1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * BTS PMU driver for perf
4 * Copyright (c) 2013-2014, Intel Corporation.
5 */
6
7 #undef DEBUG
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/bitops.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/debugfs.h>
15 #include <linux/device.h>
16 #include <linux/coredump.h>
17
18 #include <linux/sizes.h>
19 #include <asm/perf_event.h>
20
21 #include "../perf_event.h"
22
23 struct bts_ctx {
24 struct perf_output_handle handle;
25 struct debug_store ds_back;
26 int state;
27 };
28
29 /* BTS context states: */
30 enum {
31 /* no ongoing AUX transactions */
32 BTS_STATE_STOPPED = 0,
33 /* AUX transaction is on, BTS tracing is disabled */
34 BTS_STATE_INACTIVE,
35 /* AUX transaction is on, BTS tracing is running */
36 BTS_STATE_ACTIVE,
37 };
38
39 static DEFINE_PER_CPU(struct bts_ctx, bts_ctx);
40
41 #define BTS_RECORD_SIZE 24
42 #define BTS_SAFETY_MARGIN 4080
43
44 struct bts_phys {
45 struct page *page;
46 unsigned long size;
47 unsigned long offset;
48 unsigned long displacement;
49 };
50
51 struct bts_buffer {
52 size_t real_size; /* multiple of BTS_RECORD_SIZE */
53 unsigned int nr_pages;
54 unsigned int nr_bufs;
55 unsigned int cur_buf;
56 bool snapshot;
57 local_t data_size;
58 local_t head;
59 unsigned long end;
60 void **data_pages;
61 struct bts_phys buf[0];
62 };
63
64 static struct pmu bts_pmu;
65
buf_size(struct page * page)66 static size_t buf_size(struct page *page)
67 {
68 return 1 << (PAGE_SHIFT + page_private(page));
69 }
70
71 static void *
bts_buffer_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool overwrite)72 bts_buffer_setup_aux(struct perf_event *event, void **pages,
73 int nr_pages, bool overwrite)
74 {
75 struct bts_buffer *buf;
76 struct page *page;
77 int cpu = event->cpu;
78 int node = (cpu == -1) ? cpu : cpu_to_node(cpu);
79 unsigned long offset;
80 size_t size = nr_pages << PAGE_SHIFT;
81 int pg, nbuf, pad;
82
83 /* count all the high order buffers */
84 for (pg = 0, nbuf = 0; pg < nr_pages;) {
85 page = virt_to_page(pages[pg]);
86 if (WARN_ON_ONCE(!PagePrivate(page) && nr_pages > 1))
87 return NULL;
88 pg += 1 << page_private(page);
89 nbuf++;
90 }
91
92 /*
93 * to avoid interrupts in overwrite mode, only allow one physical
94 */
95 if (overwrite && nbuf > 1)
96 return NULL;
97
98 buf = kzalloc_node(offsetof(struct bts_buffer, buf[nbuf]), GFP_KERNEL, node);
99 if (!buf)
100 return NULL;
101
102 buf->nr_pages = nr_pages;
103 buf->nr_bufs = nbuf;
104 buf->snapshot = overwrite;
105 buf->data_pages = pages;
106 buf->real_size = size - size % BTS_RECORD_SIZE;
107
108 for (pg = 0, nbuf = 0, offset = 0, pad = 0; nbuf < buf->nr_bufs; nbuf++) {
109 unsigned int __nr_pages;
110
111 page = virt_to_page(pages[pg]);
112 __nr_pages = PagePrivate(page) ? 1 << page_private(page) : 1;
113 buf->buf[nbuf].page = page;
114 buf->buf[nbuf].offset = offset;
115 buf->buf[nbuf].displacement = (pad ? BTS_RECORD_SIZE - pad : 0);
116 buf->buf[nbuf].size = buf_size(page) - buf->buf[nbuf].displacement;
117 pad = buf->buf[nbuf].size % BTS_RECORD_SIZE;
118 buf->buf[nbuf].size -= pad;
