1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
30 
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_plane_helper.h>
34 
35 #include "display/intel_atomic.h"
36 #include "display/intel_atomic_plane.h"
37 #include "display/intel_bw.h"
38 #include "display/intel_de.h"
39 #include "display/intel_display_types.h"
40 #include "display/intel_fbc.h"
41 #include "display/intel_sprite.h"
42 #include "display/skl_universal_plane.h"
43 
44 #include "gt/intel_llc.h"
45 
46 #include "i915_drv.h"
47 #include "i915_fixed.h"
48 #include "i915_irq.h"
49 #include "i915_trace.h"
50 #include "intel_pm.h"
51 #include "intel_sideband.h"
52 #include "../../../platform/x86/intel_ips.h"
53 
54 /* Stores plane specific WM parameters */
55 struct skl_wm_params {
56 	bool x_tiled, y_tiled;
57 	bool rc_surface;
58 	bool is_planar;
59 	u32 width;
60 	u8 cpp;
61 	u32 plane_pixel_rate;
62 	u32 y_min_scanlines;
63 	u32 plane_bytes_per_line;
64 	uint_fixed_16_16_t plane_blocks_per_line;
65 	uint_fixed_16_16_t y_tile_minimum;
66 	u32 linetime_us;
67 	u32 dbuf_block_size;
68 };
69 
70 /* used in computing the new watermarks state */
71 struct intel_wm_config {
72 	unsigned int num_pipes_active;
73 	bool sprites_enabled;
74 	bool sprites_scaled;
75 };
76 
gen9_init_clock_gating(struct drm_i915_private * dev_priv)77 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
78 {
79 	enum pipe pipe;
80 
81 	if (HAS_LLC(dev_priv)) {
82 		/*
83 		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
84 		 * Display WA #0390: skl,kbl
85 		 *
86 		 * Must match Sampler, Pixel Back End, and Media. See
87 		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
88 		 */
89 		intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
90 			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
91 			   SKL_DE_COMPRESSED_HASH_MODE);
92 	}
93 
94 	for_each_pipe(dev_priv, pipe) {
95 		/*
96 		 * "Plane N strech max must be programmed to 11b (x1)
97 		 *  when Async flips are enabled on that plane."
98 		 */
99 		if (!IS_GEMINILAKE(dev_priv) && intel_vtd_active())
100 			intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
101 					 SKL_PLANE1_STRETCH_MAX_MASK, SKL_PLANE1_STRETCH_MAX_X1);
102 	}
103 
104 	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
105 	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
106 		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
107 
108 	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
109 	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
110 		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
111 
112 	/*
113 	 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
114 	 * Display WA #0859: skl,bxt,kbl,glk,cfl
115 	 */
116 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
117 		   DISP_FBC_MEMORY_WAKE);
118 }
119 
bxt_init_clock_gating(struct drm_i915_private * dev_priv)120 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
121 {
122 	gen9_init_clock_gating(dev_priv);
123 
124 	/* WaDisableSDEUnitClockGating:bxt */
125 	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
126 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
127 
128 	/*
129 	 * FIXME:
130 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
131 	 */
132 	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
133 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
134 
135 	/*
136 	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
137 	 * to stay fully on.
138 	 */
139 	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
140 		   PWM1_GATING_DIS | PWM2_GATING_DIS);
141 
142 	/*
143 	 * Lower the display internal timeout.
144 	 * This is needed to avoid any hard hangs when DSI port PLL
145 	 * is off and a MMIO access is attempted by any privilege
146 	 * application, using batch buffers or any other means.
147 	 */
148 	intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
149 
150 	/*
151 	 * WaFbcTurnOffFbcWatermark:bxt
152 	 * Display WA #0562: bxt
153 	 */
154 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
155 		   DISP_FBC_WM_DIS);
156 
157 	/*
158 	 * WaFbcHighMemBwCorruptionAvoidance:bxt
159 	 * Display WA #0883: bxt
160 	 */
161 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
162 		   ILK_DPFC_DISABLE_DUMMY0);
163 }
164 
glk_init_clock_gating(struct drm_i915_private * dev_priv)165 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
166 {
167 	gen9_init_clock_gating(dev_priv);
168 
169 	/*
170 	 * WaDisablePWMClockGating:glk
171 	 * Backlight PWM may stop in the asserted state, causing backlight
172 	 * to stay fully on.
173 	 */
174 	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
175 		   PWM1_GATING_DIS | PWM2_GATING_DIS);
176 }
177 
pnv_get_mem_freq(struct drm_i915_private * dev_priv)178 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
179 {
180 	u32 tmp;
181 
182 	tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
183 
184 	switch (tmp & CLKCFG_FSB_MASK) {
185 	case CLKCFG_FSB_533:
186 		dev_priv->fsb_freq = 533; /* 133*4 */
187 		break;
188 	case CLKCFG_FSB_800:
189 		dev_priv->fsb_freq = 800; /* 200*4 */
190 		break;
191 	case CLKCFG_FSB_667:
192 		dev_priv->fsb_freq =  667; /* 167*4 */
193 		break;
194 	case CLKCFG_FSB_400:
195 		dev_priv->fsb_freq = 400; /* 100*4 */
196 		break;
197 	}
198 
199 	switch (tmp & CLKCFG_MEM_MASK) {
200 	case CLKCFG_MEM_533:
201 		dev_priv->mem_freq = 533;
202 		break;
203 	case CLKCFG_MEM_667:
204 		dev_priv->mem_freq = 667;
205 		break;
206 	case CLKCFG_MEM_800:
207 		dev_priv->mem_freq = 800;
208 		break;
209 	}
210 
211 	/* detect pineview DDR3 setting */
212 	tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
213 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
214 }
215 
ilk_get_mem_freq(struct drm_i915_private * dev_priv)216 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
217 {
218 	u16 ddrpll, csipll;
219 
220 	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
221 	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
222 
223 	switch (ddrpll & 0xff) {
224 	case 0xc:
225 		dev_priv->mem_freq = 800;
226 		break;
227 	case 0x10:
228 		dev_priv->mem_freq = 1066;
229 		break;
230 	case 0x14:
231 		dev_priv->mem_freq = 1333;
232 		break;
233 	case 0x18:
234 		dev_priv->mem_freq = 1600;
235 		break;
236 	default:
237 		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
238 			ddrpll & 0xff);
239 		dev_priv->mem_freq = 0;
240 		break;
241 	}
242 
243 	switch (csipll & 0x3ff) {
244 	case 0x00c:
245 		dev_priv->fsb_freq = 3200;
246 		break;
247 	case 0x00e:
248 		dev_priv->fsb_freq = 3733;
249 		break;
250 	case 0x010:
251 		dev_priv->fsb_freq = 4266;
252 		break;
253 	case 0x012:
254 		dev_priv->fsb_freq = 4800;
255 		break;
256 	case 0x014:
257 		dev_priv->fsb_freq = 5333;
258 		break;
259 	case 0x016:
260 		dev_priv->fsb_freq = 5866;
261 		break;
262 	case 0x018:
263 		dev_priv->fsb_freq = 6400;
264 		break;
265 	default:
266 		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
267 			csipll & 0x3ff);
268 		dev_priv->fsb_freq = 0;
269 		break;
270 	}
271 }
272 
273 static const struct cxsr_latency cxsr_latency_table[] = {
274 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
275 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
276 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
277 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
278 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
279 
280 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
281 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
282 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
283 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
284 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
285 
286 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
287 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
288 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
289 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
290 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
291 
292 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
293 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
294 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
295 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
296 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
297 
298 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
299 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
300 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
301 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
302 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
303 
304 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
305 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
306 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
307 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
308 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
309 };
310 
intel_get_cxsr_latency(bool is_desktop,bool is_ddr3,int fsb,int mem)311 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
312 							 bool is_ddr3,
313 							 int fsb,
314 							 int mem)
315 {
316 	const struct cxsr_latency *latency;
317 	int i;
318 
319 	if (fsb == 0 || mem == 0)
320 		return NULL;
321 
322 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
323 		latency = &cxsr_latency_table[i];
324 		if (is_desktop == latency->is_desktop &&
325 		    is_ddr3 == latency->is_ddr3 &&
326 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
327 			return latency;
328 	}
329 
330 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
331 
332 	return NULL;
333 }
334 
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)335 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
336 {
337 	u32 val;
338 
339 	vlv_punit_get(dev_priv);
340 
341 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
342 	if (enable)
343 		val &= ~FORCE_DDR_HIGH_FREQ;
344 	else
345 		val |= FORCE_DDR_HIGH_FREQ;
346 	val &= ~FORCE_DDR_LOW_FREQ;
347 	val |= FORCE_DDR_FREQ_REQ_ACK;
348 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
349 
350 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
351 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
352 		drm_err(&dev_priv->drm,
353 			"timed out waiting for Punit DDR DVFS request\n");
354 
355 	vlv_punit_put(dev_priv);
356 }
357 
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)358 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
359 {
360 	u32 val;
361 
362 	vlv_punit_get(dev_priv);
363 
364 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
365 	if (enable)
366 		val |= DSP_MAXFIFO_PM5_ENABLE;
367 	else
368 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
369 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
370 
371 	vlv_punit_put(dev_priv);
372 }
373 
374 #define FW_WM(value, plane) \
375 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
376 
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)377 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
378 {
379 	bool was_enabled;
380 	u32 val;
381 
382 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
383 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
384 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
385 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
386 	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
387 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
388 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
389 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
390 	} else if (IS_PINEVIEW(dev_priv)) {
391 		val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
392 		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
393 		if (enable)
394 			val |= PINEVIEW_SELF_REFRESH_EN;
395 		else
396 			val &= ~PINEVIEW_SELF_REFRESH_EN;
397 		intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
398 		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
399 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
400 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
401 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
402 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
403 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
404 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
405 	} else if (IS_I915GM(dev_priv)) {
406 		/*
407 		 * FIXME can't find a bit like this for 915G, and
408 		 * and yet it does have the related watermark in
409 		 * FW_BLC_SELF. What's going on?
410 		 */
411 		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
412 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
413 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
414 		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
415 		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
416 	} else {
417 		return false;
418 	}
419 
420 	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
421 
422 	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
423 		    enableddisabled(enable),
424 		    enableddisabled(was_enabled));
425 
426 	return was_enabled;
427 }
428 
429 /**
430  * intel_set_memory_cxsr - Configure CxSR state
431  * @dev_priv: i915 device
432  * @enable: Allow vs. disallow CxSR
433  *
434  * Allow or disallow the system to enter a special CxSR
435  * (C-state self refresh) state. What typically happens in CxSR mode
436  * is that several display FIFOs may get combined into a single larger
437  * FIFO for a particular plane (so called max FIFO mode) to allow the
438  * system to defer memory fetches longer, and the memory will enter
439  * self refresh.
440  *
441  * Note that enabling CxSR does not guarantee that the system enter
442  * this special mode, nor does it guarantee that the system stays
443  * in that mode once entered. So this just allows/disallows the system
444  * to autonomously utilize the CxSR mode. Other factors such as core
445  * C-states will affect when/if the system actually enters/exits the
446  * CxSR mode.
447  *
448  * Note that on VLV/CHV this actually only controls the max FIFO mode,
449  * and the system is free to enter/exit memory self refresh at any time
450  * even when the use of CxSR has been disallowed.
451  *
452  * While the system is actually in the CxSR/max FIFO mode, some plane
453  * control registers will not get latched on vblank. Thus in order to
454  * guarantee the system will respond to changes in the plane registers
455  * we must always disallow CxSR prior to making changes to those registers.
456  * Unfortunately the system will re-evaluate the CxSR conditions at
457  * frame start which happens after vblank start (which is when the plane
458  * registers would get latched), so we can't proceed with the plane update
459  * during the same frame where we disallowed CxSR.
460  *
461  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
462  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
463  * the hardware w.r.t. HPLL SR when writing to plane registers.
464  * Disallowing just CxSR is sufficient.
465  */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)466 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
467 {
468 	bool ret;
469 
470 	mutex_lock(&dev_priv->wm.wm_mutex);
471 	ret = _intel_set_memory_cxsr(dev_priv, enable);
472 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
473 		dev_priv->wm.vlv.cxsr = enable;
474 	else if (IS_G4X(dev_priv))
475 		dev_priv->wm.g4x.cxsr = enable;
476 	mutex_unlock(&dev_priv->wm.wm_mutex);
477 
478 	return ret;
479 }
480 
481 /*
482  * Latency for FIFO fetches is dependent on several factors:
483  *   - memory configuration (speed, channels)
484  *   - chipset
485  *   - current MCH state
486  * It can be fairly high in some situations, so here we assume a fairly
487  * pessimal value.  It's a tradeoff between extra memory fetches (if we
488  * set this value too high, the FIFO will fetch frequently to stay full)
489  * and power consumption (set it too low to save power and we might see
490  * FIFO underruns and display "flicker").
491  *
492  * A value of 5us seems to be a good balance; safe for very low end
493  * platforms but not overly aggressive on lower latency configs.
494  */
495 static const int pessimal_latency_ns = 5000;
496 
497 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
498 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
499 
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)500 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
501 {
502 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
503 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
504 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
505 	enum pipe pipe = crtc->pipe;
506 	int sprite0_start, sprite1_start;
507 	u32 dsparb, dsparb2, dsparb3;
508 
509 	switch (pipe) {
510 	case PIPE_A:
511 		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
512 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
513 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
514 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
515 		break;
516 	case PIPE_B:
517 		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
518 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
519 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
520 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
521 		break;
522 	case PIPE_C:
523 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
524 		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
525 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
526 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
527 		break;
528 	default:
529 		MISSING_CASE(pipe);
530 		return;
531 	}
532 
533 	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
534 	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
535 	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
536 	fifo_state->plane[PLANE_CURSOR] = 63;
537 }
538 
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)539 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
540 			      enum i9xx_plane_id i9xx_plane)
541 {
542 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
543 	int size;
544 
545 	size = dsparb & 0x7f;
546 	if (i9xx_plane == PLANE_B)
547 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
548 
549 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
550 		    dsparb, plane_name(i9xx_plane), size);
551 
552 	return size;
553 }
554 
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)555 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
556 			      enum i9xx_plane_id i9xx_plane)
557 {
558 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
559 	int size;
560 
561 	size = dsparb & 0x1ff;
562 	if (i9xx_plane == PLANE_B)
563 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
564 	size >>= 1; /* Convert to cachelines */
565 
566 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
567 		    dsparb, plane_name(i9xx_plane), size);
568 
569 	return size;
570 }
571 
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)572 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
573 			      enum i9xx_plane_id i9xx_plane)
574 {
575 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
576 	int size;
577 
578 	size = dsparb & 0x7f;
579 	size >>= 2; /* Convert to cachelines */
580 
581 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
582 		    dsparb, plane_name(i9xx_plane), size);
583 
584 	return size;
585 }
586 
587 /* Pineview has different values for various configs */
588 static const struct intel_watermark_params pnv_display_wm = {
589 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
590 	.max_wm = PINEVIEW_MAX_WM,
591 	.default_wm = PINEVIEW_DFT_WM,
592 	.guard_size = PINEVIEW_GUARD_WM,
593 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
594 };
595 
596 static const struct intel_watermark_params pnv_display_hplloff_wm = {
597 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
598 	.max_wm = PINEVIEW_MAX_WM,
599 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
600 	.guard_size = PINEVIEW_GUARD_WM,
601 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
602 };
603 
604 static const struct intel_watermark_params pnv_cursor_wm = {
605 	.fifo_size = PINEVIEW_CURSOR_FIFO,
606 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
607 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
608 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
609 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
610 };
611 
612 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
613 	.fifo_size = PINEVIEW_CURSOR_FIFO,
614 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
615 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
616 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
617 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
618 };
619 
620 static const struct intel_watermark_params i965_cursor_wm_info = {
621 	.fifo_size = I965_CURSOR_FIFO,
622 	.max_wm = I965_CURSOR_MAX_WM,
623 	.default_wm = I965_CURSOR_DFT_WM,
624 	.guard_size = 2,
625 	.cacheline_size = I915_FIFO_LINE_SIZE,
626 };
627 
628 static const struct intel_watermark_params i945_wm_info = {
629 	.fifo_size = I945_FIFO_SIZE,
630 	.max_wm = I915_MAX_WM,
631 	.default_wm = 1,
632 	.guard_size = 2,
633 	.cacheline_size = I915_FIFO_LINE_SIZE,
634 };
635 
636 static const struct intel_watermark_params i915_wm_info = {
637 	.fifo_size = I915_FIFO_SIZE,
638 	.max_wm = I915_MAX_WM,
639 	.default_wm = 1,
640 	.guard_size = 2,
641 	.cacheline_size = I915_FIFO_LINE_SIZE,
642 };
643 
644 static const struct intel_watermark_params i830_a_wm_info = {
645 	.fifo_size = I855GM_FIFO_SIZE,
646 	.max_wm = I915_MAX_WM,
647 	.default_wm = 1,
648 	.guard_size = 2,
649 	.cacheline_size = I830_FIFO_LINE_SIZE,
650 };
651 
652 static const struct intel_watermark_params i830_bc_wm_info = {
653 	.fifo_size = I855GM_FIFO_SIZE,
654 	.max_wm = I915_MAX_WM/2,
655 	.default_wm = 1,
656 	.guard_size = 2,
657 	.cacheline_size = I830_FIFO_LINE_SIZE,
658 };
659 
660 static const struct intel_watermark_params i845_wm_info = {
661 	.fifo_size = I830_FIFO_SIZE,
662 	.max_wm = I915_MAX_WM,
663 	.default_wm = 1,
664 	.guard_size = 2,
665 	.cacheline_size = I830_FIFO_LINE_SIZE,
666 };
667 
668 /**
669  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
670  * @pixel_rate: Pipe pixel rate in kHz
671  * @cpp: Plane bytes per pixel
672  * @latency: Memory wakeup latency in 0.1us units
673  *
674  * Compute the watermark using the method 1 or "small buffer"
675  * formula. The caller may additonally add extra cachelines
676  * to account for TLB misses and clock crossings.
677  *
678  * This method is concerned with the short term drain rate
679  * of the FIFO, ie. it does not account for blanking periods
680  * which would effectively reduce the average drain rate across
681  * a longer period. The name "small" refers to the fact the
682  * FIFO is relatively small compared to the amount of data
683  * fetched.
684  *
685  * The FIFO level vs. time graph might look something like:
686  *
687  *   |\   |\
688  *   | \  | \
689  * __---__---__ (- plane active, _ blanking)
690  * -> time
691  *
692  * or perhaps like this:
693  *
694  *   |\|\  |\|\
695  * __----__----__ (- plane active, _ blanking)
696  * -> time
697  *
698  * Returns:
699  * The watermark in bytes
700  */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)701 static unsigned int intel_wm_method1(unsigned int pixel_rate,
702 				     unsigned int cpp,
703 				     unsigned int latency)
704 {
705 	u64 ret;
706 
707 	ret = mul_u32_u32(pixel_rate, cpp * latency);
708 	ret = DIV_ROUND_UP_ULL(ret, 10000);
709 
710 	return ret;
711 }
712 
713 /**
714  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
715  * @pixel_rate: Pipe pixel rate in kHz
716  * @htotal: Pipe horizontal total
717  * @width: Plane width in pixels
718  * @cpp: Plane bytes per pixel
719  * @latency: Memory wakeup latency in 0.1us units
720  *
721  * Compute the watermark using the method 2 or "large buffer"
722  * formula. The caller may additonally add extra cachelines
723  * to account for TLB misses and clock crossings.
724  *
725  * This method is concerned with the long term drain rate
726  * of the FIFO, ie. it does account for blanking periods
727  * which effectively reduce the average drain rate across
728  * a longer period. The name "large" refers to the fact the
729  * FIFO is relatively large compared to the amount of data
730  * fetched.
731  *
732  * The FIFO level vs. time graph might look something like:
733  *
734  *    |\___       |\___
735  *    |    \___   |    \___
736  *    |        \  |        \
737  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
738  * -> time
739  *
740  * Returns:
741  * The watermark in bytes
742  */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)743 static unsigned int intel_wm_method2(unsigned int pixel_rate,
744 				     unsigned int htotal,
745 				     unsigned int width,
746 				     unsigned int cpp,
747 				     unsigned int latency)
748 {
749 	unsigned int ret;
750 
751 	/*
752 	 * FIXME remove once all users are computing
753 	 * watermarks in the correct place.
754 	 */
755 	if (WARN_ON_ONCE(htotal == 0))
756 		htotal = 1;
757 
758 	ret = (latency * pixel_rate) / (htotal * 10000);
759 	ret = (ret + 1) * width * cpp;
760 
761 	return ret;
762 }
763 
764 /**
765  * intel_calculate_wm - calculate watermark level
766  * @pixel_rate: pixel clock
767  * @wm: chip FIFO params
768  * @fifo_size: size of the FIFO buffer
769  * @cpp: bytes per pixel
770  * @latency_ns: memory latency for the platform
771  *
772  * Calculate the watermark level (the level at which the display plane will
773  * start fetching from memory again).  Each chip has a different display
774  * FIFO size and allocation, so the caller needs to figure that out and pass
775  * in the correct intel_watermark_params structure.
776  *
777  * As the pixel clock runs, the FIFO will be drained at a rate that depends
778  * on the pixel size.  When it reaches the watermark level, it'll start
779  * fetching FIFO line sized based chunks from memory until the FIFO fills
780  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
781  * will occur, and a display engine hang could result.
782  */
intel_calculate_wm(int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)783 static unsigned int intel_calculate_wm(int pixel_rate,
784 				       const struct intel_watermark_params *wm,
785 				       int fifo_size, int cpp,
786 				       unsigned int latency_ns)
787 {
788 	int entries, wm_size;
789 
790 	/*
791 	 * Note: we need to make sure we don't overflow for various clock &
792 	 * latency values.
793 	 * clocks go from a few thousand to several hundred thousand.
794 	 * latency is usually a few thousand
795 	 */
796 	entries = intel_wm_method1(pixel_rate, cpp,
797 				   latency_ns / 100);
798 	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
799 		wm->guard_size;
800 	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
801 
802 	wm_size = fifo_size - entries;
803 	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
804 
805 	/* Don't promote wm_size to unsigned... */
806 	if (wm_size > wm->max_wm)
807 		wm_size = wm->max_wm;
808 	if (wm_size <= 0)
809 		wm_size = wm->default_wm;
810 
811 	/*
812 	 * Bspec seems to indicate that the value shouldn't be lower than
813 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
814 	 * Lets go for 8 which is the burst size since certain platforms
815 	 * already use a hardcoded 8 (which is what the spec says should be
816 	 * done).
817 	 */
818 	if (wm_size <= 8)
819 		wm_size = 8;
820 
821 	return wm_size;
822 }
823 
is_disabling(int old,int new,int threshold)824 static bool is_disabling(int old, int new, int threshold)
825 {
826 	return old >= threshold && new < threshold;
827 }
828 
is_enabling(int old,int new,int threshold)829 static bool is_enabling(int old, int new, int threshold)
830 {
831 	return old < threshold && new >= threshold;
832 }
833 
intel_wm_num_levels(struct drm_i915_private * dev_priv)834 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
835 {
836 	return dev_priv->wm.max_level + 1;
837 }
838 
intel_wm_plane_visible(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)839 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
840 				   const struct intel_plane_state *plane_state)
841 {
842 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
843 
844 	/* FIXME check the 'enable' instead */
845 	if (!crtc_state->hw.active)
846 		return false;
847 
848 	/*
849 	 * Treat cursor with fb as always visible since cursor updates
850 	 * can happen faster than the vrefresh rate, and the current
851 	 * watermark code doesn't handle that correctly. Cursor updates
852 	 * which set/clear the fb or change the cursor size are going
853 	 * to get throttled by intel_legacy_cursor_update() to work
854 	 * around this problem with the watermark code.
855 	 */
856 	if (plane->id == PLANE_CURSOR)
857 		return plane_state->hw.fb != NULL;
858 	else
859 		return plane_state->uapi.visible;
860 }
861 
intel_crtc_active(struct intel_crtc * crtc)862 static bool intel_crtc_active(struct intel_crtc *crtc)
863 {
864 	/* Be paranoid as we can arrive here with only partial
865 	 * state retrieved from the hardware during setup.
866 	 *
867 	 * We can ditch the adjusted_mode.crtc_clock check as soon
868 	 * as Haswell has gained clock readout/fastboot support.
869 	 *
870 	 * We can ditch the crtc->primary->state->fb check as soon as we can
871 	 * properly reconstruct framebuffers.
872 	 *
873 	 * FIXME: The intel_crtc->active here should be switched to
874 	 * crtc->state->active once we have proper CRTC states wired up
875 	 * for atomic.
876 	 */
877 	return crtc->active && crtc->base.primary->state->fb &&
878 		crtc->config->hw.adjusted_mode.crtc_clock;
879 }
880 
single_enabled_crtc(struct drm_i915_private * dev_priv)881 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
882 {
883 	struct intel_crtc *crtc, *enabled = NULL;
884 
885 	for_each_intel_crtc(&dev_priv->drm, crtc) {
886 		if (intel_crtc_active(crtc)) {
887 			if (enabled)
888 				return NULL;
889 			enabled = crtc;
890 		}
891 	}
892 
893 	return enabled;
894 }
895 
pnv_update_wm(struct intel_crtc * unused_crtc)896 static void pnv_update_wm(struct intel_crtc *unused_crtc)
897 {
898 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
899 	struct intel_crtc *crtc;
900 	const struct cxsr_latency *latency;
901 	u32 reg;
902 	unsigned int wm;
903 
904 	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
905 					 dev_priv->is_ddr3,
906 					 dev_priv->fsb_freq,
907 					 dev_priv->mem_freq);
908 	if (!latency) {
909 		drm_dbg_kms(&dev_priv->drm,
910 			    "Unknown FSB/MEM found, disable CxSR\n");
911 		intel_set_memory_cxsr(dev_priv, false);
912 		return;
913 	}
914 
915 	crtc = single_enabled_crtc(dev_priv);
916 	if (crtc) {
917 		const struct drm_display_mode *pipe_mode =
918 			&crtc->config->hw.pipe_mode;
919 		const struct drm_framebuffer *fb =
920 			crtc->base.primary->state->fb;
921 		int cpp = fb->format->cpp[0];
922 		int clock = pipe_mode->crtc_clock;
923 
924 		/* Display SR */
925 		wm = intel_calculate_wm(clock, &pnv_display_wm,
926 					pnv_display_wm.fifo_size,
927 					cpp, latency->display_sr);
928 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
929 		reg &= ~DSPFW_SR_MASK;
930 		reg |= FW_WM(wm, SR);
931 		intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
932 		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
933 
934 		/* cursor SR */
935 		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
936 					pnv_display_wm.fifo_size,
937 					4, latency->cursor_sr);
938 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
939 		reg &= ~DSPFW_CURSOR_SR_MASK;
940 		reg |= FW_WM(wm, CURSOR_SR);
941 		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
942 
943 		/* Display HPLL off SR */
944 		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
945 					pnv_display_hplloff_wm.fifo_size,
946 					cpp, latency->display_hpll_disable);
947 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
948 		reg &= ~DSPFW_HPLL_SR_MASK;
949 		reg |= FW_WM(wm, HPLL_SR);
950 		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
951 
952 		/* cursor HPLL off SR */
953 		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
954 					pnv_display_hplloff_wm.fifo_size,
955 					4, latency->cursor_hpll_disable);
956 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
957 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
958 		reg |= FW_WM(wm, HPLL_CURSOR);
959 		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
960 		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
961 
962 		intel_set_memory_cxsr(dev_priv, true);
963 	} else {
964 		intel_set_memory_cxsr(dev_priv, false);
965 	}
966 }
967 
968 /*
969  * Documentation says:
970  * "If the line size is small, the TLB fetches can get in the way of the
971  *  data fetches, causing some lag in the pixel data return which is not
972  *  accounted for in the above formulas. The following adjustment only
973  *  needs to be applied if eight whole lines fit in the buffer at once.
974  *  The WM is adjusted upwards by the difference between the FIFO size
975  *  and the size of 8 whole lines. This adjustment is always performed
976  *  in the actual pixel depth regardless of whether FBC is enabled or not."
977  */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)978 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
979 {
980 	int tlb_miss = fifo_size * 64 - width * cpp * 8;
981 
982 	return max(0, tlb_miss);
983 }
984 
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)985 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
986 				const struct g4x_wm_values *wm)
987 {
988 	enum pipe pipe;
989 
990 	for_each_pipe(dev_priv, pipe)
991 		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
992 
993 	intel_uncore_write(&dev_priv->uncore, DSPFW1,
994 		   FW_WM(wm->sr.plane, SR) |
995 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
996 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
997 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
998 	intel_uncore_write(&dev_priv->uncore, DSPFW2,
999 		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
1000 		   FW_WM(wm->sr.fbc, FBC_SR) |
1001 		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
1002 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
1003 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1004 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1005 	intel_uncore_write(&dev_priv->uncore, DSPFW3,
1006 		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
1007 		   FW_WM(wm->sr.cursor, CURSOR_SR) |
1008 		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
1009 		   FW_WM(wm->hpll.plane, HPLL_SR));
1010 
1011 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1012 }
1013 
1014 #define FW_WM_VLV(value, plane) \
1015 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
1016 
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)1017 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1018 				const struct vlv_wm_values *wm)
1019 {
1020 	enum pipe pipe;
1021 
1022 	for_each_pipe(dev_priv, pipe) {
1023 		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1024 
1025 		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
1026 			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1027 			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1028 			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1029 			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1030 	}
1031 
1032 	/*
1033 	 * Zero the (unused) WM1 watermarks, and also clear all the
1034 	 * high order bits so that there are no out of bounds values
1035 	 * present in the registers during the reprogramming.
1036 	 */
1037 	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
1038 	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
1039 	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
1040 	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
1041 	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
1042 
1043 	intel_uncore_write(&dev_priv->uncore, DSPFW1,
1044 		   FW_WM(wm->sr.plane, SR) |
1045 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1046 		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1047 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1048 	intel_uncore_write(&dev_priv->uncore, DSPFW2,
1049 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1050 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1051 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1052 	intel_uncore_write(&dev_priv->uncore, DSPFW3,
1053 		   FW_WM(wm->sr.cursor, CURSOR_SR));
1054 
1055 	if (IS_CHERRYVIEW(dev_priv)) {
1056 		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
1057 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1058 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1059 		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
1060 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1061 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1062 		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
1063 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1064 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1065 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1066 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1067 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1068 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1069 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1070 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1071 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1072 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1073 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1074 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1075 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1076 	} else {
1077 		intel_uncore_write(&dev_priv->uncore, DSPFW7,
1078 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1079 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1080 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1081 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1082 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1083 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1084 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1085 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1086 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1087 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1088 	}
1089 
1090 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1091 }
1092 
1093 #undef FW_WM_VLV
1094 
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)1095 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1096 {
1097 	/* all latencies in usec */
1098 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1099 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1100 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1101 
1102 	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1103 }
1104 
g4x_plane_fifo_size(enum plane_id plane_id,int level)1105 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1106 {
1107 	/*
1108 	 * DSPCNTR[13] supposedly controls whether the
1109 	 * primary plane can use the FIFO space otherwise
1110 	 * reserved for the sprite plane. It's not 100% clear
1111 	 * what the actual FIFO size is, but it looks like we
1112 	 * can happily set both primary and sprite watermarks
1113 	 * up to 127 cachelines. So that would seem to mean
1114 	 * that either DSPCNTR[13] doesn't do anything, or that
1115 	 * the total FIFO is >= 256 cachelines in size. Either
1116 	 * way, we don't seem to have to worry about this
1117 	 * repartitioning as the maximum watermark value the
1118 	 * register can hold for each plane is lower than the
1119 	 * minimum FIFO size.
