1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida);
36
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39
40 /*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46 static DEFINE_MUTEX(input_mutex);
47
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)50 static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
52 {
53 return code <= max && test_bit(code, bm);
54 }
55
input_defuzz_abs_event(int value,int old_val,int fuzz)56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
61
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
64
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
67 }
68
69 return value;
70 }
71
input_start_autorepeat(struct input_dev * dev,int code)72 static void input_start_autorepeat(struct input_dev *dev, int code)
73 {
74 if (test_bit(EV_REP, dev->evbit) &&
75 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
76 dev->timer.function) {
77 dev->repeat_key = code;
78 mod_timer(&dev->timer,
79 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
80 }
81 }
82
input_stop_autorepeat(struct input_dev * dev)83 static void input_stop_autorepeat(struct input_dev *dev)
84 {
85 del_timer(&dev->timer);
86 }
87
88 /*
89 * Pass event first through all filters and then, if event has not been
90 * filtered out, through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
92 */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)93 static unsigned int input_to_handler(struct input_handle *handle,
94 struct input_value *vals, unsigned int count)
95 {
96 struct input_handler *handler = handle->handler;
97 struct input_value *end = vals;
98 struct input_value *v;
99
100 if (handler->filter) {
101 for (v = vals; v != vals + count; v++) {
102 if (handler->filter(handle, v->type, v->code, v->value))
103 continue;
104 if (end != v)
105 *end = *v;
106 end++;
107 }
108 count = end - vals;
109 }
110
111 if (!count)
112 return 0;
113
114 if (handler->events)
115 handler->events(handle, vals, count);
116 else if (handler->event)
117 for (v = vals; v != vals + count; v++)
118 handler->event(handle, v->type, v->code, v->value);
119
120 return count;
121 }
122
123 /*
124 * Pass values first through all filters and then, if event has not been
125 * filtered out, through all open handles. This function is called with
126 * dev->event_lock held and interrupts disabled.
127 */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)128 static void input_pass_values(struct input_dev *dev,
129 struct input_value *vals, unsigned int count)
130 {
131 struct input_handle *handle;
132 struct input_value *v;
133
134 if (!count)
135 return;
136
137 rcu_read_lock();
138
139 handle = rcu_dereference(dev->grab);
140 if (handle) {
141 count = input_to_handler(handle, vals, count);
142 } else {
143 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
144 if (handle->open) {
145 count = input_to_handler(handle, vals, count);
146 if (!count)
147 break;
148 }
149 }
150
151 rcu_read_unlock();
152
153 /* trigger auto repeat for key events */
154 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
161 }
162 }
163 }
164 }
165
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)166 static void input_pass_event(struct input_dev *dev,
167 unsigned int type, unsigned int code, int value)
168 {
169 struct input_value vals[] = { { type, code, value } };
170
171 input_pass_values(dev, vals, ARRAY_SIZE(vals));
172 }
173
174 /*
175 * Generate software autorepeat event. Note that we take
176 * dev->event_lock here to avoid racing with input_event
177 * which may cause keys get "stuck".
178 */
input_repeat_key(struct timer_list * t)179 static void input_repeat_key(struct timer_list *t)
180 {
181 struct input_dev *dev = from_timer(dev, t, timer);
182 unsigned long flags;
183
184 spin_lock_irqsave(&dev->event_lock, flags);
185
186 if (test_bit(dev->repeat_key, dev->key) &&
187 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
188 struct input_value vals[] = {
189 { EV_KEY, dev->repeat_key, 2 },
190 input_value_sync
191 };
192
193 input_pass_values(dev, vals, ARRAY_SIZE(vals));
194
195 if (dev->rep[REP_PERIOD])
196 mod_timer(&dev->timer, jiffies +
197 msecs_to_jiffies(dev->rep[REP_PERIOD]));
198 }
199
200 spin_unlock_irqrestore(&dev->event_lock, flags);
201 }
202
203 #define INPUT_IGNORE_EVENT 0
204 #define INPUT_PASS_TO_HANDLERS 1
205 #define INPUT_PASS_TO_DEVICE 2
206 #define INPUT_SLOT 4
207 #define INPUT_FLUSH 8
208 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
209
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)210 static int input_handle_abs_event(struct input_dev *dev,
211 unsigned int code, int *pval)
212 {
213 struct input_mt *mt = dev->mt;
214 bool is_mt_event;
215 int *pold;
216
217 if (code == ABS_MT_SLOT) {
218 /*
219 * "Stage" the event; we'll flush it later, when we
220 * get actual touch data.
221 */
222 if (mt && *pval >= 0 && *pval < mt->num_slots)
223 mt->slot = *pval;
224
225 return INPUT_IGNORE_EVENT;
226 }
227
228 is_mt_event = input_is_mt_value(code);
229
230 if (!is_mt_event) {
231 pold = &dev->absinfo[code].value;
232 } else if (mt) {
233 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
234 } else {
235 /*
236 * Bypass filtering for multi-touch events when
237 * not employing slots.
238 */
239 pold = NULL;
240 }
241
242 if (pold) {
243 *pval = input_defuzz_abs_event(*pval, *pold,
244 dev->absinfo[code].fuzz);
245 if (*pold == *pval)
246 return INPUT_IGNORE_EVENT;
247
248 *pold = *pval;
249 }
250
251 /* Flush pending "slot" event */
252 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
253 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
254 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
255 }
256
257 return INPUT_PASS_TO_HANDLERS;
258 }
259
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)260 static int input_get_disposition(struct input_dev *dev,
261 unsigned int type, unsigned int code, int *pval)
262 {
263 int disposition = INPUT_IGNORE_EVENT;
264 int value = *pval;
265
266 switch (type) {
267
268 case EV_SYN:
269 switch (code) {
270 case SYN_CONFIG:
271 disposition = INPUT_PASS_TO_ALL;
272 break;
273
274 case SYN_REPORT:
275 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
276 break;
277 case SYN_MT_REPORT:
278 disposition = INPUT_PASS_TO_HANDLERS;
279 break;
280 }
281 break;
282
283 case EV_KEY:
284 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
285
286 /* auto-repeat bypasses state updates */
287 if (value == 2) {
288 disposition = INPUT_PASS_TO_HANDLERS;
289 break;
290 }
291
292 if (!!test_bit(code, dev->key) != !!value) {
293
294 __change_bit(code, dev->key);
295 disposition = INPUT_PASS_TO_HANDLERS;
296 }
297 }
298 break;
299
300 case EV_SW:
301 if (is_event_supported(code, dev->swbit, SW_MAX) &&
302 !!test_bit(code, dev->sw) != !!value) {
303
304 __change_bit(code, dev->sw);
305 disposition = INPUT_PASS_TO_HANDLERS;
306 }
307 break;
308
309 case EV_ABS:
310 if (is_event_supported(code, dev->absbit, ABS_MAX))
311 disposition = input_handle_abs_event(dev, code, &value);
312
313 break;
314
315 case EV_REL:
316 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
317 disposition = INPUT_PASS_TO_HANDLERS;
318
319 break;
320
321 case EV_MSC:
322 if (is_event_supported(code, dev->mscbit, MSC_MAX))
323 disposition = INPUT_PASS_TO_ALL;
324
325 break;
326
327 case EV_LED:
328 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
329 !!test_bit(code, dev->led) != !!value) {
330
331 __change_bit(code, dev->led);
332 disposition = INPUT_PASS_TO_ALL;
333 }
334 break;
335
336 case EV_SND:
337 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
338
339 if (!!test_bit(code, dev->snd) != !!value)
340 __change_bit(code, dev->snd);
341 disposition = INPUT_PASS_TO_ALL;
342 }
343 break;
344
345 case EV_REP:
346 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
347 dev->rep[code] = value;
348 disposition = INPUT_PASS_TO_ALL;
349 }
350 break;
351
352 case EV_FF:
353 if (value >= 0)
354 disposition = INPUT_PASS_TO_ALL;
355 break;
356
357 case EV_PWR:
358 disposition = INPUT_PASS_TO_ALL;
359 break;
360 }
361
362 *pval = value;
363 return disposition;
364 }
365
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)366 static void input_handle_event(struct input_dev *dev,
367 unsigned int type, unsigned int code, int value)
368 {
369 int disposition = input_get_disposition(dev, type, code, &value);
370
371 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
372 add_input_randomness(type, code, value);
373
374 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
375 dev->event(dev, type, code, value);
376
377 if (!dev->vals)
378 return;
379
380 if (disposition & INPUT_PASS_TO_HANDLERS) {
381 struct input_value *v;
382
383 if (disposition & INPUT_SLOT) {
384 v = &dev->vals[dev->num_vals++];
385 v->type = EV_ABS;
386 v->code = ABS_MT_SLOT;
387 v->value = dev->mt->slot;
388 }
389
390 v = &dev->vals[dev->num_vals++];
391 v->type = type;
392 v->code = code;
393 v->value = value;
394 }
395
396 if (disposition & INPUT_FLUSH) {
397 if (dev->num_vals >= 2)
398 input_pass_values(dev, dev->vals, dev->num_vals);
399 dev->num_vals = 0;
400 /*
401 * Reset the timestamp on flush so we won't end up
402 * with a stale one. Note we only need to reset the
403 * monolithic one as we use its presence when deciding
404 * whether to generate a synthetic timestamp.
