1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * BTS PMU driver for perf
4 * Copyright (c) 2013-2014, Intel Corporation.
5 */
6
7 #undef DEBUG
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/bitops.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/debugfs.h>
15 #include <linux/device.h>
16 #include <linux/coredump.h>
17
18 #include <linux/sizes.h>
19 #include <asm/perf_event.h>
20
21 #include "../perf_event.h"
22
23 struct bts_ctx {
24 struct perf_output_handle handle;
25 struct debug_store ds_back;
26 int state;
27 };
28
29 /* BTS context states: */
30 enum {
31 /* no ongoing AUX transactions */
32 BTS_STATE_STOPPED = 0,
33 /* AUX transaction is on, BTS tracing is disabled */
34 BTS_STATE_INACTIVE,
35 /* AUX transaction is on, BTS tracing is running */
36 BTS_STATE_ACTIVE,
37 };
38
39 static DEFINE_PER_CPU(struct bts_ctx, bts_ctx);
40
41 #define BTS_RECORD_SIZE 24
42 #define BTS_SAFETY_MARGIN 4080
43
44 struct bts_phys {
45 struct page *page;
46 unsigned long size;
47 unsigned long offset;
48 unsigned long displacement;
49 };
50
51 struct bts_buffer {
52 size_t real_size; /* multiple of BTS_RECORD_SIZE */
53 unsigned int nr_pages;
54 unsigned int nr_bufs;
55 unsigned int cur_buf;
56 bool snapshot;
57 local_t data_size;
58 local_t head;
59 unsigned long end;
60 void **data_pages;
61 struct bts_phys buf[];
62 };
63
64 static struct pmu bts_pmu;
65
buf_nr_pages(struct page * page)66 static int buf_nr_pages(struct page *page)
67 {
68 if (!PagePrivate(page))
69 return 1;
70
71 return 1 << page_private(page);
72 }
73
buf_size(struct page * page)74 static size_t buf_size(struct page *page)
75 {
76 return buf_nr_pages(page) * PAGE_SIZE;
77 }
78
79 static void *
bts_buffer_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool overwrite)80 bts_buffer_setup_aux(struct perf_event *event, void **pages,
81 int nr_pages, bool overwrite)
82 {
83 struct bts_buffer *buf;
84 struct page *page;
85 int cpu = event->cpu;
86 int node = (cpu == -1) ? cpu : cpu_to_node(cpu);
87 unsigned long offset;
88 size_t size = nr_pages << PAGE_SHIFT;
89 int pg, nbuf, pad;
90
91 /* count all the high order buffers */
92 for (pg = 0, nbuf = 0; pg < nr_pages;) {
93 page = virt_to_page(pages[pg]);
94 pg += buf_nr_pages(page);
95 nbuf++;
96 }
97
98 /*
99 * to avoid interrupts in overwrite mode, only allow one physical
100 */
101 if (overwrite && nbuf > 1)
102 return NULL;
103
104 buf = kzalloc_node(offsetof(struct bts_buffer, buf[nbuf]), GFP_KERNEL, node);
105 if (!buf)
106 return NULL;
107
108 buf->nr_pages = nr_pages;
109 buf->nr_bufs = nbuf;
110 buf->snapshot = overwrite;
111 buf->data_pages = pages;
112 buf->real_size = size - size % BTS_RECORD_SIZE;
113
114 for (pg = 0, nbuf = 0, offset = 0, pad = 0; nbuf < buf->nr_bufs; nbuf++) {
115 unsigned int __nr_pages;
116
117 page = virt_to_page(pages[pg]);
118 __nr_pages = buf_nr_pages(page);
119 buf->buf[nbuf].page = page;
120 buf->buf[nbuf].offset = offset;
121 buf->buf[nbuf].displacement = (pad ? BTS_RECORD_SIZE - pad : 0);
122 buf->buf[nbuf].size = buf_size(page) - buf->buf[nbuf].displacement;
123 pad = buf->buf[nbuf].size % BTS_RECORD_SIZE;