1120 	 */
1121 	switch (plane_id) {
1122 	case PLANE_CURSOR:
1123 		return 63;
1124 	case PLANE_PRIMARY:
1125 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1126 	case PLANE_SPRITE0:
1127 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1128 	default:
1129 		MISSING_CASE(plane_id);
1130 		return 0;
1131 	}
1132 }
1133 
g4x_fbc_fifo_size(int level)1134 static int g4x_fbc_fifo_size(int level)
1135 {
1136 	switch (level) {
1137 	case G4X_WM_LEVEL_SR:
1138 		return 7;
1139 	case G4X_WM_LEVEL_HPLL:
1140 		return 15;
1141 	default:
1142 		MISSING_CASE(level);
1143 		return 0;
1144 	}
1145 }
1146 
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1147 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1148 			  const struct intel_plane_state *plane_state,
1149 			  int level)
1150 {
1151 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1152 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1153 	const struct drm_display_mode *pipe_mode =
1154 		&crtc_state->hw.pipe_mode;
1155 	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1156 	unsigned int clock, htotal, cpp, width, wm;
1157 
1158 	if (latency == 0)
1159 		return USHRT_MAX;
1160 
1161 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1162 		return 0;
1163 
1164 	cpp = plane_state->hw.fb->format->cpp[0];
1165 
1166 	/*
1167 	 * Not 100% sure which way ELK should go here as the
1168 	 * spec only says CL/CTG should assume 32bpp and BW
1169 	 * doesn't need to. But as these things followed the
1170 	 * mobile vs. desktop lines on gen3 as well, let's
1171 	 * assume ELK doesn't need this.
1172 	 *
1173 	 * The spec also fails to list such a restriction for
1174 	 * the HPLL watermark, which seems a little strange.
1175 	 * Let's use 32bpp for the HPLL watermark as well.
1176 	 */
1177 	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1178 	    level != G4X_WM_LEVEL_NORMAL)
1179 		cpp = max(cpp, 4u);
1180 
1181 	clock = pipe_mode->crtc_clock;
1182 	htotal = pipe_mode->crtc_htotal;
1183 
1184 	width = drm_rect_width(&plane_state->uapi.dst);
1185 
1186 	if (plane->id == PLANE_CURSOR) {
1187 		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1188 	} else if (plane->id == PLANE_PRIMARY &&
1189 		   level == G4X_WM_LEVEL_NORMAL) {
1190 		wm = intel_wm_method1(clock, cpp, latency);
1191 	} else {
1192 		unsigned int small, large;
1193 
1194 		small = intel_wm_method1(clock, cpp, latency);
1195 		large = intel_wm_method2(clock, htotal, width, cpp, latency);
1196 
1197 		wm = min(small, large);
1198 	}
1199 
1200 	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1201 			      width, cpp);
1202 
1203 	wm = DIV_ROUND_UP(wm, 64) + 2;
1204 
1205 	return min_t(unsigned int, wm, USHRT_MAX);
1206 }
1207 
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1208 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1209 				 int level, enum plane_id plane_id, u16 value)
1210 {
1211 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1212 	bool dirty = false;
1213 
1214 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1215 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1216 
1217 		dirty |= raw->plane[plane_id] != value;
1218 		raw->plane[plane_id] = value;
1219 	}
1220 
1221 	return dirty;
1222 }
1223 
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1224 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1225 			       int level, u16 value)
1226 {
1227 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1228 	bool dirty = false;
1229 
1230 	/* NORMAL level doesn't have an FBC watermark */
1231 	level = max(level, G4X_WM_LEVEL_SR);
1232 
1233 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1234 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1235 
1236 		dirty |= raw->fbc != value;
1237 		raw->fbc = value;
1238 	}
1239 
1240 	return dirty;
1241 }
1242 
1243 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1244 			      const struct intel_plane_state *plane_state,
1245 			      u32 pri_val);
1246 
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1247 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1248 				     const struct intel_plane_state *plane_state)
1249 {
1250 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1251 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1252 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1253 	enum plane_id plane_id = plane->id;
1254 	bool dirty = false;
1255 	int level;
1256 
1257 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1258 		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1259 		if (plane_id == PLANE_PRIMARY)
1260 			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1261 		goto out;
1262 	}
1263 
1264 	for (level = 0; level < num_levels; level++) {
1265 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1266 		int wm, max_wm;
1267 
1268 		wm = g4x_compute_wm(crtc_state, plane_state, level);
1269 		max_wm = g4x_plane_fifo_size(plane_id, level);
1270 
1271 		if (wm > max_wm)
1272 			break;
1273 
1274 		dirty |= raw->plane[plane_id] != wm;
1275 		raw->plane[plane_id] = wm;
1276 
1277 		if (plane_id != PLANE_PRIMARY ||
1278 		    level == G4X_WM_LEVEL_NORMAL)
1279 			continue;
1280 
1281 		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1282 					raw->plane[plane_id]);
1283 		max_wm = g4x_fbc_fifo_size(level);
1284 
1285 		/*
1286 		 * FBC wm is not mandatory as we
1287 		 * can always just disable its use.
1288 		 */
1289 		if (wm > max_wm)
1290 			wm = USHRT_MAX;
1291 
1292 		dirty |= raw->fbc != wm;
1293 		raw->fbc = wm;
1294 	}
1295 
1296 	/* mark watermarks as invalid */
1297 	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1298 
1299 	if (plane_id == PLANE_PRIMARY)
1300 		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1301 
1302  out:
1303 	if (dirty) {
1304 		drm_dbg_kms(&dev_priv->drm,
1305 			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1306 			    plane->base.name,
1307 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1308 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1309 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1310 
1311 		if (plane_id == PLANE_PRIMARY)
1312 			drm_dbg_kms(&dev_priv->drm,
1313 				    "FBC watermarks: SR=%d, HPLL=%d\n",
1314 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1315 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1316 	}
1317 
1318 	return dirty;
1319 }
1320 
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1321 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1322 				      enum plane_id plane_id, int level)
1323 {
1324 	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1325 
1326 	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1327 }
1328 
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1329 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1330 				     int level)
1331 {
1332 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1333 
1334 	if (level > dev_priv->wm.max_level)
1335 		return false;
1336 
1337 	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1338 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1339 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1340 }
1341 
1342 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1343 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1344 			       struct g4x_wm_state *wm_state, int level)
1345 {
1346 	if (level <= G4X_WM_LEVEL_NORMAL) {
1347 		enum plane_id plane_id;
1348 
1349 		for_each_plane_id_on_crtc(crtc, plane_id)
1350 			wm_state->wm.plane[plane_id] = USHRT_MAX;
1351 	}
1352 
1353 	if (level <= G4X_WM_LEVEL_SR) {
1354 		wm_state->cxsr = false;
1355 		wm_state->sr.cursor = USHRT_MAX;
1356 		wm_state->sr.plane = USHRT_MAX;
1357 		wm_state->sr.fbc = USHRT_MAX;
1358 	}
1359 
1360 	if (level <= G4X_WM_LEVEL_HPLL) {
1361 		wm_state->hpll_en = false;
1362 		wm_state->hpll.cursor = USHRT_MAX;
1363 		wm_state->hpll.plane = USHRT_MAX;
1364 		wm_state->hpll.fbc = USHRT_MAX;
1365 	}
1366 }
1367 
g4x_compute_fbc_en(const struct g4x_wm_state * wm_state,int level)1368 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1369 			       int level)
1370 {
1371 	if (level < G4X_WM_LEVEL_SR)
1372 		return false;
1373 
1374 	if (level >= G4X_WM_LEVEL_SR &&
1375 	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1376 		return false;
1377 
1378 	if (level >= G4X_WM_LEVEL_HPLL &&
1379 	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1380 		return false;
1381 
1382 	return true;
1383 }
1384 
g4x_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1385 static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1386 			       struct intel_crtc *crtc)
1387 {
1388 	struct intel_crtc_state *crtc_state =
1389 		intel_atomic_get_new_crtc_state(state, crtc);
1390 	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1391 	int num_active_planes = hweight8(crtc_state->active_planes &
1392 					 ~BIT(PLANE_CURSOR));
1393 	const struct g4x_pipe_wm *raw;
1394 	const struct intel_plane_state *old_plane_state;
1395 	const struct intel_plane_state *new_plane_state;
1396 	struct intel_plane *plane;
1397 	enum plane_id plane_id;
1398 	int i, level;
1399 	unsigned int dirty = 0;
1400 
1401 	for_each_oldnew_intel_plane_in_state(state, plane,
1402 					     old_plane_state,
1403 					     new_plane_state, i) {
1404 		if (new_plane_state->hw.crtc != &crtc->base &&
1405 		    old_plane_state->hw.crtc != &crtc->base)
1406 			continue;
1407 
1408 		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1409 			dirty |= BIT(plane->id);
1410 	}
1411 
1412 	if (!dirty)
1413 		return 0;
1414 
1415 	level = G4X_WM_LEVEL_NORMAL;
1416 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1417 		goto out;
1418 
1419 	raw = &crtc_state->wm.g4x.raw[level];
1420 	for_each_plane_id_on_crtc(crtc, plane_id)
1421 		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1422 
1423 	level = G4X_WM_LEVEL_SR;
1424 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1425 		goto out;
1426 
1427 	raw = &crtc_state->wm.g4x.raw[level];
1428 	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1429 	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1430 	wm_state->sr.fbc = raw->fbc;
1431 
1432 	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1433 
1434 	level = G4X_WM_LEVEL_HPLL;
1435 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1436 		goto out;
1437 
1438 	raw = &crtc_state->wm.g4x.raw[level];
1439 	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1440 	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1441 	wm_state->hpll.fbc = raw->fbc;
1442 
1443 	wm_state->hpll_en = wm_state->cxsr;
1444 
1445 	level++;
1446 
1447  out:
1448 	if (level == G4X_WM_LEVEL_NORMAL)
1449 		return -EINVAL;
1450 
1451 	/* invalidate the higher levels */
1452 	g4x_invalidate_wms(crtc, wm_state, level);
1453 
1454 	/*
1455 	 * Determine if the FBC watermark(s) can be used. IF
1456 	 * this isn't the case we prefer to disable the FBC
1457 	 * watermark(s) rather than disable the SR/HPLL
1458 	 * level(s) entirely. 'level-1' is the highest valid
1459 	 * level here.
1460 	 */
1461 	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1462 
1463 	return 0;
1464 }
1465 
g4x_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1466 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1467 				       struct intel_crtc *crtc)
1468 {
1469 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1470 	struct intel_crtc_state *new_crtc_state =
1471 		intel_atomic_get_new_crtc_state(state, crtc);
1472 	const struct intel_crtc_state *old_crtc_state =
1473 		intel_atomic_get_old_crtc_state(state, crtc);
1474 	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1475 	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1476 	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1477 	enum plane_id plane_id;
1478 
1479 	if (!new_crtc_state->hw.active ||
1480 	    drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1481 		*intermediate = *optimal;
1482 
1483 		intermediate->cxsr = false;
1484 		intermediate->hpll_en = false;
1485 		goto out;
1486 	}
1487 
1488 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1489 		!new_crtc_state->disable_cxsr;
1490 	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1491 		!new_crtc_state->disable_cxsr;
1492 	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1493 
1494 	for_each_plane_id_on_crtc(crtc, plane_id) {
1495 		intermediate->wm.plane[plane_id] =
1496 			max(optimal->wm.plane[plane_id],
1497 			    active->wm.plane[plane_id]);
1498 
1499 		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1500 			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1501 	}
1502 
1503 	intermediate->sr.plane = max(optimal->sr.plane,
1504 				     active->sr.plane);
1505 	intermediate->sr.cursor = max(optimal->sr.cursor,
1506 				      active->sr.cursor);
1507 	intermediate->sr.fbc = max(optimal->sr.fbc,
1508 				   active->sr.fbc);
1509 
1510 	intermediate->hpll.plane = max(optimal->hpll.plane,
1511 				       active->hpll.plane);
1512 	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1513 					active->hpll.cursor);
1514 	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1515 				     active->hpll.fbc);
1516 
1517 	drm_WARN_ON(&dev_priv->drm,
1518 		    (intermediate->sr.plane >
1519 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1520 		     intermediate->sr.cursor >
1521 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1522 		    intermediate->cxsr);
1523 	drm_WARN_ON(&dev_priv->drm,
1524 		    (intermediate->sr.plane >
1525 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1526 		     intermediate->sr.cursor >
1527 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1528 		    intermediate->hpll_en);
1529 
1530 	drm_WARN_ON(&dev_priv->drm,
1531 		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1532 		    intermediate->fbc_en && intermediate->cxsr);
1533 	drm_WARN_ON(&dev_priv->drm,
1534 		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1535 		    intermediate->fbc_en && intermediate->hpll_en);
1536 
1537 out:
1538 	/*
1539 	 * If our intermediate WM are identical to the final WM, then we can
1540 	 * omit the post-vblank programming; only update if it's different.
1541 	 */
1542 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1543 		new_crtc_state->wm.need_postvbl_update = true;
1544 
1545 	return 0;
1546 }
1547 
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1548 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1549 			 struct g4x_wm_values *wm)
1550 {
1551 	struct intel_crtc *crtc;
1552 	int num_active_pipes = 0;
1553 
1554 	wm->cxsr = true;
1555 	wm->hpll_en = true;
1556 	wm->fbc_en = true;
1557 
1558 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1559 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1560 
1561 		if (!crtc->active)
1562 			continue;
1563 
1564 		if (!wm_state->cxsr)
1565 			wm->cxsr = false;
1566 		if (!wm_state->hpll_en)
1567 			wm->hpll_en = false;
1568 		if (!wm_state->fbc_en)
1569 			wm->fbc_en = false;
1570 
1571 		num_active_pipes++;
1572 	}
1573 
1574 	if (num_active_pipes != 1) {
1575 		wm->cxsr = false;
1576 		wm->hpll_en = false;
1577 		wm->fbc_en = false;
1578 	}
1579 
1580 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1581 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1582 		enum pipe pipe = crtc->pipe;
1583 
1584 		wm->pipe[pipe] = wm_state->wm;
1585 		if (crtc->active && wm->cxsr)
1586 			wm->sr = wm_state->sr;
1587 		if (crtc->active && wm->hpll_en)
1588 			wm->hpll = wm_state->hpll;
1589 	}
1590 }
1591 
g4x_program_watermarks(struct drm_i915_private * dev_priv)1592 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1593 {
1594 	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1595 	struct g4x_wm_values new_wm = {};
1596 
1597 	g4x_merge_wm(dev_priv, &new_wm);
1598 
1599 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1600 		return;
1601 
1602 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1603 		_intel_set_memory_cxsr(dev_priv, false);
1604 
1605 	g4x_write_wm_values(dev_priv, &new_wm);
1606 
1607 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1608 		_intel_set_memory_cxsr(dev_priv, true);
1609 
1610 	*old_wm = new_wm;
1611 }
1612 
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1613 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1614 				   struct intel_crtc *crtc)
1615 {
1616 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1617 	const struct intel_crtc_state *crtc_state =
1618 		intel_atomic_get_new_crtc_state(state, crtc);
1619 
1620 	mutex_lock(&dev_priv->wm.wm_mutex);
1621 	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1622 	g4x_program_watermarks(dev_priv);
1623 	mutex_unlock(&dev_priv->wm.wm_mutex);
1624 }
1625 
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1626 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1627 				    struct intel_crtc *crtc)
1628 {
1629 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1630 	const struct intel_crtc_state *crtc_state =
1631 		intel_atomic_get_new_crtc_state(state, crtc);
1632 
1633 	if (!crtc_state->wm.need_postvbl_update)
1634 		return;
1635 
1636 	mutex_lock(&dev_priv->wm.wm_mutex);
1637 	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1638 	g4x_program_watermarks(dev_priv);
1639 	mutex_unlock(&dev_priv->wm.wm_mutex);
1640 }
1641 
1642 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1643 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1644 				   unsigned int htotal,
1645 				   unsigned int width,
1646 				   unsigned int cpp,
1647 				   unsigned int latency)
1648 {
1649 	unsigned int ret;
1650 
1651 	ret = intel_wm_method2(pixel_rate, htotal,
1652 			       width, cpp, latency);
1653 	ret = DIV_ROUND_UP(ret, 64);
1654 
1655 	return ret;
1656 }
1657 
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1658 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1659 {
1660 	/* all latencies in usec */
1661 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1662 
1663 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1664 
1665 	if (IS_CHERRYVIEW(dev_priv)) {
1666 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1667 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1668 
1669 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1670 	}
1671 }
1672 
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1673 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1674 				const struct intel_plane_state *plane_state,
1675 				int level)
1676 {
1677 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1678 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1679 	const struct drm_display_mode *pipe_mode =
1680 		&crtc_state->hw.pipe_mode;
1681 	unsigned int clock, htotal, cpp, width, wm;
1682 
1683 	if (dev_priv->wm.pri_latency[level] == 0)
1684 		return USHRT_MAX;
1685 
1686 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1687 		return 0;
1688 
1689 	cpp = plane_state->hw.fb->format->cpp[0];
1690 	clock = pipe_mode->crtc_clock;
1691 	htotal = pipe_mode->crtc_htotal;
1692 	width = crtc_state->pipe_src_w;
1693 
1694 	if (plane->id == PLANE_CURSOR) {
1695 		/*
1696 		 * FIXME the formula gives values that are
1697 		 * too big for the cursor FIFO, and hence we
1698 		 * would never be able to use cursors. For
1699 		 * now just hardcode the watermark.
1700 		 */
1701 		wm = 63;
1702 	} else {
1703 		wm = vlv_wm_method2(clock, htotal, width, cpp,
1704 				    dev_priv->wm.pri_latency[level] * 10);
1705 	}
1706 
1707 	return min_t(unsigned int, wm, USHRT_MAX);
1708 }
1709 
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1710 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1711 {
1712 	return (active_planes & (BIT(PLANE_SPRITE0) |
1713 				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1714 }
1715 
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1716 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1717 {
1718 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1719 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1720 	const struct g4x_pipe_wm *raw =
1721 		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1722 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1723 	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1724 	int num_active_planes = hweight8(active_planes);
1725 	const int fifo_size = 511;
1726 	int fifo_extra, fifo_left = fifo_size;
1727 	int sprite0_fifo_extra = 0;
1728 	unsigned int total_rate;
1729 	enum plane_id plane_id;
1730 
1731 	/*
1732 	 * When enabling sprite0 after sprite1 has already been enabled
1733 	 * we tend to get an underrun unless sprite0 already has some
1734 	 * FIFO space allcoated. Hence we always allocate at least one
1735 	 * cacheline for sprite0 whenever sprite1 is enabled.
1736 	 *
1737 	 * All other plane enable sequences appear immune to this problem.
1738 	 */
1739 	if (vlv_need_sprite0_fifo_workaround(active_planes))
1740 		sprite0_fifo_extra = 1;
1741 
1742 	total_rate = raw->plane[PLANE_PRIMARY] +
1743 		raw->plane[PLANE_SPRITE0] +
1744 		raw->plane[PLANE_SPRITE1] +
1745 		sprite0_fifo_extra;
1746 
1747 	if (total_rate > fifo_size)
1748 		return -EINVAL;
1749 
1750 	if (total_rate == 0)
1751 		total_rate = 1;
1752 
1753 	for_each_plane_id_on_crtc(crtc, plane_id) {
1754 		unsigned int rate;
1755 
1756 		if ((active_planes & BIT(plane_id)) == 0) {
1757 			fifo_state->plane[plane_id] = 0;
1758 			continue;
1759 		}
1760 
1761 		rate = raw->plane[plane_id];
1762 		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1763 		fifo_left -= fifo_state->plane[plane_id];
1764 	}
1765 
1766 	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1767 	fifo_left -= sprite0_fifo_extra;
1768 
1769 	fifo_state->plane[PLANE_CURSOR] = 63;
1770 
1771 	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1772 
1773 	/* spread the remainder evenly */
1774 	for_each_plane_id_on_crtc(crtc, plane_id) {
1775 		int plane_extra;
1776 
1777 		if (fifo_left == 0)
1778 			break;
1779 
1780 		if ((active_planes & BIT(plane_id)) == 0)
1781 			continue;
1782 
1783 		plane_extra = min(fifo_extra, fifo_left);
1784 		fifo_state->plane[plane_id] += plane_extra;
1785 		fifo_left -= plane_extra;
1786 	}
1787 
1788 	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1789 
1790 	/* give it all to the first plane if none are active */
1791 	if (active_planes == 0) {
1792 		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1793 		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1794 	}
1795 
1796 	return 0;
1797 }
1798 
1799 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1800 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1801 			       struct vlv_wm_state *wm_state, int level)
1802 {
1803 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1804 
1805 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1806 		enum plane_id plane_id;
1807 
1808 		for_each_plane_id_on_crtc(crtc, plane_id)
1809 			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1810 
1811 		wm_state->sr[level].cursor = USHRT_MAX;
1812 		wm_state->sr[level].plane = USHRT_MAX;
1813 	}
1814 }
1815 
vlv_invert_wm_value(u16 wm,u16 fifo_size)1816 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1817 {
1818 	if (wm > fifo_size)
1819 		return USHRT_MAX;
1820 	else
1821 		return fifo_size - wm;
1822 }
1823 
1824 /*
1825  * Starting from 'level' set all higher
1826  * levels to 'value' in the "raw" watermarks.
1827  */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1828 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1829 				 int level, enum plane_id plane_id, u16 value)
1830 {
1831 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1832 	int num_levels = intel_wm_num_levels(dev_priv);
1833 	bool dirty = false;
1834 
1835 	for (; level < num_levels; level++) {
1836 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1837 
1838 		dirty |= raw->plane[plane_id] != value;
1839 		raw->plane[plane_id] = value;
1840 	}
1841 
1842 	return dirty;
1843 }
1844 
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1845 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1846 				     const struct intel_plane_state *plane_state)
1847 {
1848 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1849 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1850 	enum plane_id plane_id = plane->id;
1851 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1852 	int level;
1853 	bool dirty = false;
1854 
1855 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1856 		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1857 		goto out;
1858 	}
1859 
1860 	for (level = 0; level < num_levels; level++) {
1861 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1862 		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1863 		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1864 
1865 		if (wm > max_wm)
1866 			break;
1867 
1868 		dirty |= raw->plane[plane_id] != wm;
1869 		raw->plane[plane_id] = wm;
1870 	}
1871 
1872 	/* mark all higher levels as invalid */
1873 	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1874 
1875 out:
1876 	if (dirty)
1877 		drm_dbg_kms(&dev_priv->drm,
1878 			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1879 			    plane->base.name,
1880 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1881 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1882 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1883 
1884 	return dirty;
1885 }
1886 
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1887 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1888 				      enum plane_id plane_id, int level)
1889 {
1890 	const struct g4x_pipe_wm *raw =
1891 		&crtc_state->wm.vlv.raw[level];
1892 	const struct vlv_fifo_state *fifo_state =
1893 		&crtc_state->wm.vlv.fifo_state;
1894 
1895 	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1896 }
1897 
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1898 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1899 {
1900 	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1901 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1902 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1903 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1904 }
1905 
vlv_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1906 static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1907 			       struct intel_crtc *crtc)
1908 {
1909 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1910 	struct intel_crtc_state *crtc_state =
1911 		intel_atomic_get_new_crtc_state(state, crtc);
1912 	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1913 	const struct vlv_fifo_state *fifo_state =
1914 		&crtc_state->wm.vlv.fifo_state;
1915 	int num_active_planes = hweight8(crtc_state->active_planes &
1916 					 ~BIT(PLANE_CURSOR));
1917 	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1918 	const struct intel_plane_state *old_plane_state;
1919 	const struct intel_plane_state *new_plane_state;
1920 	struct intel_plane *plane;
1921 	enum plane_id plane_id;
1922 	int level, ret, i;
1923 	unsigned int dirty = 0;
1924 
1925 	for_each_oldnew_intel_plane_in_state(state, plane,
1926 					     old_plane_state,
1927 					     new_plane_state, i) {
1928 		if (new_plane_state->hw.crtc != &crtc->base &&
1929 		    old_plane_state->hw.crtc != &crtc->base)
1930 			continue;
1931 
1932 		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1933 			dirty |= BIT(plane->id);
1934 	}
1935 
1936 	/*
1937 	 * DSPARB registers may have been reset due to the
1938 	 * power well being turned off. Make sure we restore
1939 	 * them to a consistent state even if no primary/sprite
1940 	 * planes are initially active.
1941 	 */
1942 	if (needs_modeset)
1943 		crtc_state->fifo_changed = true;
1944 
1945 	if (!dirty)
1946 		return 0;
1947 
1948 	/* cursor changes don't warrant a FIFO recompute */
1949 	if (dirty & ~BIT(PLANE_CURSOR)) {
1950 		const struct intel_crtc_state *old_crtc_state =
1951 			intel_atomic_get_old_crtc_state(state, crtc);
1952 		const struct vlv_fifo_state *old_fifo_state =
1953 			&old_crtc_state->wm.vlv.fifo_state;
1954 
1955 		ret = vlv_compute_fifo(crtc_state);
1956 		if (ret)
1957 			return ret;
1958 
1959 		if (needs_modeset ||
1960 		    memcmp(old_fifo_state, fifo_state,
1961 			   sizeof(*fifo_state)) != 0)
1962 			crtc_state->fifo_changed = true;
1963 	}
1964 
1965 	/* initially allow all levels */
1966 	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1967 	/*
1968 	 * Note that enabling cxsr with no primary/sprite planes
1969 	 * enabled can wedge the pipe. Hence we only allow cxsr
1970 	 * with exactly one enabled primary/sprite plane.
1971 	 */
1972 	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1973 
1974 	for (level = 0; level < wm_state->num_levels; level++) {
1975 		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1976 		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1977 
1978 		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1979 			break;
1980 
1981 		for_each_plane_id_on_crtc(crtc, plane_id) {
1982 			wm_state->wm[level].plane[plane_id] =
1983 				vlv_invert_wm_value(raw->plane[plane_id],
1984 						    fifo_state->plane[plane_id]);
1985 		}
1986 
1987 		wm_state->sr[level].plane =
1988 			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1989 						 raw->plane[PLANE_SPRITE0],
1990 						 raw->plane[PLANE_SPRITE1]),
1991 					    sr_fifo_size);
1992 
1993 		wm_state->sr[level].cursor =
1994 			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1995 					    63);
1996 	}
1997 
1998 	if (level == 0)
1999 		return -EINVAL;
2000 
2001 	/* limit to only levels we can actually handle */
2002 	wm_state->num_levels = level;
2003 
2004 	/* invalidate the higher levels */
2005 	vlv_invalidate_wms(crtc, wm_state, level);
2006 
2007 	return 0;
2008 }
2009 
2010 #define VLV_FIFO(plane, value) \
2011 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
2012 
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc * crtc)2013 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
2014 				   struct intel_crtc *crtc)
2015 {
2016 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2017 	struct intel_uncore *uncore = &dev_priv->uncore;
2018 	const struct intel_crtc_state *crtc_state =
2019 		intel_atomic_get_new_crtc_state(state, crtc);
2020 	const struct vlv_fifo_state *fifo_state =
2021 		&crtc_state->wm.vlv.fifo_state;
2022 	int sprite0_start, sprite1_start, fifo_size;
2023 	u32 dsparb, dsparb2, dsparb3;
2024 
2025 	if (!crtc_state->fifo_changed)
2026 		return;
2027 
2028 	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
2029 	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
2030 	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2031 
2032 	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
2033 	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2034 
2035 	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2036 
2037 	/*
2038 	 * uncore.lock serves a double purpose here. It allows us to
2039 	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2040 	 * it protects the DSPARB registers from getting clobbered by
2041 	 * parallel updates from multiple pipes.
2042 	 *
2043 	 * intel_pipe_update_start() has already disabled interrupts
2044 	 * for us, so a plain spin_lock() is sufficient here.
2045 	 */
2046 	spin_lock(&uncore->lock);
2047 
2048 	switch (crtc->pipe) {
2049 	case PIPE_A:
2050 		dsparb = intel_uncore_read_fw(uncore, DSPARB);
2051 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2052 
2053 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2054 			    VLV_FIFO(SPRITEB, 0xff));
2055 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2056 			   VLV_FIFO(SPRITEB, sprite1_start));
2057 
2058 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2059 			     VLV_FIFO(SPRITEB_HI, 0x1));
2060 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2061 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2062 
2063 		intel_uncore_write_fw(uncore, DSPARB, dsparb);
2064 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2065 		break;
2066 	case PIPE_B:
2067 		dsparb = intel_uncore_read_fw(uncore, DSPARB);
2068 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2069 
2070 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2071 			    VLV_FIFO(SPRITED, 0xff));
2072 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2073 			   VLV_FIFO(SPRITED, sprite1_start));
2074 
2075 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2076 			     VLV_FIFO(SPRITED_HI, 0xff));
2077 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2078 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2079 
2080 		intel_uncore_write_fw(uncore, DSPARB, dsparb);
2081 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2082 		break;
2083 	case PIPE_C:
2084 		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2085 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2086 
2087 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2088 			     VLV_FIFO(SPRITEF, 0xff));
2089 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2090 			    VLV_FIFO(SPRITEF, sprite1_start));
2091 
2092 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2093 			     VLV_FIFO(SPRITEF_HI, 0xff));
2094 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2095 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2096 
2097 		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2098 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2099 		break;
2100 	default:
2101 		break;
2102 	}
2103 
2104 	intel_uncore_posting_read_fw(uncore, DSPARB);
2105 
2106 	spin_unlock(&uncore->lock);
2107 }
2108 
2109 #undef VLV_FIFO
2110 
vlv_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2111 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
2112 				       struct intel_crtc *crtc)
2113 {
2114 	struct intel_crtc_state *new_crtc_state =
2115 		intel_atomic_get_new_crtc_state(state, crtc);
2116 	const struct intel_crtc_state *old_crtc_state =
2117 		intel_atomic_get_old_crtc_state(state, crtc);
2118 	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2119 	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2120 	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2121 	int level;
2122 
2123 	if (!new_crtc_state->hw.active ||
2124 	    drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2125 		*intermediate = *optimal;
2126 
2127 		intermediate->cxsr = false;
2128 		goto out;
2129 	}
2130 
2131 	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2132 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2133 		!new_crtc_state->disable_cxsr;
2134 
2135 	for (level = 0; level < intermediate->num_levels; level++) {
2136 		enum plane_id plane_id;
2137 
2138 		for_each_plane_id_on_crtc(crtc, plane_id) {
2139 			intermediate->wm[level].plane[plane_id] =
2140 				min(optimal->wm[level].plane[plane_id],
2141 				    active->wm[level].plane[plane_id]);
2142 		}
2143 
2144 		intermediate->sr[level].plane = min(optimal->sr[level].plane,
2145 						    active->sr[level].plane);
2146 		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2147 						     active->sr[level].cursor);
2148 	}
2149 
2150 	vlv_invalidate_wms(crtc, intermediate, level);
2151 
2152 out:
2153 	/*
2154 	 * If our intermediate WM are identical to the final WM, then we can
2155 	 * omit the post-vblank programming; only update if it's different.