405 */
406 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
407 } else if (dev->num_vals >= dev->max_vals - 2) {
408 dev->vals[dev->num_vals++] = input_value_sync;
409 input_pass_values(dev, dev->vals, dev->num_vals);
410 dev->num_vals = 0;
411 }
412
413 }
414
415 /**
416 * input_event() - report new input event
417 * @dev: device that generated the event
418 * @type: type of the event
419 * @code: event code
420 * @value: value of the event
421 *
422 * This function should be used by drivers implementing various input
423 * devices to report input events. See also input_inject_event().
424 *
425 * NOTE: input_event() may be safely used right after input device was
426 * allocated with input_allocate_device(), even before it is registered
427 * with input_register_device(), but the event will not reach any of the
428 * input handlers. Such early invocation of input_event() may be used
429 * to 'seed' initial state of a switch or initial position of absolute
430 * axis, etc.
431 */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)432 void input_event(struct input_dev *dev,
433 unsigned int type, unsigned int code, int value)
434 {
435 unsigned long flags;
436
437 if (is_event_supported(type, dev->evbit, EV_MAX)) {
438
439 spin_lock_irqsave(&dev->event_lock, flags);
440 input_handle_event(dev, type, code, value);
441 spin_unlock_irqrestore(&dev->event_lock, flags);
442 }
443 }
444 EXPORT_SYMBOL(input_event);
445
446 /**
447 * input_inject_event() - send input event from input handler
448 * @handle: input handle to send event through
449 * @type: type of the event
450 * @code: event code
451 * @value: value of the event
452 *
453 * Similar to input_event() but will ignore event if device is
454 * "grabbed" and handle injecting event is not the one that owns
455 * the device.
456 */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)457 void input_inject_event(struct input_handle *handle,
458 unsigned int type, unsigned int code, int value)
459 {
460 struct input_dev *dev = handle->dev;
461 struct input_handle *grab;
462 unsigned long flags;
463
464 if (is_event_supported(type, dev->evbit, EV_MAX)) {
465 spin_lock_irqsave(&dev->event_lock, flags);
466
467 rcu_read_lock();
468 grab = rcu_dereference(dev->grab);
469 if (!grab || grab == handle)
470 input_handle_event(dev, type, code, value);
471 rcu_read_unlock();
472
473 spin_unlock_irqrestore(&dev->event_lock, flags);
474 }
475 }
476 EXPORT_SYMBOL(input_inject_event);
477
478 /**
479 * input_alloc_absinfo - allocates array of input_absinfo structs
480 * @dev: the input device emitting absolute events
481 *
482 * If the absinfo struct the caller asked for is already allocated, this
483 * functions will not do anything.
484 */
input_alloc_absinfo(struct input_dev * dev)485 void input_alloc_absinfo(struct input_dev *dev)
486 {
487 if (dev->absinfo)
488 return;
489
490 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
491 if (!dev->absinfo) {
492 dev_err(dev->dev.parent ?: &dev->dev,
493 "%s: unable to allocate memory\n", __func__);
494 /*
495 * We will handle this allocation failure in
496 * input_register_device() when we refuse to register input
497 * device with ABS bits but without absinfo.
498 */
499 }
500 }
501 EXPORT_SYMBOL(input_alloc_absinfo);
502
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)503 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
504 int min, int max, int fuzz, int flat)
505 {
506 struct input_absinfo *absinfo;
507
508 input_alloc_absinfo(dev);
509 if (!dev->absinfo)
510 return;
511
512 absinfo = &dev->absinfo[axis];
513 absinfo->minimum = min;
514 absinfo->maximum = max;
515 absinfo->fuzz = fuzz;
516 absinfo->flat = flat;
517
518 __set_bit(EV_ABS, dev->evbit);
519 __set_bit(axis, dev->absbit);
520 }
521 EXPORT_SYMBOL(input_set_abs_params);
522
523
524 /**
525 * input_grab_device - grabs device for exclusive use
526 * @handle: input handle that wants to own the device
527 *
528 * When a device is grabbed by an input handle all events generated by
529 * the device are delivered only to this handle. Also events injected
530 * by other input handles are ignored while device is grabbed.
531 */
input_grab_device(struct input_handle * handle)532 int input_grab_device(struct input_handle *handle)
533 {
534 struct input_dev *dev = handle->dev;
535 int retval;
536
537 retval = mutex_lock_interruptible(&dev->mutex);
538 if (retval)
539 return retval;
540
541 if (dev->grab) {
542 retval = -EBUSY;
543 goto out;
544 }
545
546 rcu_assign_pointer(dev->grab, handle);
547
548 out:
549 mutex_unlock(&dev->mutex);
550 return retval;
551 }
552 EXPORT_SYMBOL(input_grab_device);
553
__input_release_device(struct input_handle * handle)554 static void __input_release_device(struct input_handle *handle)
555 {
556 struct input_dev *dev = handle->dev;
557 struct input_handle *grabber;
558
559 grabber = rcu_dereference_protected(dev->grab,
560 lockdep_is_held(&dev->mutex));
561 if (grabber == handle) {
562 rcu_assign_pointer(dev->grab, NULL);
563 /* Make sure input_pass_event() notices that grab is gone */
564 synchronize_rcu();
565
566 list_for_each_entry(handle, &dev->h_list, d_node)
567 if (handle->open && handle->handler->start)
568 handle->handler->start(handle);
569 }
570 }
571
572 /**
573 * input_release_device - release previously grabbed device
574 * @handle: input handle that owns the device
575 *
576 * Releases previously grabbed device so that other input handles can
577 * start receiving input events. Upon release all handlers attached
578 * to the device have their start() method called so they have a change
579 * to synchronize device state with the rest of the system.
580 */
input_release_device(struct input_handle * handle)581 void input_release_device(struct input_handle *handle)
582 {
583 struct input_dev *dev = handle->dev;
584
585 mutex_lock(&dev->mutex);
586 __input_release_device(handle);
587 mutex_unlock(&dev->mutex);
588 }
589 EXPORT_SYMBOL(input_release_device);
590
591 /**
592 * input_open_device - open input device
593 * @handle: handle through which device is being accessed
594 *
595 * This function should be called by input handlers when they
596 * want to start receive events from given input device.
597 */
input_open_device(struct input_handle * handle)598 int input_open_device(struct input_handle *handle)
599 {
600 struct input_dev *dev = handle->dev;
601 int retval;
602
603 retval = mutex_lock_interruptible(&dev->mutex);
604 if (retval)
605 return retval;
606
607 if (dev->going_away) {
608 retval = -ENODEV;
609 goto out;
610 }
611
612 handle->open++;
613
614 if (dev->users++) {
615 /*
616 * Device is already opened, so we can exit immediately and
617 * report success.
618 */
619 goto out;
620 }
621
622 if (dev->open) {
623 retval = dev->open(dev);
624 if (retval) {
625 dev->users--;
626 handle->open--;
627 /*
628 * Make sure we are not delivering any more events
629 * through this handle
630 */
631 synchronize_rcu();
632 goto out;
633 }
634 }
635
636 if (dev->poller)
637 input_dev_poller_start(dev->poller);
638
639 out:
640 mutex_unlock(&dev->mutex);
641 return retval;
642 }
643 EXPORT_SYMBOL(input_open_device);
644
input_flush_device(struct input_handle * handle,struct file * file)645 int input_flush_device(struct input_handle *handle, struct file *file)
646 {
647 struct input_dev *dev = handle->dev;
648 int retval;
649
650 retval = mutex_lock_interruptible(&dev->mutex);
651 if (retval)
652 return retval;
653
654 if (dev->flush)
655 retval = dev->flush(dev, file);
656
657 mutex_unlock(&dev->mutex);
658 return retval;
659 }
660 EXPORT_SYMBOL(input_flush_device);
661
662 /**
663 * input_close_device - close input device
664 * @handle: handle through which device is being accessed
665 *
666 * This function should be called by input handlers when they
667 * want to stop receive events from given input device.
668 */
input_close_device(struct input_handle * handle)669 void input_close_device(struct input_handle *handle)
670 {
671 struct input_dev *dev = handle->dev;
672
673 mutex_lock(&dev->mutex);
674
675 __input_release_device(handle);
676
677 if (!--dev->users) {
678 if (dev->poller)
679 input_dev_poller_stop(dev->poller);
680
681 if (dev->close)
682 dev->close(dev);
683 }
684
685 if (!--handle->open) {
686 /*
687 * synchronize_rcu() makes sure that input_pass_event()
688 * completed and that no more input events are delivered
689 * through this handle
690 */
691 synchronize_rcu();
692 }
693
694 mutex_unlock(&dev->mutex);
695 }
696 EXPORT_SYMBOL(input_close_device);
697
698 /*
699 * Simulate keyup events for all keys that are marked as pressed.
700 * The function must be called with dev->event_lock held.