124 buf->buf[nbuf].size -= pad;
125
126 pg += __nr_pages;
127 offset += __nr_pages << PAGE_SHIFT;
128 }
129
130 return buf;
131 }
132
bts_buffer_free_aux(void * data)133 static void bts_buffer_free_aux(void *data)
134 {
135 kfree(data);
136 }
137
bts_buffer_offset(struct bts_buffer * buf,unsigned int idx)138 static unsigned long bts_buffer_offset(struct bts_buffer *buf, unsigned int idx)
139 {
140 return buf->buf[idx].offset + buf->buf[idx].displacement;
141 }
142
143 static void
bts_config_buffer(struct bts_buffer * buf)144 bts_config_buffer(struct bts_buffer *buf)
145 {
146 int cpu = raw_smp_processor_id();
147 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
148 struct bts_phys *phys = &buf->buf[buf->cur_buf];
149 unsigned long index, thresh = 0, end = phys->size;
150 struct page *page = phys->page;
151
152 index = local_read(&buf->head);
153
154 if (!buf->snapshot) {
155 if (buf->end < phys->offset + buf_size(page))
156 end = buf->end - phys->offset - phys->displacement;
157
158 index -= phys->offset + phys->displacement;
159
160 if (end - index > BTS_SAFETY_MARGIN)
161 thresh = end - BTS_SAFETY_MARGIN;
162 else if (end - index > BTS_RECORD_SIZE)
163 thresh = end - BTS_RECORD_SIZE;
164 else
165 thresh = end;
166 }
167
168 ds->bts_buffer_base = (u64)(long)page_address(page) + phys->displacement;
169 ds->bts_index = ds->bts_buffer_base + index;
170 ds->bts_absolute_maximum = ds->bts_buffer_base + end;
171 ds->bts_interrupt_threshold = !buf->snapshot
172 ? ds->bts_buffer_base + thresh
173 : ds->bts_absolute_maximum + BTS_RECORD_SIZE;
174 }
175
bts_buffer_pad_out(struct bts_phys * phys,unsigned long head)176 static void bts_buffer_pad_out(struct bts_phys *phys, unsigned long head)
177 {
178 unsigned long index = head - phys->offset;
179
180 memset(page_address(phys->page) + index, 0, phys->size - index);
181 }
182
bts_update(struct bts_ctx * bts)183 static void bts_update(struct bts_ctx *bts)
184 {
185 int cpu = raw_smp_processor_id();
186 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
187 struct bts_buffer *buf = perf_get_aux(&bts->handle);
188 unsigned long index = ds->bts_index - ds->bts_buffer_base, old, head;
189
190 if (!buf)
191 return;
192
193 head = index + bts_buffer_offset(buf, buf->cur_buf);
194 old = local_xchg(&buf->head, head);
195
196 if (!buf->snapshot) {
197 if (old == head)
198 return;
199
200 if (ds->bts_index >= ds->bts_absolute_maximum)
201 perf_aux_output_flag(&bts->handle,
202 PERF_AUX_FLAG_TRUNCATED);
203
204 /*
205 * old and head are always in the same physical buffer, so we
206 * can subtract them to get the data size.
207 */
208 local_add(head - old, &buf->data_size);
209 } else {
210 local_set(&buf->data_size, head);
211 }
212 }
213
214 static int
215 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle);
216
217 /*
218 * Ordering PMU callbacks wrt themselves and the PMI is done by means
219 * of bts::state, which:
220 * - is set when bts::handle::event is valid, that is, between
221 * perf_aux_output_begin() and perf_aux_output_end();
222 * - is zero otherwise;
223 * - is ordered against bts::handle::event with a compiler barrier.