119
120 pg += __nr_pages;
121 offset += __nr_pages << PAGE_SHIFT;
122 }
123
124 return buf;
125 }
126
bts_buffer_free_aux(void * data)127 static void bts_buffer_free_aux(void *data)
128 {
129 kfree(data);
130 }
131
bts_buffer_offset(struct bts_buffer * buf,unsigned int idx)132 static unsigned long bts_buffer_offset(struct bts_buffer *buf, unsigned int idx)
133 {
134 return buf->buf[idx].offset + buf->buf[idx].displacement;
135 }
136
137 static void
bts_config_buffer(struct bts_buffer * buf)138 bts_config_buffer(struct bts_buffer *buf)
139 {
140 int cpu = raw_smp_processor_id();
141 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
142 struct bts_phys *phys = &buf->buf[buf->cur_buf];
143 unsigned long index, thresh = 0, end = phys->size;
144 struct page *page = phys->page;
145
146 index = local_read(&buf->head);
147
148 if (!buf->snapshot) {
149 if (buf->end < phys->offset + buf_size(page))
150 end = buf->end - phys->offset - phys->displacement;
151
152 index -= phys->offset + phys->displacement;
153
154 if (end - index > BTS_SAFETY_MARGIN)
155 thresh = end - BTS_SAFETY_MARGIN;
156 else if (end - index > BTS_RECORD_SIZE)
157 thresh = end - BTS_RECORD_SIZE;
158 else
159 thresh = end;
160 }
161
162 ds->bts_buffer_base = (u64)(long)page_address(page) + phys->displacement;
163 ds->bts_index = ds->bts_buffer_base + index;
164 ds->bts_absolute_maximum = ds->bts_buffer_base + end;
165 ds->bts_interrupt_threshold = !buf->snapshot
166 ? ds->bts_buffer_base + thresh
167 : ds->bts_absolute_maximum + BTS_RECORD_SIZE;
168 }
169
bts_buffer_pad_out(struct bts_phys * phys,unsigned long head)170 static void bts_buffer_pad_out(struct bts_phys *phys, unsigned long head)
171 {
172 unsigned long index = head - phys->offset;
173
174 memset(page_address(phys->page) + index, 0, phys->size - index);
175 }
176
bts_update(struct bts_ctx * bts)177 static void bts_update(struct bts_ctx *bts)
178 {
179 int cpu = raw_smp_processor_id();
180 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
181 struct bts_buffer *buf = perf_get_aux(&bts->handle);
182 unsigned long index = ds->bts_index - ds->bts_buffer_base, old, head;
183
184 if (!buf)
185 return;
186
187 head = index + bts_buffer_offset(buf, buf->cur_buf);
188 old = local_xchg(&buf->head, head);
189
190 if (!buf->snapshot) {
191 if (old == head)
192 return;
193
194 if (ds->bts_index >= ds->bts_absolute_maximum)
195 perf_aux_output_flag(&bts->handle,
196 PERF_AUX_FLAG_TRUNCATED);
197
198 /*
199 * old and head are always in the same physical buffer, so we
200 * can subtract them to get the data size.
201 */
202 local_add(head - old, &buf->data_size);
203 } else {
204 local_set(&buf->data_size, head);
205 }
206 }
207
208 static int
209 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle);
210
211 /*
212 * Ordering PMU callbacks wrt themselves and the PMI is done by means
213 * of bts::state, which:
214 * - is set when bts::handle::event is valid, that is, between
215 * perf_aux_output_begin() and perf_aux_output_end();
216 * - is zero otherwise;
217 * - is ordered against bts::handle::event with a compiler barrier.