701 */
input_dev_release_keys(struct input_dev * dev)702 static void input_dev_release_keys(struct input_dev *dev)
703 {
704 bool need_sync = false;
705 int code;
706
707 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
708 for_each_set_bit(code, dev->key, KEY_CNT) {
709 input_pass_event(dev, EV_KEY, code, 0);
710 need_sync = true;
711 }
712
713 if (need_sync)
714 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
715
716 memset(dev->key, 0, sizeof(dev->key));
717 }
718 }
719
720 /*
721 * Prepare device for unregistering
722 */
input_disconnect_device(struct input_dev * dev)723 static void input_disconnect_device(struct input_dev *dev)
724 {
725 struct input_handle *handle;
726
727 /*
728 * Mark device as going away. Note that we take dev->mutex here
729 * not to protect access to dev->going_away but rather to ensure
730 * that there are no threads in the middle of input_open_device()
731 */
732 mutex_lock(&dev->mutex);
733 dev->going_away = true;
734 mutex_unlock(&dev->mutex);
735
736 spin_lock_irq(&dev->event_lock);
737
738 /*
739 * Simulate keyup events for all pressed keys so that handlers
740 * are not left with "stuck" keys. The driver may continue
741 * generate events even after we done here but they will not
742 * reach any handlers.
743 */
744 input_dev_release_keys(dev);
745
746 list_for_each_entry(handle, &dev->h_list, d_node)
747 handle->open = 0;
748
749 spin_unlock_irq(&dev->event_lock);
750 }
751
752 /**
753 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
754 * @ke: keymap entry containing scancode to be converted.
755 * @scancode: pointer to the location where converted scancode should
756 * be stored.
757 *
758 * This function is used to convert scancode stored in &struct keymap_entry
759 * into scalar form understood by legacy keymap handling methods. These
760 * methods expect scancodes to be represented as 'unsigned int'.
761 */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)762 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
763 unsigned int *scancode)
764 {
765 switch (ke->len) {
766 case 1:
767 *scancode = *((u8 *)ke->scancode);
768 break;
769
770 case 2:
771 *scancode = *((u16 *)ke->scancode);
772 break;
773
774 case 4:
775 *scancode = *((u32 *)ke->scancode);
776 break;
777
778 default:
779 return -EINVAL;
780 }
781
782 return 0;
783 }
784 EXPORT_SYMBOL(input_scancode_to_scalar);
785
786 /*
787 * Those routines handle the default case where no [gs]etkeycode() is
788 * defined. In this case, an array indexed by the scancode is used.
789 */
790
input_fetch_keycode(struct input_dev * dev,unsigned int index)791 static unsigned int input_fetch_keycode(struct input_dev *dev,
792 unsigned int index)
793 {
794 switch (dev->keycodesize) {
795 case 1:
796 return ((u8 *)dev->keycode)[index];
797
798 case 2:
799 return ((u16 *)dev->keycode)[index];
800
801 default:
802 return ((u32 *)dev->keycode)[index];
803 }
804 }
805
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)806 static int input_default_getkeycode(struct input_dev *dev,
807 struct input_keymap_entry *ke)
808 {
809 unsigned int index;
810 int error;
811
812 if (!dev->keycodesize)
813 return -EINVAL;
814
815 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
816 index = ke->index;
817 else {
818 error = input_scancode_to_scalar(ke, &index);
819 if (error)
820 return error;
821 }
822
823 if (index >= dev->keycodemax)
824 return -EINVAL;
825
826 ke->keycode = input_fetch_keycode(dev, index);
827 ke->index = index;
828 ke->len = sizeof(index);
829 memcpy(ke->scancode, &index, sizeof(index));
830
831 return 0;
832 }
833
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)834 static int input_default_setkeycode(struct input_dev *dev,
835 const struct input_keymap_entry *ke,
836 unsigned int *old_keycode)
837 {
838 unsigned int index;
839 int error;
840 int i;
841
842 if (!dev->keycodesize)
843 return -EINVAL;
844
845 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
846 index = ke->index;
847 } else {
848 error = input_scancode_to_scalar(ke, &index);
849 if (error)
850 return error;
851 }
852
853 if (index >= dev->keycodemax)
854 return -EINVAL;
855
856 if (dev->keycodesize < sizeof(ke->keycode) &&
857 (ke->keycode >> (dev->keycodesize * 8)))
858 return -EINVAL;
859
860 switch (dev->keycodesize) {
861 case 1: {
862 u8 *k = (u8 *)dev->keycode;
863 *old_keycode = k[index];
864 k[index] = ke->keycode;
865 break;
866 }
867 case 2: {
868 u16 *k = (u16 *)dev->keycode;
869 *old_keycode = k[index];
870 k[index] = ke->keycode;
871 break;
872 }
873 default: {
874 u32 *k = (u32 *)dev->keycode;
875 *old_keycode = k[index];
876 k[index] = ke->keycode;
877 break;
878 }
879 }
880
881 __clear_bit(*old_keycode, dev->keybit);
882 __set_bit(ke->keycode, dev->keybit);
883
884 for (i = 0; i < dev->keycodemax; i++) {
885 if (input_fetch_keycode(dev, i) == *old_keycode) {
886 __set_bit(*old_keycode, dev->keybit);
887 break; /* Setting the bit twice is useless, so break */
888 }
889 }
890
891 return 0;
892 }
893
894 /**
895 * input_get_keycode - retrieve keycode currently mapped to a given scancode
896 * @dev: input device which keymap is being queried
897 * @ke: keymap entry
898 *
899 * This function should be called by anyone interested in retrieving current
900 * keymap. Presently evdev handlers use it.
901 */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)902 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
903 {
904 unsigned long flags;
905 int retval;
906
907 spin_lock_irqsave(&dev->event_lock, flags);
908 retval = dev->getkeycode(dev, ke);
909 spin_unlock_irqrestore(&dev->event_lock, flags);
910
911 return retval;
912 }
913 EXPORT_SYMBOL(input_get_keycode);
914
915 /**
916 * input_set_keycode - attribute a keycode to a given scancode
917 * @dev: input device which keymap is being updated
918 * @ke: new keymap entry
919 *
920 * This function should be called by anyone needing to update current
921 * keymap. Presently keyboard and evdev handlers use it.
922 */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)923 int input_set_keycode(struct input_dev *dev,
924 const struct input_keymap_entry *ke)
925 {
926 unsigned long flags;
927 unsigned int old_keycode;
928 int retval;
929
930 if (ke->keycode > KEY_MAX)
931 return -EINVAL;
932
933 spin_lock_irqsave(&dev->event_lock, flags);
934
935 retval = dev->setkeycode(dev, ke, &old_keycode);
936 if (retval)
937 goto out;
938
939 /* Make sure KEY_RESERVED did not get enabled. */
940 __clear_bit(KEY_RESERVED, dev->keybit);
941
942 /*
943 * Simulate keyup event if keycode is not present
944 * in the keymap anymore
945 */
946 if (test_bit(EV_KEY, dev->evbit) &&
947 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
948 __test_and_clear_bit(old_keycode, dev->key)) {
949 struct input_value vals[] = {
950 { EV_KEY, old_keycode, 0 },
951 input_value_sync
952 };
953
954 input_pass_values(dev, vals, ARRAY_SIZE(vals));
955 }
956
957 out:
958 spin_unlock_irqrestore(&dev->event_lock, flags);
959
960 return retval;
961 }
962 EXPORT_SYMBOL(input_set_keycode);
963
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)964 bool input_match_device_id(const struct input_dev *dev,
965 const struct input_device_id *id)
966 {
967 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
968 if (id->bustype != dev->id.bustype)
969 return false;
970
971 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
972 if (id->vendor != dev->id.vendor)
973 return false;
974
975 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
976 if (id->product != dev->id.product)
977 return false;
978
979 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
980 if (id->version != dev->id.version)
981 return false;
982
983 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
984 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
985 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
986 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
987 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
988 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
989 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
990 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
991 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
992 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
993 return false;
994 }
995
996 return true;
997 }
998 EXPORT_SYMBOL(input_match_device_id);
999
input_match_device(struct input_handler * handler,struct input_dev * dev)1000 static const struct input_device_id *input_match_device(struct input_handler *handler,
1001 struct input_dev *dev)
1002 {
1003 const struct input_device_id *id;
1004
1005 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1006 if (input_match_device_id(dev, id) &&
1007 (!handler->match || handler->match(handler, dev))) {
1008 return id;
1009 }
1010 }
1011
1012 return NULL;
1013 }
1014
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1015 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1016 {
1017 const struct input_device_id *id;
1018 int error;
1019
1020 id = input_match_device(handler, dev);
1021 if (!id)
1022 return -ENODEV;
1023
1024 error = handler->connect(handler, dev, id);
1025 if (error && error != -ENODEV)
1026 pr_err("failed to attach handler %s to device %s, error: %d\n",
1027 handler->name, kobject_name(&dev->dev.kobj), error);
1028
1029 return error;
1030 }
1031
1032 #ifdef CONFIG_COMPAT
1033
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1034 static int input_bits_to_string(char *buf, int buf_size,
1035 unsigned long bits, bool skip_empty)
1036 {
1037 int len = 0;
1038
1039 if (in_compat_syscall()) {
1040 u32 dword = bits >> 32;
1041 if (dword || !skip_empty)
1042 len += snprintf(buf, buf_size, "%x ", dword);
1043
1044 dword = bits & 0xffffffffUL;
1045 if (dword || !skip_empty || len)
1046 len += snprintf(buf + len, max(buf_size - len, 0),
1047 "%x", dword);
1048 } else {
1049 if (bits || !skip_empty)
1050 len += snprintf(buf, buf_size, "%lx", bits);
1051 }
1052
1053 return len;
1054 }
1055
1056 #else /* !CONFIG_COMPAT */
1057
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1058 static int input_bits_to_string(char *buf, int buf_size,
1059 unsigned long bits, bool skip_empty)
1060 {
1061 return bits || !skip_empty ?