224 */
225
__bts_event_start(struct perf_event * event)226 static void __bts_event_start(struct perf_event *event)
227 {
228 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
229 struct bts_buffer *buf = perf_get_aux(&bts->handle);
230 u64 config = 0;
231
232 if (!buf->snapshot)
233 config |= ARCH_PERFMON_EVENTSEL_INT;
234 if (!event->attr.exclude_kernel)
235 config |= ARCH_PERFMON_EVENTSEL_OS;
236 if (!event->attr.exclude_user)
237 config |= ARCH_PERFMON_EVENTSEL_USR;
238
239 bts_config_buffer(buf);
240
241 /*
242 * local barrier to make sure that ds configuration made it
243 * before we enable BTS and bts::state goes ACTIVE
244 */
245 wmb();
246
247 /* INACTIVE/STOPPED -> ACTIVE */
248 WRITE_ONCE(bts->state, BTS_STATE_ACTIVE);
249
250 intel_pmu_enable_bts(config);
251
252 }
253
bts_event_start(struct perf_event * event,int flags)254 static void bts_event_start(struct perf_event *event, int flags)
255 {
256 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
257 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
258 struct bts_buffer *buf;
259
260 buf = perf_aux_output_begin(&bts->handle, event);
261 if (!buf)
262 goto fail_stop;
263
264 if (bts_buffer_reset(buf, &bts->handle))
265 goto fail_end_stop;
266
267 bts->ds_back.bts_buffer_base = cpuc->ds->bts_buffer_base;
268 bts->ds_back.bts_absolute_maximum = cpuc->ds->bts_absolute_maximum;
269 bts->ds_back.bts_interrupt_threshold = cpuc->ds->bts_interrupt_threshold;
270
271 perf_event_itrace_started(event);
272 event->hw.state = 0;
273
274 __bts_event_start(event);
275
276 return;
277
278 fail_end_stop:
279 perf_aux_output_end(&bts->handle, 0);
280
281 fail_stop:
282 event->hw.state = PERF_HES_STOPPED;
283 }
284
__bts_event_stop(struct perf_event * event,int state)285 static void __bts_event_stop(struct perf_event *event, int state)
286 {
287 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
288
289 /* ACTIVE -> INACTIVE(PMI)/STOPPED(->stop()) */
290 WRITE_ONCE(bts->state, state);
291
292 /*
293 * No extra synchronization is mandated by the documentation to have
294 * BTS data stores globally visible.
295 */
296 intel_pmu_disable_bts();
297 }
298
bts_event_stop(struct perf_event * event,int flags)299 static void bts_event_stop(struct perf_event *event, int flags)
300 {
301 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
302 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
303 struct bts_buffer *buf = NULL;
304 int state = READ_ONCE(bts->state);
305
306 if (state == BTS_STATE_ACTIVE)
307 __bts_event_stop(event, BTS_STATE_STOPPED);
308
309 if (state != BTS_STATE_STOPPED)
310 buf = perf_get_aux(&bts->handle);
311
312 event->hw.state |= PERF_HES_STOPPED;
313
314 if (flags & PERF_EF_UPDATE) {
315 bts_update(bts);
316
317 if (buf) {
318 if (buf->snapshot)
319 bts->handle.head =
320 local_xchg(&buf->data_size,
321 buf->nr_pages << PAGE_SHIFT);
322 perf_aux_output_end(&bts->handle,
323 local_xchg(&buf->data_size, 0));
324 }
325
326 cpuc->ds->bts_index = bts->ds_back.bts_buffer_base;
327 cpuc->ds->bts_buffer_base = bts->ds_back.bts_buffer_base;
328 cpuc->ds->bts_absolute_maximum = bts->ds_back.bts_absolute_maximum;
329 cpuc->ds->bts_interrupt_threshold = bts->ds_back.bts_interrupt_threshold;
330 }
331 }
332
intel_bts_enable_local(void)333 void intel_bts_enable_local(void)
334 {
335 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
336 int state = READ_ONCE(bts->state);
337
338 /*
339 * Here we transition from INACTIVE to ACTIVE;
340 * if we instead are STOPPED from the interrupt handler,
341 * stay that way. Can't be ACTIVE here though.
342 */
343 if (WARN_ON_ONCE(state == BTS_STATE_ACTIVE))
344 return;
345
346 if (state == BTS_STATE_STOPPED)
347 return;
348
349 if (bts->handle.event)
350 __bts_event_start(bts->handle.event);
351 }
352
intel_bts_disable_local(void)353 void intel_bts_disable_local(void)
354 {
355 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
356
357 /*
358 * Here we transition from ACTIVE to INACTIVE;
359 * do nothing for STOPPED or INACTIVE.