2156 	 */
2157 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2158 		new_crtc_state->wm.need_postvbl_update = true;
2159 
2160 	return 0;
2161 }
2162 
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2163 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2164 			 struct vlv_wm_values *wm)
2165 {
2166 	struct intel_crtc *crtc;
2167 	int num_active_pipes = 0;
2168 
2169 	wm->level = dev_priv->wm.max_level;
2170 	wm->cxsr = true;
2171 
2172 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2173 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2174 
2175 		if (!crtc->active)
2176 			continue;
2177 
2178 		if (!wm_state->cxsr)
2179 			wm->cxsr = false;
2180 
2181 		num_active_pipes++;
2182 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2183 	}
2184 
2185 	if (num_active_pipes != 1)
2186 		wm->cxsr = false;
2187 
2188 	if (num_active_pipes > 1)
2189 		wm->level = VLV_WM_LEVEL_PM2;
2190 
2191 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2192 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2193 		enum pipe pipe = crtc->pipe;
2194 
2195 		wm->pipe[pipe] = wm_state->wm[wm->level];
2196 		if (crtc->active && wm->cxsr)
2197 			wm->sr = wm_state->sr[wm->level];
2198 
2199 		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2200 		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2201 		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2202 		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2203 	}
2204 }
2205 
vlv_program_watermarks(struct drm_i915_private * dev_priv)2206 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2207 {
2208 	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2209 	struct vlv_wm_values new_wm = {};
2210 
2211 	vlv_merge_wm(dev_priv, &new_wm);
2212 
2213 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2214 		return;
2215 
2216 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2217 		chv_set_memory_dvfs(dev_priv, false);
2218 
2219 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2220 		chv_set_memory_pm5(dev_priv, false);
2221 
2222 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2223 		_intel_set_memory_cxsr(dev_priv, false);
2224 
2225 	vlv_write_wm_values(dev_priv, &new_wm);
2226 
2227 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2228 		_intel_set_memory_cxsr(dev_priv, true);
2229 
2230 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2231 		chv_set_memory_pm5(dev_priv, true);
2232 
2233 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2234 		chv_set_memory_dvfs(dev_priv, true);
2235 
2236 	*old_wm = new_wm;
2237 }
2238 
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2239 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2240 				   struct intel_crtc *crtc)
2241 {
2242 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2243 	const struct intel_crtc_state *crtc_state =
2244 		intel_atomic_get_new_crtc_state(state, crtc);
2245 
2246 	mutex_lock(&dev_priv->wm.wm_mutex);
2247 	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2248 	vlv_program_watermarks(dev_priv);
2249 	mutex_unlock(&dev_priv->wm.wm_mutex);
2250 }
2251 
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2252 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2253 				    struct intel_crtc *crtc)
2254 {
2255 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2256 	const struct intel_crtc_state *crtc_state =
2257 		intel_atomic_get_new_crtc_state(state, crtc);
2258 
2259 	if (!crtc_state->wm.need_postvbl_update)
2260 		return;
2261 
2262 	mutex_lock(&dev_priv->wm.wm_mutex);
2263 	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2264 	vlv_program_watermarks(dev_priv);
2265 	mutex_unlock(&dev_priv->wm.wm_mutex);
2266 }
2267 
i965_update_wm(struct intel_crtc * unused_crtc)2268 static void i965_update_wm(struct intel_crtc *unused_crtc)
2269 {
2270 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2271 	struct intel_crtc *crtc;
2272 	int srwm = 1;
2273 	int cursor_sr = 16;
2274 	bool cxsr_enabled;
2275 
2276 	/* Calc sr entries for one plane configs */
2277 	crtc = single_enabled_crtc(dev_priv);
2278 	if (crtc) {
2279 		/* self-refresh has much higher latency */
2280 		static const int sr_latency_ns = 12000;
2281 		const struct drm_display_mode *pipe_mode =
2282 			&crtc->config->hw.pipe_mode;
2283 		const struct drm_framebuffer *fb =
2284 			crtc->base.primary->state->fb;
2285 		int clock = pipe_mode->crtc_clock;
2286 		int htotal = pipe_mode->crtc_htotal;
2287 		int hdisplay = crtc->config->pipe_src_w;
2288 		int cpp = fb->format->cpp[0];
2289 		int entries;
2290 
2291 		entries = intel_wm_method2(clock, htotal,
2292 					   hdisplay, cpp, sr_latency_ns / 100);
2293 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2294 		srwm = I965_FIFO_SIZE - entries;
2295 		if (srwm < 0)
2296 			srwm = 1;
2297 		srwm &= 0x1ff;
2298 		drm_dbg_kms(&dev_priv->drm,
2299 			    "self-refresh entries: %d, wm: %d\n",
2300 			    entries, srwm);
2301 
2302 		entries = intel_wm_method2(clock, htotal,
2303 					   crtc->base.cursor->state->crtc_w, 4,
2304 					   sr_latency_ns / 100);
2305 		entries = DIV_ROUND_UP(entries,
2306 				       i965_cursor_wm_info.cacheline_size) +
2307 			i965_cursor_wm_info.guard_size;
2308 
2309 		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2310 		if (cursor_sr > i965_cursor_wm_info.max_wm)
2311 			cursor_sr = i965_cursor_wm_info.max_wm;
2312 
2313 		drm_dbg_kms(&dev_priv->drm,
2314 			    "self-refresh watermark: display plane %d "
2315 			    "cursor %d\n", srwm, cursor_sr);
2316 
2317 		cxsr_enabled = true;
2318 	} else {
2319 		cxsr_enabled = false;
2320 		/* Turn off self refresh if both pipes are enabled */
2321 		intel_set_memory_cxsr(dev_priv, false);
2322 	}
2323 
2324 	drm_dbg_kms(&dev_priv->drm,
2325 		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2326 		    srwm);
2327 
2328 	/* 965 has limitations... */
2329 	intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2330 		   FW_WM(8, CURSORB) |
2331 		   FW_WM(8, PLANEB) |
2332 		   FW_WM(8, PLANEA));
2333 	intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2334 		   FW_WM(8, PLANEC_OLD));
2335 	/* update cursor SR watermark */
2336 	intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2337 
2338 	if (cxsr_enabled)
2339 		intel_set_memory_cxsr(dev_priv, true);
2340 }
2341 
2342 #undef FW_WM
2343 
i9xx_update_wm(struct intel_crtc * unused_crtc)2344 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2345 {
2346 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2347 	const struct intel_watermark_params *wm_info;
2348 	u32 fwater_lo;
2349 	u32 fwater_hi;
2350 	int cwm, srwm = 1;
2351 	int fifo_size;
2352 	int planea_wm, planeb_wm;
2353 	struct intel_crtc *crtc, *enabled = NULL;
2354 
2355 	if (IS_I945GM(dev_priv))
2356 		wm_info = &i945_wm_info;
2357 	else if (DISPLAY_VER(dev_priv) != 2)
2358 		wm_info = &i915_wm_info;
2359 	else
2360 		wm_info = &i830_a_wm_info;
2361 
2362 	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2363 	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2364 	if (intel_crtc_active(crtc)) {
2365 		const struct drm_display_mode *pipe_mode =
2366 			&crtc->config->hw.pipe_mode;
2367 		const struct drm_framebuffer *fb =
2368 			crtc->base.primary->state->fb;
2369 		int cpp;
2370 
2371 		if (DISPLAY_VER(dev_priv) == 2)
2372 			cpp = 4;
2373 		else
2374 			cpp = fb->format->cpp[0];
2375 
2376 		planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2377 					       wm_info, fifo_size, cpp,
2378 					       pessimal_latency_ns);
2379 		enabled = crtc;
2380 	} else {
2381 		planea_wm = fifo_size - wm_info->guard_size;
2382 		if (planea_wm > (long)wm_info->max_wm)
2383 			planea_wm = wm_info->max_wm;
2384 	}
2385 
2386 	if (DISPLAY_VER(dev_priv) == 2)
2387 		wm_info = &i830_bc_wm_info;
2388 
2389 	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2390 	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2391 	if (intel_crtc_active(crtc)) {
2392 		const struct drm_display_mode *pipe_mode =
2393 			&crtc->config->hw.pipe_mode;
2394 		const struct drm_framebuffer *fb =
2395 			crtc->base.primary->state->fb;
2396 		int cpp;
2397 
2398 		if (DISPLAY_VER(dev_priv) == 2)
2399 			cpp = 4;
2400 		else
2401 			cpp = fb->format->cpp[0];
2402 
2403 		planeb_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2404 					       wm_info, fifo_size, cpp,
2405 					       pessimal_latency_ns);
2406 		if (enabled == NULL)
2407 			enabled = crtc;
2408 		else
2409 			enabled = NULL;
2410 	} else {
2411 		planeb_wm = fifo_size - wm_info->guard_size;
2412 		if (planeb_wm > (long)wm_info->max_wm)
2413 			planeb_wm = wm_info->max_wm;
2414 	}
2415 
2416 	drm_dbg_kms(&dev_priv->drm,
2417 		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2418 
2419 	if (IS_I915GM(dev_priv) && enabled) {
2420 		struct drm_i915_gem_object *obj;
2421 
2422 		obj = intel_fb_obj(enabled->base.primary->state->fb);
2423 
2424 		/* self-refresh seems busted with untiled */
2425 		if (!i915_gem_object_is_tiled(obj))
2426 			enabled = NULL;
2427 	}
2428 
2429 	/*
2430 	 * Overlay gets an aggressive default since video jitter is bad.
2431 	 */
2432 	cwm = 2;
2433 
2434 	/* Play safe and disable self-refresh before adjusting watermarks. */
2435 	intel_set_memory_cxsr(dev_priv, false);
2436 
2437 	/* Calc sr entries for one plane configs */
2438 	if (HAS_FW_BLC(dev_priv) && enabled) {
2439 		/* self-refresh has much higher latency */
2440 		static const int sr_latency_ns = 6000;
2441 		const struct drm_display_mode *pipe_mode =
2442 			&enabled->config->hw.pipe_mode;
2443 		const struct drm_framebuffer *fb =
2444 			enabled->base.primary->state->fb;
2445 		int clock = pipe_mode->crtc_clock;
2446 		int htotal = pipe_mode->crtc_htotal;
2447 		int hdisplay = enabled->config->pipe_src_w;
2448 		int cpp;
2449 		int entries;
2450 
2451 		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2452 			cpp = 4;
2453 		else
2454 			cpp = fb->format->cpp[0];
2455 
2456 		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2457 					   sr_latency_ns / 100);
2458 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2459 		drm_dbg_kms(&dev_priv->drm,
2460 			    "self-refresh entries: %d\n", entries);
2461 		srwm = wm_info->fifo_size - entries;
2462 		if (srwm < 0)
2463 			srwm = 1;
2464 
2465 		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2466 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2467 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2468 		else
2469 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2470 	}
2471 
2472 	drm_dbg_kms(&dev_priv->drm,
2473 		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2474 		     planea_wm, planeb_wm, cwm, srwm);
2475 
2476 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2477 	fwater_hi = (cwm & 0x1f);
2478 
2479 	/* Set request length to 8 cachelines per fetch */
2480 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2481 	fwater_hi = fwater_hi | (1 << 8);
2482 
2483 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2484 	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2485 
2486 	if (enabled)
2487 		intel_set_memory_cxsr(dev_priv, true);
2488 }
2489 
i845_update_wm(struct intel_crtc * unused_crtc)2490 static void i845_update_wm(struct intel_crtc *unused_crtc)
2491 {
2492 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2493 	struct intel_crtc *crtc;
2494 	const struct drm_display_mode *pipe_mode;
2495 	u32 fwater_lo;
2496 	int planea_wm;
2497 
2498 	crtc = single_enabled_crtc(dev_priv);
2499 	if (crtc == NULL)
2500 		return;
2501 
2502 	pipe_mode = &crtc->config->hw.pipe_mode;
2503 	planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2504 				       &i845_wm_info,
2505 				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2506 				       4, pessimal_latency_ns);
2507 	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2508 	fwater_lo |= (3<<8) | planea_wm;
2509 
2510 	drm_dbg_kms(&dev_priv->drm,
2511 		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2512 
2513 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2514 }
2515 
2516 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2517 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2518 				   unsigned int cpp,
2519 				   unsigned int latency)
2520 {
2521 	unsigned int ret;
2522 
2523 	ret = intel_wm_method1(pixel_rate, cpp, latency);
2524 	ret = DIV_ROUND_UP(ret, 64) + 2;
2525 
2526 	return ret;
2527 }
2528 
2529 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2530 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2531 				   unsigned int htotal,
2532 				   unsigned int width,
2533 				   unsigned int cpp,
2534 				   unsigned int latency)
2535 {
2536 	unsigned int ret;
2537 
2538 	ret = intel_wm_method2(pixel_rate, htotal,
2539 			       width, cpp, latency);
2540 	ret = DIV_ROUND_UP(ret, 64) + 2;
2541 
2542 	return ret;
2543 }
2544 
ilk_wm_fbc(u32 pri_val,u32 horiz_pixels,u8 cpp)2545 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2546 {
2547 	/*
2548 	 * Neither of these should be possible since this function shouldn't be
2549 	 * called if the CRTC is off or the plane is invisible.  But let's be
2550 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2551 	 * elsewhere in the driver.
2552 	 */
2553 	if (WARN_ON(!cpp))
2554 		return 0;
2555 	if (WARN_ON(!horiz_pixels))
2556 		return 0;
2557 
2558 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2559 }
2560 
2561 struct ilk_wm_maximums {
2562 	u16 pri;
2563 	u16 spr;
2564 	u16 cur;
2565 	u16 fbc;
2566 };
2567 
2568 /*
2569  * For both WM_PIPE and WM_LP.
2570  * mem_value must be in 0.1us units.
2571  */
ilk_compute_pri_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value,bool is_lp)2572 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2573 			      const struct intel_plane_state *plane_state,
2574 			      u32 mem_value, bool is_lp)
2575 {
2576 	u32 method1, method2;
2577 	int cpp;
2578 
2579 	if (mem_value == 0)
2580 		return U32_MAX;
2581 
2582 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2583 		return 0;
2584 
2585 	cpp = plane_state->hw.fb->format->cpp[0];
2586 
2587 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2588 
2589 	if (!is_lp)
2590 		return method1;
2591 
2592 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2593 				 crtc_state->hw.pipe_mode.crtc_htotal,
2594 				 drm_rect_width(&plane_state->uapi.dst),
2595 				 cpp, mem_value);
2596 
2597 	return min(method1, method2);
2598 }
2599 
2600 /*
2601  * For both WM_PIPE and WM_LP.
2602  * mem_value must be in 0.1us units.
2603  */
ilk_compute_spr_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2604 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2605 			      const struct intel_plane_state *plane_state,
2606 			      u32 mem_value)
2607 {
2608 	u32 method1, method2;
2609 	int cpp;
2610 
2611 	if (mem_value == 0)
2612 		return U32_MAX;
2613 
2614 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2615 		return 0;
2616 
2617 	cpp = plane_state->hw.fb->format->cpp[0];
2618 
2619 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2620 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2621 				 crtc_state->hw.pipe_mode.crtc_htotal,
2622 				 drm_rect_width(&plane_state->uapi.dst),
2623 				 cpp, mem_value);
2624 	return min(method1, method2);
2625 }
2626 
2627 /*
2628  * For both WM_PIPE and WM_LP.
2629  * mem_value must be in 0.1us units.
2630  */
ilk_compute_cur_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2631 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2632 			      const struct intel_plane_state *plane_state,
2633 			      u32 mem_value)
2634 {
2635 	int cpp;
2636 
2637 	if (mem_value == 0)
2638 		return U32_MAX;
2639 
2640 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2641 		return 0;
2642 
2643 	cpp = plane_state->hw.fb->format->cpp[0];
2644 
2645 	return ilk_wm_method2(crtc_state->pixel_rate,
2646 			      crtc_state->hw.pipe_mode.crtc_htotal,
2647 			      drm_rect_width(&plane_state->uapi.dst),
2648 			      cpp, mem_value);
2649 }
2650 
2651 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 pri_val)2652 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2653 			      const struct intel_plane_state *plane_state,
2654 			      u32 pri_val)
2655 {
2656 	int cpp;
2657 
2658 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2659 		return 0;
2660 
2661 	cpp = plane_state->hw.fb->format->cpp[0];
2662 
2663 	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2664 			  cpp);
2665 }
2666 
2667 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2668 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2669 {
2670 	if (DISPLAY_VER(dev_priv) >= 8)
2671 		return 3072;
2672 	else if (DISPLAY_VER(dev_priv) >= 7)
2673 		return 768;
2674 	else
2675 		return 512;
2676 }
2677 
2678 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2679 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2680 		     int level, bool is_sprite)
2681 {
2682 	if (DISPLAY_VER(dev_priv) >= 8)
2683 		/* BDW primary/sprite plane watermarks */
2684 		return level == 0 ? 255 : 2047;
2685 	else if (DISPLAY_VER(dev_priv) >= 7)
2686 		/* IVB/HSW primary/sprite plane watermarks */
2687 		return level == 0 ? 127 : 1023;
2688 	else if (!is_sprite)
2689 		/* ILK/SNB primary plane watermarks */
2690 		return level == 0 ? 127 : 511;
2691 	else
2692 		/* ILK/SNB sprite plane watermarks */
2693 		return level == 0 ? 63 : 255;
2694 }
2695 
2696 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2697 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2698 {
2699 	if (DISPLAY_VER(dev_priv) >= 7)
2700 		return level == 0 ? 63 : 255;
2701 	else
2702 		return level == 0 ? 31 : 63;
2703 }
2704 
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2705 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2706 {
2707 	if (DISPLAY_VER(dev_priv) >= 8)
2708 		return 31;
2709 	else
2710 		return 15;
2711 }
2712 
2713 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2714 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2715 				     int level,
2716 				     const struct intel_wm_config *config,
2717 				     enum intel_ddb_partitioning ddb_partitioning,
2718 				     bool is_sprite)
2719 {
2720 	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2721 
2722 	/* if sprites aren't enabled, sprites get nothing */
2723 	if (is_sprite && !config->sprites_enabled)
2724 		return 0;
2725 
2726 	/* HSW allows LP1+ watermarks even with multiple pipes */
2727 	if (level == 0 || config->num_pipes_active > 1) {
2728 		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2729 
2730 		/*
2731 		 * For some reason the non self refresh
2732 		 * FIFO size is only half of the self
2733 		 * refresh FIFO size on ILK/SNB.
2734 		 */
2735 		if (DISPLAY_VER(dev_priv) <= 6)
2736 			fifo_size /= 2;
2737 	}
2738 
2739 	if (config->sprites_enabled) {
2740 		/* level 0 is always calculated with 1:1 split */
2741 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2742 			if (is_sprite)
2743 				fifo_size *= 5;
2744 			fifo_size /= 6;
2745 		} else {
2746 			fifo_size /= 2;
2747 		}
2748 	}
2749 
2750 	/* clamp to max that the registers can hold */
2751 	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2752 }
2753 
2754 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config)2755 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2756 				      int level,
2757 				      const struct intel_wm_config *config)
2758 {
2759 	/* HSW LP1+ watermarks w/ multiple pipes */
2760 	if (level > 0 && config->num_pipes_active > 1)
2761 		return 64;
2762 
2763 	/* otherwise just report max that registers can hold */
2764 	return ilk_cursor_wm_reg_max(dev_priv, level);
2765 }
2766 
ilk_compute_wm_maximums(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2767 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2768 				    int level,
2769 				    const struct intel_wm_config *config,
2770 				    enum intel_ddb_partitioning ddb_partitioning,
2771 				    struct ilk_wm_maximums *max)
2772 {
2773 	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2774 	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2775 	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2776 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2777 }
2778 
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2779 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2780 					int level,
2781 					struct ilk_wm_maximums *max)
2782 {
2783 	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2784 	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2785 	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2786 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2787 }
2788 
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2789 static bool ilk_validate_wm_level(int level,
2790 				  const struct ilk_wm_maximums *max,
2791 				  struct intel_wm_level *result)
2792 {
2793 	bool ret;
2794 
2795 	/* already determined to be invalid? */
2796 	if (!result->enable)
2797 		return false;
2798 
2799 	result->enable = result->pri_val <= max->pri &&
2800 			 result->spr_val <= max->spr &&
2801 			 result->cur_val <= max->cur;
2802 
2803 	ret = result->enable;
2804 
2805 	/*
2806 	 * HACK until we can pre-compute everything,
2807 	 * and thus fail gracefully if LP0 watermarks
2808 	 * are exceeded...
2809 	 */
2810 	if (level == 0 && !result->enable) {
2811 		if (result->pri_val > max->pri)
2812 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2813 				      level, result->pri_val, max->pri);
2814 		if (result->spr_val > max->spr)
2815 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2816 				      level, result->spr_val, max->spr);
2817 		if (result->cur_val > max->cur)
2818 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2819 				      level, result->cur_val, max->cur);
2820 
2821 		result->pri_val = min_t(u32, result->pri_val, max->pri);
2822 		result->spr_val = min_t(u32, result->spr_val, max->spr);
2823 		result->cur_val = min_t(u32, result->cur_val, max->cur);
2824 		result->enable = true;
2825 	}
2826 
2827 	return ret;
2828 }
2829 
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * crtc,int level,struct intel_crtc_state * crtc_state,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2830 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2831 				 const struct intel_crtc *crtc,
2832 				 int level,
2833 				 struct intel_crtc_state *crtc_state,
2834 				 const struct intel_plane_state *pristate,
2835 				 const struct intel_plane_state *sprstate,
2836 				 const struct intel_plane_state *curstate,
2837 				 struct intel_wm_level *result)
2838 {
2839 	u16 pri_latency = dev_priv->wm.pri_latency[level];
2840 	u16 spr_latency = dev_priv->wm.spr_latency[level];
2841 	u16 cur_latency = dev_priv->wm.cur_latency[level];
2842 
2843 	/* WM1+ latency values stored in 0.5us units */
2844 	if (level > 0) {
2845 		pri_latency *= 5;
2846 		spr_latency *= 5;
2847 		cur_latency *= 5;
2848 	}
2849 
2850 	if (pristate) {
2851 		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2852 						     pri_latency, level);
2853 		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2854 	}
2855 
2856 	if (sprstate)
2857 		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2858 
2859 	if (curstate)
2860 		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2861 
2862 	result->enable = true;
2863 }
2864 
intel_read_wm_latency(struct drm_i915_private * dev_priv,u16 wm[8])2865 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2866 				  u16 wm[8])
2867 {
2868 	struct intel_uncore *uncore = &dev_priv->uncore;
2869 
2870 	if (DISPLAY_VER(dev_priv) >= 9) {
2871 		u32 val;
2872 		int ret, i;
2873 		int level, max_level = ilk_wm_max_level(dev_priv);
2874 
2875 		/* read the first set of memory latencies[0:3] */
2876 		val = 0; /* data0 to be programmed to 0 for first set */
2877 		ret = sandybridge_pcode_read(dev_priv,
2878 					     GEN9_PCODE_READ_MEM_LATENCY,
2879 					     &val, NULL);
2880 
2881 		if (ret) {
2882 			drm_err(&dev_priv->drm,
2883 				"SKL Mailbox read error = %d\n", ret);
2884 			return;
2885 		}
2886 
2887 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2888 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2889 				GEN9_MEM_LATENCY_LEVEL_MASK;
2890 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2891 				GEN9_MEM_LATENCY_LEVEL_MASK;
2892 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2893 				GEN9_MEM_LATENCY_LEVEL_MASK;
2894 
2895 		/* read the second set of memory latencies[4:7] */
2896 		val = 1; /* data0 to be programmed to 1 for second set */
2897 		ret = sandybridge_pcode_read(dev_priv,
2898 					     GEN9_PCODE_READ_MEM_LATENCY,
2899 					     &val, NULL);
2900 		if (ret) {
2901 			drm_err(&dev_priv->drm,
2902 				"SKL Mailbox read error = %d\n", ret);
2903 			return;
2904 		}
2905 
2906 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2907 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2908 				GEN9_MEM_LATENCY_LEVEL_MASK;
2909 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2910 				GEN9_MEM_LATENCY_LEVEL_MASK;
2911 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2912 				GEN9_MEM_LATENCY_LEVEL_MASK;
2913 
2914 		/*
2915 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2916 		 * need to be disabled. We make sure to sanitize the values out
2917 		 * of the punit to satisfy this requirement.
2918 		 */
2919 		for (level = 1; level <= max_level; level++) {
2920 			if (wm[level] == 0) {
2921 				for (i = level + 1; i <= max_level; i++)
2922 					wm[i] = 0;
2923 
2924 				max_level = level - 1;
2925 
2926 				break;
2927 			}
2928 		}
2929 
2930 		/*
2931 		 * WaWmMemoryReadLatency
2932 		 *
2933 		 * punit doesn't take into account the read latency so we need
2934 		 * to add proper adjustement to each valid level we retrieve
2935 		 * from the punit when level 0 response data is 0us.
2936 		 */
2937 		if (wm[0] == 0) {
2938 			u8 adjust = DISPLAY_VER(dev_priv) >= 12 ? 3 : 2;
2939 
2940 			for (level = 0; level <= max_level; level++)
2941 				wm[level] += adjust;
2942 		}
2943 
2944 		/*
2945 		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2946 		 * If we could not get dimm info enable this WA to prevent from
2947 		 * any underrun. If not able to get Dimm info assume 16GB dimm
2948 		 * to avoid any underrun.
2949 		 */
2950 		if (dev_priv->dram_info.wm_lv_0_adjust_needed)
2951 			wm[0] += 1;
2952 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2953 		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2954 
2955 		wm[0] = (sskpd >> 56) & 0xFF;
2956 		if (wm[0] == 0)
2957 			wm[0] = sskpd & 0xF;
2958 		wm[1] = (sskpd >> 4) & 0xFF;
2959 		wm[2] = (sskpd >> 12) & 0xFF;
2960 		wm[3] = (sskpd >> 20) & 0x1FF;
2961 		wm[4] = (sskpd >> 32) & 0x1FF;
2962 	} else if (DISPLAY_VER(dev_priv) >= 6) {
2963 		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2964 
2965 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2966 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2967 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2968 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2969 	} else if (DISPLAY_VER(dev_priv) >= 5) {
2970 		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2971 
2972 		/* ILK primary LP0 latency is 700 ns */
2973 		wm[0] = 7;
2974 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2975 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2976 	} else {
2977 		MISSING_CASE(INTEL_DEVID(dev_priv));
2978 	}
2979 }
2980 
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2981 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2982 				       u16 wm[5])
2983 {
2984 	/* ILK sprite LP0 latency is 1300 ns */
2985 	if (DISPLAY_VER(dev_priv) == 5)
2986 		wm[0] = 13;
2987 }
2988 
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2989 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2990 				       u16 wm[5])
2991 {
2992 	/* ILK cursor LP0 latency is 1300 ns */
2993 	if (DISPLAY_VER(dev_priv) == 5)
2994 		wm[0] = 13;
2995 }
2996 
ilk_wm_max_level(const struct drm_i915_private * dev_priv)2997 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2998 {
2999 	/* how many WM levels are we expecting */
3000 	if (HAS_HW_SAGV_WM(dev_priv))
3001 		return 5;
3002 	else if (DISPLAY_VER(dev_priv) >= 9)
3003 		return 7;
3004 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3005 		return 4;
3006 	else if (DISPLAY_VER(dev_priv) >= 6)
3007 		return 3;
3008 	else
3009 		return 2;
3010 }
3011 
intel_print_wm_latency(struct drm_i915_private * dev_priv,const char * name,const u16 wm[])3012 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
3013 				   const char *name,
3014 				   const u16 wm[])
3015 {
3016 	int level, max_level = ilk_wm_max_level(dev_priv);
3017 
3018 	for (level = 0; level <= max_level; level++) {
3019 		unsigned int latency = wm[level];
3020 
3021 		if (latency == 0) {
3022 			drm_dbg_kms(&dev_priv->drm,
3023 				    "%s WM%d latency not provided\n",
3024 				    name, level);
3025 			continue;
3026 		}
3027 
3028 		/*
3029 		 * - latencies are in us on gen9.
3030 		 * - before then, WM1+ latency values are in 0.5us units
3031 		 */
3032 		if (DISPLAY_VER(dev_priv) >= 9)
3033 			latency *= 10;
3034 		else if (level > 0)
3035 			latency *= 5;
3036 
3037 		drm_dbg_kms(&dev_priv->drm,
3038 			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
3039 			    wm[level], latency / 10, latency % 10);
3040 	}
3041 }
3042 
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5],u16 min)3043 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3044 				    u16 wm[5], u16 min)
3045 {
3046 	int level, max_level = ilk_wm_max_level(dev_priv);
3047 
3048 	if (wm[0] >= min)
3049 		return false;
3050 
3051 	wm[0] = max(wm[0], min);
3052 	for (level = 1; level <= max_level; level++)
3053 		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3054 
3055 	return true;
3056 }
3057 
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)3058 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3059 {
3060 	bool changed;
3061 
3062 	/*
3063 	 * The BIOS provided WM memory latency values are often
3064 	 * inadequate for high resolution displays. Adjust them.
3065 	 */
3066 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3067 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3068 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3069 
3070 	if (!changed)
3071 		return;
3072 
3073 	drm_dbg_kms(&dev_priv->drm,
3074 		    "WM latency values increased to avoid potential underruns\n");
3075 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3076 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3077 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3078 }
3079 
snb_wm_lp3_irq_quirk(struct drm_i915_private * dev_priv)3080 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3081 {
3082 	/*
3083 	 * On some SNB machines (Thinkpad X220 Tablet at least)
3084 	 * LP3 usage can cause vblank interrupts to be lost.
3085 	 * The DEIIR bit will go high but it looks like the CPU
3086 	 * never gets interrupted.
3087 	 *
3088 	 * It's not clear whether other interrupt source could
3089 	 * be affected or if this is somehow limited to vblank
3090 	 * interrupts only. To play it safe we disable LP3
3091 	 * watermarks entirely.
3092 	 */
3093 	if (dev_priv->wm.pri_latency[3] == 0 &&
3094 	    dev_priv->wm.spr_latency[3] == 0 &&
3095 	    dev_priv->wm.cur_latency[3] == 0)
3096 		return;
3097 
3098 	dev_priv->wm.pri_latency[3] = 0;
3099 	dev_priv->wm.spr_latency[3] = 0;
3100 	dev_priv->wm.cur_latency[3] = 0;
3101 
3102 	drm_dbg_kms(&dev_priv->drm,
3103 		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3104 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3105 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3106 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3107 }
3108 
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)3109 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3110 {
3111 	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3112 
3113 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3114 	       sizeof(dev_priv->wm.pri_latency));
3115 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3116 	       sizeof(dev_priv->wm.pri_latency));
3117 
3118 	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3119 	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3120 
3121 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3122 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3123 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3124 
3125 	if (DISPLAY_VER(dev_priv) == 6) {
3126 		snb_wm_latency_quirk(dev_priv);
3127 		snb_wm_lp3_irq_quirk(dev_priv);
3128 	}
3129 }
3130 
skl_setup_wm_latency(struct drm_i915_private * dev_priv)3131 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3132 {
3133 	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3134 	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3135 }
3136 
ilk_validate_pipe_wm(const struct drm_i915_private * dev_priv,struct intel_pipe_wm * pipe_wm)3137 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3138 				 struct intel_pipe_wm *pipe_wm)
3139 {
3140 	/* LP0 watermark maximums depend on this pipe alone */
3141 	const struct intel_wm_config config = {
3142 		.num_pipes_active = 1,
3143 		.sprites_enabled = pipe_wm->sprites_enabled,
3144 		.sprites_scaled = pipe_wm->sprites_scaled,
3145 	};
3146 	struct ilk_wm_maximums max;
3147 
3148 	/* LP0 watermarks always use 1/2 DDB partitioning */
3149 	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3150 
3151 	/* At least LP0 must be valid */
3152 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3153 		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3154 		return false;
3155 	}
3156 
3157 	return true;
3158 }
3159 
3160 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)3161 static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
3162 			       struct intel_crtc *crtc)
3163 {
3164 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3165 	struct intel_crtc_state *crtc_state =
3166 		intel_atomic_get_new_crtc_state(state, crtc);
3167 	struct intel_pipe_wm *pipe_wm;
3168 	struct intel_plane *plane;
3169 	const struct intel_plane_state *plane_state;
3170 	const struct intel_plane_state *pristate = NULL;
3171 	const struct intel_plane_state *sprstate = NULL;
3172 	const struct intel_plane_state *curstate = NULL;
3173 	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3174 	struct ilk_wm_maximums max;
3175 
3176 	pipe_wm = &crtc_state->wm.ilk.optimal;
3177 
3178 	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3179 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3180 			pristate = plane_state;
3181 		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3182 			sprstate = plane_state;
3183 		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3184 			curstate = plane_state;
3185 	}
3186 
3187 	pipe_wm->pipe_enabled = crtc_state->hw.active;
3188 	if (sprstate) {
3189 		pipe_wm->sprites_enabled = sprstate->uapi.visible;
3190 		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3191 			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3192 			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3193 	}
3194 
3195 	usable_level = max_level;
3196 
3197 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3198 	if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3199 		usable_level = 1;
3200 
3201 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3202 	if (pipe_wm->sprites_scaled)
3203 		usable_level = 0;
3204 
3205 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3206 	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3207 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3208 
3209 	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3210 		return -EINVAL;
3211 
3212 	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3213 
3214 	for (level = 1; level <= usable_level; level++) {
3215 		struct intel_wm_level *wm = &pipe_wm->wm[level];
3216 
3217 		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3218 				     pristate, sprstate, curstate, wm);
3219 
3220 		/*
3221 		 * Disable any watermark level that exceeds the
3222 		 * register maximums since such watermarks are
3223 		 * always invalid.