1062 snprintf(buf, buf_size, "%lx", bits) : 0;
1063 }
1064
1065 #endif
1066
1067 #ifdef CONFIG_PROC_FS
1068
1069 static struct proc_dir_entry *proc_bus_input_dir;
1070 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1071 static int input_devices_state;
1072
input_wakeup_procfs_readers(void)1073 static inline void input_wakeup_procfs_readers(void)
1074 {
1075 input_devices_state++;
1076 wake_up(&input_devices_poll_wait);
1077 }
1078
input_proc_devices_poll(struct file * file,poll_table * wait)1079 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1080 {
1081 poll_wait(file, &input_devices_poll_wait, wait);
1082 if (file->f_version != input_devices_state) {
1083 file->f_version = input_devices_state;
1084 return EPOLLIN | EPOLLRDNORM;
1085 }
1086
1087 return 0;
1088 }
1089
1090 union input_seq_state {
1091 struct {
1092 unsigned short pos;
1093 bool mutex_acquired;
1094 };
1095 void *p;
1096 };
1097
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1098 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1099 {
1100 union input_seq_state *state = (union input_seq_state *)&seq->private;
1101 int error;
1102
1103 /* We need to fit into seq->private pointer */
1104 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1105
1106 error = mutex_lock_interruptible(&input_mutex);
1107 if (error) {
1108 state->mutex_acquired = false;
1109 return ERR_PTR(error);
1110 }
1111
1112 state->mutex_acquired = true;
1113
1114 return seq_list_start(&input_dev_list, *pos);
1115 }
1116
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1117 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1118 {
1119 return seq_list_next(v, &input_dev_list, pos);
1120 }
1121
input_seq_stop(struct seq_file * seq,void * v)1122 static void input_seq_stop(struct seq_file *seq, void *v)
1123 {
1124 union input_seq_state *state = (union input_seq_state *)&seq->private;
1125
1126 if (state->mutex_acquired)
1127 mutex_unlock(&input_mutex);
1128 }
1129
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1130 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1131 unsigned long *bitmap, int max)
1132 {
1133 int i;
1134 bool skip_empty = true;
1135 char buf[18];
1136
1137 seq_printf(seq, "B: %s=", name);
1138
1139 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1140 if (input_bits_to_string(buf, sizeof(buf),
1141 bitmap[i], skip_empty)) {
1142 skip_empty = false;
1143 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1144 }
1145 }
1146
1147 /*
1148 * If no output was produced print a single 0.
1149 */
1150 if (skip_empty)
1151 seq_putc(seq, '0');
1152
1153 seq_putc(seq, '\n');
1154 }
1155
input_devices_seq_show(struct seq_file * seq,void * v)1156 static int input_devices_seq_show(struct seq_file *seq, void *v)
1157 {
1158 struct input_dev *dev = container_of(v, struct input_dev, node);
1159 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1160 struct input_handle *handle;
1161
1162 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1163 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1164
1165 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1166 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1167 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1168 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1169 seq_puts(seq, "H: Handlers=");
1170
1171 list_for_each_entry(handle, &dev->h_list, d_node)
1172 seq_printf(seq, "%s ", handle->name);
1173 seq_putc(seq, '\n');
1174
1175 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1176
1177 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1178 if (test_bit(EV_KEY, dev->evbit))
1179 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1180 if (test_bit(EV_REL, dev->evbit))
1181 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1182 if (test_bit(EV_ABS, dev->evbit))
1183 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1184 if (test_bit(EV_MSC, dev->evbit))
1185 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1186 if (test_bit(EV_LED, dev->evbit))
1187 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1188 if (test_bit(EV_SND, dev->evbit))
1189 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1190 if (test_bit(EV_FF, dev->evbit))
1191 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1192 if (test_bit(EV_SW, dev->evbit))
1193 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1194
1195 seq_putc(seq, '\n');
1196
1197 kfree(path);
1198 return 0;
1199 }
1200
1201 static const struct seq_operations input_devices_seq_ops = {
1202 .start = input_devices_seq_start,
1203 .next = input_devices_seq_next,
1204 .stop = input_seq_stop,
1205 .show = input_devices_seq_show,
1206 };
1207
input_proc_devices_open(struct inode * inode,struct file * file)1208 static int input_proc_devices_open(struct inode *inode, struct file *file)
1209 {
1210 return seq_open(file, &input_devices_seq_ops);
1211 }
1212
1213 static const struct file_operations input_devices_fileops = {
1214 .owner = THIS_MODULE,
1215 .open = input_proc_devices_open,
1216 .poll = input_proc_devices_poll,
1217 .read = seq_read,
1218 .llseek = seq_lseek,
1219 .release = seq_release,
1220 };
1221
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1222 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1223 {
1224 union input_seq_state *state = (union input_seq_state *)&seq->private;
1225 int error;
1226
1227 /* We need to fit into seq->private pointer */
1228 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1229
1230 error = mutex_lock_interruptible(&input_mutex);
1231 if (error) {
1232 state->mutex_acquired = false;
1233 return ERR_PTR(error);
1234 }
1235
1236 state->mutex_acquired = true;
1237 state->pos = *pos;
1238
1239 return seq_list_start(&input_handler_list, *pos);
1240 }
1241
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1242 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1243 {
1244 union input_seq_state *state = (union input_seq_state *)&seq->private;
1245
1246 state->pos = *pos + 1;
1247 return seq_list_next(v, &input_handler_list, pos);
1248 }
1249
input_handlers_seq_show(struct seq_file * seq,void * v)1250 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1251 {
1252 struct input_handler *handler = container_of(v, struct input_handler, node);
1253 union input_seq_state *state = (union input_seq_state *)&seq->private;
1254
1255 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1256 if (handler->filter)
1257 seq_puts(seq, " (filter)");
1258 if (handler->legacy_minors)
1259 seq_printf(seq, " Minor=%d", handler->minor);
1260 seq_putc(seq, '\n');
1261
1262 return 0;
1263 }
1264
1265 static const struct seq_operations input_handlers_seq_ops = {
1266 .start = input_handlers_seq_start,
1267 .next = input_handlers_seq_next,
1268 .stop = input_seq_stop,
1269 .show = input_handlers_seq_show,
1270 };
1271
input_proc_handlers_open(struct inode * inode,struct file * file)1272 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1273 {
1274 return seq_open(file, &input_handlers_seq_ops);
1275 }
1276
1277 static const struct file_operations input_handlers_fileops = {
1278 .owner = THIS_MODULE,
1279 .open = input_proc_handlers_open,
1280 .read = seq_read,
1281 .llseek = seq_lseek,
1282 .release = seq_release,
1283 };
1284
input_proc_init(void)1285 static int __init input_proc_init(void)
1286 {
1287 struct proc_dir_entry *entry;
1288
1289 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1290 if (!proc_bus_input_dir)
1291 return -ENOMEM;
1292
1293 entry = proc_create("devices", 0, proc_bus_input_dir,
1294 &input_devices_fileops);
1295 if (!entry)
1296 goto fail1;
1297
1298 entry = proc_create("handlers", 0, proc_bus_input_dir,
1299 &input_handlers_fileops);
1300 if (!entry)
1301 goto fail2;
1302
1303 return 0;
1304
1305 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1306 fail1: remove_proc_entry("bus/input", NULL);
1307 return -ENOMEM;
1308 }
1309
input_proc_exit(void)1310 static void input_proc_exit(void)
1311 {
1312 remove_proc_entry("devices", proc_bus_input_dir);
1313 remove_proc_entry("handlers", proc_bus_input_dir);
1314 remove_proc_entry("bus/input", NULL);
1315 }
1316
1317 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1318 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1319 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1320 static inline void input_proc_exit(void) { }
1321 #endif
1322
1323 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1324 static ssize_t input_dev_show_##name(struct device *dev, \
1325 struct device_attribute *attr, \
1326 char *buf) \
1327 { \
1328 struct input_dev *input_dev = to_input_dev(dev); \
1329 \
1330 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1331 input_dev->name ? input_dev->name : ""); \
1332 } \
1333 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1334
1335 INPUT_DEV_STRING_ATTR_SHOW(name);
1336 INPUT_DEV_STRING_ATTR_SHOW(phys);
1337 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1338
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1339 static int input_print_modalias_bits(char *buf, int size,
1340 char name, unsigned long *bm,
1341 unsigned int min_bit, unsigned int max_bit)
1342 {
1343 int len = 0, i;
1344
1345 len += snprintf(buf, max(size, 0), "%c", name);
1346 for (i = min_bit; i < max_bit; i++)
1347 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1348 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1349 return len;
1350 }
1351
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1352 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1353 int add_cr)
1354 {
1355 int len;
1356
1357 len = snprintf(buf, max(size, 0),
1358 "input:b%04Xv%04Xp%04Xe%04X-",
1359 id->id.bustype, id->id.vendor,
1360 id->id.product, id->id.version);
1361
1362 len += input_print_modalias_bits(buf + len, size - len,
1363 'e', id->evbit, 0, EV_MAX);
1364 len += input_print_modalias_bits(buf + len, size - len,