360 */
361 if (READ_ONCE(bts->state) != BTS_STATE_ACTIVE)
362 return;
363
364 if (bts->handle.event)
365 __bts_event_stop(bts->handle.event, BTS_STATE_INACTIVE);
366 }
367
368 static int
bts_buffer_reset(struct bts_buffer * buf,struct perf_output_handle * handle)369 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle)
370 {
371 unsigned long head, space, next_space, pad, gap, skip, wakeup;
372 unsigned int next_buf;
373 struct bts_phys *phys, *next_phys;
374 int ret;
375
376 if (buf->snapshot)
377 return 0;
378
379 head = handle->head & ((buf->nr_pages << PAGE_SHIFT) - 1);
380
381 phys = &buf->buf[buf->cur_buf];
382 space = phys->offset + phys->displacement + phys->size - head;
383 pad = space;
384 if (space > handle->size) {
385 space = handle->size;
386 space -= space % BTS_RECORD_SIZE;
387 }
388 if (space <= BTS_SAFETY_MARGIN) {
389 /* See if next phys buffer has more space */
390 next_buf = buf->cur_buf + 1;
391 if (next_buf >= buf->nr_bufs)
392 next_buf = 0;
393 next_phys = &buf->buf[next_buf];
394 gap = buf_size(phys->page) - phys->displacement - phys->size +
395 next_phys->displacement;
396 skip = pad + gap;
397 if (handle->size >= skip) {
398 next_space = next_phys->size;
399 if (next_space + skip > handle->size) {
400 next_space = handle->size - skip;
401 next_space -= next_space % BTS_RECORD_SIZE;
402 }
403 if (next_space > space || !space) {
404 if (pad)
405 bts_buffer_pad_out(phys, head);
406 ret = perf_aux_output_skip(handle, skip);
407 if (ret)
408 return ret;
409 /* Advance to next phys buffer */
410 phys = next_phys;
411 space = next_space;
412 head = phys->offset + phys->displacement;
413 /*
414 * After this, cur_buf and head won't match ds
415 * anymore, so we must not be racing with
416 * bts_update().
417 */
418 buf->cur_buf = next_buf;
419 local_set(&buf->head, head);
420 }
421 }
422 }
423
424 /* Don't go far beyond wakeup watermark */
425 wakeup = BTS_SAFETY_MARGIN + BTS_RECORD_SIZE + handle->wakeup -
426 handle->head;
427 if (space > wakeup) {
428 space = wakeup;
429 space -= space % BTS_RECORD_SIZE;
430 }
431
432 buf->end = head + space;
433
434 /*
435 * If we have no space, the lost notification would have been sent when
436 * we hit absolute_maximum - see bts_update()
437 */
438 if (!space)
439 return -ENOSPC;
440
441 return 0;
442 }
443
intel_bts_interrupt(void)444 int intel_bts_interrupt(void)
445 {
446 struct debug_store *ds = this_cpu_ptr(&cpu_hw_events)->ds;
447 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
448 struct perf_event *event = bts->handle.event;
449 struct bts_buffer *buf;
450 s64 old_head;
451 int err = -ENOSPC, handled = 0;
452
453 /*
454 * The only surefire way of knowing if this NMI is ours is by checking
455 * the write ptr against the PMI threshold.