3224 		 */
3225 		if (!ilk_validate_wm_level(level, &max, wm)) {
3226 			memset(wm, 0, sizeof(*wm));
3227 			break;
3228 		}
3229 	}
3230 
3231 	return 0;
3232 }
3233 
3234 /*
3235  * Build a set of 'intermediate' watermark values that satisfy both the old
3236  * state and the new state.  These can be programmed to the hardware
3237  * immediately.
3238  */
ilk_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)3239 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
3240 				       struct intel_crtc *crtc)
3241 {
3242 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3243 	struct intel_crtc_state *new_crtc_state =
3244 		intel_atomic_get_new_crtc_state(state, crtc);
3245 	const struct intel_crtc_state *old_crtc_state =
3246 		intel_atomic_get_old_crtc_state(state, crtc);
3247 	struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate;
3248 	const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal;
3249 	int level, max_level = ilk_wm_max_level(dev_priv);
3250 
3251 	/*
3252 	 * Start with the final, target watermarks, then combine with the
3253 	 * currently active watermarks to get values that are safe both before
3254 	 * and after the vblank.
3255 	 */
3256 	*a = new_crtc_state->wm.ilk.optimal;
3257 	if (!new_crtc_state->hw.active ||
3258 	    drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) ||
3259 	    state->skip_intermediate_wm)
3260 		return 0;
3261 
3262 	a->pipe_enabled |= b->pipe_enabled;
3263 	a->sprites_enabled |= b->sprites_enabled;
3264 	a->sprites_scaled |= b->sprites_scaled;
3265 
3266 	for (level = 0; level <= max_level; level++) {
3267 		struct intel_wm_level *a_wm = &a->wm[level];
3268 		const struct intel_wm_level *b_wm = &b->wm[level];
3269 
3270 		a_wm->enable &= b_wm->enable;
3271 		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3272 		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3273 		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3274 		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3275 	}
3276 
3277 	/*
3278 	 * We need to make sure that these merged watermark values are
3279 	 * actually a valid configuration themselves.  If they're not,
3280 	 * there's no safe way to transition from the old state to
3281 	 * the new state, so we need to fail the atomic transaction.
3282 	 */
3283 	if (!ilk_validate_pipe_wm(dev_priv, a))
3284 		return -EINVAL;
3285 
3286 	/*
3287 	 * If our intermediate WM are identical to the final WM, then we can
3288 	 * omit the post-vblank programming; only update if it's different.
3289 	 */
3290 	if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0)
3291 		new_crtc_state->wm.need_postvbl_update = true;
3292 
3293 	return 0;
3294 }
3295 
3296 /*
3297  * Merge the watermarks from all active pipes for a specific level.
3298  */
ilk_merge_wm_level(struct drm_i915_private * dev_priv,int level,struct intel_wm_level * ret_wm)3299 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3300 			       int level,
3301 			       struct intel_wm_level *ret_wm)
3302 {
3303 	const struct intel_crtc *crtc;
3304 
3305 	ret_wm->enable = true;
3306 
3307 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3308 		const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
3309 		const struct intel_wm_level *wm = &active->wm[level];
3310 
3311 		if (!active->pipe_enabled)
3312 			continue;
3313 
3314 		/*
3315 		 * The watermark values may have been used in the past,
3316 		 * so we must maintain them in the registers for some
3317 		 * time even if the level is now disabled.
3318 		 */
3319 		if (!wm->enable)
3320 			ret_wm->enable = false;
3321 
3322 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3323 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3324 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3325 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3326 	}
3327 }
3328 
3329 /*
3330  * Merge all low power watermarks for all active pipes.
3331  */
ilk_wm_merge(struct drm_i915_private * dev_priv,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3332 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3333 			 const struct intel_wm_config *config,
3334 			 const struct ilk_wm_maximums *max,
3335 			 struct intel_pipe_wm *merged)
3336 {
3337 	int level, max_level = ilk_wm_max_level(dev_priv);
3338 	int last_enabled_level = max_level;
3339 
3340 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3341 	if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3342 	    config->num_pipes_active > 1)
3343 		last_enabled_level = 0;
3344 
3345 	/* ILK: FBC WM must be disabled always */
3346 	merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
3347 
3348 	/* merge each WM1+ level */
3349 	for (level = 1; level <= max_level; level++) {
3350 		struct intel_wm_level *wm = &merged->wm[level];
3351 
3352 		ilk_merge_wm_level(dev_priv, level, wm);
3353 
3354 		if (level > last_enabled_level)
3355 			wm->enable = false;
3356 		else if (!ilk_validate_wm_level(level, max, wm))
3357 			/* make sure all following levels get disabled */
3358 			last_enabled_level = level - 1;
3359 
3360 		/*
3361 		 * The spec says it is preferred to disable
3362 		 * FBC WMs instead of disabling a WM level.
3363 		 */
3364 		if (wm->fbc_val > max->fbc) {
3365 			if (wm->enable)
3366 				merged->fbc_wm_enabled = false;
3367 			wm->fbc_val = 0;
3368 		}
3369 	}
3370 
3371 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3372 	/*
3373 	 * FIXME this is racy. FBC might get enabled later.
3374 	 * What we should check here is whether FBC can be
3375 	 * enabled sometime later.
3376 	 */
3377 	if (DISPLAY_VER(dev_priv) == 5 && !merged->fbc_wm_enabled &&
3378 	    intel_fbc_is_active(dev_priv)) {
3379 		for (level = 2; level <= max_level; level++) {
3380 			struct intel_wm_level *wm = &merged->wm[level];
3381 
3382 			wm->enable = false;
3383 		}
3384 	}
3385 }
3386 
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3387 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3388 {
3389 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3390 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3391 }
3392 
3393 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_i915_private * dev_priv,int level)3394 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3395 				      int level)
3396 {
3397 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3398 		return 2 * level;
3399 	else
3400 		return dev_priv->wm.pri_latency[level];
3401 }
3402 
ilk_compute_wm_results(struct drm_i915_private * dev_priv,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3403 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3404 				   const struct intel_pipe_wm *merged,
3405 				   enum intel_ddb_partitioning partitioning,
3406 				   struct ilk_wm_values *results)
3407 {
3408 	struct intel_crtc *crtc;
3409 	int level, wm_lp;
3410 
3411 	results->enable_fbc_wm = merged->fbc_wm_enabled;
3412 	results->partitioning = partitioning;
3413 
3414 	/* LP1+ register values */
3415 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3416 		const struct intel_wm_level *r;
3417 
3418 		level = ilk_wm_lp_to_level(wm_lp, merged);
3419 
3420 		r = &merged->wm[level];
3421 
3422 		/*
3423 		 * Maintain the watermark values even if the level is
3424 		 * disabled. Doing otherwise could cause underruns.
3425 		 */
3426 		results->wm_lp[wm_lp - 1] =
3427 			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3428 			(r->pri_val << WM1_LP_SR_SHIFT) |
3429 			r->cur_val;
3430 
3431 		if (r->enable)
3432 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3433 
3434 		if (DISPLAY_VER(dev_priv) >= 8)
3435 			results->wm_lp[wm_lp - 1] |=
3436 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3437 		else
3438 			results->wm_lp[wm_lp - 1] |=
3439 				r->fbc_val << WM1_LP_FBC_SHIFT;
3440 
3441 		/*
3442 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
3443 		 * level is disabled. Doing otherwise could cause underruns.
3444 		 */
3445 		if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) {
3446 			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3447 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3448 		} else
3449 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3450 	}
3451 
3452 	/* LP0 register values */
3453 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3454 		enum pipe pipe = crtc->pipe;
3455 		const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3456 		const struct intel_wm_level *r = &pipe_wm->wm[0];
3457 
3458 		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3459 			continue;
3460 
3461 		results->wm_pipe[pipe] =
3462 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3463 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3464 			r->cur_val;
3465 	}
3466 }
3467 
3468 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3469  * case both are at the same level. Prefer r1 in case they're the same. */
3470 static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private * dev_priv,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3471 ilk_find_best_result(struct drm_i915_private *dev_priv,
3472 		     struct intel_pipe_wm *r1,
3473 		     struct intel_pipe_wm *r2)
3474 {
3475 	int level, max_level = ilk_wm_max_level(dev_priv);
3476 	int level1 = 0, level2 = 0;
3477 
3478 	for (level = 1; level <= max_level; level++) {
3479 		if (r1->wm[level].enable)
3480 			level1 = level;
3481 		if (r2->wm[level].enable)
3482 			level2 = level;
3483 	}
3484 
3485 	if (level1 == level2) {
3486 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3487 			return r2;
3488 		else
3489 			return r1;
3490 	} else if (level1 > level2) {
3491 		return r1;
3492 	} else {
3493 		return r2;
3494 	}
3495 }
3496 
3497 /* dirty bits used to track which watermarks need changes */
3498 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3499 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3500 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3501 #define WM_DIRTY_FBC (1 << 24)
3502 #define WM_DIRTY_DDB (1 << 25)
3503 
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3504 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3505 					 const struct ilk_wm_values *old,
3506 					 const struct ilk_wm_values *new)
3507 {
3508 	unsigned int dirty = 0;
3509 	enum pipe pipe;
3510 	int wm_lp;
3511 
3512 	for_each_pipe(dev_priv, pipe) {
3513 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3514 			dirty |= WM_DIRTY_PIPE(pipe);
3515 			/* Must disable LP1+ watermarks too */
3516 			dirty |= WM_DIRTY_LP_ALL;
3517 		}
3518 	}
3519 
3520 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3521 		dirty |= WM_DIRTY_FBC;
3522 		/* Must disable LP1+ watermarks too */
3523 		dirty |= WM_DIRTY_LP_ALL;
3524 	}
3525 
3526 	if (old->partitioning != new->partitioning) {
3527 		dirty |= WM_DIRTY_DDB;
3528 		/* Must disable LP1+ watermarks too */
3529 		dirty |= WM_DIRTY_LP_ALL;
3530 	}
3531 
3532 	/* LP1+ watermarks already deemed dirty, no need to continue */
3533 	if (dirty & WM_DIRTY_LP_ALL)
3534 		return dirty;
3535 
3536 	/* Find the lowest numbered LP1+ watermark in need of an update... */
3537 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3538 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3539 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3540 			break;
3541 	}
3542 
3543 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3544 	for (; wm_lp <= 3; wm_lp++)
3545 		dirty |= WM_DIRTY_LP(wm_lp);
3546 
3547 	return dirty;
3548 }
3549 
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3550 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3551 			       unsigned int dirty)
3552 {
3553 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3554 	bool changed = false;
3555 
3556 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3557 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3558 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3559 		changed = true;
3560 	}
3561 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3562 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3563 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3564 		changed = true;
3565 	}
3566 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3567 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3568 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3569 		changed = true;
3570 	}
3571 
3572 	/*
3573 	 * Don't touch WM1S_LP_EN here.
3574 	 * Doing so could cause underruns.
3575 	 */
3576 
3577 	return changed;
3578 }
3579 
3580 /*
3581  * The spec says we shouldn't write when we don't need, because every write
3582  * causes WMs to be re-evaluated, expending some power.
3583  */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3584 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3585 				struct ilk_wm_values *results)
3586 {
3587 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3588 	unsigned int dirty;
3589 	u32 val;
3590 
3591 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3592 	if (!dirty)
3593 		return;
3594 
3595 	_ilk_disable_lp_wm(dev_priv, dirty);
3596 
3597 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3598 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3599 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3600 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3601 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3602 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3603 
3604 	if (dirty & WM_DIRTY_DDB) {
3605 		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3606 			val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
3607 			if (results->partitioning == INTEL_DDB_PART_1_2)
3608 				val &= ~WM_MISC_DATA_PARTITION_5_6;
3609 			else
3610 				val |= WM_MISC_DATA_PARTITION_5_6;
3611 			intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
3612 		} else {
3613 			val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
3614 			if (results->partitioning == INTEL_DDB_PART_1_2)
3615 				val &= ~DISP_DATA_PARTITION_5_6;
3616 			else
3617 				val |= DISP_DATA_PARTITION_5_6;
3618 			intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
3619 		}
3620 	}
3621 
3622 	if (dirty & WM_DIRTY_FBC) {
3623 		val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
3624 		if (results->enable_fbc_wm)
3625 			val &= ~DISP_FBC_WM_DIS;
3626 		else
3627 			val |= DISP_FBC_WM_DIS;
3628 		intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
3629 	}
3630 
3631 	if (dirty & WM_DIRTY_LP(1) &&
3632 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3633 		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3634 
3635 	if (DISPLAY_VER(dev_priv) >= 7) {
3636 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3637 			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3638 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3639 			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3640 	}
3641 
3642 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3643 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3644 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3645 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3646 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3647 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3648 
3649 	dev_priv->wm.hw = *results;
3650 }
3651 
ilk_disable_lp_wm(struct drm_i915_private * dev_priv)3652 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3653 {
3654 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3655 }
3656 
intel_enabled_dbuf_slices_mask(struct drm_i915_private * dev_priv)3657 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3658 {
3659 	u8 enabled_slices = 0;
3660 	enum dbuf_slice slice;
3661 
3662 	for_each_dbuf_slice(dev_priv, slice) {
3663 		if (intel_uncore_read(&dev_priv->uncore,
3664 				      DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
3665 			enabled_slices |= BIT(slice);
3666 	}
3667 
3668 	return enabled_slices;
3669 }
3670 
3671 /*
3672  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3673  * so assume we'll always need it in order to avoid underruns.
3674  */
skl_needs_memory_bw_wa(struct drm_i915_private * dev_priv)3675 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3676 {
3677 	return DISPLAY_VER(dev_priv) == 9;
3678 }
3679 
3680 static bool
intel_has_sagv(struct drm_i915_private * dev_priv)3681 intel_has_sagv(struct drm_i915_private *dev_priv)
3682 {
3683 	return DISPLAY_VER(dev_priv) >= 9 && !IS_LP(dev_priv) &&
3684 		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3685 }
3686 
3687 static void
skl_setup_sagv_block_time(struct drm_i915_private * dev_priv)3688 skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3689 {
3690 	if (DISPLAY_VER(dev_priv) >= 12) {
3691 		u32 val = 0;
3692 		int ret;
3693 
3694 		ret = sandybridge_pcode_read(dev_priv,
3695 					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3696 					     &val, NULL);
3697 		if (!ret) {
3698 			dev_priv->sagv_block_time_us = val;
3699 			return;
3700 		}
3701 
3702 		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3703 	} else if (DISPLAY_VER(dev_priv) == 11) {
3704 		dev_priv->sagv_block_time_us = 10;
3705 		return;
3706 	} else if (DISPLAY_VER(dev_priv) == 10) {
3707 		dev_priv->sagv_block_time_us = 20;
3708 		return;
3709 	} else if (DISPLAY_VER(dev_priv) == 9) {
3710 		dev_priv->sagv_block_time_us = 30;
3711 		return;
3712 	} else {
3713 		MISSING_CASE(DISPLAY_VER(dev_priv));
3714 	}
3715 
3716 	/* Default to an unusable block time */
3717 	dev_priv->sagv_block_time_us = -1;
3718 }
3719 
3720 /*
3721  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3722  * depending on power and performance requirements. The display engine access
3723  * to system memory is blocked during the adjustment time. Because of the
3724  * blocking time, having this enabled can cause full system hangs and/or pipe
3725  * underruns if we don't meet all of the following requirements:
3726  *
3727  *  - <= 1 pipe enabled
3728  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3729  *  - We're not using an interlaced display configuration
3730  */
3731 static int
intel_enable_sagv(struct drm_i915_private * dev_priv)3732 intel_enable_sagv(struct drm_i915_private *dev_priv)
3733 {
3734 	int ret;
3735 
3736 	if (!intel_has_sagv(dev_priv))
3737 		return 0;
3738 
3739 	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3740 		return 0;
3741 
3742 	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3743 	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3744 				      GEN9_SAGV_ENABLE);
3745 
3746 	/* We don't need to wait for SAGV when enabling */
3747 
3748 	/*
3749 	 * Some skl systems, pre-release machines in particular,
3750 	 * don't actually have SAGV.
3751 	 */
3752 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3753 		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3754 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3755 		return 0;
3756 	} else if (ret < 0) {
3757 		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3758 		return ret;
3759 	}
3760 
3761 	dev_priv->sagv_status = I915_SAGV_ENABLED;
3762 	return 0;
3763 }
3764 
3765 static int
intel_disable_sagv(struct drm_i915_private * dev_priv)3766 intel_disable_sagv(struct drm_i915_private *dev_priv)
3767 {
3768 	int ret;
3769 
3770 	if (!intel_has_sagv(dev_priv))
3771 		return 0;
3772 
3773 	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3774 		return 0;
3775 
3776 	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3777 	/* bspec says to keep retrying for at least 1 ms */
3778 	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3779 				GEN9_SAGV_DISABLE,
3780 				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3781 				1);
3782 	/*
3783 	 * Some skl systems, pre-release machines in particular,
3784 	 * don't actually have SAGV.
3785 	 */
3786 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3787 		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3788 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3789 		return 0;
3790 	} else if (ret < 0) {
3791 		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3792 		return ret;
3793 	}
3794 
3795 	dev_priv->sagv_status = I915_SAGV_DISABLED;
3796 	return 0;
3797 }
3798 
intel_sagv_pre_plane_update(struct intel_atomic_state * state)3799 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3800 {
3801 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3802 	const struct intel_bw_state *new_bw_state;
3803 	const struct intel_bw_state *old_bw_state;
3804 	u32 new_mask = 0;
3805 
3806 	/*
3807 	 * Just return if we can't control SAGV or don't have it.
3808 	 * This is different from situation when we have SAGV but just can't
3809 	 * afford it due to DBuf limitation - in case if SAGV is completely
3810 	 * disabled in a BIOS, we are not even allowed to send a PCode request,
3811 	 * as it will throw an error. So have to check it here.
3812 	 */
3813 	if (!intel_has_sagv(dev_priv))
3814 		return;
3815 
3816 	new_bw_state = intel_atomic_get_new_bw_state(state);
3817 	if (!new_bw_state)
3818 		return;
3819 
3820 	if (DISPLAY_VER(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3821 		intel_disable_sagv(dev_priv);
3822 		return;
3823 	}
3824 
3825 	old_bw_state = intel_atomic_get_old_bw_state(state);
3826 	/*
3827 	 * Nothing to mask
3828 	 */
3829 	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3830 		return;
3831 
3832 	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3833 
3834 	/*
3835 	 * If new mask is zero - means there is nothing to mask,
3836 	 * we can only unmask, which should be done in unmask.
3837 	 */
3838 	if (!new_mask)
3839 		return;
3840 
3841 	/*
3842 	 * Restrict required qgv points before updating the configuration.
3843 	 * According to BSpec we can't mask and unmask qgv points at the same
3844 	 * time. Also masking should be done before updating the configuration
3845 	 * and unmasking afterwards.
3846 	 */
3847 	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3848 }
3849 
intel_sagv_post_plane_update(struct intel_atomic_state * state)3850 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3851 {
3852 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3853 	const struct intel_bw_state *new_bw_state;
3854 	const struct intel_bw_state *old_bw_state;
3855 	u32 new_mask = 0;
3856 
3857 	/*
3858 	 * Just return if we can't control SAGV or don't have it.
3859 	 * This is different from situation when we have SAGV but just can't
3860 	 * afford it due to DBuf limitation - in case if SAGV is completely
3861 	 * disabled in a BIOS, we are not even allowed to send a PCode request,
3862 	 * as it will throw an error. So have to check it here.
3863 	 */
3864 	if (!intel_has_sagv(dev_priv))
3865 		return;
3866 
3867 	new_bw_state = intel_atomic_get_new_bw_state(state);
3868 	if (!new_bw_state)
3869 		return;
3870 
3871 	if (DISPLAY_VER(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3872 		intel_enable_sagv(dev_priv);
3873 		return;
3874 	}
3875 
3876 	old_bw_state = intel_atomic_get_old_bw_state(state);
3877 	/*
3878 	 * Nothing to unmask
3879 	 */
3880 	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3881 		return;
3882 
3883 	new_mask = new_bw_state->qgv_points_mask;
3884 
3885 	/*
3886 	 * Allow required qgv points after updating the configuration.
3887 	 * According to BSpec we can't mask and unmask qgv points at the same
3888 	 * time. Also masking should be done before updating the configuration
3889 	 * and unmasking afterwards.
3890 	 */
3891 	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3892 }
3893 
skl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3894 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3895 {
3896 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3897 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3898 	enum plane_id plane_id;
3899 	int max_level = INT_MAX;
3900 
3901 	if (!intel_has_sagv(dev_priv))
3902 		return false;
3903 
3904 	if (!crtc_state->hw.active)
3905 		return true;
3906 
3907 	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
3908 		return false;
3909 
3910 	for_each_plane_id_on_crtc(crtc, plane_id) {
3911 		const struct skl_plane_wm *wm =
3912 			&crtc_state->wm.skl.optimal.planes[plane_id];
3913 		int level;
3914 
3915 		/* Skip this plane if it's not enabled */
3916 		if (!wm->wm[0].enable)
3917 			continue;
3918 
3919 		/* Find the highest enabled wm level for this plane */
3920 		for (level = ilk_wm_max_level(dev_priv);
3921 		     !wm->wm[level].enable; --level)
3922 		     { }
3923 
3924 		/* Highest common enabled wm level for all planes */
3925 		max_level = min(level, max_level);
3926 	}
3927 
3928 	/* No enabled planes? */
3929 	if (max_level == INT_MAX)
3930 		return true;
3931 
3932 	for_each_plane_id_on_crtc(crtc, plane_id) {
3933 		const struct skl_plane_wm *wm =
3934 			&crtc_state->wm.skl.optimal.planes[plane_id];
3935 
3936 		/*
3937 		 * All enabled planes must have enabled a common wm level that
3938 		 * can tolerate memory latencies higher than sagv_block_time_us
3939 		 */
3940 		if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
3941 			return false;
3942 	}
3943 
3944 	return true;
3945 }
3946 
tgl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3947 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3948 {
3949 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3950 	enum plane_id plane_id;
3951 
3952 	if (!crtc_state->hw.active)
3953 		return true;
3954 
3955 	for_each_plane_id_on_crtc(crtc, plane_id) {
3956 		const struct skl_plane_wm *wm =
3957 			&crtc_state->wm.skl.optimal.planes[plane_id];
3958 
3959 		if (wm->wm[0].enable && !wm->sagv.wm0.enable)
3960 			return false;
3961 	}
3962 
3963 	return true;
3964 }
3965 
intel_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3966 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3967 {
3968 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3969 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3970 
3971 	if (DISPLAY_VER(dev_priv) >= 12)
3972 		return tgl_crtc_can_enable_sagv(crtc_state);
3973 	else
3974 		return skl_crtc_can_enable_sagv(crtc_state);
3975 }
3976 
intel_can_enable_sagv(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)3977 bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
3978 			   const struct intel_bw_state *bw_state)
3979 {
3980 	if (DISPLAY_VER(dev_priv) < 11 &&
3981 	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3982 		return false;
3983 
3984 	return bw_state->pipe_sagv_reject == 0;
3985 }
3986 
intel_compute_sagv_mask(struct intel_atomic_state * state)3987 static int intel_compute_sagv_mask(struct intel_atomic_state *state)
3988 {
3989 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3990 	int ret;
3991 	struct intel_crtc *crtc;
3992 	struct intel_crtc_state *new_crtc_state;
3993 	struct intel_bw_state *new_bw_state = NULL;
3994 	const struct intel_bw_state *old_bw_state = NULL;
3995 	int i;
3996 
3997 	for_each_new_intel_crtc_in_state(state, crtc,
3998 					 new_crtc_state, i) {
3999 		new_bw_state = intel_atomic_get_bw_state(state);
4000 		if (IS_ERR(new_bw_state))
4001 			return PTR_ERR(new_bw_state);
4002 
4003 		old_bw_state = intel_atomic_get_old_bw_state(state);
4004 
4005 		if (intel_crtc_can_enable_sagv(new_crtc_state))
4006 			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
4007 		else
4008 			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
4009 	}
4010 
4011 	if (!new_bw_state)
4012 		return 0;
4013 
4014 	new_bw_state->active_pipes =
4015 		intel_calc_active_pipes(state, old_bw_state->active_pipes);
4016 
4017 	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
4018 		ret = intel_atomic_lock_global_state(&new_bw_state->base);
4019 		if (ret)
4020 			return ret;
4021 	}
4022 
4023 	for_each_new_intel_crtc_in_state(state, crtc,
4024 					 new_crtc_state, i) {
4025 		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
4026 
4027 		/*
4028 		 * We store use_sagv_wm in the crtc state rather than relying on
4029 		 * that bw state since we have no convenient way to get at the
4030 		 * latter from the plane commit hooks (especially in the legacy
4031 		 * cursor case)
4032 		 */
4033 		pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(dev_priv) &&
4034 			DISPLAY_VER(dev_priv) >= 12 &&
4035 			intel_can_enable_sagv(dev_priv, new_bw_state);
4036 	}
4037 
4038 	if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
4039 	    intel_can_enable_sagv(dev_priv, old_bw_state)) {
4040 		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
4041 		if (ret)
4042 			return ret;
4043 	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
4044 		ret = intel_atomic_lock_global_state(&new_bw_state->base);
4045 		if (ret)
4046 			return ret;
4047 	}
4048 
4049 	return 0;
4050 }
4051 
intel_dbuf_slice_size(struct drm_i915_private * dev_priv)4052 static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv)
4053 {
4054 	return INTEL_INFO(dev_priv)->dbuf.size /
4055 		hweight8(INTEL_INFO(dev_priv)->dbuf.slice_mask);
4056 }
4057 
4058 static void
skl_ddb_entry_for_slices(struct drm_i915_private * dev_priv,u8 slice_mask,struct skl_ddb_entry * ddb)4059 skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask,
4060 			 struct skl_ddb_entry *ddb)
4061 {
4062 	int slice_size = intel_dbuf_slice_size(dev_priv);
4063 
4064 	if (!slice_mask) {
4065 		ddb->start = 0;
4066 		ddb->end = 0;
4067 		return;
4068 	}
4069 
4070 	ddb->start = (ffs(slice_mask) - 1) * slice_size;
4071 	ddb->end = fls(slice_mask) * slice_size;
4072 
4073 	WARN_ON(ddb->start >= ddb->end);
4074 	WARN_ON(ddb->end > INTEL_INFO(dev_priv)->dbuf.size);
4075 }
4076 
mbus_ddb_offset(struct drm_i915_private * i915,u8 slice_mask)4077 static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
4078 {
4079 	struct skl_ddb_entry ddb;
4080 
4081 	if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
4082 		slice_mask = BIT(DBUF_S1);
4083 	else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
4084 		slice_mask = BIT(DBUF_S3);
4085 
4086 	skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
4087 
4088 	return ddb.start;
4089 }
4090 
skl_ddb_dbuf_slice_mask(struct drm_i915_private * dev_priv,const struct skl_ddb_entry * entry)4091 u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
4092 			    const struct skl_ddb_entry *entry)
4093 {
4094 	int slice_size = intel_dbuf_slice_size(dev_priv);
4095 	enum dbuf_slice start_slice, end_slice;
4096 	u8 slice_mask = 0;
4097 
4098 	if (!skl_ddb_entry_size(entry))
4099 		return 0;
4100 
4101 	start_slice = entry->start / slice_size;
4102 	end_slice = (entry->end - 1) / slice_size;
4103 
4104 	/*
4105 	 * Per plane DDB entry can in a really worst case be on multiple slices
4106 	 * but single entry is anyway contigious.
4107 	 */
4108 	while (start_slice <= end_slice) {
4109 		slice_mask |= BIT(start_slice);
4110 		start_slice++;
4111 	}
4112 
4113 	return slice_mask;
4114 }
4115 
intel_crtc_ddb_weight(const struct intel_crtc_state * crtc_state)4116 static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
4117 {
4118 	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
4119 	int hdisplay, vdisplay;
4120 
4121 	if (!crtc_state->hw.active)
4122 		return 0;
4123 
4124 	/*
4125 	 * Watermark/ddb requirement highly depends upon width of the
4126 	 * framebuffer, So instead of allocating DDB equally among pipes
4127 	 * distribute DDB based on resolution/width of the display.
4128 	 */
4129 	drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
4130 
4131 	return hdisplay;
4132 }
4133 
intel_crtc_dbuf_weights(const struct intel_dbuf_state * dbuf_state,enum pipe for_pipe,unsigned int * weight_start,unsigned int * weight_end,unsigned int * weight_total)4134 static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
4135 				    enum pipe for_pipe,
4136 				    unsigned int *weight_start,
4137 				    unsigned int *weight_end,
4138 				    unsigned int *weight_total)
4139 {
4140 	struct drm_i915_private *dev_priv =
4141 		to_i915(dbuf_state->base.state->base.dev);
4142 	enum pipe pipe;
4143 
4144 	*weight_start = 0;
4145 	*weight_end = 0;
4146 	*weight_total = 0;
4147 
4148 	for_each_pipe(dev_priv, pipe) {
4149 		int weight = dbuf_state->weight[pipe];
4150 
4151 		/*
4152 		 * Do not account pipes using other slice sets
4153 		 * luckily as of current BSpec slice sets do not partially
4154 		 * intersect(pipes share either same one slice or same slice set
4155 		 * i.e no partial intersection), so it is enough to check for
4156 		 * equality for now.
4157 		 */
4158 		if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
4159 			continue;
4160 
4161 		*weight_total += weight;
4162 		if (pipe < for_pipe) {
4163 			*weight_start += weight;
4164 			*weight_end += weight;
4165 		} else if (pipe == for_pipe) {
4166 			*weight_end += weight;
4167 		}
4168 	}
4169 }
4170 
4171 static int
skl_crtc_allocate_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)4172 skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
4173 {
4174 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4175 	unsigned int weight_total, weight_start, weight_end;
4176 	const struct intel_dbuf_state *old_dbuf_state =
4177 		intel_atomic_get_old_dbuf_state(state);
4178 	struct intel_dbuf_state *new_dbuf_state =
4179 		intel_atomic_get_new_dbuf_state(state);
4180 	struct intel_crtc_state *crtc_state;
4181 	struct skl_ddb_entry ddb_slices;
4182 	enum pipe pipe = crtc->pipe;
4183 	unsigned int mbus_offset = 0;
4184 	u32 ddb_range_size;
4185 	u32 dbuf_slice_mask;
4186 	u32 start, end;
4187 	int ret;
4188 
4189 	if (new_dbuf_state->weight[pipe] == 0) {
4190 		new_dbuf_state->ddb[pipe].start = 0;
4191 		new_dbuf_state->ddb[pipe].end = 0;
4192 		goto out;
4193 	}
4194 
4195 	dbuf_slice_mask = new_dbuf_state->slices[pipe];
4196 
4197 	skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices);
4198 	mbus_offset = mbus_ddb_offset(dev_priv, dbuf_slice_mask);
4199 	ddb_range_size = skl_ddb_entry_size(&ddb_slices);
4200 
4201 	intel_crtc_dbuf_weights(new_dbuf_state, pipe,
4202 				&weight_start, &weight_end, &weight_total);
4203 
4204 	start = ddb_range_size * weight_start / weight_total;
4205 	end = ddb_range_size * weight_end / weight_total;
4206 
4207 	new_dbuf_state->ddb[pipe].start = ddb_slices.start - mbus_offset + start;
4208 	new_dbuf_state->ddb[pipe].end = ddb_slices.start - mbus_offset + end;
4209 out:
4210 	if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
4211 	    skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
4212 				&new_dbuf_state->ddb[pipe]))
4213 		return 0;
4214 
4215 	ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
4216 	if (ret)
4217 		return ret;
4218 
4219 	crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
4220 	if (IS_ERR(crtc_state))
4221 		return PTR_ERR(crtc_state);
4222 
4223 	/*
4224 	 * Used for checking overlaps, so we need absolute
4225 	 * offsets instead of MBUS relative offsets.
