct drm_i915_private * dev_priv)7933 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7934 {
7935 drm_dbg_kms(&dev_priv->drm,
7936 "No clock gating settings or workarounds applied.\n");
7937 }
7938
7939 /**
7940 * intel_init_clock_gating_hooks - setup the clock gating hooks
7941 * @dev_priv: device private
7942 *
7943 * Setup the hooks that configure which clocks of a given platform can be
7944 * gated and also apply various GT and display specific workarounds for these
7945 * platforms. Note that some GT specific workarounds are applied separately
7946 * when GPU contexts or batchbuffers start their execution.
7947 */
intel_init_clock_gating_hooks(struct drm_i915_private * dev_priv)7948 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7949 {
7950 if (IS_ALDERLAKE_P(dev_priv))
7951 dev_priv->display.init_clock_gating = adlp_init_clock_gating;
7952 else if (IS_DG1(dev_priv))
7953 dev_priv->display.init_clock_gating = dg1_init_clock_gating;
7954 else if (GRAPHICS_VER(dev_priv) == 12)
7955 dev_priv->display.init_clock_gating = gen12lp_init_clock_gating;
7956 else if (GRAPHICS_VER(dev_priv) == 11)
7957 dev_priv->display.init_clock_gating = icl_init_clock_gating;
7958 else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7959 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7960 else if (IS_SKYLAKE(dev_priv))
7961 dev_priv->display.init_clock_gating = skl_init_clock_gating;
7962 else if (IS_KABYLAKE(dev_priv))
7963 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7964 else if (IS_BROXTON(dev_priv))
7965 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7966 else if (IS_GEMINILAKE(dev_priv))
7967 dev_priv->display.init_clock_gating = glk_init_clock_gating;
7968 else if (IS_BROADWELL(dev_priv))
7969 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7970 else if (IS_CHERRYVIEW(dev_priv))
7971 dev_priv->display.init_clock_gating = chv_init_clock_gating;
7972 else if (IS_HASWELL(dev_priv))
7973 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7974 else if (IS_IVYBRIDGE(dev_priv))
7975 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7976 else if (IS_VALLEYVIEW(dev_priv))
7977 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7978 else if (GRAPHICS_VER(dev_priv) == 6)
7979 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7980 else if (GRAPHICS_VER(dev_priv) == 5)
7981 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7982 else if (IS_G4X(dev_priv))
7983 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7984 else if (IS_I965GM(dev_priv))
7985 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7986 else if (IS_I965G(dev_priv))
7987 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7988 else if (GRAPHICS_VER(dev_priv) == 3)
7989 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7990 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7991 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7992 else if (GRAPHICS_VER(dev_priv) == 2)
7993 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7994 else {
7995 MISSING_CASE(INTEL_DEVID(dev_priv));
7996 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7997 }
7998 }
7999
8000 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_i915_private * dev_priv)8001 void intel_init_pm(struct drm_i915_private *dev_priv)
8002 {
8003 /* For cxsr */
8004 if (IS_PINEVIEW(dev_priv))
8005 pnv_get_mem_freq(dev_priv);
8006 else if (GRAPHICS_VER(dev_priv) == 5)
8007 ilk_get_mem_freq(dev_priv);
8008
8009 if (intel_has_sagv(dev_priv))
8010 skl_setup_sagv_block_time(dev_priv);
8011
8012 /* For FIFO watermark updates */
8013 if (DISPLAY_VER(dev_priv) >= 9) {
8014 skl_setup_wm_latency(dev_priv);
8015 dev_priv->display.compute_global_watermarks = skl_compute_wm;
8016 } else if (HAS_PCH_SPLIT(dev_priv)) {
8017 ilk_setup_wm_latency(dev_priv);
8018
8019 if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->wm.pri_latency[1] &&
8020 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8021 (DISPLAY_VER(dev_priv) != 5 && dev_priv->wm.pri_latency[0] &&
8022 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8023 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8024 dev_priv->display.compute_intermediate_wm =
8025 ilk_compute_intermediate_wm;
8026 dev_priv->display.initial_watermarks =
8027 ilk_initial_watermarks;
8028 dev_priv->display.optimize_watermarks =
8029 ilk_optimize_watermarks;
8030 } else {
8031 drm_dbg_kms(&dev_priv->drm,
8032 "Failed to read display plane latency. "
8033 "Disable CxSR\n");
8034 }
8035 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8036 vlv_setup_wm_latency(dev_priv);
8037 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8038 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8039 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8040 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8041 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8042 } else if (IS_G4X(dev_priv)) {
8043 g4x_setup_wm_latency(dev_priv);
8044 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
8045 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
8046 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
8047 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8048 } else if (IS_PINEVIEW(dev_priv)) {
8049 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
8050 dev_priv->is_ddr3,
8051 dev_priv->fsb_freq,
8052 dev_priv->mem_freq)) {
8053 drm_info(&dev_priv->drm,
8054 "failed to find known CxSR latency "
8055 "(found ddr%s fsb freq %d, mem freq %d), "
8056 "disabling CxSR\n",
8057 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8058 dev_priv->fsb_freq, dev_priv->mem_freq);