456 */
457 if (ds && (ds->bts_index >= ds->bts_interrupt_threshold))
458 handled = 1;
459
460 /*
461 * this is wrapped in intel_bts_enable_local/intel_bts_disable_local,
462 * so we can only be INACTIVE or STOPPED
463 */
464 if (READ_ONCE(bts->state) == BTS_STATE_STOPPED)
465 return handled;
466
467 buf = perf_get_aux(&bts->handle);
468 if (!buf)
469 return handled;
470
471 /*
472 * Skip snapshot counters: they don't use the interrupt, but
473 * there's no other way of telling, because the pointer will
474 * keep moving
475 */
476 if (buf->snapshot)
477 return 0;
478
479 old_head = local_read(&buf->head);
480 bts_update(bts);
481
482 /* no new data */
483 if (old_head == local_read(&buf->head))
484 return handled;
485
486 perf_aux_output_end(&bts->handle, local_xchg(&buf->data_size, 0));
487
488 buf = perf_aux_output_begin(&bts->handle, event);
489 if (buf)
490 err = bts_buffer_reset(buf, &bts->handle);
491
492 if (err) {
493 WRITE_ONCE(bts->state, BTS_STATE_STOPPED);
494
495 if (buf) {
496 /*
497 * BTS_STATE_STOPPED should be visible before
498 * cleared handle::event
499 */
500 barrier();
501 perf_aux_output_end(&bts->handle, 0);
502 }
503 }
504
505 return 1;
506 }
507
bts_event_del(struct perf_event * event,int mode)508 static void bts_event_del(struct perf_event *event, int mode)
509 {
510 bts_event_stop(event, PERF_EF_UPDATE);
511 }
512
bts_event_add(struct perf_event * event,int mode)513 static int bts_event_add(struct perf_event *event, int mode)
514 {
515 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
516 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
517 struct hw_perf_event *hwc = &event->hw;
518
519 event->hw.state = PERF_HES_STOPPED;
520
521 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
522 return -EBUSY;
523
524 if (bts->handle.event)
525 return -EBUSY;
526
527 if (mode & PERF_EF_START) {
528 bts_event_start(event, 0);
529 if (hwc->state & PERF_HES_STOPPED)
530 return -EINVAL;
531 }
532
533 return 0;
534 }
535
bts_event_destroy(struct perf_event * event)536 static void bts_event_destroy(struct perf_event *event)
537 {
538 x86_release_hardware();
539 x86_del_exclusive(x86_lbr_exclusive_bts);
540 }
541
bts_event_init(struct perf_event * event)542 static int bts_event_init(struct perf_event *event)
543 {
544 int ret;
545
546 if (event->attr.type != bts_pmu.type)
547 return -ENOENT;
548
549 /*
550 * BTS leaks kernel addresses even when CPL0 tracing is
551 * disabled, so disallow intel_bts driver for unprivileged
552 * users on paranoid systems since it provides trace data
553 * to the user in a zero-copy fashion.
554 *
555 * Note that the default paranoia setting permits unprivileged
556 * users to profile the kernel.
557 */
558 if (event->attr.exclude_kernel) {
559 ret = perf_allow_kernel(&event->attr);
560 if (ret)
561 return ret;
562 }
563
564 if (x86_add_exclusive(x86_lbr_exclusive_bts))
565 return -EBUSY;
566
567 ret = x86_reserve_hardware();
568 if (ret) {
569 x86_del_exclusive(x86_lbr_exclusive_bts);
570 return ret;
571 }
572
573 event->destroy = bts_event_destroy;
574
575 return 0;
576 }
577
bts_event_read(struct perf_event * event)578 static void bts_event_read(struct perf_event *event)
579 {
580 }
581
bts_init(void)582 static __init int bts_init(void)
583 {
584 if (!boot_cpu_has(X86_FEATURE_DTES64) || !x86_pmu.bts)
585 return -ENODEV;
586
587 if (boot_cpu_has(X86_FEATURE_PTI)) {
588 /*
589 * BTS hardware writes through a virtual memory map we must
590 * either use the kernel physical map, or the user mapping of
591 * the AUX buffer.
592 *
593 * However, since this driver supports per-CPU and per-task inherit
594 * we cannot use the user mapping since it will not be available
595 * if we're not running the owning process.
596 *
597 * With PTI we can't use the kernel map either, because its not
598 * there when we run userspace.
599 *
600 * For now, disable this driver when using PTI.
601 */
602 return -ENODEV;
603 }
604
605 bts_pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_ITRACE |
606 PERF_PMU_CAP_EXCLUSIVE;
607 bts_pmu.task_ctx_nr = perf_sw_context;
608 bts_pmu.event_init = bts_event_init;
609 bts_pmu.add = bts_event_add;
610 bts_pmu.del = bts_event_del;
611 bts_pmu.start = bts_event_start;
612 bts_pmu.stop = bts_event_stop;
613 bts_pmu.read = bts_event_read;
614 bts_pmu.setup_aux = bts_buffer_setup_aux;
615 bts_pmu.free_aux = bts_buffer_free_aux;
616
617 return perf_pmu_register(&bts_pmu, "intel_bts", -1);
618 }
619 arch_initcall(bts_init);
620