4226 	 */
4227 	crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
4228 	crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
4229 
4230 	drm_dbg_kms(&dev_priv->drm,
4231 		    "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
4232 		    crtc->base.base.id, crtc->base.name,
4233 		    old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
4234 		    old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
4235 		    new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
4236 		    old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
4237 
4238 	return 0;
4239 }
4240 
4241 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4242 				 int width, const struct drm_format_info *format,
4243 				 u64 modifier, unsigned int rotation,
4244 				 u32 plane_pixel_rate, struct skl_wm_params *wp,
4245 				 int color_plane);
4246 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4247 				 int level,
4248 				 unsigned int latency,
4249 				 const struct skl_wm_params *wp,
4250 				 const struct skl_wm_level *result_prev,
4251 				 struct skl_wm_level *result /* out */);
4252 
4253 static unsigned int
skl_cursor_allocation(const struct intel_crtc_state * crtc_state,int num_active)4254 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4255 		      int num_active)
4256 {
4257 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4258 	int level, max_level = ilk_wm_max_level(dev_priv);
4259 	struct skl_wm_level wm = {};
4260 	int ret, min_ddb_alloc = 0;
4261 	struct skl_wm_params wp;
4262 
4263 	ret = skl_compute_wm_params(crtc_state, 256,
4264 				    drm_format_info(DRM_FORMAT_ARGB8888),
4265 				    DRM_FORMAT_MOD_LINEAR,
4266 				    DRM_MODE_ROTATE_0,
4267 				    crtc_state->pixel_rate, &wp, 0);
4268 	drm_WARN_ON(&dev_priv->drm, ret);
4269 
4270 	for (level = 0; level <= max_level; level++) {
4271 		unsigned int latency = dev_priv->wm.skl_latency[level];
4272 
4273 		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4274 		if (wm.min_ddb_alloc == U16_MAX)
4275 			break;
4276 
4277 		min_ddb_alloc = wm.min_ddb_alloc;
4278 	}
4279 
4280 	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4281 }
4282 
skl_ddb_entry_init_from_hw(struct drm_i915_private * dev_priv,struct skl_ddb_entry * entry,u32 reg)4283 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4284 				       struct skl_ddb_entry *entry, u32 reg)
4285 {
4286 	entry->start = reg & DDB_ENTRY_MASK;
4287 	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4288 
4289 	if (entry->end)
4290 		entry->end += 1;
4291 }
4292 
4293 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * dev_priv,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_entry * ddb_y,struct skl_ddb_entry * ddb_uv)4294 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4295 			   const enum pipe pipe,
4296 			   const enum plane_id plane_id,
4297 			   struct skl_ddb_entry *ddb_y,
4298 			   struct skl_ddb_entry *ddb_uv)
4299 {
4300 	u32 val, val2;
4301 	u32 fourcc = 0;
4302 
4303 	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
4304 	if (plane_id == PLANE_CURSOR) {
4305 		val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
4306 		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4307 		return;
4308 	}
4309 
4310 	val = intel_uncore_read(&dev_priv->uncore, PLANE_CTL(pipe, plane_id));
4311 
4312 	/* No DDB allocated for disabled planes */
4313 	if (val & PLANE_CTL_ENABLE)
4314 		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4315 					      val & PLANE_CTL_ORDER_RGBX,
4316 					      val & PLANE_CTL_ALPHA_MASK);
4317 
4318 	if (DISPLAY_VER(dev_priv) >= 11) {
4319 		val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4320 		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4321 	} else {
4322 		val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4323 		val2 = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
4324 
4325 		if (fourcc &&
4326 		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4327 			swap(val, val2);
4328 
4329 		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4330 		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4331 	}
4332 }
4333 
skl_pipe_ddb_get_hw_state(struct intel_crtc * crtc,struct skl_ddb_entry * ddb_y,struct skl_ddb_entry * ddb_uv)4334 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4335 			       struct skl_ddb_entry *ddb_y,
4336 			       struct skl_ddb_entry *ddb_uv)
4337 {
4338 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4339 	enum intel_display_power_domain power_domain;
4340 	enum pipe pipe = crtc->pipe;
4341 	intel_wakeref_t wakeref;
4342 	enum plane_id plane_id;
4343 
4344 	power_domain = POWER_DOMAIN_PIPE(pipe);
4345 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4346 	if (!wakeref)
4347 		return;
4348 
4349 	for_each_plane_id_on_crtc(crtc, plane_id)
4350 		skl_ddb_get_hw_plane_state(dev_priv, pipe,
4351 					   plane_id,
4352 					   &ddb_y[plane_id],
4353 					   &ddb_uv[plane_id]);
4354 
4355 	intel_display_power_put(dev_priv, power_domain, wakeref);
4356 }
4357 
4358 /*
4359  * Determines the downscale amount of a plane for the purposes of watermark calculations.
4360  * The bspec defines downscale amount as:
4361  *
4362  * """
4363  * Horizontal down scale amount = maximum[1, Horizontal source size /
4364  *                                           Horizontal destination size]
4365  * Vertical down scale amount = maximum[1, Vertical source size /
4366  *                                         Vertical destination size]
4367  * Total down scale amount = Horizontal down scale amount *
4368  *                           Vertical down scale amount
4369  * """
4370  *
4371  * Return value is provided in 16.16 fixed point form to retain fractional part.
4372  * Caller should take care of dividing & rounding off the value.
4373  */
4374 static uint_fixed_16_16_t
skl_plane_downscale_amount(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4375 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4376 			   const struct intel_plane_state *plane_state)
4377 {
4378 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4379 	u32 src_w, src_h, dst_w, dst_h;
4380 	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4381 	uint_fixed_16_16_t downscale_h, downscale_w;
4382 
4383 	if (drm_WARN_ON(&dev_priv->drm,
4384 			!intel_wm_plane_visible(crtc_state, plane_state)))
4385 		return u32_to_fixed16(0);
4386 
4387 	/*
4388 	 * Src coordinates are already rotated by 270 degrees for
4389 	 * the 90/270 degree plane rotation cases (to match the
4390 	 * GTT mapping), hence no need to account for rotation here.
4391 	 *
4392 	 * n.b., src is 16.16 fixed point, dst is whole integer.
4393 	 */
4394 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4395 	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4396 	dst_w = drm_rect_width(&plane_state->uapi.dst);
4397 	dst_h = drm_rect_height(&plane_state->uapi.dst);
4398 
4399 	fp_w_ratio = div_fixed16(src_w, dst_w);
4400 	fp_h_ratio = div_fixed16(src_h, dst_h);
4401 	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4402 	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4403 
4404 	return mul_fixed16(downscale_w, downscale_h);
4405 }
4406 
4407 struct dbuf_slice_conf_entry {
4408 	u8 active_pipes;
4409 	u8 dbuf_mask[I915_MAX_PIPES];
4410 	bool join_mbus;
4411 };
4412 
4413 /*
4414  * Table taken from Bspec 12716
4415  * Pipes do have some preferred DBuf slice affinity,
4416  * plus there are some hardcoded requirements on how
4417  * those should be distributed for multipipe scenarios.
4418  * For more DBuf slices algorithm can get even more messy
4419  * and less readable, so decided to use a table almost
4420  * as is from BSpec itself - that way it is at least easier
4421  * to compare, change and check.
4422  */
4423 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4424 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4425 {
4426 	{
4427 		.active_pipes = BIT(PIPE_A),
4428 		.dbuf_mask = {
4429 			[PIPE_A] = BIT(DBUF_S1),
4430 		},
4431 	},
4432 	{
4433 		.active_pipes = BIT(PIPE_B),
4434 		.dbuf_mask = {
4435 			[PIPE_B] = BIT(DBUF_S1),
4436 		},
4437 	},
4438 	{
4439 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4440 		.dbuf_mask = {
4441 			[PIPE_A] = BIT(DBUF_S1),
4442 			[PIPE_B] = BIT(DBUF_S2),
4443 		},
4444 	},
4445 	{
4446 		.active_pipes = BIT(PIPE_C),
4447 		.dbuf_mask = {
4448 			[PIPE_C] = BIT(DBUF_S2),
4449 		},
4450 	},
4451 	{
4452 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4453 		.dbuf_mask = {
4454 			[PIPE_A] = BIT(DBUF_S1),
4455 			[PIPE_C] = BIT(DBUF_S2),
4456 		},
4457 	},
4458 	{
4459 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4460 		.dbuf_mask = {
4461 			[PIPE_B] = BIT(DBUF_S1),
4462 			[PIPE_C] = BIT(DBUF_S2),
4463 		},
4464 	},
4465 	{
4466 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4467 		.dbuf_mask = {
4468 			[PIPE_A] = BIT(DBUF_S1),
4469 			[PIPE_B] = BIT(DBUF_S1),
4470 			[PIPE_C] = BIT(DBUF_S2),
4471 		},
4472 	},
4473 	{}
4474 };
4475 
4476 /*
4477  * Table taken from Bspec 49255
4478  * Pipes do have some preferred DBuf slice affinity,
4479  * plus there are some hardcoded requirements on how
4480  * those should be distributed for multipipe scenarios.
4481  * For more DBuf slices algorithm can get even more messy
4482  * and less readable, so decided to use a table almost
4483  * as is from BSpec itself - that way it is at least easier
4484  * to compare, change and check.
4485  */
4486 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4487 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4488 {
4489 	{
4490 		.active_pipes = BIT(PIPE_A),
4491 		.dbuf_mask = {
4492 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4493 		},
4494 	},
4495 	{
4496 		.active_pipes = BIT(PIPE_B),
4497 		.dbuf_mask = {
4498 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4499 		},
4500 	},
4501 	{
4502 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4503 		.dbuf_mask = {
4504 			[PIPE_A] = BIT(DBUF_S2),
4505 			[PIPE_B] = BIT(DBUF_S1),
4506 		},
4507 	},
4508 	{
4509 		.active_pipes = BIT(PIPE_C),
4510 		.dbuf_mask = {
4511 			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4512 		},
4513 	},
4514 	{
4515 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4516 		.dbuf_mask = {
4517 			[PIPE_A] = BIT(DBUF_S1),
4518 			[PIPE_C] = BIT(DBUF_S2),
4519 		},
4520 	},
4521 	{
4522 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4523 		.dbuf_mask = {
4524 			[PIPE_B] = BIT(DBUF_S1),
4525 			[PIPE_C] = BIT(DBUF_S2),
4526 		},
4527 	},
4528 	{
4529 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4530 		.dbuf_mask = {
4531 			[PIPE_A] = BIT(DBUF_S1),
4532 			[PIPE_B] = BIT(DBUF_S1),
4533 			[PIPE_C] = BIT(DBUF_S2),
4534 		},
4535 	},
4536 	{
4537 		.active_pipes = BIT(PIPE_D),
4538 		.dbuf_mask = {
4539 			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4540 		},
4541 	},
4542 	{
4543 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4544 		.dbuf_mask = {
4545 			[PIPE_A] = BIT(DBUF_S1),
4546 			[PIPE_D] = BIT(DBUF_S2),
4547 		},
4548 	},
4549 	{
4550 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4551 		.dbuf_mask = {
4552 			[PIPE_B] = BIT(DBUF_S1),
4553 			[PIPE_D] = BIT(DBUF_S2),
4554 		},
4555 	},
4556 	{
4557 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4558 		.dbuf_mask = {
4559 			[PIPE_A] = BIT(DBUF_S1),
4560 			[PIPE_B] = BIT(DBUF_S1),
4561 			[PIPE_D] = BIT(DBUF_S2),
4562 		},
4563 	},
4564 	{
4565 		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4566 		.dbuf_mask = {
4567 			[PIPE_C] = BIT(DBUF_S1),
4568 			[PIPE_D] = BIT(DBUF_S2),
4569 		},
4570 	},
4571 	{
4572 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4573 		.dbuf_mask = {
4574 			[PIPE_A] = BIT(DBUF_S1),
4575 			[PIPE_C] = BIT(DBUF_S2),
4576 			[PIPE_D] = BIT(DBUF_S2),
4577 		},
4578 	},
4579 	{
4580 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4581 		.dbuf_mask = {
4582 			[PIPE_B] = BIT(DBUF_S1),
4583 			[PIPE_C] = BIT(DBUF_S2),
4584 			[PIPE_D] = BIT(DBUF_S2),
4585 		},
4586 	},
4587 	{
4588 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4589 		.dbuf_mask = {
4590 			[PIPE_A] = BIT(DBUF_S1),
4591 			[PIPE_B] = BIT(DBUF_S1),
4592 			[PIPE_C] = BIT(DBUF_S2),
4593 			[PIPE_D] = BIT(DBUF_S2),
4594 		},
4595 	},
4596 	{}
4597 };
4598 
4599 static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
4600 	{
4601 		.active_pipes = BIT(PIPE_A),
4602 		.dbuf_mask = {
4603 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4604 		},
4605 	},
4606 	{
4607 		.active_pipes = BIT(PIPE_B),
4608 		.dbuf_mask = {
4609 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4610 		},
4611 	},
4612 	{
4613 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4614 		.dbuf_mask = {
4615 			[PIPE_A] = BIT(DBUF_S1),
4616 			[PIPE_B] = BIT(DBUF_S2),
4617 		},
4618 	},
4619 	{
4620 		.active_pipes = BIT(PIPE_C),
4621 		.dbuf_mask = {
4622 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4623 		},
4624 	},
4625 	{
4626 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4627 		.dbuf_mask = {
4628 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4629 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4630 		},
4631 	},
4632 	{
4633 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4634 		.dbuf_mask = {
4635 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4636 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4637 		},
4638 	},
4639 	{
4640 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4641 		.dbuf_mask = {
4642 			[PIPE_A] = BIT(DBUF_S1),
4643 			[PIPE_B] = BIT(DBUF_S2),
4644 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4645 		},
4646 	},
4647 	{
4648 		.active_pipes = BIT(PIPE_D),
4649 		.dbuf_mask = {
4650 			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4651 		},
4652 	},
4653 	{
4654 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4655 		.dbuf_mask = {
4656 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4657 			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4658 		},
4659 	},
4660 	{
4661 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4662 		.dbuf_mask = {
4663 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4664 			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4665 		},
4666 	},
4667 	{
4668 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4669 		.dbuf_mask = {
4670 			[PIPE_A] = BIT(DBUF_S1),
4671 			[PIPE_B] = BIT(DBUF_S2),
4672 			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4673 		},
4674 	},
4675 	{
4676 		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4677 		.dbuf_mask = {
4678 			[PIPE_C] = BIT(DBUF_S3),
4679 			[PIPE_D] = BIT(DBUF_S4),
4680 		},
4681 	},
4682 	{
4683 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4684 		.dbuf_mask = {
4685 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4686 			[PIPE_C] = BIT(DBUF_S3),
4687 			[PIPE_D] = BIT(DBUF_S4),
4688 		},
4689 	},
4690 	{
4691 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4692 		.dbuf_mask = {
4693 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4694 			[PIPE_C] = BIT(DBUF_S3),
4695 			[PIPE_D] = BIT(DBUF_S4),
4696 		},
4697 	},
4698 	{
4699 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4700 		.dbuf_mask = {
4701 			[PIPE_A] = BIT(DBUF_S1),
4702 			[PIPE_B] = BIT(DBUF_S2),
4703 			[PIPE_C] = BIT(DBUF_S3),
4704 			[PIPE_D] = BIT(DBUF_S4),
4705 		},
4706 	},
4707 	{}
4708 };
4709 
4710 static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
4711 	{
4712 		.active_pipes = BIT(PIPE_A),
4713 		.dbuf_mask = {
4714 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4715 		},
4716 		.join_mbus = true,
4717 	},
4718 	{
4719 		.active_pipes = BIT(PIPE_B),
4720 		.dbuf_mask = {
4721 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4722 		},
4723 		.join_mbus = true,
4724 	},
4725 	{
4726 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4727 		.dbuf_mask = {
4728 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4729 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4730 		},
4731 	},
4732 	{
4733 		.active_pipes = BIT(PIPE_C),
4734 		.dbuf_mask = {
4735 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4736 		},
4737 	},
4738 	{
4739 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4740 		.dbuf_mask = {
4741 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4742 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4743 		},
4744 	},
4745 	{
4746 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4747 		.dbuf_mask = {
4748 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4749 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4750 		},
4751 	},
4752 	{
4753 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4754 		.dbuf_mask = {
4755 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4756 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4757 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4758 		},
4759 	},
4760 	{
4761 		.active_pipes = BIT(PIPE_D),
4762 		.dbuf_mask = {
4763 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4764 		},
4765 	},
4766 	{
4767 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4768 		.dbuf_mask = {
4769 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4770 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4771 		},
4772 	},
4773 	{
4774 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4775 		.dbuf_mask = {
4776 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4777 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4778 		},
4779 	},
4780 	{
4781 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4782 		.dbuf_mask = {
4783 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4784 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4785 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4786 		},
4787 	},
4788 	{
4789 		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4790 		.dbuf_mask = {
4791 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4792 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4793 		},
4794 	},
4795 	{
4796 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4797 		.dbuf_mask = {
4798 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4799 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4800 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4801 		},
4802 	},
4803 	{
4804 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4805 		.dbuf_mask = {
4806 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4807 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4808 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4809 		},
4810 	},
4811 	{
4812 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4813 		.dbuf_mask = {
4814 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4815 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4816 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4817 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4818 		},
4819 	},
4820 	{}
4821 
4822 };
4823 
check_mbus_joined(u8 active_pipes,const struct dbuf_slice_conf_entry * dbuf_slices)4824 static bool check_mbus_joined(u8 active_pipes,
4825 			      const struct dbuf_slice_conf_entry *dbuf_slices)
4826 {
4827 	int i;
4828 
4829 	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4830 		if (dbuf_slices[i].active_pipes == active_pipes)
4831 			return dbuf_slices[i].join_mbus;
4832 	}
4833 	return false;
4834 }
4835 
adlp_check_mbus_joined(u8 active_pipes)4836 static bool adlp_check_mbus_joined(u8 active_pipes)
4837 {
4838 	return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
4839 }
4840 
compute_dbuf_slices(enum pipe pipe,u8 active_pipes,const struct dbuf_slice_conf_entry * dbuf_slices)4841 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4842 			      const struct dbuf_slice_conf_entry *dbuf_slices)
4843 {
4844 	int i;
4845 
4846 	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4847 		if (dbuf_slices[i].active_pipes == active_pipes)
4848 			return dbuf_slices[i].dbuf_mask[pipe];
4849 	}
4850 	return 0;
4851 }
4852 
4853 /*
4854  * This function finds an entry with same enabled pipe configuration and
4855  * returns correspondent DBuf slice mask as stated in BSpec for particular
4856  * platform.
4857  */
icl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes)4858 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4859 {
4860 	/*
4861 	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4862 	 * required calculating "pipe ratio" in order to determine
4863 	 * if one or two slices can be used for single pipe configurations
4864 	 * as additional constraint to the existing table.
4865 	 * However based on recent info, it should be not "pipe ratio"
4866 	 * but rather ratio between pixel_rate and cdclk with additional
4867 	 * constants, so for now we are using only table until this is
4868 	 * clarified. Also this is the reason why crtc_state param is
4869 	 * still here - we will need it once those additional constraints
4870 	 * pop up.
4871 	 */
4872 	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4873 }
4874 
tgl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes)4875 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4876 {
4877 	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4878 }
4879 
adlp_compute_dbuf_slices(enum pipe pipe,u32 active_pipes)4880 static u32 adlp_compute_dbuf_slices(enum pipe pipe, u32 active_pipes)
4881 {
4882 	return compute_dbuf_slices(pipe, active_pipes, adlp_allowed_dbufs);
4883 }
4884 
dg2_compute_dbuf_slices(enum pipe pipe,u32 active_pipes)4885 static u32 dg2_compute_dbuf_slices(enum pipe pipe, u32 active_pipes)
4886 {
4887 	return compute_dbuf_slices(pipe, active_pipes, dg2_allowed_dbufs);
4888 }
4889 
skl_compute_dbuf_slices(struct intel_crtc * crtc,u8 active_pipes)4890 static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes)
4891 {
4892 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4893 	enum pipe pipe = crtc->pipe;
4894 
4895 	if (IS_DG2(dev_priv))
4896 		return dg2_compute_dbuf_slices(pipe, active_pipes);
4897 	else if (IS_ALDERLAKE_P(dev_priv))
4898 		return adlp_compute_dbuf_slices(pipe, active_pipes);
4899 	else if (DISPLAY_VER(dev_priv) == 12)
4900 		return tgl_compute_dbuf_slices(pipe, active_pipes);
4901 	else if (DISPLAY_VER(dev_priv) == 11)
4902 		return icl_compute_dbuf_slices(pipe, active_pipes);
4903 	/*
4904 	 * For anything else just return one slice yet.
4905 	 * Should be extended for other platforms.
4906 	 */
4907 	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4908 }
4909 
4910 static u64
skl_plane_relative_data_rate(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int color_plane)4911 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4912 			     const struct intel_plane_state *plane_state,
4913 			     int color_plane)
4914 {
4915 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4916 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4917 	u32 data_rate;
4918 	u32 width = 0, height = 0;
4919 	uint_fixed_16_16_t down_scale_amount;
4920 	u64 rate;
4921 
4922 	if (!plane_state->uapi.visible)
4923 		return 0;
4924 
4925 	if (plane->id == PLANE_CURSOR)
4926 		return 0;
4927 
4928 	if (color_plane == 1 &&
4929 	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4930 		return 0;
4931 
4932 	/*
4933 	 * Src coordinates are already rotated by 270 degrees for
4934 	 * the 90/270 degree plane rotation cases (to match the
4935 	 * GTT mapping), hence no need to account for rotation here.
4936 	 */
4937 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
4938 	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4939 
4940 	/* UV plane does 1/2 pixel sub-sampling */
4941 	if (color_plane == 1) {
4942 		width /= 2;
4943 		height /= 2;
4944 	}
4945 
4946 	data_rate = width * height;
4947 
4948 	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4949 
4950 	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4951 
4952 	rate *= fb->format->cpp[color_plane];
4953 	return rate;
4954 }
4955 
4956 static u64
skl_get_total_relative_data_rate(struct intel_atomic_state * state,struct intel_crtc * crtc)4957 skl_get_total_relative_data_rate(struct intel_atomic_state *state,
4958 				 struct intel_crtc *crtc)
4959 {
4960 	struct intel_crtc_state *crtc_state =
4961 		intel_atomic_get_new_crtc_state(state, crtc);
4962 	const struct intel_plane_state *plane_state;
4963 	struct intel_plane *plane;
4964 	u64 total_data_rate = 0;
4965 	enum plane_id plane_id;
4966 	int i;
4967 
4968 	/* Calculate and cache data rate for each plane */
4969 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
4970 		if (plane->pipe != crtc->pipe)
4971 			continue;
4972 
4973 		plane_id = plane->id;
4974 
4975 		/* packed/y */
4976 		crtc_state->plane_data_rate[plane_id] =
4977 			skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4978 
4979 		/* uv-plane */
4980 		crtc_state->uv_plane_data_rate[plane_id] =
4981 			skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4982 	}
4983 
4984 	for_each_plane_id_on_crtc(crtc, plane_id) {
4985 		total_data_rate += crtc_state->plane_data_rate[plane_id];
4986 		total_data_rate += crtc_state->uv_plane_data_rate[plane_id];
4987 	}
4988 
4989 	return total_data_rate;
4990 }
4991 
4992 static u64
icl_get_total_relative_data_rate(struct intel_atomic_state * state,struct intel_crtc * crtc)4993 icl_get_total_relative_data_rate(struct intel_atomic_state *state,
4994 				 struct intel_crtc *crtc)
4995 {
4996 	struct intel_crtc_state *crtc_state =
4997 		intel_atomic_get_new_crtc_state(state, crtc);
4998 	const struct intel_plane_state *plane_state;
4999 	struct intel_plane *plane;
5000 	u64 total_data_rate = 0;
5001 	enum plane_id plane_id;
5002 	int i;
5003 
5004 	/* Calculate and cache data rate for each plane */
5005 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
5006 		if (plane->pipe != crtc->pipe)
5007 			continue;
5008 
5009 		plane_id = plane->id;
5010 
5011 		if (!plane_state->planar_linked_plane) {
5012 			crtc_state->plane_data_rate[plane_id] =
5013 				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
5014 		} else {
5015 			enum plane_id y_plane_id;
5016 
5017 			/*
5018 			 * The slave plane might not iterate in
5019 			 * intel_atomic_crtc_state_for_each_plane_state(),
5020 			 * and needs the master plane state which may be
5021 			 * NULL if we try get_new_plane_state(), so we
5022 			 * always calculate from the master.
5023 			 */
5024 			if (plane_state->planar_slave)
5025 				continue;
5026 
5027 			/* Y plane rate is calculated on the slave */
5028 			y_plane_id = plane_state->planar_linked_plane->id;
5029 			crtc_state->plane_data_rate[y_plane_id] =
5030 				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
5031 
5032 			crtc_state->plane_data_rate[plane_id] =
5033 				skl_plane_relative_data_rate(crtc_state, plane_state, 1);
5034 		}
5035 	}
5036 
5037 	for_each_plane_id_on_crtc(crtc, plane_id)
5038 		total_data_rate += crtc_state->plane_data_rate[plane_id];
5039 
5040 	return total_data_rate;
5041 }
5042 
5043 const struct skl_wm_level *
skl_plane_wm_level(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id,int level)5044 skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
5045 		   enum plane_id plane_id,
5046 		   int level)
5047 {
5048 	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5049 
5050 	if (level == 0 && pipe_wm->use_sagv_wm)
5051 		return &wm->sagv.wm0;
5052 
5053 	return &wm->wm[level];
5054 }
5055 
5056 const struct skl_wm_level *
skl_plane_trans_wm(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id)5057 skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
5058 		   enum plane_id plane_id)
5059 {
5060 	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5061 
5062 	if (pipe_wm->use_sagv_wm)
5063 		return &wm->sagv.trans_wm;
5064 
5065 	return &wm->trans_wm;
5066 }
5067 
5068 /*
5069  * We only disable the watermarks for each plane if
5070  * they exceed the ddb allocation of said plane. This
5071  * is done so that we don't end up touching cursor
5072  * watermarks needlessly when some other plane reduces
5073  * our max possible watermark level.
5074  *
5075  * Bspec has this to say about the PLANE_WM enable bit:
5076  * "All the watermarks at this level for all enabled
5077  *  planes must be enabled before the level will be used."
5078  * So this is actually safe to do.
5079  */
5080 static void
skl_check_wm_level(struct skl_wm_level * wm,u64 total)5081 skl_check_wm_level(struct skl_wm_level *wm, u64 total)
5082 {
5083 	if (wm->min_ddb_alloc > total)
5084 		memset(wm, 0, sizeof(*wm));
5085 }
5086 
5087 static void
skl_check_nv12_wm_level(struct skl_wm_level * wm,struct skl_wm_level * uv_wm,u64 total,u64 uv_total)5088 skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
5089 			u64 total, u64 uv_total)
5090 {
5091 	if (wm->min_ddb_alloc > total ||
5092 	    uv_wm->min_ddb_alloc > uv_total) {
5093 		memset(wm, 0, sizeof(*wm));
5094 		memset(uv_wm, 0, sizeof(*uv_wm));
5095 	}
5096 }
5097 
5098 static int
skl_allocate_plane_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)5099 skl_allocate_plane_ddb(struct intel_atomic_state *state,
5100 		       struct intel_crtc *crtc)
5101 {
5102 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5103 	struct intel_crtc_state *crtc_state =
5104 		intel_atomic_get_new_crtc_state(state, crtc);
5105 	const struct intel_dbuf_state *dbuf_state =
5106 		intel_atomic_get_new_dbuf_state(state);
5107 	const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
5108 	int num_active = hweight8(dbuf_state->active_pipes);
5109 	u16 alloc_size, start = 0;
5110 	u16 total[I915_MAX_PLANES] = {};
5111 	u16 uv_total[I915_MAX_PLANES] = {};
5112 	u64 total_data_rate;
5113 	enum plane_id plane_id;
5114 	u32 blocks;
5115 	int level;
5116 
5117 	/* Clear the partitioning for disabled planes. */
5118 	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
5119 	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
5120 
5121 	if (!crtc_state->hw.active)
5122 		return 0;
5123 
5124 	if (DISPLAY_VER(dev_priv) >= 11)
5125 		total_data_rate =
5126 			icl_get_total_relative_data_rate(state, crtc);
5127 	else
5128 		total_data_rate =
5129 			skl_get_total_relative_data_rate(state, crtc);
5130 
5131 	alloc_size = skl_ddb_entry_size(alloc);
5132 	if (alloc_size == 0)
5133 		return 0;
5134 
5135 	/* Allocate fixed number of blocks for cursor. */
5136 	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
5137 	alloc_size -= total[PLANE_CURSOR];
5138 	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
5139 		alloc->end - total[PLANE_CURSOR];
5140 	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
5141 
5142 	if (total_data_rate == 0)
5143 		return 0;
5144 
5145 	/*
5146 	 * Find the highest watermark level for which we can satisfy the block
5147 	 * requirement of active planes.
5148 	 */
5149 	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
5150 		blocks = 0;
5151 		for_each_plane_id_on_crtc(crtc, plane_id) {
5152 			const struct skl_plane_wm *wm =
5153 				&crtc_state->wm.skl.optimal.planes[plane_id];
5154 
5155 			if (plane_id == PLANE_CURSOR) {
5156 				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
5157 					drm_WARN_ON(&dev_priv->drm,
5158 						    wm->wm[level].min_ddb_alloc != U16_MAX);
5159 					blocks = U32_MAX;
5160 					break;
5161 				}
5162 				continue;
5163 			}
5164 
5165 			blocks += wm->wm[level].min_ddb_alloc;
5166 			blocks += wm->uv_wm[level].min_ddb_alloc;
5167 		}
5168 
5169 		if (blocks <= alloc_size) {
5170 			alloc_size -= blocks;
5171 			break;
5172 		}
5173 	}
5174 
5175 	if (level < 0) {
5176 		drm_dbg_kms(&dev_priv->drm,
5177 			    "Requested display configuration exceeds system DDB limitations");
5178 		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
5179 			    blocks, alloc_size);
5180 		return -EINVAL;
5181 	}
5182 
5183 	/*
5184 	 * Grant each plane the blocks it requires at the highest achievable
5185 	 * watermark level, plus an extra share of the leftover blocks
5186 	 * proportional to its relative data rate.
5187 	 */
5188 	for_each_plane_id_on_crtc(crtc, plane_id) {
5189 		const struct skl_plane_wm *wm =
5190 			&crtc_state->wm.skl.optimal.planes[plane_id];
5191 		u64 rate;
5192 		u16 extra;
5193 
5194 		if (plane_id == PLANE_CURSOR)
5195 			continue;
5196 
5197 		/*
5198 		 * We've accounted for all active planes; remaining planes are
5199 		 * all disabled.
5200 		 */
5201 		if (total_data_rate == 0)
5202 			break;
5203 
5204 		rate = crtc_state->plane_data_rate[plane_id];
5205 		extra = min_t(u16, alloc_size,
5206 			      DIV64_U64_ROUND_UP(alloc_size * rate,
5207 						 total_data_rate));
5208 		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
5209 		alloc_size -= extra;
5210 		total_data_rate -= rate;
5211 
5212 		if (total_data_rate == 0)
5213 			break;
5214 
5215 		rate = crtc_state->uv_plane_data_rate[plane_id];
5216 		extra = min_t(u16, alloc_size,
5217 			      DIV64_U64_ROUND_UP(alloc_size * rate,
5218 						 total_data_rate));
5219 		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
5220 		alloc_size -= extra;
5221 		total_data_rate -= rate;
5222 	}
5223 	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
5224 
5225 	/* Set the actual DDB start/end points for each plane */
5226 	start = alloc->start;
5227 	for_each_plane_id_on_crtc(crtc, plane_id) {
5228 		struct skl_ddb_entry *plane_alloc =
5229 			&crtc_state->wm.skl.plane_ddb_y[plane_id];
5230 		struct skl_ddb_entry *uv_plane_alloc =
5231 			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5232 
5233 		if (plane_id == PLANE_CURSOR)
5234 			continue;
5235 
5236 		/* Gen11+ uses a separate plane for UV watermarks */
5237 		drm_WARN_ON(&dev_priv->drm,
5238 			    DISPLAY_VER(dev_priv) >= 11 && uv_total[plane_id]);
5239 
5240 		/* Leave disabled planes at (0,0) */
5241 		if (total[plane_id]) {
5242 			plane_alloc->start = start;
5243 			start += total[plane_id];
5244 			plane_alloc->end = start;
5245 		}
5246 
5247 		if (uv_total[plane_id]) {
5248 			uv_plane_alloc->start = start;
5249 			start += uv_total[plane_id];
5250 			uv_plane_alloc->end = start;
5251 		}
5252 	}
5253 
5254 	/*
5255 	 * When we calculated watermark values we didn't know how high
5256 	 * of a level we'd actually be able to hit, so we just marked
5257 	 * all levels as "enabled."  Go back now and disable the ones
5258 	 * that aren't actually possible.