1365 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1366 len += input_print_modalias_bits(buf + len, size - len,
1367 'r', id->relbit, 0, REL_MAX);
1368 len += input_print_modalias_bits(buf + len, size - len,
1369 'a', id->absbit, 0, ABS_MAX);
1370 len += input_print_modalias_bits(buf + len, size - len,
1371 'm', id->mscbit, 0, MSC_MAX);
1372 len += input_print_modalias_bits(buf + len, size - len,
1373 'l', id->ledbit, 0, LED_MAX);
1374 len += input_print_modalias_bits(buf + len, size - len,
1375 's', id->sndbit, 0, SND_MAX);
1376 len += input_print_modalias_bits(buf + len, size - len,
1377 'f', id->ffbit, 0, FF_MAX);
1378 len += input_print_modalias_bits(buf + len, size - len,
1379 'w', id->swbit, 0, SW_MAX);
1380
1381 if (add_cr)
1382 len += snprintf(buf + len, max(size - len, 0), "\n");
1383
1384 return len;
1385 }
1386
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1387 static ssize_t input_dev_show_modalias(struct device *dev,
1388 struct device_attribute *attr,
1389 char *buf)
1390 {
1391 struct input_dev *id = to_input_dev(dev);
1392 ssize_t len;
1393
1394 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1395
1396 return min_t(int, len, PAGE_SIZE);
1397 }
1398 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1399
1400 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1401 int max, int add_cr);
1402
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1403 static ssize_t input_dev_show_properties(struct device *dev,
1404 struct device_attribute *attr,
1405 char *buf)
1406 {
1407 struct input_dev *input_dev = to_input_dev(dev);
1408 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1409 INPUT_PROP_MAX, true);
1410 return min_t(int, len, PAGE_SIZE);
1411 }
1412 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1413
1414 static struct attribute *input_dev_attrs[] = {
1415 &dev_attr_name.attr,
1416 &dev_attr_phys.attr,
1417 &dev_attr_uniq.attr,
1418 &dev_attr_modalias.attr,
1419 &dev_attr_properties.attr,
1420 NULL
1421 };
1422
1423 static const struct attribute_group input_dev_attr_group = {
1424 .attrs = input_dev_attrs,
1425 };
1426
1427 #define INPUT_DEV_ID_ATTR(name) \
1428 static ssize_t input_dev_show_id_##name(struct device *dev, \
1429 struct device_attribute *attr, \
1430 char *buf) \
1431 { \
1432 struct input_dev *input_dev = to_input_dev(dev); \
1433 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1434 } \
1435 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1436
1437 INPUT_DEV_ID_ATTR(bustype);
1438 INPUT_DEV_ID_ATTR(vendor);
1439 INPUT_DEV_ID_ATTR(product);
1440 INPUT_DEV_ID_ATTR(version);
1441
1442 static struct attribute *input_dev_id_attrs[] = {
1443 &dev_attr_bustype.attr,
1444 &dev_attr_vendor.attr,
1445 &dev_attr_product.attr,
1446 &dev_attr_version.attr,
1447 NULL
1448 };
1449
1450 static const struct attribute_group input_dev_id_attr_group = {
1451 .name = "id",
1452 .attrs = input_dev_id_attrs,
1453 };
1454
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1455 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1456 int max, int add_cr)
1457 {
1458 int i;
1459 int len = 0;
1460 bool skip_empty = true;
1461
1462 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1463 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1464 bitmap[i], skip_empty);
1465 if (len) {
1466 skip_empty = false;
1467 if (i > 0)
1468 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1469 }
1470 }
1471
1472 /*
1473 * If no output was produced print a single 0.
1474 */
1475 if (len == 0)
1476 len = snprintf(buf, buf_size, "%d", 0);
1477
1478 if (add_cr)
1479 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1480
1481 return len;
1482 }
1483
1484 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1485 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1486 struct device_attribute *attr, \
1487 char *buf) \
1488 { \
1489 struct input_dev *input_dev = to_input_dev(dev); \
1490 int len = input_print_bitmap(buf, PAGE_SIZE, \
1491 input_dev->bm##bit, ev##_MAX, \
1492 true); \
1493 return min_t(int, len, PAGE_SIZE); \
1494 } \
1495 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1496
1497 INPUT_DEV_CAP_ATTR(EV, ev);
1498 INPUT_DEV_CAP_ATTR(KEY, key);
1499 INPUT_DEV_CAP_ATTR(REL, rel);
1500 INPUT_DEV_CAP_ATTR(ABS, abs);
1501 INPUT_DEV_CAP_ATTR(MSC, msc);
1502 INPUT_DEV_CAP_ATTR(LED, led);
1503 INPUT_DEV_CAP_ATTR(SND, snd);
1504 INPUT_DEV_CAP_ATTR(FF, ff);
1505 INPUT_DEV_CAP_ATTR(SW, sw);
1506
1507 static struct attribute *input_dev_caps_attrs[] = {
1508 &dev_attr_ev.attr,
1509 &dev_attr_key.attr,
1510 &dev_attr_rel.attr,
1511 &dev_attr_abs.attr,
1512 &dev_attr_msc.attr,
1513 &dev_attr_led.attr,
1514 &dev_attr_snd.attr,
1515 &dev_attr_ff.attr,
1516 &dev_attr_sw.attr,
1517 NULL
1518 };
1519
1520 static const struct attribute_group input_dev_caps_attr_group = {
1521 .name = "capabilities",
1522 .attrs = input_dev_caps_attrs,
1523 };
1524
1525 static const struct attribute_group *input_dev_attr_groups[] = {
1526 &input_dev_attr_group,
1527 &input_dev_id_attr_group,
1528 &input_dev_caps_attr_group,
1529 &input_poller_attribute_group,
1530 NULL
1531 };
1532
input_dev_release(struct device * device)1533 static void input_dev_release(struct device *device)
1534 {
1535 struct input_dev *dev = to_input_dev(device);
1536
1537 input_ff_destroy(dev);
1538 input_mt_destroy_slots(dev);
1539 kfree(dev->poller);
1540 kfree(dev->absinfo);
1541 kfree(dev->vals);
1542 kfree(dev);
1543
1544 module_put(THIS_MODULE);
1545 }
1546
1547 /*
1548 * Input uevent interface - loading event handlers based on
1549 * device bitfields.
1550 */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1551 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1552 const char *name, unsigned long *bitmap, int max)
1553 {
1554 int len;
1555
1556 if (add_uevent_var(env, "%s", name))
1557 return -ENOMEM;
1558
1559 len = input_print_bitmap(&env->buf[env->buflen - 1],
1560 sizeof(env->buf) - env->buflen,
1561 bitmap, max, false);
1562 if (len >= (sizeof(env->buf) - env->buflen))
1563 return -ENOMEM;
1564
1565 env->buflen += len;
1566 return 0;
1567 }
1568
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1569 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1570 struct input_dev *dev)
1571 {
1572 int len;
1573
1574 if (add_uevent_var(env, "MODALIAS="))
1575 return -ENOMEM;
1576
1577 len = input_print_modalias(&env->buf[env->buflen - 1],
1578 sizeof(env->buf) - env->buflen,
1579 dev, 0);
1580 if (len >= (sizeof(env->buf) - env->buflen))
1581 return -ENOMEM;
1582
1583 env->buflen += len;
1584 return 0;
1585 }
1586
1587 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1588 do { \
1589 int err = add_uevent_var(env, fmt, val); \
1590 if (err) \
1591 return err; \
1592 } while (0)
1593
1594 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1595 do { \
1596 int err = input_add_uevent_bm_var(env, name, bm, max); \
1597 if (err) \
1598 return err; \
1599 } while (0)
1600
1601 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1602 do { \
1603 int err = input_add_uevent_modalias_var(env, dev); \
1604 if (err) \
1605 return err; \
1606 } while (0)
1607
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1608 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1609 {
1610 struct input_dev *dev = to_input_dev(device);
1611
1612 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1613 dev->id.bustype, dev->id.vendor,
1614 dev->id.product, dev->id.version);
1615 if (dev->name)
1616 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1617 if (dev->phys)
1618 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1619 if (dev->uniq)
1620 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1621
1622 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1623
1624 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1625 if (test_bit(EV_KEY, dev->evbit))
1626 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1627 if (test_bit(EV_REL, dev->evbit))
1628 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1629 if (test_bit(EV_ABS, dev->evbit))
1630 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1631 if (test_bit(EV_MSC, dev->evbit))
1632 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1633 if (test_bit(EV_LED, dev->evbit))
1634 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1635 if (test_bit(EV_SND, dev->evbit))
1636 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1637 if (test_bit(EV_FF, dev->evbit))
1638 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1639 if (test_bit(EV_SW, dev->evbit))
1640 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1641
1642 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1643
1644 return 0;
1645 }
1646
1647 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1648 do { \
1649 int i; \
1650 bool active; \
1651 \
1652 if (!test_bit(EV_##type, dev->evbit)) \
1653 break; \
1654 \
1655 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1656 active = test_bit(i, dev->bits); \
1657 if (!active && !on) \
1658 continue; \
1659 \
1660 dev->event(dev, EV_##type, i, on ? active : 0); \
1661 } \
1662 } while (0)
1663
input_dev_toggle(struct input_dev * dev,bool activate)1664 static void input_dev_toggle(struct input_dev *dev, bool activate)
1665 {
1666 if (!dev->event)
1667 return;
1668
1669 INPUT_DO_TOGGLE(dev, LED, led, activate);
1670 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1671
1672 if (activate && test_bit(EV_REP, dev->evbit)) {
1673 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1674 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1675 }
1676 }
1677
1678 /**
1679 * input_reset_device() - reset/restore the state of input device
1680 * @dev: input device whose state needs to be reset
1681 *
1682 * This function tries to reset the state of an opened input device and
1683 * bring internal state and state if the hardware in sync with each other.