8059 /* Disable CxSR and never update its watermark again */
8060 intel_set_memory_cxsr(dev_priv, false);
8061 dev_priv->display.update_wm = NULL;
8062 } else
8063 dev_priv->display.update_wm = pnv_update_wm;
8064 } else if (DISPLAY_VER(dev_priv) == 4) {
8065 dev_priv->display.update_wm = i965_update_wm;
8066 } else if (DISPLAY_VER(dev_priv) == 3) {
8067 dev_priv->display.update_wm = i9xx_update_wm;
8068 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8069 } else if (DISPLAY_VER(dev_priv) == 2) {
8070 if (INTEL_NUM_PIPES(dev_priv) == 1) {
8071 dev_priv->display.update_wm = i845_update_wm;
8072 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8073 } else {
8074 dev_priv->display.update_wm = i9xx_update_wm;
8075 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8076 }
8077 } else {
8078 drm_err(&dev_priv->drm,
8079 "unexpected fall-through in %s\n", __func__);
8080 }
8081 }
8082
intel_pm_setup(struct drm_i915_private * dev_priv)8083 void intel_pm_setup(struct drm_i915_private *dev_priv)
8084 {
8085 dev_priv->runtime_pm.suspended = false;
8086 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
8087 }
8088
intel_dbuf_duplicate_state(struct intel_global_obj * obj)8089 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
8090 {
8091 struct intel_dbuf_state *dbuf_state;
8092
8093 dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
8094 if (!dbuf_state)
8095 return NULL;
8096
8097 return &dbuf_state->base;
8098 }
8099
intel_dbuf_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)8100 static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
8101 struct intel_global_state *state)
8102 {
8103 kfree(state);
8104 }
8105
8106 static const struct intel_global_state_funcs intel_dbuf_funcs = {
8107 .atomic_duplicate_state = intel_dbuf_duplicate_state,
8108 .atomic_destroy_state = intel_dbuf_destroy_state,
8109 };
8110
8111 struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state * state)8112 intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
8113 {
8114 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8115 struct intel_global_state *dbuf_state;
8116
8117 dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
8118 if (IS_ERR(dbuf_state))
8119 return ERR_CAST(dbuf_state);
8120
8121 return to_intel_dbuf_state(dbuf_state);
8122 }
8123
intel_dbuf_init(struct drm_i915_private * dev_priv)8124 int intel_dbuf_init(struct drm_i915_private *dev_priv)
8125 {
8126 struct intel_dbuf_state *dbuf_state;
8127
8128 dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
8129 if (!dbuf_state)
8130 return -ENOMEM;
8131
8132 intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
8133 &dbuf_state->base, &intel_dbuf_funcs);
8134
8135 return 0;
8136 }
8137
8138 /*
8139 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
8140 * update the request state of all DBUS slices.
8141 */
update_mbus_pre_enable(struct intel_atomic_state * state)8142 static void update_mbus_pre_enable(struct intel_atomic_state *state)
8143 {
8144 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8145 u32 mbus_ctl, dbuf_min_tracker_val;
8146 enum dbuf_slice slice;
8147 const struct intel_dbuf_state *dbuf_state =
8148 intel_atomic_get_new_dbuf_state(state);
8149
8150 if (!IS_ALDERLAKE_P(dev_priv))
8151 return;
8152
8153 /*
8154 * TODO: Implement vblank synchronized MBUS joining changes.
8155 * Must be properly coordinated with dbuf reprogramming.
8156 */
8157 if (dbuf_state->joined_mbus) {
8158 mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
8159 MBUS_JOIN_PIPE_SELECT_NONE;
8160 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
8161 } else {
8162 mbus_ctl = MBUS_HASHING_MODE_2x2 |
8163 MBUS_JOIN_PIPE_SELECT_NONE;
8164 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
8165 }
8166
8167 intel_de_rmw(dev_priv, MBUS_CTL,
8168 MBUS_HASHING_MODE_MASK | MBUS_JOIN |
8169 MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
8170
8171 for_each_dbuf_slice(dev_priv, slice)
8172 intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
8173 DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
8174 dbuf_min_tracker_val);
8175 }
8176
intel_dbuf_pre_plane_update(struct intel_atomic_state * state)8177 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
8178 {
8179 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8180 const struct intel_dbuf_state *new_dbuf_state =
8181 intel_atomic_get_new_dbuf_state(state);
8182 const struct intel_dbuf_state *old_dbuf_state =
8183 intel_atomic_get_old_dbuf_state(state);
8184
8185 if (!new_dbuf_state ||
8186 ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8187 && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8188 return;
8189
8190 WARN_ON(!new_dbuf_state->base.changed);
8191
8192 update_mbus_pre_enable(state);
8193 gen9_dbuf_slices_update(dev_priv,
8194 old_dbuf_state->enabled_slices |
8195 new_dbuf_state->enabled_slices);
8196 }
8197
intel_dbuf_post_plane_update(struct intel_atomic_state * state)8198 void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
8199 {
8200 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8201 const struct intel_dbuf_state *new_dbuf_state =
8202 intel_atomic_get_new_dbuf_state(state);
8203 const struct intel_dbuf_state *old_dbuf_state =
8204 intel_atomic_get_old_dbuf_state(state);
8205
8206 if (!new_dbuf_state ||
8207 ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8208 && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8209 return;
8210
8211 WARN_ON(!new_dbuf_state->base.changed);
8212
8213 gen9_dbuf_slices_update(dev_priv,
8214 new_dbuf_state->enabled_slices);
8215 }
8216