5259 	 */
5260 	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
5261 		for_each_plane_id_on_crtc(crtc, plane_id) {
5262 			struct skl_plane_wm *wm =
5263 				&crtc_state->wm.skl.optimal.planes[plane_id];
5264 
5265 			skl_check_nv12_wm_level(&wm->wm[level], &wm->uv_wm[level],
5266 						total[plane_id], uv_total[plane_id]);
5267 
5268 			/*
5269 			 * Wa_1408961008:icl, ehl
5270 			 * Underruns with WM1+ disabled
5271 			 */
5272 			if (DISPLAY_VER(dev_priv) == 11 &&
5273 			    level == 1 && wm->wm[0].enable) {
5274 				wm->wm[level].blocks = wm->wm[0].blocks;
5275 				wm->wm[level].lines = wm->wm[0].lines;
5276 				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5277 			}
5278 		}
5279 	}
5280 
5281 	/*
5282 	 * Go back and disable the transition and SAGV watermarks
5283 	 * if it turns out we don't have enough DDB blocks for them.
5284 	 */
5285 	for_each_plane_id_on_crtc(crtc, plane_id) {
5286 		struct skl_plane_wm *wm =
5287 			&crtc_state->wm.skl.optimal.planes[plane_id];
5288 
5289 		skl_check_wm_level(&wm->trans_wm, total[plane_id]);
5290 		skl_check_wm_level(&wm->sagv.wm0, total[plane_id]);
5291 		skl_check_wm_level(&wm->sagv.trans_wm, total[plane_id]);
5292 	}
5293 
5294 	return 0;
5295 }
5296 
5297 /*
5298  * The max latency should be 257 (max the punit can code is 255 and we add 2us
5299  * for the read latency) and cpp should always be <= 8, so that
5300  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
5301  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
5302 */
5303 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * dev_priv,u32 pixel_rate,u8 cpp,u32 latency,u32 dbuf_block_size)5304 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
5305 	       u8 cpp, u32 latency, u32 dbuf_block_size)
5306 {
5307 	u32 wm_intermediate_val;
5308 	uint_fixed_16_16_t ret;
5309 
5310 	if (latency == 0)
5311 		return FP_16_16_MAX;
5312 
5313 	wm_intermediate_val = latency * pixel_rate * cpp;
5314 	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5315 
5316 	if (DISPLAY_VER(dev_priv) >= 10)
5317 		ret = add_fixed16_u32(ret, 1);
5318 
5319 	return ret;
5320 }
5321 
5322 static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate,u32 pipe_htotal,u32 latency,uint_fixed_16_16_t plane_blocks_per_line)5323 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
5324 	       uint_fixed_16_16_t plane_blocks_per_line)
5325 {
5326 	u32 wm_intermediate_val;
5327 	uint_fixed_16_16_t ret;
5328 
5329 	if (latency == 0)
5330 		return FP_16_16_MAX;
5331 
5332 	wm_intermediate_val = latency * pixel_rate;
5333 	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
5334 					   pipe_htotal * 1000);
5335 	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5336 	return ret;
5337 }
5338 
5339 static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state * crtc_state)5340 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5341 {
5342 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5343 	u32 pixel_rate;
5344 	u32 crtc_htotal;
5345 	uint_fixed_16_16_t linetime_us;
5346 
5347 	if (!crtc_state->hw.active)
5348 		return u32_to_fixed16(0);
5349 
5350 	pixel_rate = crtc_state->pixel_rate;
5351 
5352 	if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5353 		return u32_to_fixed16(0);
5354 
5355 	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
5356 	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5357 
5358 	return linetime_us;
5359 }
5360 
5361 static int
skl_compute_wm_params(const struct intel_crtc_state * crtc_state,int width,const struct drm_format_info * format,u64 modifier,unsigned int rotation,u32 plane_pixel_rate,struct skl_wm_params * wp,int color_plane)5362 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
5363 		      int width, const struct drm_format_info *format,
5364 		      u64 modifier, unsigned int rotation,
5365 		      u32 plane_pixel_rate, struct skl_wm_params *wp,
5366 		      int color_plane)
5367 {
5368 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5369 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5370 	u32 interm_pbpl;
5371 
5372 	/* only planar format has two planes */
5373 	if (color_plane == 1 &&
5374 	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5375 		drm_dbg_kms(&dev_priv->drm,
5376 			    "Non planar format have single plane\n");
5377 		return -EINVAL;
5378 	}
5379 
5380 	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
5381 		      modifier == I915_FORMAT_MOD_Yf_TILED ||
5382 		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5383 		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5384 	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
5385 	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5386 			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5387 	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5388 
5389 	wp->width = width;
5390 	if (color_plane == 1 && wp->is_planar)
5391 		wp->width /= 2;
5392 
5393 	wp->cpp = format->cpp[color_plane];
5394 	wp->plane_pixel_rate = plane_pixel_rate;
5395 
5396 	if (DISPLAY_VER(dev_priv) >= 11 &&
5397 	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5398 		wp->dbuf_block_size = 256;
5399 	else
5400 		wp->dbuf_block_size = 512;
5401 
5402 	if (drm_rotation_90_or_270(rotation)) {
5403 		switch (wp->cpp) {
5404 		case 1:
5405 			wp->y_min_scanlines = 16;
5406 			break;
5407 		case 2:
5408 			wp->y_min_scanlines = 8;
5409 			break;
5410 		case 4:
5411 			wp->y_min_scanlines = 4;
5412 			break;
5413 		default:
5414 			MISSING_CASE(wp->cpp);
5415 			return -EINVAL;
5416 		}
5417 	} else {
5418 		wp->y_min_scanlines = 4;
5419 	}
5420 
5421 	if (skl_needs_memory_bw_wa(dev_priv))
5422 		wp->y_min_scanlines *= 2;
5423 
5424 	wp->plane_bytes_per_line = wp->width * wp->cpp;
5425 	if (wp->y_tiled) {
5426 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5427 					   wp->y_min_scanlines,
5428 					   wp->dbuf_block_size);
5429 
5430 		if (DISPLAY_VER(dev_priv) >= 10)
5431 			interm_pbpl++;
5432 
5433 		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5434 							wp->y_min_scanlines);
5435 	} else {
5436 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5437 					   wp->dbuf_block_size);
5438 
5439 		if (!wp->x_tiled || DISPLAY_VER(dev_priv) >= 10)
5440 			interm_pbpl++;
5441 
5442 		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5443 	}
5444 
5445 	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5446 					     wp->plane_blocks_per_line);
5447 
5448 	wp->linetime_us = fixed16_to_u32_round_up(
5449 					intel_get_linetime_us(crtc_state));
5450 
5451 	return 0;
5452 }
5453 
5454 static int
skl_compute_plane_wm_params(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct skl_wm_params * wp,int color_plane)5455 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5456 			    const struct intel_plane_state *plane_state,
5457 			    struct skl_wm_params *wp, int color_plane)
5458 {
5459 	const struct drm_framebuffer *fb = plane_state->hw.fb;
5460 	int width;
5461 
5462 	/*
5463 	 * Src coordinates are already rotated by 270 degrees for
5464 	 * the 90/270 degree plane rotation cases (to match the
5465 	 * GTT mapping), hence no need to account for rotation here.
5466 	 */
5467 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5468 
5469 	return skl_compute_wm_params(crtc_state, width,
5470 				     fb->format, fb->modifier,
5471 				     plane_state->hw.rotation,
5472 				     intel_plane_pixel_rate(crtc_state, plane_state),
5473 				     wp, color_plane);
5474 }
5475 
skl_wm_has_lines(struct drm_i915_private * dev_priv,int level)5476 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5477 {
5478 	if (DISPLAY_VER(dev_priv) >= 10)
5479 		return true;
5480 
5481 	/* The number of lines are ignored for the level 0 watermark. */
5482 	return level > 0;
5483 }
5484 
skl_wm_max_lines(struct drm_i915_private * dev_priv)5485 static int skl_wm_max_lines(struct drm_i915_private *dev_priv)
5486 {
5487 	if (DISPLAY_VER(dev_priv) >= 13)
5488 		return 255;
5489 	else
5490 		return 31;
5491 }
5492 
skl_compute_plane_wm(const struct intel_crtc_state * crtc_state,int level,unsigned int latency,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)5493 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5494 				 int level,
5495 				 unsigned int latency,
5496 				 const struct skl_wm_params *wp,
5497 				 const struct skl_wm_level *result_prev,
5498 				 struct skl_wm_level *result /* out */)
5499 {
5500 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5501 	uint_fixed_16_16_t method1, method2;
5502 	uint_fixed_16_16_t selected_result;
5503 	u32 blocks, lines, min_ddb_alloc = 0;
5504 
5505 	if (latency == 0) {
5506 		/* reject it */
5507 		result->min_ddb_alloc = U16_MAX;
5508 		return;
5509 	}
5510 
5511 	/*
5512 	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
5513 	 * Display WA #1141: kbl,cfl
5514 	 */
5515 	if ((IS_KABYLAKE(dev_priv) ||
5516 	     IS_COFFEELAKE(dev_priv) ||
5517 	     IS_COMETLAKE(dev_priv)) &&
5518 	    dev_priv->ipc_enabled)
5519 		latency += 4;
5520 
5521 	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5522 		latency += 15;
5523 
5524 	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5525 				 wp->cpp, latency, wp->dbuf_block_size);
5526 	method2 = skl_wm_method2(wp->plane_pixel_rate,
5527 				 crtc_state->hw.pipe_mode.crtc_htotal,
5528 				 latency,
5529 				 wp->plane_blocks_per_line);
5530 
5531 	if (wp->y_tiled) {
5532 		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5533 	} else {
5534 		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
5535 		     wp->dbuf_block_size < 1) &&
5536 		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5537 			selected_result = method2;
5538 		} else if (latency >= wp->linetime_us) {
5539 			if (DISPLAY_VER(dev_priv) == 9)
5540 				selected_result = min_fixed16(method1, method2);
5541 			else
5542 				selected_result = method2;
5543 		} else {
5544 			selected_result = method1;
5545 		}
5546 	}
5547 
5548 	blocks = fixed16_to_u32_round_up(selected_result) + 1;
5549 	lines = div_round_up_fixed16(selected_result,
5550 				     wp->plane_blocks_per_line);
5551 
5552 	if (DISPLAY_VER(dev_priv) == 9) {
5553 		/* Display WA #1125: skl,bxt,kbl */
5554 		if (level == 0 && wp->rc_surface)
5555 			blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5556 
5557 		/* Display WA #1126: skl,bxt,kbl */
5558 		if (level >= 1 && level <= 7) {
5559 			if (wp->y_tiled) {
5560 				blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5561 				lines += wp->y_min_scanlines;
5562 			} else {
5563 				blocks++;
5564 			}
5565 
5566 			/*
5567 			 * Make sure result blocks for higher latency levels are
5568 			 * atleast as high as level below the current level.
5569 			 * Assumption in DDB algorithm optimization for special
5570 			 * cases. Also covers Display WA #1125 for RC.
5571 			 */
5572 			if (result_prev->blocks > blocks)
5573 				blocks = result_prev->blocks;
5574 		}
5575 	}
5576 
5577 	if (DISPLAY_VER(dev_priv) >= 11) {
5578 		if (wp->y_tiled) {
5579 			int extra_lines;
5580 
5581 			if (lines % wp->y_min_scanlines == 0)
5582 				extra_lines = wp->y_min_scanlines;
5583 			else
5584 				extra_lines = wp->y_min_scanlines * 2 -
5585 					lines % wp->y_min_scanlines;
5586 
5587 			min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
5588 								 wp->plane_blocks_per_line);
5589 		} else {
5590 			min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
5591 		}
5592 	}
5593 
5594 	if (!skl_wm_has_lines(dev_priv, level))
5595 		lines = 0;
5596 
5597 	if (lines > skl_wm_max_lines(dev_priv)) {
5598 		/* reject it */
5599 		result->min_ddb_alloc = U16_MAX;
5600 		return;
5601 	}
5602 
5603 	/*
5604 	 * If lines is valid, assume we can use this watermark level
5605 	 * for now.  We'll come back and disable it after we calculate the
5606 	 * DDB allocation if it turns out we don't actually have enough
5607 	 * blocks to satisfy it.
5608 	 */
5609 	result->blocks = blocks;
5610 	result->lines = lines;
5611 	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5612 	result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
5613 	result->enable = true;
5614 
5615 	if (DISPLAY_VER(dev_priv) < 12)
5616 		result->can_sagv = latency >= dev_priv->sagv_block_time_us;
5617 }
5618 
5619 static void
skl_compute_wm_levels(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wm_params,struct skl_wm_level * levels)5620 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5621 		      const struct skl_wm_params *wm_params,
5622 		      struct skl_wm_level *levels)
5623 {
5624 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5625 	int level, max_level = ilk_wm_max_level(dev_priv);
5626 	struct skl_wm_level *result_prev = &levels[0];
5627 
5628 	for (level = 0; level <= max_level; level++) {
5629 		struct skl_wm_level *result = &levels[level];
5630 		unsigned int latency = dev_priv->wm.skl_latency[level];
5631 
5632 		skl_compute_plane_wm(crtc_state, level, latency,
5633 				     wm_params, result_prev, result);
5634 
5635 		result_prev = result;
5636 	}
5637 }
5638 
tgl_compute_sagv_wm(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wm_params,struct skl_plane_wm * plane_wm)5639 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
5640 				const struct skl_wm_params *wm_params,
5641 				struct skl_plane_wm *plane_wm)
5642 {
5643 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5644 	struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
5645 	struct skl_wm_level *levels = plane_wm->wm;
5646 	unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;
5647 
5648 	skl_compute_plane_wm(crtc_state, 0, latency,
5649 			     wm_params, &levels[0],
5650 			     sagv_wm);
5651 }
5652 
skl_compute_transition_wm(struct drm_i915_private * dev_priv,struct skl_wm_level * trans_wm,const struct skl_wm_level * wm0,const struct skl_wm_params * wp)5653 static void skl_compute_transition_wm(struct drm_i915_private *dev_priv,
5654 				      struct skl_wm_level *trans_wm,
5655 				      const struct skl_wm_level *wm0,
5656 				      const struct skl_wm_params *wp)
5657 {
5658 	u16 trans_min, trans_amount, trans_y_tile_min;
5659 	u16 wm0_blocks, trans_offset, blocks;
5660 
5661 	/* Transition WM don't make any sense if ipc is disabled */
5662 	if (!dev_priv->ipc_enabled)
5663 		return;
5664 
5665 	/*
5666 	 * WaDisableTWM:skl,kbl,cfl,bxt
5667 	 * Transition WM are not recommended by HW team for GEN9
5668 	 */
5669 	if (DISPLAY_VER(dev_priv) == 9)
5670 		return;
5671 
5672 	if (DISPLAY_VER(dev_priv) >= 11)
5673 		trans_min = 4;
5674 	else
5675 		trans_min = 14;
5676 
5677 	/* Display WA #1140: glk,cnl */
5678 	if (DISPLAY_VER(dev_priv) == 10)
5679 		trans_amount = 0;
5680 	else
5681 		trans_amount = 10; /* This is configurable amount */
5682 
5683 	trans_offset = trans_min + trans_amount;
5684 
5685 	/*
5686 	 * The spec asks for Selected Result Blocks for wm0 (the real value),
5687 	 * not Result Blocks (the integer value). Pay attention to the capital
5688 	 * letters. The value wm_l0->blocks is actually Result Blocks, but
5689 	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5690 	 * and since we later will have to get the ceiling of the sum in the
5691 	 * transition watermarks calculation, we can just pretend Selected
5692 	 * Result Blocks is Result Blocks minus 1 and it should work for the
5693 	 * current platforms.
5694 	 */
5695 	wm0_blocks = wm0->blocks - 1;
5696 
5697 	if (wp->y_tiled) {
5698 		trans_y_tile_min =
5699 			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5700 		blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
5701 	} else {
5702 		blocks = wm0_blocks + trans_offset;
5703 	}
5704 	blocks++;
5705 
5706 	/*
5707 	 * Just assume we can enable the transition watermark.  After
5708 	 * computing the DDB we'll come back and disable it if that
5709 	 * assumption turns out to be false.
5710 	 */
5711 	trans_wm->blocks = blocks;
5712 	trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
5713 	trans_wm->enable = true;
5714 }
5715 
skl_build_plane_wm_single(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,enum plane_id plane_id,int color_plane)5716 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5717 				     const struct intel_plane_state *plane_state,
5718 				     enum plane_id plane_id, int color_plane)
5719 {
5720 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5721 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5722 	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5723 	struct skl_wm_params wm_params;
5724 	int ret;
5725 
5726 	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5727 					  &wm_params, color_plane);
5728 	if (ret)
5729 		return ret;
5730 
5731 	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5732 
5733 	skl_compute_transition_wm(dev_priv, &wm->trans_wm,
5734 				  &wm->wm[0], &wm_params);
5735 
5736 	if (DISPLAY_VER(dev_priv) >= 12) {
5737 		tgl_compute_sagv_wm(crtc_state, &wm_params, wm);
5738 
5739 		skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm,
5740 					  &wm->sagv.wm0, &wm_params);
5741 	}
5742 
5743 	return 0;
5744 }
5745 
skl_build_plane_wm_uv(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,enum plane_id plane_id)5746 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5747 				 const struct intel_plane_state *plane_state,
5748 				 enum plane_id plane_id)
5749 {
5750 	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5751 	struct skl_wm_params wm_params;
5752 	int ret;
5753 
5754 	wm->is_planar = true;
5755 
5756 	/* uv plane watermarks must also be validated for NV12/Planar */
5757 	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5758 					  &wm_params, 1);
5759 	if (ret)
5760 		return ret;
5761 
5762 	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5763 
5764 	return 0;
5765 }
5766 
skl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5767 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5768 			      const struct intel_plane_state *plane_state)
5769 {
5770 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5771 	enum plane_id plane_id = plane->id;
5772 	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5773 	const struct drm_framebuffer *fb = plane_state->hw.fb;
5774 	int ret;
5775 
5776 	memset(wm, 0, sizeof(*wm));
5777 
5778 	if (!intel_wm_plane_visible(crtc_state, plane_state))
5779 		return 0;
5780 
5781 	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5782 					plane_id, 0);
5783 	if (ret)
5784 		return ret;
5785 
5786 	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5787 		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5788 					    plane_id);
5789 		if (ret)
5790 			return ret;
5791 	}
5792 
5793 	return 0;
5794 }
5795 
icl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5796 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5797 			      const struct intel_plane_state *plane_state)
5798 {
5799 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5800 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5801 	enum plane_id plane_id = plane->id;
5802 	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5803 	int ret;
5804 
5805 	/* Watermarks calculated in master */
5806 	if (plane_state->planar_slave)
5807 		return 0;
5808 
5809 	memset(wm, 0, sizeof(*wm));
5810 
5811 	if (plane_state->planar_linked_plane) {
5812 		const struct drm_framebuffer *fb = plane_state->hw.fb;
5813 		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5814 
5815 		drm_WARN_ON(&dev_priv->drm,
5816 			    !intel_wm_plane_visible(crtc_state, plane_state));
5817 		drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
5818 			    fb->format->num_planes == 1);
5819 
5820 		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5821 						y_plane_id, 0);
5822 		if (ret)
5823 			return ret;
5824 
5825 		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5826 						plane_id, 1);
5827 		if (ret)
5828 			return ret;
5829 	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5830 		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5831 						plane_id, 0);
5832 		if (ret)
5833 			return ret;
5834 	}
5835 
5836 	return 0;
5837 }
5838 
skl_build_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)5839 static int skl_build_pipe_wm(struct intel_atomic_state *state,
5840 			     struct intel_crtc *crtc)
5841 {
5842 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5843 	struct intel_crtc_state *crtc_state =
5844 		intel_atomic_get_new_crtc_state(state, crtc);
5845 	const struct intel_plane_state *plane_state;
5846 	struct intel_plane *plane;
5847 	int ret, i;
5848 
5849 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
5850 		/*
5851 		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
5852 		 * instead but we don't populate that correctly for NV12 Y
5853 		 * planes so for now hack this.
5854 		 */
5855 		if (plane->pipe != crtc->pipe)
5856 			continue;
5857 
5858 		if (DISPLAY_VER(dev_priv) >= 11)
5859 			ret = icl_build_plane_wm(crtc_state, plane_state);
5860 		else
5861 			ret = skl_build_plane_wm(crtc_state, plane_state);
5862 		if (ret)
5863 			return ret;
5864 	}
5865 
5866 	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
5867 
5868 	return 0;
5869 }
5870 
skl_ddb_entry_write(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_ddb_entry * entry)5871 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5872 				i915_reg_t reg,
5873 				const struct skl_ddb_entry *entry)
5874 {
5875 	if (entry->end)
5876 		intel_de_write_fw(dev_priv, reg,
5877 				  (entry->end - 1) << 16 | entry->start);
5878 	else
5879 		intel_de_write_fw(dev_priv, reg, 0);
5880 }
5881 
skl_write_wm_level(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_wm_level * level)5882 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5883 			       i915_reg_t reg,
5884 			       const struct skl_wm_level *level)
5885 {
5886 	u32 val = 0;
5887 
5888 	if (level->enable)
5889 		val |= PLANE_WM_EN;
5890 	if (level->ignore_lines)
5891 		val |= PLANE_WM_IGNORE_LINES;
5892 	val |= level->blocks;
5893 	val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
5894 
5895 	intel_de_write_fw(dev_priv, reg, val);
5896 }
5897 
skl_write_plane_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5898 void skl_write_plane_wm(struct intel_plane *plane,
5899 			const struct intel_crtc_state *crtc_state)
5900 {
5901 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5902 	int level, max_level = ilk_wm_max_level(dev_priv);
5903 	enum plane_id plane_id = plane->id;
5904 	enum pipe pipe = plane->pipe;
5905 	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5906 	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5907 	const struct skl_ddb_entry *ddb_y =
5908 		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5909 	const struct skl_ddb_entry *ddb_uv =
5910 		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5911 
5912 	for (level = 0; level <= max_level; level++)
5913 		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5914 				   skl_plane_wm_level(pipe_wm, plane_id, level));
5915 
5916 	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5917 			   skl_plane_trans_wm(pipe_wm, plane_id));
5918 
5919 	if (HAS_HW_SAGV_WM(dev_priv)) {
5920 		skl_write_wm_level(dev_priv, PLANE_WM_SAGV(pipe, plane_id),
5921 				   &wm->sagv.wm0);
5922 		skl_write_wm_level(dev_priv, PLANE_WM_SAGV_TRANS(pipe, plane_id),
5923 				   &wm->sagv.trans_wm);
5924 	}
5925 
5926 	if (DISPLAY_VER(dev_priv) >= 11) {
5927 		skl_ddb_entry_write(dev_priv,
5928 				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5929 		return;
5930 	}
5931 
5932 	if (wm->is_planar)
5933 		swap(ddb_y, ddb_uv);
5934 
5935 	skl_ddb_entry_write(dev_priv,
5936 			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5937 	skl_ddb_entry_write(dev_priv,
5938 			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5939 }
5940 
skl_write_cursor_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5941 void skl_write_cursor_wm(struct intel_plane *plane,
5942 			 const struct intel_crtc_state *crtc_state)
5943 {
5944 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5945 	int level, max_level = ilk_wm_max_level(dev_priv);
5946 	enum plane_id plane_id = plane->id;
5947 	enum pipe pipe = plane->pipe;
5948 	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5949 	const struct skl_ddb_entry *ddb =
5950 		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5951 
5952 	for (level = 0; level <= max_level; level++)
5953 		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5954 				   skl_plane_wm_level(pipe_wm, plane_id, level));
5955 
5956 	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe),
5957 			   skl_plane_trans_wm(pipe_wm, plane_id));
5958 
5959 	if (HAS_HW_SAGV_WM(dev_priv)) {
5960 		const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5961 
5962 		skl_write_wm_level(dev_priv, CUR_WM_SAGV(pipe),
5963 				   &wm->sagv.wm0);
5964 		skl_write_wm_level(dev_priv, CUR_WM_SAGV_TRANS(pipe),
5965 				   &wm->sagv.trans_wm);
5966 	}
5967 
5968 	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5969 }
5970 
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)5971 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5972 			 const struct skl_wm_level *l2)
5973 {
5974 	return l1->enable == l2->enable &&
5975 		l1->ignore_lines == l2->ignore_lines &&
5976 		l1->lines == l2->lines &&
5977 		l1->blocks == l2->blocks;
5978 }
5979 
skl_plane_wm_equals(struct drm_i915_private * dev_priv,const struct skl_plane_wm * wm1,const struct skl_plane_wm * wm2)5980 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5981 				const struct skl_plane_wm *wm1,
5982 				const struct skl_plane_wm *wm2)
5983 {
5984 	int level, max_level = ilk_wm_max_level(dev_priv);
5985 
5986 	for (level = 0; level <= max_level; level++) {
5987 		/*
5988 		 * We don't check uv_wm as the hardware doesn't actually
5989 		 * use it. It only gets used for calculating the required
5990 		 * ddb allocation.
5991 		 */
5992 		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5993 			return false;
5994 	}
5995 
5996 	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
5997 		skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
5998 		skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
5999 }
6000 
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)6001 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
6002 				    const struct skl_ddb_entry *b)
6003 {
6004 	return a->start < b->end && b->start < a->end;
6005 }
6006 
skl_ddb_entry_union(struct skl_ddb_entry * a,const struct skl_ddb_entry * b)6007 static void skl_ddb_entry_union(struct skl_ddb_entry *a,
6008 				const struct skl_ddb_entry *b)
6009 {
6010 	if (a->end && b->end) {
6011 		a->start = min(a->start, b->start);
6012 		a->end = max(a->end, b->end);
6013 	} else if (b->end) {
6014 		a->start = b->start;
6015 		a->end = b->end;
6016 	}
6017 }
6018 
skl_ddb_allocation_overlaps(const struct skl_ddb_entry * ddb,const struct skl_ddb_entry * entries,int num_entries,int ignore_idx)6019 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
6020 				 const struct skl_ddb_entry *entries,
6021 				 int num_entries, int ignore_idx)
6022 {
6023 	int i;
6024 
6025 	for (i = 0; i < num_entries; i++) {
6026 		if (i != ignore_idx &&
6027 		    skl_ddb_entries_overlap(ddb, &entries[i]))
6028 			return true;
6029 	}
6030 
6031 	return false;
6032 }
6033 
6034 static int
skl_ddb_add_affected_planes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)6035 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
6036 			    struct intel_crtc_state *new_crtc_state)
6037 {
6038 	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
6039 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6040 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6041 	struct intel_plane *plane;
6042 
6043 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6044 		struct intel_plane_state *plane_state;
6045 		enum plane_id plane_id = plane->id;
6046 
6047 		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
6048 					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
6049 		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
6050 					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
6051 			continue;
6052 
6053 		plane_state = intel_atomic_get_plane_state(state, plane);
6054 		if (IS_ERR(plane_state))
6055 			return PTR_ERR(plane_state);
6056 
6057 		new_crtc_state->update_planes |= BIT(plane_id);
6058 	}
6059 
6060 	return 0;
6061 }
6062 
intel_dbuf_enabled_slices(const struct intel_dbuf_state * dbuf_state)6063 static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
6064 {
6065 	struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev);
6066 	u8 enabled_slices;
6067 	enum pipe pipe;
6068 
6069 	/*
6070 	 * FIXME: For now we always enable slice S1 as per
6071 	 * the Bspec display initialization sequence.