1684 * We mark all keys as released, restore LED state, repeat rate, etc.
1685 */
input_reset_device(struct input_dev * dev)1686 void input_reset_device(struct input_dev *dev)
1687 {
1688 unsigned long flags;
1689
1690 mutex_lock(&dev->mutex);
1691 spin_lock_irqsave(&dev->event_lock, flags);
1692
1693 input_dev_toggle(dev, true);
1694 input_dev_release_keys(dev);
1695
1696 spin_unlock_irqrestore(&dev->event_lock, flags);
1697 mutex_unlock(&dev->mutex);
1698 }
1699 EXPORT_SYMBOL(input_reset_device);
1700
1701 #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1702 static int input_dev_suspend(struct device *dev)
1703 {
1704 struct input_dev *input_dev = to_input_dev(dev);
1705
1706 spin_lock_irq(&input_dev->event_lock);
1707
1708 /*
1709 * Keys that are pressed now are unlikely to be
1710 * still pressed when we resume.
1711 */
1712 input_dev_release_keys(input_dev);
1713
1714 /* Turn off LEDs and sounds, if any are active. */
1715 input_dev_toggle(input_dev, false);
1716
1717 spin_unlock_irq(&input_dev->event_lock);
1718
1719 return 0;
1720 }
1721
input_dev_resume(struct device * dev)1722 static int input_dev_resume(struct device *dev)
1723 {
1724 struct input_dev *input_dev = to_input_dev(dev);
1725
1726 spin_lock_irq(&input_dev->event_lock);
1727
1728 /* Restore state of LEDs and sounds, if any were active. */
1729 input_dev_toggle(input_dev, true);
1730
1731 spin_unlock_irq(&input_dev->event_lock);
1732
1733 return 0;
1734 }
1735
input_dev_freeze(struct device * dev)1736 static int input_dev_freeze(struct device *dev)
1737 {
1738 struct input_dev *input_dev = to_input_dev(dev);
1739
1740 spin_lock_irq(&input_dev->event_lock);
1741
1742 /*
1743 * Keys that are pressed now are unlikely to be
1744 * still pressed when we resume.
1745 */
1746 input_dev_release_keys(input_dev);
1747
1748 spin_unlock_irq(&input_dev->event_lock);
1749
1750 return 0;
1751 }
1752
input_dev_poweroff(struct device * dev)1753 static int input_dev_poweroff(struct device *dev)
1754 {
1755 struct input_dev *input_dev = to_input_dev(dev);
1756
1757 spin_lock_irq(&input_dev->event_lock);
1758
1759 /* Turn off LEDs and sounds, if any are active. */
1760 input_dev_toggle(input_dev, false);
1761
1762 spin_unlock_irq(&input_dev->event_lock);
1763
1764 return 0;
1765 }
1766
1767 static const struct dev_pm_ops input_dev_pm_ops = {
1768 .suspend = input_dev_suspend,
1769 .resume = input_dev_resume,
1770 .freeze = input_dev_freeze,
1771 .poweroff = input_dev_poweroff,
1772 .restore = input_dev_resume,
1773 };
1774 #endif /* CONFIG_PM */
1775
1776 static const struct device_type input_dev_type = {
1777 .groups = input_dev_attr_groups,
1778 .release = input_dev_release,
1779 .uevent = input_dev_uevent,
1780 #ifdef CONFIG_PM_SLEEP
1781 .pm = &input_dev_pm_ops,
1782 #endif
1783 };
1784
input_devnode(struct device * dev,umode_t * mode)1785 static char *input_devnode(struct device *dev, umode_t *mode)
1786 {
1787 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1788 }
1789
1790 struct class input_class = {
1791 .name = "input",
1792 .devnode = input_devnode,
1793 };
1794 EXPORT_SYMBOL_GPL(input_class);
1795
1796 /**
1797 * input_allocate_device - allocate memory for new input device
1798 *
1799 * Returns prepared struct input_dev or %NULL.
1800 *
1801 * NOTE: Use input_free_device() to free devices that have not been
1802 * registered; input_unregister_device() should be used for already
1803 * registered devices.
1804 */
input_allocate_device(void)1805 struct input_dev *input_allocate_device(void)
1806 {
1807 static atomic_t input_no = ATOMIC_INIT(-1);
1808 struct input_dev *dev;
1809
1810 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1811 if (dev) {
1812 dev->dev.type = &input_dev_type;
1813 dev->dev.class = &input_class;
1814 device_initialize(&dev->dev);
1815 mutex_init(&dev->mutex);
1816 spin_lock_init(&dev->event_lock);
1817 timer_setup(&dev->timer, NULL, 0);
1818 INIT_LIST_HEAD(&dev->h_list);
1819 INIT_LIST_HEAD(&dev->node);
1820
1821 dev_set_name(&dev->dev, "input%lu",
1822 (unsigned long)atomic_inc_return(&input_no));
1823
1824 __module_get(THIS_MODULE);
1825 }
1826
1827 return dev;
1828 }
1829 EXPORT_SYMBOL(input_allocate_device);
1830
1831 struct input_devres {
1832 struct input_dev *input;
1833 };
1834
devm_input_device_match(struct device * dev,void * res,void * data)1835 static int devm_input_device_match(struct device *dev, void *res, void *data)
1836 {
1837 struct input_devres *devres = res;
1838
1839 return devres->input == data;
1840 }
1841
devm_input_device_release(struct device * dev,void * res)1842 static void devm_input_device_release(struct device *dev, void *res)
1843 {
1844 struct input_devres *devres = res;
1845 struct input_dev *input = devres->input;
1846
1847 dev_dbg(dev, "%s: dropping reference to %s\n",
1848 __func__, dev_name(&input->dev));
1849 input_put_device(input);
1850 }
1851
1852 /**
1853 * devm_input_allocate_device - allocate managed input device
1854 * @dev: device owning the input device being created
1855 *
1856 * Returns prepared struct input_dev or %NULL.
1857 *
1858 * Managed input devices do not need to be explicitly unregistered or
1859 * freed as it will be done automatically when owner device unbinds from
1860 * its driver (or binding fails). Once managed input device is allocated,
1861 * it is ready to be set up and registered in the same fashion as regular
1862 * input device. There are no special devm_input_device_[un]register()
1863 * variants, regular ones work with both managed and unmanaged devices,
1864 * should you need them. In most cases however, managed input device need
1865 * not be explicitly unregistered or freed.
1866 *
1867 * NOTE: the owner device is set up as parent of input device and users
1868 * should not override it.
1869 */
devm_input_allocate_device(struct device * dev)1870 struct input_dev *devm_input_allocate_device(struct device *dev)
1871 {
1872 struct input_dev *input;
1873 struct input_devres *devres;
1874
1875 devres = devres_alloc(devm_input_device_release,
1876 sizeof(*devres), GFP_KERNEL);
1877 if (!devres)
1878 return NULL;
1879
1880 input = input_allocate_device();
1881 if (!input) {
1882 devres_free(devres);
1883 return NULL;
1884 }
1885
1886 input->dev.parent = dev;
1887 input->devres_managed = true;
1888
1889 devres->input = input;
1890 devres_add(dev, devres);
1891
1892 return input;
1893 }
1894 EXPORT_SYMBOL(devm_input_allocate_device);
1895
1896 /**
1897 * input_free_device - free memory occupied by input_dev structure
1898 * @dev: input device to free
1899 *
1900 * This function should only be used if input_register_device()
1901 * was not called yet or if it failed. Once device was registered
1902 * use input_unregister_device() and memory will be freed once last
1903 * reference to the device is dropped.
1904 *
1905 * Device should be allocated by input_allocate_device().
1906 *
1907 * NOTE: If there are references to the input device then memory
1908 * will not be freed until last reference is dropped.
1909 */
input_free_device(struct input_dev * dev)1910 void input_free_device(struct input_dev *dev)
1911 {
1912 if (dev) {
1913 if (dev->devres_managed)
1914 WARN_ON(devres_destroy(dev->dev.parent,
1915 devm_input_device_release,
1916 devm_input_device_match,
1917 dev));
1918 input_put_device(dev);
1919 }
1920 }
1921 EXPORT_SYMBOL(input_free_device);
1922
1923 /**
1924 * input_set_timestamp - set timestamp for input events
1925 * @dev: input device to set timestamp for
1926 * @timestamp: the time at which the event has occurred
1927 * in CLOCK_MONOTONIC
1928 *
1929 * This function is intended to provide to the input system a more
1930 * accurate time of when an event actually occurred. The driver should
1931 * call this function as soon as a timestamp is acquired ensuring
1932 * clock conversions in input_set_timestamp are done correctly.