218 */
219
__bts_event_start(struct perf_event * event)220 static void __bts_event_start(struct perf_event *event)
221 {
222 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
223 struct bts_buffer *buf = perf_get_aux(&bts->handle);
224 u64 config = 0;
225
226 if (!buf->snapshot)
227 config |= ARCH_PERFMON_EVENTSEL_INT;
228 if (!event->attr.exclude_kernel)
229 config |= ARCH_PERFMON_EVENTSEL_OS;
230 if (!event->attr.exclude_user)
231 config |= ARCH_PERFMON_EVENTSEL_USR;
232
233 bts_config_buffer(buf);
234
235 /*
236 * local barrier to make sure that ds configuration made it
237 * before we enable BTS and bts::state goes ACTIVE
238 */
239 wmb();
240
241 /* INACTIVE/STOPPED -> ACTIVE */
242 WRITE_ONCE(bts->state, BTS_STATE_ACTIVE);
243
244 intel_pmu_enable_bts(config);
245
246 }
247
bts_event_start(struct perf_event * event,int flags)248 static void bts_event_start(struct perf_event *event, int flags)
249 {
250 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
251 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
252 struct bts_buffer *buf;
253
254 buf = perf_aux_output_begin(&bts->handle, event);
255 if (!buf)
256 goto fail_stop;
257
258 if (bts_buffer_reset(buf, &bts->handle))
259 goto fail_end_stop;
260
261 bts->ds_back.bts_buffer_base = cpuc->ds->bts_buffer_base;
262 bts->ds_back.bts_absolute_maximum = cpuc->ds->bts_absolute_maximum;
263 bts->ds_back.bts_interrupt_threshold = cpuc->ds->bts_interrupt_threshold;
264
265 perf_event_itrace_started(event);
266 event->hw.state = 0;
267
268 __bts_event_start(event);
269
270 return;
271
272 fail_end_stop:
273 perf_aux_output_end(&bts->handle, 0);
274
275 fail_stop:
276 event->hw.state = PERF_HES_STOPPED;
277 }
278
__bts_event_stop(struct perf_event * event,int state)279 static void __bts_event_stop(struct perf_event *event, int state)
280 {
281 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
282
283 /* ACTIVE -> INACTIVE(PMI)/STOPPED(->stop()) */
284 WRITE_ONCE(bts->state, state);
285
286 /*
287 * No extra synchronization is mandated by the documentation to have
288 * BTS data stores globally visible.
289 */
290 intel_pmu_disable_bts();
291 }
292
bts_event_stop(struct perf_event * event,int flags)293 static void bts_event_stop(struct perf_event *event, int flags)
294 {
295 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
296 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
297 struct bts_buffer *buf = NULL;
298 int state = READ_ONCE(bts->state);
299
300 if (state == BTS_STATE_ACTIVE)
301 __bts_event_stop(event, BTS_STATE_STOPPED);
302
303 if (state != BTS_STATE_STOPPED)
304 buf = perf_get_aux(&bts->handle);
305
306 event->hw.state |= PERF_HES_STOPPED;
307
308 if (flags & PERF_EF_UPDATE) {
309 bts_update(bts);
310
311 if (buf) {
312 if (buf->snapshot)
313 bts->handle.head =
314 local_xchg(&buf->data_size,
315 buf->nr_pages << PAGE_SHIFT);
316 perf_aux_output_end(&bts->handle,
317 local_xchg(&buf->data_size, 0));
318 }
319
320 cpuc->ds->bts_index = bts->ds_back.bts_buffer_base;
321 cpuc->ds->bts_buffer_base = bts->ds_back.bts_buffer_base;
322 cpuc->ds->bts_absolute_maximum = bts->ds_back.bts_absolute_maximum;
323 cpuc->ds->bts_interrupt_threshold = bts->ds_back.bts_interrupt_threshold;
324 }
325 }
326
intel_bts_enable_local(void)327 void intel_bts_enable_local(void)
328 {
329 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
330 int state = READ_ONCE(bts->state);
331
332 /*
333 * Here we transition from INACTIVE to ACTIVE;
334 * if we instead are STOPPED from the interrupt handler,
335 * stay that way. Can't be ACTIVE here though.
336 */
337 if (WARN_ON_ONCE(state == BTS_STATE_ACTIVE))
338 return;
339
340 if (state == BTS_STATE_STOPPED)
341 return;
342
343 if (bts->handle.event)
344 __bts_event_start(bts->handle.event);
345 }
346
intel_bts_disable_local(void)347 void intel_bts_disable_local(void)
348 {
349 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
350
351 /*
352 * Here we transition from ACTIVE to INACTIVE;
353 * do nothing for STOPPED or INACTIVE.