6072 	 */
6073 	enabled_slices = BIT(DBUF_S1);
6074 
6075 	for_each_pipe(dev_priv, pipe)
6076 		enabled_slices |= dbuf_state->slices[pipe];
6077 
6078 	return enabled_slices;
6079 }
6080 
6081 static int
skl_compute_ddb(struct intel_atomic_state * state)6082 skl_compute_ddb(struct intel_atomic_state *state)
6083 {
6084 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6085 	const struct intel_dbuf_state *old_dbuf_state;
6086 	struct intel_dbuf_state *new_dbuf_state = NULL;
6087 	const struct intel_crtc_state *old_crtc_state;
6088 	struct intel_crtc_state *new_crtc_state;
6089 	struct intel_crtc *crtc;
6090 	int ret, i;
6091 
6092 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6093 		new_dbuf_state = intel_atomic_get_dbuf_state(state);
6094 		if (IS_ERR(new_dbuf_state))
6095 			return PTR_ERR(new_dbuf_state);
6096 
6097 		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
6098 		break;
6099 	}
6100 
6101 	if (!new_dbuf_state)
6102 		return 0;
6103 
6104 	new_dbuf_state->active_pipes =
6105 		intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
6106 
6107 	if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
6108 		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6109 		if (ret)
6110 			return ret;
6111 	}
6112 
6113 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6114 		enum pipe pipe = crtc->pipe;
6115 
6116 		new_dbuf_state->slices[pipe] =
6117 			skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes);
6118 
6119 		if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
6120 			continue;
6121 
6122 		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6123 		if (ret)
6124 			return ret;
6125 	}
6126 
6127 	new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
6128 
6129 	if (IS_ALDERLAKE_P(dev_priv))
6130 		new_dbuf_state->joined_mbus = adlp_check_mbus_joined(new_dbuf_state->active_pipes);
6131 
6132 	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
6133 	    old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6134 		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
6135 		if (ret)
6136 			return ret;
6137 
6138 		if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6139 			/* TODO: Implement vblank synchronized MBUS joining changes */
6140 			ret = intel_modeset_all_pipes(state);
6141 			if (ret)
6142 				return ret;
6143 		}
6144 
6145 		drm_dbg_kms(&dev_priv->drm,
6146 			    "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
6147 			    old_dbuf_state->enabled_slices,
6148 			    new_dbuf_state->enabled_slices,
6149 			    INTEL_INFO(dev_priv)->dbuf.slice_mask,
6150 			    yesno(old_dbuf_state->joined_mbus),
6151 			    yesno(new_dbuf_state->joined_mbus));
6152 	}
6153 
6154 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6155 		enum pipe pipe = crtc->pipe;
6156 
6157 		new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
6158 
6159 		if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
6160 			continue;
6161 
6162 		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6163 		if (ret)
6164 			return ret;
6165 	}
6166 
6167 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6168 		ret = skl_crtc_allocate_ddb(state, crtc);
6169 		if (ret)
6170 			return ret;
6171 	}
6172 
6173 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6174 					    new_crtc_state, i) {
6175 		ret = skl_allocate_plane_ddb(state, crtc);
6176 		if (ret)
6177 			return ret;
6178 
6179 		ret = skl_ddb_add_affected_planes(old_crtc_state,
6180 						  new_crtc_state);
6181 		if (ret)
6182 			return ret;
6183 	}
6184 
6185 	return 0;
6186 }
6187 
enast(bool enable)6188 static char enast(bool enable)
6189 {
6190 	return enable ? '*' : ' ';
6191 }
6192 
6193 static void
skl_print_wm_changes(struct intel_atomic_state * state)6194 skl_print_wm_changes(struct intel_atomic_state *state)
6195 {
6196 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6197 	const struct intel_crtc_state *old_crtc_state;
6198 	const struct intel_crtc_state *new_crtc_state;
6199 	struct intel_plane *plane;
6200 	struct intel_crtc *crtc;
6201 	int i;
6202 
6203 	if (!drm_debug_enabled(DRM_UT_KMS))
6204 		return;
6205 
6206 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6207 					    new_crtc_state, i) {
6208 		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
6209 
6210 		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
6211 		new_pipe_wm = &new_crtc_state->wm.skl.optimal;
6212 
6213 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6214 			enum plane_id plane_id = plane->id;
6215 			const struct skl_ddb_entry *old, *new;
6216 
6217 			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
6218 			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
6219 
6220 			if (skl_ddb_entry_equal(old, new))
6221 				continue;
6222 
6223 			drm_dbg_kms(&dev_priv->drm,
6224 				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
6225 				    plane->base.base.id, plane->base.name,
6226 				    old->start, old->end, new->start, new->end,
6227 				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
6228 		}
6229 
6230 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6231 			enum plane_id plane_id = plane->id;
6232 			const struct skl_plane_wm *old_wm, *new_wm;
6233 
6234 			old_wm = &old_pipe_wm->planes[plane_id];
6235 			new_wm = &new_pipe_wm->planes[plane_id];
6236 
6237 			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
6238 				continue;
6239 
6240 			drm_dbg_kms(&dev_priv->drm,
6241 				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
6242 				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
6243 				    plane->base.base.id, plane->base.name,
6244 				    enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
6245 				    enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
6246 				    enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
6247 				    enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
6248 				    enast(old_wm->trans_wm.enable),
6249 				    enast(old_wm->sagv.wm0.enable),
6250 				    enast(old_wm->sagv.trans_wm.enable),
6251 				    enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
6252 				    enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
6253 				    enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
6254 				    enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
6255 				    enast(new_wm->trans_wm.enable),
6256 				    enast(new_wm->sagv.wm0.enable),
6257 				    enast(new_wm->sagv.trans_wm.enable));
6258 
6259 			drm_dbg_kms(&dev_priv->drm,
6260 				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
6261 				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
6262 				    plane->base.base.id, plane->base.name,
6263 				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
6264 				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
6265 				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
6266 				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
6267 				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
6268 				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
6269 				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
6270 				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
6271 				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
6272 				    enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
6273 				    enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
6274 				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
6275 				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
6276 				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
6277 				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
6278 				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
6279 				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
6280 				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
6281 				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
6282 				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
6283 				    enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
6284 				    enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
6285 
6286 			drm_dbg_kms(&dev_priv->drm,
6287 				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6288 				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6289 				    plane->base.base.id, plane->base.name,
6290 				    old_wm->wm[0].blocks, old_wm->wm[1].blocks,
6291 				    old_wm->wm[2].blocks, old_wm->wm[3].blocks,
6292 				    old_wm->wm[4].blocks, old_wm->wm[5].blocks,
6293 				    old_wm->wm[6].blocks, old_wm->wm[7].blocks,
6294 				    old_wm->trans_wm.blocks,
6295 				    old_wm->sagv.wm0.blocks,
6296 				    old_wm->sagv.trans_wm.blocks,
6297 				    new_wm->wm[0].blocks, new_wm->wm[1].blocks,
6298 				    new_wm->wm[2].blocks, new_wm->wm[3].blocks,
6299 				    new_wm->wm[4].blocks, new_wm->wm[5].blocks,
6300 				    new_wm->wm[6].blocks, new_wm->wm[7].blocks,
6301 				    new_wm->trans_wm.blocks,
6302 				    new_wm->sagv.wm0.blocks,
6303 				    new_wm->sagv.trans_wm.blocks);
6304 
6305 			drm_dbg_kms(&dev_priv->drm,
6306 				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6307 				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6308 				    plane->base.base.id, plane->base.name,
6309 				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
6310 				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
6311 				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
6312 				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
6313 				    old_wm->trans_wm.min_ddb_alloc,
6314 				    old_wm->sagv.wm0.min_ddb_alloc,
6315 				    old_wm->sagv.trans_wm.min_ddb_alloc,
6316 				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
6317 				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
6318 				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
6319 				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
6320 				    new_wm->trans_wm.min_ddb_alloc,
6321 				    new_wm->sagv.wm0.min_ddb_alloc,
6322 				    new_wm->sagv.trans_wm.min_ddb_alloc);
6323 		}
6324 	}
6325 }
6326 
skl_plane_selected_wm_equals(struct intel_plane * plane,const struct skl_pipe_wm * old_pipe_wm,const struct skl_pipe_wm * new_pipe_wm)6327 static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
6328 					 const struct skl_pipe_wm *old_pipe_wm,
6329 					 const struct skl_pipe_wm *new_pipe_wm)
6330 {
6331 	struct drm_i915_private *i915 = to_i915(plane->base.dev);
6332 	int level, max_level = ilk_wm_max_level(i915);
6333 
6334 	for (level = 0; level <= max_level; level++) {
6335 		/*
6336 		 * We don't check uv_wm as the hardware doesn't actually
6337 		 * use it. It only gets used for calculating the required
6338 		 * ddb allocation.
6339 		 */
6340 		if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
6341 					 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
6342 			return false;
6343 	}
6344 
6345 	if (HAS_HW_SAGV_WM(i915)) {
6346 		const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
6347 		const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
6348 
6349 		if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
6350 		    !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
6351 			return false;
6352 	}
6353 
6354 	return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
6355 				   skl_plane_trans_wm(new_pipe_wm, plane->id));
6356 }
6357 
6358 /*
6359  * To make sure the cursor watermark registers are always consistent
6360  * with our computed state the following scenario needs special
6361  * treatment:
6362  *
6363  * 1. enable cursor
6364  * 2. move cursor entirely offscreen
6365  * 3. disable cursor
6366  *
6367  * Step 2. does call .disable_plane() but does not zero the watermarks
6368  * (since we consider an offscreen cursor still active for the purposes
6369  * of watermarks). Step 3. would not normally call .disable_plane()
6370  * because the actual plane visibility isn't changing, and we don't
6371  * deallocate the cursor ddb until the pipe gets disabled. So we must
6372  * force step 3. to call .disable_plane() to update the watermark
6373  * registers properly.
6374  *
6375  * Other planes do not suffer from this issues as their watermarks are
6376  * calculated based on the actual plane visibility. The only time this
6377  * can trigger for the other planes is during the initial readout as the
6378  * default value of the watermarks registers is not zero.
6379  */
skl_wm_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)6380 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
6381 				      struct intel_crtc *crtc)
6382 {
6383 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6384 	const struct intel_crtc_state *old_crtc_state =
6385 		intel_atomic_get_old_crtc_state(state, crtc);
6386 	struct intel_crtc_state *new_crtc_state =
6387 		intel_atomic_get_new_crtc_state(state, crtc);
6388 	struct intel_plane *plane;
6389 
6390 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6391 		struct intel_plane_state *plane_state;
6392 		enum plane_id plane_id = plane->id;
6393 
6394 		/*
6395 		 * Force a full wm update for every plane on modeset.
6396 		 * Required because the reset value of the wm registers
6397 		 * is non-zero, whereas we want all disabled planes to
6398 		 * have zero watermarks. So if we turn off the relevant
6399 		 * power well the hardware state will go out of sync
6400 		 * with the software state.
6401 		 */
6402 		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6403 		    skl_plane_selected_wm_equals(plane,
6404 						 &old_crtc_state->wm.skl.optimal,
6405 						 &new_crtc_state->wm.skl.optimal))
6406 			continue;
6407 
6408 		plane_state = intel_atomic_get_plane_state(state, plane);
6409 		if (IS_ERR(plane_state))
6410 			return PTR_ERR(plane_state);
6411 
6412 		new_crtc_state->update_planes |= BIT(plane_id);
6413 	}
6414 
6415 	return 0;
6416 }
6417 
6418 static int
skl_compute_wm(struct intel_atomic_state * state)6419 skl_compute_wm(struct intel_atomic_state *state)
6420 {
6421 	struct intel_crtc *crtc;
6422 	struct intel_crtc_state *new_crtc_state;
6423 	int ret, i;
6424 
6425 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6426 		ret = skl_build_pipe_wm(state, crtc);
6427 		if (ret)
6428 			return ret;
6429 	}
6430 
6431 	ret = skl_compute_ddb(state);
6432 	if (ret)
6433 		return ret;
6434 
6435 	ret = intel_compute_sagv_mask(state);
6436 	if (ret)
6437 		return ret;
6438 
6439 	/*
6440 	 * skl_compute_ddb() will have adjusted the final watermarks
6441 	 * based on how much ddb is available. Now we can actually
6442 	 * check if the final watermarks changed.
6443 	 */
6444 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6445 		ret = skl_wm_add_affected_planes(state, crtc);
6446 		if (ret)
6447 			return ret;
6448 	}
6449 
6450 	skl_print_wm_changes(state);
6451 
6452 	return 0;
6453 }
6454 
ilk_compute_wm_config(struct drm_i915_private * dev_priv,struct intel_wm_config * config)6455 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6456 				  struct intel_wm_config *config)
6457 {
6458 	struct intel_crtc *crtc;
6459 
6460 	/* Compute the currently _active_ config */
6461 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6462 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
6463 
6464 		if (!wm->pipe_enabled)
6465 			continue;
6466 
6467 		config->sprites_enabled |= wm->sprites_enabled;
6468 		config->sprites_scaled |= wm->sprites_scaled;
6469 		config->num_pipes_active++;
6470 	}
6471 }
6472 
ilk_program_watermarks(struct drm_i915_private * dev_priv)6473 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6474 {
6475 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6476 	struct ilk_wm_maximums max;
6477 	struct intel_wm_config config = {};
6478 	struct ilk_wm_values results = {};
6479 	enum intel_ddb_partitioning partitioning;
6480 
6481 	ilk_compute_wm_config(dev_priv, &config);
6482 
6483 	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
6484 	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6485 
6486 	/* 5/6 split only in single pipe config on IVB+ */
6487 	if (DISPLAY_VER(dev_priv) >= 7 &&
6488 	    config.num_pipes_active == 1 && config.sprites_enabled) {
6489 		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
6490 		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6491 
6492 		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6493 	} else {
6494 		best_lp_wm = &lp_wm_1_2;
6495 	}
6496 
6497 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
6498 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6499 
6500 	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6501 
6502 	ilk_write_wm_values(dev_priv, &results);
6503 }
6504 
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)6505 static void ilk_initial_watermarks(struct intel_atomic_state *state,
6506 				   struct intel_crtc *crtc)
6507 {
6508 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6509 	const struct intel_crtc_state *crtc_state =
6510 		intel_atomic_get_new_crtc_state(state, crtc);
6511 
6512 	mutex_lock(&dev_priv->wm.wm_mutex);
6513 	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6514 	ilk_program_watermarks(dev_priv);
6515 	mutex_unlock(&dev_priv->wm.wm_mutex);
6516 }
6517 
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)6518 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6519 				    struct intel_crtc *crtc)
6520 {
6521 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6522 	const struct intel_crtc_state *crtc_state =
6523 		intel_atomic_get_new_crtc_state(state, crtc);
6524 
6525 	if (!crtc_state->wm.need_postvbl_update)
6526 		return;
6527 
6528 	mutex_lock(&dev_priv->wm.wm_mutex);
6529 	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
6530 	ilk_program_watermarks(dev_priv);
6531 	mutex_unlock(&dev_priv->wm.wm_mutex);
6532 }
6533 
skl_wm_level_from_reg_val(u32 val,struct skl_wm_level * level)6534 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6535 {
6536 	level->enable = val & PLANE_WM_EN;
6537 	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6538 	level->blocks = val & PLANE_WM_BLOCKS_MASK;
6539 	level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
6540 }
6541 
skl_pipe_wm_get_hw_state(struct intel_crtc * crtc,struct skl_pipe_wm * out)6542 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6543 			      struct skl_pipe_wm *out)
6544 {
6545 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6546 	enum pipe pipe = crtc->pipe;
6547 	int level, max_level;
6548 	enum plane_id plane_id;
6549 	u32 val;
6550 
6551 	max_level = ilk_wm_max_level(dev_priv);
6552 
6553 	for_each_plane_id_on_crtc(crtc, plane_id) {
6554 		struct skl_plane_wm *wm = &out->planes[plane_id];
6555 
6556 		for (level = 0; level <= max_level; level++) {
6557 			if (plane_id != PLANE_CURSOR)
6558 				val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
6559 			else
6560 				val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
6561 
6562 			skl_wm_level_from_reg_val(val, &wm->wm[level]);
6563 		}
6564 
6565 		if (plane_id != PLANE_CURSOR)
6566 			val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
6567 		else
6568 			val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
6569 
6570 		skl_wm_level_from_reg_val(val, &wm->trans_wm);
6571 
6572 		if (HAS_HW_SAGV_WM(dev_priv)) {
6573 			if (plane_id != PLANE_CURSOR)
6574 				val = intel_uncore_read(&dev_priv->uncore,
6575 							PLANE_WM_SAGV(pipe, plane_id));
6576 			else
6577 				val = intel_uncore_read(&dev_priv->uncore,
6578 							CUR_WM_SAGV(pipe));
6579 
6580 			skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
6581 
6582 			if (plane_id != PLANE_CURSOR)
6583 				val = intel_uncore_read(&dev_priv->uncore,
6584 							PLANE_WM_SAGV_TRANS(pipe, plane_id));
6585 			else
6586 				val = intel_uncore_read(&dev_priv->uncore,
6587 							CUR_WM_SAGV_TRANS(pipe));
6588 
6589 			skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
6590 		} else if (DISPLAY_VER(dev_priv) >= 12) {
6591 			wm->sagv.wm0 = wm->wm[0];
6592 			wm->sagv.trans_wm = wm->trans_wm;
6593 		}
6594 	}
6595 }
6596 
skl_wm_get_hw_state(struct drm_i915_private * dev_priv)6597 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6598 {
6599 	struct intel_dbuf_state *dbuf_state =
6600 		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
6601 	struct intel_crtc *crtc;
6602 
6603 	if (IS_ALDERLAKE_P(dev_priv))
6604 		dbuf_state->joined_mbus = intel_de_read(dev_priv, MBUS_CTL) & MBUS_JOIN;
6605 
6606 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6607 		struct intel_crtc_state *crtc_state =
6608 			to_intel_crtc_state(crtc->base.state);
6609 		enum pipe pipe = crtc->pipe;
6610 		unsigned int mbus_offset;
6611 		enum plane_id plane_id;
6612 
6613 		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6614 		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
6615 
6616 		memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
6617 
6618 		for_each_plane_id_on_crtc(crtc, plane_id) {
6619 			struct skl_ddb_entry *ddb_y =
6620 				&crtc_state->wm.skl.plane_ddb_y[plane_id];
6621 			struct skl_ddb_entry *ddb_uv =
6622 				&crtc_state->wm.skl.plane_ddb_uv[plane_id];
6623 
6624 			skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe,
6625 						   plane_id, ddb_y, ddb_uv);
6626 
6627 			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
6628 			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_uv);
6629 		}
6630 
6631 		dbuf_state->slices[pipe] =
6632 			skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes);
6633 
6634 		dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
6635 
6636 		/*
6637 		 * Used for checking overlaps, so we need absolute
6638 		 * offsets instead of MBUS relative offsets.
6639 		 */
6640 		mbus_offset = mbus_ddb_offset(dev_priv, dbuf_state->slices[pipe]);
6641 		crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
6642 		crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
6643 
6644 		drm_dbg_kms(&dev_priv->drm,
6645 			    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
6646 			    crtc->base.base.id, crtc->base.name,
6647 			    dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
6648 			    dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
6649 			    yesno(dbuf_state->joined_mbus));
6650 	}
6651 
6652 	dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices;
6653 }
6654 
ilk_pipe_wm_get_hw_state(struct intel_crtc * crtc)6655 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6656 {
6657 	struct drm_device *dev = crtc->base.dev;
6658 	struct drm_i915_private *dev_priv = to_i915(dev);
6659 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6660 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6661 	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6662 	enum pipe pipe = crtc->pipe;
6663 
6664 	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
6665 
6666 	memset(active, 0, sizeof(*active));
6667 
6668 	active->pipe_enabled = crtc->active;
6669 
6670 	if (active->pipe_enabled) {
6671 		u32 tmp = hw->wm_pipe[pipe];
6672 
6673 		/*
6674 		 * For active pipes LP0 watermark is marked as
6675 		 * enabled, and LP1+ watermaks as disabled since
6676 		 * we can't really reverse compute them in case
6677 		 * multiple pipes are active.
6678 		 */
6679 		active->wm[0].enable = true;
6680 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
6681 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
6682 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
6683 	} else {
6684 		int level, max_level = ilk_wm_max_level(dev_priv);
6685 
6686 		/*
6687 		 * For inactive pipes, all watermark levels
6688 		 * should be marked as enabled but zeroed,
6689 		 * which is what we'd compute them to.
6690 		 */
6691 		for (level = 0; level <= max_level; level++)
6692 			active->wm[level].enable = true;
6693 	}
6694 
6695 	crtc->wm.active.ilk = *active;
6696 }
6697 
6698 #define _FW_WM(value, plane) \
6699 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6700 #define _FW_WM_VLV(value, plane) \
6701 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6702 
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)6703 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6704 			       struct g4x_wm_values *wm)
6705 {
6706 	u32 tmp;
6707 
6708 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6709 	wm->sr.plane = _FW_WM(tmp, SR);
6710 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6711 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6712 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6713 
6714 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6715 	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6716 	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6717 	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6718 	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6719 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6720 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6721 
6722 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6723 	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6724 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6725 	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6726 	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6727 }
6728 
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)6729 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6730 			       struct vlv_wm_values *wm)
6731 {
6732 	enum pipe pipe;
6733 	u32 tmp;
6734 
6735 	for_each_pipe(dev_priv, pipe) {
6736 		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
6737 
6738 		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6739 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6740 		wm->ddl[pipe].plane[PLANE_CURSOR] =
6741 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6742 		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6743 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6744 		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6745 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6746 	}
6747 
6748 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6749 	wm->sr.plane = _FW_WM(tmp, SR);
6750 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6751 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6752 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6753 
6754 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6755 	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6756 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6757 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6758 
6759 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6760 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6761 
6762 	if (IS_CHERRYVIEW(dev_priv)) {
6763 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
6764 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6765 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6766 
6767 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
6768 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6769 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6770 
6771 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
6772 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6773 		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6774 
6775 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6776 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6777 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6778 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6779 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6780 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6781 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6782 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6783 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6784 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6785 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6786 	} else {
6787 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
6788 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6789 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6790 
6791 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6792 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6793 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6794 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6795 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6796 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6797 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6798 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6799 	}
6800 }
6801 
6802 #undef _FW_WM
6803 #undef _FW_WM_VLV
6804 
g4x_wm_get_hw_state(struct drm_i915_private * dev_priv)6805 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6806 {
6807 	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6808 	struct intel_crtc *crtc;
6809 
6810 	g4x_read_wm_values(dev_priv, wm);
6811 
6812 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
6813 
6814 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6815 		struct intel_crtc_state *crtc_state =
6816 			to_intel_crtc_state(crtc->base.state);
6817 		struct g4x_wm_state *active = &crtc->wm.active.g4x;
6818 		struct g4x_pipe_wm *raw;
6819 		enum pipe pipe = crtc->pipe;
6820 		enum plane_id plane_id;
6821 		int level, max_level;
6822 
6823 		active->cxsr = wm->cxsr;
6824 		active->hpll_en = wm->hpll_en;
6825 		active->fbc_en = wm->fbc_en;
6826 
6827 		active->sr = wm->sr;
6828 		active->hpll = wm->hpll;
6829 
6830 		for_each_plane_id_on_crtc(crtc, plane_id) {
6831 			active->wm.plane[plane_id] =
6832 				wm->pipe[pipe].plane[plane_id];
6833 		}
6834 
6835 		if (wm->cxsr && wm->hpll_en)
6836 			max_level = G4X_WM_LEVEL_HPLL;
6837 		else if (wm->cxsr)
6838 			max_level = G4X_WM_LEVEL_SR;
6839 		else
6840 			max_level = G4X_WM_LEVEL_NORMAL;
6841 
6842 		level = G4X_WM_LEVEL_NORMAL;
6843 		raw = &crtc_state->wm.g4x.raw[level];
6844 		for_each_plane_id_on_crtc(crtc, plane_id)
6845 			raw->plane[plane_id] = active->wm.plane[plane_id];
6846 
6847 		if (++level > max_level)
6848 			goto out;
6849 
6850 		raw = &crtc_state->wm.g4x.raw[level];
6851 		raw->plane[PLANE_PRIMARY] = active->sr.plane;
6852 		raw->plane[PLANE_CURSOR] = active->sr.cursor;
6853 		raw->plane[PLANE_SPRITE0] = 0;
6854 		raw->fbc = active->sr.fbc;
6855 
6856 		if (++level > max_level)
6857 			goto out;
6858 
6859 		raw = &crtc_state->wm.g4x.raw[level];
6860 		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6861 		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6862 		raw->plane[PLANE_SPRITE0] = 0;
6863 		raw->fbc = active->hpll.fbc;
6864 
6865 	out:
6866 		for_each_plane_id_on_crtc(crtc, plane_id)
6867 			g4x_raw_plane_wm_set(crtc_state, level,
6868 					     plane_id, USHRT_MAX);
6869 		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6870 
6871 		crtc_state->wm.g4x.optimal = *active;
6872 		crtc_state->wm.g4x.intermediate = *active;
6873 
6874 		drm_dbg_kms(&dev_priv->drm,
6875 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6876 			    pipe_name(pipe),
6877 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
6878 			    wm->pipe[pipe].plane[PLANE_CURSOR],
6879 			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6880 	}
6881 
6882 	drm_dbg_kms(&dev_priv->drm,
6883 		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6884 		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6885 	drm_dbg_kms(&dev_priv->drm,
6886 		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6887 		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6888 	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6889 		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6890 }
6891 
g4x_wm_sanitize(struct drm_i915_private * dev_priv)6892 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6893 {
6894 	struct intel_plane *plane;
6895 	struct intel_crtc *crtc;
6896 
6897 	mutex_lock(&dev_priv->wm.wm_mutex);
6898 
6899 	for_each_intel_plane(&dev_priv->drm, plane) {
6900 		struct intel_crtc *crtc =
6901 			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6902 		struct intel_crtc_state *crtc_state =
6903 			to_intel_crtc_state(crtc->base.state);
6904 		struct intel_plane_state *plane_state =
6905 			to_intel_plane_state(plane->base.state);
6906 		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6907 		enum plane_id plane_id = plane->id;
6908 		int level;
6909 
6910 		if (plane_state->uapi.visible)
6911 			continue;
6912 
6913 		for (level = 0; level < 3; level++) {
6914 			struct g4x_pipe_wm *raw =
6915 				&crtc_state->wm.g4x.raw[level];
6916 
6917 			raw->plane[plane_id] = 0;
6918 			wm_state->wm.plane[plane_id] = 0;
6919 		}
6920 
6921 		if (plane_id == PLANE_PRIMARY) {
6922 			for (level = 0; level < 3; level++) {
6923 				struct g4x_pipe_wm *raw =
6924 					&crtc_state->wm.g4x.raw[level];
6925 				raw->fbc = 0;
6926 			}
6927 
6928 			wm_state->sr.fbc = 0;
6929 			wm_state->hpll.fbc = 0;
6930 			wm_state->fbc_en = false;
6931 		}
6932 	}
6933 
6934 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6935 		struct intel_crtc_state *crtc_state =
6936 			to_intel_crtc_state(crtc->base.state);
6937 
6938 		crtc_state->wm.g4x.intermediate =
6939 			crtc_state->wm.g4x.optimal;
6940 		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6941 	}
6942 
6943 	g4x_program_watermarks(dev_priv);
6944 
6945 	mutex_unlock(&dev_priv->wm.wm_mutex);
6946 }
6947 
vlv_wm_get_hw_state(struct drm_i915_private * dev_priv)6948 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6949 {
6950 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6951 	struct intel_crtc *crtc;
6952 	u32 val;
6953 
6954 	vlv_read_wm_values(dev_priv, wm);
6955 
6956 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6957 	wm->level = VLV_WM_LEVEL_PM2;
6958 
6959 	if (IS_CHERRYVIEW(dev_priv)) {
6960 		vlv_punit_get(dev_priv);
6961 
6962 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6963 		if (val & DSP_MAXFIFO_PM5_ENABLE)
6964 			wm->level = VLV_WM_LEVEL_PM5;
6965 
6966 		/*
6967 		 * If DDR DVFS is disabled in the BIOS, Punit
6968 		 * will never ack the request. So if that happens
6969 		 * assume we don't have to enable/disable DDR DVFS
6970 		 * dynamically. To test that just set the REQ_ACK
6971 		 * bit to poke the Punit, but don't change the
6972 		 * HIGH/LOW bits so that we don't actually change
6973 		 * the current state.
6974 		 */
6975 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6976 		val |= FORCE_DDR_FREQ_REQ_ACK;
6977 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6978 
6979 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6980 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6981 			drm_dbg_kms(&dev_priv->drm,
6982 				    "Punit not acking DDR DVFS request, "
6983 				    "assuming DDR DVFS is disabled\n");
6984 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6985 		} else {
6986 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6987 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6988 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
6989 		}
6990 
6991 		vlv_punit_put(dev_priv);
6992 	}
6993 
6994 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6995 		struct intel_crtc_state *crtc_state =
6996 			to_intel_crtc_state(crtc->base.state);
6997 		struct vlv_wm_state *active = &crtc->wm.active.vlv;
6998 		const struct vlv_fifo_state *fifo_state =
6999 			&crtc_state->wm.vlv.fifo_state;
7000 		enum pipe pipe = crtc->pipe;
7001 		enum plane_id plane_id;
7002 		int level;
7003 
7004 		vlv_get_fifo_size(crtc_state);
7005 
7006 		active->num_levels = wm->level + 1;
7007 		active->cxsr = wm->cxsr;
7008 
7009 		for (level = 0; level < active->num_levels; level++) {
7010 			struct g4x_pipe_wm *raw =
7011 				&crtc_state->wm.vlv.raw[level];
7012 
7013 			active->sr[level].plane = wm->sr.plane;
7014 			active->sr[level].cursor = wm->sr.cursor;
7015 
7016 			for_each_plane_id_on_crtc(crtc, plane_id) {
7017 				active->wm[level].plane[plane_id] =
7018 					wm->pipe[pipe].plane[plane_id];
7019 
7020 				raw->plane[plane_id] =
7021 					vlv_invert_wm_value(active->wm[level].plane[plane_id],
7022 							    fifo_state->plane[plane_id]);
7023 			}
7024 		}
7025 
7026 		for_each_plane_id_on_crtc(crtc, plane_id)
7027 			vlv_raw_plane_wm_set(crtc_state, level,
7028 					     plane_id, USHRT_MAX);
7029 		vlv_invalidate_wms(crtc, active, level);
7030 
7031 		crtc_state->wm.vlv.optimal = *active;
7032 		crtc_state->wm.vlv.intermediate = *active;
7033 
7034 		drm_dbg_kms(&dev_priv->drm,
7035 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
7036 			    pipe_name(pipe),
7037 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
7038 			    wm->pipe[pipe].plane[PLANE_CURSOR],
7039 			    wm->pipe[pipe].plane[PLANE_SPRITE0],
7040 			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
7041 	}
7042 
7043 	drm_dbg_kms(&dev_priv->drm,
7044 		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
7045 		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
7046 }
7047 
vlv_wm_sanitize(struct drm_i915_private * dev_priv)7048 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
7049 {
7050 	struct intel_plane *plane;
7051 	struct intel_crtc *crtc;
7052 
7053 	mutex_lock(&dev_priv->wm.wm_mutex);
7054 
7055 	for_each_intel_plane(&dev_priv->drm, plane) {
7056 		struct intel_crtc *crtc =
7057 			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
7058 		struct intel_crtc_state *crtc_state =
7059 			to_intel_crtc_state(crtc->base.state);
7060 		struct intel_plane_state *plane_state =
7061 			to_intel_plane_state(plane->base.state);
7062 		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
7063 		const struct vlv_fifo_state *fifo_state =
7064 			&crtc_state->wm.vlv.fifo_state;
7065 		enum plane_id plane_id = plane->id;
7066 		int level;
7067 
7068 		if (plane_state->uapi.visible)
7069 			continue;
7070 
7071 		for (level = 0; level < wm_state->num_levels; level++) {
7072 			struct g4x_pipe_wm *raw =
7073 				&crtc_state->wm.vlv.raw[level];
7074 
7075 			raw->plane[plane_id] = 0;
7076 
7077 			wm_state->wm[level].plane[plane_id] =
7078 				vlv_invert_wm_value(raw->plane[plane_id],
7079 						    fifo_state->plane[plane_id]);
7080 		}
7081 	}
7082 
7083 	for_each_intel_crtc(&dev_priv->drm, crtc) {
7084 		struct intel_crtc_state *crtc_state =
7085 			to_intel_crtc_state(crtc->base.state);
7086 
7087 		crtc_state->wm.vlv.intermediate =
7088 			crtc_state->wm.vlv.optimal;
7089 		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
7090 	}
7091 
7092 	vlv_program_watermarks(dev_priv);
7093 
7094 	mutex_unlock(&dev_priv->wm.wm_mutex);
7095 }
7096 
7097 /*
7098  * FIXME should probably kill this and improve
7099  * the real watermark readout/sanitation instead
7100  */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)7101 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7102 {
7103 	intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM1_LP_SR_EN);
7104 	intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM1_LP_SR_EN);
7105 	intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM1_LP_SR_EN);
7106 
7107 	/*
7108 	 * Don't touch WM1S_LP_EN here.
7109 	 * Doing so could cause underruns.
7110 	 */
7111 }
7112 
ilk_wm_get_hw_state(struct drm_i915_private * dev_priv)7113 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
7114 {
7115 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
7116 	struct intel_crtc *crtc;
7117 
7118 	ilk_init_lp_watermarks(dev_priv);
7119 
7120 	for_each_intel_crtc(&dev_priv->drm, crtc)
7121 		ilk_pipe_wm_get_hw_state(crtc);
7122 
7123 	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
7124 	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
7125 	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
7126 
7127 	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
7128 	if (DISPLAY_VER(dev_priv) >= 7) {
7129 		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
7130 		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
7131 	}
7132 
7133 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7134 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
7135 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7136 	else if (IS_IVYBRIDGE(dev_priv))
7137 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
7138 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7139 
7140 	hw->enable_fbc_wm =
7141 		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
7142 }
7143 
7144 /**
7145  * intel_update_watermarks - update FIFO watermark values based on current modes
7146  * @crtc: the #intel_crtc on which to compute the WM
7147  *
7148  * Calculate watermark values for the various WM regs based on current mode
7149  * and plane configuration.
7150  *
7151  * There are several cases to deal with here:
7152  *   - normal (i.e. non-self-refresh)
7153  *   - self-refresh (SR) mode
7154  *   - lines are large relative to FIFO size (buffer can hold up to 2)
7155  *   - lines are small relative to FIFO size (buffer can hold more than 2
7156  *     lines), so need to account for TLB latency
7157  *
7158  *   The normal calculation is:
7159  *     watermark = dotclock * bytes per pixel * latency
7160  *   where latency is platform & configuration dependent (we assume pessimal
7161  *   values here).
7162  *
7163  *   The SR calculation is:
7164  *     watermark = (trunc(latency/line time)+1) * surface width *
7165  *       bytes per pixel
7166  *   where
7167  *     line time = htotal / dotclock
7168  *     surface width = hdisplay for normal plane and 64 for cursor
7169  *   and latency is assumed to be high, as above.
7170  *
7171  * The final value programmed to the register should always be rounded up,
7172  * and include an extra 2 entries to account for clock crossings.
7173  *
7174  * We don't use the sprite, so we can ignore that.  And on Crestline we have
7175  * to set the non-SR watermarks to 8.