1933 *
1934 * The system entering suspend state between timestamp acquisition and
1935 * calling input_set_timestamp can result in inaccurate conversions.
1936 */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)1937 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1938 {
1939 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1940 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1941 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1942 TK_OFFS_BOOT);
1943 }
1944 EXPORT_SYMBOL(input_set_timestamp);
1945
1946 /**
1947 * input_get_timestamp - get timestamp for input events
1948 * @dev: input device to get timestamp from
1949 *
1950 * A valid timestamp is a timestamp of non-zero value.
1951 */
input_get_timestamp(struct input_dev * dev)1952 ktime_t *input_get_timestamp(struct input_dev *dev)
1953 {
1954 const ktime_t invalid_timestamp = ktime_set(0, 0);
1955
1956 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1957 input_set_timestamp(dev, ktime_get());
1958
1959 return dev->timestamp;
1960 }
1961 EXPORT_SYMBOL(input_get_timestamp);
1962
1963 /**
1964 * input_set_capability - mark device as capable of a certain event
1965 * @dev: device that is capable of emitting or accepting event
1966 * @type: type of the event (EV_KEY, EV_REL, etc...)
1967 * @code: event code
1968 *
1969 * In addition to setting up corresponding bit in appropriate capability
1970 * bitmap the function also adjusts dev->evbit.
1971 */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1972 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1973 {
1974 switch (type) {
1975 case EV_KEY:
1976 __set_bit(code, dev->keybit);
1977 break;
1978
1979 case EV_REL:
1980 __set_bit(code, dev->relbit);
1981 break;
1982
1983 case EV_ABS:
1984 input_alloc_absinfo(dev);
1985 if (!dev->absinfo)
1986 return;
1987
1988 __set_bit(code, dev->absbit);
1989 break;
1990
1991 case EV_MSC:
1992 __set_bit(code, dev->mscbit);
1993 break;
1994
1995 case EV_SW:
1996 __set_bit(code, dev->swbit);
1997 break;
1998
1999 case EV_LED:
2000 __set_bit(code, dev->ledbit);
2001 break;
2002
2003 case EV_SND:
2004 __set_bit(code, dev->sndbit);
2005 break;
2006
2007 case EV_FF:
2008 __set_bit(code, dev->ffbit);
2009 break;
2010
2011 case EV_PWR:
2012 /* do nothing */
2013 break;
2014
2015 default:
2016 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2017 dump_stack();
2018 return;
2019 }
2020
2021 __set_bit(type, dev->evbit);
2022 }
2023 EXPORT_SYMBOL(input_set_capability);
2024
input_estimate_events_per_packet(struct input_dev * dev)2025 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2026 {
2027 int mt_slots;
2028 int i;
2029 unsigned int events;
2030
2031 if (dev->mt) {
2032 mt_slots = dev->mt->num_slots;
2033 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2034 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2035 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2036 mt_slots = clamp(mt_slots, 2, 32);
2037 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2038 mt_slots = 2;
2039 } else {
2040 mt_slots = 0;
2041 }
2042
2043 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2044
2045 if (test_bit(EV_ABS, dev->evbit))
2046 for_each_set_bit(i, dev->absbit, ABS_CNT)
2047 events += input_is_mt_axis(i) ? mt_slots : 1;
2048
2049 if (test_bit(EV_REL, dev->evbit))
2050 events += bitmap_weight(dev->relbit, REL_CNT);
2051
2052 /* Make room for KEY and MSC events */
2053 events += 7;
2054
2055 return events;
2056 }
2057
2058 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2059 do { \
2060 if (!test_bit(EV_##type, dev->evbit)) \
2061 memset(dev->bits##bit, 0, \
2062 sizeof(dev->bits##bit)); \
2063 } while (0)
2064
input_cleanse_bitmasks(struct input_dev * dev)2065 static void input_cleanse_bitmasks(struct input_dev *dev)
2066 {
2067 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2068 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2069 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2070 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2071 INPUT_CLEANSE_BITMASK(dev, LED, led);
2072 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2073 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2074 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2075 }
2076
__input_unregister_device(struct input_dev * dev)2077 static void __input_unregister_device(struct input_dev *dev)
2078 {
2079 struct input_handle *handle, *next;
2080
2081 input_disconnect_device(dev);
2082
2083 mutex_lock(&input_mutex);
2084
2085 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2086 handle->handler->disconnect(handle);
2087 WARN_ON(!list_empty(&dev->h_list));
2088
2089 del_timer_sync(&dev->timer);
2090 list_del_init(&dev->node);
2091
2092 input_wakeup_procfs_readers();
2093
2094 mutex_unlock(&input_mutex);
2095
2096 device_del(&dev->dev);
2097 }
2098
devm_input_device_unregister(struct device * dev,void * res)2099 static void devm_input_device_unregister(struct device *dev, void *res)
2100 {
2101 struct input_devres *devres = res;
2102 struct input_dev *input = devres->input;
2103
2104 dev_dbg(dev, "%s: unregistering device %s\n",
2105 __func__, dev_name(&input->dev));
2106 __input_unregister_device(input);
2107 }
2108
2109 /**
2110 * input_enable_softrepeat - enable software autorepeat
2111 * @dev: input device
2112 * @delay: repeat delay
2113 * @period: repeat period
2114 *
2115 * Enable software autorepeat on the input device.
2116 */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2117 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2118 {
2119 dev->timer.function = input_repeat_key;
2120 dev->rep[REP_DELAY] = delay;
2121 dev->rep[REP_PERIOD] = period;
2122 }
2123 EXPORT_SYMBOL(input_enable_softrepeat);
2124
2125 /**
2126 * input_register_device - register device with input core
2127 * @dev: device to be registered
2128 *
2129 * This function registers device with input core. The device must be
2130 * allocated with input_allocate_device() and all it's capabilities
2131 * set up before registering.
2132 * If function fails the device must be freed with input_free_device().
2133 * Once device has been successfully registered it can be unregistered
2134 * with input_unregister_device(); input_free_device() should not be
2135 * called in this case.
2136 *
2137 * Note that this function is also used to register managed input devices
2138 * (ones allocated with devm_input_allocate_device()). Such managed input
2139 * devices need not be explicitly unregistered or freed, their tear down
2140 * is controlled by the devres infrastructure. It is also worth noting
2141 * that tear down of managed input devices is internally a 2-step process:
2142 * registered managed input device is first unregistered, but stays in
2143 * memory and can still handle input_event() calls (although events will
2144 * not be delivered anywhere). The freeing of managed input device will
2145 * happen later, when devres stack is unwound to the point where device
2146 * allocation was made.
2147 */
input_register_device(struct input_dev * dev)2148 int input_register_device(struct input_dev *dev)
2149 {
2150 struct input_devres *devres = NULL;
2151 struct input_handler *handler;
2152 unsigned int packet_size;
2153 const char *path;
2154 int error;
2155
2156 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2157 dev_err(&dev->dev,
2158 "Absolute device without dev->absinfo, refusing to register\n");
2159 return -EINVAL;
2160 }
2161
2162 if (dev->devres_managed) {
2163 devres = devres_alloc(devm_input_device_unregister,
2164 sizeof(*devres), GFP_KERNEL);
2165 if (!devres)
2166 return -ENOMEM;
2167
2168 devres->input = dev;
2169 }
2170
2171 /* Every input device generates EV_SYN/SYN_REPORT events. */
2172 __set_bit(EV_SYN, dev->evbit);
2173
2174 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2175 __clear_bit(KEY_RESERVED, dev->keybit);
2176
2177 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2178 input_cleanse_bitmasks(dev);
2179
2180 packet_size = input_estimate_events_per_packet(dev);
2181 if (dev->hint_events_per_packet < packet_size)
2182 dev->hint_events_per_packet = packet_size;
2183
2184 dev->max_vals = dev->hint_events_per_packet + 2;
2185 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2186 if (!dev->vals) {
2187 error = -ENOMEM;
2188 goto err_devres_free;
2189 }
2190
2191 /*
2192 * If delay and period are pre-set by the driver, then autorepeating
2193 * is handled by the driver itself and we don't do it in input.c.