354 */
355 if (READ_ONCE(bts->state) != BTS_STATE_ACTIVE)
356 return;
357
358 if (bts->handle.event)
359 __bts_event_stop(bts->handle.event, BTS_STATE_INACTIVE);
360 }
361
362 static int
bts_buffer_reset(struct bts_buffer * buf,struct perf_output_handle * handle)363 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle)
364 {
365 unsigned long head, space, next_space, pad, gap, skip, wakeup;
366 unsigned int next_buf;
367 struct bts_phys *phys, *next_phys;
368 int ret;
369
370 if (buf->snapshot)
371 return 0;
372
373 head = handle->head & ((buf->nr_pages << PAGE_SHIFT) - 1);
374
375 phys = &buf->buf[buf->cur_buf];
376 space = phys->offset + phys->displacement + phys->size - head;
377 pad = space;
378 if (space > handle->size) {
379 space = handle->size;
380 space -= space % BTS_RECORD_SIZE;
381 }
382 if (space <= BTS_SAFETY_MARGIN) {
383 /* See if next phys buffer has more space */
384 next_buf = buf->cur_buf + 1;
385 if (next_buf >= buf->nr_bufs)
386 next_buf = 0;
387 next_phys = &buf->buf[next_buf];
388 gap = buf_size(phys->page) - phys->displacement - phys->size +
389 next_phys->displacement;
390 skip = pad + gap;
391 if (handle->size >= skip) {
392 next_space = next_phys->size;
393 if (next_space + skip > handle->size) {
394 next_space = handle->size - skip;
395 next_space -= next_space % BTS_RECORD_SIZE;
396 }
397 if (next_space > space || !space) {
398 if (pad)
399 bts_buffer_pad_out(phys, head);
400 ret = perf_aux_output_skip(handle, skip);
401 if (ret)
402 return ret;
403 /* Advance to next phys buffer */
404 phys = next_phys;
405 space = next_space;
406 head = phys->offset + phys->displacement;
407 /*
408 * After this, cur_buf and head won't match ds
409 * anymore, so we must not be racing with
410 * bts_update().
411 */
412 buf->cur_buf = next_buf;
413 local_set(&buf->head, head);
414 }
415 }
416 }
417
418 /* Don't go far beyond wakeup watermark */
419 wakeup = BTS_SAFETY_MARGIN + BTS_RECORD_SIZE + handle->wakeup -
420 handle->head;
421 if (space > wakeup) {
422 space = wakeup;
423 space -= space % BTS_RECORD_SIZE;
424 }
425
426 buf->end = head + space;
427
428 /*
429 * If we have no space, the lost notification would have been sent when
430 * we hit absolute_maximum - see bts_update()
431 */
432 if (!space)
433 return -ENOSPC;
434
435 return 0;
436 }
437
intel_bts_interrupt(void)438 int intel_bts_interrupt(void)
439 {
440 struct debug_store *ds = this_cpu_ptr(&cpu_hw_events)->ds;
441 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
442 struct perf_event *event = bts->handle.event;
443 struct bts_buffer *buf;
444 s64 old_head;
445 int err = -ENOSPC, handled = 0;
446
447 /*
448 * The only surefire way of knowing if this NMI is ours is by checking
449 * the write ptr against the PMI threshold.