7176  */
intel_update_watermarks(struct intel_crtc * crtc)7177 void intel_update_watermarks(struct intel_crtc *crtc)
7178 {
7179 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7180 
7181 	if (dev_priv->display.update_wm)
7182 		dev_priv->display.update_wm(crtc);
7183 }
7184 
intel_enable_ipc(struct drm_i915_private * dev_priv)7185 void intel_enable_ipc(struct drm_i915_private *dev_priv)
7186 {
7187 	u32 val;
7188 
7189 	if (!HAS_IPC(dev_priv))
7190 		return;
7191 
7192 	val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
7193 
7194 	if (dev_priv->ipc_enabled)
7195 		val |= DISP_IPC_ENABLE;
7196 	else
7197 		val &= ~DISP_IPC_ENABLE;
7198 
7199 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
7200 }
7201 
intel_can_enable_ipc(struct drm_i915_private * dev_priv)7202 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
7203 {
7204 	/* Display WA #0477 WaDisableIPC: skl */
7205 	if (IS_SKYLAKE(dev_priv))
7206 		return false;
7207 
7208 	/* Display WA #1141: SKL:all KBL:all CFL */
7209 	if (IS_KABYLAKE(dev_priv) ||
7210 	    IS_COFFEELAKE(dev_priv) ||
7211 	    IS_COMETLAKE(dev_priv))
7212 		return dev_priv->dram_info.symmetric_memory;
7213 
7214 	return true;
7215 }
7216 
intel_init_ipc(struct drm_i915_private * dev_priv)7217 void intel_init_ipc(struct drm_i915_private *dev_priv)
7218 {
7219 	if (!HAS_IPC(dev_priv))
7220 		return;
7221 
7222 	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
7223 
7224 	intel_enable_ipc(dev_priv);
7225 }
7226 
ibx_init_clock_gating(struct drm_i915_private * dev_priv)7227 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7228 {
7229 	/*
7230 	 * On Ibex Peak and Cougar Point, we need to disable clock
7231 	 * gating for the panel power sequencer or it will fail to
7232 	 * start up when no ports are active.
7233 	 */
7234 	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7235 }
7236 
g4x_disable_trickle_feed(struct drm_i915_private * dev_priv)7237 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7238 {
7239 	enum pipe pipe;
7240 
7241 	for_each_pipe(dev_priv, pipe) {
7242 		intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
7243 			   intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
7244 			   DISPPLANE_TRICKLE_FEED_DISABLE);
7245 
7246 		intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
7247 		intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
7248 	}
7249 }
7250 
ilk_init_clock_gating(struct drm_i915_private * dev_priv)7251 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
7252 {
7253 	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7254 
7255 	/*
7256 	 * Required for FBC
7257 	 * WaFbcDisableDpfcClockGating:ilk
7258 	 */
7259 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7260 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7261 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7262 
7263 	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
7264 		   MARIUNIT_CLOCK_GATE_DISABLE |
7265 		   SVSMUNIT_CLOCK_GATE_DISABLE);
7266 	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
7267 		   VFMUNIT_CLOCK_GATE_DISABLE);
7268 
7269 	/*
7270 	 * According to the spec the following bits should be set in
7271 	 * order to enable memory self-refresh
7272 	 * The bit 22/21 of 0x42004
7273 	 * The bit 5 of 0x42020
7274 	 * The bit 15 of 0x45000
7275 	 */
7276 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7277 		   (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7278 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7279 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7280 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
7281 		   (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7282 		    DISP_FBC_WM_DIS));
7283 
7284 	/*
7285 	 * Based on the document from hardware guys the following bits
7286 	 * should be set unconditionally in order to enable FBC.
7287 	 * The bit 22 of 0x42000
7288 	 * The bit 22 of 0x42004
7289 	 * The bit 7,8,9 of 0x42020.
7290 	 */
7291 	if (IS_IRONLAKE_M(dev_priv)) {
7292 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
7293 		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7294 			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7295 			   ILK_FBCQ_DIS);
7296 		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7297 			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7298 			   ILK_DPARB_GATE);
7299 	}
7300 
7301 	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7302 
7303 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7304 		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7305 		   ILK_ELPIN_409_SELECT);
7306 
7307 	g4x_disable_trickle_feed(dev_priv);
7308 
7309 	ibx_init_clock_gating(dev_priv);
7310 }
7311 
cpt_init_clock_gating(struct drm_i915_private * dev_priv)7312 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7313 {
7314 	enum pipe pipe;
7315 	u32 val;
7316 
7317 	/*
7318 	 * On Ibex Peak and Cougar Point, we need to disable clock
7319 	 * gating for the panel power sequencer or it will fail to
7320 	 * start up when no ports are active.
7321 	 */
7322 	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7323 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7324 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7325 	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
7326 		   DPLS_EDP_PPS_FIX_DIS);
7327 	/* The below fixes the weird display corruption, a few pixels shifted
7328 	 * downward, on (only) LVDS of some HP laptops with IVY.
7329 	 */
7330 	for_each_pipe(dev_priv, pipe) {
7331 		val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
7332 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7333 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7334 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7335 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7336 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7337 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7338 		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
7339 	}
7340 	/* WADP0ClockGatingDisable */
7341 	for_each_pipe(dev_priv, pipe) {
7342 		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
7343 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7344 	}
7345 }
7346 
gen6_check_mch_setup(struct drm_i915_private * dev_priv)7347 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7348 {
7349 	u32 tmp;
7350 
7351 	tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
7352 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7353 		drm_dbg_kms(&dev_priv->drm,
7354 			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7355 			    tmp);
7356 }
7357 
gen6_init_clock_gating(struct drm_i915_private * dev_priv)7358 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7359 {
7360 	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7361 
7362 	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7363 
7364 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7365 		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7366 		   ILK_ELPIN_409_SELECT);
7367 
7368 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7369 		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7370 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7371 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7372 
7373 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7374 	 * gating disable must be set.  Failure to set it results in
7375 	 * flickering pixels due to Z write ordering failures after
7376 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
7377 	 * Sanctuary and Tropics, and apparently anything else with
7378 	 * alpha test or pixel discard.
7379 	 *
7380 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
7381 	 * but we didn't debug actual testcases to find it out.
7382 	 *
7383 	 * WaDisableRCCUnitClockGating:snb
7384 	 * WaDisableRCPBUnitClockGating:snb
7385 	 */
7386 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7387 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7388 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7389 
7390 	/*
7391 	 * According to the spec the following bits should be
7392 	 * set in order to enable memory self-refresh and fbc:
7393 	 * The bit21 and bit22 of 0x42000
7394 	 * The bit21 and bit22 of 0x42004
7395 	 * The bit5 and bit7 of 0x42020
7396 	 * The bit14 of 0x70180
7397 	 * The bit14 of 0x71180
7398 	 *
7399 	 * WaFbcAsynchFlipDisableFbcQueue:snb
7400 	 */
7401 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7402 		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7403 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7404 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7405 		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7406 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7407 	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
7408 		   intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
7409 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7410 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7411 
7412 	g4x_disable_trickle_feed(dev_priv);
7413 
7414 	cpt_init_clock_gating(dev_priv);
7415 
7416 	gen6_check_mch_setup(dev_priv);
7417 }
7418 
lpt_init_clock_gating(struct drm_i915_private * dev_priv)7419 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7420 {
7421 	/*
7422 	 * TODO: this bit should only be enabled when really needed, then
7423 	 * disabled when not needed anymore in order to save power.
7424 	 */
7425 	if (HAS_PCH_LPT_LP(dev_priv))
7426 		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
7427 			   intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7428 			   PCH_LP_PARTITION_LEVEL_DISABLE);
7429 
7430 	/* WADPOClockGatingDisable:hsw */
7431 	intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
7432 		   intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
7433 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7434 }
7435 
lpt_suspend_hw(struct drm_i915_private * dev_priv)7436 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7437 {
7438 	if (HAS_PCH_LPT_LP(dev_priv)) {
7439 		u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
7440 
7441 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7442 		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
7443 	}
7444 }
7445 
gen8_set_l3sqc_credits(struct drm_i915_private * dev_priv,int general_prio_credits,int high_prio_credits)7446 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7447 				   int general_prio_credits,
7448 				   int high_prio_credits)
7449 {
7450 	u32 misccpctl;
7451 	u32 val;
7452 
7453 	/* WaTempDisableDOPClkGating:bdw */
7454 	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
7455 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7456 
7457 	val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7458 	val &= ~L3_PRIO_CREDITS_MASK;
7459 	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
7460 	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7461 	intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
7462 
7463 	/*
7464 	 * Wait at least 100 clocks before re-enabling clock gating.
7465 	 * See the definition of L3SQCREG1 in BSpec.
7466 	 */
7467 	intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7468 	udelay(1);
7469 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
7470 }
7471 
icl_init_clock_gating(struct drm_i915_private * dev_priv)7472 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
7473 {
7474 	/* Wa_1409120013:icl,ehl */
7475 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7476 		   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7477 
7478 	/*Wa_14010594013:icl, ehl */
7479 	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7480 			 0, ICL_DELAY_PMRSP);
7481 }
7482 
gen12lp_init_clock_gating(struct drm_i915_private * dev_priv)7483 static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
7484 {
7485 	/* Wa_1409120013:tgl,rkl,adl-s,dg1 */
7486 	if (IS_TIGERLAKE(dev_priv) || IS_ROCKETLAKE(dev_priv) ||
7487 	    IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv))
7488 		intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7489 				   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7490 
7491 	/* Wa_1409825376:tgl (pre-prod)*/
7492 	if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
7493 		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7494 			   TGL_VRH_GATING_DIS);
7495 
7496 	/* Wa_14013723622:tgl,rkl,dg1,adl-s */
7497 	if (DISPLAY_VER(dev_priv) == 12)
7498 		intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY,
7499 				 CLKREQ_POLICY_MEM_UP_OVRD, 0);
7500 }
7501 
adlp_init_clock_gating(struct drm_i915_private * dev_priv)7502 static void adlp_init_clock_gating(struct drm_i915_private *dev_priv)
7503 {
7504 	gen12lp_init_clock_gating(dev_priv);
7505 
7506 	/* Wa_22011091694:adlp */
7507 	intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS);
7508 }
7509 
dg1_init_clock_gating(struct drm_i915_private * dev_priv)7510 static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
7511 {
7512 	gen12lp_init_clock_gating(dev_priv);
7513 
7514 	/* Wa_1409836686:dg1[a0] */
7515 	if (IS_DG1_GT_STEP(dev_priv, STEP_A0, STEP_B0))
7516 		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7517 			   DPT_GATING_DIS);
7518 }
7519 
cnp_init_clock_gating(struct drm_i915_private * dev_priv)7520 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
7521 {
7522 	if (!HAS_PCH_CNP(dev_priv))
7523 		return;
7524 
7525 	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7526 	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7527 		   CNP_PWM_CGE_GATING_DISABLE);
7528 }
7529 
cfl_init_clock_gating(struct drm_i915_private * dev_priv)7530 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7531 {
7532 	cnp_init_clock_gating(dev_priv);
7533 	gen9_init_clock_gating(dev_priv);
7534 
7535 	/* WAC6entrylatency:cfl */
7536 	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7537 		   FBC_LLC_FULLY_OPEN);
7538 
7539 	/*
7540 	 * WaFbcTurnOffFbcWatermark:cfl
7541 	 * Display WA #0562: cfl
7542 	 */
7543 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7544 		   DISP_FBC_WM_DIS);
7545 
7546 	/*
7547 	 * WaFbcNukeOnHostModify:cfl
7548 	 * Display WA #0873: cfl
7549 	 */
7550 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7551 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7552 }
7553 
kbl_init_clock_gating(struct drm_i915_private * dev_priv)7554 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7555 {
7556 	gen9_init_clock_gating(dev_priv);
7557 
7558 	/* WAC6entrylatency:kbl */
7559 	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7560 		   FBC_LLC_FULLY_OPEN);
7561 
7562 	/* WaDisableSDEUnitClockGating:kbl */
7563 	if (IS_KBL_GT_STEP(dev_priv, 0, STEP_C0))
7564 		intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7565 			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7566 
7567 	/* WaDisableGamClockGating:kbl */
7568 	if (IS_KBL_GT_STEP(dev_priv, 0, STEP_C0))
7569 		intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7570 			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7571 
7572 	/*
7573 	 * WaFbcTurnOffFbcWatermark:kbl
7574 	 * Display WA #0562: kbl
7575 	 */
7576 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7577 		   DISP_FBC_WM_DIS);
7578 
7579 	/*
7580 	 * WaFbcNukeOnHostModify:kbl
7581 	 * Display WA #0873: kbl
7582 	 */
7583 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7584 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7585 }
7586 
skl_init_clock_gating(struct drm_i915_private * dev_priv)7587 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7588 {
7589 	gen9_init_clock_gating(dev_priv);
7590 
7591 	/* WaDisableDopClockGating:skl */
7592 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
7593 		   ~GEN7_DOP_CLOCK_GATE_ENABLE);
7594 
7595 	/* WAC6entrylatency:skl */
7596 	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7597 		   FBC_LLC_FULLY_OPEN);
7598 
7599 	/*
7600 	 * WaFbcTurnOffFbcWatermark:skl
7601 	 * Display WA #0562: skl
7602 	 */
7603 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7604 		   DISP_FBC_WM_DIS);
7605 
7606 	/*
7607 	 * WaFbcNukeOnHostModify:skl
7608 	 * Display WA #0873: skl
7609 	 */
7610 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7611 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7612 
7613 	/*
7614 	 * WaFbcHighMemBwCorruptionAvoidance:skl
7615 	 * Display WA #0883: skl
7616 	 */
7617 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7618 		   ILK_DPFC_DISABLE_DUMMY0);
7619 }
7620 
bdw_init_clock_gating(struct drm_i915_private * dev_priv)7621 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7622 {
7623 	enum pipe pipe;
7624 
7625 	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7626 	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7627 		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7628 		   HSW_FBCQ_DIS);
7629 
7630 	/* WaSwitchSolVfFArbitrationPriority:bdw */
7631 	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7632 
7633 	/* WaPsrDPAMaskVBlankInSRD:bdw */
7634 	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
7635 		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7636 
7637 	for_each_pipe(dev_priv, pipe) {
7638 		/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7639 		intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7640 			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
7641 			   BDW_DPRS_MASK_VBLANK_SRD);
7642 
7643 		/* Undocumented but fixes async flip + VT-d corruption */
7644 		if (intel_vtd_active())
7645 			intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7646 					 HSW_PRI_STRETCH_MAX_MASK, HSW_PRI_STRETCH_MAX_X1);
7647 	}
7648 
7649 	/* WaVSRefCountFullforceMissDisable:bdw */
7650 	/* WaDSRefCountFullforceMissDisable:bdw */
7651 	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7652 		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7653 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7654 
7655 	intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7656 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7657 
7658 	/* WaDisableSDEUnitClockGating:bdw */
7659 	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7660 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7661 
7662 	/* WaProgramL3SqcReg1Default:bdw */
7663 	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7664 
7665 	/* WaKVMNotificationOnConfigChange:bdw */
7666 	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
7667 		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7668 
7669 	lpt_init_clock_gating(dev_priv);
7670 
7671 	/* WaDisableDopClockGating:bdw
7672 	 *
7673 	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7674 	 * clock gating.
7675 	 */
7676 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7677 		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7678 }
7679 
hsw_init_clock_gating(struct drm_i915_private * dev_priv)7680 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7681 {
7682 	enum pipe pipe;
7683 
7684 	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7685 	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7686 		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7687 		   HSW_FBCQ_DIS);
7688 
7689 	for_each_pipe(dev_priv, pipe) {
7690 		/* Undocumented but fixes async flip + VT-d corruption */
7691 		if (intel_vtd_active())
7692 			intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7693 					 HSW_PRI_STRETCH_MAX_MASK, HSW_PRI_STRETCH_MAX_X1);
7694 	}
7695 
7696 	/* This is required by WaCatErrorRejectionIssue:hsw */
7697 	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7698 		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7699 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7700 
7701 	/* WaSwitchSolVfFArbitrationPriority:hsw */
7702 	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7703 
7704 	lpt_init_clock_gating(dev_priv);
7705 }
7706 
ivb_init_clock_gating(struct drm_i915_private * dev_priv)7707 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7708 {
7709 	u32 snpcr;
7710 
7711 	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7712 
7713 	/* WaFbcAsynchFlipDisableFbcQueue:ivb */
7714 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7715 		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7716 		   ILK_FBCQ_DIS);
7717 
7718 	/* WaDisableBackToBackFlipFix:ivb */
7719 	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7720 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7721 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7722 
7723 	if (IS_IVB_GT1(dev_priv))
7724 		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7725 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7726 	else {
7727 		/* must write both registers */
7728 		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7729 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7730 		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
7731 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7732 	}
7733 
7734 	/*
7735 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7736 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7737 	 */
7738 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7739 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7740 
7741 	/* This is required by WaCatErrorRejectionIssue:ivb */
7742 	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7743 			intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7744 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7745 
7746 	g4x_disable_trickle_feed(dev_priv);
7747 
7748 	snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
7749 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
7750 	snpcr |= GEN6_MBC_SNPCR_MED;
7751 	intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
7752 
7753 	if (!HAS_PCH_NOP(dev_priv))
7754 		cpt_init_clock_gating(dev_priv);
7755 
7756 	gen6_check_mch_setup(dev_priv);
7757 }
7758 
vlv_init_clock_gating(struct drm_i915_private * dev_priv)7759 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7760 {
7761 	/* WaDisableBackToBackFlipFix:vlv */
7762 	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7763 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7764 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7765 
7766 	/* WaDisableDopClockGating:vlv */
7767 	intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7768 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7769 
7770 	/* This is required by WaCatErrorRejectionIssue:vlv */
7771 	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7772 		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7773 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7774 
7775 	/*
7776 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7777 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7778 	 */
7779 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7780 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7781 
7782 	/* WaDisableL3Bank2xClockGate:vlv
7783 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
7784 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7785 	intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
7786 		   intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7787 
7788 	/*
7789 	 * WaDisableVLVClockGating_VBIIssue:vlv
7790 	 * Disable clock gating on th GCFG unit to prevent a delay
7791 	 * in the reporting of vblank events.
7792 	 */
7793 	intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7794 }
7795 
chv_init_clock_gating(struct drm_i915_private * dev_priv)7796 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7797 {
7798 	/* WaVSRefCountFullforceMissDisable:chv */
7799 	/* WaDSRefCountFullforceMissDisable:chv */
7800 	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7801 		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7802 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7803 
7804 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7805 	intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7806 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7807 
7808 	/* WaDisableCSUnitClockGating:chv */
7809 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7810 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7811 
7812 	/* WaDisableSDEUnitClockGating:chv */
7813 	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7814 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7815 
7816 	/*
7817 	 * WaProgramL3SqcReg1Default:chv
7818 	 * See gfxspecs/Related Documents/Performance Guide/
7819 	 * LSQC Setting Recommendations.
7820 	 */
7821 	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7822 }
7823 
g4x_init_clock_gating(struct drm_i915_private * dev_priv)7824 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7825 {
7826 	u32 dspclk_gate;
7827 
7828 	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
7829 	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7830 		   GS_UNIT_CLOCK_GATE_DISABLE |
7831 		   CL_UNIT_CLOCK_GATE_DISABLE);
7832 	intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
7833 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7834 		OVRUNIT_CLOCK_GATE_DISABLE |
7835 		OVCUNIT_CLOCK_GATE_DISABLE;
7836 	if (IS_GM45(dev_priv))
7837 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7838 	intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
7839 
7840 	g4x_disable_trickle_feed(dev_priv);
7841 }
7842 
i965gm_init_clock_gating(struct drm_i915_private * dev_priv)7843 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7844 {
7845 	struct intel_uncore *uncore = &dev_priv->uncore;
7846 
7847 	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7848 	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7849 	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7850 	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7851 	intel_uncore_write16(uncore, DEUC, 0);
7852 	intel_uncore_write(uncore,
7853 			   MI_ARB_STATE,
7854 			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7855 }
7856 
i965g_init_clock_gating(struct drm_i915_private * dev_priv)7857 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7858 {
7859 	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7860 		   I965_RCC_CLOCK_GATE_DISABLE |
7861 		   I965_RCPB_CLOCK_GATE_DISABLE |
7862 		   I965_ISC_CLOCK_GATE_DISABLE |
7863 		   I965_FBC_CLOCK_GATE_DISABLE);
7864 	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
7865 	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7866 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7867 }
7868 
gen3_init_clock_gating(struct drm_i915_private * dev_priv)7869 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7870 {
7871 	u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
7872 
7873 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7874 		DSTATE_DOT_CLOCK_GATING;
7875 	intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
7876 
7877 	if (IS_PINEVIEW(dev_priv))
7878 		intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7879 
7880 	/* IIR "flip pending" means done if this bit is set */
7881 	intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7882 
7883 	/* interrupts should cause a wake up from C3 */
7884 	intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7885 
7886 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7887 	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7888 
7889 	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7890 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7891 }
7892 
i85x_init_clock_gating(struct drm_i915_private * dev_priv)7893 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7894 {
7895 	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7896 
7897 	/* interrupts should cause a wake up from C3 */
7898 	intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7899 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7900 
7901 	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7902 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7903 
7904 	/*
7905 	 * Have FBC ignore 3D activity since we use software
7906 	 * render tracking, and otherwise a pure 3D workload
7907 	 * (even if it just renders a single frame and then does
7908 	 * abosultely nothing) would not allow FBC to recompress
7909 	 * until a 2D blit occurs.
7910 	 */
7911 	intel_uncore_write(&dev_priv->uncore, SCPD0,
7912 		   _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7913 }
7914 
i830_init_clock_gating(struct drm_i915_private * dev_priv)7915 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7916 {
7917 	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7918 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7919 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7920 }
7921 
intel_init_clock_gating(struct drm_i915_private * dev_priv)7922 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7923 {
7924 	dev_priv->display.init_clock_gating(dev_priv);
7925 }
7926 
intel_suspend_hw(struct drm_i915_private * dev_priv)7927 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7928 {
7929 	if (HAS_PCH_LPT(dev_priv))
7930 		lpt_suspend_hw(dev_priv);
7931 }
7932 
nop_init_clock_gating(struct drm_i915_private * dev_priv)7933 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7934 {
7935 	drm_dbg_kms(&dev_priv->drm,
7936 		    "No clock gating settings or workarounds applied.\n");
7937 }
7938 
7939 /**
7940  * intel_init_clock_gating_hooks - setup the clock gating hooks
7941  * @dev_priv: device private
7942  *
7943  * Setup the hooks that configure which clocks of a given platform can be
7944  * gated and also apply various GT and display specific workarounds for these
7945  * platforms. Note that some GT specific workarounds are applied separately
7946  * when GPU contexts or batchbuffers start their execution.
7947  */
intel_init_clock_gating_hooks(struct drm_i915_private * dev_priv)7948 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7949 {
7950 	if (IS_ALDERLAKE_P(dev_priv))
7951 		dev_priv->display.init_clock_gating = adlp_init_clock_gating;
7952 	else if (IS_DG1(dev_priv))
7953 		dev_priv->display.init_clock_gating = dg1_init_clock_gating;
7954 	else if (GRAPHICS_VER(dev_priv) == 12)
7955 		dev_priv->display.init_clock_gating = gen12lp_init_clock_gating;
7956 	else if (GRAPHICS_VER(dev_priv) == 11)
7957 		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7958 	else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7959 		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7960 	else if (IS_SKYLAKE(dev_priv))
7961 		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7962 	else if (IS_KABYLAKE(dev_priv))
7963 		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7964 	else if (IS_BROXTON(dev_priv))
7965 		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7966 	else if (IS_GEMINILAKE(dev_priv))
7967 		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7968 	else if (IS_BROADWELL(dev_priv))
7969 		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7970 	else if (IS_CHERRYVIEW(dev_priv))
7971 		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7972 	else if (IS_HASWELL(dev_priv))
7973 		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7974 	else if (IS_IVYBRIDGE(dev_priv))
7975 		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7976 	else if (IS_VALLEYVIEW(dev_priv))
7977 		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7978 	else if (GRAPHICS_VER(dev_priv) == 6)
7979 		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7980 	else if (GRAPHICS_VER(dev_priv) == 5)
7981 		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7982 	else if (IS_G4X(dev_priv))
7983 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7984 	else if (IS_I965GM(dev_priv))
7985 		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7986 	else if (IS_I965G(dev_priv))
7987 		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7988 	else if (GRAPHICS_VER(dev_priv) == 3)
7989 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7990 	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7991 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7992 	else if (GRAPHICS_VER(dev_priv) == 2)
7993 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
7994 	else {
7995 		MISSING_CASE(INTEL_DEVID(dev_priv));
7996 		dev_priv->display.init_clock_gating = nop_init_clock_gating;
7997 	}
7998 }
7999 
8000 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_i915_private * dev_priv)8001 void intel_init_pm(struct drm_i915_private *dev_priv)
8002 {
8003 	/* For cxsr */
8004 	if (IS_PINEVIEW(dev_priv))
8005 		pnv_get_mem_freq(dev_priv);
8006 	else if (GRAPHICS_VER(dev_priv) == 5)
8007 		ilk_get_mem_freq(dev_priv);
8008 
8009 	if (intel_has_sagv(dev_priv))
8010 		skl_setup_sagv_block_time(dev_priv);
8011 
8012 	/* For FIFO watermark updates */
8013 	if (DISPLAY_VER(dev_priv) >= 9) {
8014 		skl_setup_wm_latency(dev_priv);
8015 		dev_priv->display.compute_global_watermarks = skl_compute_wm;
8016 	} else if (HAS_PCH_SPLIT(dev_priv)) {
8017 		ilk_setup_wm_latency(dev_priv);
8018 
8019 		if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->wm.pri_latency[1] &&
8020 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8021 		    (DISPLAY_VER(dev_priv) != 5 && dev_priv->wm.pri_latency[0] &&
8022 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8023 			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8024 			dev_priv->display.compute_intermediate_wm =
8025 				ilk_compute_intermediate_wm;
8026 			dev_priv->display.initial_watermarks =
8027 				ilk_initial_watermarks;
8028 			dev_priv->display.optimize_watermarks =
8029 				ilk_optimize_watermarks;
8030 		} else {
8031 			drm_dbg_kms(&dev_priv->drm,
8032 				    "Failed to read display plane latency. "
8033 				    "Disable CxSR\n");
8034 		}
8035 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8036 		vlv_setup_wm_latency(dev_priv);
8037 		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8038 		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8039 		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8040 		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8041 		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8042 	} else if (IS_G4X(dev_priv)) {
8043 		g4x_setup_wm_latency(dev_priv);
8044 		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
8045 		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
8046 		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
8047 		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8048 	} else if (IS_PINEVIEW(dev_priv)) {
8049 		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
8050 					    dev_priv->is_ddr3,
8051 					    dev_priv->fsb_freq,
8052 					    dev_priv->mem_freq)) {
8053 			drm_info(&dev_priv->drm,
8054 				 "failed to find known CxSR latency "
8055 				 "(found ddr%s fsb freq %d, mem freq %d), "
8056 				 "disabling CxSR\n",
8057 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8058 				 dev_priv->fsb_freq, dev_priv->mem_freq);
8059 			/* Disable CxSR and never update its watermark again */
8060 			intel_set_memory_cxsr(dev_priv, false);
8061 			dev_priv->display.update_wm = NULL;
8062 		} else
8063 			dev_priv->display.update_wm = pnv_update_wm;
8064 	} else if (DISPLAY_VER(dev_priv) == 4) {
8065 		dev_priv->display.update_wm = i965_update_wm;
8066 	} else if (DISPLAY_VER(dev_priv) == 3) {
8067 		dev_priv->display.update_wm = i9xx_update_wm;
8068 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8069 	} else if (DISPLAY_VER(dev_priv) == 2) {
8070 		if (INTEL_NUM_PIPES(dev_priv) == 1) {
8071 			dev_priv->display.update_wm = i845_update_wm;
8072 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8073 		} else {
8074 			dev_priv->display.update_wm = i9xx_update_wm;
8075 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8076 		}
8077 	} else {
8078 		drm_err(&dev_priv->drm,
8079 			"unexpected fall-through in %s\n", __func__);
8080 	}
8081 }
8082 
intel_pm_setup(struct drm_i915_private * dev_priv)8083 void intel_pm_setup(struct drm_i915_private *dev_priv)
8084 {
8085 	dev_priv->runtime_pm.suspended = false;
8086 	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
8087 }
8088 
intel_dbuf_duplicate_state(struct intel_global_obj * obj)8089 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
8090 {
8091 	struct intel_dbuf_state *dbuf_state;
8092 
8093 	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
8094 	if (!dbuf_state)
8095 		return NULL;
8096 
8097 	return &dbuf_state->base;
8098 }
8099 
intel_dbuf_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)8100 static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
8101 				     struct intel_global_state *state)
8102 {
8103 	kfree(state);
8104 }
8105 
8106 static const struct intel_global_state_funcs intel_dbuf_funcs = {
8107 	.atomic_duplicate_state = intel_dbuf_duplicate_state,
8108 	.atomic_destroy_state = intel_dbuf_destroy_state,
8109 };
8110 
8111 struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state * state)8112 intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
8113 {
8114 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8115 	struct intel_global_state *dbuf_state;
8116 
8117 	dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
8118 	if (IS_ERR(dbuf_state))
8119 		return ERR_CAST(dbuf_state);
8120 
8121 	return to_intel_dbuf_state(dbuf_state);
8122 }
8123 
intel_dbuf_init(struct drm_i915_private * dev_priv)8124 int intel_dbuf_init(struct drm_i915_private *dev_priv)
8125 {
8126 	struct intel_dbuf_state *dbuf_state;
8127 
8128 	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
8129 	if (!dbuf_state)
8130 		return -ENOMEM;
8131 
8132 	intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
8133 				     &dbuf_state->base, &intel_dbuf_funcs);
8134 
8135 	return 0;
8136 }
8137 
8138 /*
8139  * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
8140  * update the request state of all DBUS slices.
8141  */
update_mbus_pre_enable(struct intel_atomic_state * state)8142 static void update_mbus_pre_enable(struct intel_atomic_state *state)
8143 {
8144 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8145 	u32 mbus_ctl, dbuf_min_tracker_val;
8146 	enum dbuf_slice slice;
8147 	const struct intel_dbuf_state *dbuf_state =
8148 		intel_atomic_get_new_dbuf_state(state);
8149 
8150 	if (!IS_ALDERLAKE_P(dev_priv))
8151 		return;
8152 
8153 	/*
8154 	 * TODO: Implement vblank synchronized MBUS joining changes.
8155 	 * Must be properly coordinated with dbuf reprogramming.
8156 	 */
8157 	if (dbuf_state->joined_mbus) {
8158 		mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
8159 			MBUS_JOIN_PIPE_SELECT_NONE;
8160 		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
8161 	} else {
8162 		mbus_ctl = MBUS_HASHING_MODE_2x2 |
8163 			MBUS_JOIN_PIPE_SELECT_NONE;
8164 		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
8165 	}
8166 
8167 	intel_de_rmw(dev_priv, MBUS_CTL,
8168 		     MBUS_HASHING_MODE_MASK | MBUS_JOIN |
8169 		     MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
8170 
8171 	for_each_dbuf_slice(dev_priv, slice)
8172 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
8173 			     DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
8174 			     dbuf_min_tracker_val);
8175 }
8176 
intel_dbuf_pre_plane_update(struct intel_atomic_state * state)8177 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
8178 {
8179 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8180 	const struct intel_dbuf_state *new_dbuf_state =
8181 		intel_atomic_get_new_dbuf_state(state);
8182 	const struct intel_dbuf_state *old_dbuf_state =
8183 		intel_atomic_get_old_dbuf_state(state);
8184 
8185 	if (!new_dbuf_state ||
8186 	    ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8187 	    && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8188 		return;
8189 
8190 	WARN_ON(!new_dbuf_state->base.changed);
8191 
8192 	update_mbus_pre_enable(state);
8193 	gen9_dbuf_slices_update(dev_priv,
8194 				old_dbuf_state->enabled_slices |
8195 				new_dbuf_state->enabled_slices);
8196 }
8197 
intel_dbuf_post_plane_update(struct intel_atomic_state * state)8198 void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
8199 {
8200 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8201 	const struct intel_dbuf_state *new_dbuf_state =
8202 		intel_atomic_get_new_dbuf_state(state);
8203 	const struct intel_dbuf_state *old_dbuf_state =
8204 		intel_atomic_get_old_dbuf_state(state);
8205 
8206 	if (!new_dbuf_state ||
8207 	    ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8208 	    && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8209 		return;
8210 
8211 	WARN_ON(!new_dbuf_state->base.changed);
8212 
8213 	gen9_dbuf_slices_update(dev_priv,
8214 				new_dbuf_state->enabled_slices);
8215 }
8216