2194 */
2195 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2196 input_enable_softrepeat(dev, 250, 33);
2197
2198 if (!dev->getkeycode)
2199 dev->getkeycode = input_default_getkeycode;
2200
2201 if (!dev->setkeycode)
2202 dev->setkeycode = input_default_setkeycode;
2203
2204 if (dev->poller)
2205 input_dev_poller_finalize(dev->poller);
2206
2207 error = device_add(&dev->dev);
2208 if (error)
2209 goto err_free_vals;
2210
2211 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2212 pr_info("%s as %s\n",
2213 dev->name ? dev->name : "Unspecified device",
2214 path ? path : "N/A");
2215 kfree(path);
2216
2217 error = mutex_lock_interruptible(&input_mutex);
2218 if (error)
2219 goto err_device_del;
2220
2221 list_add_tail(&dev->node, &input_dev_list);
2222
2223 list_for_each_entry(handler, &input_handler_list, node)
2224 input_attach_handler(dev, handler);
2225
2226 input_wakeup_procfs_readers();
2227
2228 mutex_unlock(&input_mutex);
2229
2230 if (dev->devres_managed) {
2231 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2232 __func__, dev_name(&dev->dev));
2233 devres_add(dev->dev.parent, devres);
2234 }
2235 return 0;
2236
2237 err_device_del:
2238 device_del(&dev->dev);
2239 err_free_vals:
2240 kfree(dev->vals);
2241 dev->vals = NULL;
2242 err_devres_free:
2243 devres_free(devres);
2244 return error;
2245 }
2246 EXPORT_SYMBOL(input_register_device);
2247
2248 /**
2249 * input_unregister_device - unregister previously registered device
2250 * @dev: device to be unregistered
2251 *
2252 * This function unregisters an input device. Once device is unregistered
2253 * the caller should not try to access it as it may get freed at any moment.
2254 */
input_unregister_device(struct input_dev * dev)2255 void input_unregister_device(struct input_dev *dev)
2256 {
2257 if (dev->devres_managed) {
2258 WARN_ON(devres_destroy(dev->dev.parent,
2259 devm_input_device_unregister,
2260 devm_input_device_match,
2261 dev));
2262 __input_unregister_device(dev);
2263 /*
2264 * We do not do input_put_device() here because it will be done
2265 * when 2nd devres fires up.
2266 */
2267 } else {
2268 __input_unregister_device(dev);
2269 input_put_device(dev);
2270 }
2271 }
2272 EXPORT_SYMBOL(input_unregister_device);
2273
2274 /**
2275 * input_register_handler - register a new input handler
2276 * @handler: handler to be registered
2277 *
2278 * This function registers a new input handler (interface) for input
2279 * devices in the system and attaches it to all input devices that
2280 * are compatible with the handler.
2281 */
input_register_handler(struct input_handler * handler)2282 int input_register_handler(struct input_handler *handler)
2283 {
2284 struct input_dev *dev;
2285 int error;
2286
2287 error = mutex_lock_interruptible(&input_mutex);
2288 if (error)
2289 return error;
2290
2291 INIT_LIST_HEAD(&handler->h_list);
2292
2293 list_add_tail(&handler->node, &input_handler_list);
2294
2295 list_for_each_entry(dev, &input_dev_list, node)
2296 input_attach_handler(dev, handler);
2297
2298 input_wakeup_procfs_readers();
2299
2300 mutex_unlock(&input_mutex);
2301 return 0;
2302 }
2303 EXPORT_SYMBOL(input_register_handler);
2304
2305 /**
2306 * input_unregister_handler - unregisters an input handler
2307 * @handler: handler to be unregistered
2308 *
2309 * This function disconnects a handler from its input devices and
2310 * removes it from lists of known handlers.
2311 */
input_unregister_handler(struct input_handler * handler)2312 void input_unregister_handler(struct input_handler *handler)
2313 {
2314 struct input_handle *handle, *next;
2315
2316 mutex_lock(&input_mutex);
2317
2318 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2319 handler->disconnect(handle);
2320 WARN_ON(!list_empty(&handler->h_list));
2321
2322 list_del_init(&handler->node);
2323
2324 input_wakeup_procfs_readers();
2325
2326 mutex_unlock(&input_mutex);
2327 }
2328 EXPORT_SYMBOL(input_unregister_handler);
2329
2330 /**
2331 * input_handler_for_each_handle - handle iterator
2332 * @handler: input handler to iterate
2333 * @data: data for the callback
2334 * @fn: function to be called for each handle
2335 *
2336 * Iterate over @bus's list of devices, and call @fn for each, passing
2337 * it @data and stop when @fn returns a non-zero value. The function is
2338 * using RCU to traverse the list and therefore may be using in atomic
2339 * contexts. The @fn callback is invoked from RCU critical section and
2340 * thus must not sleep.
2341 */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2342 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2343 int (*fn)(struct input_handle *, void *))
2344 {
2345 struct input_handle *handle;
2346 int retval = 0;
2347
2348 rcu_read_lock();
2349
2350 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2351 retval = fn(handle, data);
2352 if (retval)
2353 break;
2354 }
2355
2356 rcu_read_unlock();
2357
2358 return retval;
2359 }
2360 EXPORT_SYMBOL(input_handler_for_each_handle);
2361
2362 /**
2363 * input_register_handle - register a new input handle
2364 * @handle: handle to register
2365 *
2366 * This function puts a new input handle onto device's
2367 * and handler's lists so that events can flow through
2368 * it once it is opened using input_open_device().
2369 *
2370 * This function is supposed to be called from handler's
2371 * connect() method.
2372 */
input_register_handle(struct input_handle * handle)2373 int input_register_handle(struct input_handle *handle)
2374 {
2375 struct input_handler *handler = handle->handler;
2376 struct input_dev *dev = handle->dev;
2377 int error;
2378
2379 /*
2380 * We take dev->mutex here to prevent race with
2381 * input_release_device().
2382 */
2383 error = mutex_lock_interruptible(&dev->mutex);
2384 if (error)
2385 return error;
2386
2387 /*
2388 * Filters go to the head of the list, normal handlers
2389 * to the tail.
2390 */
2391 if (handler->filter)
2392 list_add_rcu(&handle->d_node, &dev->h_list);
2393 else
2394 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2395
2396 mutex_unlock(&dev->mutex);
2397
2398 /*
2399 * Since we are supposed to be called from ->connect()
2400 * which is mutually exclusive with ->disconnect()
2401 * we can't be racing with input_unregister_handle()
2402 * and so separate lock is not needed here.
2403 */
2404 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2405
2406 if (handler->start)
2407 handler->start(handle);
2408
2409 return 0;
2410 }
2411 EXPORT_SYMBOL(input_register_handle);
2412
2413 /**
2414 * input_unregister_handle - unregister an input handle
2415 * @handle: handle to unregister
2416 *
2417 * This function removes input handle from device's
2418 * and handler's lists.
2419 *
2420 * This function is supposed to be called from handler's
2421 * disconnect() method.
2422 */
input_unregister_handle(struct input_handle * handle)2423 void input_unregister_handle(struct input_handle *handle)
2424 {
2425 struct input_dev *dev = handle->dev;
2426
2427 list_del_rcu(&handle->h_node);
2428
2429 /*
2430 * Take dev->mutex to prevent race with input_release_device().
2431 */
2432 mutex_lock(&dev->mutex);
2433 list_del_rcu(&handle->d_node);
2434 mutex_unlock(&dev->mutex);
2435
2436 synchronize_rcu();
2437 }
2438 EXPORT_SYMBOL(input_unregister_handle);
2439
2440 /**
2441 * input_get_new_minor - allocates a new input minor number
2442 * @legacy_base: beginning or the legacy range to be searched
2443 * @legacy_num: size of legacy range
2444 * @allow_dynamic: whether we can also take ID from the dynamic range
2445 *
2446 * This function allocates a new device minor for from input major namespace.
2447 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2448 * parameters and whether ID can be allocated from dynamic range if there are
2449 * no free IDs in legacy range.
2450 */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2451 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2452 bool allow_dynamic)
2453 {
2454 /*
2455 * This function should be called from input handler's ->connect()
2456 * methods, which are serialized with input_mutex, so no additional
2457 * locking is needed here.
2458 */
2459 if (legacy_base >= 0) {
2460 int minor = ida_simple_get(&input_ida,
2461 legacy_base,
2462 legacy_base + legacy_num,
2463 GFP_KERNEL);
2464 if (minor >= 0 || !allow_dynamic)
2465 return minor;
2466 }
2467
2468 return ida_simple_get(&input_ida,
2469 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2470 GFP_KERNEL);
2471 }
2472 EXPORT_SYMBOL(input_get_new_minor);
2473
2474 /**
2475 * input_free_minor - release previously allocated minor
2476 * @minor: minor to be released
2477 *
2478 * This function releases previously allocated input minor so that it can be
2479 * reused later.
2480 */
input_free_minor(unsigned int minor)2481 void input_free_minor(unsigned int minor)
2482 {
2483 ida_simple_remove(&input_ida, minor);
2484 }
2485 EXPORT_SYMBOL(input_free_minor);
2486
input_init(void)2487 static int __init input_init(void)
2488 {
2489 int err;
2490
2491 err = class_register(&input_class);
2492 if (err) {
2493 pr_err("unable to register input_dev class\n");
2494 return err;
2495 }
2496
2497 err = input_proc_init();
2498 if (err)
2499 goto fail1;
2500
2501 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2502 INPUT_MAX_CHAR_DEVICES, "input");
2503 if (err) {
2504 pr_err("unable to register char major %d", INPUT_MAJOR);
2505 goto fail2;
2506 }
2507
2508 return 0;
2509
2510 fail2: input_proc_exit();
2511 fail1: class_unregister(&input_class);
2512 return err;
2513 }
2514
input_exit(void)2515 static void __exit input_exit(void)
2516 {
2517 input_proc_exit();
2518 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2519 INPUT_MAX_CHAR_DEVICES);
2520 class_unregister(&input_class);
2521 }
2522
2523 subsys_initcall(input_init);
2524 module_exit(input_exit);
2525