450 */
451 if (ds && (ds->bts_index >= ds->bts_interrupt_threshold))
452 handled = 1;
453
454 /*
455 * this is wrapped in intel_bts_enable_local/intel_bts_disable_local,
456 * so we can only be INACTIVE or STOPPED
457 */
458 if (READ_ONCE(bts->state) == BTS_STATE_STOPPED)
459 return handled;
460
461 buf = perf_get_aux(&bts->handle);
462 if (!buf)
463 return handled;
464
465 /*
466 * Skip snapshot counters: they don't use the interrupt, but
467 * there's no other way of telling, because the pointer will
468 * keep moving
469 */
470 if (buf->snapshot)
471 return 0;
472
473 old_head = local_read(&buf->head);
474 bts_update(bts);
475
476 /* no new data */
477 if (old_head == local_read(&buf->head))
478 return handled;
479
480 perf_aux_output_end(&bts->handle, local_xchg(&buf->data_size, 0));
481
482 buf = perf_aux_output_begin(&bts->handle, event);
483 if (buf)
484 err = bts_buffer_reset(buf, &bts->handle);
485
486 if (err) {
487 WRITE_ONCE(bts->state, BTS_STATE_STOPPED);
488
489 if (buf) {
490 /*
491 * BTS_STATE_STOPPED should be visible before
492 * cleared handle::event
493 */
494 barrier();
495 perf_aux_output_end(&bts->handle, 0);
496 }
497 }
498
499 return 1;
500 }
501
bts_event_del(struct perf_event * event,int mode)502 static void bts_event_del(struct perf_event *event, int mode)
503 {
504 bts_event_stop(event, PERF_EF_UPDATE);
505 }
506
bts_event_add(struct perf_event * event,int mode)507 static int bts_event_add(struct perf_event *event, int mode)
508 {
509 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
510 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
511 struct hw_perf_event *hwc = &event->hw;
512
513 event->hw.state = PERF_HES_STOPPED;
514
515 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
516 return -EBUSY;
517
518 if (bts->handle.event)
519 return -EBUSY;
520
521 if (mode & PERF_EF_START) {
522 bts_event_start(event, 0);
523 if (hwc->state & PERF_HES_STOPPED)
524 return -EINVAL;
525 }
526
527 return 0;
528 }
529
bts_event_destroy(struct perf_event * event)530 static void bts_event_destroy(struct perf_event *event)
531 {
532 x86_release_hardware();
533 x86_del_exclusive(x86_lbr_exclusive_bts);
534 }
535
bts_event_init(struct perf_event * event)536 static int bts_event_init(struct perf_event *event)
537 {
538 int ret;
539
540 if (event->attr.type != bts_pmu.type)
541 return -ENOENT;
542
543 /*
544 * BTS leaks kernel addresses even when CPL0 tracing is
545 * disabled, so disallow intel_bts driver for unprivileged
546 * users on paranoid systems since it provides trace data
547 * to the user in a zero-copy fashion.
548 *
549 * Note that the default paranoia setting permits unprivileged
550 * users to profile the kernel.
551 */
552 if (event->attr.exclude_kernel && perf_paranoid_kernel() &&
553 !capable(CAP_SYS_ADMIN))
554 return -EACCES;
555
556 if (x86_add_exclusive(x86_lbr_exclusive_bts))
557 return -EBUSY;
558
559 ret = x86_reserve_hardware();
560 if (ret) {
561 x86_del_exclusive(x86_lbr_exclusive_bts);
562 return ret;
563 }
564
565 event->destroy = bts_event_destroy;
566
567 return 0;
568 }
569
bts_event_read(struct perf_event * event)570 static void bts_event_read(struct perf_event *event)
571 {
572 }
573
bts_init(void)574 static __init int bts_init(void)
575 {
576 if (!boot_cpu_has(X86_FEATURE_DTES64) || !x86_pmu.bts)
577 return -ENODEV;
578
579 if (boot_cpu_has(X86_FEATURE_PTI)) {
580 /*
581 * BTS hardware writes through a virtual memory map we must
582 * either use the kernel physical map, or the user mapping of
583 * the AUX buffer.
584 *
585 * However, since this driver supports per-CPU and per-task inherit
586 * we cannot use the user mapping since it will not be available
587 * if we're not running the owning process.
588 *
589 * With PTI we can't use the kernal map either, because its not
590 * there when we run userspace.
591 *
592 * For now, disable this driver when using PTI.
593 */
594 return -ENODEV;
595 }
596
597 bts_pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_ITRACE |
598 PERF_PMU_CAP_EXCLUSIVE;
599 bts_pmu.task_ctx_nr = perf_sw_context;
600 bts_pmu.event_init = bts_event_init;
601 bts_pmu.add = bts_event_add;
602 bts_pmu.del = bts_event_del;
603 bts_pmu.start = bts_event_start;
604 bts_pmu.stop = bts_event_stop;
605 bts_pmu.read = bts_event_read;
606 bts_pmu.setup_aux = bts_buffer_setup_aux;
607 bts_pmu.free_aux = bts_buffer_free_aux;
608
609 return perf_pmu_register(&bts_pmu, "intel_bts", -1);
610 }
611 arch_initcall(bts_init);
612